

Oh My JS
The Best JavaScript Articles

Azat Mardanov

This book is for sale at http://leanpub.com/ohmyjs

This version was published on 2014-02-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Azat Mardanov

http://leanpub.com/ohmyjs
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Azat Mardanov by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Oh My JS CC @RPJSBook

The suggested hashtag for this book is #ohmyjs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ohmyjs

http://twitter.com
https://twitter.com/search?q=%23ohmyjs
https://twitter.com/search?q=%23ohmyjs

Also By Azat Mardanov
Rapid Prototyping with JS

Express.js Guide

JavaScript and Node FUNdamentals

http://leanpub.com/u/azat
http://leanpub.com/rapid-prototyping-with-js
http://leanpub.com/express
http://leanpub.com/jsfun

To God, My Teachers and Vladimir Nabokov

Contents

JavaScript Fundamentals . 1
The World’s Most Misunderstood Programming Language 1
Understanding JavaScript Function Invocation and “this” 4
Code Conventions for the JavaScript Programming Language 9
Semicolons in JavaScript are optional . 18

Patterns and Code Organization . 24
Common JavaScript “Gotchas” . 24
Asynchronous JS: Callbacks, Listeners, Control Flow Libs and Promises 35
The Design of Code: Organizing JavaScript . 44
Why AMD? . 50
JavaScript Dependency Injection . 59

Tools . 66
10 Must Have JavaScript Tools For Developers . 66
Useful Node.js Tools, Tutorials And Resources . 76
Control the Complexity of Your JavaScript Functions with JSHint 83

Testing . 87
Leaner, Meaner, Faster Animations with requestAnimationFrame 87

Node.js . 98
Understanding event loops and writing great code for Node.js 98
Callback Hell . 101
Understanding Express.js . 106

About the Author . 120

JavaScript Fundamentals
The World’s Most Misunderstood Programming
Language

..

Original Article
http://javascript.crockford.com/javascript.html

Douglas Crockford, crockford.com

http://crockford.com

JavaScript¹, aka Mocha, aka LiveScript, aka JScript, aka ECMAScript, is one of the world’s most
popular programming languages. Virtually every personal computer in the world has at least one
JavaScript interpreter installed on it and in active use. JavaScript’s popularity is due entirely to its
role as the scripting language of the WWW.

Despite its popularity, few know that JavaScript is a very nice dynamic object-oriented general-
purpose programming language. How can this be a secret? Why is this language so misunderstood?

The Name

The Java- prefix suggests that JavaScript is somehow related to Java, that it is a subset or less
capable version of Java. It seems that the name was intentionally selected to create confusion, and
from confusion comes misunderstanding. JavaScript is not interpreted Java. Java is interpreted Java.
JavaScript is a different language.

JavaScript has a syntactic similarity to Java, much as Java has to C. But it is no more a subset of Java
than Java is a subset of C. It is better than Java in the applications that Java (fka Oak) was originally
intended for.

JavaScript was not developed at Sun Microsystems, the home of Java. JavaScript was developed at
Netscape. It was originally called LiveScript, but that name wasn’t confusing enough.

The -Script suffix suggests that it is not a real programming language, that a scripting language
is less than a programming language. But it is really a matter of specialization. Compared to C,
JavaScript trades performance for expressive power and dynamism.

¹http://javascript.crockford.com/

http://javascript.crockford.com/javascript.html
http://crockford.com
http://crockford.com
http://javascript.crockford.com/
http://javascript.crockford.com/

JavaScript Fundamentals 2

Lisp in C’s Clothing

JavaScript’s C-like syntax, including curly braces and the clunky for statement, makes it appear to
be an ordinary procedural language. This is misleading because JavaScript has more in common
with functional languages like Lisp or Scheme² than with C or Java. It has arrays instead of lists and
objects instead of property lists. Functions are first class. It has closures. You get lambdas without
having to balance all those parens.

Typecasting

JavaScript was designed to run in Netscape Navigator. Its success there led to it becoming standard
equipment in virtually all web browsers. This has resulted in typecasting. JavaScript is the George
Reeves³ of programming languages. JavaScript is well suited to a large class of non-Web-related
applications

Moving Target

The first versions of JavaScript were quite weak. They lacked exception handling, inner functions,
and inheritance. In its present form, it is now a complete object-oriented programming language.
But many opinions of the language are based on its immature forms.

The ECMA committee that has stewardship over the language is developing extensions which, while
well intentioned, will aggravate one of the language’s biggest problems: There are already too many
versions. This creates confusion.

Design Errors

No programming language is perfect. JavaScript has its share of design errors, such as the
overloading of + to mean both addition and concatenation with type coercion, and the error-
prone with statement should be avoided. The reserved word policies are much too strict. Semicolon
insertion was a huge mistake, as was the notation for literal regular expressions. These mistakes
have led to programming errors, and called the design of the language as a whole into question.
Fortunately, many of these problems can be mitigated with a good lint⁴ program.

The design of the language on the whole is quite sound. Surprisingly, the ECMAScript committee
does not appear to be interested in correcting these problems. Perhaps they are more interested in
making new ones.

²http://javascript.crockford.com/little.html
³http://www.amazon.com/exec/obidos/ASIN/B000KWZ7JC/wrrrldwideweb
⁴http://www.jslint.com/

http://javascript.crockford.com/little.html
http://www.amazon.com/exec/obidos/ASIN/B000KWZ7JC/wrrrldwideweb
http://www.amazon.com/exec/obidos/ASIN/B000KWZ7JC/wrrrldwideweb
http://www.jslint.com/
http://javascript.crockford.com/little.html
http://www.amazon.com/exec/obidos/ASIN/B000KWZ7JC/wrrrldwideweb
http://www.jslint.com/

JavaScript Fundamentals 3

Lousy Implementations

Some of the earlier implementations of JavaScript were quite buggy. This reflected badly on
the language. Compounding that, those implementations were embedded in horribly buggy web
browsers.

Bad Books

Nearly all of the books about JavaScript are quite awful. They contain errors, poor examples, and
promote bad practices. Important features of the language are often explained poorly, or left out
entirely. I have reviewed dozens of JavaScript books, andI can only recommend one: JavaScript:
The Definitive Guide (5th Edition)⁵ by David Flanagan. (Attention authors: If you have written a
good one, please send me a review copy.)

Substandard Standard

The official specification for the language⁶ is published by ECMA⁷. The specification is of extremely
poor quality. It is difficult to read and very difficult to understand. This has been a contributor to the
Bad Book problem because authors have been unable to use the standard document to improve their
own understanding of the language. ECMA and the TC39 committee should be deeply embarrassed.

Amateurs

Most of the people writing in JavaScript are not programmers. They lack the training and discipline
to write good programs. JavaScript has so much expressive power that they are able to do useful
things in it, anyway. This has given JavaScript a reputation of being strictly for the amateurs, that
it is not suitable for professional programming. This is simply not the case.

Object-Oriented

Is JavaScript object-oriented? It has objects which can contain data and methods that act upon that
data. Objects can contain other objects. It does not have classes, but it does have constructors which
do what classes do, including acting as containers for class variables and methods. It does not have
class-oriented inheritance, but it does have prototype-oriented inheritance.

The two main ways of building up object systems are by inheritance (is-a) and by aggregation (has-
a). JavaScript does both, but its dynamic nature allows it to excel at aggregation.

Some argue that JavaScript is not truly object oriented because it does not provide information
hiding. That is, objects cannot have private variables and private methods: All members are public.

⁵http://www.amazon.com/exec/obidos/ASIN/0596101996/wrrrldwideweb
⁶http://www.ecma-international.org/publications/standards/Ecma-262.htm
⁷http://www.ecma-international.org/

http://www.amazon.com/exec/obidos/ASIN/0596101996/wrrrldwideweb
http://www.amazon.com/exec/obidos/ASIN/0596101996/wrrrldwideweb
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/
http://www.amazon.com/exec/obidos/ASIN/0596101996/wrrrldwideweb
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/

JavaScript Fundamentals 4

But it turns out that JavaScript objects can have private variables and private methods. (Click
here now to find out how.)⁸ Of course, few understand this because JavaScript is the world’s most
misunderstood programming language.

Some argue that JavaScript is not truly object oriented because it does not provide inheritance. But
it turns out that JavaScript supports not only classical inheritance, but other code reuse patterns as
well.⁹

Copyright 2001 Douglas Crockford.¹⁰ All Rights Reserved Wrrrldwide.¹¹

Understanding JavaScript Function Invocation and
“this”

..

Original Article
http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this

Yehuda Katz, yehudakatz.com

Over the years, I’ve seen a lot of confusion about JavaScript function invocation. In particular, a lot
of people have complained that the semantics of this in function invocations is confusing.

In my opinion, a lot of this confusion is cleared up by understanding the core function invocation
primitive, and then looking at all other ways of invoking a function as sugar on top of that primitive.
In fact, this is exactly how the ECMAScript spec thinks about it. In some areas, this post is a
simplification of the spec, but the basic idea is the same.

The Core Primitive

First, let’s look at the core function invocation primitive, a Function’s call method[1]. The call
method is relatively straight forward.

1. Make an argument list (argList) out of parameters 1 through the end
2. The first parameter is thisValue
3. Invoke the function with this set to thisValue and the argList as its argument list

For example:

⁸http://www.crockford.com/javascript/private.html
⁹http://javascript.crockford.com/inheritance.html
¹⁰mailto:douglas@crockford.com
¹¹http://www.crockford.com/

http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html
http://javascript.crockford.com/inheritance.html
http://javascript.crockford.com/inheritance.html
mailto:douglas@crockford.com
http://www.crockford.com/
http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this
http://www.crockford.com/javascript/private.html
http://javascript.crockford.com/inheritance.html
mailto:douglas@crockford.com
http://www.crockford.com/

JavaScript Fundamentals 5

1 function hello(thing) {

2 console.log(this + " says hello " + thing);

3 }

4

5 hello.call("Yehuda", "world") //=> Yehuda says hello world

As you can see, we invoked the hello method with this set to "Yehuda" and a single argument
"world". This is the core primitive of JavaScript function invocation. You can think of all other
function calls as desugaring to this primitive. (to “desugar” is to take a convenient syntax and
describe it in terms of a more basic core primitive).

[1] In the ES5 spec¹², the call method is described in terms of another, more low level primitive, but
it’s a very thin wrapper on top of that primitive, so I’m simplifying a bit here. See the end of this post
for more information.

Simple Function Invocation

Obviously, invoking functions with call all the time would be pretty annoying. JavaScript allows
us to invoke functions directly using the parens syntax (hello("world"). When we do that, the
invocation desugars:

1 function hello(thing) {

2 console.log("Hello " + thing);

3 }

4

5 // this:

6 hello("world")

7

8 // desugars to:

9 hello.call(window, "world");

This behavior has changed in ECMAScript 5 only when using strict mode[2]:

1 // this:

2 hello("world")

3

4 // desugars to:

5 hello.call(undefined, "world");

¹²http://es5.github.com/#x15.3.4.4

http://es5.github.com/#x15.3.4.4
http://es5.github.com/#x15.3.4.4

JavaScript Fundamentals 6

The short version is: a function invocation like fn(...args) is the same as fn.call(window

[ES5-strict: undefined], ...args).

Note that this is also true about functions declared inline: (function() {})() is the same as
(function() {}).call(window [ES5-strict: undefined).

[2] Actually, I lied a bit. The ECMAScript 5 spec says that undefined is (almost) always passed, but
that the function being called should change its thisValue to the global object when not in strict
mode. This allows strict mode callers to avoid breaking existing non-strict-mode libraries.

Member Functions

The next very common way to invoke a method is as a member of an object (person.hello()). In
this case, the invocation desugars:

1 var person = {

2 name: "Brendan Eich",

3 hello: function(thing) {

4 console.log(this + " says hello " + thing);

5 }

6 }

7

8 // this:

9 person.hello("world")

10

11 // desugars to this:

12 person.hello.call(person, "world");

Note that it doesn’t matter how the hello method becomes attached to the object in this form.
Remember that we previously defined hello as a standalone function. Let’s see what happens if we
attach is to the object dynamically:

1 function hello(thing) {

2 console.log(this + " says hello " + thing);

3 }

4

5 person = { name: "Brendan Eich" }

6 person.hello = hello;

7

8 person.hello("world") // still desugars to person.hello.call(person, "world")

9

10 hello("world") // "[object DOMWindow]world"

Notice that the function doesn’t have a persistent notion of its ‘this’. It is always set at call time
based upon the way it was invoked by its caller.

JavaScript Fundamentals 7

Using Function.prototype.bind

Because it can sometimes be convenient to have a reference to a function with a persistent this
value, people have historically used a simple closure trick to convert a function into one with an
unchanging this:

1 var person = {

2 name: "Brendan Eich",

3 hello: function(thing) {

4 console.log(this.name + " says hello " + thing);

5 }

6 }

7

8 var boundHello = function(thing) { return person.hello.call(person, thing); }

9

10 boundHello("world");

Even though our boundHello call still desugars to boundHello.call(window, "world"), we turn
right around and use our primitive call method to change the this value back to what we want it
to be.

We can make this trick general-purpose with a few tweaks:

1 var bind = function(func, thisValue) {

2 return function() {

3 return func.apply(thisValue, arguments);

4 }

5 }

6

7 var boundHello = bind(person.hello, person);

8 boundHello("world") // "Brendan Eich says hello world"

In order to understand this, you just need two more pieces of information. First, arguments is an
Array-like object that represents all of the arguments passed into a function. Second, the apply

method works exactly like the call primitive, except that it takes an Array-like object instead of
listing the arguments out one at a time.

Our bind method simply returns a new function. When it is invoked, our new function simply
invokes the original function that was passed in, setting the original value as this. It also passes
through the arguments.

Because this was a somewhat common idiom, ES5 introduced a new method bind on all Function
objects that implements this behavior:

JavaScript Fundamentals 8

1 var boundHello = person.hello.bind(person);

2 boundHello("world") // "Brendan Eich says hello world"

This is most useful when you need a raw function to pass as a callback:

1 var person = {

2 name: "Alex Russell",

3 hello: function() { console.log(this.name + " says hello world"); }

4 }

5

6 $("#some-div").click(person.hello.bind(person));

7

8 // when the div is clicked, "Alex Russell says hello world" is printed

This is, of course, somewhat clunky, and TC39 (the committee that works on the next version(s) of
ECMAScript) continues to work on a more elegant, still-backwards-compatible solution.

On jQuery

Because jQuery makes such heavy use of anonymous callback functions, it uses the call method
internally to set the this value of those callbacks to a more useful value. For instance, instead of
receiving window as this in all event handlers (as you would without special intervention), jQuery
invokes call on the callback with the element that set up the event handler as its first parameter.

This is extremely useful, because the default value of this in anonymous callbacks is not particularly
useful, but it can give beginners to JavaScript the impression that this is, in general a strange, often
mutated concept that is hard to reason about.

If you understand the basic rules for converting a sugary function call into a desugared func.call(thisValue,
...args), you should be able to navigate the not so treacherous waters of the JavaScript this value.

PS: I Cheated

In several places, I simplified the reality a bit from the exact wording of the specification. Probably
the most important cheat is the way I called func.call a “primitive”. In reality, the spec has a
primitive (internally referred to as [[Call]]) that both func.call and [obj.]func() use.

However, take a look at the definition of func.call:

1. If IsCallable(func) is false, then throw a TypeError exception.
2. Let argList be an empty List.
3. If this method was called with more than one argument then in left to right order starting

with arg1 append each argument as the last element of argList

JavaScript Fundamentals 9

4. Return the result of calling the [[Call]] internal method of func, providing thisArg as the this
value and argList as the list of arguments.

As you can see, this definition is essentially a very simple JavaScript language binding to the
primitive [[Call]] operation.

If you look at the definition of invoking a function, the first seven steps set up thisValue and
argList, and the last step is: “Return the result of calling the [[Call]] internal method on func,
providing thisValue as the this value and providing the list argList as the argument values.”

It’s essentially identical wording, once the argList and thisValue have been determined.

I cheated a bit in calling call a primitive, but the meaning is essentially the same as had I pulled
out the spec at the beginning of this article and quoted chapter and verse.

Code Conventions for the JavaScript Programming
Language

..

Original Article
http://javascript.crockford.com/code.html

Douglas Crockford, crockford.com

This is a set of coding conventions and rules for use in JavaScript programming. It is inspired by the
Sun¹³ document Code Conventions for the Java Programming Language¹⁴. It is heavily modified of
course because JavaScript is not Java¹⁵.

The long-term value of software to an organization is in direct proportion to the quality of the
codebase. Over its lifetime, a programwill be handled by many pairs of hands and eyes. If a program
is able to clearly communicate its structure and characteristics, it is less likely that it will break when
modified in the never-too-distant future.

Code conventions can help in reducing the brittleness of programs.

All of our JavaScript code is sent directly to the public. It should always be of publication quality.

Neatness counts.

¹³http://www.sun.com/
¹⁴http://java.sun.com/docs/codeconv/
¹⁵http://javascript.crockford.com/javascript.html

http://javascript.crockford.com/code.html
http://www.sun.com/
http://java.sun.com/docs/codeconv/
http://javascript.crockford.com/javascript.html
http://www.sun.com/
http://java.sun.com/docs/codeconv/
http://javascript.crockford.com/javascript.html

JavaScript Fundamentals 10

JavaScript Files

JavaScript programs should be stored in and delivered as .js files.

JavaScript code should not be embedded in HTML files unless the code is specific to a single session.
Code in HTML adds significantly to pageweight with no opportunity for mitigation by caching and
compression.

<script src=filename.js> tags should be placed as late in the body as possible. This reduces the
effects of delays imposed by script loading on other page components. There is no need to use the
language or type attributes. It is the server, not the script tag, that determines the MIME type.

Indentation

The unit of indentation is four spaces. Use of tabs should be avoided because (as of this writing in
the 21st Century) there still is not a standard for the placement of tabstops. The use of spaces can
produce a larger filesize, but the size is not significant over local networks, and the difference is
eliminated by minification¹⁶.

Line Length

Avoid lines longer than 80 characters. When a statement will not fit on a single line, it may be
necessary to break it. Place the break after an operator, ideally after a comma. A break after an
operator decreases the likelihood that a copy-paste error will be masked by semicolon insertion. The
next line should be indented 8 spaces.

Comments

Be generous with comments. It is useful to leave information that will be read at a later time by
people (possibly yourself) who will need to understand what you have done. The comments should
be well-written and clear, just like the code they are annotating. An occasional nugget of humor
might be appreciated. Frustrations and resentments will not.

It is important that comments be kept up-to-date. Erroneous comments can make programs even
harder to read and understand.

Make comments meaningful. Focus on what is not immediately visible. Don’t waste the reader’s
time with stuff like

1 i = 0; // Set i to zero.

Generally use line comments. Save block comments for formal documentation and for commenting
out.

¹⁶http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/

http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/
http://yuiblog.com/blog/2006/03/06/minification-v-obfuscation/

JavaScript Fundamentals 11

Variable Declarations

All variables should be declared before used. JavaScript does not require this, but doing so makes the
program easier to read and makes it easier to detect undeclared variables that may become implied
globals¹⁷. Implied global variables should never be used.

The var statements should be the first statements in the function body.

It is preferred that each variable be given its own line and comment. They should be listed in
alphabetical order.

1 var currentEntry; // currently selected table entry

2 var level; // indentation level

3 var size; // size of table

JavaScript does not have block scope, so defining variables in blocks can confuse programmers who
are experienced with other C family languages. Define all variables at the top of the function.

Use of global variables should be minimized. Implied global variables should never be used.

Function Declarations

All functions should be declared before they are used. Inner functions should follow the var

statement. This helps make it clear what variables are included in its scope.

There should be no space between the name of a function and the ((left parenthesis) of its parameter
list. There should be one space between the) (right parenthesis) and the { (left curly brace) that
begins the statement body. The body itself is indented four spaces. The } (right curly brace) is aligned
with the line containing the beginning of the declaration of the function.

1 function outer(c, d) {

2 var e = c * d;

3

4 function inner(a, b) {

5 return (e * a) + b;

6 }

7

8 return inner(0, 1);

9 }

This conventionworkswell with JavaScript because in JavaScript, functions and object literals can be
placed anywhere that an expression is allowed. It provides the best readability with inline functions
and complex structures.

¹⁷http://yuiblog.com/blog/2006/06/01/global-domination/

http://yuiblog.com/blog/2006/06/01/global-domination/
http://yuiblog.com/blog/2006/06/01/global-domination/

JavaScript Fundamentals 12

1 function getElementsByClassName(className) {

2 var results = [];

3 walkTheDOM(document.body, function (node) {

4 var a; // array of class names

5 var c = node.className; // the node's classname

6 var i; // loop counter

7

8 // If the node has a class name, then split it into a list of simple names.

9 // If any of them match the requested name, then append the node to the set of re\

10 sults.

11

12 if (c) {

13 a = c.split(' ');

14 for (i = 0; i < a.length; i += 1) {

15 if (a[i] === className) {

16 results.push(node);

17 break;

18 }

19 }

20 }

21 });

22 return results;

23 }

If a function literal is anonymous, there should be one space between the word function and the
((left parenthesis). If the space is omited, then it can appear that the function’s name is function,
which is an incorrect reading.

1 div.onclick = function (e) {

2 return false;

3 };

4

5 that = {

6 method: function () {

7 return this.datum;

8 },

9 datum: 0

10 };

Use of global functions should be minimized.

When a function is to be invoked immediately, the entire invocation expression should be wrapped
in parens so that it is clear that the value being produced is the result of the function and not the
function itself.

JavaScript Fundamentals 13

1 var collection = (function () {

2 var keys = [], values = [];

3

4 return {

5 get: function (key) {

6 var at = keys.indexOf(key);

7 if (at >= 0) {

8 return values[at];

9 }

10 },

11 set: function (key, value) {

12 var at = keys.indexOf(key);

13 if (at < 0) {

14 at = keys.length;

15 }

16 keys[at] = key;

17 values[at] = value;

18 },

19 remove: function (key) {

20 var at = keys.indexOf(key);

21 if (at >= 0) {

22 keys.splice(at, 1);

23 values.splice(at, 1);

24 }

25 }

26 };

27 }());

Names

Names should be formed from the 26 upper and lower case letters (A .. Z, a .. z), the 10 digits (0 ..
9), and _ (underbar). Avoid use of international characters because they may not read well or be
understood everywhere. Do not use $ (dollar sign) or \ (backslash) in names.

Do not use _ (underbar) as the first character of a name. It is sometimes used to indicate privacy,
but it does not actually provide privacy. If privacy is important, use the forms that provide private
members¹⁸. Avoid conventions that demonstrate a lack of competence.

Most variables and functions should start with a lower case letter.

Constructor functionswhichmust be usedwith the [new](http://yuiblog.com/blog/2006/11/13/javascript-we-hardly-new-ya/)prefix¹⁹
should start with a capital letter. JavaScript issues neither a compile-time warning nor a run-time

¹⁸http://javascript.crockford.com/private.html
¹⁹http://yuiblog.com/blog/2006/11/13/javascript-we-hardly-new-ya/

http://javascript.crockford.com/private.html
http://javascript.crockford.com/private.html
http://yuiblog.com/blog/2006/11/13/javascript-we-hardly-new-ya/
http://javascript.crockford.com/private.html
http://yuiblog.com/blog/2006/11/13/javascript-we-hardly-new-ya/

JavaScript Fundamentals 14

warning if a required new is omitted. Bad things can happen if new is not used, so the capitalization
convention is the only defense we have.

Global variables should be in all caps. (JavaScript does not have macros or constants, so there isn’t
much point in using all caps to signify features that JavaScript doesn’t have.)

Statements

Simple Statements

Each line should contain at most one statement. Put a ; (semicolon) at the end of every simple
statement. Note that an assignment statement which is assigning a function literal or object literal
is still an assignment statement and must end with a semicolon.

JavaScript allows any expression to be used as a statement. This can mask some errors, particularly
in the presence of semicolon insertion. The only expressions that should be used as statements are
assignments and invocations.

