

Module Patterns
Understanding and using the Node module system

Pedro Teixeira

This book is for sale at http://leanpub.com/modulepatterns

This version was published on 2015-02-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 - 2015 Pedro Teixeira

http://leanpub.com/modulepatterns
http://leanpub.com
http://leanpub.com/manifesto

Contents

1. Foreword . 1

2. The source code . 2

3. Introduction . 3

4. Returning the exported value . 5

5. Modules in the browser . 7

6. A Module registry . 9
6.0.1 Define and require . 9
6.0.2 Using the module system . 10

7. Transitive module loading . 13

8. The Node.js module system . 17
8.1 Defining a module . 17
8.2 Using a module . 18

9. Module types . 19
9.1 One function . 19
9.2 Singleton object . 19
9.3 Examples . 21

9.3.1 Configuration . 21
9.3.1.1 Connection-sharing . 21

9.4 Closure-based class . 22
9.5 Prototype-based class . 24

9.5.1 State storage . 26
9.5.2 Constructor . 26
9.5.3 Functions are only declared once. 27
9.5.4 Inheritance . 27
9.5.5 Can’t export a base function . 29

9.6 Façade module . 29

10.Browserify: Node modules in the browser . 31

CONTENTS

11.Summary . 33

1. Foreword
Since its first introduction back in 2009, Node.js has been widely adopted, not only by cutting-edge
startups and programmers, but also by big companies like Microsoft, PayPal, Walmart and many
others.

Node.js provides the minimum viable foundation to support the main Internet protocols. Given its
low-level API, any reasonably complex application needs to make extensive use of libraries.

Node.js is very indifferent in theway that you organise your code. This means that any team is free to
use any set of libraries and code conventions, which makes it difficult to onboard new programmers
onto projects and communicate across teams.

Not only does the Node and NPM ecosystem enable you to easily assemble and create a traditional
HTTP Server, but it also allows you to easily create and invent new networked service providers
and consumers, allowing programmers to use JavaScript to build Peer-to-Peer, Internet of Things,
Real-time communications, gossip networks, and many other types of system.

This series of books aims to extract and explain some of the common patterns used throughout
several types of applications, and introduce some new less common ones. It covers small-scale
code patterns, best practices, and also large-scale networking patterns, allowing you to collect and
develop a portfolio of concepts, libraries and code that you can use to communicate, and to make
the development of new systems easier. I hope you find these books useful!

2. The source code
You can find the source code for the entire series of books in the following URL:

https://github.com/pgte/node-patterns-code¹

You can browse the code for this particular book here:

https://github.com/pgte/node-patterns-code/tree/master/01-module-patterns²

You are free to download it, try it and tinker with it. If you have any issue with the code, please
submit an issue on Github. Also, pull requests with fixes or recommendations are welcome!

¹https://github.com/pgte/node-patterns-code
²https://github.com/pgte/node-patterns-code/tree/master/01-module-patterns

https://github.com/pgte/node-patterns-code
https://github.com/pgte/node-patterns-code/tree/master/01-module-patterns
https://github.com/pgte/node-patterns-code
https://github.com/pgte/node-patterns-code/tree/master/01-module-patterns

3. Introduction
JavaScript started life without modules being part of the language, being designed for small browser
scripts. Historically the lack of modularity led to shared global variables being used to integrate
different pieces of code.

var a = 1;

var b = 2;

For instance, this last piece of JavaScript code, if run in a browser, assigns two variables into the
global scope. Another piece of unrelated code, when running on the same browser page, can get
hold of the values contained in this variable. If two pieces of code running on the same page rely
unintentionally on the same global variable, awkward behaviour is sure to occur.

To avoid creating global variables, you can use a function to create a new scope:

function() {

var a = 1;

var b = 2;

}

But this last piece of code only declares an anonymous function, which does not get executed.
You can invoke this function immediately after declaring it via an “Immediately Invoked Function
Expression”:

(function() {

var a = 1;

var b = 2;

console.log('inside scope: a: ' + a + ', b:' + b);

})();

console.log('outside scope: a: ' + a + ', b:' + b);

If you execute this last piece of code inside a browser you will get something like the following
output:

Introduction 4

inside scope: a: 1, b:2

ReferenceError: a is not defined

This is just what we wanted: our variables are declared in a non-global scope, and that scope does
not leak into the global one.

