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Foreword

While reading this book in preparation for writing this foreword, I
was forced to reflect on how I learned JavaScript and how much it has
changed over the last 15 years that I have been programming and de‐
veloping with it.

When I started using JavaScript 15 years ago, the practice of using non-
HTML technologies such as CSS and JS in your web pages was called
DHTML or Dynamic HTML. Back then, the usefulness of JavaScript
varied greatly and seemed to be tilted toward adding animated snow‐
flakes to your web pages or dynamic clocks that told the time in the
status bar. Suffice it to say, I didn’t really pay much attention to Java‐
Script in the early part of my career because of the novelty of the im‐
plementations that I often found on the Internet.

It wasn’t until 2005 that I first rediscovered JavaScript as a real pro‐
gramming language that I needed to pay closer attention to. After dig‐
ging into the first beta release of Google Maps, I was hooked on the
potential it had. At the time, Google Maps was a first-of-its-kind
application—it allowed you to move a map around with your mouse,
zoom in and out, and make server requests without reloading the page
—all with JavaScript. It seemed like magic!

When anything seems like magic, it is usually a good indication that
you are at the dawn of a new way of doing things. And boy, was I not
wrong—fast-forwarding to today, I would say that JavaScript is one of
the primary languages I use for both client- and server-side program‐
ming, and I wouldn’t have it any other way.

One of my regrets as I look over the past 15 years is that I didn’t give
JavaScript more of a chance before 2005, or more accurately, that I
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lacked the foresight to see JavaScript as a true programming language
that is just as useful as C++, C#, Java, and many others.

If I had this You Don’t Know JS series of books at the start of my career,
my career history would look much different than it does today. And
that is one of the things I love about this series: it explains JavaScript
at a level that builds your understanding as you go through the series,
but in a fun and informative way.

this & Object Prototypes is a wonderful continuation to the series. It
does a great and natural job of building on the prior book, Scope &
Closures, and extending that knowledge to a very important part of
the JS language, the this keyword and prototypes. These two simple
things are pivotal for what you will learn in the future books, because
they are foundational to doing real programming with JavaScript. The
concept of how to create objects, relate them, and extend them to rep‐
resent things in your application is necessary to create large and com‐
plex applications in JavaScript. And without them, creating complex
applications (such as Google Maps) wouldn’t be possible in JavaScript.

I would say that the vast majority of web developers probably have
never built a JavaScript object and just treat the language as event-
binding glue between buttons and AJAX requests. I was in that camp
at a point in my career, but after I learned how to master prototypes
and create objects in JavaScript, a world of possibilities opened up for
me. If you fall into the category of just creating event-binding glue
code, this book is a must-read; if you just need a refresher, this book
will be a go-to resource for you. Either way, you will not be disap‐
pointed. Trust me!

—Nick Berardi
nickberardi.com, @nberardi
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Preface

I’m sure you noticed, but “JS” in the book series title is not an abbre‐
viation for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a foundational
technology that drives interactive experience around the content we
consume. While flickering mouse trails and annoying pop-up
prompts may be where JavaScript started, nearly two decades later, the
technology and capability of JavaScript has grown many orders of
magnitude, and few doubt its importance at the heart of the world’s
most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design phi‐
losophy. Even the name evokes, as Brendan Eich once put it, “dumb
kid brother” status next to its more mature older brother Java. But the
name is merely an accident of politics and marketing. The two lan‐
guages are vastly different in many important ways. “JavaScript” is as
related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from several
languages, including proud C-style procedural roots as well as subtle,
less obvious Scheme/Lisp-style functional roots, it is exceedingly ap‐
proachable to a broad audience of developers, even those with little to
no programming experience. The “Hello World” of JavaScript is so
simple that the language is inviting and easy to get comfortable with
in early exposure.

While JavaScript is perhaps one of the easiest languages to get up and
running with, its eccentricities make solid mastery of the language a
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vastly less common occurrence than in many other languages. Where
it takes a pretty in-depth knowledge of a language like C or C++ to
write a full-scale program, full-scale production JavaScript can, and
often does, barely scratch the surface of what the language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too much
about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad ap‐
peal, and a complex and nuanced collection of language mechanics
that without careful study will elude true understanding even for the
most seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the language
is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist (as some are accus‐
tomed to doing), you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I would
implore you, dear reader, to instead consider it the “The Easy Parts,”
“The Safe Parts,” or even “The Incomplete Parts.”

This You Don’t Know JS book series offers a contrary challenge: learn
and deeply understand all of JavaScript, even and especially “The
Tough Parts.”

Here, we address head-on the tendency of JS developers to learn “just
enough” to get by, without ever forcing themselves to learn exactly
how and why the language behaves the way it does. Furthermore, we
eschew the common advice to retreat when the road gets rough.

I am not content, nor should you be, at stopping once something just
works and not really knowing why. I gently challenge you to journey
down that bumpy “road less traveled” and embrace all that JavaScript
is and can do. With that knowledge, no technique, no framework, no

viii | Preface

www.allitebooks.com

http://www.allitebooks.org


popular buzzword acronym of the week will be beyond your
understanding.

These books each take on specific core parts of the language that are
most commonly misunderstood or under-understood, and dive very
deep and exhaustively into them. You should come away from reading
with a firm confidence in your understanding, not just of the theo‐
retical, but the practical “what you need to know” bits.

The JavaScript you know right now is probably parts handed down to
you by others who’ve been burned by incomplete understanding. That
JavaScript is but a shadow of the true language. You don’t really know
JavaScript, yet, but if you dig into this series, you will. Read on, my
friends. JavaScript awaits you.

Review
JavaScript is awesome. It’s easy to learn partially, and much harder to
learn completely (or even sufficiently). When developers encounter
confusion, they usually blame the language instead of their lack of
understanding. These books aim to fix that, inspiring a strong appre‐
ciation for the language you can now, and should, deeply know.

Many of the examples in this book assume modern (and future-
reaching) JavaScript engine environments, such as ES6. Some
code may not work as described if run in older (pre-ES6)
engines.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at http://bit.ly/ydkjs-this-code.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not re‐
quire permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require per‐
mission.
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We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “this &
Object Prototypes by Kyle Simpson (O’Reilly). Copyright 2014 Getify
Solutions, Inc., 978-1-491-90415-2.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital li‐
brary that delivers expert content in both book and
video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of product mixes and pricing pro‐
grams for organizations, government agencies, and individuals. Sub‐
scribers have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and doz‐
ens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://bit.ly/
ydk-js-this-object-prototypes.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Check out the full You Don’t Know JS series: http://YouDont
KnowJS.com
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CHAPTER 1

this or That?

One of the most confused mechanisms in JavaScript is the this key‐
word. It’s a special identifier keyword that’s automatically defined in
the scope of every function, but what exactly it refers to bedevils even
seasoned JavaScript developers.

Any sufficiently advanced technology is indistinguishable
from magic.

— Arthur C. Clarke

JavaScript’s this mechanism isn’t actually that advanced, but devel‐
opers often paraphrase that quote in their own mind by inserting
“complex” or “confusing,” and there’s no question that without lack of
clear understanding, this can seem downright magical in your
confusion.

The word “this” is a terribly common pronoun in general dis‐
course. So, it can be very difficult, especially verbally, to deter‐
mine whether we are using “this” as a pronoun or using it to
refer to the actual keyword identifier. For clarity, I will always
use this to refer to the special keyword, and “this” or this or
this otherwise.

Why this?
If the this mechanism is so confusing, even to seasoned JavaScript
developers, one may wonder why it’s even useful. Is it more trouble
than it’s worth? Before we jump into the how, we should examine the
why.
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Let’s try to illustrate the motivation and utility of this:

function identify() {
    return this.name.toUpperCase();
}

function speak() {
    var greeting = "Hello, I'm " + identify.call( this );
    console.log( greeting );
}

var me = {
    name: "Kyle"
};

var you = {
    name: "Reader"
};

identify.call( me ); // KYLE
identify.call( you ); // READER

speak.call( me ); // Hello, I'm KYLE
speak.call( you ); // Hello, I'm READER

If the how of this snippet confuses you, don’t worry! We’ll get to that
shortly. Just set those questions aside briefly so we can look into the
why more clearly.

This code snippet allows the identify() and speak() functions to be
reused against multiple context objects (me and you), rather than need‐
ing a separate version of the function for each object.

Instead of relying on this, you could have explicitly passed in a context
object to both identify() and speak():

function identify(context) {
    return context.name.toUpperCase();
}

function speak(context) {
    var greeting = "Hello, I'm " + identify( context );
    console.log( greeting );
}

identify( you ); // READER
speak( me ); // Hello, I'm KYLE

2 | Chapter 1: this or That?



However, the this mechanism provides a more elegant way of im‐
plicitly “passing along” an object reference, leading to cleaner API
design and easier reuse.

The more complex your usage pattern is, the more clearly you’ll see
that passing context around as an explicit parameter is often messier
than passing around a this context. When we explore objects and
prototypes, you will see the helpfulness of a collection of functions
being able to automatically reference the proper context object.

Confusions
We’ll soon begin to explain how this actually works, but first we must
dispel some misconceptions about how it doesn’t actually work.

The name “this” creates confusion when developers try to think about
it too literally. There are two meanings often assumed, but both are
incorrect.

Itself
The first common temptation is to assume this refers to the function
itself. That’s a reasonable grammatical inference, at least.

Why would you want to refer to a function from inside itself? The
most common reasons would be things like recursion (calling a func‐
tion from inside itself) or having an event handler that can unbind
itself when it’s first called.

Developers new to JavaScript’s mechanisms often think that referenc‐
ing the function as an object (all functions in JavaScript are objects!)
lets you store state (values in properties) between function calls. While
this is certainly possible and has some limited uses, the rest of the book
will expound on many other patterns for better places to store state
besides the function object.

But for just a moment, we’ll explore that pattern, to illustrate how this
doesn’t let a function get a reference to itself like we might have
assumed.

Consider the following code, where we attempt to track how many
times a function (foo) was called:
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function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    this.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 0 -- WTF?

foo.count is still 0, even though the four console.log statements
clearly indicate foo(..) was in fact called four times. The frustration
stems from a too literal interpretation of what this (in
this.count++) means.

When the code executes foo.count = 0, indeed it’s adding a property
count to the function object foo. But for the this.count reference
inside of the function, this is not in fact pointing at all to that function
object, and so even though the property names are the same, the root
objects are different, and confusion ensues.