Compound Statements

Compound statements are statements that contain lists of statements enclosed in { } (curly braces).

• The enclosed statements should be indented four more spaces.
• The { (left curly brace) should be at the end of the line that begins the compound statement.
• The } (right curly brace) should begin a line and be indented to align with the beginning of
the line containing the matching { (left curly brace).

• Braces should be used around all statements, even single statements, when they are part of
a control structure, such as an if or for statement. This makes it easier to add statements
without accidentally introducing bugs.

Labels

Statement labels are optional. Only these statements should be labeled: while, do, for, switch.

return Statement

A return statement with a value should not use () (parentheses) around the value. The return
value expression must start on the same line as the return keyword in order to avoid semicolon
insertion.

JavaScript Fundamentals 15

if Statement

The if class of statements should have the following form:

if (condition) { statements }

if (condition) { statements } else { statements }

if (condition) { statements } else if (condition) { statements } else { statements }

for Statement

A for class of statements should have the following form:

for (initialization; condition; update) { statements }

for (variable in object) { if (filter) { statements } }

The first form should be used with arrays and with loops of a predeterminable number of iterations.

The second form should be used with objects. Be aware that members that are added to the prototype
of the object ‘ will be included in the enumeration. It is wise to program defensively by

using the hasOwnProperty‘ method to distinguish the true members of the object:

for (variable in object) { if (object.hasOwnProperty(variable)) { statements } }

while Statement

A while statement should have the following form:

while (condition) { statements }

do Statement

A do statement should have the following form:

do { statements } while (condition);

Unlike the other compound statements, the do statement always ends with a ; (semicolon).

switch Statement

A switch statement should have the following form:

switch (expression) { case expression: statements default: statements }

Each case is aligned with the switch. This avoids over-indentation.

Each group of statements (except the default) should end with break, return, or throw. Do not fall
through.

JavaScript Fundamentals 16

try Statement

The try class of statements should have the following form:

try {

statements
} catch (variable) {

statements
}

try {

statements
} catch (variable) {

statements
‘ } finally { statements }‘

continue Statement

Avoid use of the continue statement. It tends to obscure the control flow of the function.

with Statement

The with statement should not be used²⁰.

Whitespace

Blank lines improve readability by setting off sections of code that are logically related.

Blank spaces should be used in the following circumstances:

• A keyword followed by ((left parenthesis) should be separated by a space.

1 while (true) {

• A blank space should not be used between a function value and its ((left parenthesis). This
helps to distinguish between keywords and function invocations.

• All binary operators except . (period) and ((left parenthesis) and [(left bracket) should be
separated from their operands by a space.

• No space should separate a unary operator and its operand except when the operator is a word
such as typeof.

• Each ; (semicolon) in the control part of a for statement should be followed with a space.
• Whitespace should follow every , (comma).

²⁰http://yuiblog.com/blog/2006/04/11/with-statement-considered-harmful/

http://yuiblog.com/blog/2006/04/11/with-statement-considered-harmful/
http://yuiblog.com/blog/2006/04/11/with-statement-considered-harmful/

JavaScript Fundamentals 17

Bonus Suggestions

{} and []

Use {} instead of new Object(). Use [] instead of new Array().

Use arrays when the member names would be sequential integers. Use objects when the member
names are arbitrary strings or names.

, (comma) Operator

Avoid the use of the comma operator except for very disciplined use in the control part of for

statements. (This does not apply to the comma separator, which is used in object literals, array
literals, var statements, and parameter lists.)

Block Scope

In JavaScript blocks do not have scope. Only functions have scope. Do not use blocks except as
required by the compound statements.

Assignment Expressions

Avoid doing assignments in the condition part of if and while statements.

Is

1 if (a = b) {

a correct statement? Or was

1 if (a == b) {

intended? Avoid constructs that cannot easily be determined to be correct.

=== and !== Operators.

It is almost always better to use the === and !== operators. The == and != operators do type coercion.
In particular, do not use == to compare against falsy values.

Confusing Pluses and Minuses

Be careful to not follow a + with + or ++. This pattern can be confusing. Insert parens between them
to make your intention clear.

JavaScript Fundamentals 18

1 total = subtotal + +myInput.value;

is better written as

1 total = subtotal + (+myInput.value);

so that the + + is not misread as ++.

eval is Evil

The eval function is the most misused feature of JavaScript. Avoid it.

eval has aliases. Do not use the Function constructor. Do not pass strings to setTimeout or
setInterval.

Semicolons in JavaScript are optional

..

Original Article
http://mislav.uniqpath.com/2010/05/semicolons/

Mislav Marohnić, mislav.uniqpath.com

http://mislav.uniqpath.com

JavaScript is a scripting language where semicolons as statement terminators are optional, as in:

op·tion·al (adjective)
Available to be chosen but not obligatory

However, there is a lot of FUD (fear, uncertainty, and doubt) around this feature and, as a result,
most developers in our community will recommend always including semicolons²¹, just to be safe.

Safe from what? I’ve been searching for reasons programmers have to force semicolons on
themselves. Here’s what I generally found:

²¹http://stackoverflow.com/questions/444080/do-you-recommend-using-semicolons-after-every-statement-in-javascript

http://mislav.uniqpath.com/2010/05/semicolons/
http://mislav.uniqpath.com
http://mislav.uniqpath.com
http://stackoverflow.com/questions/444080/do-you-recommend-using-semicolons-after-every-statement-in-javascript
http://stackoverflow.com/questions/444080/do-you-recommend-using-semicolons-after-every-statement-in-javascript

JavaScript Fundamentals 19

Spec is cryptic and JavaScript implementations differ

Rules for automatic semicolon insertion²² are right here and are, while somewhat difficult to
comprehend by a casual reader, quite explicitly laid out. As for JavaScript implementations where
interpretation of these rules differs, well, I’ve yet to find one. When I ask developers about this, or
find archived discussions, typically they are yeah, there’s this browser where this is utterly broken,
I simply forgot which. Of course, they never remember.

I write semicolon-less code and, in my experience, there isn’t a JavaScript interpreter that can’t
handle it.

You can’t minify JavaScript code without semicolons

There are 3 levels of reducing size of JavaScript source files: compression (e.g. gzip), minification
(i.e. removing unnecessary whitespace and comments) and obfuscation (changing code, shortening
variable and function names).

Compression like gzip is the easiest; it only requires one-time server configuration, doesn’t need
extra effort by developers and doesn’t change your code. There was a time when IE6 couldn’t handle
it, but if I remember correctly it was patched years ago and pushed as a Windows update, and today
nobody really cares anymore.

Minification and obfuscation change your code. They are tools which you run on your source code
saying “here are some JavaScript files, try to make them smaller, but don’t change functionality”.
I’m reluctant to use these tools because many developers report that if I don’t use specific coding
styles, like writing semicolons, they will break my code. I’m OK with people (community) forcing
certain coding styles on me, but not tools.

Suppose I have code that works in every JavaScript implementation that I target (major browsers and
some server-side implementations). If I run it through your minification tool and that tools breaks
my code, then I’m sad to report that your tool is broken. If this tool edits JavaScript code, it’d better
understand it as a real interpreter would.

While on the topic of minification, let’s do a reality check. I took the jQuery source and removed all
semicolons²³, then ran it through Google Closure Compiler²⁴. Resulting size was 76,673 bytes. The
size of original “jquery.min.js” was 76,674 (1 byte more). So you see, there was almost no change;
and of course, its test suite passed as before.

How is that possible? Well, consider this code:

²²http://bclary.com/2004/11/07/#a-7.9
²³http://github.com/mislav/jquery/commit/4a2faf8987fc3fcb8aefc99def5b5ed2b4de190c
²⁴http://code.google.com/closure/compiler/

http://bclary.com/2004/11/07/#a-7.9
http://github.com/mislav/jquery/commit/4a2faf8987fc3fcb8aefc99def5b5ed2b4de190c
http://github.com/mislav/jquery/commit/4a2faf8987fc3fcb8aefc99def5b5ed2b4de190c
http://code.google.com/closure/compiler/
http://bclary.com/2004/11/07/#a-7.9
http://github.com/mislav/jquery/commit/4a2faf8987fc3fcb8aefc99def5b5ed2b4de190c
http://code.google.com/closure/compiler/

JavaScript Fundamentals 20

1 var a=1

2 var b=2

3 var c=3

That’s 24 bytes right there. Stamp semicolons everywhere and run it through a minifier:

1 var a=1;var b=2;var c=3;

Still 24 bytes. So, adding semicolons and removing newlines saved us a whopping zero bytes right
there. Radical. Most size reduction after minification isn’t gained by removing newline characters
— it’s thanks to removing code comments and leading indentation.

Update: a lot of people have pointed out that their minifiers rewrite this expression as var

a=1,b=2,c=3. I know that some tools do this, but the point of this article is just to explore how
semicolons relate to whitespace. If a minifier is capable of rewriting expressions (e.g. Closure
Compiler) it means that it can also insert semicolons automatically.

Also, some people recommend forcing yourself do use curly braces for blocks, even if they’re only
one line:

1 // before

2 if(condition) stuff()

3

4 // after

5 if(condition){

6 stuff()

7 }

8

9 // after minification

10 if(condition){stuff()}

Enforced curly braces add at least a byte to our expression, even after minification. I’m not sure
what the benefit is here—it’s not size and it’s not readability, either.

Here are some other whitespace-sensitive languages that you might have heard about:

• Ruby — messing with spaces in expressions with operators and method calls can break the
code

• Python — duh.
• HTML — see notes about Kangax’s HTML minifier²⁵
• Haml templates²⁶

²⁵http://perfectionkills.com/experimenting-with-html-minifier/
²⁶http://haml-lang.com/

http://perfectionkills.com/experimenting-with-html-minifier/
http://haml-lang.com/
http://perfectionkills.com/experimenting-with-html-minifier/
http://haml-lang.com/

JavaScript Fundamentals 21

Of course, there’s no need for minification on the server-side. I made this list for the sake of the
following argument: Whitespace can, and often is, part of the (markup) language. It’s not necessarily
a bad thing.

It’s good coding style

Also heard as:

• It’s good to have them for the sake of consistency
• JSLint²⁷ will complain
• Douglas Crockford says so.²⁸

This is another way of expressing the “everybody else is doing it” notion and is used by people
during online discussion in the (rather common) case of a lack of arguments.

My advice on JSLint: don’t use it. Why would you use it? If you believed that it helps you have less
bugs in your code, here’s a newsflash; only people can detect and solve software bugs, not tools. So
instead of tools, get more people to look at your code.

Douglas Crockford also says “four spaces”, and yet most popular JavaScript libraries are set in either
tabs or two spaces. Communities around different projects are different, and that’s just how it should
be. As I’ve said before: let people and yourself shape your coding style, not some single person or
tool.

You might notice that in this article I’m not telling you should be semicolon-free. I’m just laying out
concrete evidence that you can be. The choice should always be yours.

As for coding styles, they exist so code is more readable and easier to understand for a group of
people in charge of working on it. Think deeply if semicolons actually improve the readability of
your code. What improves it the most is whitespace—indentation, empty lines to separate blocks,
spaces to pad out expressions—and good variable and function naming. Look at some obfuscated
code²⁹; there are semicolons in there. Does it help readability? No, but what would really help is a
lot of whitespace and original variable names.

Semicolon insertion bites back in return statements

When I searched for “JavaScript semicolon insertion”, here is the problemmost blog posts described:

²⁷http://www.jslint.com/
²⁸http://javascript.crockford.com/code.html
²⁹http://img.skitch.com/20100509-qf8t69ad7cpmudwdksbw5hu6te.png

http://www.jslint.com/
http://javascript.crockford.com/code.html
http://img.skitch.com/20100509-qf8t69ad7cpmudwdksbw5hu6te.png
http://img.skitch.com/20100509-qf8t69ad7cpmudwdksbw5hu6te.png
http://www.jslint.com/
http://javascript.crockford.com/code.html
http://img.skitch.com/20100509-qf8t69ad7cpmudwdksbw5hu6te.png

JavaScript Fundamentals 22

1 function add() {

2 var a = 1, b = 2

3 return

4 a + b

5 }

When you’re done trying to wrap your brain around why would anyone in their right mind want to
write a return statement on a new line, we can continue and see how this statement is interpreted:

1 return;

2 a + b;

Alas, the function didn’t return the sum we wanted! But you know what? This problem isn’t solved
by adding a semicolon to the end of our wanted return expression (that is, after a + b). It’s solved
by removing the newline after return:

1 return a + b

Still, in an incredible display of ignorance these people actually advise their readers to avoid such
issues by adding semicolons everywhere. Uh, alright, only it doesn’t help this particular case at all.
We just needed to understand better how the language is parsed.

The only real pitfall when coding without semicolons

Here is the only thing you have to be aware if you choose to code semicolon-less:

1 // careful: will break

2 a = b + c

3 (d + e).print()

This is actually evaluated as:

1 a = b + c(d + e).print();

This example is taken from an article about JavaScript 2.0 future compatibility³⁰, but I’ve ran across
this in my own programs several times while using the module pattern³¹.

Easy solution: when a line starts with parenthesis, prepend a semicolon to it.

³⁰http://www.mozilla.org/js/language/js20-2000-07/rationale/syntax.html
³¹http://www.yuiblog.com/blog/2007/06/12/module-pattern/

http://www.mozilla.org/js/language/js20-2000-07/rationale/syntax.html
http://www.yuiblog.com/blog/2007/06/12/module-pattern/
http://www.mozilla.org/js/language/js20-2000-07/rationale/syntax.html
http://www.yuiblog.com/blog/2007/06/12/module-pattern/

JavaScript Fundamentals 23

1 ;(d + e).print()

This might not be elegant, but does the job. Michaeljohn Clement elaborates on this³² even further:

If you choose to omit semicolons where possible, my advice is to insert them immedi-
ately before the opening parenthesis or square bracket in any statement that begins with
one of those tokens, or any which begins with one of the arithmetic operator tokens /,
+, or - if you should happen to write such a statement.

Adopt this advice as a rule and you’ll be fine.

³²http://inimino.org/~inimino/blog/javascript_semicolons

http://inimino.org/~inimino/blog/javascript_semicolons
http://inimino.org/~inimino/blog/javascript_semicolons

Patterns and Code Organization
Common JavaScript “Gotchas”

..

Original Article
http://www.jblotus.com/2013/01/13/common-javascript-gotchas

James Fuller, jblotus

http://www.jblotus.com/author/jblotus/

PHP was my first programming language, and my initial exposure to JavaScript was through
libraries like jQuery³³. There were things about JavaScript that always seemed to trip me up in the
beginning due to how they worked differently than PHP. Heck there are still some things today
that are confusing. I want to share some of the things that I struggled when I started working
with JavaScript. I am going to cover the global namespace, this, knowing the difference between
ECMAScript 3 and ECMAScript 5, asynchronous operations, prototypes, and simple JavaScript
inheritance.

The Global Namespace

In PHP specifically, when you declare a variable function outside of a class (or namespace block³⁴)
you are essentially adding a function to the global namespace. In JavaScript, there is no such thing as
a namespace per se, rather everything is attached to the global object. In the case of the web browser,
that is the window object. The other key difference is that in JavaScript, functions and variables are
attributes of the global object, which we typically refer to as properties.

This can be troublesome because you won’t get a warning in JavaScript if you overwrite a global
function or property and it can actually be quite dangerous.

³³http://jquery.com/
³⁴http://php.net/manual/en/language.namespaces.definitionmultiple.php

http://www.jblotus.com/2013/01/13/common-javascript-gotchas
http://www.jblotus.com/author/jblotus/
http://www.jblotus.com/author/jblotus/
http://jquery.com/
http://php.net/manual/en/language.namespaces.definitionmultiple.php
http://jquery.com/
http://php.net/manual/en/language.namespaces.definitionmultiple.php

Patterns and Code Organization 25

1 function globalFunction() {

2 console.log('I am the original global function');

3 }

4

5 function overWriteTheGlobal() {

6 globalFunction = function() {

7 console.log('I am the new global function');

8 }

9 }

10 globalFunction(); //outputs "I am the original global function"

11 overWriteTheGlobal(); //this will overwrite the original global function

12 globalFunction(); //outputs "I am the new global function"

One technique that is useful in JavaScript to ensure that your variables and functions are self
contained is to use a immediately-invoked function expression, commonly known as a self-
executing anonymous function. I typically expose things to the outside world by passing in a
carrier object to the function. This is a variation of themodule pattern.

1 var module = {};

2

3 (function(exports){

4

5 exports.notGlobalFunction = function() {

6 console.log('I am not global');

7 };

8

9 }(module));

10

11 function notGlobalFunction() {

12 console.log('I am global');

13 }

14

15 notGlobalFunction(); //outputs "I am global"

16 module.notGlobalFunction(); //outputs "I am not global"

Inside the self-executing anonymous function, all of the global scope is enclosed and we finish
by attaching it the the module variable. Technically you could just append properties directly to the
module variable, but the reason we are passing it in to the function is to make it explicitly clear what
we are attaching our function to. It also allows us to alias the passed in object inside the function.
The critical thing here is that we are declaring our dependencies upfront and not relying on global
variables, other than the module variable.

Patterns and Code Organization 26

You also might have noticed the var keyword. If you aren’t sure of how it is used, a basic explanation
is that by preceding a variable declaration with var creates a property on the nearest containing
function. If you omit the var keyword than you are saying that you want to assign a new value to
an existing variable higher up the scope chain, which may or may not be the global scope.

1 var imAGlobal = true;

2

3 function globalGrabber() {

4 imAGlobal = false;

5 return imAGlobal;

6 }

7

8 console.log(imAGlobal); //outputs "true"

9 console.log(globalGrabber()); //outputs "false"

10 console.log(imAGlobal); //outputs "false"

As you can see, it is quite dangerous to rely on globals in your functions, due to possible side effects
and collisions that are bound to occur. Now what happens when we use the var keyword?

1 var imAGlobal = true;

2

3 function globalGrabber() {

4 var imAGlobal = false;

5 return imAGlobal;

6 }

7

8 console.log(imAGlobal); //outputs "true"

9 console.log(globalGrabber()); //outputs "false"

10 console.log(imAGlobal); //outputs "true"

JavaScript hoists the var declaration to the top of the function block, then initializes the variable.
This is called variable hoisting.

To summarize: all variables are scoped to a function (which is itself an object), and where you
declare those variables with var determines the function they are scoped to. Excluding var will
imply global scope for a variable.

Let’s look at how variable hoisting happens:

Patterns and Code Organization 27

1 function variableHoist() {

2 console.log(hoisty);

3 hoisty = 1;

4 console.log(hoisty);

5 var hoisty = 2;

6 console.log(hoisty);

7 }

8

9 variableHoist();

10 //outputs undefined (would get a ReferenceError if no var declaration existed in \

11 scope)

12 //outputs "1"

13 //outputs "2"

14

15 try {

16 console.log(hoisty); //outputs ReferenceError (no global var "hoisty")

17 } catch (e) {

18 console.log(e);

19 }

So as you can see, it doesn’t actually matter where you put the var declaration in the function,
because the property gets created before the function executes any code. Now in practice, generally
you want to put your var declarations at the top of the function, since that is where they end up
anyway. It is also totally acceptable to initialize you variables at the top of the function, just be
aware of the order of events here.

Functions declared with the function keyword in JavaScript (not variable assignment) also get
hoisted. Behind the scenes, the entire function gets hoisted up and is made available for execution.

1 myFunction(); //outputs "i exist"

2

3 function myFunction() {

4 console.log('i exist');

5 }

**
** This wholesale function hoisting does not occur when you use the var form of function
declaration:

Patterns and Code Organization 28

1 try {

2 myFunction();

3 } catch (e) {

4 console.log(e); //throws "Uncaught TypeError: undefined is not a function"

5 }

6 var myFunction = function() {

7 console.log('i exist');

8 }

9

10 myFunction(); //outputs "i exist"

Understanding “this”

Since JavaScript uses function scope, the meaning of this is quite different than what you get in
PHP, and causes a lot of confusion. Consider the following:

1 console.log(this); // outputs window object

2

3 var myFunction = function() {

4 console.log(this);

5 }

6

7 myFunction(); //outputs window object

8

9 var newObject = {

10 myFunction: myFunction

11 }

12

13 newObject.myFunction(); //outputs newObject

this by default refers to the object a function is contained in. Since myFunction() is a property
of the global object, this is a reference to the global object, which is window. Now when we mix
myFunction() into a newObject, this now refers to newObject. In PHP and other similar languages,
this always refers to the the instance of a class containing the method. You could argue that
JavaScript is doing something stupid here, but truthfully much of the power of the JavaScript
language comes from this feature. In fact, we can even replace the value of this when invoking
our JavaScript functions by using the call() or apply() methods.

Patterns and Code Organization 29

1 var myFunction = function(arg1, arg2) {

2 console.log(this, arg1, arg2);

3 };

4

5 var newObject = {};

6

7 myFunction.call(newObject, 'foo', 'bar'); //outputs newObject "foo" "bar"

8 myFunction.apply(newObject, ['foo', 'bar']); //outputs newObject "foo" "bar"

But let’s not get ahead of ourselves. All we are doing here is invoking the function myFunction by
substituting an alternative value for this inside the function by placing the value of the object we
want to use a substitute as the first argument. The fundamental difference between call() and
apply() is the way you pass arguments to the function. call() will take an unlimited amount
of arguments after the first argument and apply() expects and array of arguments as it’s second
argument.

Libraries like jQuery perform a lot of magic by invoking things this way. Let’s look at the $.each()
method in jQuery:

1 var $els = [$('div'), $('span')];

2 var handler = function() {

3 console.log(this);

4 };

5

6 $.each($els, handler);

7

8 //iteration 1 outputs wrapped jquery dom element for "div" tag

9 //iteration 2 outputs wrapped jquery dom element for "span" tag

10

11 handler.apply({}); //outputs object

jQuery will often rewrite the value of this, so you should always try to be aware of what this
means in the context of a jQuery event handler, or other such constructs.

Know the difference between ECMAScript 3 and ECMAScript 5

For many years, ECMAScript 3 has been the standard in most browsers, but more recently EC-
MAScript 5 has made it’s way into most modern browsers (IE is still lagging behind). ECMAScript
5 introduced a lot of common sense features to JavaScript and some native methods that you
previously relied upon a library for, such as String.trim() and Array.forEach(). The problem
is you still can’t rely on these methods being available in browser environments if you have users
that are using Internet Explorer.

Take a look at what happens when we try to use String.trim in IE 8:

Patterns and Code Organization 30

1 var fatString = " my string ";

2

3 //in modern browsers

4 console.log(fatString); //outputs " my string "

5 console.log(fatString.trim()); //outputs "my string"

6

7 //in IE 8

8 console.log(fatString.trim()); //error: Object doesn't support property or method\

9 'trim'

So in the interim, we can use methods like jQuery.trim to do this for us, which I believe will
fallback to String.trim if it is available in your browser for increased performance (native browser
implementations are faster).

You might not care or even need to know about all of the differences between ECMAScript 3 and
ECMAScript 5, but it is generally a good idea to check out the Mozilla Developer Network (MDN)³⁵
for function reference to see what versions of the language a function is available in first. Generally
speaking, you should be fine if you are using a library like jQuery or underscore to handle this for
you.

If you are interested in using a polyfill of ECMAScript 5 for older browser, please check out
https://github.com/kriskowal/es5-shim³⁶

Understanding Async

One of the things that tripped me up the most when beginning to work with JavaScript code, jQuery
in particular is the fact that some operations are asynchronous. There were many times that I wrote
code in a procedural manner expecting a result to be returned immediately without realizing it.

Take a look at this broken code:

1 var remoteValue = false;

2 $.ajax({

3 url: 'http://google.com',

4 success: function() {

5 remoteValue = true;

6 }

7 });

8

9 console.log(remoteValue); //outputs "false"

It took me a while to realize that you need to program around asynchronous calls using callbacks to
deal with the outcome of my ajax calls.