4. Returning the exported value
One way of creating an isolated module in the browser is to extend this technique of wrapping the
module code inside a function by returning the interface that that module should export.

For instance, if we wanted to create a currency module that rounds a currency value to cents, we
could do this:

var currency =

(function() {

return {

round: function(amount) {

return Math.round(amount * 100) / 100;

}

};

}());

currency.round(1); // 1

currency.round(1.2); // 1.2

currency.round(1.24); // 1.24

currency.round(1.246); // 1.25

We could now enrich our currency module by adding other functions to the object that our
anonymous function wrapper returns.

The anonymous function wrapper also gives us privacy – data and behaviour that supports the
public API, without being visible or modifiable by the code that uses our module. For instance, we
could keep some kind of (very naive) cache of which the calling code is completely ignorant:

var currency =

(function() {

var cache = {};

return {

round: function(amount) {

var rounded = cache[amount];

if (! rounded) {

rounded = cache[amount] = Math.round(amount * 100) / 100;

Returning the exported value 6

}

return rounded;

}

};

}());

currency.round(1.246); // 1.25

currency.round(1.246); // 1.25 (cached value)

5. Modules in the browser
Using this technique we can build a very simple module system where we keep each module in a
separate file, concatenate them in a specific order, and then use the global namespace to resolve each
of the modules.

For instance, if you had two modules that your application depended on:

cache.js:

var Cache =

(function() {

return function(max) {

var keys = [];

var cache = {};

return {

get: function(key) {

return cache[key];

},

set: function(key, value) {

keys.push(key);

if (keys.length > max) {

var oldestKey = keys.shift();

delete cache[oldestKey];

}

cache[key] = value;

}

};

}

}());

currency.js:

Modules in the browser 8

var currency =

(function() {

var cache = Cache(100);

return {

round: function(amount) {

var rounded = cache.get(amount);

if (! rounded) {

rounded = Math.round(amount * 100) / 100;

cache.set(amount, rounded);

}

return rounded;

}

};

}());

app.js:

[12, 12.34, 12.345].forEach(function(val) {

var rounded = currency.round(val);

console.log('rounded ' + val + ' is ' + rounded);

});

The first file, cache.js implements a cache and is meant to be used as a constructor for cache objects.

The second file, currency.js implements our currency module. (For the sake of brevity this module
only contains a round function.) This module depends on the previous cache module already being
defined at the global level.

Now, within a directory containing these three files, you can concatenate them on the shell using a
command-line utility like cat:

$ cat cache.js currency.js app.js > all.js

6. A Module registry
This last approach has at least a couple of problems:

Firstly, the dependencies are not explicit: it’s not clear which modules any one module depends on.

Secondly, creating a module implies creating all of this boilerplate code for wrapping the module
inside a function, invoking that function, and capturing the return value into a global variable.

Thirdly, the modules must be loaded in the correct order of dependency.

To solve this we can create a module registry system that provides two functions: define and
require.

6.0.1 Define and require

The first one, define, is to be used to define a module like this:

modules.define('module name', function() {

// module code

// exports = ...

return exports;

});

Let’s implement it then:

var modules =

(function() {

var modules = {};

function define(name, fn) {

modules[name] = fn();

}

return {

define: define

};

}());

We have a way of creating modules using modules.define() – let’s now create the way to consume
them using modules.require():

A Module registry 10

var modules =

(function() {

var modules = {};

function define(name, fn) {

modules[name] = fn();

}

function require(name) {

if (!modules.hasOwnProperty(name)) {

throw new Error('Module ' + name + ' not found');

}

return modules[name];

}

return {

define: define,

require: require

};

}());

Let’s then save this into a file named modules.js.