A responsible developer should ask at this point, “If I was in‐
crementing a count property but it wasn’t the one I expected,
which count was I incrementing?” In fact, were she to dig
deeper, she would find that she had accidentally created a
global variable count (see Chapter 2 for how that happened!),
and it currently has the value NaN. Of course, once she identi‐
fies this peculiar outcome, she then has a whole other set of
questions: “How was it global, and why did it end up NaN in‐
stead of some proper count value?” (see Chapter 2).
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Instead of stopping at this point and digging into why the this refer‐
ence doesn’t seem to be behaving as expected, and answering those
tough but important questions, many developers simply avoid the is‐
sue altogether, and hack toward some other solution, such as creating
another object to hold the count property:

function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    data.count++;
}

var data = {
    count: 0
};

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( data.count ); // 4

While it is true that this approach “solves” the problem, unfortunately
it simply ignores the real problem—lack of understanding what this
means and how it works—and instead falls back to the comfort zone
of a more familiar mechanism: lexical scope.

Lexical scope is a perfectly fine and useful mechanism; I am
not belittling the use of it, by any means (see the Scope &
Closures title of this book series). But constantly guessing at
how to use this, and usually being wrong, is not a good rea‐
son to retreat back to lexical scope and never learn why this
eludes you.

To reference a function object from inside itself, this by itself will
typically be insufficient. You generally need a reference to the function
object via a lexical identifier (variable) that points at it.
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Consider these two functions:

function foo() {
    foo.count = 4; // `foo` refers to itself
}

setTimeout( function(){
    // anonymous function (no name), cannot
    // refer to itself
}, 10 );

In the first function, called a “named function,” foo is a reference that
can be used to refer to the function from inside itself.

But in the second example, the function callback passed to setTime
out(..) has no name identifier (called an “anonymous function”), so
there’s no proper way to refer to the function object itself.

The old-school but now deprecated and frowned-upon argu
ments.callee reference inside a function also points to the
function object of the currently executing function. This ref‐
erence is typically the only way to access an anonymous func‐
tion’s object from inside itself. The best approach, however, is
to avoid the use of anonymous functions altogether, at least for
those that require a self-reference, and instead use a named
function (expression). arguments.callee is deprecated and
should not be used.

So another solution to our running example would have been to use
the foo identifier as a function object reference in each place, and not
use this at all, which works:

function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    foo.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
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// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 4

However, that approach similarly side-steps actual understanding of
this and relies entirely on the lexical scoping of variable foo.

Yet another way of approaching the issue is to force this to actually
point at the foo function object:

function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    // Note: `this` IS actually `foo` now, based on
    // how `foo` is called (see below)
    this.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        // using `call(..)`, we ensure the `this`
        // points at the function object (`foo`) itself
        foo.call( foo, i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 4

Instead of avoiding this, we embrace it. We’ll explain in a little bit
how such techniques work much more completely, so don’t worry if
you’re still a bit confused!

Its Scope
The next most common misconception about the meaning of this is
that it somehow refers to the function’s scope. It’s a tricky question,
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because in one sense there is some truth, but in the other sense, it’s
quite misguided.

To be clear, this does not, in any way, refer to a function’s lexical scope.
It is true that internally, scope is kind of like an object with properties
for each of the available identifiers. But the scope “object” is not ac‐
cessible to JavaScript code. It’s an inner part of the engine’s implemen‐
tation.

Consider code that attempts (and fails!) to cross over the boundary
and use this to implicitly refer to a function’s lexical scope:

function foo() {
    var a = 2;
    this.bar();
}

function bar() {
    console.log( this.a );
}

foo(); //ReferenceError: a is not defined

There’s more than one mistake in this snippet. While it may seem
contrived, the code you see is a distillation of actual real-world code
that has been exchanged in public community help forums. It’s a won‐
derful (if not sad) illustration of just how misguided this assumptions
can be.

First, an attempt is made to reference the bar() function via
this.bar(). It is almost certainly an accident that it works, but we’ll
explain the how of that shortly. The most natural way to have invoked
bar() would have been to omit the leading this. and just make a
lexical reference to the identifier.

However, the developer who writes such code is attempting to use this
to create a bridge between the lexical scopes of foo() and bar(), so
that bar() has access to the variable a in the inner scope of foo(). No
such bridge is possible. You cannot use a this reference to look some‐
thing up in a lexical scope. It is not possible.

Every time you feel yourself trying to mix lexical scope look-ups with
this, remind yourself: there is no bridge.
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What’s this?
Having set aside various incorrect assumptions, let us now turn our
attention to how the this mechanism really works.

We said earlier that this is not an author-time binding but a runtime
binding. It is contextual based on the conditions of the function’s in‐
vocation. this binding has nothing to do with where a function is
declared, but has instead everything to do with the manner in which
the function is called.

When a function is invoked, an activation record, otherwise known
as an execution context, is created. This record contains information
about where the function was called from (the call-stack), how the
function was invoked, what parameters were passed, etc. One of the
properties of this record is the this reference, which will be used for
the duration of that function’s execution.

In the next chapter, we will learn to find a function’s call-site to deter‐
mine how its execution will bind this.

Review
this binding is a constant source of confusion for the JavaScript de‐
veloper who does not take the time to learn how the mechanism ac‐
tually works. Guesses, trial and error, and blind copy and paste from
Stack Overflow answers is not an effective or proper way to leverage
this important this mechanism.

To learn this, you first have to learn what this is not, despite any
assumptions or misconceptions that may lead you down those paths.
this is neither a reference to the function itself, nor is it a reference
to the function’s lexical scope.

this is actually a binding that is made when a function is invoked, and
what it references is determined entirely by the call-site where the
function is called.
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CHAPTER 2

this All Makes Sense Now!

In Chapter 1, we discarded various misconceptions about this and
learned instead that this is a binding made for each function invoca‐
tion, based entirely on its call-site (how the function is called).

Call-Site
To understand this binding, we have to understand the call-site: the
location in code where a function is called (not where it’s declared).
We must inspect the call-site to answer the question: what is this this
a reference to?

Finding the call-site is generally “go locate where a function is called
from,” but it’s not always that easy, as certain coding patterns can ob‐
scure the true call-site.

What’s important is to think about the call-stack (the stack of functions
that have been called to get us to the current moment in execution).
The call-site we care about is in the invocation before the currently
executing function.

Let’s demonstrate the call-stack and call-site:

function baz() {
    // call-stack is: `baz`
    // so, our call-site is in the global scope

    console.log( "baz" );
    bar(); // <-- call-site for `bar`
}

function bar() {

11



    // call-stack is: `baz` -> `bar`
    // so, our call-site is in `baz`

    console.log( "bar" );
    foo(); // <-- call-site for `foo`
}

function foo() {
    // call-stack is: `baz` -> `bar` -> `foo`
    // so, our call-site is in `bar`

    console.log( "foo" );
}

baz(); // <-- call-site for `baz`

Take care when analyzing code to find the actual call-site (from the
call-stack), because it’s the only thing that matters for this binding.

You can visualize a call-stack in your mind by looking at the
chain of function calls in order, as we did with the comments
in the previous snippet. But this is painstaking and error-
prone. Another way of seeing the call-stack is using a debug‐
ger tool in your browser. Most modern desktop browsers have
built-in developer tools that include a JS debugger. In the pre‐
vious snippet, you could have set a breakpoint in the tools for
the first line of the foo() function, or simply inserted the de
bugger; statement on that first line. When you run the page,
the debugger will pause at this location, and will show you a
list of the functions that have been called to get to that line,
which will be your call-stack. So, if you’re trying to diagnose
this binding, use the developer tools to get the call-stack, then
find the second item from the top, and that will show you the
real call-site.

Nothing but Rules
We turn our attention now to how the call-site determines where this
will point during the execution of a function.

You must inspect the call-site and determine which of four rules ap‐
plies. We will first explain each of these four rules independently, and
then we will illustrate their order of precedence, if multiple rules could
apply to the call-site.
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Default Binding
The first rule we will examine comes from the most common case of
function calls: standalone function invocation. Think of this this rule
as the default catch-all rule when none of the other rules apply.

Consider the following code:

function foo() {
    console.log( this.a );
}

var a = 2;

foo(); // 2

The first thing to note, if you were not already aware, is that variables
declared in the global scope, as var a = 2 is, are synonymous with
global-object properties of the same name. They’re not copies of each
other, they are each other. Think of it as two sides of the same coin.

Second, we see that when foo() is called, this.a resolves to our global
variable a. Why? Because in this case, the default binding for this
applies to the function call, and so points this at the global object.

How do we know that the default binding rule applies here? We ex‐
amine the call-site to see how foo() is called. In our snippet, foo() is
called with a plain, undecorated function reference. None of the other
rules we will demonstrate will apply here, so the default binding applies
instead.

If strict mode is in effect, the global object is not eligible for the
default binding, so the this is instead set to undefined:

function foo() {
    "use strict";

    console.log( this.a );
}

var a = 2;

foo(); // TypeError: `this` is `undefined`

A subtle but important detail is that though the overall this binding
rules are entirely based on the call-site, the global object is only eligible
for the default binding if the contents of foo() are not running in
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strict mode; the strict mode state of the call-site of foo() is
irrelevant:

function foo() {
    console.log( this.a );
}

var a = 2;

(function(){
    "use strict";

    foo(); // 2
})();

Intentionally mixing strict mode and non-strict mode to‐
gether in your own code is generally frowned upon. Your en‐
tire program should probably either be strict or non-strict.
However, sometimes you include a third-party library that has
different strictness than your own code, so care must be tak‐
en over these subtle compatibility details.

Implicit Binding
Another rule to consider is whether the call-site has a context object,
also referred to as an owning or containing object, though these alter‐
nate terms could be slightly misleading.

Consider:

function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

obj.foo(); // 2

First, notice the manner in which foo() is declared and then later
added as a reference property onto obj. Regardless of whether foo()
is initially declared on foo, or is added as a reference later (as this
snippet shows), in neither case is the function really “owned” or “con‐
tained” by the obj object.
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However, the call-site uses the obj context to reference the function,
so you could say that the obj object “owns” or “contains” the function
reference at the time the function is called.

Whatever you choose to call this pattern, at the point that foo() is
called, it’s preceeded by an object reference to obj. When there is a
context object for a function reference, the implicit binding rule says
that it’s that object that should be used for the function call’s this
binding. Because obj is the this for the foo() call, this.a is synon‐
ymous with obj.a.

Only the top/last level of an object property reference chain matters
to the call-site. For instance:

function foo() {
    console.log( this.a );
}

var obj2 = {
    a: 42,
    foo: foo
};

var obj1 = {
    a: 2,
    obj2: obj2
};

obj1.obj2.foo(); // 42

Implicitly lost

One of the most common frustrations that this binding creates is
when an implicitly bound function loses that binding, which usually
means it falls back to the default binding of either the global object or
undefined, depending on strict mode.

Consider:

function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

var bar = obj.foo; // function reference/alias!
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var a = "oops, global"; // `a` also property on global object

bar(); // "oops, global"

Even though bar appears to be a reference to obj.foo, in fact, it’s really
just another reference to foo itself. Moreover, the call-site is what
matters, and the call-site is bar(), which is a plain, undecorated call,
and thus the default binding applies.