³⁵https://developer.mozilla.org/en-US/docs/JavaScript
³⁶https://github.com/kriskowal/es5-shim

https://developer.mozilla.org/en-US/docs/JavaScript
https://github.com/kriskowal/es5-shim
https://developer.mozilla.org/en-US/docs/JavaScript
https://github.com/kriskowal/es5-shim

Patterns and Code Organization 31

1 var remoteValue = false;

2

3 var doSomethingWithRemoteValue = function() {

4 console.log(remoteValue); //outputs true on success

5 }

6

7 $.ajax({

8 url: 'https://google.com',

9 complete: function() {

10 remoteValue = true;

11 doSomethingWithRemoteValue();

12 }

13 });

Another cool thing is deferred objects (sometimes called promises), which you can use to program
in a more procedural style:

1 var remoteValue = false;

2

3 var doSomethingWithRemoteValue = function() {

4 console.log(remoteValue);

5 }

6

7 var promise = $.ajax({

8 url: 'https://google.com'

9 });

10

11 //outputs "true"

12 promise.always(function() {

13 remoteValue = true;

14 doSomethingWithRemoteValue();

15 });

16

17 //outputs "foobar"

18 promise.always(function() {

19 remoteValue = 'foobar';

20 doSomethingWithRemoteValue();

21 });

You can use promises to chain callbacks in a style that is in my opinion a bit easier to work with
than nested callbacks in addition to a host of other benefits these objects offer.

Patterns and Code Organization 32

Animations in the browser are also asyncronous, so this is also a common source of confusion.
I’m not going to go into detail here, but you need to treat animations much like ajax requests in the
way you handle them via callbacks. I’m not really an expert on the subject though so please take a
look at the jQuery .animate() method³⁷.

Simple Inheritance in JavaScript

Grossly simplified, JavaScript clones objects to extend them, while PHP, Ruby, Python and Java use
and extend classes. In JavaScript you have something called a prototype, and every object has one.
In fact, all functions, strings, numbers and objects have a common ancestor, Object. There are two
things about prototype to remember: blueprints and chains.

Each prototype is basically an object in itself that describes properties available when creating an
instance of an object. The prototype chain is what allows prototypes to extend other prototypes. In
fact, prototypes themselves can have prototypes. When a method or attribute does not exist on an
object instance, then it is looked for in that object’s prototype, and the prototypes’s prototype, and
so on until it finally reaches undefined if no such property exists.

Thankfully, beginners generally don’t need to mess with this stuff at all, since it is easy enough to
create an object literal and append properties to it at runtime.

1 var obj = {};

2

3 obj.newFunction = function() {

4 console.log('I am a dynamic function');

5 };

6

7 obj.newFunction();

An easy way to extend objects that I use all the time is jQuery.extend()

1 var obj = {

2 a: 'i am a lonely property'

3 };

4

5 var newObj = {

6 b: function() {

7 return 'i am a lonely function';

8 }

9 };

10

³⁷http://api.jquery.com/animate/

http://api.jquery.com/animate/
http://api.jquery.com/animate/

Patterns and Code Organization 33

11 var finalObj = $.extend({}, obj, newObj);

12

13 console.log(finalObj.a); //outputs "i am a lonely property"

14 console.log(finalObj.b()); //outputs "i am a lonely function"

ECMAScript 5 offers us Object.create(), which you can use to extend from an existing object
but you probably need to avoid using this if you need to support older browsers. It does offer
distinct advantages to property creation and setting attributes of properties (yes, properties also
have properties³⁸).

1 var obj = {

2 a: 'i am a lonely property'

3 };

4

5 var finalObj = Object.create(obj, {

6 b: {

7 get: function() {

8 return "i am a lonely function";

9 }

10 }

11 });

12

13 console.log(finalObj.a); //outputs "i am a lonely property"

14 console.log(finalObj.b); //outputs "i am a lonely function"

You can get pretty deep into the subject of inheritance in JavaScript³⁹ but the beautiful thing here
again is that you really don’t have to due to the immense power and flexibility of the language.

Bonus Gotcha: Forgetting to use var in for loops

³⁸https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty
³⁹http://www.crockford.com/javascript/inheritance.html

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty
http://www.crockford.com/javascript/inheritance.html
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty
http://www.crockford.com/javascript/inheritance.html

Patterns and Code Organization 34

1 var i = 0;

2

3 function iteratorHandler() {

4 i = 10;

5 }

6

7 function iterate() {

8 //this iteration will only run once

9 for (i = 0; i < 10; i++) {

10 console.log(i); //outputs 0

11 iteratorHandler();

12 console.log(i); //outputs 10

13 }

14 }

15

16 iterate();

The example is contrived, but you can see the danger here. The solution is to declare you iterator
variables with var.

1 var i = 0;

2

3 function iteratorHandler() {

4 i = 10;

5 }

6

7 function iterate() {

8 //this iteration will run 10 times

9 for (var i = 0; i < 10; i++) {

10 iteratorHandler();

11 console.log(i);

12 }

13 }

14

15 iterate();

This all goes back to our scope rules. Remember to use var properly.

Summary

JavaScript may be the only language people don’t need to learn before using it, but eventually you are
going to run in to some unexplained trouble. Other than avoiding your own bugs, learning JavaScript

Patterns and Code Organization 35

makes a lot of sense these days considering it’s rebirth and widespread availability. This blog by no
means attempts to be a complete panacea, but hopefully it will help a few people understand some
of the fundamentals before being forced into writing more awful JavaScript code, secretly hoping to
get reassigned to a backend project buried in database queries in happy PHP land.

Asynchronous JS: Callbacks, Listeners, Control Flow
Libs and Promises

..

Original Article
http://sporto.github.io/blog/2012/12/09/callbacks-listeners-promises

Sebastian Porto, sporto.github.io

http://sporto.github.io/

When it comes to dealing with asynchronous development in JavaScript there are many tool you
can use. This post explains four of these tools and what their advantages are. These are Callbacks,
Listeners, Control Flow Libraries and Promises.

Example Scenario

To illustrate the use of these four tools, let’s create a simple example scenario.

Let’s say that we want to find some records, then process them and finally return the processed
results. Both operations (find and process) are asynchronous.

Callbacks

Let’s start with callback pattern, this is the most basic and the best known pattern to deal with async
programming.

A callback looks like this:

1 finder([1, 2], function(results) {

2 ..do something

3 });

In the callback pattern we call a function that will do the asynchronous operation. One of the
parameters we pass is a function that will be called when the operation is done.

http://sporto.github.io/blog/2012/12/09/callbacks-listeners-promises
http://sporto.github.io/
http://sporto.github.io/

Patterns and Code Organization 36

Setup

In order to illustrate how they work we need a couple of functions that will find and process the
records. In the real world these functions will make an AJAX request and return the results, but for
now let’s just use timeouts.

1 function finder(records, cb) {

2 setTimeout(function () {

3 records.push(3, 4);

4 cb(records);

5 }, 1000);

6 }

7 function processor(records, cb) {

8 setTimeout(function () {

9 records.push(5, 6);

10 cb(records);

11 }, 1000);

12 }

Using the callbacks

The code that consumes these functions looks like this:

1 finder([1, 2], function (records) {

2 processor(records, function(records) {

3 console.log(records);

4 });

5 });

We call the first function, passing a callback. Inside this callback we call the second function passing
another callback.

These nested callbacks can be written more clearly by passing a reference to another function.

Patterns and Code Organization 37

1 function onProcessorDone(records){

2 console.log(records);

3 }

4

5 function onFinderDone(records) {

6 processor(records, onProcessorDone);

7 }

8

9 finder([1, 2], onFinderDone);

In both case the console log above with log [1,2,3,4,5,6]

Working example here:

Pros

• They are a very well know pattern, so they are familiar thus easy to understand.
• Very easy to implement in your own libraries / functions.

Cons

• Nested callbacks will form the infamous pyramid of doom as shown above, which can get
hard to read when you have multiple nested levels. But this is quite easy to fix by splitting the
functions also as shown above.

• You can only pass one callback for a given event, this can be a big limitation in many cases.

Photo credit: Brandon Christopher Warren / Foter / CC BY-NC

Listeners

Listeners are also a well known pattern, mostly made popular by jQuery and other DOM libraries.
A Listener might look like this:

1 finder.on('done', function (event, records) {

2 ..do something

3 });

We call a function on an object that adds a listener. In that function we pass the name of the event
we want to listen to and a callback function. ‘on’ is one of many common name for this function,
other common names you will come across are ‘bind’, ‘listen’, ‘addEventListener’, ‘observe’.

Setup

Let’s do some setup for a listener demonstration. Unfortunately the setup needed is a bit more
involving than in the callbacks example.

First we need a couple of objects that will do the work of finding and processing the records.

Patterns and Code Organization 38

1 var finder = {

2 run: function (records) {

3 var self = this;

4 setTimeout(function () {

5 records.push(3, 4);

6 self.trigger('done', [records]);

7 }, 1000);

8 }

9 }

10 var processor = {

11 run: function (records) {

12 var self = this;

13 setTimeout(function () {

14 records.push(5, 6);

15 self.trigger('done', [records]);

16 }, 1000);

17 }

18 }

Note that they are calling a method trigger when the work is done, I will add this method to these
objects using a mix-in. Again ‘trigger’ is one of the names you will come across, others common
names are ‘fire’ and ‘publish’.

We need a mix-in object that has the listener behaviour, in this case I will just lean on jQuery for
this:

1 var eventable = {

2 on: function(event, cb) {

3 $(this).on(event, cb);

4 },

5 trigger: function (event, args) {

6 $(this).trigger(event, args);

7 }

8 }

Then apply the behaviour to our finder and processor objects:

1 $.extend(finder, eventable);

2 $.extend(processor, eventable);

Excellent, now our objects can take listeners and trigger events.

Using the listeners

The code that consumes the listeners is simple:

Patterns and Code Organization 39

1 finder.on('done', function (event, records) {

2 processor.run(records);

3 });

4 processor.on('done', function (event, records) {

5 console.log(records);

6 });

7 finder.run([1,2]);

Again the console run will output [1,2,3,4,5,6]

Working example here:

Pros

• This is another well understood pattern.
• The big advantage is that you are not limited to one listener per object, you can add as many
listeners as you want. E.g.

finder .on(‘done’, function (event, records) { .. do something }) .on(‘done’, function (event,
records) { .. do something else });

Cons

• A bit more difficult to setup than callbacks in your own code, you will probably want to use
a library e.g. jQuery, bean.js⁴⁰.

Photo credit: Nod Young / Foter / CC BY-NC-SA

A Flow Control Library

Flow control libraries are also a very nice way to deal with asynchronous code. One I particularly
like is Async.js⁴¹.

Code using Async.js looks like this:

1 async.series([

2 function(){ ... },

3 function(){ ... }

4]);

Setup (Example 1)

Again we need a couple of functions that will do the work, as in the other examples these functions
in the real world will probably make an AjAX request and return the results. For now let’s just use
timeouts.

⁴⁰https://github.com/fat/bean
⁴¹https://github.com/caolan/async

https://github.com/fat/bean
https://github.com/caolan/async
https://github.com/fat/bean
https://github.com/caolan/async

Patterns and Code Organization 40

1 function finder(records, cb) {

2 setTimeout(function () {

3 records.push(3, 4);

4 cb(null, records);

5 }, 1000);

6 }

7 function processor(records, cb) {

8 setTimeout(function () {

9 records.push(5, 6);

10 cb(null, records);

11 }, 1000);

12 }

The Node Continuation Passing Style Note the style used in the callbacks inside the functions
above.

1 cb(null, records);

The first argument in the callback is null if no error occurs; or the error if one occurs. This is a
common pattern in Node.js libraries and Async.js uses this pattern. By using this style the flow
between Async.js and the callbacks becomes super simple.

Using Async

The code that will consume these functions looks like this:

1 async.waterfall([

2 function(cb){

3 finder([1, 2], cb);

4 },

5 processor,

6 function(records, cb) {

7 alert(records);

8 }

9]);

Async.js takes care of calling each function in order after the previous one has finished. Note how
we can just pass the ‘processor’ function, this is because we are using the Node continuation style.
As you can see this code is quite minimal and easy to understand.

Working example here:

Patterns and Code Organization 41

Another setup (Example 2)

Now, when doing front-end development it is unlikely that you will have a library that follows the
callback(null, results) signature. So a more realistic example will look like this:

1 function finder(records, cb) {

2 setTimeout(function () {

3 records.push(3, 4);

4 cb(records);

5 }, 500);

6 }

7 function processor(records, cb) {

8 setTimeout(function () {

9 records.push(5, 6);

10 cb(records);

11 }, 500);

12 }

13

14 // using the finder and the processor

15 async.waterfall([

16 function(cb){

17 finder([1, 2], function(records) {

18 cb(null, records)

19 });

20 },

21 function(records, cb){

22 processor(records, function(records) {

23 cb(null, records);

24 });

25 },

26 function(records, cb) {

27 alert(records);

28 }

29]);

​ It becomes a lot more convoluted but at least you can see the flow going from top to bottom.

Working example here:

Pros

• Usually code using a control flow library is easier to understand because it follows a natural
order (from top to bottom). This is not true with callbacks and listeners.

Patterns and Code Organization 42

Cons

• If the signatures of the functions don’t match as in the second example then you can argue
that the flow control library offers little in terms of readability.

Photo credit: Helmut Kaczmarek / Foter / CC BY-NC-SA

Promises

Finally we get to our final destination. Promises are a very powerful tool, but they are the least
understood.

Code using promises may look like this:

1 finder([1,2])

2 .then(function(records) {

3 .. do something

4 });

This will vary widely depending on the promises library you use, in this case I am using when.js⁴².

Setup

Out finder and processor functions look like this:

1 function finder(records){

2 var deferred = when.defer();

3 setTimeout(function () {

4 records.push(3, 4);

5 deferred.resolve(records);

6 }, 500);

7 return deferred.promise;

8 }

9 function processor(records) {

10 var deferred = when.defer();

11 setTimeout(function () {

12 records.push(5, 6);

13 deferred.resolve(records);

14 }, 500);

15 return deferred.promise;

16 }

Each function creates a deferred object and returns a promise. Then it resolves the deferred when
the results arrive.

⁴²https://github.com/cujojs/when

https://github.com/cujojs/when
https://github.com/cujojs/when

Patterns and Code Organization 43

Using the promises

The code that consumes these functions looks like this:

1 finder([1,2])

2 .then(processor)

3 .then(function(records) {

4 alert(records);

5 });

As you can see, it is quite minimal and easy to understand. When used like this, promises bring a lot
of clarity to your code as they follow a natural flow. Note how in the first callback we can simply
pass the ‘processor’ function. This is because this function returns a promise itself so everything will
just flow nicely.

Working example here:

There is a lot to promises:

• they can be passed around as regular objects
• aggregated into bigger promises
• you can add handlers for failed promises

The big benefit of promises

Now if you think that this is all there is to promises you are missing what I consider the biggest
advantage. Promises have a neat trick that neither callbacks, listeners or control flows can do. You
can add a listener to promise even when it has already been resolved, in this case that listener will
trigger immediately, meaning that you don’t have to worry if the event has already happened when
you add the listener. This works the same for aggregated promises. Let me show you an example of
this:

This is a huge feature for dealing with user interaction in the browser. In complex applications you
may not now the order of actions that the user will take, so you can use promises to track use
interaction. See this other post⁴³ if interested.

Pros

• Really powerful, you can aggregate promises, pass them around, or add listeners when already
resolved.

⁴³http://sporto.github.com/blog/2012/09/22/embracing-async-with-deferreds/

http://sporto.github.com/blog/2012/09/22/embracing-async-with-deferreds/
http://sporto.github.com/blog/2012/09/22/embracing-async-with-deferreds/

Patterns and Code Organization 44

Cons

• The least understood of all these tools.
• They can get difficult to track when you have lots of aggregated promises with added listeners
along the way.

Conclusion

That’s it! These are in my opinion the four main tools for dealing with asynchronous code. Hopefully
I have help you to understand them better and gave you more options for you asynchronous needs.

The Design of Code: Organizing JavaScript

..

Original Article
http://alistapart.com/article/the-design-of-code-organizing-javascript

Anthony Colangelo, alistapart.com

http://alistapart.com

Great design is a product of care and attention applied to areas that matter, resulting in a useful,
understandable, and hopefully beautiful user interface. But don’t be fooled into thinking that design
is left only for designers.

There is a lot of design in code, and I don’t mean code that builds the user interface–I mean the
design of code.

Well-designed code is much easier to maintain, optimize, and extend, making for more efficient
developers. That means more focus and energy can be spent on building great things, which makes
everyone happy–users, developers, and stakeholders.

There are three high-level, language-agnostic aspects to code design that are particularly important.

1. System architecture–The basic layout of the codebase. Rules that govern how various
components, such as models, views, and controllers, interact with each other.

2. Maintainability–How well can the code be improved and extended?
3. Reusability–How reusable are the application’s components? How easily can each implemen-

tation of a component be customized?

http://alistapart.com/article/the-design-of-code-organizing-javascript
http://alistapart.com
http://alistapart.com

Patterns and Code Organization 45

In looser languages, specifically JavaScript, it takes a bit of discipline to write well-designed code.
The JavaScript environment is so forgiving that it’s easy to throw bits and pieces everywhere and
still have things work. Establishing system architecture early (and sticking to it!) provides constraints
to your codebase, ensuring consistency throughout.

One approach I’m fond of consists of a tried-and-true software design pattern, the module pattern,
whose extensible structure lends itself to a solid system architecture and a maintainable codebase. I
like building modules within a jQuery plugin, which makes for beautiful reusability, provides robust
options, and exposes a well-crafted API.

Below, I’ll walk through how to craft your code into well-organized components that can be reused
in projects to come.

The module pattern

There are a lot of design patterns out there, and equally as many resources on them. Addy Osmani⁴⁴
wrote an amazing (free!) book⁴⁵ on design patterns in JavaScript, which I highly recommend to
developers of all levels.

The module pattern⁴⁶ is a simple structural foundation that can help keep your code clean and
organized. A “module” is just a standard object literal containing methods and properties, and that
simplicity is the best thing about this pattern: even someone unfamiliar with traditional software
design patterns would be able to look at the code and instantly understand how it works.

In applications that use this pattern, each component gets its own distinct module. For example, to
build autocomplete functionality, you’d create a module for the textfield and a module for the results
list. These two modules would work together, but the textfield code wouldn’t touch the results list
code, and vice versa.

That decoupling of components is why the module pattern is great for building solid system
architecture. Relationships within the application are well-defined; anything related to the textfield
is managed by the textfield module, not strewn throughout the codebase–resulting in clear code.

Another benefit of module-based organization is that it is inherently maintainable. Modules can be
improved and optimized independently without affecting any other part of the application.

I used the module pattern for the basic structure of jPanelMenu⁴⁷, the jQuery plugin I built for
off-canvas menu systems. I’ll use that as an example to illustrate the process of building a module.

Building a module

To begin, I define three methods and a property that are used to manage the interactions of the menu
system.

⁴⁴https://twitter.com/addyosmani
⁴⁵http://addyosmani.com/resources/essentialjsdesignpatterns/book/
⁴⁶http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript
⁴⁷http://jpanelmenu.com/

https://twitter.com/addyosmani
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript
http://jpanelmenu.com/
https://twitter.com/addyosmani
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript
http://jpanelmenu.com/

Patterns and Code Organization 46

1 var jpm = {

2 animated: true,

3 openMenu: function() {

4 ...

5 this.setMenuStyle();

6 },

7 closeMenu: function() {

8 ...

9 this.setMenuStyle();

10 },

11 setMenuStyle: function() { ... }

12 };

The idea is to break down code into the smallest, most reusable bits possible. I could have written
just one toggleMenu() method, but creating distinct openMenu() and closeMenu() methods
provides more control and reusability within the module.

Notice that calls to module methods and properties from within the module itself (such as the calls
to setMenuStyle()) are prefixed with the this keyword–that’s how modules access their own
members.

That’s the basic structure of a module. You can continue to add methods and properties as needed,
but it doesn’t get any more complex than that. After the structural foundations are in place, the
reusability layer–options and an exposed API–can be built on top.

jQuery plugins

The third aspect of well-designed code is probably the most crucial: reusability. This section comes
with a caveat. While there are obviously ways to build and implement reusable components in raw
JavaScript (we’re about 90 percent of the way there with our module above), I prefer to build jQuery
plugins for more complex things, for a few reasons.

Most importantly, it’s a form of unobtrusive communication. If you used jQuery to build a
component, you should make that obvious to those implementing it. Building the component as
a jQuery plugin is a great way to say that jQuery is required.

In addition, the implementation code will be consistent with the rest of the jQuery-based project
code. That’s good for aesthetic reasons, but it also means (to an extent) that developers can predict
how to interact with the plugin without too much research. Just one more way to build a better
developer interface.

Before you begin building a jQuery plugin, ensure that the plugin does not conflict with other
JavaScript libraries using the $ notation. That’s a lot simpler than it sounds–just wrap your plugin
code like so:

Patterns and Code Organization 47

1 (function($) {

2 // jQuery plugin code here

3 })(jQuery);

Next, we set up our plugin and drop our previously built module code inside. A plugin is just a
method defined on the jQuery ($) object.

1 (function($) {

2 $.jPanelMenu = function() {

3 var jpm = {

4 animated: true,

5 openMenu: function() {

6 ...

7 this.setMenuStyle();

8 },

9 closeMenu: function() {

10 ...

11 this.setMenuStyle();

12 },

13 setMenuStyle: function() { ... }

14 };

15 };

16 })(jQuery);

All it takes to use the plugin is a call to the function you just created.

1 var jpm = $.jPanelMenu();

Options

Options are essential to any truly reusable plugin because they allow for customizations to each
implementation. Every project brings with it a slew of design styles, interaction types, and content
structures. Customizable options help ensure that you can adapt the plugin to fit within those project
constraints.

It’s best practice to provide good default values for your options. The easiest way to do that is to use
jQuery’s $.extend() method, which accepts (at least) two arguments.

As the first argument of $.extend(), define an object with all available options and their default
values. As the second argument, pass through the passed-in options. This will merge the two objects,
overriding the defaults with any passed-in options.

Patterns and Code Organization 48

1 (function($) {

2 $.jPanelMenu = function(options) {

3 var jpm = {

4 options: $.extend({

5 'animated': true,

6 'duration': 500,

7 'direction': 'left'

8 }, options),

9 openMenu: function() {

10 ...

11 this.setMenuStyle();

12 },

13 closeMenu: function() {

14 ...

15 this.setMenuStyle();

16 },

17 setMenuStyle: function() { ... }

18 };

19 };

20 })(jQuery);

Beyond providing good defaults, options become almost self-documenting–someone can look at the
code and see all of the available options immediately.

Expose as many options as is feasible. The customization will help in future implementations, and
flexibility never hurts.

API

Options are terrific ways to customize how a plugin works. An API, on the other hand, enables
extensions to the plugin’s functionality by exposing methods and properties for the implementation
code to take advantage of.

While it’s great to expose as much as possible through an API, the outside world shouldn’t have
access to all internal methods and properties. Ideally, you should expose only the elements that will
be used.

In our example, the exposed API should include calls to open and close the menu, but nothing else.
The internal setMenuStyle()method runs when the menu opens and closes, but the public doesn’t
need access to it.

To expose an API, return an object with any desired methods and properties at the end of the plugin
code. You can even map returned methods and properties to those within the module code–this is
where the beautiful organization of the module pattern really shines.

Patterns and Code Organization 49

1 (function($) {

2 $.jPanelMenu = function(options) {

3 var jpm = {

4 options: $.extend({

5 'animated': true,

6 'duration': 500,

7 'direction': 'left'

8 }, options),

9 openMenu: function() {

10 ...

11 this.setMenuStyle();

12 },

13 closeMenu: function() {

14 ...