6.0.2 Using the module system

Now let’s redefine our modules using this new system:

cache.js:

modules.define('cache', function() {

return function(max) {

var keys = [];

var cache = {};

return {

get: function(key) {

return cache[key];

},

set: function(key, value) {

keys.push(key);

if (keys.length > max) {

A Module registry 11

var oldestKey = keys.shift();

delete cache[oldestKey];

}

cache[key] = value;

}

};

}

});

currency.js:

modules.define('currency', function() {

var cache = modules.require('cache')(100);

return {

round: function(amount) {

var rounded = cache.get(amount);

if (! rounded) {

rounded = Math.round(amount * 100) / 100;

cache.set(amount, rounded);

}

return rounded;

}

};

});

app.js:

var currency = modules.require('currency');

[12, 12.34, 12.345].forEach(function(val) {

var rounded = currency.round(val);

console.log('rounded ' + val + ' is ' + rounded);

});

Now you need to concatenate these files using the command line, starting with the modules.js one:

$ cat modules.js cache.js currency.js app.js > all.js

If you’re running aWindows system instead of a Unix-based one, you can use type instead
of cat:

A Module registry 12

$ type modules.js cache.js currency.js app.js > all.js

To execute it, you can create this simple HTML page:

test.html:

<script src="all.js"></script>

Now, load it on a browser. The browser console should show:

rounded 12 is 12

rounded 12.34 is 12.34

rounded 12.345 is 12.35

7. Transitive module loading
What happens to this module system once we get a circular dependency? Direct circular dependen-
cies are hard to find: a module A that depends on module B, which depends on module A, is a rare
thing (and probably a sign that something is wrong with your module design). A less rare occurrence
is an indirect circular dependency: module Awhich depends onmodule B, which depends onmodule
C, which depends on module A. Let’s see how our module system reacts when something like this
happens:

a.js:

modules.define('a', function() {

modules.require('b');

});

b.js:

modules.define('b', function() {

modules.require('c');

});

c.js:

modules.define('c', function() {

modules.require('a');

});

app.js:

modules.require('a');

Let’s then concatenate these files into one:

$ cat modules.js a.js b.js c.js app.js > all.js

Again, if you’re running Windows, use type instead.

Load these modules into a browser by loading the all.js file in the browser:

test.html:

Transitive module loading 14

<script src="all.js"></script>

When executing this you will see that there is an infinite recursion where the module system is
desperately trying to resolve each module in a never-ending loop.

To fix this we could simply prevent recursive loading in the module system by keeping track of
which modules are currently being loaded, but this still doesn’t allow us to get modules that contain
circular dependencies, as a consensus on the return value will never be reached. Instead, we’ll get
an error.

The problem here is that, by using return values to define the modules exports, we’re falling into
infinite recursion. To allow circular dependencies we need to change the way by which modules
export their public interfaces. Instead of returning the exposed value, we need the module to export
its interface bymodifying an object, allowing it then to have temporarymodule attributes and values
before returning from initialisation. Here is an example of such a module system implementation:

modules.js

var modules =

(function() {

var modules = {};

function define(name, fn) {

if (modules[name])

throw Error('A module named ' + name + ' is already defined');

var module = {

exports: {},

fn: fn,

executed: false

};

modules[name] = module;

}

function require(name) {

var module = modules[name];

if (! module)

throw new Error('Module ' + name + ' not found');

if (! module.executed) {

module.executed = true;

module.fn.call(module, module, module.exports);

Transitive module loading 15

}

return module.exports;

}

return {

define: define,

require: require

};

}());

Here we’re lazily evaluating modules the first time they’re required. Also, for each module we keep
around the exported value in module.exports and we pass the module.exports and the module

objects as arguments to the module function:

module.fn.call(module, module, module.exports);

The first argument allows the module itself to change the exported value at will. The last one allows
the module to change the exported value completely by reassigning module.exports, making it
possible for a module to export things other that objects: functions or single scalar values, strings,
etc.

Let’s see how such a system would behave when you have a circular dependency: module A which
depends on module B, which depends on module C, which depends on module A:

a.js:

modules.define('a', function(module, exports) {

exports.array = ['a'];

modules.require('b');

});

Here the module A simply exports an attribute named array which contains an array, initially
populated with the string "a".

b.js:

modules.define('b', function(module) {

var c = modules.require('c');

c.push('b');

module.exports = c;

});

c.js:

Transitive module loading 16

modules.define('c', function(module) {

var a = modules.require('a');

a.array.push('c');

module.exports = a.array;

});

Here module c requires module a, pushes the string c into a.array, and then assigns that array to
module.exports, effectively defining that array as the exported value. This allows module b, which
depends on module c, to use that value to push the string b to it.