The more subtle, more common, and more unexpected way this oc‐
curs is when we consider passing a callback function:

function foo() {
    console.log( this.a );
}

function doFoo(fn) {
    // `fn` is just another reference to `foo`

    fn(); // <-- call-site!
}

var obj = {
    a: 2,
    foo: foo
};

var a = "oops, global"; // `a` also property on global object

doFoo( obj.foo ); // "oops, global"

Parameter passing is just an implicit assignment, and since we’re pass‐
ing a function, it’s an implicit reference assignment, so the end result
is the same as the previous snippet.

What if the function you’re passing your callback to is not your own,
but built into the language? No difference, same outcome:

function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

var a = "oops, global"; // `a` also property on global object

setTimeout( obj.foo, 100 ); // "oops, global"
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Think about this crude theoretical pseudoimplementation of setTi
meout() provided as a built-in from the JavaScript environment:

function setTimeout(fn,delay) {
    // wait (somehow) for `delay` milliseconds
    fn(); // <-- call-site!
}

It’s quite common that our function callbacks lose their this binding,
as we’ve just seen. But another way that this can surprise us is when
the function we’ve passed our callback to intentionally changes the
this for the call. Event handlers in popular JavaScript libraries are
quite fond of forcing your callback to have a this that points to, for
instance, the DOM element that triggered the event. While that may
sometimes be useful, other times it can be downright infuriating. Un‐
fortunately, these tools rarely let you choose.

Either way the this is changed unexpectedly, you are not really in
control of how your callback function reference will be executed, so
you have no way (yet) of controlling the call-site to give your intended
binding. We’ll see shortly a way of “fixing” that problem by fixing the
this.

Explicit Binding
With implicit binding, as we just saw, we had to mutate the object in
question to include a reference on itself to the function, and use this
property function reference to indirectly (implicitly) bind this to the
object.

But, what if you want to force a function call to use a particular object
for the this binding, without putting a property function reference
on the object?

“All” functions in the language have some utilities available to them
(via their [[Prototype]]—more on that later), which can be useful
for this task. Specifically, functions have call(..) and apply(..)
methods. Technically, JavaScript host environments sometimes pro‐
vide functions that are special enough (a kind way of putting it!) that
they do not have such functionality. But those are few. The vast ma‐
jority of functions provided, and certainly all functions you will create,
do have access to call(..) and apply(..).

How do these utilities work? They both take, as their first parameter,
an object to use for the this, and then invoke the function with that
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this specified. Since you are directly stating what you want the this
to be, we call it explicit binding.

Consider:

function foo() {
    console.log( this.a );
}

var obj = {
    a: 2
};

foo.call( obj ); // 2

Invoking foo with explicit binding by foo.call(..) allows us to force
its this to be obj.

If you pass a simple primitive value (of type string, boolean, or num
ber) as the this binding, the primitive value is wrapped in its object-
form (new String(..), new Boolean(..), or new Number(..), re‐
spectively). This is often referred to as “boxing.”

With respect to this binding, call(..) and apply(..) are
identical. They do behave differently with their additional pa‐
rameters, but that’s not something we care about presently.

Unfortunately, explicit binding alone still doesn’t offer any solution to
the issue mentioned previously, of a function “losing” its intended
this binding, or just having it paved over by a framework, etc.

Hard binding
But a variation pattern around explicit binding actually does the trick.
Consider:

function foo() {
    console.log( this.a );
}

var obj = {
    a: 2
};

var bar = function() {
    foo.call( obj );
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};

bar(); // 2
setTimeout( bar, 100 ); // 2

// hard-bound `bar` can no longer have its `this` overridden
bar.call( window ); // 2

Let’s examine how this variation works. We create a function bar()
which, internally, manually calls foo.call(obj), thereby forcibly in‐
voking foo with obj binding for this. No matter how you later invoke
the function bar, it will always manually invoke foo with obj. This
binding is both explicit and strong, so we call it hard binding.

The most typical way to wrap a function with a hard binding creates a
pass-through of any arguments passed and any return value received:

function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

var obj = {
    a: 2
};

var bar = function() {
    return foo.apply( obj, arguments );
};

var b = bar( 3 ); // 2 3
console.log( b ); // 5

Another way to express this pattern is to create a reusable helper:

function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

// simple `bind` helper
function bind(fn, obj) {
    return function() {
        return fn.apply( obj, arguments );
    };
}

var obj = {
    a: 2
};
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var bar = bind( foo, obj );

var b = bar( 3 ); // 2 3
console.log( b ); // 5

Since hard binding is such a common pattern, it’s provided with a built-
in utility as of ES5, Function.prototype.bind, and it’s used like this:

function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

var obj = {
    a: 2
};

var bar = foo.bind( obj );

var b = bar( 3 ); // 2 3
console.log( b ); // 5

bind(..) returns a new function that is hardcoded to call the original
function with the this context set as you specified.

API call “contexts”
Many libraries’ functions, and indeed many new built-in functions in
the JavaScript language and host environment, provide an optional
parameter, usually called “context,” which is designed as a work-
around for you not having to use bind(..) to ensure your callback
function uses a particular this.

For instance:

function foo(el) {
    console.log( el, this.id );
}

var obj = {
    id: "awesome"
};

// use `obj` as `this` for `foo(..)` calls
[1, 2, 3].forEach( foo, obj );
// 1 awesome  2 awesome  3 awesome

Internally, these various functions almost certainly use explicit bind‐
ing via call(..) or apply(..), saving you the trouble.
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new Binding
The fourth and final rule for this binding requires us to rethink a very
common misconception about functions and objects in JavaScript.

In traditional class-oriented languages, “constructors” are special
methods attached to classes, and when the class is instantiated with a
new operator, the constructor of that class is called. This usually looks
something like:

something = new MyClass(..);

JavaScript has a new operator, and the code pattern to use it looks
basically identical to what we see in those class-oriented languages;
most developers assume that JavaScript’s mechanism is doing some‐
thing similar. However, there really is no connection to class-oriented
functionality implied by new usage in JS.

First, let’s redefine what a “constructor” in JavaScript is. In JS, con‐
structors are just functions that happen to be called with the new op‐
erator in front of them. They are not attached to classes, nor are they
instantiating a class. They are not even special types of functions.
They’re just regular functions that are, in essence, hijacked by the use
of new in their invocation.

For example, consider the Number(..) function acting as a construc‐
tor, quoting from the ES5.1 spec:

15.7.2 The Number Constructor
When Number is called as part of a new expression it is a constructor:
it initialises the newly created object.

So, pretty much any ol’ function, including the built-in object func‐
tions like Number(..) (see Chapter 3) can be called with new in front
of it, and that makes that function call a constructor call. This is an
important but subtle distinction: there’s really no such thing as “con‐
structor functions,” but rather construction calls of functions.

When a function is invoked with new in front of it, otherwise known
as a constructor call, the following things are done automatically:

1. A brand new object is created (aka constructed) out of thin air.
2. The newly constructed object is [[Prototype]]-linked.
3. The newly constructed object is set as the this binding for that

function call.
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4. Unless the function returns its own alternate object, the new-
invoked function call will automatically return the newly con‐
structed object.

Steps 1, 3, and 4 apply to our current discussion. We’ll skip over step
2 for now and come back to it in Chapter 5.

Consider this code:

function foo(a) {
    this.a = a;
}

var bar = new foo( 2 );
console.log( bar.a ); // 2

By calling foo(..) with new in front of it, we’ve constructed a new
object and set that new object as the this for the call of foo(..). So
new is the final way that a function call’s this can be bound. We’ll call
this new binding.

Everything in Order
So, now we’ve uncovered the four rules for binding this in function
calls. All you need to do is find the call-site and inspect it to see which
rule applies. But, what if the call-site has multiple eligible rules? There
must be an order of precedence to these rules, and so we will next
demonstrate what order to apply the rules.

It should be clear that the default binding is the lowest priority rule of
the four. So we’ll just set that one aside.

Which is more precedent, implicit binding or explicit binding? Let’s
test it:

function foo() {
    console.log( this.a );
}

var obj1 = {
    a: 2,
    foo: foo
};

var obj2 = {
    a: 3,
    foo: foo
};
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obj1.foo(); // 2
obj2.foo(); // 3

obj1.foo.call( obj2 ); // 3
obj2.foo.call( obj1 ); // 2

So, explicit binding takes precedence over implicit binding, which
means you should ask first if explicit binding applies before checking
for implicit binding.

Now, we just need to figure out where new binding fits in the
precedence:

function foo(something) {
    this.a = something;
}

var obj1 = {
    foo: foo
};

var obj2 = {};

obj1.foo( 2 );
console.log( obj1.a ); // 2

obj1.foo.call( obj2, 3 );
console.log( obj2.a ); // 3

var bar = new obj1.foo( 4 );
console.log( obj1.a ); // 2
console.log( bar.a ); // 4

OK, new binding is more precedent than implicit binding. But do you
think new binding is more or less precedent than explicit binding?

new and call/apply cannot be used together, so new

foo.call(obj1) is not allowed to test new binding directly
against explicit binding. But we can still use a hard binding to
test the precedence of the two rules.

Before we explore that in a code listing, think back to how hard bind‐
ing physically works, which is that Function.prototype.bind(..)
creates a new wrapper function that is hardcoded to ignore its own
this binding (whatever it may be), and use a manual one we provide.
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By that reasoning, it would seem obvious to assume that hard bind‐
ing (which is a form of explicit binding) is more precedent than new
binding, and thus cannot be overridden with new.

Let’s check:

function foo(something) {
    this.a = something;
}

var obj1 = {};

var bar = foo.bind( obj1 );
bar( 2 );
console.log( obj1.a ); // 2

var baz = new bar( 3 );
console.log( obj1.a ); // 2
console.log( baz.a ); // 3

Whoa! bar is hard-bound against obj1, but new bar(3) did not change
obj1.a to 3 as we would have expected. Instead, the hard-bound (to
obj1) call to bar(..) is able to be overridden with new. Since new was
applied, we got the newly created object back, which we named baz,
and we see in fact that baz.a has the value 3.

This should be surprising if you go back to our “fake” bind helper:

function bind(fn, obj) {
    return function() {
        fn.apply( obj, arguments );
    };
}

If you think about how the helper’s code works, it does not have a way
for a new operator call to override the hard-binding to obj as we just
observed.

But the built-in Function.prototype.bind(..) as of ES5 is more so‐
phisticated, quite a bit so in fact. Here is the (slightly reformatted)
polyfill provided by the MDN page for bind(..):

if (!Function.prototype.bind) {
    Function.prototype.bind = function(oThis) {
        if (typeof this !== "function") {
            // closest thing possible to the ECMAScript 5
            // internal IsCallable function
            throw new TypeError(
               "Function.prototype.bind - what is trying " +
               "to be bound is not callable"

24 | Chapter 2: this All Makes Sense Now!