15 this.setMenuStyle();

16 },

17 setMenuStyle: function() { ... }

18 };

19

20 return {

21 open: jpm.openMenu,

22 close: jpm.closeMenu,

23 someComplexMethod: function() { ... }

24 };

25 };

26 })(jQuery);

API methods and properties will be available through the object returned from the plugin initializa-
tion.

1 var jpm = $.jPanelMenu({

2 duration: 1000,

3 ...

4 });

5 jpm.open();

Polishing developer interfaces

With just a few simple constructs and guidelines, we’ve built ourselves a reusable, extensible plugin
that will help make our lives easier. Like any part of what we do, experiment with this structure to
see if it works for you, your team, and your workflow.

Patterns and Code Organization 50

Whenever I find myself building something with a potential for reuse, I break it out into a module-
based jQuery plugin. The best part about this approach is that it forces you to use–and test–the
code you write. By using something as you build it, you’ll quickly identify strengths, discover
shortcomings, and plan changes.

This process leads to battle-tested code ready for open-source contributions, or to be sold and
distributed. I’ve released my (mostly) polished plugins as open-source projects on GitHub⁴⁸.

Even if you aren’t building something to be released in the wild, it’s still important to think about
the design of your code. Your future self will thank you.

Why AMD?

A javascript module loader

..

Original Article
http://requirejs.org/docs/why.html

requirejs.org

http://requirejs.org

This page talks about the design forces and use of the Asynchronous Module Definition (AMD)
API⁴⁹ for JavaScript modules, the module API supported by RequireJS. There is a different page that
talks about general approach to modules on the web⁵⁰.

Module Purposes § 1

What are JavaScript modules? What is their purpose?

• Definition: how to encapsulate a piece of code into a useful unit, and how to register its
capability/export a value for the module.

• Dependency References: how to refer to other units of code.

The Web Today § 2

⁴⁸https://github.com/acolangelo
⁴⁹https://github.com/amdjs/amdjs-api/wiki/AMD
⁵⁰http://requirejs.org/docs/why.html

https://github.com/acolangelo
http://requirejs.org/docs/why.html
http://requirejs.org
http://requirejs.org
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/docs/why.html
http://requirejs.org/docs/whyamd.html#purposes
http://requirejs.org/docs/whyamd.html#today
https://github.com/acolangelo
https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/docs/why.html

Patterns and Code Organization 51

1 (function () {

2 var $ = this.jQuery;

3

4 this.myExample = function () {};

5 }());

How are pieces of JavaScript code defined today?

• Defined via an immediately executed factory function.
• References to dependencies are done via global variable names that were loaded via an HTML
script tag.

• The dependencies are very weakly stated: the developer needs to know the right dependency
order. For instance, The file containing Backbone cannot come before the jQuery tag.

• It requires extra tooling to substitute a set of script tags into one tag for optimized deployment.

This can be difficult to manage on large projects, particularly as scripts start to have many
dependencies in a way that may overlap and nest. Hand-writing script tags is not very scalable,
and it leaves out the capability to load scripts on demand.

CommonJS § 3

1 var $ = require('jquery');

2 exports.myExample = function () {};

The original CommonJS (CJS) list⁵¹ participants decided to work out a module format that worked
with today’s JavaScript language, but was not necessarily bound to the limitations of the browser JS
environment. The hope was to use some stop-gap measures in the browser and hopefully influence
the browser makers to build solutions that would enable their module format to work better natively.
The stop-gap measures:

• Either use a server to translate CJS modules to something usable in the browser.
• Or use XMLHttpRequest (XHR) to load the text of modules and do text transforms/parsing in
browser.

The CJS module format only allowed one module per file, so a “transport format” would be used for
bundling more than one module in a file for optimization/bundling purposes.

With this approach, the CommonJS group was able to work out dependency references and how to
deal with circular dependencies, and how to get some properties about the current module. However,
they did not fully embrace some things in the browser environment that cannot change but still affect
module design:

⁵¹http://groups.google.com/group/commonjs

http://requirejs.org/docs/whyamd.html#commonjs
http://groups.google.com/group/commonjs
http://groups.google.com/group/commonjs

Patterns and Code Organization 52

• network loading
• inherent asynchronicity

It also meant they placed more of a burden on web developers to implement the format, and the
stop-gap measures meant debugging was worse. eval-based debugging or debugging multiple files
that are concatenated into one file have practical weaknesses. Those weaknesses may be addressed
in browser tooling some day, but the end result: using CommonJS modules in the most common of
JS environments, the browser, is non-optimal today.

AMD § 4

1 define(['jquery'] , function ($) {

2 return function () {};

3 });

The AMD format comes from wanting a module format that was better than today’s “write a bunch
of script tags with implicit dependencies that you have to manually order” and something that was
easy to use directly in the browser. Something with good debugging characteristics that did not
require server-specific tooling to get started. It grew out of Dojo’s real world experience with using
XHR+eval and wanting to avoid its weaknesses for the future.

It is an improvement over the web’s current “globals and script tags” because:

• Uses the CommonJS practice of string IDs for dependencies. Clear declaration of dependencies
and avoids the use of globals.

• IDs can be mapped to different paths. This allows swapping out implementation. This is great
for creating mocks for unit testing. For the above code sample, the code just expects something
that implements the jQuery API and behavior. It does not have to be jQuery.

• Encapsulates the module definition. Gives you the tools to avoid polluting the global
namespace.

• Clear path to defining the module value. Either use “return value;” or the CommonJS “exports”
idiom, which can be useful for circular dependencies.

It is an improvement over CommonJS modules because:

• It works better in the browser, it has the least amount of gotchas. Other approaches have
problems with debugging, cross-domain/CDN usage, file:// usage and the need for server-
specific tooling.

• Defines a way to include multiple modules in one file. In CommonJS terms, the term for this
is a “transport format”, and that group has not agreed on a transport format.

• Allows setting a function as the return value. This is really useful for constructor functions.
In CommonJS this is more awkward, always having to set a property on the exports object.
Node supports module.exports = function () {}, but that is not part of a CommonJS spec.

http://requirejs.org/docs/whyamd.html#amd

Patterns and Code Organization 53

Module Definition § 5

Using JavaScript functions for encapsulation has been documented as the module pattern⁵²:

1 (function () {

2 this.myGlobal = function () {};

3 }());

That type of module relies on attaching properties to the global object to export the module
value, and it is difficult to declare dependencies with this model. The dependencies are assumed
to be immediately available when this function executes. This limits the loading strategies for the
dependencies.

AMD addresses these issues by:

• Register the factory function by calling define(), instead of immediately executing it.
• Pass dependencies as an array of string values, do not grab globals.
• Only execute the factory function once all the dependencies have been loaded and executed.
• Pass the dependent modules as arguments to the factory function.

//Calling define with a dependency array and a factory function define([‘dep1’, ‘dep2’],
function (dep1, dep2) {

1 //Define the module value by returning a value.

2 return function () {};

});

Named Modules § 6

Notice that the above module does not declare a name for itself. This is what makes the module very
portable. It allows a developer to place the module in a different path to give it a different ID/name.
The AMD loader will give the module an ID based on how it is referenced by other scripts.

However, tools that combine multiple modules together for performance need a way to give names
to each module in the optimized file. For that, AMD allows a string as the first argument to define():

⁵²http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth

http://requirejs.org/docs/whyamd.html#definition
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth
http://requirejs.org/docs/whyamd.html#namedmodules
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth

Patterns and Code Organization 54

1 //Calling define with module ID, dependency array, and factory function

2 define('myModule', ['dep1', 'dep2'], function (dep1, dep2) {

3

4 //Define the module value by returning a value.

5 return function () {};

6 });

You should avoid naming modules yourself, and only place one module in a file while developing.
However, for tooling and performance, a module solution needs a way to identify modules in built
resources.

Sugar § 7

The above AMD example works in all browsers. However, there is a risk of mismatched dependency
names with named function arguments, and it can start to look a bit strange if yourmodule hasmany
dependencies:

1 define(["require", "jquery", "blade/object", "blade/fn", "rdapi",

2 "oauth", "blade/jig", "blade/url", "dispatch", "accounts",

3 "storage", "services", "widgets/AccountPanel", "widgets/TabButton",

4 "widgets/AddAccount", "less", "osTheme", "jquery-ui-1.8.7.min",

5 "jquery.textOverflow"],

6 function (require, $, object, fn, rdapi,

7 oauth, jig, url, dispatch, accounts,

8 storage, services, AccountPanel, TabButton,

9 AddAccount, less, osTheme) {

10

11 });

To make this easier, and to make it easy to do a simple wrapping around CommonJS modules, this
form of define is supported, sometimes referred to as “simplified CommonJS wrapping”:

1 define(function (require) {

2 var dependency1 = require('dependency1'),

3 dependency2 = require('dependency2');

4

5 return function () {};

6 });

The AMD loader will parse out the require(‘’) calls by using Function.prototype.toString(), then
internally convert the above define call into this:

http://requirejs.org/docs/whyamd.html#sugar

Patterns and Code Organization 55

1 define(['require', 'dependency1', 'dependency2'], function (require) {

2 var dependency1 = require('dependency1'),

3 dependency2 = require('dependency2');

4

5 return function () {};

6 });

This allows the loader to load dependency1 and dependency2 asynchronously, execute those
dependencies, then execute this function.

Not all browsers give a usable Function.prototype.toString() results. As of October 2011, the PS 3 and
older Opera Mobile browsers do not. Those browsers are more likely to need an optimized build of
the modules for network/device limitations, so just do a build with an optimizer that knows how to
convert these files to the normalized dependency array form, like the RequireJS optimizer⁵³.

Since the number of browsers that cannot support this toString() scanning is very small, it is safe to
use this sugared forms for all your modules, particularly if you like to line up the dependency names
with the variables that will hold their module values.

CommonJS Compatibility § 8

Even though this sugared form is referred to as the “simplified CommonJS wrapping”, it is not 100%
compatible with CommonJS modules. However, the cases that are not supported would likely break
in the browser anyway, since they generally assume synchronous loading of dependencies.

Most CJS modules, around 95% based on my (thoroughly unscientific) personal experience, are
perfectly compatible with the simplified CommonJS wrapping.

The modules that break are ones that do a dynamic calculation of a dependency, anything that
does not use a string literal for the require() call, and anything that does not look like a declarative
require() call. So things like this fail:

1 //BAD

2 var mod = require(someCondition ? 'a' : 'b');

3

4 //BAD

5 if (someCondition) {

6 var a = require('a');

7 } else {

8 var a = require('a1');

9 }

⁵³http://requirejs.org/docs/optimization.html

http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/whyamd.html#commonjscompat
http://requirejs.org/docs/optimization.html

Patterns and Code Organization 56

These cases are handled by the callback-require⁵⁴, require([moduleName], function (){})

normally present in AMD loaders.

The AMD execution model is better aligned with how ECMAScript Harmony modules are being
specified. The CommonJS modules that would not work in an AMD wrapper will also not work as
a Harmony module. AMD’s code execution behavior is more future compatible.

Verbosity vs. Usefulness

One of the criticisms of AMD, at least compared to CJS modules, is that it requires a level of indent
and a function wrapping.

But here is the plain truth: the perceived extra typing and a level of indent to use AMD does not
matter. Here is where your time goes when coding:

• Thinking about the problem.
• Reading code.

Your time coding is mostly spent thinking, not typing. While fewer words are generally preferable,
there is a limit to that approach paying off, and the extra typing in AMD is not that much more.

Most web developers use a function wrapper anyway, to avoid polluting the page with globals.
Seeing a function wrapped around functionality is a very common sight and does not add to the
reading cost of a module.

There are also hidden costs with the CommonJS format:

• the tooling dependency cost
• edge cases that break in browsers, like cross domain access
• worse debugging, a cost that continues to add up over time

AMD modules require less tooling, there are fewer edge case issues, and better debugging support.

What is important: being able to actually share code with others. AMD is the lowest energy pathway
to that goal.

Having a working, easy to debug module system that works in today’s browsers means getting real
world experience in making the best module system for JavaScript in the future.

AMD and its related APIs, have helped show the following for any future JS module system:

• Returning a function as themodule value, particularly a constructor function, leads to better
API design. Node has module.exports to allow this, but being able to use “return function (){}”
is much cleaner. It means not having to get a handle on “module” to do module.exports, and
it is a clearer code expression.

⁵⁴https://github.com/amdjs/amdjs-api/wiki/require

https://github.com/amdjs/amdjs-api/wiki/require
https://github.com/amdjs/amdjs-api/wiki/require

Patterns and Code Organization 57

• Dynamic code loading (done in AMD systems via require([], function (){}))⁵⁵ is a basic
requirement. CJS talked about it, had some proposals, but it was not fully embraced. Node does
not have any support for this need, instead relying on the synchronous behavior of require(‘’),
which is not portable to the web.

• Loader plugins⁵⁶ are incredibly useful. It helps avoid the nested brace indenting common in
callback-based programming.

• Selectively mapping one module to load from another location makes it easy to provide
mock objects for testing.

• There should only be at most one IO action for each module, and it should be straightfor-
ward. Web browsers are not tolerant of multiple IO lookups to find a module. This argues
against the multiple path lookups that Node does now, and avoiding the use of a package.json
“main” property. Just use module names that map easily to one location based on the project’s
location, using a reasonable default convention that does not require verbose configuration,
but allow for simple configuration when needed.

• It is best if there is an “opt-in” call that can be done so that older JS code can partcipate in
the new system.

If a JS module system cannot deliver on the above features, it is at a significant disadvantage when
compared to AMD and its related APIs around callback-require⁵⁷, loader plugins⁵⁸, and paths-based
module IDs.

AMD Used Today § 9

As of mid October 2011, AMD already has good adoption on the web:

• jQuery⁵⁹ 1.7
• Dojo⁶⁰ 1.7
• EmbedJS⁶¹
• Ender⁶²-associated modules like bonzo⁶³, qwery⁶⁴, bean⁶⁵ and domready⁶⁶
• Used by Firebug⁶⁷ 1.8+

⁵⁵https://github.com/amdjs/amdjs-api/wiki/require
⁵⁶http://requirejs.org/docs/plugins.html
⁵⁷https://github.com/amdjs/amdjs-api/wiki/require
⁵⁸https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
⁵⁹http://jquery.com/
⁶⁰http://dojotoolkit.org/
⁶¹http://uxebu.github.com/embedjs/
⁶²http://ender.no.de/
⁶³https://github.com/ded/bonzo
⁶⁴https://github.com/ded/qwery
⁶⁵https://github.com/fat/bean
⁶⁶https://github.com/ded/domready
⁶⁷http://getfirebug.com/

https://github.com/amdjs/amdjs-api/wiki/require
http://requirejs.org/docs/plugins.html
https://github.com/amdjs/amdjs-api/wiki/require
https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
http://requirejs.org/docs/whyamd.html#amdtoday
http://jquery.com/
http://dojotoolkit.org/
http://uxebu.github.com/embedjs/
http://ender.no.de/
https://github.com/ded/bonzo
https://github.com/ded/qwery
https://github.com/fat/bean
https://github.com/ded/domready
http://getfirebug.com/
https://github.com/amdjs/amdjs-api/wiki/require
http://requirejs.org/docs/plugins.html
https://github.com/amdjs/amdjs-api/wiki/require
https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
http://jquery.com/
http://dojotoolkit.org/
http://uxebu.github.com/embedjs/
http://ender.no.de/
https://github.com/ded/bonzo
https://github.com/ded/qwery
https://github.com/fat/bean
https://github.com/ded/domready
http://getfirebug.com/

Patterns and Code Organization 58

• The simplified CommonJS wrapper can be used in Jetpack/Add-on SDK⁶⁸ for Firefox
• Used for parts of sites on the BBC⁶⁹ (observed by looking at the source, not an official
recommendation of AMD/RequireJS)

What You Can Do § 10

If you write applications:

• Give an AMD loader a try. You have some choices:
– RequireJS⁷⁰
– curl⁷¹
– lsjs⁷²
– Dojo⁷³ 1.7+

• If you want to use AMD but still use the load one script at the bottom of the HTML page
approach:

– Use the RequireJS optimizer⁷⁴ either in command line mode or as an HTTP service⁷⁵
with the almond AMD shim⁷⁶.

If you are a script/library author:

• Optionally call define()⁷⁷ if it is available. The nice thing is you can still code your library
without relying on AMD, just participate if it is available. This allows consumers of your
modules to:

– avoid dumping global variables in the page
– use more options for code loading, delayed loading
– use existing AMD tooling to optimize their project
– participate in a workable module system for JS in the browser today.

If you write code loaders/engines/environments for JavaScript:

⁶⁸https://addons.mozilla.org/en-US/developers/docs/sdk/1.1/
⁶⁹http://www.bbc.co.uk/
⁷⁰http://requirejs.org/
⁷¹https://github.com/unscriptable/curl
⁷²https://github.com/zazl/lsjs
⁷³http://dojotoolkit.org/
⁷⁴http://requirejs.org/docs/optimization.html
⁷⁵https://github.com/jrburke/r.js/blob/master/build/tests/http/httpBuild.js
⁷⁶https://github.com/jrburke/almond
⁷⁷https://github.com/umdjs/umd

https://addons.mozilla.org/en-US/developers/docs/sdk/1.1/
http://www.bbc.co.uk/
http://requirejs.org/docs/whyamd.html#youcando
http://requirejs.org/
https://github.com/unscriptable/curl
https://github.com/zazl/lsjs
http://dojotoolkit.org/
http://requirejs.org/docs/optimization.html
https://github.com/jrburke/r.js/blob/master/build/tests/http/httpBuild.js
https://github.com/jrburke/almond
https://github.com/umdjs/umd
https://addons.mozilla.org/en-US/developers/docs/sdk/1.1/
http://www.bbc.co.uk/
http://requirejs.org/
https://github.com/unscriptable/curl
https://github.com/zazl/lsjs
http://dojotoolkit.org/
http://requirejs.org/docs/optimization.html
https://github.com/jrburke/r.js/blob/master/build/tests/http/httpBuild.js
https://github.com/jrburke/almond
https://github.com/umdjs/umd

Patterns and Code Organization 59

• Implement the AMDAPI⁷⁸. There is a discussion list⁷⁹ and compatibility tests⁸⁰. By implement-
ing AMD, you will reduce multi-module system boilerplate and help prove out a workable
JavaScript module system on the web. This can be fed back into the ECMAScript process to
build better native module support.

• Also support callback-require⁸¹ and loader plugins⁸². Loader plugins are a great way to reduce
the nested callback syndrome that can be common in callback/async-style code.

JavaScript Dependency Injection

..

Original Article
http://merrickchristensen.com/articles/javascript-dependency-injection.html

Merrick Christensen, merrickchristensen.com

http://merrickchristensen.com/

Inversion of control⁸³ and more specifically dependency injection⁸⁴ have been growing in popularity
in the JavaScript landscape thanks to projects like Require.js⁸⁵ and AngularJS⁸⁶. This article is a brief
introduction to dependency injection and how it fits into JavaScript. It will also demystify the elegant
way AngularJS implements dependency injection.

Dependency Injection In JavaScript

Dependency injection facilitates better testing by allowing us to mock dependencies in testing
environments so that we only test one thing at a time. It also enables us to write more maintainable
code by decoupling our objects from their implementations.

With dependency injection, your dependencies are given to your object instead of your object
creating or explicitly referencing them. This means the dependency injector can provide a different
dependency based on the context of the situation. For example, in your tests it might pass a fake
version of your services API that doesn’t make requests but returns static objects instead, while in
production it provides the actual services API.

⁷⁸https://github.com/amdjs/amdjs-api/wiki/AMD
⁷⁹https://groups.google.com/group/amd-implement
⁸⁰https://github.com/amdjs/amdjs-tests
⁸¹https://github.com/amdjs/amdjs-api/wiki/require
⁸²https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
⁸³http://en.wikipedia.org/wiki/Inversion_of_control
⁸⁴http://en.wikipedia.org/wiki/Dependency_injection
⁸⁵http://requirejs.org/
⁸⁶http://angularjs.org/

https://github.com/amdjs/amdjs-api/wiki/AMD
https://groups.google.com/group/amd-implement
https://github.com/amdjs/amdjs-tests
https://github.com/amdjs/amdjs-api/wiki/require
https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
http://merrickchristensen.com/articles/javascript-dependency-injection.html
http://merrickchristensen.com/
http://merrickchristensen.com/
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection
http://requirejs.org/
http://angularjs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD
https://groups.google.com/group/amd-implement
https://github.com/amdjs/amdjs-tests
https://github.com/amdjs/amdjs-api/wiki/require
https://github.com/amdjs/amdjs-api/wiki/Loader-Plugins
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection
http://requirejs.org/
http://angularjs.org/

Patterns and Code Organization 60

Another example could be to pass ZeptoJS⁸⁷ to your view objects when the device is runningWebkit⁸⁸
instead of jQuery⁸⁹ to improve performance.

The main benefits experienced by adopting dependency injection are as follows:

1. Code tends to be more maintainable.
2. APIs are more elegant and abstract.
3. Code is easier to test.
4. Code is more modular and reuseable.
5. Cures cancer. (Not entirely true.)

Holding dependencies to an API based contract becomes a natural process. Coding to interfaces is
nothing new, the server side world has been battle testing this idea for a long time to the extent
that the languages themselves implement the concept of interfaces. In JavaScript we have to force
ourselves to do this. Fortunately dependency injection and module systems are a welcome friend.

Now that you have some idea of what dependency injection is, lets take a look at how to build a
simple implementation of a dependency injector using AngularJS style dependency injection⁹⁰ as a
reference implementation. This implementation is purely for didactic purposes.

AngularJS Style Injection

AngularJS is one of the only front end JavaScript frameworks that fully adopts dependency injection
right down to the core of the framework. To a lot of developers the way dependency injection is
implemented in AngularJS looks completely magic.

When creating controllers in AngularJS, the arguments are dependency names that will be injected
into your controller. The argument names are the key here, they are leveraged to map a dependency
name to an actual dependency. Yeah, the word “key” was used on purpose, you will see why.

1 /* Injected */

2 var WelcomeController = function (Greeter) {

3 /** I want a different Greeter injected dynamically. **/

4 Greeter.greet();

5 };

⁸⁷http://zeptojs.com/
⁸⁸http://www.webkit.org/
⁸⁹http://jquery.com/
⁹⁰http://docs.angularjs.org/guide/di

http://zeptojs.com/
http://www.webkit.org/
http://jquery.com/
http://docs.angularjs.org/guide/di
http://zeptojs.com/
http://www.webkit.org/
http://jquery.com/
http://docs.angularjs.org/guide/di

Patterns and Code Organization 61

Basic Requirements

Lets explore some of the requirements to make this function work as expected.

1. The dependency container needs to know that this function wants to be processed. In the
AngularJS world that is done through the Application object and the declarative HTML
bindings. In our world we will explicitly ask our injector to process a function.

2. It needs to know what a Greeter before it can inject it.

Requirement 1: Making the injector aware.

To make our dependency injector aware of our WelcomeController we will simply tell our injector
we want a function processed. Its important to know AngularJS ultimately does this same thing just
using less obvious mechanisms whether that be the Application object or the HTML declarations.

1 var Injector = {

2 process: function(target) {

3 // Time to process

4 }

5 };

6

7 Injector.process(WelcomeController);

Ok, now that the Injector has the opportunity to process the WelcomeController we can figure out
what dependencies the function wants, and execute it with the proper dependencies. This process is
called dependency resolution. Before we can do that we need a way to register dependencies with
our Injector object…

Requirement 2: Registering dependencies

We need to be able to tell the dependency injector what a Greeter is before it can provide one.
Any dependency injector worth it’s bits will allow you to describe how it is provided. Whether that
means being instantiated as a new object or returning a singleton. Most injection frameworks even
have mechanisms to provide a constructor some configuration and register multiple dependencies
by the same name. Since our dependency injector is just a simplified way to show how AngularJS
does dependency mapping using parameter names, we won’t worry about any of that.