Let’s then define an “app” that depends on module A, and concatenate them into a bundle like we
did before:

app.js:

var a = modules.require('a');

console.log('a.array:', a.array);

cat modules.js a.js b.js c.js app.js > all.js

When executing this bundle, we get the following console log:

a.array: ['a', 'c', 'b']

The order may not be what you were expecting, but if you come to think of it, module C is the first
to get a hold of module A, adding to its array. Then comes module B, which finally gets a hold of
module C, and adds to the array.

8. The Node.js module system
Node.js covers the lack of modules in JavaScript by implementing its own module system. This
system is based on a standard older than Node.js itself, called CommonJS. Let’s see how the Node.js
module system works:

8.1 Defining a module

Generally speaking, a JavaScript file is a module. You define a module by having a file containing
any JavaScript code:

var a = 1;

var b = 2;

This module defines two variables and, unlike a bare browser environment, these variables do not
leak to any outer scope. Instead, if you want to export a value, you define attributes on the export
variable like this:

exports.round = function(amount) {

return Math.round(amount * 100) / 100;

};

Here we’re changing the exported object to add a round attribute, which is a function.

But what if youwant to export a single value instead of an object withmultiple attributes? You could,
for instance, want to export only a single function. (More about these types of module patterns later.)
To do that you could change the module.exports value. The module variable represents the current
module, and the value that the module.exports attribute has is what gets returned to the users of
this module.

/// exporting a single value

module.exports = function round(amount) {

return Math.round(amount * 100) / 100;

};

Both the exports and the module objects are implicit module variables that the Node module system
makes available.

The Node.js module system 18

8.2 Using a module

To access a module you use the require function, passing in the absolute or relative path of the
module file. For instance, if you’re looking to import a module named cache and the module file is
sitting on the same directory as the current file, you can import it by doing:

var cache = require('./cache.js');

The require function finds the module, parses and executes it, and then returns the module exported
value, which we then assign to a local variable. The name of the variable that holds the module
exported value is indifferent, and in this case, it’s just a coincidence that it shares a similar name
with the module that is being imported.

For brevity you can omit the .js extension:

var cache = require('./cache');

If the required module sits in a different directory from the current file that’s requiring it, you can
use a relative path like this:

var cache = require('../lib/cache');

var users = require('./models/users');

9. Module types
The Node.js module system then allows for a module to export any value, be it a string, a number,
a single function, or a more complex object. Let’s see some common patterns that can emerge:

9.1 One function

The quintessential module is one that exports only one function, and this function performs one
action. As an example, a module that provides a logging function could be defined like this:

var fs = require('fs');

var file = fs.createWriteStream('/tmp/log.txt');

module.exports = function log(what) {

var date = new Date();

file.write(JSON.stringify({when: date.toJSON(), what: what}) + '\n');

};

If you strictly adhere to the UNIX and functional-programming mantra “do one thing and do it
well”, this is the only module pattern you may need. But since life may never be as simple as we
might wish, let’s now look at others.

9.2 Singleton object

When modelling your system, you may be tempted to create classes for every object type you
imagine, but on some occasions you may only need one instance of one object in each Node.js
process. In this case, you don’t need to create a class – you only need to use the module system to
encapsulate that object state.

For instance, if you were to define one logging object that exposes three functions, one for each
logging level:

singleton_logger.js:

Module types 20

exports = module.exports = log;

var fs = require('fs');

var file = fs.createWriteStream('/tmp/log.txt');

const DEFAULT_LEVEL = 'info';

function log(what, level) {

var entry = {

when: new Date,

level: level || DEFAULT_LEVEL,

what: what

};

file.write(JSON.stringify(entry) + '\n');

};

exports.info = function(what) {

log(what, 'info');

};

exports.warn = function(what) {

log(what, 'warning');

};

exports.critical = function(what) {

log(what, 'critical');

};

As you can see, this module not only exports the info, warn and critical functions, it only allows
its base value to be used as a function:

singleton_client.js:

var log = require('./singleton_logger');

log('one');

log.info('two');

log.warn('three');

log.critical('four!');

Module types 21

9.3 Examples

9.3.1 Configuration

One common use of the Singleton pattern is to concentrate configuration. Typically, at the root of
each repo lies a config folder containing all the configuration files:

config/

├── index.js

├── mail.json

├── couchdb.json

└── redis.json

The index.js would then aggregate each of the configuration files:

config/index.js:

exports.couchdb = require('./couchdb');

exports.redis = require('./redis');

The modules that need some configuration values only need to require the config dir like this:

var config = require('../config');

var mailer = Mailer(config.mail);

(Later we discuss this index.js aggregating pattern in mode detail.)