            );
        }

        var aArgs = Array.prototype.slice.call( arguments, 1 ),
            fToBind = this,
            fNOP = function(){},
            fBound = function(){
                return fToBind.apply(
                    (
                        this instanceof fNOP &&
                        oThis ? this : oThis
                    ),
                    aArgs.concat(
                       Array.prototype.slice.call( arguments )
                    );
            }
        ;

        fNOP.prototype = this.prototype;
        fBound.prototype = new fNOP();

        return fBound;
    };
}

The bind(..) polyfill shown above differs from the built-in
bind(..) in ES5 with respect to hard-bound functions that will
be used with new (read on to learn why that’s useful). Because
the polyfill cannot create a function without a .prototype as
the built-in utility does, there’s some nuanced indirection to
approximate the same behavior. Tread carefully if you plan to
use new with a hard-bound function and you rely on this
polyfill.

The part that’s allowing new overriding is:

this instanceof fNOP &&
oThis ? this : oThis

// ... and:

fNOP.prototype = this.prototype;
fBound.prototype = new fNOP();

We won’t actually dive into explaining how this trickery works (it’s
complicated and beyond our scope here), but essentially the utility
determines whether or not the hard-bound function has been called
with new (resulting in a newly constructed object being its this), and
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if so, it uses that newly created this rather than the previously specified
hard binding for this.

Why is new being able to override hard binding useful?

The primary reason for this behavior is to create a function (that can
be used with new for constructing objects) that essentially ignores the
this hard binding, but which presets some or all of the function’s ar‐
guments. One of the capabilities of bind(..) is that any arguments
passed after the first this binding argument are defaulted as standard
arguments to the underlying function (technically called “partial ap‐
plication,” which is a subset of “currying”). For example:

function foo(p1,p2) {
        this.val = p1 + p2;
}

// using `null` here because we don't care about
// the `this` hard-binding in this scenario, and
// it will be overridden by the `new` call anyway!
var bar = foo.bind( null, "p1" );

var baz = new bar( "p2" );

baz.val; // p1p2

Determining this
Now, we can summarize the rules for determining this from a func‐
tion call’s call-site, in their order of precedence. Ask these questions
in this order, and stop when the first rule applies.

1. Is the function called with new (new binding)? If so, this is the
newly constructed object.

var bar = new foo()

2. Is the function called with call or apply (explicit binding), even
hidden inside a bind hard binding? If so, this is the explicitly
specified object.

var bar = foo.call( obj2 )

3. Is the function called with a context (implicit binding), otherwise
known as an owning or containing object? If so, this is that con‐
text object.

var bar = obj1.foo()
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4. Otherwise, default the this (default binding). If in strict mode,
pick undefined, otherwise pick the global object.

var bar = foo()

That’s it. That’s all it takes to understand the rules of this binding for
normal function calls. Well…almost.

Binding Exceptions
As usual, there are some exceptions to the “rules.”

The this-binding behavior can in some scenarios be surprising, where
you intended a different binding but you end up with binding behavior
from the default binding rule.

Ignored this
If you pass null or undefined as a this binding parameter to call,
apply, or bind, those values are effectively ignored, and instead the
default binding rule applies to the invocation:

function foo() {
    console.log( this.a );
}

var a = 2;

foo.call( null ); // 2

Why would you intentionally pass something like null for a this
binding?

It’s quite common to use apply(..) for spreading out arrays of values
as parameters to a function call. Similarly, bind(..) can curry pa‐
rameters (preset values), which can be very helpful:

function foo(a,b) {
    console.log( "a:" + a + ", b:" + b );
}

// spreading out array as parameters
foo.apply( null, [2, 3] ); // a:2, b:3

// currying with `bind(..)`
var bar = foo.bind( null, 2 );
bar( 3 ); // a:2, b:3
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Both these utilities require a this binding for the first parameter. If
the functions in question don’t care about this, you need a placeholder
value, and null might seem like a reasonable choice as shown in this
snippet.

We don’t cover it in this book, but ES6 has the ... spread
operator, which will let you syntactically “spread out” an ar‐
ray as parameters without needing apply(..), such as foo(...
[1,2]), which amounts to foo(1,2)—syntactically avoiding a
this binding if it’s unnecessary. Unfortunately, there’s no ES6
syntactic substitute for currying, so the this parameter of the
bind(..) call still needs attention.

However, there’s a slight hidden “danger” in always using null when
you don’t care about the this binding. If you ever use that against a
function call (for instance, a third-party library function that you don’t
control), and that function does make a this reference, the default
binding rule means it might inadvertently reference (or worse, mu‐
tate!) the global object (window in the browser).

Obviously, such a pitfall can lead to a variety of bugs that are very
difficult to diagnose and track down.

Safer this
Perhaps a somewhat “safer” practice is to pass a specifically set up
object for this that is guaranteed not to be an object that can create
problematic side effects in your program. Borrowing terminology
from networking (and the military), we can create a “DMZ” (de-
militarized zone) object—nothing more special than a completely
empty, nondelegated object (see Chapters 5 and 6).

If we always pass a DMZ object for ignored this bindings we don’t
think we need to care about, we’re sure any hidden/unexpected usage
of this will be restricted to the empty object, which insulates our pro‐
gram’s global object from side effects.

Since this object is totally empty, I personally like to give it the variable
name ø (the lowercase mathematical symbol for the empty set). On
many keyboards (like US-layout on Mac), this symbol is easily typed
with ⌥+o (Option-o). Some systems also let you set up hotkeys for
specific symbols. If you don’t like the ø symbol, or your keyboard
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doesn’t make it easy to type, you can of course call it whatever you
want.

Whatever you call the variable, the easiest way to set it up as totally
empty is Object.create(null) (see Chapter 5). Object.cre

ate(null) is similar to { }, but without the delegation to Object.pro
totype, so it’s “more empty” than just { }:

function foo(a,b) {
    console.log( "a:" + a + ", b:" + b );
}

// our DMZ empty object
var ø = Object.create( null );

// spreading out array as parameters
foo.apply( ø, [2, 3] ); // a:2, b:3

// currying with `bind(..)`
var bar = foo.bind( ø, 2 );
bar( 3 ); // a:2, b:3

Not only is it functionally “safer,” but there’s a sort of stylistic benefit
to ø, in that it semantically conveys “I want the this to be empty” a
little more clearly than null might. But again, name your DMZ object
whatever you prefer.

Indirection
Another thing to be aware of is that you can (intentionally or not!)
create “indirect references” to functions, and in those cases, when that
function reference is invoked, the default binding rule also applies.

One of the most common ways that indirect references occur is from
an assignment:

function foo() {
    console.log( this.a );
}

var a = 2;
var o = { a: 3, foo: foo };
var p = { a: 4 };

o.foo(); // 3
(p.foo = o.foo)(); // 2

The result value of the assignment expression p.foo = o.foo is a
reference to just the underlying function object. As such, the effective
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call-site is just foo(), not p.foo() or o.foo() as you might expect.
Per the rules mentioned earlier, the default binding rule applies.

Reminder: regardless of how you get to a function invocation using
the default binding rule, the strict mode status of the contents of the
invoked function making the this reference—not the function call-
site—determines the default binding value: either the global object if
in non-strict mode or undefined if in strict mode.

Softening Binding
We saw earlier that hard binding was one strategy for preventing a
function call falling back to the default binding rule inadvertently, by
forcing it to be bound to a specific this (unless you use new to override
it!). The problem is, hard binding greatly reduces the flexibility of a
function, preventing manual this override with either implicit bind‐
ing or even subsequent explicit binding attempts.

It would be nice if there was a way to provide a different default for
default binding (not global or undefined), while still leaving the
function able to be manually this-bound via implicit binding or ex‐
plicit binding techniques.

We can construct a so-called soft binding utility that emulates our de‐
sired behavior:

if (!Function.prototype.softBind) {
    Function.prototype.softBind = function(obj) {
        var fn = this;
        // capture any curried parameters
        var curried = [].slice.call( arguments, 1 );
        var bound = function() {
            return fn.apply(
                (!this ||  this === (window || global)) ?
                    obj : this
                curried.concat.apply( curried, arguments )
            );
        };
        bound.prototype = Object.create( fn.prototype );
        return bound;
    };
}

The softBind(..) utility provided here works similarly to the built-
in ES5 bind(..) utility, except with our soft binding behavior. It wraps
the specified function in logic that checks the this at call-time and if
it’s global or undefined, uses a prespecified alternate default (obj).
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Otherwise the this is left untouched. It also provides optional curry‐
ing (see the bind(..) discussion earlier).

Let’s demonstrate its usage:

function foo() {
   console.log("name: " + this.name);
}

var obj = { name: "obj" },
    obj2 = { name: "obj2" },
    obj3 = { name: "obj3" };

var fooOBJ = foo.softBind( obj );

fooOBJ(); // name: obj

obj2.foo = foo.softBind(obj);
obj2.foo(); // name: obj2   <---- look!!!

fooOBJ.call( obj3 ); // name: obj3   <---- look!

setTimeout( obj2.foo, 10 );
// name: obj   <---- falls back to soft-binding

The soft-bound version of the foo() function can be manually this-
bound to obj2 or obj3 as shown, but it falls back to obj if the default
binding would otherwise apply.

Lexical this
Normal functions abide by the four rules we just covered. But ES6
introduces a special kind of function that does not use these rules: the
arrow-function.

Arrow-functions are signified not by the function keyword, but by
the so-called “fat arrow” operator, =>. Instead of using the four stan‐
dard this rules, arrow-functions adopt the this binding from the
enclosing (function or global) scope.

Let’s illustrate the arrow-function lexical scope:

function foo() {
    // return an arrow function
    return (a) => {
        // `this` here is lexically inherited from `foo()`
        console.log( this.a );
    };
}

Lexical this | 31



var obj1 = {
    a: 2
};

var obj2 = {
    a: 3
};

var bar = foo.call( obj1 );
bar.call( obj2 ); // 2, not 3!

The arrow-function created in foo() lexically captures whatever
foo()s this is at its call-time. Since foo() was this-bound to obj1,
bar (a reference to the returned arrow-function) will also be this-
bound to obj1. The lexical binding of an arrow-function cannot be
overridden (even with new!).