Without further excuses, our simple register function:

Patterns and Code Organization 62

1 Injector.dependencies = {};

2

3 Injector.register = function(name, dependency) {

4 this.dependencies[name] = dependency;

5 };

All we do is store our dependency by name so the injector knows what to provide when certain
dependencies are requested. Lets go ahead and register an implementation of Greeter.

1 var RobotGreeter = {

2 greet: function() {

3 return 'Domo Arigato';

4 }

5 };

6

7 Injector.register('Greeter', RobotGreeter);

Now our injector knows what to provide when Greeter is specified as a dependency.

Moving Forward

The building blocks are in place it’s time for the sweet part of this article. The reason I wanted to
post this article in the first place, the nutrients, the punch line, the hook, the call toString() with
some sweet reflection. This is where the magic is, in JavaScript we don’t have to execute a function
immediately. The trick is to call toString on your function which returns the function as a string, this
gives a chance to preprocess our functions as strings and turn them back into functions using the
Function constructor, or just execute them with the proper parameters after doing some reflection.
The latter is exactly what we will do here.

toString Returns Winning

1 var WelcomeController = function (Greeter) {

2 Greeter.greet();

3 };

4

5 // Returns the function as a string.

6 var processable = WelcomeController.toString();

You can try it in your console!

Now that we have the WelcomeController as a string we can do some reflection to figure out which
dependencies to inject.

Patterns and Code Organization 63

Dependency Checking

It’s time to implement the process method of our Injector. First lets take a look at injector.js⁹¹ from
Angular. You’ll notice the reflection starts on line 54⁹² and leverages a few regular expressions to
parse the function. Let’s take a look at the regular expression, shall we?

1 var FN_ARGS = /^function\s*[^\(]*\(\s*([^\)]*)\)/m;

The FN_ARGS regular expression is used to select everything inside the parentheses of a function
defintion. In other words the parameters of a function. In our case, the dependency list.

1 var args = WelcomeController.toString().match(FN_ARGS)[1];

2 console.log(args); // Returns Greeter

Pretty neat, right? We have now parsed out the WelcomeController’s dependency list in our Injector
prior to executing the WelcomeController function! Suppose the WelcomeController had multiple
dependencies, this isn’t terribly problematic since we can just split the arguments with a comma!

1 var MultipleDependenciesController = function(Greeter, OtherDependency) {

2 // Implementation of MultipleDependenciesController

3 };

4

5 var args = MultipleDependenciesController

6 .toString()

7 .match(FN_ARGS)[1]

8 .split(',');

9

10 console.log(args); // Returns ['Greeter', 'OtherDependency']

The rest is pretty straight forward, we just grab the requested dependency by name from our
dependencies cache and call the target function passing the requested dependencies as arguments.
Lets implement the function that maps our array of dependency names to their dependencies:

⁹¹https://github.com/angular/angular.js/blob/master/src/auto/injector.js
⁹²https://github.com/angular/angular.js/blob/master/src/auto/injector.js#L54

https://github.com/angular/angular.js/blob/master/src/auto/injector.js
https://github.com/angular/angular.js/blob/master/src/auto/injector.js#L54
https://github.com/angular/angular.js/blob/master/src/auto/injector.js
https://github.com/angular/angular.js/blob/master/src/auto/injector.js#L54

Patterns and Code Organization 64

1 Injector.getDependencies = function(arr) {

2 var self = this;

3 return arr.map(function(dependencyName) {

4 return self.dependencies[dependencyName];

5 });

6 };

The getDependencies method takes the array of dependency names and maps it to a corre-
sponding array of actual dependencies. If this map function is foreign to you check out the
Array.prototype.map documentation⁹³.

Now that we have implemented our dependency resolver we can head back over to our process
method and execute the target function with it’s proper dependencies.

1 target.apply(target, this.getDependencies(args));

Pretty awesome, right?

Injector.js

1 var Injector = {

2

3 dependencies: {},

4

5 process: function(target) {

6 var FN_ARGS = /^function\s*[^\(]*\(\s*([^\)]*)\)/m;

7 var text = target.toString();

8 var args = text.match(FN_ARGS)[1].split(',');

9

10 target.apply(target, this.getDependencies(args));

11 },

12

13 getDependencies: function(arr) {

14 var self = this;

15 return arr.map(function(value) {

16 return self.dependencies[value];

17 });

18 },

19

20 register: function(name, dependency) {

21 this.dependencies[name] = dependency;

⁹³https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/map

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/map

Patterns and Code Organization 65

22 }

23

24 };

Example & Excuses

You can see the functioning injector we created in this example⁹⁴ on jsFiddle.

This contrived example is not something you would use in an actual codebase it was simply created
to demonstrate the rich functionality JavaScript provides and to explain how AngularJS provides
dependency injection. If this interests you I highly recommend reviewing their code further. It’s
important to note this approach is not novel. Other projects use toString to preprocess code, for
example Require.js⁹⁵ uses a similar approach to parse and transpile CommonJS style modules to
AMD style modules.

I hope you found this article enlightening and continue to explore dependency injection and how it
applies to the client side world.

I really think there is something special brewing here.

⁹⁴http://jsfiddle.net/nMK6j/
⁹⁵http://requirejs.org/

http://jsfiddle.net/nMK6j/
http://requirejs.org/
http://jsfiddle.net/nMK6j/
http://requirejs.org/

Tools
10 Must Have JavaScript Tools For Developers

..

Original Article
http://smashinghub.com/javascript-tools-for-developers.htm

Ali Qayyum, smashinghub.com

http://smashinghub.com/author/admin

JavaScript tools are still one of the most difficult issues when it comes to web-development. Many
tools and applications could make your developing life pretty fast and simple. A few years back
people only used JavaScript to add some effects like the blinking text etc but in the then people
started taking it a lot more seriously, as it can enhance the web. So here are 10 great tools and script
for all JavaScript developers.

FitText.js

http://smashinghub.com/javascript-tools-for-developers.htm
http://smashinghub.com/author/admin
http://smashinghub.com/author/admin

Tools 67

FitText

This great tool does automatic resizing of a text considering the size of its parent element. Just view
the website and resize your browser: The text will fit. A very good tool for modern sites and apps!

http://fittextjs.com/⁹⁶

MicroJS

⁹⁶http://fittextjs.com/

http://fittextjs.com/
http://fittextjs.com/

Tools 68

MicroJS

This is a new website that can provide you with a JavaScript code snippet quickly. It has JavaScript
codes for almost all the common tasks: Ajax, Json, DOM and Object-Oriented JavaScript etc.
Definitely a must have in your bookmarks!

http://microjs.com/⁹⁷

Diva.js

⁹⁷http://microjs.com/

http://microjs.com/
http://microjs.com/

Tools 69

DivaJS

It is a Javascript frontend that lets you view documents. It is designed to work with digital libraries
to display multi-page documents as a single, undivided item. It has been designed to work with
a IIPImage server and will prove to be a great tool for those who work on library or bookstore
websites. A demo is given here if you want to check it out.

http://ddmal.music.mcgill.ca/diva/⁹⁸

Bookmarklet Generator

⁹⁸http://ddmal.music.mcgill.ca/diva/

http://ddmal.music.mcgill.ca/diva/
http://ddmal.music.mcgill.ca/diva/

Tools 70

Bookmarklet

As the name suggests it is a bookmarklet generator: All you have to do is to paste your regular
JavaScript code, press the button and you will get a bookmarklet ready to be installed on your
browser bar.

http://benalman.com/code/test/jquery-run-code-bookmarklet/⁹⁹

jQAPI

⁹⁹http://benalman.com/code/test/jquery-run-code-bookmarklet/

http://benalman.com/code/test/jquery-run-code-bookmarklet/
http://benalman.com/code/test/jquery-run-code-bookmarklet/

Tools 71

jQAPI

It is an amazing site which provides the jQuery documentation in a very user-friendly way, so it
can become your reference website when you need any jQuery help.

http://jqapi.com¹⁰⁰

heatmap.js

¹⁰⁰http://jqapi.com/

http://jqapi.com/
http://jqapi.com/

Tools 72

heatmap.js

JavaScript presents endless possibilities: For instance, heatmap.js lets you generate web heatmaps
with the html5canvas element based on your data. Simple and sophisticated!

http://www.patrick-wied.at/static/heatmapjs/¹⁰¹

Respond.js

¹⁰¹http://www.patrick-wied.at/static/heatmapjs/

http://www.patrick-wied.at/static/heatmapjs/
http://www.patrick-wied.at/static/heatmapjs/

Tools 73

Respond.js

This one is a tiny script that lets you use CSS3 media queries on browsers that don’t support it yet
(like IE!)

https://github.com/scottjehl/Respond/blob/master/respond.min.js¹⁰²

Modernizr

¹⁰²https://github.com/scottjehl/Respond/blob/master/respond.min.js

https://github.com/scottjehl/Respond/blob/master/respond.min.js
https://github.com/scottjehl/Respond/blob/master/respond.min.js

Tools 74

Modernizr

It is a script that lets older browsers to work almost as nicely as newest ones, so you can create
modern apps that will work on IE6 and 7. Your clients are going to love it for sure.

http://www.modernizr.com/¹⁰³

YepNope

¹⁰³http://www.modernizr.com/

http://www.modernizr.com/
http://www.modernizr.com/

Tools 75

YepNope

As the name hints, it answers yep, or nope. For instance, ask YepNope is Modernizr is loaded. If yes,
ask YepNope to do this, and if not, ask YepNope to do that. Simple and very useful!

http://yepnopejs.com/¹⁰⁴

Ligature.js

¹⁰⁴http://yepnopejs.com/

http://yepnopejs.com/
http://yepnopejs.com/

Tools 76

Ligature

The name says it all. Ligature.js is a script that adds amazing ligatures to any type of text. A must
have if you are a typography lover.

http://code.google.com/p/ligature-js/¹⁰⁵

Useful Node.js Tools, Tutorials And Resources

..

Original Article
http://coding.smashingmagazine.com/2011/09/16/useful-node-js-tools-tutorials-and-resources/

[Luca Degasperi, http://coding.smashingmagazine.com/

http://coding.smashingmagazine.com/

Created by Ryan Dahl in 2009, Node.js¹⁰⁶ is a relatively new technology which has gained a lot
of popularity among Web developers recently. However, not everyone knows what it really is.

¹⁰⁵http://code.google.com/p/ligature-js/
¹⁰⁶http://nodejs.org/

http://code.google.com/p/ligature-js/
http://coding.smashingmagazine.com/2011/09/16/useful-node-js-tools-tutorials-and-resources/
http://coding.smashingmagazine.com/
http://coding.smashingmagazine.com/
http://nodejs.org/
http://code.google.com/p/ligature-js/
http://nodejs.org/

Tools 77

Node.js is essentially a server-side JavaScript environment that uses an asynchronous event-driven
model. What this means is simple: it’s an environment which is intended for writing scalable, high
performance network applications. It’s like Ruby’s Event Machine or Python’s Twisted, but it takes
the event model a bit further—it presents the event loop as a language construct instead of as a
library.

And that’s not all: what’s really great about Node.js is the thousands of modules available for any
purpose, as well as the vibrant community behind this young project. In this round-up, you will
find the most useful resources for Node.js, from handy tools to detailed tutorials, not to mention
in-depth articles and resources on this promising technology. Do you use Node.js already? Let us
know in the comments to this post!

Useful Node.js Tools

Node Express Boilerplate¹⁰⁷
Node Express Boilerplate gives the developer a clean slate, while bundling enough useful features
to remove all of those redundant tasks that can derail a project before it even gets started.

Socket.IO¹⁰⁸
Socket.IO is a cross-browser Web socket that aims to make real-time apps possible in every browser
andmobile device, blurring the distinctions between the various transport mechanisms. It’s care-free
real time, in JavaScript.

Mastering Node¹⁰⁹
With Mastering Node, you can write high-concurrency Web servers, using the CommonJS module
system, Node.js’s core libraries, third-party modules, high-level Web development and more.

Log.io¹¹⁰
Your infrastructure may have hundreds of log files spread across dozens of machines. To help
you monitor deployments and troubleshoot, Log.io lets you instantly see composite streams of log
messages in a single user interface.

Formaline¹¹¹
Formaline is a low-level, full-featured (Node.js) module for handling form requests (HTTP POSTs
and PUTs) and for parsing uploaded files quickly. It is also ready to use with, for example,
middleware such as Connect.

LDAPjs¹¹²
LDAPjs is a pure-JavaScript, from-scratch framework for implementing LDAP clients and servers
in Node.js. It is intended for developers who are used to interacting with HTTP services in Node.js
and Express.

¹⁰⁷https://github.com/mape/node-express-boilerplate
¹⁰⁸http://socket.io/
¹⁰⁹http://visionmedia.github.com/masteringnode/
¹¹⁰http://logio.org/
¹¹¹https://github.com/rootslab/formaline
¹¹²http://ldapjs.org/

https://github.com/mape/node-express-boilerplate
http://socket.io/
http://visionmedia.github.com/masteringnode/
http://logio.org/
https://github.com/rootslab/formaline
http://ldapjs.org/
https://github.com/mape/node-express-boilerplate
http://socket.io/
http://visionmedia.github.com/masteringnode/
http://logio.org/
https://github.com/rootslab/formaline
http://ldapjs.org/

Tools 78

Node Supervisor¹¹³
This is a little supervisor script for Node.js. It runs your program and watches for code changes, so
you can have hot-code reloading-ish behavior without worrying about memory leaks or having to
clean up all of the inter-module references, and without a whole new require system.

Stylus: An Expressive CSS Markup Language for Node.js¹¹⁴
Stylus is supposed to be an expressive language that can be converted to CSS. The compiler is written
in Node.js.

Jade – Template Engine¹¹⁵
Jade is a template engine for Node.js applications. It combines great power and flexibility with a
nice and clean syntax.

Express¹¹⁶
This is a Sinatra-inspired Web development framework for Node.js: fast, flexible and sexy.

Hook.io¹¹⁷
hook.io creates a distributed node.js EventEmitter that works cross-process / cross-platform / cross-
browser. Think of it like a real-time event bus that works anywhere JavaScript is supported.

Node Package Manager¹¹⁸
NPM is a package manager for node. You can use it to install and publish your node programs. It
manages dependencies and does other cool stuff.

Node-QRcode¹¹⁹
Despite being quite young, Node.js already has a huge number of libraries for every possible
application. This one is a QR code generator.

NWM¹²⁰
NWM is a dynamic window manager for X that was written at NodeKO 2011. It uses libev to
interface with X11, and it allows you to lay out windows in Node.js.

Bricks.js¹²¹
Bricks.js is an advanced modular Web framework built on Node.js. It is highly flexible. Bricks.js can
be used as a standalone static Web server, a basic routing framework or a multi-level Apache-like
routing system; and it is modular enough to have the capability to completely switch out its routing
engine.

Node.js Modules¹²²

¹¹³https://github.com/isaacs/node-supervisor
¹¹⁴http://learnboost.github.com/stylus/
¹¹⁵http://jade-lang.com/
¹¹⁶http://expressjs.com/
¹¹⁷https://github.com/hookio/hook.io
¹¹⁸http://npmjs.org/
¹¹⁹https://github.com/soldair/node-qrcode
¹²⁰https://github.com/mixu/nwm
¹²¹http://bricksjs.com/index.html
¹²²https://github.com/joyent/node/wiki/modules#templating

https://github.com/isaacs/node-supervisor
http://learnboost.github.com/stylus/
http://jade-lang.com/
http://expressjs.com/
https://github.com/hookio/hook.io
http://npmjs.org/
https://github.com/soldair/node-qrcode
https://github.com/mixu/nwm
http://bricksjs.com/index.html
https://github.com/joyent/node/wiki/modules#templating
https://github.com/isaacs/node-supervisor
http://learnboost.github.com/stylus/
http://jade-lang.com/
http://expressjs.com/
https://github.com/hookio/hook.io
http://npmjs.org/
https://github.com/soldair/node-qrcode
https://github.com/mixu/nwm
http://bricksjs.com/index.html
https://github.com/joyent/node/wiki/modules#templating

Tools 79

A list of almost all the Node.js most famous modules organized by category. This list definitively is
worth a look.

90 open-source Node.js modules¹²³
Recently, Browserling released over 90 Node.js modules to the open-source community. Some of
them are small and strange modules, others might be pretty useful for your next Node.js project.

Calipso¹²⁴
Calipso is a content management system (CMS) based on the NodeJS server.

PDFKit¹²⁵
PDFKit is a PDF document-generation library for Node.js that makes it easy to create complex,
multi-page, printable documents. It is written in pure CoffeeScript, but you can use the API in plain
‘ol JavaScript if you like. The API embraces chain-ability, and it includes both low-level functions
as well as abstractions for higher-level functionality.

Forever¹²⁶
A simple CLI tool to ensure that a given script runs continuously (i.e. forever).

Introducing Node.js

Node.js Step by Step¹²⁷
Node.js is an amazing new technology, but unless you’re a JavaScript developer, the process of
becoming acquainted with it can quickly become a bit overwhelming. If you want to learn how to
use Node.js, this set of articles and screencasts might do the trick.

What Is Node.js?¹²⁸
Another interesting discussion on StackOverflow about what Node.js is and is not. Recommended
for those who are approaching Node.js for the first time.

Learning Server-Side JavaScript¹²⁹
Node.js is all the buzz at the moment, and it makes creating high-performance, real-time Web
applications easy. It allows JavaScript to be used end to end, on both the server and client. This
tutorial walks you through from installing Node.js and writing your first “Hello World” program to
building a scalable streaming Twitter server.

Node.js Is Important: An Introduction¹³⁰
“Once in a while, you come across a technology and are blown away by it. You feel that something
like this should have been around much earlier and that it will be a significant milestone, not just
in your own life as a developer but in general.

¹²³http://www.catonmat.net/blog/browserling-open-sources-90-node-modules/
¹²⁴http://calip.so/
¹²⁵http://pdfkit.org/
¹²⁶https://github.com/indexzero/forever
¹²⁷http://net.tutsplus.com/tutorials/javascript-ajax/this-time-youll-learn-node-js/
¹²⁸http://stackoverflow.com/questions/1884724/what-is-node-js
¹²⁹http://net.tutsplus.com/tutorials/javascript-ajax/learning-serverside-javascript-with-node-js/
¹³⁰http://www.pavingways.com/nodejs-node-is-important-introduction_1618.html

http://www.catonmat.net/blog/browserling-open-sources-90-node-modules/
http://calip.so/
http://pdfkit.org/
https://github.com/indexzero/forever
http://net.tutsplus.com/tutorials/javascript-ajax/this-time-youll-learn-node-js/
http://stackoverflow.com/questions/1884724/what-is-node-js
http://net.tutsplus.com/tutorials/javascript-ajax/learning-serverside-javascript-with-node-js/
http://www.pavingways.com/nodejs-node-is-important-introduction_1618.html
http://www.catonmat.net/blog/browserling-open-sources-90-node-modules/
http://calip.so/
http://pdfkit.org/
https://github.com/indexzero/forever
http://net.tutsplus.com/tutorials/javascript-ajax/this-time-youll-learn-node-js/
http://stackoverflow.com/questions/1884724/what-is-node-js
http://net.tutsplus.com/tutorials/javascript-ajax/learning-serverside-javascript-with-node-js/
http://www.pavingways.com/nodejs-node-is-important-introduction_1618.html

Tools 80

The Secrets of Node’s Success¹³¹
In the short time since its initial release in late 2009, Node.js has captured the interest of thousands
of experienced developers, grown a package manager and a corpus of interesting modules and
applications, and even spawned a number of start-ups. What is it about this technology that
makes it interesting to developers? And why has it succeeded while other server-side JavaScript
implementations linger in obscurity or fail altogether?

Asynchronous Code Design with Node.js¹³²
The asynchronous event-driven I/O of Node.js is currently evaluated by many enterprises as a high-
performance alternative to the traditional synchronous I/O of multi-threaded enterprise application
server. The asynchronous nature means that enterprise developers have to learn new programming
patterns, and unlearn old ones

A Giant Step Backwards?¹³³
In this article, Fenn Bailey expresses his opinion of Node.js and why he sometimes thinks Node.js is
a step backward compared to other solutions.

Node.js Is Backwards¹³⁴
A hot topic in computing is parallel programming in languages such as Erlang. Will JavaScript join
the party?

Videos And Screencasts On Node.js

Node.js Meetup: Distributed Web Architectures¹³⁵
A series of videos from the Node.js Meetup at Joyent headquarters, discussing how to build
distributed Web architectures with Node.js.

Introduction to Node.js with Ryan Dahl¹³⁶
In this presentation Ryan Dahl, the man behind Node.js will introduce you to this event-driven I/O
framework with a few examples showing Node.js in action.

SenchaCon 2010: Server-side JavaScript with Node, Connect and Express on Vimeo¹³⁷
Node.js has unleashed a new wave of interest in server side Javascript. In this session, you’ll learn
how to get productive with node.js by leveraging Connect and Express node middleware.

Technical Articles And Tutorials On Node.js

Proxying HTTP and Web Sockets in Node¹³⁸
This guide is geared to beginners and people who are unfamiliar with reverse HTTP proxying,

¹³¹http://radar.oreilly.com/2011/06/node-javascript-success.html
¹³²http://shinetech.com/thoughts/thought-articles/139-asynchronous-code-design-with-nodejs
¹³³http://fennb.com/nodejs-a-giant-step-backwards
¹³⁴http://blog.ankurgoyal.com/post/6433642218/node-js-is-backwards
¹³⁵http://joyeur.com/2011/08/11/node-js-meetup-distributed-web-architectures/
¹³⁶http://www.youtube.com/watch?v=jo_B4LTHi3I
¹³⁷http://vimeo.com/18077379
¹³⁸http://blog.nodejitsu.com/http-proxy-intro

http://radar.oreilly.com/2011/06/node-javascript-success.html
http://shinetech.com/thoughts/thought-articles/139-asynchronous-code-design-with-nodejs
http://fennb.com/nodejs-a-giant-step-backwards
http://blog.ankurgoyal.com/post/6433642218/node-js-is-backwards
http://joyeur.com/2011/08/11/node-js-meetup-distributed-web-architectures/
http://www.youtube.com/watch?v=jo_B4LTHi3I
http://vimeo.com/18077379
http://blog.nodejitsu.com/http-proxy-intro
http://radar.oreilly.com/2011/06/node-javascript-success.html
http://shinetech.com/thoughts/thought-articles/139-asynchronous-code-design-with-nodejs
http://fennb.com/nodejs-a-giant-step-backwards
http://blog.ankurgoyal.com/post/6433642218/node-js-is-backwards
http://joyeur.com/2011/08/11/node-js-meetup-distributed-web-architectures/
http://www.youtube.com/watch?v=jo_B4LTHi3I
http://vimeo.com/18077379
http://blog.nodejitsu.com/http-proxy-intro

Tools 81

Web socket proxying, load balancing, virtual host configuration, request forwarding and other Web
proxying concepts.

Bulletproof Node.js Coding¹³⁹
“Right around the time that I started the third refactoring/rewrite of the code, I felt like I had gotten
a feel for how to write bulletproof code, and I thought it would be worth sharing some of the style
and conventions I came to adopt.”

How to Write a Native Node.js Extension¹⁴⁰
In this tutorial, you will learn how to write a native Node.js extension the right way, from the very
basics to packaging the extension for NPM.

Let’s Make a Web App: Nodepad¹⁴¹
This series will walk you through building a Web app with Node.js, covering all of the major areas
you’ll face when building your own applications.

HTML5 Canvas Drawing with Web Sockets, Node.JS and Socket.io¹⁴²
Web sockets and canvas are two really cool features that are currently being implemented in
browsers. This tutorial gives you a quick rundown of how they both work, and you’ll create a real-
time drawing canvas that is powered by Node.js and Web sockets.

Developing Multiplayer HTML5 Games with Node.js¹⁴³
Inspired by the famous iOS game Osmos, developer Boris Smus has created an alternative version
of the game using HTML5 canvas and Node.js. This article explains the main phases of the project.