9.3.1.1 Connection-sharing

If your application depends on external services like a database server or an HTTP server, it’s easier
to encapsulate access in one Singleton module for easy access.

For instance, if your application depends on one Redis server, this pattern is common:

redis.js:

Module types 22

var Redis = require('redis');

var config = require('./config').redis;

// initialize the redis client connection

var redisClient = Redis.createClient(config.port, config.host, config.options);

// share the redis client connection

module.exports = redisClient;

Then the modules that need a connection to the Redis server can simply do:

var redis = require('./redis');

redis.get('somekey', function(err, reply) {

//...

});

9.4 Closure-based class

If you’re going to have to have more than one instance of similar objects, you may then resolve
to create a class that a) defines the common behaviour of all those objects and b) provides a way
of constructing these objects. Since JavaScript doesn’t have classes, we’re going to explore function
closures to create such a thing.

Here is an example of a logger class where you can specify the path of the log file and default log
level:

closure_class_logger.js:

module.exports = Logger;

var extend = require('util')._extend;

var fs = require('fs');

const defaultOptions = {

path: '/tmp/log.txt',

defaultLevel: 'info'

};

function Logger(options) {

var self = log;

var opts = extend({}, defaultOptions);

opts = extend(opts, options || {});

Module types 23

var file = fs.createWriteStream(opts.path);

function log(what, level) {

var date = new Date;

var entry = {

when: date.toJSON(),

level: level || opts.defaultLevel,

what: what

};

file.write(JSON.stringify(entry) + '\n');

};

self.info = function(what) {

log(what, 'info');

};

self.warn = function(what) {

log(what, 'warning');

};

self.critical = function(what) {

log(what, 'critical');

};

return self;

}

Here we’re exporting only one function which we internally named Logger. This is a constructor
function (hence the capital L), that:

• creates an options object (opts) based on the user options and the default options;
• opens the log file according to the preferred file path;
• creates the logger (self variable), which is, in this case, a function;
• enriches the logger with a set of methods that use the specific log function.

As you can see this implementation uses JavaScript closures to hide internal object states. There is
no state in the self object itself – all is stored in variables that are declared inside the constructor,
and are only accessible to functions on the same or lower scopes.

Here is an example client that instantiates two loggers, each with different options:

closure_client.js:

Module types 24

var Logger = require('./closure_class_logger');

var log1 = Logger();

var log2 = Logger({

path: '/tmp/log2.txt',

defaultLevel: 'warn'

});

log1('one');

log1.info('two');

log2('three');

log2.critical('four');

The client then instantiates each of the loggers by calling the constructor function, each time passing
the logger options.

Using function closures is a good way of clearly differentiating between what is the object internal
state and the object public interface, simulating what other languages define as private properties
and methods. The downside is that, using this technique, you are defining a new function scope that
persists throughout the life of the object, and a set of functions on that scope for each object you are
creating, consuming memory and taking CPU time at initialisation. This may be fine if, like in this
client example, you’re not defining many instances of each object. If you want to avoid this problem,
then you will need to use the prototype-based modelling capabilities that JavaScript provides.

9.5 Prototype-based class

Here is an alternative implementation of the Logger class module using JavaScript prototypes:

prototype_class_logger.js:

module.exports = Logger;

var extend = require('util')._extend;

var fs = require('fs');

const defaultOptions = {

path: '/tmp/log.txt',

defaultLevel: 'info'

};

function Logger(options) {

if (! (this instanceof Logger)) return new Logger(options);

Module types 25

var opts = extend({}, defaultOptions);

this._options = extend(opts, options || {});

this._file = fs.createWriteStream(opts.path);

}

Logger.prototype.log = function(what, level) {

var date = new Date;

var entry = {

when: date.toJSON(),

level: level || this._options.defaultLevel,

what: what

};

this._file.write(JSON.stringify(entry) + '\n');

};

Logger.prototype.info = function(what) {

this.log(what, 'info');

};

Logger.prototype.warn = function(what) {

this.log(what, 'warning');

};

Logger.prototype.critical = function(what) {

this.log(what, 'critical');

};

Here is a user of this module:

prototype_client.js:

var Logger = require('./prototype_class_logger');

var log1 = Logger();

var log2 = Logger({

path: '/tmp/log2.txt',

defaultLevel: 'warn'

});

log1.log('one');

log1.info('two');

Module types 26

log2.log('three');

log2.critical('four');

There are several structural differences between this implementation and the previous closure-based
one:

9.5.1 State storage

In the previous example we stored the state inside the constructor function closure. Here we’re
storing the needed state inside the this object.