The most common use case will likely be in the use of callbacks, such
as event handlers or timers:

function foo() {
    setTimeout(() => {
        // `this` here is lexically inherited from `foo()`
        console.log( this.a );
    },100);
}

var obj = {
    a: 2
};

foo.call( obj ); // 2

While arrow-functions provide an alternative to using bind(..) on a
function to ensure its this, which can seem attractive, it’s important
to note that they essentially are disabling the traditional this mecha‐
nism in favor of more widely understood lexical scoping. Pre-ES6, we
already have a fairly common pattern for doing so, which is basically
almost indistinguishable from the spirit of ES6 arrow-functions:

function foo() {
    var self = this; // lexical capture of `this`
    setTimeout( function(){
        console.log( self.a );
    }, 100 );
}

var obj = {
    a: 2
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};

foo.call( obj ); // 2

While self = this and arrow-functions both seem like good “solu‐
tions” to not wanting to use bind(..), they are essentially fleeing from
this instead of understanding and embracing it.

If you find yourself writing this-style code, but most or all the time,
you defeat the this mechanism with lexical self = this or arrow-
function “tricks,” perhaps you should either:

1. Use only lexical scope and forget the false pretense of this-style
code.

2. Embrace this-style mechanisms completely, including using
bind(..) where necessary, and try to avoid self = this and
arrow-function “lexical this” tricks.

A program can effectively use both styles of code (lexical and this),
but inside of the same function, and indeed for the same sorts of look-
ups, mixing the two mechanisms is usually asking for harder-to-
maintain code, and probably working too hard to be clever.

Review
Determining the this binding for an executing function requires
finding the direct call-site of that function. Once examined, four rules
can be applied to the call-site, in this order of precedence:

1. Called with new? Use the newly constructed object.
2. Called with call or apply (or bind)? Use the specified object.
3. Called with a context object owning the call? Use that context

object.
4. Default: undefined in strict mode, global object otherwise.

Be careful of accidental/unintentional invoking of the default bind‐
ing rule. In cases where you want to “safely” ignore a this binding, a
“DMZ” object like ø = Object.create(null) is a good placeholder
value that protects the global object from unintended side effects.
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Instead of the four standard binding rules, ES6 arrow-functions use
lexical scoping for this binding, which means they inherit the this
binding (whatever it is) from its enclosing function call. They are es‐
sentially a syntactic replacement of self = this in pre-ES6 coding.
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CHAPTER 3

Objects

In Chapters 1 and 2, we explained how the this binding points to
various objects depending on the call-site of the function invocation.
But what exactly are objects, and why do we need to point to them?
We will explore objects in detail in this chapter.

Syntax
Objects come in two forms: the declarative (literal) form and the con‐
structed form.

The literal syntax for an object looks like this:

var myObj = {
    key: value
    // ...
};

The constructed form looks like this:

var myObj = new Object();
myObj.key = value;

The constructed form and the literal form result in exactly the same
sort of object. The only difference really is that you can add one or
more key/value pairs to the literal declaration, whereas with
constructed-form objects, you must add the properties one by one.
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It’s extremely uncommon to use the “constructed form” for
creating objects as just shown. You would pretty much al‐
ways want to use the literal syntax form. The same will be true
of most of the built-in objects (explained later).

Type
Objects are the general building block upon which much of JS is built.
They are one of the six primary types (called “language types” in the
specification) in JS:

• string

• number

• boolean

• null

• undefined

• object

Note that the simple primitives (string, boolean, number, null, and
undefined) are not themselves objects. null is sometimes referred
to as an object type, but this misconception stems from a bug in the
language that causes typeof null to return the string "object" in‐
correctly (and confusingly). In fact, null is its own primitive type.

It’s a common misstatement that “everything in JavaScript is an object.”
This is clearly not true.

By contrast, there are a few special object subtypes, which we can refer
to as complex primitives.

function is a subtype of object (technically, a “callable object”). Func‐
tions in JS are said to be “first class” in that they are basically just
normal objects (with callable behavior semantics bolted on), and so
they can be handled like any other plain object.

Arrays are also a form of objects, with extra behavior. The organization
of contents in arrays is slightly more structured than for general
objects.
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Built-in Objects
There are several other object subtypes, usually referred to as built-in
objects. For some of them, their names seem to imply they are directly
related to their simple primitive counterparts, but in fact, their rela‐
tionship is more complicated, which we’ll explore shortly.

• String

• Number

• Boolean

• Object

• Function

• Array

• Date

• RegExp

• Error

These built-ins have the appearance of being actual types, even classes,
if you rely on the similarity to other languages such as Java’s String
class.

But in JS, these are actually just built-in functions. Each of these built-
in functions can be used as a constructor (that is, a function call with
the new operator—see Chapter 2), with the result being a newly con‐
structed object of the subtype in question. For instance:

var strPrimitive = "I am a string";
typeof strPrimitive; // "string"
strPrimitive instanceof String; // false

var strObject = new String( "I am a string" );
typeof strObject; // "object"
strObject instanceof String; // true

// inspect the object sub-type
Object.prototype.toString.call( strObject ); // [object String]

We’ll see in detail in a later chapter exactly how the Object.proto
type.toString... bit works, but briefly, we can inspect the internal
subtype by borrowing the base default toString() method, and you
can see it reveals that strObject is an object that was in fact created
by the String constructor.
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The primitive value "I am a string" is not an object, it’s a primitive
literal and immutable value. To perform operations on it, such as
checking its length, accessing its individual character contents, etc., a
String object is required.

Luckily, the language automatically coerces a string primitive to a
String object when necessary, which means you almost never need
to explicitly create the Object form. It is strongly preferred by the
majority of the JS community to use the literal form for a value, where
possible, rather than the constructed object form.

Consider:

var strPrimitive = "I am a string";

console.log( strPrimitive.length ); // 13

console.log( strPrimitive.charAt( 3 ) ); // "m"

In both cases, we call a property or method on a string primitive, and
the engine automatically coerces it to a String object, so that the
property/method access works.

The same sort of coercion happens between the number literal prim‐
itive 42 and the new Number(42) object wrapper, when using methods
like 42.359.toFixed(2). Likewise for Boolean objects from
"boolean" primitives.

null and undefined have no object wrapper form, only their primitive
values. By contrast, Date values can only be created with their con‐
structed object form, as they have no literal form counterpart.

Objects, Arrays, Functions, and RegExps (regular expressions) are all
objects regardless of whether the literal or constructed form is used.
The constructed form does offer, in some cases, more options in cre‐
ation than the literal form counterpart. Since objects are created either
way, the simpler literal form is almost universally preferred. Only use
the constructed form if you need the extra options.

Error objects are rarely created explicitly in code, but usually created
automatically when exceptions are thrown. They can be created with
the constructed form new Error(..), but it’s often unnecessary.
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Contents
As mentioned earlier, the contents of an object consist of values (any
type) stored at specifically named locations, which we call properties.

It’s important to note that while we say “contents,” which implies that
these values are actually stored inside the object, that’s merely an ap‐
pearance. The engine stores values in implementation-dependent
ways, and may very well not store them in some object container. What
is stored in the container are these property names, which act as point‐
ers (technically, references) to where the values are stored.

Consider:

var myObject = {
    a: 2
};

myObject.a; // 2

myObject["a"]; // 2

To access the value at the location a in myObject, we need to use either
the . operator or the [ ] operator. The .a syntax is usually referred to
as “property access,” whereas the ["a"] syntax is usually referred to as
“key access.” In reality, they both access the same location and will pull
out the same value, 2, so the terms can be used interchangeably. We
will use the most common term, “property access,” from here on.

The main difference between the two syntaxes is that the . operator
requires an Identifier-compatible property name after it, whereas
the [".."] syntax can take basically any UTF-8/Unicode-compatible
string as the name for the property. To reference a property of the name
"Super-Fun!", for instance, you would have to use the ["Super-
Fun!"] access syntax, as Super-Fun! is not a valid Identifier prop‐
erty name.

Also, since the [".."] syntax uses a string’s value to specify the loca‐
tion, this means the program can programmatically build up the value
of the string, such as:

var myObject = {
    a: 2
};

var idx;
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if (wantA) {
    idx = "a";
}

// later

console.log( myObject[idx] ); // 2

In objects, property names are always strings. If you use any other
value besides a string (primitive) as the property, it will first be con‐
verted to a string. This even includes numbers, which are commonly
used as array indexes, so be careful not to confuse the use of numbers
between objects and arrays:

var myObject = { };

myObject[true] = "foo";
myObject[3] = "bar";
myObject[myObject] = "baz";

myObject["true"]; // "foo"
myObject["3"]; // "bar"
myObject["[object Object]"]; // "baz"

Computed Property Names
The myObject[..] property access syntax we just described is useful
if you need to use a computed expression value as the key name, like
myObject[prefix + name]. But that’s not really helpful when declar‐
ing objects using the object-literal syntax.

ES6 adds computed property names, where you can specify an expres‐
sion, surrounded by a [ ] pair, in the key-name position of an object-
literal declaration:

var prefix = "foo";

var myObject = {
    [prefix + "bar"]: "hello",
    [prefix + "baz"]: "world"
};

myObject["foobar"]; // hello
myObject["foobaz"]; // world

The most common usage of computed property names will probably
be for ES6 Symbols, which we will not be covering in detail in this book.
In short, they’re a new primitive data type that has an opaque un‐
guessable value (technically a string value). You will be strongly
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discouraged from working with the actual value of a Symbol (which
can theoretically be different between different JS engines), so the
name of the Symbol, like Symbol.Something (just a made up name!),
will be what you use:

var myObject = {
    [Symbol.Something]: "hello world"
};

Property Versus Method
Some developers like to make a distinction when talking about a
property access on an object, if the value being accessed happens to be
a function. Because it’s tempting to think of the function as belong‐
ing to the object, and in other languages, functions that belong to ob‐
jects (aka “classes”) are referred to as “methods,” it’s not uncommon
to hear “method access” as opposed to “property access.”

The specification makes this same distinction, interestingly.

Technically, functions never “belong” to objects, so saying that a func‐
tion that just happens to be accessed on an object reference is auto‐
matically a “method” seems a bit of a stretch of semantics.

It is true that some functions have this references in them, and that
sometimes these this references refer to the object reference at the
call-site. But this usage really does not make that function any more a
“method” than any other function, as this is dynamically bound at
runtime, at the call-site, and thus its relationship to the object is indi‐
rect, at best.

Every time you access a property on an object, that is a property access,
regardless of the type of value you get back. If you happen to get a
function from that property access, it’s not magically a “method” at
that point. There’s nothing special (outside of possible implicit this
binding as explained earlier) about a function that comes from a
property access.

For instance:

function foo() {
    console.log( "foo" );
}

var someFoo = foo; // variable reference to `foo`

var myObject = {
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    someFoo: foo
};

foo; // function foo(){..}

someFoo; // function foo(){..}

myObject.someFoo; // function foo(){..}

someFoo and myObject.someFoo are just two separate references to the
same function, and neither implies anything about the function being
special or “owned” by any other object. If foo() was defined to have a
this reference inside it, that myObject.someFoo implicit binding
would be the only observable difference between the two references.
It doesn’t make sense to call either reference a “method.”