Deploying Node.js on Amazon EC2¹⁴⁴
Amazon’s EC2 is a popular choice for cloud applications. This tutorial shows how Node.js can be
deployed on an EC2 instance.

A Simple Node.js + CouchDB Calendar¹⁴⁵
In this tutorial by Chris Storm, you will learn how to build a Web calendar with Node.js and
CouchDB.

IIS7¹⁴⁶
The IISnode project provides a native IIS 7.x module that enables hosting of Node.js applications on
IIS. The project uses the Windows build of node.exe, which has recently seen major improvements.

Node.js + Phone to Control a Browser Game¹⁴⁷
Someone wondered how easily a smart phone – specifically using its gyroscopes and accelerometers
– could be used as a controller for a multi-player game on a larger screen. With a bit of Node.js and
HTML5 magic, it turned out to be pretty simple.

¹³⁹http://stella.laurenzo.org/2011/03/bulletproof-node-js-coding/
¹⁴⁰http://syskall.com/how-to-write-your-own-native-nodejs-extension
¹⁴¹http://dailyjs.com/2010/11/01/node-tutorial/
¹⁴²http://wesbos.com/html5-canvas-websockets-nodejs/
¹⁴³http://smus.com/multiplayer-html5-games-with-node
¹⁴⁴http://blog.carbonfive.com/2011/09/01/deploying-node-js-on-amazon-ec2/
¹⁴⁵http://japhr.blogspot.com/2011/08/simple-nodejs-couchdb-calendar.html
¹⁴⁶http://tomasz.janczuk.org/2011/08/hosting-nodejs-applications-in-iis-on.html
¹⁴⁷http://cykod.com/blog/post/2011-08-using-nodejs-and-your-phone-to-control-a-browser-game

http://stella.laurenzo.org/2011/03/bulletproof-node-js-coding/
http://syskall.com/how-to-write-your-own-native-nodejs-extension
http://dailyjs.com/2010/11/01/node-tutorial/
http://wesbos.com/html5-canvas-websockets-nodejs/
http://smus.com/multiplayer-html5-games-with-node
http://blog.carbonfive.com/2011/09/01/deploying-node-js-on-amazon-ec2/
http://japhr.blogspot.com/2011/08/simple-nodejs-couchdb-calendar.html
http://tomasz.janczuk.org/2011/08/hosting-nodejs-applications-in-iis-on.html
http://cykod.com/blog/post/2011-08-using-nodejs-and-your-phone-to-control-a-browser-game
http://stella.laurenzo.org/2011/03/bulletproof-node-js-coding/
http://syskall.com/how-to-write-your-own-native-nodejs-extension
http://dailyjs.com/2010/11/01/node-tutorial/
http://wesbos.com/html5-canvas-websockets-nodejs/
http://smus.com/multiplayer-html5-games-with-node
http://blog.carbonfive.com/2011/09/01/deploying-node-js-on-amazon-ec2/
http://japhr.blogspot.com/2011/08/simple-nodejs-couchdb-calendar.html
http://tomasz.janczuk.org/2011/08/hosting-nodejs-applications-in-iis-on.html
http://cykod.com/blog/post/2011-08-using-nodejs-and-your-phone-to-control-a-browser-game

Tools 82

Is There a Template Engine for Node.js?¹⁴⁸
An engaging discussion appeared on StackOverflow about the template engines that are available
for Node.js. Really useful arguments came out of this discussion.

Blogs, Podcasts, Resources On Node.js

How to Node¹⁴⁹
How to Node is a community-supported blog created by Tim Caswell. Its purpose is to teach how
to do various tasks in Node.js and the fundamental concepts needed to write effective code.

Nodejitsu¹⁵⁰
A really interesting blog about scaling Node.js apps in the cloud and about the Node.js events in
general.

Node Up¹⁵¹
A podcast that reviews Node.js, explains its philosophy and goes over many of its popular libraries.

Node Tuts¹⁵²
Free screencast tutorials.

Minute With Node.js¹⁵³
Node.js is constantly changing and growing with each new version. New libraries and frameworks
are coming out daily that allow you to write JavaScript for new and exciting projects that were
previously impossible. This is a one-stop shop for news updates on the entire Node.js eco-system,
with a heavy slant on hardcore nerdery.

Felix’s Node.js Guide¹⁵⁴
Over the past few months, Felix have given a lot of talks and done a lot of consulting on Node.js.
He found himself repeating a lot of things over and over, so he used some of his recent vacation to
start this opinionated and unofficial guide to help people getting started in Node.js.

Node.js Knockout¹⁵⁵
Node.js Knockout is a 48-hour hackathon for Node.js. It’s an online virtual competition, with
contestants worldwide.

References And Books

Node.JS Help Sheet¹⁵⁶
“Node.JS is an evented I/O framework for the V8 JavaScript engine. It’s ideal for writing scalable

¹⁴⁸http://stackoverflow.com/questions/1787716/is-there-a-template-engine-for-node-js
¹⁴⁹http://howtonode.org/
¹⁵⁰http://blog.nodejitsu.com/
¹⁵¹http://nodeup.com/
¹⁵²http://nodetuts.com/
¹⁵³http://node.minutewith.com/
¹⁵⁴http://nodeguide.com/
¹⁵⁵http://nodeknockout.com/
¹⁵⁶http://www.gosquared.com/liquidicity/archives/1930

http://stackoverflow.com/questions/1787716/is-there-a-template-engine-for-node-js
http://howtonode.org/
http://blog.nodejitsu.com/
http://nodeup.com/
http://nodetuts.com/
http://node.minutewith.com/
http://nodeguide.com/
http://nodeknockout.com/
http://www.gosquared.com/liquidicity/archives/1930
http://stackoverflow.com/questions/1787716/is-there-a-template-engine-for-node-js
http://howtonode.org/
http://blog.nodejitsu.com/
http://nodeup.com/
http://nodetuts.com/
http://node.minutewith.com/
http://nodeguide.com/
http://nodeknockout.com/
http://www.gosquared.com/liquidicity/archives/1930

Tools 83

network programs, such as Web servers. We’ve been working on some exciting things with Node.js,
and we felt it was only fair to share our knowledge in the form of an easy-to-read Help Sheet.”

The Node Beginner Book¹⁵⁷
The aim of this document is to get you started with developing applications for Node.js. It teaches
you everything you need to know about advanced JavaScript along the way. It goes way beyond
your typical “Hello World” tutorial.

Up and Running With Node.js¹⁵⁸
“Many people use the JavaScript programming languages extensively for programming the inter-
faces of websites. Node.js allows this popular programming language to be applied in many more
contexts, in particular on Web servers. There are several notable features about Node.js that make
it worthy of interest.”

Control the Complexity of Your JavaScript Functions
with JSHint

..

Original Article
http://www.elijahmanor.com/2012/09/control-complexity-of-your-javascript.html

Elijah Manor, elijahmanor.com

http://www.elijahmanor.com/

New JSHint Features

Many of you are aware of the JSHint code quality tool that has been around for the past couple of
years. As of recently, the following new options that have been added regarding the complexity of
a function.

• maxparams

• maxdepth

• maxstatements

• maxcomplexity

¹⁵⁷http://nodebeginner.org/index.html
¹⁵⁸http://ofps.oreilly.com/titles/9781449398583/index.html

http://nodebeginner.org/index.html
http://ofps.oreilly.com/titles/9781449398583/index.html
http://www.elijahmanor.com/2012/09/control-complexity-of-your-javascript.html
http://www.elijahmanor.com/
http://www.elijahmanor.com/
http://nodebeginner.org/index.html
http://ofps.oreilly.com/titles/9781449398583/index.html

Tools 84

Parameters, Depth, and Statements

By reducing the number of parameters, the number of nesting, and the number of statements in
your function you can dramatically increate the readability and modularity of your code.

The following piece of code shows using the maxparams, maxdepth, and maxstatements to warn us
of possible issue with our functions.

1 /*jshint maxparams:3, maxdepth:2, maxstatements:5 */

2 /*global console:false */

3

4 (function(undefined) {

5 "use strict";

6

7 function test1(arg1, arg2, arg3, arg4) {

8 console.log("too many parameters!");

9 if (arg1 === 1) {

10 console.log(arg1);

11 if (arg2 === 2) {

12 console.log(arg2);

13 if(arg3 === 3) {

14 console.log("too much nesting!");

15 console.log(arg3);

16 console.log(arg4);

17 }

18 }

19 }

20 console.log("too many statements!");

21 }

22

23 test1(1, 2, 3, 4);

24 }());

JSHint gives an error that too many parameters were used because we limited maxparams to 3 and
the code accepted 4 parameters. An error occurred because the depth of logic is too deep because
we limited it to a maxdepth of 2. We will also get an error about the number of lines in our function
because we limited maxstatements to 5 and we have many more than that.

Cyclomatic Complexity

A less commonly known software metric used to evaluate functions is Cyclomatic Complexity. Like
it sounds, it’s purpose is to calculate the overall intricacy of a function and to give a score that
reflects it’s complexity.

Tools 85

“The cyclomatic complexity of a section of source code is the count of the number of lin-
early independent paths through the source code.” –http://en.wikipedia.org/wiki/Cyclomatic_-
complexity

In addition to the above parameters, depth, and statement metrics you can now track the overall
complexity using the maxcomplexity option. “‘ /jshint maxcomplexity:3 */ /global console:false */

(function(undefined) { “use strict”;

1 function isPrime(number) {

2 var prime = true, i;

3

4 if (isNumber(number)) {

5 for (i = 2; i < number; i++) {

6 if (number % i === 0) {

7 prime = false;

8 }

9 }

10 } else {

11 prime = false;

12 }

13

14 return prime;

15 }

16

17 function isNumber(number) {

18 return !isNaN(parseFloat(number)) && isFinite(number);

19 }

20

21 console.log(isPrime(109));

}()); “‘

As you see above, the above function has more complexity that what we set in maxcomplexity.

You might be wondering what a reasonable maxcomplexity value is for your project. In the 2nd
edition of Steve McConnell’s Code Complete he recommends that a cyclomatic complexity from 0
to 5 is typically fine, but you should be aware if the complexity starts to get in the 6 to 10 range.
He further explains that anything over a complexity of 10 you should strongly consider refactoring
your code.

Global Options

Instead of adding these options to the top of each and every JavaScript file you an instead use a
.jshintrc file in your project and JSHint should pick up those settings. This is handy if your project
is large and you want some consistent settings across the board.

Tools 86

1 {

2 "globals": {

3 "console": false,

4 "jQuery": false,

5 "_": false

6 },

7 "maxparams": 5,

8 "maxdepth": 5,

9 "maxstatements": 25,

10 "maxcomplexity": 10,

11 "es5": true,

12 "browser": true,

13 "boss": false,

14 "curly": false,

15 "debug": false,

16 "devel": false,

17 "eqeqeq": true,

18 "evil": true,

19 "forin": false,

20 "immed": true,

21 "laxbreak": false,

22 "newcap": true,

23 "noarg": true,

24 "noempty": false,

25 "nonew": false,

26 "nomen": false,

27 "onevar": true,

28 "plusplus": false,

29 "regexp": false,

30 "undef": true,

31 "sub": true,

32 "strict": false,

33 "white": true,

34 "unused": true

35 }

Testing
Leaner, Meaner, Faster Animations with
requestAnimationFrame

..

Original Article
http://www.html5rocks.com/en/tutorials/speed/animations

Paul Lewis, html5rocks.com

http://www.html5rocks.com

It’s a fair bet you’ve done some animation work in your time as a developer, whether that’s smaller
UI effects or large iteractive canvas pieces. Chances are you’ve also come across requestAnimationFrame,
or rAF (we say it raff around these parts), and hopefully you’ve had a chance to use it in your
projects. In case you don’t know, requestAnimationFrame is the browser’s native way of handling
your animations. Because rAF is specifically designed to deal with animation and rendering, the
browser can schedule it at the most appropriate time and, if we play our cards right, it will help us
get a buttery smooth 60 frames per second.

What we want to do in this article is outline some additional ways to ensure you’re getting the
maximum benefit from your animation code. Even if you’re using requestAnimationFrame there
are other ways you can end up with bottlenecks in your animations. At 60 frames per second each
frame that you draw has 16.67ms to get everything done. That’s not a lot, so every optimisation
counts!

TL;DR Decouple your events from animations; avoid animations that result in reflow-
repaint loops; update your rAF calls to expect a high resolution timestamp as the first
parameter; only call rAF when you have visual updates to do.

Debouncing Scroll Events

Debouncing is the process of decoupling your animation from any inputs that affect it. Take, for
example, an effect that is triggered when you scroll the page. The effect might check if some DOM
elements are visible to the user and then, if they are, apply some CSS classes to those elements.

http://www.html5rocks.com/en/tutorials/speed/animations
http://www.html5rocks.com
http://www.html5rocks.com

Testing 88

Or maybe you’re coding a parallax scrolling effect where, as you scroll, background images change
their position relative to page’s scroll position. I’ll go with the former of the two common uses, and
the general gist of our code might be:

1 function onScroll() {

2 update();

3 }

4

5 function update() {

6

7 // assume domElements has been declared

8 // by this point :)

9 for(var i = 0; i < domElements.length; i++) {

10

11 // read offset of DOM elements

12 // to determine visibility - a reflow

13

14 // then apply some CSS classes

15 // to the visible items - a repaint

16

17 }

18 }

19

20 window.addEventListener('scroll', onScroll, false);

The main issue here is that we are triggering a reflow and repaint whenever we get a scroll event: we
ask the browser to recalculate the real positions of DOM elements, an expensive reflow operation,
and then we apply some CSS classes, which causes the browser to repaint. We end up ping-ponging
between reflowing and repainting, and this is going to undermine your app’s performance. We’re
picking on scroll events here, but the same applies to resize events. In fact, any event that you’re
going to make use of in this way can cause performance issues. Read Tony Gentilcore’s Fastersite
blog post for a breakdown of properties that cause a reflow in WebKit¹⁵⁹.

What we now need to do is decouple the scroll event from the update function, and this is exactly
where requestAnimationFrame steps in to help. We need to change things around so that we are
listening to our scroll events, but we will only store the most recent value:

¹⁵⁹http://gent.ilcore.com/2011/03/how-not-to-trigger-layout-in-webkit.html

http://gent.ilcore.com/2011/03/how-not-to-trigger-layout-in-webkit.html
http://gent.ilcore.com/2011/03/how-not-to-trigger-layout-in-webkit.html

Testing 89

1 var latestKnownScrollY = 0;

2

3 function onScroll() {

4 latestKnownScrollY = window.scrollY;

5 }

Now we’re in a better place: onScroll runs whenever the browser chooses to execute it, but all
we’re doing is storing the window’s scroll position. This code could run once, twenty or a hundred
times before we try to use the value in our animation and it wouldn’t matter. The point is that we’re
keeping a track on the value but it’s not using it to trigger potentially unnecessary draw calls. If
your draw call is expensive then you’ll really benefit from avoiding those extra calls.

The other part of this change is to use requestAnimationFrame to handle the visual updates at the
most convenient time for the browser:

1 function update() {

2 requestAnimationFrame(update);

3

4 var currentScrollY = latestKnownScrollY;

5

6 // read offset of DOM elements

7 // and compare to the currentScrollY value

8 // then apply some CSS classes

9 // to the visible items

10 }

11

12 // kick off

13 requestAnimationFrame(update);

Now we’re just pulling the latest value from lastKnownScrollY when we need it and discarding
everything else. If you need to capture all the event values since the last draw you could use an
array and push all the values captured in onScroll onto it. When the time comes to do the drawing
you could average the values or do whatever’s most appropriate. In this case we’re keeping it simple
and only tracking the last value we captured.

What else can we do? Well for one thing we are constantly running requestAnimationFrame and
that’s not necessary if we haven’t just scrolled since nothing will have changed. To fix that we have
the onScroll initiate the requestAnimationFrame:

Testing 90

1 var latestKnownScrollY = 0,

2 ticking = false;

3

4 function onScroll() {

5 latestKnownScrollY = window.scrollY;

6 requestTick();

7 }

8

9 function requestTick() {

10 if(!ticking) {

11 requestAnimationFrame(update);

12 }

13 ticking = true;

14 }

Nowwhenever we scroll wewill try and call requestAnimationFrame, but if one is already requested
we don’t initiate another. This is an important optimization, since the browser will stack all the
repeated rAF requests and we would be back to a situation with more calls to update than we need.

Thanks to this setup we no longer need to call requestAnimationFrame at the top of update because
we know it will only be requested when one or more scroll events has taken place. We also no longer
need the kick off call at the bottom, either, so let’s update accordingly:

1 function update() {

2 // reset the tick so we can

3 // capture the next onScroll

4 ticking = false;

5

6 var currentScrollY = latestKnownScrollY;

7

8 // read offset of DOM elements

9 // and compare to the currentScrollY value

10 // then apply some CSS classes

11 // to the visible items

12 }

13

14 // kick off - no longer needed! Woo.

15 // update();

Hopefully you can see the benefits of debouncing the animations in your app from any scroll or
resize events that influence it. If you’re still in any doubt, John Resig wrote a great article about
how Twitter was affected by scroll events¹⁶⁰ a while ago. Had rAF been around back then, the above
technique would have probably been his recommendation.

¹⁶⁰http://ejohn.org/blog/learning-from-twitter/

http://ejohn.org/blog/learning-from-twitter/
http://ejohn.org/blog/learning-from-twitter/

Testing 91

Debouncing Mouse Events

We’ve gone through one common use-case for using rAF to decouple animations from scroll and
resize events, now let’s talk about another one: using it to deal with interactions. In this instance
we’re going to have something stick to the current mouse position, but only when the mouse button
is pressed. When it’s released we’ll stop the animation.

Let’s jump straight into the code, then we’ll pick it apart:

1 var mouseIsDown = false,

2 lastMousePosition = { x: 0, y: 0 };

3

4 function onMouseDown() {

5 mouseIsDown = true;

6 requestAnimationFrame(update);

7 }

8

9 function onMouseUp() {

10 mouseIsDown = false;

11 }

12

13 function onMouseMove(evt) {

14 lastMousePosition.x = evt.clientX;

15 lastMousePosition.y = evt.clientY;

16 }

17

18 function update() {

19 if(mouseIsDown) {

20 requestAnimationFrame(update);

21 }

22

23 // now draw object at lastMousePosition

24 }

25

26 document.addEventListener('mousedown', onMouseDown, false);

27 document.addEventListener('mouseup', onMouseUp, false);

28 document.addEventListener('mousemove', onMouseMove, false);

In this instance we are setting a boolean (mouseIsDown) depending on whether or not the mouse
button is currently pressed. We can also piggy back on the mousedown event to initiate the first
requestAnimationFrame call, which is handy. As we move the mouse we do a similar trick to the
previous example where we simply store the last known position of the mouse, which we later use

Testing 92

in the update function. The last thing to notice is that update requests the next animation frame
until we’ve called onMouseUp and mouseIsDown is set back to false.

Again our tactic here is to let the mouse events all proceed as often as the browser deems necessary,
and we have the draw calls happen independently of those events. Not dissimilar to what we do
with scroll events.

If things are a little more complex and you’re animating something that carries on moving after
onMouseUp has been called, you’ll need to manage the calls to requestAnimationFrame differently.
A suitable solution is to track the position of the animating object and when the change on two
subsequent frames drops below a certain threshold you stop calling requestAnimationFrame. The
changes to our code would look a little like this:

1 var mouseIsDown = false,

2 lastMousePosition = { x: 0, y: 0 },

3 rAFIndex = 0;

4

5 function onMouseDown() {

6 mouseIsDown = true;

7

8 // cancel the existing rAF

9 cancelAnimationFrame(rAFIndex);

10

11 rAFIndex = requestAnimationFrame(update);

12 }

13

14 // other event handlers as above

15

16 function update() {

17

18 var objectHasMovedEnough = calculateObjectMovement();

19

20 if(objectHasMovedEnough) {

21 rAFIndex = requestAnimationFrame(update);

22 }

23

24 // now draw object at lastMousePosition

25 }

26

27 function calculateObjectMovement() {

28

29 var hasMovedFarEnough = true;

30

31 // here we would perhaps use velocities

Testing 93

32 // and so on to capture the object

33 // movement and set hasMovedFarEnough

34 return hasMovedFarEnough;

35 }

The main change in the above comes from the fact that if you release the mouse the rAF calls would
continue until the object has come to a rest but you may start clicking and dragging again meaning
you would get a second rAF call scheduled as well as the original. Not good. To combat this we
make sure to cancel any scheduled requestAnimationFrame call (in onMouseDown) before we set
about issuing a new one.

requestAnimationFrame and High Resolution Timestamps

While we’re spending some time talking about requestAnimationFrame it’s worth noting a recent
change to how callbacks are handled in Canary. Going forward the parameter passed to your callback
function will be a high resolution timestamp, accurate to a fraction of a millisecond. Two things
about this:

1. It’s awesome for your animations if they’re time-based because now they can be really
accurate

2. You’ll need to update any code you have in place today that expects an object or element to
be the first parameter

Get the full rundown of this at: requestAnimationFrame API: now with sub-millisecond precision¹⁶¹

An Example

OK, let’s finish this article off with an example, just so you can see it all in action. It’s slightly
contrived, and we’ll also throw in a bonus performance killer that we can fix as we go. Way too
much fun!

We have a document with 800 DOM elements that we’re going to move when you scroll the mouse.
Because we’re well-versed in modern web development we’re going to use CSS transitions and
requestAnimationFrame from the off. As we scroll down the page we’ll determine which of our 800
DOM elements are now above the middle of the visible area of the screen and we’ll move them over
to the left hand side by adding a left class.

It’s worth bearing in mind that we’ve chosen such a large number of elements because it will allow
us to really see any performance issues more easily. And there are some.

Here’s what our JavaScript looks like:

¹⁶¹http://updates.html5rocks.com/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision

http://updates.html5rocks.com/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision
http://updates.html5rocks.com/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision

Testing 94

1 var movers = document.querySelectorAll('.mover');

2

3 /**

4 * Set everthing up and position all the DOM elements

5 * - normally done with the CSS but, hey, there's heaps

6 * of them so we're doing it here!

7 */

8 (function init() {

9

10 for(var m = 0; m < movers.length; m++) {

11 movers[m].style.top = (m * 10) + 'px';

12 }

13

14 })();

15

16 /**

17 * Our animation loop - called by rAF

18 */

19 function update() {

20

21 // grab the latest scroll position

22 var scrollY = window.scrollY,

23 mover = null,

24 moverTop = [],

25 halfWindowHeight = window.innerHeight * 0.5,

26 offset = 0;

27

28 // now loop through each mover div

29 // and change its class as we go

30 for(var m = 0; m < movers.length; m++) {

31

32 mover = movers[m];

33 moverTop[m] = mover.offsetTop;

34

35 if(scrollY > moverTop[m] - halfWindowHeight) {

36 mover.className = 'mover left';

37 } else {

38 mover.className = 'mover';

39 }

40

41 }

42

Testing 95

43 // keep going

44 requestAnimationFrame(update);

45 }

46

47 // schedule up the start

48 window.addEventListener('load', update, false);

Our demo page before performance and rAF optimizations

If you check out the pre-optimized page¹⁶² you’ll see it really struggle to keep up as you scroll, and
there are a number of reasons why. Firstly we are brute force calling the requestAnimationFrame,
whereas what we really should do is only calculate any changes whenwe get a scroll event. Secondly
we are calling offsetTop which causes a reflow, but then we immediately apply the className

change and that’s going to cause a repaint. And then thirdly, for our bonus performance killer, we
are using className rather than classList.

The reason using className is less performant than classList is that className will always affect
the DOM element, even if the value of className hasn’t changed. By just setting the value we trigger
a repaint, which can be very expensive. Using classList, however, allows the browser to be much
more intelligent about updates, and it will leave the element alone should the list already contain
the class you’re adding (which is left in our case).