In JavaScript there are two basic ways for this to be available: 1) in the constructor function
when it’s invoked with the new keyword, or 2) when invoking a function on an object, like
in object.method(arg).

By convention, the state properties that are not meant to be publicly accessible are prefixed with _.
These properties indicate to the programmer that they are not supported as a public interface and
should never be accessed from the outside.

9.5.2 Constructor

You may have noticed that the constructor has an initial check to verify if the this object is an
instance of the current constructor function. JavaScript constructors are meant to be called with the
new keyword in this form:

var instance = new Class(args);

When called without the new keyword, a constructor is just a function with no explicit this bound
to it. We can then verify if the this is correctly assigned to allow clients to use our class like this:

var instance = Class(args);

When invoked this way, this activates the following condition in the constructor, effectively
replacing the current function call with a “proper” JavaScript object instantiation:

if (! (this instanceof Logger)) return new Logger(options);

Module types 27

9.5.3 Functions are only declared once.

In the previous solution, for each created object we declared the method functions for each method,
resulting in considerable overhead if many instances of this object are going to exist.

In a prototype-based solution, you assign the functions to the constructor prototype. When
constructing a new object, the JavaScript runtime simply assigns the constructor prototype attribute
to the new object’s __proto__ attribute.

When a method on an object is to be used, the JavaScript runtime looks into the object itself for
an attribute with that name. If not found, it looks into the object’s __proto__ attribute for that
attribute, and if found, that’s what it uses. This allows us to only declare the functions once inside
the prototype, and to allow the method onto which the method was called — the this object, which
carries all of the state — to vary.

9.5.4 Inheritance

By using prototypical inheritance you allow your class to be extendable. For instance, if we wanted
to implement a Logger base class and two implementations, one for file logging and another that
only emits log events, you could do this:

base_logger.js:

module.exports = BaseLogger;

var extend = require('util')._extend;

var fs = require('fs');

const defaultOptions = {

defaultLevel: 'info'

};

function BaseLogger(options) {

if (! (this instanceof BaseLogger)) return new BaseLogger(options);

var opts = extend({}, defaultOptions);

this._options = extend(opts, options || {});

}

BaseLogger.prototype.log = function(what, level) {

var date = new Date;

var entry = {

when: date.toJSON(),

level: level || this._options.defaultLevel,

Module types 28

what: what

};

this._log(entry);

};

BaseLogger.prototype.info = function(what) {

this.log(what, 'info');

};

BaseLogger.prototype.warn = function(what) {

this.log(what, 'warning');

};

BaseLogger.prototype.critical = function(what) {

this.log(what, 'critical');

};

This module serves as a base class for specific Logger implementations; it relies on subclasses
implementing the _log method. Let’s see an example of a file logger that extends this BaseLogger
class:

file_logger.js:

var fs = require('fs');

var inherits = require('util').inherits;

var BaseLogger = require('./base_logger');

module.exports = FileLogger;

inherits(FileLogger, BaseLogger);

const DEFAULT_PATH = '/tmp/log.txt';

function FileLogger(options) {

if (! (this instanceof FileLogger)) return new FileLogger(options);

BaseLogger.call(this, options);

this._file = fs.createWriteStream(this._options.path || DEFAULT_PATH);

}

FileLogger.prototype._log = function(entry) {

this._file.write(JSON.stringify(entry) + '\n');

};

Module types 29

This specific implementation defines a constructor named FileLogger that inherits from the
BaseLogger class.

For setting up inheritance it uses Node.js’s util.inherits utility function to set up the
protoype chain correctly.

The specific constructor has to call the super-class constructor to make sure the this object gets
constructed correctly:

BaseLogger.call(this, options);

It then relies on the private _options attribute that should have been set after the base constructor
has been called.