Perhaps one could argue that a function becomes a method, not at
definition time, but during runtime just for that invocation, depending
on how it’s called at its call-site (with or without an object reference
context—see Chapter 2 for more details). Even this interpretation is a
bit of a stretch.

The safest conclusion is probably that “function” and “method” are
interchangeable in JavaScript.

ES6 adds a super reference, which is typically going to be used
with class (see Appendix A). The way super behaves (static
binding rather than late binding as this) gives further weight
to the idea that a function that is super-bound somewhere is
more a “method” than “function.” But again, these are just
subtle semantic (and mechanical) nuances.

Even when you declare a function expression as part of the object
literal, that function doesn’t magically belong more to the object—
there are still just multiple references to the same function object:

var myObject = {
    foo: function() {
        console.log( "foo" );
    }
};

var someFoo = myObject.foo;

someFoo; // function foo(){..}

myObject.foo; // function foo(){..}
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In Chapter 6, we will cover an ES6 shorthand for that foo:
function(){ .. } declaration syntax in our object literal.

Arrays
Arrays also use the [ ] access form, but as mentioned earlier, they have
slightly more structured organization for how and where values are
stored (though still no restriction on what type of values are stored).
Arrays assume numeric indexing, which means that values are stored
in locations, usually called indices, at positive integers, such as 0 and 42:

var myArray = [ "foo", 42, "bar" ];

myArray.length; // 3

myArray[0]; // "foo"

myArray[2]; // "bar"

Arrays are objects, so even though each index is a positive integer, you
can also add properties onto the array:

var myArray = [ "foo", 42, "bar" ];

myArray.baz = "baz";

myArray.length; // 3

myArray.baz; // "baz"

Notice that adding named properties (regardless of . or [ ] operator
syntax) does not change the reported length of the array.

You could use an array as a plain key/value object, and never add any
numeric indices, but this is bad idea because arrays have behavior and
optimizations specific to their intended use, and likewise with plain
objects. Use objects to store key/value pairs, and arrays to store values
at numeric indices.

Be careful: if you try to add a property to an array, but the property
name looks like a number, it will end up instead as a numeric index
(thus modifying the array contents):
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var myArray = [ "foo", 42, "bar" ];

myArray["3"] = "baz";

myArray.length; // 4

myArray[3]; // "baz"

Duplicating Objects
One of the most commonly requested features when developers newly
take up the JavaScript language is how to duplicate an object. It would
seem like there should just be a built-in copy() method, right? It turns
out that it’s a little more complicated than that, because it’s not fully
clear what, by default, should be the algorithm for the duplication.

For example, consider this object:

function anotherFunction() { /*..*/ }

var anotherObject = {
    c: true
};

var anotherArray = [];

var myObject = {
    a: 2,
    b: anotherObject, // reference, not a copy!
    c: anotherArray, // another reference!
    d: anotherFunction
};

anotherArray.push( anotherObject, myObject );

What exactly should be the representation of a copy of myObject?

First, we should answer if it should be a shallow or deep copy? A shallow
copy would end up with a on the new object as a copy of the value 2,
but the b, c, and d properties as just references to the same places as
the references in the original object. A deep copy would duplicate not
only myObject, but anotherObject and anotherArray. But then we
have the issue that anotherArray has references to anotherObject
and myObject in it, so those should also be duplicated rather than
reference-preserved. Now we have an infinite circular duplication
problem because of the circular reference.
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Should we detect a circular reference and just break the circular tra‐
versal (leaving the deep element not fully duplicated)? Should we error
out completely? Something in between?

Moreover, it’s not really clear what “duplicating” a function would
mean. There are some hacks like pulling out the toString() seriali‐
zation of a function’s source code (which varies across implementa‐
tions and is not even reliable in all engines depending on the type of
function being inspected).

So how do we resolve all these tricky questions? Various JS frameworks
have each picked their own interpretations and made their own deci‐
sions. But which of these (if any) should JS adopt as the standard? For
a long time, there was no clear answer.

One subset solution is that objects that are JSON-safe (that is, can be
serialized to a JSON string and then reparsed to an object with the
same structure and values) can easily be duplicated with:

var newObj = JSON.parse( JSON.stringify( someObj ) );

Of course, that requires you to ensure your object is JSON-safe. For
some situations, that’s trivial. For others, it’s insufficient.

At the same time, a shallow copy is fairly understandable and has far
fewer issues, so ES6 has now defined Object.assign(..) for this task.
Object.assign(..) takes a target object as its first parameter, and one
or more source objects as its subsequent parameters. It iterates over all
the enumerable (see the following code), owned keys (immediately
present) on the source object(s) and copies them (via = assignment
only) to the target. It also, helpfully, returns the target, as you can see
here:

var newObj = Object.assign( {}, myObject );

newObj.a; // 2
newObj.b === anotherObject; // true
newObj.c === anotherArray; // true
newObj.d === anotherFunction; // true

In the next section, we describe “property descriptors” (prop‐
erty characteristics) and show the use of Object.defineProp
erty(..). The duplication that occurs for Object.as

sign(..), however, is purely = style assignment, so any spe‐
cial characteristics of a property (like writable) on a source
object are not preserved on the target object.
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Property Descriptors
Prior to ES5, the JavaScript language gave no direct way for your code
to inspect or draw any distinction between the characteristics of prop‐
erties, such as whether the property was read-only or not.

But as of ES5, all properties are described in terms of a property de‐
scriptor.

Consider this code:

var myObject = {
    a: 2
};

Object.getOwnPropertyDescriptor( myObject, "a" );
// {
//    value: 2,
//    writable: true,
//    enumerable: true,
//    configurable: true
// }

As you can see, the property descriptor (called a “data descriptor” since
it’s only for holding a data value) for our normal object property a is
much more than just its value of 2. It includes three other character‐
istics: writable, enumerable, and configurable.

While we can see what the default values for the property descriptor
characteristics are when we create a normal property, we can use Ob
ject.defineProperty(..) to add a new property, or modify an ex‐
isting one (if it’s configurable!), with the desired characteristics.

For example:

var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: true,
    configurable: true,
    enumerable: true
} );

myObject.a; // 2

Using defineProperty(..), we added the plain, normal a property
to myObject in a manually explicit way. However, you generally
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wouldn’t use this manual approach unless you wanted to modify one
of the descriptor characteristics from its normal behavior.

Writable
The ability for you to change the value of a property is controlled by
writable.

Consider:

var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: false, // not writable!
    configurable: true,
    enumerable: true
} );

myObject.a = 3;

myObject.a; // 2

As you can see, our modification of the value silently failed. If we try
in strict mode, we get an error:

"use strict";

var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: false, // not writable!
    configurable: true,
    enumerable: true
} );

myObject.a = 3; // TypeError

The TypeError tells us we cannot change a nonwritable property.

We will discuss getters/setters shortly, but briefly, you can ob‐
serve that writable:false means a value cannot be changed,
which is somewhat equivalent to if you defined a no-op set‐
ter. Actually, your no-op setter would need to throw a TypeEr
ror when called to be truly conformant to writable:false.
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Configurable
As long as a property is currently configurable, we can modify its de‐
scriptor definition, using the same defineProperty(..) utility:

var myObject = {
    a: 2
};

myObject.a = 3;
myObject.a; // 3

Object.defineProperty( myObject, "a", {
    value: 4,
    writable: true,
    configurable: false, // not configurable!
    enumerable: true
} );

myObject.a; // 4
myObject.a = 5;
myObject.a; // 5

Object.defineProperty( myObject, "a", {
    value: 6,
    writable: true,
    configurable: true,
    enumerable: true
} ); // TypeError

The final defineProperty(..) call results in a TypeError, regardless
of strict mode, if you attempt to change the descriptor definition of
a nonconfigurable property. Be careful: as you can see, changing con
figurable to false is a one-way action, and cannot be undone!

There’s a nuanced exception to be aware of: even if the prop‐
erty is already configurable:false, writable can always be
changed from true to false without error, but not back to
true if already false.

Another thing configurable:false prevents is the ability to use the
delete operator to remove an existing property:

var myObject = {
    a: 2
};

myObject.a; // 2

48 | Chapter 3: Objects



delete myObject.a;
myObject.a; // undefined

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: true,
    configurable: false,
    enumerable: true
} );

myObject.a; // 2
delete myObject.a;
myObject.a; // 2

As you can see, the last delete call failed (silently) because we made
the a property nonconfigurable.

delete is only used to remove object properties (which can be re‐
moved) directly from the object in question. If an object property is
the last remaining reference to some object/function, and you de
lete it, that removes the reference and now that unreferenced object/
function can be garbage-collected. But, it is not proper to think of
delete as a tool to free up allocated memory as it does in other lan‐
guages (like C/C++). delete is just an object property removal oper‐
ation—nothing more.

Enumerable
The final descriptor characteristic we will mention here (there are two
others, which we deal with shortly when we discuss getter/setters) is
enumerable.

The name probably makes it obvious, but this characteristic controls
whether a property will show up in certain object-property enumer‐
ations, such as the for..in loop. Set enumerable to false to keep the
property from showing up in such enumerations, even though it’s still
completely accessible. Set it to true to include the property in
enumerations.

All normal user-defined properties are defaulted to enumerable, as
this is most commonly what you want. But if you have a special prop‐
erty you want to hide from enumeration, set it to enumerable:false.

We’ll demonstrate enumerability in much more detail shortly, so keep
a mental bookmark on this topic.
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Immutability
Sometimes you want to make properties or objects that cannot be
changed (either by accident or intentionally). ES5 adds support for
handling that in a variety of different nuanced ways.

It’s important to note that all of these approaches create shallow im‐
mutability. That is, they affect only the object and its direct property
characteristics. If an object has a reference to another object (array,
object, function, etc.), the contents of that object are not affected and
remain mutable:

myImmutableObject.foo; // [1,2,3]
myImmutableObject.foo.push( 4 );
myImmutableObject.foo; // [1,2,3,4]

We assume in this snippet that myImmutableObject is already created
and protected as immutable. But, to also protect the contents of myIm
mutableObject.foo (which is its own object—an array), you would
also need to make foo immutable, using one or more of the following
functionalities.

It is not terribly common to create deeply entrenched immut‐
able objects in JS programs. Special cases can certainly call for
it, but as a general design pattern, if you find yourself want‐
ing to seal or freeze all your objects, you may want to take a
step back and reconsider your program design to be more
robust to potential changes in objects’ values.

Object constant

By combining writable:false and configurable:false, you can
essentially create a constant (cannot be changed, redefined, or deleted)
as an object property, like:

var myObject = {};

Object.defineProperty( myObject, "FAVORITE_NUMBER", {
    value: 42,
    writable: false,
    configurable: false
} );
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Prevent extensions
If you want to prevent an object from having new properties added to
it, but otherwise leave the rest of the object’s properties alone, call
Object.preventExtensions(..):

var myObject = {
    a: 2
};

Object.preventExtensions( myObject );

myObject.b = 3;
myObject.b; // undefined

In non-strict mode, the creation of b fails silently. In strict mode,
it throws a TypeError.