If you want more information on using classList and the new-and-extremely-useful frame
breakdown mode in Chrome’s Dev Tools you should watch this video by Paul Irish:

So let’s take a look at what a better version of this would look like:

1 var movers = document.querySelectorAll('.mover'),

2 lastScrollY = 0,

3 ticking = false;

4

5 /**

6 * Set everthing up and position all the DOM elements

7 * - normally done with the CSS but, hey, there's heaps

8 * of them so we're doing it here!

9 */

10 (function init() {

11

12 for(var m = 0; m < movers.length; m++) {

13 movers[m].style.top = (m * 10) + 'px';

14 }

15

16 })();

¹⁶²http://www.html5rocks.com/en/tutorials/speed/animations/pre.html

http://www.html5rocks.com/en/tutorials/speed/animations/pre.html
http://www.html5rocks.com/en/tutorials/speed/animations/pre.html

Testing 96

17

18 /**

19 * Callback for our scroll event - just

20 * keeps track of the last scroll value

21 */

22 function onScroll() {

23 lastScrollY = window.scrollY;

24 requestTick();

25 }

26

27 /**

28 * Calls rAF if it's not already

29 * been done already

30 */

31 function requestTick() {

32 if(!ticking) {

33 requestAnimationFrame(update);

34 ticking = true;

35 }

36 }

37

38 /**

39 * Our animation callback

40 */

41 function update() {

42 var mover = null,

43 moverTop = [],

44 halfWindowHeight = window.innerHeight * 0.5,

45 offset = 0;

46

47 // first loop is going to do all

48 // the reflows (since we use offsetTop)

49 for(var m = 0; m < movers.length; m++) {

50

51 mover = movers[m];

52 moverTop[m] = mover.offsetTop;

53 }

54

55 // second loop is going to go through

56 // the movers and add the left class

57 // to the elements' classlist

58 for(var m = 0; m < movers.length; m++) {

Testing 97

59

60 mover = movers[m];

61

62 if(lastScrollY > moverTop[m] - halfWindowHeight) {

63 mover.classList.add('left');

64 } else {

65 mover.classList.remove('left');

66 }

67

68 }

69

70 // allow further rAFs to be called

71 ticking = false;

72 }

73

74 // only listen for scroll events

75 window.addEventListener('scroll', onScroll, false);

Our demo page after performance and rAF optimizations

If you look at our new optimized version of the demo¹⁶³ you will see much smoother animations as
you scroll up and down the page. We’ve stopped calling requestAnimationFrame indiscriminantly,
we now only do it when we scroll (and we ensure there is only one call scheduled). We’ve also
moved the offsetTop property lookups into one loop and put the class changes into a second loop
which means that we’re avoiding the reflow-repaint problem. We’ve decoupled our events from the
draw call so they can happen as often as they like and we won’t be doing unnecessary drawing.
Finally we’ve switched out className for classList, which is a massive performance saver.

Of course there are other things we can do to take this further, in particular not iterating through
all 800 DOM elements on each pass, but even just the changes we’ve made have given us great
performance improvements.

Conclusion

It’s important to not only use requestAnimationFrame for your animations, but also to use it in
the right way. As you can hopefully see it’s quite easy to inadvertently cause bottlenecks, but by
understanding how the browser actually executes your code you can fix any problems quickly. Take
some time with Chrome’s Dev Tools, especially the frame mode, and see where your animations
can be improved.

¹⁶³http://www.html5rocks.com/en/tutorials/speed/animations/post.html

http://www.html5rocks.com/en/tutorials/speed/animations/post.html
http://www.html5rocks.com/en/tutorials/speed/animations/post.html

Node.js
Understanding event loops and writing great code for
Node.js

..

Original Article
http://developer.yahoo.com/blogs/ydn/part-1-understanding-event-loops-writing-great-code-
11401.html

Tom Hughes-Croucher, developer.yahoo.com/blogs

http://developer.yahoo.com/blogs

As usual JSConf.eu¹⁶⁴ was one of the best conferences I’ve been to this year. It’s always a delight to
hang out with some of the smartest JavaScript coders on the planet, and doing it in the very trendy
city of Berlin was a nice bonus. There are a few great recaps of JSConf¹⁶⁵ so I’m not going to focus
on those; instead I’m going to expand the talk I gave.

Programming inside an event loop is something most programmers only have a passing familiarity
with. Node.js is quickly gaining traction as a very popular event loop-based server for JavaScript. It
gives people the ability to write JavaScript on the server, which has access to things like the HTTP
stack, TCP, file I/O, and databases. However the kind of programs that we write in this context tend
to be very different from the kind of programs we write for browser-side applications or sites.

In the browser, the bulk of the program tends to be involved with setting up the user-interface, and
then there are some small event callbacks that are enacted—most typically, based on user interaction
with the browser. For example, when the user clicks Submit on a form, we intercept the click and
validate their submission.

There is an important point here: in most browser programming, programmers are only dealing with
events caused by the user, and the user can only do so many things at once. Moreover the callbacks
for those events tend to be very discrete and don’t cause other events. Some libraries, such as YUI,
have custom event support. But it is often thought of an advanced feature.

On the server, however, there isn’t a user to drive a variety of interactions. Instead we have a whole
range of reactions to take on many different kinds of events. Node.js takes the approach that all I/O

¹⁶⁴http://jsconf.eu/2010/
¹⁶⁵http://palagpat-coding.blogspot.com/2010/09/in-case-you-missed-it-jsconfeu-2010-day.html

http://developer.yahoo.com/blogs/ydn/part-1-understanding-event-loops-writing-great-code-11401.html
http://developer.yahoo.com/blogs/ydn/part-1-understanding-event-loops-writing-great-code-11401.html
http://developer.yahoo.com/blogs
http://developer.yahoo.com/blogs
http://jsconf.eu/2010/
http://palagpat-coding.blogspot.com/2010/09/in-case-you-missed-it-jsconfeu-2010-day.html
http://jsconf.eu/2010/
http://palagpat-coding.blogspot.com/2010/09/in-case-you-missed-it-jsconfeu-2010-day.html

Node.js 99

activities should be non-blocking (for reasons we’ll explain more later). This means that all HTTP
requests, database queries, file I/O, and so on, do not halt execution until they return. Instead they
run independently and then emit an event when the data is available.

This means that programming in Node.js has lots of callbacks dealing with all kinds of I/O and then
initiating other callbacks for other kinds of I/O. This is a very different from browser programming.
There is still a certain amount of liner setup, but the bulk of the code involves dealing with callbacks.

Event drivenBecause of these different programming styles, we need to look for patterns to help us
effectively program on the server. That starts with the event loop, so let’s take a look at that in more
depth.

I think that most people intuitively get event-driven programming because it’s like everyday life.
Imagine you are cooking. You are chopping a bell pepper and a pot starts to boil over. You finish the
slice you are doing, and then turn down the stove. In daily life, we are used to having all sorts of
internal callbacks for dealing with events, and yet, like JavaScript, we only do one thing at once.

Yes, yes, I can see you are rubbing your tummy and patting your head at the same time, well done.
But, if you try to do any serious activities at the same time, it goes wrong pretty quick. This is like
JavaScript. It’s great at letting events drive the action, but it is “single-threaded” so only one thing
happens at once.

Another way to think about this event loop is a post (or mail) man. To our event-loop postman, each
letter is an event. He has a stack of events to deliver in order. For each letter (event) the postman
gets, he walks to the route to deliver the letter. The route is the callback function assigned to that
event (sometimes more than one). However, critically, since our mailman only has a single set of
legs, he can only walk a single code path at once.

Sometimes, while the postman is walking a code route someone will give him another letter. This
is because the callback function he is code walking has emitted an event. In this case the postman
delivers the new message immediately (after all someone gave to him directly instead of going via
the post office so it must be urgent). The postman will diverge from his current code path and walk
to the code path to deliver the new event. He then carries on walking the original event that emitted
the event he just walked.

Let’s look at another example. Let’s give the postman a letter to deliver that requires a gate to be open.
He gets there and the gate is closed, so he simply waits and tries again, and again. He’s trapped in an
endless loop waiting for the gate to open. But if there is a letter on the stack that will ask someone
to open the gate so the postman can get through, surely that will solve things, right?

Unfortunately it won’t, because the postman will never get to deliver the letter because he’s stuck
waiting endlessly for the gate to open. This is because the event that opens the gate is external from
the current event callback. If we emit the event fromwithin a callback, we already know our postman
will go and deliver that letter before carrying on. However, when events are emitted external to the
currently executing piece of code, they will not be called until that piece of code has been fully
evaluated to its conclusion.

Node.js 100

We can use this to write a piece of code that creates a loop that Node.js (or a browser) will never
break out of:

1 EE = require('events').EventEmitter;

2 ee = new EE();

3

4 die = false;

5

6 ee.on('die', function() {

7 die = true;

8 });

9

10 setTimeout(function() {

11 ee.emit('die');

12 }, 100);

13

14 while(!die) {

15 }

16

17 console.log('done');

In this example, console.log will never be called because the while loop stops Node from ever getting
chance to callback the timeout and emit the 'die' event.

This is a really important piece of information, because while it’s unlikely we’d program a loop like
this that relies on an external condition to exit, it clearly illustrates how Node.js can only do one
thing at once. And getting a fly in the ointment can really screw up the whole server.

Let’s look at the standard Node.js code for creating an HTTP server:

1 var http = require('http');

2 http.createServer(function (req, res) {

3 res.writeHead(200, {'Content-Type': 'text/plain'});

4 res.end('Hello World\n');

5 }).listen(8124, "127.0.0.1");

6 console.log('Server running at http://127.0.0.1:8124/'

This code is the 101 example from the Node.js web site¹⁶⁶. It creates an HTTP server using a factory
method in the http library. The factory method creates a new HTTP server and attaches a callback
to the 'request' event. The callback is specified as the argument to the createServer.

What’s interesting here is what happens when this code is run. The first thing Node.js does is run the
preceding code from top to bottom. This can be considered the ‘setup’ phase of Node programming.

¹⁶⁶http://nodejs.org/

http://nodejs.org/
http://nodejs.org/

Node.js 101

Since we attached some event listeners, Node.js doesn’t exit, but waits for an event to be fired. If we
didn’t attach any events, then Node.js would exit as soon as it had run the code.

Sowhat happenswhenwe get anHTTP request?When anHTTP request is sent to the server, Node.js
emits the ‘request’ event that causes the callbacks attached to that event to be run in order. In this case
there is only one callback, the anonymous function we passed as an argument to createServer. Let’s
assume it’s the first request the server has had since it setup. Since there is no other code running,
the 'request' event is emitted and the callback is just run. It’s a very simple callback and it runs
pretty fast.

Let’s assume that our site gets really popular and we get lots of requests. If, for the sake of argument,
our callback takes 1 second, then if we received 2 requests at the same time, they can’t both be run at
once, and the second request isn’t going to be acted on for another second or so. Obviously, a second
is a really long time, but as we start to look at real-world applications, the problem of blocking the
event loop becomes more dangerous as we can see the damage it could have on users.

The upshot of this is that we want to keep Node.js as event-driven and non-blocking as possible.
In the same way that an I/O event that can be slow should use callbacks to indicate the presence
of data Node.js can act on, the Node.js program itself shouldn’t be written in such a way that any
single callback ties up the event loop for extended pieces of time.

The operating system kernel actually handles the TCP connections to clients for the HTTP server,
so there isn’t a risk of not accepting new connections. But there is a real danger of not acting on
them.

This means that we should employ two strategies for writing Node.js servers:

• Once set up has been completed, make all actions event driven
• If Node.js is required to process something that will take a long time, consider delegating with
web workers¹⁶⁷

Taking the event-driven approach works effectively with the event loop — I guess the name is hint
it would — but it’s also important to write event-driven code in a way that is easy to read and
understand.

In the previous example, we used an anonymous function as the event callback. This makes things
hard in a couple of ways. Firstly, we have no control over where the code lives; the anonymous
function must live where it is attached to the event either via a factory method or the on method
of an EventEmitter. The second issue is debugging: if everything is an anonymous event, it can
sometimes be hard to distinguish similiar callbacks from each other when an exception occurs.

Callback Hell

A guide to writing asynchronous javascript programs

¹⁶⁷http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/

http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/
http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/

Node.js 102

..

Original Article
http://callbackhell.com

Max Ogden, github.com/maxogden

https://github.com/maxogden

What is “callback hell”?

Asynchronous javascript, or javascript that uses callbacks, is hard to get right intuitively. A lot of
code ends up looking like this:

1 fs.readdir(source, function(err, files) {

2 if (err) {

3 console.log('Error finding files: ' + err)

4 } else {

5 files.forEach(function(filename, fileIndex) {

6 console.log(filename)

7 gm(source + filename).size(function(err, values) {

8 if (err) {

9 console.log('Error identifying file size: ' + err)

10 } else {

11 console.log(filename + ' : ' + values)

12 aspect = (values.width / values.height)

13 widths.forEach(function(width, widthIndex) {

14 height = Math.round(width / aspect)

15 console.log('resizing ' + filename + 'to ' + height + 'x' + height)

16 this.resize(width, height).write(destination + 'w' + width + '_' + fi\

17 lename, function(err) {

18 if (err) console.log('Error writing file: ' + err)

19 })

20 }.bind(this))

21 }

22 })

23 })

24 }

25 })

See all the instances of function and })? Eek! This is affectionately known as callback hell.

Writing better code isn’t that hard! You only need to know about a few things:

http://callbackhell.com
https://github.com/maxogden
https://github.com/maxogden

Node.js 103

Name your functions

Here is some (messy) browser javascript that uses browser-request¹⁶⁸ to make an AJAX request to a
server:

1 var form = document.querySelector('form')

2 form.onsubmit = function(submitEvent) {

3 var name = document.querySelector('input').value

4 request({

5 uri: "http://example.com/upload",

6 body: name,

7 method: "POST"

8 }, function(err, response, body) {

9 var statusMessage = document.querySelector('.status')

10 if (err) return statusMessage.value = err

11 statusMessage.value = body

12 })

13 }

This code has two anonymous functions. Let’s give em names!

1 var form = document.querySelector('form')

2 form.onsubmit = function formSubmit(submitEvent) {

3 var name = document.querySelector('input').value

4 request({

5 uri: "http://example.com/upload",

6 body: name,

7 method: "POST"

8 }, function postResponse(err, response, body) {

9 var statusMessage = document.querySelector('.status')

10 if (err) return statusMessage.value = err

11 statusMessage.value = body

12 })

13 }

As you can see naming functions is super easy and does some nice things to your code:

• makes code easier to read
• when exceptions happen you will get stacktraces that reference actual function names instead
of “anonymous”

• allows you to keep your code shallow, or not nested deeply, which brings me to my next point:

¹⁶⁸https://github.com/iriscouch/browser-request

https://github.com/iriscouch/browser-request
https://github.com/iriscouch/browser-request

Node.js 104

Keep your code shallow

Building on the last example, let’s go a bit further and get rid of the triple level nesting that is going
on in the code:

1 function formSubmit(submitEvent) {

2 var name = document.querySelector('input').value

3 request({

4 uri: "http://example.com/upload",

5 body: name,

6 method: "POST"

7 }, postResponse)

8 }

9

10 function postResponse(err, response, body) {

11 var statusMessage = document.querySelector('.status')

12 if (err) return statusMessage.value = err

13 statusMessage.value = body

14 }

15

16 document.querySelector('form').onsubmit = formSubmit

Code like this is less scary to look at and is easier to edit, refactor and hack on later.

Modularize!

This is the most important part: Anyone is capable of creating modules (AKA libraries). To quote
Isaac Schlueter¹⁶⁹ (of the node.js project): “Write small modules that each do one thing, and assemble
them into other modules that do a bigger thing. You can’t get into callback hell if you don’t go there.”

Let’s take out the boilerplate code from above and turn it into a module by splitting it up into a
couple of files. Since I write JavaScript in both the browser and on the server, I’ll show a method
that works in both but is still nice and simple.

Here is a new file called formuploader.js that contains our two functions from before:

¹⁶⁹http://twitter.com/izs

http://twitter.com/izs
http://twitter.com/izs

Node.js 105

1 function formSubmit(submitEvent) {

2 var name = document.querySelector('input').value

3 request({

4 uri: "http://example.com/upload",

5 body: name,

6 method: "POST"

7 }, postResponse)

8 }

9

10 function postResponse(err, response, body) {

11 var statusMessage = document.querySelector('.status')

12 if (err) return statusMessage.value = err

13 statusMessage.value = body

14 }

15

16 exports.submit = formSubmit

The exports bit at the end is an example of the CommonJS module system, which is used by Node.js
for server side javascript programming. I quite like this style of modules because it is so simple – you
only have to define what should be shared when the module gets required (that’s what the exports
thing is).

To use CommonJS modules in the browser you can use a command-line thing called browserify¹⁷⁰. I
won’t go into the details on how to use it here but it lets you use require to load modules into your
programs.

Now that we have formuploader.js (and it is loaded in the page as a script tag) we just need to
require it and use it! Here is how our application specific code looks now:

1 var formUploader = require('formuploader')

2 document.querySelector('form').onsubmit = formUploader.submit

Now our application is only two lines of code and has the following benefits:

• easier for new developers to understand – they won’t get bogged down by having to read
through all of the formuploader functions

• formuploader can get used in other places without duplicating code and can easily be shared
on github

• the code itself is nice and simple and easy to read

There are lots of module patterns for web browser¹⁷¹ and on the server¹⁷². Some of them get very
complicated. The ones shown here are what I consider to be the simplest to understand.

¹⁷⁰https://github.com/substack/node-browserify
¹⁷¹http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth
¹⁷²http://nodejs.org/api/modules.html

https://github.com/substack/node-browserify
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth
http://nodejs.org/api/modules.html
https://github.com/substack/node-browserify
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth
http://nodejs.org/api/modules.html

Node.js 106

I still don’t get it

Try reading my introduction to callbacks¹⁷³.

What about promises?

Promises¹⁷⁴ are a more abstract pattern of working with async code in JavaScript.

The scope of this document is to show how to write vanilla javascript. If you use a third party library
that adds abstraction to your JS then make sure you’re willing to force everyone that contributes to
your library to also have the same views on JS as you.

In my own personal experience I use callbacks for 90% of the async code I write and when things
get hairy I bring in something like the async¹⁷⁵ library.

That being said, everyone develops their own unique JavaScript style and you should do what you
like. Just remember that there are no absolutes: some people like to use only callbacks, some people
don’t.

Additional reading

• A pattern for decoupling DOM events from @dkastner¹⁷⁶

Please contribute new sections or fix existing ones by forking this project on github¹⁷⁷!

Understanding Express.js

..

Original Article
http://evanhahn.com/understanding-express-js/

Evan Hahn, evanhahn.com

http://evanhahn.com/

¹⁷³https://github.com/maxogden/art-of-node#callbacks
¹⁷⁴http://domenic.me/2012/10/14/youre-missing-the-point-of-promises/
¹⁷⁵https://github.com/caolan/async
¹⁷⁶https://gist.github.com/3392235
¹⁷⁷http://github.com/maxogden/callback-hell

https://github.com/maxogden/art-of-node#callbacks
http://domenic.me/2012/10/14/youre-missing-the-point-of-promises/
https://github.com/caolan/async
https://gist.github.com/3392235
http://github.com/maxogden/callback-hell
http://evanhahn.com/understanding-express-js/
http://evanhahn.com/
http://evanhahn.com/
https://github.com/maxogden/art-of-node#callbacks
http://domenic.me/2012/10/14/youre-missing-the-point-of-promises/
https://github.com/caolan/async
https://gist.github.com/3392235
http://github.com/maxogden/callback-hell

Node.js 107

This is aimed at people who have some familiarity with Node.js. They know how to run Node scripts
and can install packages with npm. You don’t have to be an expert, though – I promise. This guide
was last updated for Express 3.2.5. It’s an introduction and mostly deals with concepts.

Express.js¹⁷⁸ describes itself better than I can: “a minimal and flexible node.js web application
framework”. It helps you build web apps. If you’ve used Sinatra¹⁷⁹ in the Ruby world, a lot of this
will be familiar.

Like any abstraction, Express hides difficult bits and says “don’t worry, you don’t need to understand
this part”. It does things for you so that you don’t have to bother. In other words, it’s magic.

It’s good magic, too. Express catalogs some people using it¹⁸⁰, and there are some big names:
MySpace, Klout, and even some stuff I’ve made. Me. I’m a huge deal. I’ve got a blog.

But all magic comes at a price¹⁸¹: you might not understand the inner workings of Express. This is
like driving a car; I drive a car just fine without intimate knowledge of its workings, but I’d be better
off with that knowledge. What if things break? What if you want to get all the performance you can
out of the car? What if you have an insatiable thirst for knowledge?

So let’s understand Express from the bottom, with Node.

Bottom layer: Node’s HTTP server

Node has an HTTP module¹⁸² which makes a pretty simple abstraction for making a webserver.
Here’s what that might look like:

1 // Require what we need

2 var http = require("http");

3

4 // Build the server

5 var app = http.createServer(function(request, response) {

6 response.writeHead(200, {

7 "Content-Type": "text/plain"

8 });

9 response.end("Hello world!\n");

10 });

11

12 // Start that server, baby

13 app.listen(1337, "localhost");

14 console.log("Server running at http://localhost:1337/");

¹⁷⁸http://expressjs.com/
¹⁷⁹http://www.sinatrarb.com/
¹⁸⁰http://expressjs.com/applications.html
¹⁸¹http://shapeshed.com/all-magic-comes-with-a-price/
¹⁸²http://nodejs.org/api/http.html

http://expressjs.com/
http://www.sinatrarb.com/
http://expressjs.com/applications.html
http://shapeshed.com/all-magic-comes-with-a-price/
http://nodejs.org/api/http.html
http://expressjs.com/
http://www.sinatrarb.com/
http://expressjs.com/applications.html
http://shapeshed.com/all-magic-comes-with-a-price/
http://nodejs.org/api/http.html

Node.js 108

And if you run that app (if that file is called app.js, you’d run node app.js), you’ll get a response
of “Hello world!” if you visit localhost:1337 in your browser. You’ll get the same response nomatter
what, too. You can try visiting localhost:1337/anime_currency or localhost:1337/?onlyfriend=anime,
and it’s like talking to a brick wall: “Hello world!”

Let’s break this down a bit.

The first line uses the require function to load a built-in Node module called http. It puts this lovely
module inside of a variable called http. For more about the require function, check out Nodejitsu’s
docs¹⁸³.

Then we put a server in a variable called app by using http.createServer. This takes a function
that listens for requests. We’ll get back to this in a minute because they’re Super Duper Important.
Skip over it for the next two sentences.

The last thing we do is tell the server to listen for requests coming in on port 1337, and then we just
log that out. And then we’re in business.

Okay, back to the request handler function. That thing is important.

The request handler

Before I start this section, I should say that there’s a bunch of cool HTTP stuff in here that I don’t
think is relevant to learning Express. If you’re interested, you can look at the docs for the HTTP
module¹⁸⁴ because they have a bunch of stuff.

Whenever we make a request to the server, that request handler function is called. If you don’t
believe me, try putting a console.log in there. You’ll see that it logs out every time you load a page.

request is a request that comes from the client. In many apps, you’ll see this shortened to req. Let’s
look at it. To do that, we’ll modify the above request handler a bit:

1 var app = http.createServer(function(request, response) {

2

3 // Build the answer

4 var answer = "";

5 answer += "Request URL: " + request.url + "\n";

6 answer += "Request type: " + request.method + "\n";

7 answer += "Request headers: " + JSON.stringify(request.headers) + "\n";

8

9 // Send answer

10 response.writeHead(200, { "Content-Type": "text/plain" });

11 response.end(answer);

12

13 });

¹⁸³http://docs.nodejitsu.com/articles/getting-started/what-is-require
¹⁸⁴http://nodejs.org/api/http.html

http://docs.nodejitsu.com/articles/getting-started/what-is-require
http://docs.nodejitsu.com/articles/getting-started/what-is-require
http://nodejs.org/api/http.html
http://nodejs.org/api/http.html
http://docs.nodejitsu.com/articles/getting-started/what-is-require
http://nodejs.org/api/http.html

Node.js 109

Restart the server and reload localhost:1337. You’ll see what URL you’re requesting, that it’s a GET
request, and that you’ve sent a number of cool headers like the user-agent and more complicated
HTTP stuff! If you visit localhost:1337/what_is_anime, you’ll see the request URL change. If you
visit it with a different browser, the user-agent will change. If you send it a POST request, you’ll see
the method change.