Here we’re seing some problems with inheritance that are not particular to JavaScript. Sub-
classes may have to know implementation details of the super-class (such as the private
_options attribute) in order to work. It also may lead to implementation dependency: if
a sub-class uses a specific private attribute of the object, then the base class cannot freely
use it in the future. This makes object-oriented code somewhat brittle in nature. For this
reason some programmers prefer to compose objects rather than extend classes.

9.5.5 Can’t export a base function

Another downside of using prototype-based classes is that, unlike we did in the closure-based
approach, an instance cannot be a function; it must be an object that’s implicitely created when
the new keyword is used.

9.6 Façade module

Good practice dictates that you keep the number of lines of code per module low: one module does
one thing well, should be easily comprehended by a foreign programmer, and should have good
code coverage without the need to artificially alter the code or expose private functionality.

But sometimes you need to group related functions. For instance, all the functions that manage users
on a given system should be somewhat centralised, making it easier to organise and identify pieces
of functionality. If they’re not going to fit inside one single file, you can, for instance, store them
inside a folder named models/users. Each module exports only one function:

Module types 30

models/

├── index.js

└── users/

├── index.js

├── create.js

├── remove.js

├── update.js

└── list.js

We can then define an index.js file that groups and exposes a set of modules. This index.js file
would look like this in this case:

exports.create = require('./create');

exports.remove = require('./remove');

exports.update = require('./update');

exports.list = require('./list');

The users of the models/users module can then just require the directory path:

var users = require('./models/users');

You could then use each of the functions:

users.create();

users.remove();

10. Browserify: Node modules in the
browser

Earlier on we filled this gap in JavaScript by creating a custom module system and a very simple
way to concatenate module files to create a single JavaScript bundle that can be loaded and parsed
at the same time on the browser.

Instead of doing this you can use a nifty tool called Browserify. Not only does Browserify make the
Node.js module system available on the browser; it also allows you to use some of the Node.js core
API in the browser by providing browser-specific implementations of that API.

Browserify comes with a command-line tool that takes a set of JavaScript files and outputs a bundle.
When specifying the list of modules you don’t need to specify the whole set of JavaScript modules.
If a module depends on another module by using require, Browserify can understand that and also
bundle that dependency in, and do that recursively until all dependencies are included in the bundle.

Here is an example taken from the Browserify README:

main.js:

var foo = require('./foo.js');

var bar = require('../lib/bar.js');

var gamma = require('gamma');

var elem = document.getElementById('result');

var x = foo(100) + bar('baz');

elem.textContent = gamma(x);

First you need to instal browserify:

$ npm install browserify -g

You can then generate a working bundle like this:

$ browserify main.js > bundle.js

And use that file in the browser:

Browserify: Node modules in the browser 32

<script src="bundle.js"></script>

Browserify is a lot more than this:

• It is able to bundle source maps for easier debugging,
• It allows for a bundle to be used externally,
• It has an API so that you can control the bundle creation from inside a Node.js script or service;
• It supports transform plugins that enable you to include file contents;
• and more…

I’m not going to do a deep dive into Browserify – that would easily be the subject of another book.
Here you can see that you can use absolute or relative paths for loading modules, which means that
you can use every pattern that has been described here, but in the browser!

11. Summary
Even though JavaScript did not provide a module system, it’s possible to simulate one by using
function closures. It’s also possible to create a module system that makes dependencies explicit, and
where you use names to define and require modules.

Instead of modules returning the exported value, modules can support circular dependencies by
modifying an exported object.

The Node.js runtime implements a file-based module pattern that implements the CommonJS
standard. Using this pattern you can create several module patterns: Singletons, closure-based
classes, prototype-based classes, and façades.

	Table of Contents
	Foreword
	The source code
	Introduction
	Returning the exported value
	Modules in the browser
	A Module registry
	Define and require
	Using the module system

	Transitive module loading
	The Node.js module system
	Defining a module
	Using a module

	Module types
	One function
	Singleton object
	Examples
	Configuration
	Connection-sharing

	Closure-based class
	Prototype-based class
	State storage
	Constructor
	Functions are only declared once.
	Inheritance
	Can't export a base function

	Façade module

	Browserify: Node modules in the browser
	Summary