Seal

Object.seal(..) creates a “sealed” object, which means it takes an
existing object and essentially calls Object.preventExtensions(..)
on it, but also marks all its existing properties as configurable:false.

So, not only can you not add any more properties, but you also cannot
reconfigure or delete any existing properties (though you can still
modify their values).

Freeze

Object.freeze(..) creates a frozen object, which means it takes an
existing object and essentially calls Object.seal(..) on it, but it also
marks all “data accessor” properties as writable:false, so that their
values cannot be changed.

This approach is the highest level of immutability that you can attain
for an object itself, as it prevents any changes to the object or to any
of its direct properties (though, as mentioned earlier, the contents of
any referenced other objects are unaffected).

You could “deep freeze” an object by calling Object.freeze(..) on
the object, and then recursively iterating over all objects it references
(which would have been unaffected thus far), and calling Ob
ject.freeze(..) on them as well. Be careful, though, as that could
affect other (shared) objects you’re not intending to affect.
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[[Get]]
There’s a subtle, but important, detail about how property accesses are
performed. Consider:

var myObject = {
    a: 2
};

myObject.a; // 2

The myObject.a is a property access, but it doesn’t just look in myOb
ject for a property of the name a, as it might seem.

According to the spec, the previous code actually performs a [[Get]]
operation (kinda like a function call: [[Get]]()) on the myObject. The
default built-in [[Get]] operation for an object first inspects the object
for a property of the requested name, and if it finds it, it will return
the value accordingly.

However, the [[Get]] algorithm defines other important behavior if
it does not find a property of the requested name. We will examine in
Chapter 5 what happens next (traversal of the [[Prototype]] chain,
if any).

But one important result of this [[Get]] operation is that if it cannot
through any means come up with a value for the requested property,
it instead returns the value undefined:

var myObject = {
    a: 2
};

myObject.b; // undefined

This behavior is different from when you reference variables by their
identifier names. If you reference a variable that cannot be resolved
within the applicable lexical scope lookup, the result is not unde
fined as it is for object properties, but instead a ReferenceError is
thrown:

var myObject = {
    a: undefined
};

myObject.a; // undefined

myObject.b; // undefined
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From a value perspective, there is no difference between these two
references—they both result in undefined. However, the [[Get]] op‐
eration underneath, though subtle at a glance, potentially performed
a bit more “work” for the reference myObject.b than for the reference
myObject.a.

Inspecting only the value results, you cannot distinguish whether a
property exists and holds the explicit value undefined, or whether the
property does not exist and undefined was the default return value
after [[Get]] failed to return something explicitly. However, we will
see shortly how you can distinguish these two scenarios.

[[Put]]
Since there’s an internally defined [[Get]] operation for getting a val‐
ue from a property, it should be obvious there’s also a default [[Put]]
operation.

It may be tempting to think that an assignment to a property on an
object would just invoke [[Put]] to set or create that property on the
object in question. But the situation is more nuanced than that.

When invoking [[Put]], how it behaves differs based on a number of
factors, including (most impactfully) whether the property is already
present on the object or not.

If the property is present, the [[Put]] algorithm will roughly check:

1. Is the property an accessor descriptor (see “Getters and Setters”
on page 54)? If so, call the setter, if any.

2. Is the property a data descriptor with writable of false? If so,
silently fail in non-strict mode, or throw TypeError in strict
mode.

3. Otherwise, set the value to the existing property as normal.

If the property is not yet present on the object in question, the [[Put]]
operation is even more nuanced and complex. We will revisit this sce‐
nario in Chapter 5 when we discuss [[Prototype]] to give it more
clarity.
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Getters and Setters
The default [[Put]] and [[Get]] operations for objects completely
control how values are set to existing or new properties, or retrieved
from existing properties, respectively.

Using future/advanced capabilities of the language, it may be
possible to override the default [[Get]] or [[Put]] opera‐
tions for an entire object (not just per property). This is be‐
yond the scope of our discussion in this book, but may be
covered later in the You Don’t Know JS series.

ES5 introduced a way to override part of these default operations, not
on an object level but a per-property level, through the use of getters
and setters. Getters are properties that actually call a hidden function
to retrieve a value. Setters are properties that actually call a hidden
function to set a value.

When you define a property to have either a getter or a setter or both,
its definition becomes an “accessor descriptor” (as opposed to a “data
descriptor”). For accessor desciptors, the value and writable char‐
acteristics of the descriptor are moot and ignored, and instead JS con‐
siders the set and get characteristics of the property (as well as con
figurable and enumerable).

Consider:

var myObject = {
    // define a getter for `a`
    get a() {
        return 2;
    }
};

Object.defineProperty(
    myObject,   // target
    "b",        // property name
    {           // descriptor
        // define a getter for `b`
        get: function(){ return this.a * 2 },

        // make sure `b` shows up as an object property
        enumerable: true
    }
);

myObject.a; // 2
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myObject.b; // 4

Either through object-literal syntax with get a() { .. } or through
explicit definition with defineProperty(..), in both cases we created
a property on the object that actually doesn’t hold a value, but whose
access automatically results in a hidden function call to the getter
function, with whatever value it returns being the result of the property
access:

var myObject = {
    // define a getter for `a`
    get a() {
        return 2;
    }
};

myObject.a = 3;

myObject.a; // 2

Since we only defined a getter for a, if we try to set the value of a later,
the set operation won’t throw an error but will just silently throw the
assignment away. Even if there was a valid setter, our custom getter is
hardcoded to return only 2, so the set operation would be moot.

To make this scenario more sensible, properties should also be defined
with setters, which override the default [[Put]] operation (aka as‐
signment), per-property, just as you’d expect. You will almost certainly
want to always declare both getter and setter (having only one or the
other often leads to unexpected/surprising behavior):

var myObject = {
    // define a getter for `a`
    get a() {
        return this._a_;
    },

    // define a setter for `a`
    set a(val) {
        this._a_ = val * 2;
    }
};

myObject.a = 2;

myObject.a; // 4
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In this example, we actually store the specified value 2 of the
assigment ([[Put]] operation) into another variable _a_. The
_a_ name is purely by convention for this example and im‐
plies nothing special about its behavior—it’s a normal proper‐
ty like any other.

Existence
We showed earlier that a property access like myObject.a may result
in an undefined value if either the explicit undefined is stored there
or the a property doesn’t exist at all. So, if the value is the same in both
cases, how else do we distinguish them?

We can ask an object if it has a certain property without asking to get
that property’s value:

var myObject = {
    a: 2
};

("a" in myObject); // true
("b" in myObject); // false

myObject.hasOwnProperty( "a" ); // true
myObject.hasOwnProperty( "b" ); // false

The in operator will check to see if the property is in the object, or if
it exists at any higher level of the [[Prototype]] chain object traversal
(see Chapter 5). By contrast, hasOwnProperty(..) checks to see if only
myObject has the property or not, and will not consult the [[Proto
type]] chain. We’ll come back to the important differences between
these two operations in Chapter 5 when we explore [[Prototype]]s
in detail.

hasOwnProperty(..) is accessible for all normal objects via delegation
to Object.prototype (see Chapter 5). But it’s possible to create an
object that does not link to Object.prototype (via Object.cre
ate(null)—see Chapter 5). In this case, a method call like myOb
ject.hasOwnProperty(..) would fail.

In that scenario, a more robust way of performing such a check is
Object.prototype.hasOwnProperty.call(myObject,"a"), which
borrows the base hasOwnProperty(..) method and uses explicit bind‐
ing (see Chapter 2) to apply it against our myObject.
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It appears that the in operator will check for the existence of a
value inside a container, but it actually checks for the exis‐
tence of a property name. This difference is important to note
with respect to arrays, as the temptation to try a check like 4
in [2, 4, 6] is strong, but this will not behave as expected.

Enumeration
Previously, we explained briefly the idea of “enumerability” when we
looked at the enumerable property descriptor characteristic. Let’s re‐
visit that and examine it in closer detail:

var myObject = { };

Object.defineProperty(
    myObject,
    "a",
    // make `a` enumerable, as normal
    { enumerable: true, value: 2 }
);

Object.defineProperty(
    myObject,
    "b",
    // make `b` NON-enumerable
    { enumerable: false, value: 3 }
);

myObject.b; // 3
("b" in myObject); // true
myObject.hasOwnProperty( "b" ); // true

// .......

for (var k in myObject) {
    console.log( k, myObject[k] );
}
// "a" 2

You’ll notice that myObject.b in fact exists and has an accessible value,
but it doesn’t show up in a for..in loop (though, surprisingly, it is
revealed by the in operator existence check). That’s because “enu‐
merable” basically means “will be included if the object’s properties
are iterated through.”
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for..in loops applied to arrays can give somewhat unexpec‐
ted results, in that the enumeration of an array will include not
only all the numeric indices, but also any enumerable proper‐
ties. It’s a good idea to use for..in loops only on objects, and
traditional for loops with numeric index iteration for arrays.

Consider another way that enumerable and nonenumerable proper‐
ties can be distinguished:

var myObject = { };

Object.defineProperty(
    myObject,
    "a",
    // make `a` enumerable, as normal
    { enumerable: true, value: 2 }
);

Object.defineProperty(
    myObject,
    "b",
    // make `b` nonenumerable
    { enumerable: false, value: 3 }
);

myObject.propertyIsEnumerable( "a" ); // true
myObject.propertyIsEnumerable( "b" ); // false

Object.keys( myObject ); // ["a"]
Object.getOwnPropertyNames( myObject ); // ["a", "b"]

propertyIsEnumerable(..) tests whether the given property name
exists directly on the object and is also enumerable:true.

Object.keys(..) returns an array of all enumerable properties,
whereas Object.getOwnPropertyNames(..) returns an array of all
properties, enumerable or not.

Whereas in versus hasOwnProperty(..) differ in whether they con‐
sult the [[Prototype]] chain or not, Object.keys(..) and Ob
ject.getOwnPropertyNames(..) both inspect only the direct object
specified.

There’s (currently) no built-in way to get a list of all properties that is
equivalent to what the in operator test would consult (traversing all
properties on the entire [[Prototype]] chain, as explained in Chap‐
ter 5). You could approximate such a utility by recursively traversing
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the [[Prototype]] chain of an object, and for each level, capturing
the list from Object.keys(..)—only enumerable properties.

Iteration
The for..in loop iterates over the list of enumerable properties on an
object (including its [[Prototype]] chain). But what if you instead
want to iterate over the values?