The response is the next part. Just like the prior argument is often shortened, this is often shortened
to the three-letter res. With each response, you get the response all ready to send, and then you call
response.end. Eventually, you must call this method; even the Node docs say so¹⁸⁵. This method
does the actual sending of data. You can try making a server where you don’t call it, and it just hangs
forever.

Before you send it out, you’ll want to write some headers. In our example, we do this:

1 response.writeHead(200, { "Content-Type": "text/plain" });

This does two things. First, it sends HTTP status code¹⁸⁶ 200, which means “OK, everything is good”.
Then, it sets some response headers. In this case, it’s saying that we’re sending back the plaintext
content-type. We could send other things like JSON or HTML.

I thirst for more

You want more? Okay. You asked nicely.

One could imagine taking these APIs and turning them into something cool. You could do something
(sorta) like this:

1 var http = require("http");

2

3 http.createServer(function(req, res) {

4

5 // Homepage

6 if (req.url == "/") {

7 res.writeHead(200, { "Content-Type": "text/html" });

8 res.end("Welcome to the homepage!");

9 }

10

11 // About page

12 else if (req.url == "/about") {

13 res.writeHead(200, { "Content-Type": "text/html" });

14 res.end("Welcome to the about page!");

¹⁸⁵http://nodejs.org/api/http.html#http_response_end_data_encoding
¹⁸⁶https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

http://nodejs.org/api/http.html#http_response_end_data_encoding
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://nodejs.org/api/http.html#http_response_end_data_encoding
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Node.js 110

15 }

16

17 // 404'd!

18 else {

19 res.writeHead(404, { "Content-Type": "text/plain" });

20 res.end("404 error! File not found.");

21 }

22

23 }).listen(1337, "localhost");

You could clean this up and make it pretty, or you could be hardcore like the npm.org folks¹⁸⁷ and
tough it out with vanilla Node. But you could also build a framework. That’s what Sencha did. And
they called it Connect.

Middle layer: Connect

Fitting that Connect¹⁸⁸ happens to be the middle layer of this JavaScript cake, because it calls itself
“a middleware framework for node”. Don’t go searching “what is middleware” just yet – I’m about
to explain it.

A little bit of Connect code

Let’s say we wanted to write the “hello world” app that we had above, but with Connect this time.
Don’t forget to install Connect (npm install, baby). Once you’ve done that, the app is pretty similar.

1 // Require the stuff we need

2 var connect = require("connect");

3 var http = require("http");

4

5 // Build the app

6 var app = connect();

7

8 // Add some middleware

9 app.use(function(request, response) {

10 response.writeHead(200, { "Content-Type": "text/plain" });

11 response.end("Hello world!\n");

12 });

13

14 // Start it up!

15 http.createServer(app).listen(1337);

¹⁸⁷https://github.com/isaacs/npm-www#design-philosophy
¹⁸⁸http://www.senchalabs.org/connect/

https://github.com/isaacs/npm-www#design-philosophy
http://www.senchalabs.org/connect/
https://github.com/isaacs/npm-www#design-philosophy
http://www.senchalabs.org/connect/

Node.js 111

So let’s step through this.

First, we require Connect. We then require Node’s HTTP module just like we did before. We’re
ready.

Then we make a variable called app like we did before, but instead of creating the server, we call
connect(). What’s going on? What is this madness?

We then add some middleware – it’s just a function. We pass this to app.use, and this function looks
an awful lot like the request handlers from above. In fact, I copy-pasted it.

Then we create the server and start listening. http.createServer took a function before, so guess
what – app is just a function. It’s a Connect-made function that starts going through all the
middleware until the end. But it’s just a request handler like before.

(Worth noting that youmight see people using app.listen(1337), which just defers to http.createServer.
This is true in both Connect and Express.)

Okay, now I’m going to explain middleware.

What is middleware?

I want to start by saying that Stephen Sugden’s description of Connect middleware¹⁸⁹ is really good
and does a better job than I can. If you don’t like my explanation, read his.

Remember the request handlers from a few sections earlier? Each piece of middleware is a request
handler. You start by looking at the first request handler, then you look at the next one, then the
next, and so on.

Here’s what middleware basically looks like:

1 function myFunMiddleware(request, response, next) {

2 // Do stuff with the request and response.

3 // When we're all done, call next() to defer to the next middleware.

4 next();

5 }

When we start a server, we start at the topmost middleware and work our way to the bottom. So if
we wanted to add simple logging to our app, we could do it!

¹⁸⁹http://stephensugden.com/middleware_guide/

http://stephensugden.com/middleware_guide/
http://stephensugden.com/middleware_guide/

Node.js 112

1 var connect = require("connect");

2 var http = require("http");

3 var app = connect();

4

5 // Logging middleware

6 app.use(function(request, response, next) {

7 console.log("In comes a " + request.method + " to " + request.url);

8 next();

9 });

10

11 // Send "hello world"

12 app.use(function(request, response) {

13 response.writeHead(200, { "Content-Type": "text/plain" });

14 response.end("Hello world!\n");

15 });

16

17 http.createServer(app).listen(1337);

If you run this app and visit localhost:1337, you’ll see that your server is logging some stuff and
you’ll see your page.

It’s important to note that anything that works in the vanilla Node.js server also works in
middleware. For example, if you want to inspect req.method, it’s right there.

While you can totally write your own, Connect comes with a bunch of cool middleware and
there’s a bunch of third-party middleware¹⁹⁰ too. Let’s remove our logger and use the one built
into Connect¹⁹¹:

1 var connect = require("connect");

2 var http = require("http");

3 var app = connect();

4

5 app.use(connect.logger());

6 // Fun fact: connect.logger() returns a function.

7

8 app.use(function(request, response) {

9 response.writeHead(200, { "Content-Type": "text/plain" });

10 response.end("Hello world!\n");

11 });

12

13 http.createServer(app).listen(1337);

¹⁹⁰https://github.com/senchalabs/connect/wiki
¹⁹¹http://www.senchalabs.org/connect/logger.html

https://github.com/senchalabs/connect/wiki
http://www.senchalabs.org/connect/logger.html
http://www.senchalabs.org/connect/logger.html
https://github.com/senchalabs/connect/wiki
http://www.senchalabs.org/connect/logger.html

Node.js 113

Visit localhost:1337 and you’ll see some logging!

I thirst for more

One could imagine stringing together some middleware to build an app. Maybe you’d do it like this:

1 var connect = require("connect");

2 var http = require("http");

3 var app = connect();

4

5 app.use(connect.logger());

6

7 // Homepage

8 app.use(function(request, response, next) {

9 if (request.url == "/") {

10 response.writeHead(200, { "Content-Type": "text/plain" });

11 response.end("Welcome to the homepage!\n");

12 // The middleware stops here.

13 } else {

14 next();

15 }

16 });

17

18 // About page

19 app.use(function(request, response, next) {

20 if (request.url == "/about") {

21 response.writeHead(200, { "Content-Type": "text/plain" });

22 response.end("Welcome to the about page!\n");

23 // The middleware stops here.

24 } else {

25 next();

26 }

27 });

28

29 // 404'd!

30 app.use(function(request, response) {

31 response.writeHead(404, { "Content-Type": "text/plain" });

32 response.end("404 error!\n");

33 });

34

35 http.createServer(app).listen(1337);

“This is ugly! I need to build a framework,” you say. You savage. You’re never satisfied, are you?Will
there ever be enough?

Node.js 114

Some people saw Connect and they said, “this code can be even easier”. And so they built Expresss.
(Actually, it seems like they saw Sinatra¹⁹² and stole it.)

Top layer: Express

We’ve finally arrived at the third act of our nerdy quest. We’re at the peak of our abstraction
mountain. There is a beautiful sunset. Your long, golden locks wave in the cool breeze.

Just like Connect extends Node, Express extends Connect. The beginning looks very similar to
Connect:

1 var express = require("express");

2 var http = require("http");

3 var app = express();

And so does the end:

1 http.createServer(app).listen(1337);

But the middle is what’s different. Where Connect gives you one cool feature (middleware), I think
that Express gives you three cool features: routing, better request handlers, and views. Let’s start
with routing.

Cool feature 1: routing

Routing is a way to map different requests to specific handlers. In many of the above examples,
we had a homepage and an about page and a 404 page. We’d basically do this with a bunch of if
statements in the examples.

But Express is smarter than that. Express gives us something called “routing” which I think is better
explained with code than with English:

¹⁹²http://www.sinatrarb.com/

http://www.sinatrarb.com/
http://www.sinatrarb.com/

Node.js 115

1 var express = require("express");

2 var http = require("http");

3 var app = express();

4

5 app.all("*", function(request, response, next) {

6 response.writeHead(200, { "Content-Type": "text/plain" });

7 next();

8 });

9

10 app.get("/", function(request, response) {

11 response.end("Welcome to the homepage!");

12 });

13

14 app.get("/about", function(request, response) {

15 response.end("Welcome to the about page!");

16 });

17

18 app.get("*", function(request, response) {

19 response.end("404!");

20 });

21

22 http.createServer(app).listen(1337);

Ooh. That’s hot.

After the basic requires, we say “every request goes through this function” with app.all. And that
function looks an awful lot like middleware, don’t it?

The three calls to app.get are Express’s routing system. They could also be app.post, which respond
to POST requests, or PUT, or any of the HTTP verbs. The first argument is a path, like /about or /.
The second argument is a request handler similar to what we’ve seen before. To quote the Express
documentation¹⁹³:

[These request handlers] behave just like middleware, with the one exception that
these callbacks may invoke next('route') to bypass the remaining route callback(s).
This mechanism can be used to perform pre-conditions on a route then pass control to
subsequent routes when there is no reason to proceed with the route matched.

In short: they’re basically middleware like we’ve seen before. They’re just functions, just like before.

These routes can get smarter, with things like this:

¹⁹³http://expressjs.com/api.html#app.VERB

http://expressjs.com/api.html#app.VERB
http://expressjs.com/api.html#app.VERB
http://expressjs.com/api.html#app.VERB

Node.js 116

1 app.get("/hello/:who", function(req, res) {

2 res.end("Hello, " + req.params.who + ".");

3 });

Restart your server and visit localhost:1337/hello/animelover69 for the following message:

Hello, animelover69.

The docs¹⁹⁴ also show an example that uses regular expressions, and you can do lots of other stuff
with this routing. For a conceptual understanding, I’ve said enough.

But it gets cooler.

Cool feature 2: request handling

Routing would be enough, but Express is absolutely ruthless.

Express augments the request and response objects that you’re passed in every request handler. The
old stuff is still there, but they add some new stuff too! The API docs¹⁹⁵ explain everything, but let’s
look at a couple of examples.

One nicety they give you is a redirect method. Here are some examples:

1 response.redirect("/hello/anime");

2 response.redirect("http://www.myanimelist.net");

3 response.redirect(301, "http://www.anime.org"); // HTTP status code 301

This isn’t in vanilla Node and it’s also absent from Connect, but Express adds this stuff. It adds
things like sendFile which lets you just send a whole file:

1 response.sendFile("/path/to/anime.mp4");

The request gets a number of cool properties, like request.ip to get the IP address and request.files
to get uploaded files.

Conceptually, there’s not much to know, other than the fact that Express extends the request and
response. For everything Express gives you, check out the API docs¹⁹⁶.

Cool feature 3: views

More features? Oh, Express, I’m blushing.

Express can handle views. It’s not too bad. Here’s what the setup looks like:

¹⁹⁴http://expressjs.com/api.html#app.VERB
¹⁹⁵http://expressjs.com/api.html
¹⁹⁶http://expressjs.com/api.html

http://expressjs.com/api.html#app.VERB
http://expressjs.com/api.html
http://expressjs.com/api.html
http://expressjs.com/api.html#app.VERB
http://expressjs.com/api.html
http://expressjs.com/api.html

Node.js 117

1 // Start Express

2 var express = require("express");

3 var app = express();

4

5 // Set the view directory to /views

6 app.set("views", __dirname + "/views");

7

8 // Let's use the Jade templating language

9 app.set("view engine", "jade");

The first block is the same as always. Then we say “our views are in a folder called ‘views’”. Then
we say “use Jade”. Jade¹⁹⁷ is a templating language. We’ll see how it works in just a second!

Now, we’ve set up these views. How do we use them?

Let’s start by making a file called index.jade and put it into a directory called views. It might look
like this:

1 doctype 5

2 html

3 body

4 h1 Hello, world!

5 p= message

This is basically HTML without all the brackets. It should be fairly straightforward if you know
HTML. The only interesting part is the last line. message is a variable! Woah! Where did that come
from? I’ll tell you.

We need to render the view from within Express. Here’s what that looks like:

1 app.get("/", function(request, response) {

2 response.render("index", { message: "I love anime" });

3 });

Express adds a method to response, called render. It does a bunch of smart stuff, but it basically
looks at the view engine and views directory (the stuff we defined earlier) and renders index.jade.

The last step (I suppose it could be the first step) is to install Jade, because it’s not bundled with
Express. Add it to your package.json or npm install it.

If you get all of this set up, you’ll see this page¹⁹⁸. Here’s all the source code.¹⁹⁹

¹⁹⁷http://jade-lang.com/
¹⁹⁸http://evanhahn.com/wp-content/uploads/2013/05/anime.html
¹⁹⁹https://gist.github.com/EvanHahn/5673968

http://jade-lang.com/
http://evanhahn.com/wp-content/uploads/2013/05/anime.html
https://gist.github.com/EvanHahn/5673968
http://jade-lang.com/
http://evanhahn.com/wp-content/uploads/2013/05/anime.html
https://gist.github.com/EvanHahn/5673968

Node.js 118

Bonus cool feature: everything from Connect and Node

I want to remind you that Express is built on top of Connect which is built on top of Node. This
means that all Connect middleware works with Express. This is useful! For example:

1 var express = require("express");

2 var app = express();

3

4 app.use(express.logger()); // Inherited from Connect

5

6 app.get("/", function(req, res) {

7 res.send("anime");

8 });

9

10 app.listen(1337);

If you learn one thing from this post, it should be this. If your brain has room for another fun fact:
hippo milk is pink!

Actually building something

Most of the stuff in this post is conceptual, but let me push you in the right direction for building
something you want to build. I don’t want to delve into specifics.

You can install Express as an executable in your terminal. It spits out boilerplate code that’s very
helpful for starting your app. Install it globally with npm:

1 ### You'll probably need `sudo` for this:

2 npm install -g express

If you need help, use express --help. It spits out some options. For example, let’s say I want to use
EJS templating and LESS for CSS. My app is called “myApp”. Here’s what I’d type to get started:

1 express --ejs --css less myApp

It’ll generate a bunch of files and then tell you to go into that directory and npm install. If you do
that, you’ll have a basic app running with node app! I’d recommend looking through the generated
files to see some boilerplate, and then messing with it a bunch. It’s hardly a full app, but I found it
very helpful to poke through these files and mess with them when getting started.

Also helpful are the many official examples on GitHub²⁰⁰.

Some concluding miscellany

• If you love CoffeeScript like I do²⁰¹, you should know that all of this stuff works with

²⁰⁰https://github.com/visionmedia/express/tree/master/examples
²⁰¹http://evanhahn.com/i-love-coffeescript/

https://github.com/visionmedia/express/tree/master/examples
http://evanhahn.com/i-love-coffeescript/
https://github.com/visionmedia/express/tree/master/examples
http://evanhahn.com/i-love-coffeescript/

Node.js 119

CoffeeScript. You don’t even need to compile it! Instead of starting your server with node

app.js, start it with coffee app.coffee. This is what I do in my apps.Me. I’m a big deal. I’ve
got a blog.

• I was confused when I saw app.use(app.router) – doesn’t Express always use a router? The
short answer is that app.router is Express’s routing middleware, and it’s implicitly included
when you define a route. You can explicitly include it because youwant the router middleware
to come before other stuff, which is sometimes desirable. This StackOverflow answer explains
it well.²⁰²

• This guide was written for Express 3, and the version 4 roadmap²⁰³ shows the possibility of
some dramatic changes. Most notably, it looks like Express might be split up into a bunch of
small modules and eat some of Connect’s features. It’s up in the air, but the “plans” are worth
a look.

I thirst for more

Is there no satisfying you? You glutton. You make me sick. Soon you’re gonna be sitting in an opium
den, eyes half-open, drooling out the last drop of your programming talent.

Just like Rails is the de-facto way to build web apps with Ruby and demonic masochism is the de-
facto way to build web apps in PHP, I get the impression that Express is the de-facto way to build
web apps in Node. But unlike Rails, Express is much lower-level. It seems like no high-level Node
library has stuck out. I think this is going to change. Keep your eyes out.

I won’t go into them here, but just as Express was built on Connect and Connect on Node, people
have built things on top of Express. The Express wiki lists them²⁰⁴ and many of them are Pretty Cool.
You can use these frameworks if you’d prefer, or you can stick to the lower-level Express. Either way,
go build cool stuff!

Previous: Concept: making asynchronous loading look synchronous²⁰⁵

Dear fellow copyright nerd: all content licensed under the Creative Commons Attribution License²⁰⁶
unless noted otherwise. All code is free-license under the Unlicense²⁰⁷ unless noted otherwise. The
logo was drawn by the lovely Lulu Tang²⁰⁸. You look absolutely ravishing. Please come back soon.

²⁰²http://stackoverflow.com/a/12695813/804100
²⁰³https://github.com/visionmedia/express/wiki/4.x-roadmap
²⁰⁴https://github.com/visionmedia/express/wiki#frameworks-built-with-express
²⁰⁵http://evanhahn.com/javascript-method_missing/
²⁰⁶http://creativecommons.org/licenses/by/3.0/
²⁰⁷http://unlicense.org/
²⁰⁸http://www.luluspice.com/

http://stackoverflow.com/a/12695813/804100
http://stackoverflow.com/a/12695813/804100
https://github.com/visionmedia/express/wiki/4.x-roadmap
https://github.com/visionmedia/express/wiki#frameworks-built-with-express
http://evanhahn.com/javascript-method_missing/
http://creativecommons.org/licenses/by/3.0/
http://unlicense.org/
http://www.luluspice.com/
http://stackoverflow.com/a/12695813/804100
https://github.com/visionmedia/express/wiki/4.x-roadmap
https://github.com/visionmedia/express/wiki#frameworks-built-with-express
http://evanhahn.com/javascript-method_missing/
http://creativecommons.org/licenses/by/3.0/
http://unlicense.org/
http://www.luluspice.com/

About the Author

Azat Mardanov

Azat Mardanov has over 12 years of experience in web, mobile and software development. With
a Bachelor’s Degree in Informatics and a Master of Science in Information Systems Technology
degree, Azat possesses deep academic knowledge as well as extensive practical experience.

Recently, Azat has worked as a CTO/co-founder at Gizmo²⁰⁹ — an enterprise cloud platform
for mobile marketing campaigns, and has undertaken the prestigious 500 Startups²¹⁰ business
accelerator program. Previously, he was developing mission-critical applications for government

²⁰⁹http://www.crunchbase.com/company/gizmo
²¹⁰http://500.co/

http://www.crunchbase.com/company/gizmo
http://500.co/
http://www.crunchbase.com/company/gizmo
http://500.co/

About the Author 121

agencies in Washington, DC: National Institutes of Health, National Center for Biotechnology
Information, Federal Deposit Insurance Corporation, and Lockheed Martin. Azat is a frequent
attendee at Bay Area tech meet-ups and hackathons (AngelHack²¹¹ hackathon ’12 finalist with team
FashionMetric.com²¹²).

Currently, heworks as an engineer at the curated social media news aggregatorwebsite, Storify.com²¹³.
Hementors entrepreneurs as a hacker in residence at startup accelerator and fund StartupMonthly²¹⁴,
where he is teaching technical Rapid Prototyping with JavaScript and Node.js²¹⁵ training to much
acclaim. In his spare time, Azat writes about technology on his blog: webAppLog.com²¹⁶.

Let’s be Friends on the Internet

• Twitter: @RPJSbook²¹⁷ and @azat_co²¹⁸
• Facebook: facebook.com/RapidPrototypingWithJS²¹⁹
• Website: rapidprototypingwithjs.com²²⁰
• Blog: webapplog.com²²¹
• GitHub: github.com/azat-co/rpjs²²²
• Storify: Rapid Prototyping with JS²²³

Other Ways to Reach Us

• Email: hi@rapidprototypingwithjs.com²²⁴
• Google Group: rpjs@googlegroups.com²²⁵ and https://groups.google.com/forum/#!forum/rpjs

Share on Twitter

“I’ve finished Rapid Prototyping with JS — book on agile development with JavaScript
and Node.js by @azat_co #RPJS @RPJSbook” — http://clicktotweet.com/40dvj

²¹¹http://angelhack.com
²¹²http://fashionmetric.com
²¹³http://storify.com
²¹⁴http://startupmonthly.org
²¹⁵http://www.startupmonthly.org/rapid-prototyping-with-javascript-and-nodejs.html
²¹⁶http://webapplog.com
²¹⁷https://twitter.com/rpjsbook
²¹⁸https://twitter.com/azat_co
²¹⁹https://www.facebook.com/RapidPrototypingWithJS
²²⁰http://rapidprototypingwithjs.com/
²²¹http://webapplog.com
²²²https://github.com/azat-co/rpjs
²²³https://storify.com/azat_co/rapid-prototyping-with-js
²²⁴mailto:hi@rapidprototypingwithjs.com
²²⁵mailto:rpjs@googlegroups.com

http://angelhack.com
http://fashionmetric.com
http://storify.com
http://startupmonthly.org
http://www.startupmonthly.org/rapid-prototyping-with-javascript-and-nodejs.html
http://webapplog.com
https://twitter.com/rpjsbook
https://twitter.com/azat_co
https://www.facebook.com/RapidPrototypingWithJS
http://rapidprototypingwithjs.com/
http://webapplog.com
https://github.com/azat-co/rpjs
https://storify.com/azat_co/rapid-prototyping-with-js
mailto:hi@rapidprototypingwithjs.com
mailto:rpjs@googlegroups.com
https://groups.google.com/forum/#!forum/rpjs
http://clicktotweet.com/40dvj
http://angelhack.com
http://fashionmetric.com
http://storify.com
http://startupmonthly.org
http://www.startupmonthly.org/rapid-prototyping-with-javascript-and-nodejs.html
http://webapplog.com
https://twitter.com/rpjsbook
https://twitter.com/azat_co
https://www.facebook.com/RapidPrototypingWithJS
http://rapidprototypingwithjs.com/
http://webapplog.com
https://github.com/azat-co/rpjs
https://storify.com/azat_co/rapid-prototyping-with-js
mailto:hi@rapidprototypingwithjs.com
mailto:rpjs@googlegroups.com

	Table of Contents
	JavaScript Fundamentals
	The World's Most Misunderstood Programming Language
	Understanding JavaScript Function Invocation and “this”
	Code Conventions for the JavaScript Programming Language
	Semicolons in JavaScript are optional

	Patterns and Code Organization
	Common JavaScript ``Gotchas''
	Asynchronous JS: Callbacks, Listeners, Control Flow Libs and Promises
	The Design of Code: Organizing JavaScript
	Why AMD?
	JavaScript Dependency Injection

	Tools
	10 Must Have JavaScript Tools For Developers
	Useful Node.js Tools, Tutorials And Resources
	Control the Complexity of Your JavaScript Functions with JSHint

	Testing
	Leaner, Meaner, Faster Animations with requestAnimationFrame

	Node.js
	Understanding event loops and writing great code for Node.js
	Callback Hell
	Understanding Express.js

	About the Author