With numerically indexed arrays, iterating over the values is typically
done with a standard for loop, like:

var myArray = [1, 2, 3];

for (var i = 0; i < myArray.length; i++) {
    console.log( myArray[i] );
}
// 1 2 3

This isn’t iterating over the values, though, but iterating over the
indices, where you then use the index to reference the value, as myAr
ray[i].

ES5 also added several iteration helpers for arrays, including
forEach(..), every(..), and some(..). Each of these helpers accepts
a function callback to apply to each element in the array, differing only
in how they respectively respond to a return value from the callback.

forEach(..) will iterate over all values in the array, and it ignores any
callback return values. every(..) keeps going until the end or the
callback returns a false (or “falsy”) value, whereas some(..) keeps
going until the end or the callback returns a true (or “truthy”) value.

These special return values inside every(..) and some(..) act some‐
what like a break statement inside a normal for loop, in that they stop
the iteration early before it reaches the end.

If you iterate on an object with a for..in loop, you’re also only getting
at the values indirectly, because it’s actually iterating only over the
enumerable properties of the object, leaving you to access the prop‐
erties manually to get the values.
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As contrasted with iterating over an array’s indices in a nu‐
merically ordered way (for loop or other iterators), the order
of iteration over an object’s properties is not guaranteed and
may vary between different JS engines. Do not rely on any
observed ordering for anything that requires consistency
among environments, as any observed agreement is unreliable.

But what if you want to iterate over the values directly instead of the
array indicies (or object properties)? Helpfully, ES6 adds a for..of
loop syntax for iterating over arrays (and objects, if the object defines
its own custom iterator):

var myArray = [ 1, 2, 3 ];

for (var v of myArray) {
    console.log( v );
}
// 1
// 2
// 3

The for..of loop asks for an iterator object (from a default internal
function known as @@iterator in spec-speak) of the thing to be iter‐
ated, and the loop then iterates over the successive return values from
calling that iterator object’s next() method, once for each loop
iteration.

Arrays have a built-in @@iterator, so for..of works easily on them,
as shown. But let’s manually iterate the array, using the built-in @@iter
ator, to see how it works:

var myArray = [ 1, 2, 3 ];
var it = myArray[Symbol.iterator]();

it.next(); // { value:1, done:false }
it.next(); // { value:2, done:false }
it.next(); // { value:3, done:false }
it.next(); // { done:true }
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We get at the @@iterator internal property of an object using
an ES6 Symbol: Symbol.iterator. We briefly mentioned Sym
bol semantics earlier in the chapter (see “Computed Property
Names” on page 40), so the same reasoning applies here. You’ll
always want to reference such special properties by Symbol
name reference instead of by the special value it may hold. Also,
despite the name’s implications, @@iterator is not the itera‐
tor object itself, but a function that returns the iterator object
—a subtle but important detail!

As the previous snippet reveals, the return value from an iterator’s
next() call is an object of the form { value: .. , done: .. }, where
value is the current iteration value, and done is a boolean that indi‐
cates whether there’s more to iterate.

Notice the value 3 was returned with a done:false, which seems
strange at first glance. You have to call the next() a fourth time (which
the for..of loop in the previous snippet automatically does) to get
done:true and know you’re truly done iterating. The reason for this
quirk is beyond the scope of what we’ll discuss here, but it comes from
the semantics of ES6 generator functions.

While arrays do automatically iterate in for..of loops, regular objects
do not have a built-in @@iterator. The reasons for this intentional
omission are more complex than we will examine here, but in general,
it was better to not include some implementation that could prove
troublesome for future types of objects.

It is possible to define your own default @@iterator for any object that
you care to iterate over. For example:

var myObject = {
    a: 2,
    b: 3
};

Object.defineProperty( myObject, Symbol.iterator, {
    enumerable: false,
    writable: false,
    configurable: true,
    value: function() {
        var o = this;
        var idx = 0;
        var ks = Object.keys( o );
        return {
            next: function() {
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                return {
                    value: o[ks[idx++]],
                    done: (idx > ks.length)
                };
            }
        };
    }
} );

// iterate `myObject` manually
var it = myObject[Symbol.iterator]();
it.next(); // { value:2, done:false }
it.next(); // { value:3, done:false }
it.next(); // { value:undefined, done:true }

// iterate `myObject` with `for..of`
for (var v of myObject) {
    console.log( v );
}
// 2
// 3

We used Object.defineProperty(..) to define our custom
@@iterator (mostly so we could make it nonenumerable), but
using the Symbol as a computed property name (covered earli‐
er in this chapter), we could have declared it directly, like var
myObject = { a:2, b:3, [Symbol.iterator]: function()

{ /* .. */ } }.

Each time the for..of loop calls next() on myObject’s iterator object,
the internal pointer will advance and return back the next value from
the object’s properties list (see the note earlier in this section about
iteration ordering on object properties/values).

The iteration we just demonstrated is a simple value-by-value itera‐
tion, but you can of course define arbitrarily complex iterations for
your custom data structures, as you see fit. Custom iterators combined
with ES6’s for..of loop are a powerful new syntactic tool for manip‐
ulating user-defined objects.

For example, a list of Pixel objects (with x and y coordinate values)
could decide to order its iteration based on the linear distance from
the (0,0) origin, or filter out points that are “too far away,” etc. As long
as your iterator returns the expected { value: .. } return values
from next() calls, and a { done: true } after the iteration is com‐
plete, ES6’s for..of can iterate over it.
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In fact, you can even define “infinite” iterators that never “finish” and
always return a new value (such as a random number, an incremented
value, a unique identifier, etc.), though you probably will not use such
iterators with an unbounded for..of loop, as it would never end and
would hang your program:

var randoms = {
    [Symbol.iterator]: function() {
        return {
            next: function() {
                return { value: Math.random() };
            }
        };
    }
};

var randoms_pool = [];
for (var n of randoms) {
    randoms_pool.push( n );

    // don't proceed unbounded!
    if (randoms_pool.length === 100) break;
}

This iterator will generate random numbers “forever,” so we’re careful
to only pull out 100 values so our program doesn’t hang.

Review
Objects in JS have both a literal form (such as var a = { .. }) and
a constructed form (such as var a = new Array(..)). The literal form
is almost always preferred, but the constructed form offers, in some
cases, more creation options.

Many people mistakenly claim “everything in JavaScript is an object,”
but this is incorrect. Objects are one of the six (or seven, depending
on your perspective) primitive types. Objects have subtypes, including
function, and also can be behavior-specialized, like [object Ar
ray] as the internal label representing the array object subtype.

Objects are collections of key/value pairs. The values can be accessed
as properties, via the .propName or ["propName"] syntax. Whenever
a property is accessed, the engine actually invokes the internal default
[[Get]] operation (and [[Put]] for setting values), which not only
looks for the property directly on the object, but will traverse the
[[Prototype]] chain (see Chapter 5) if not found.

Review | 63



Properties have certain characteristics that can be controlled through
property descriptors, such as writable and configurable. In addi‐
tion, objects can have their mutability (and that of their properties)
controlled to various levels of immutability using Object.preventEx
tensions(..), Object.seal(..), and Object.freeze(..).

Properties don’t have to contain values—they can be “accessor prop‐
erties” as well, with getters/setters. They can also be either enumera‐
ble or not, which controls whether they show up in for..in loop iter‐
ations, for instance.

You can also iterate over the values in data structures (arrays, objects,
etc.) using the ES6 for..of syntax, which looks for either a built-in
or custom @@iterator object consisting of a next() method to ad‐
vance through the data values one at a time.
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CHAPTER 4

Mixing (Up) “Class” Objects

Following our exploration of objects from the previous chapter, it’s
natural that we now turn our attention to object-oriented (OO) pro‐
gramming, with classes. We’ll first look at class orientation as a design
pattern, before examining the mechanics of classes: instantiation, in‐
heritance, and (relative) polymorphism.

We’ll see that these concepts don’t really map very naturally to the
object mechanism in JS, and the efforts (mixins, etc.) many JavaScript
developers expend to overcome such challenges.

This chapter spends quite a bit of time (the first half!) on heavy
object-oriented programming theory. We eventually relate
these ideas to real concrete JavaScript code in the second half,
when we talk about mixins. But there’s a lot of concept and
pseudocode to wade through first, so don’t get lost—just stick
with it!

Class Theory
Class/inheritance describes a certain form of code organization and
architecture—a way of modeling real world problem domains in our
software.

OO or class-oriented programming stresses that data intrinsically has
associated behavior (of course, different depending on the type and
nature of the data!) that operates on it, so proper design is to package
up (aka encapsulate) the data and the behavior together. This is some‐
times called data structures in formal computer science.
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For example, a series of characters that represents a word or phrase is
usually called a string. The characters are the data. But you almost
never just care about the data, you usually want to do things with the
data, so the behaviors that can apply to that data (calculating its length,
appending data, searching, etc.) are all designed as methods of a
String class.

Any given string is just an instance of this class, which means that it’s
a neatly collected packaging of both the character data and the func‐
tionality we can perform on it.

Classes also imply a way of classifying a certain data structure. The way
we do this is to think about any given structure as a specific variation
of a more general base definition.

Let’s explore this classification process by looking at a commonly cited
example. A car can be described as a specific implementation of a more
general “class” of thing, called a vehicle.

We model this relationship in software with classes by defining a
Vehicle class and a Car class.

The definition of Vehicle might include things like propulsion (en‐
gines, etc.), the ability to carry people, etc., which would all be the
behaviors. What we define in Vehicle is all the stuff that is common
to all (or most of) the different types of vehicles (the “planes, trains,
and automobiles”).

It might not make sense in our software to redefine the basic essence
of “ability to carry people” over and over again for each different type
of vehicle. Instead, we define that capability once in Vehicle, and then
when we define Car, we simply indicate that it inherits (or extends) the
base definition from Vehicle. The definition of Car is said to specialize
the general Vehicle definition.

While Vehicle and Car collectively define the behavior by way of
methods, the data in an instance would be things like the unique VIN
of a specific car, etc.

And thus, classes, inheritance, and instantiation emerge.

Another key concept with classes is polymorphism, which describes
the idea that a general behavior from a parent class can be overridden
in a child class to give it more specifics. In fact, relative polymorphism
lets us reference the base behavior from the overridden behavior.
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Class theory strongly suggests that a parent class and a child class share
the same method name for a certain behavior, so that the child over‐
rides the parent (differentially). As we’ll see later, doing so in your
JavaScript code is opting into frustration and code brittleness.

“Class” Design Pattern
You may never have thought about classes as a design pattern, since
it’s most common to see discussion of popular OO design patterns,
like Iterator, Observer, Factory, Singleton, etc. As presented this way,
it’s almost an assumption that OO classes are the lower-level mechan‐
ics by which we implement all (higher-level) design patterns, as if OO
is a given foundation for all (proper) code.

Depending on your level of formal education in programming, you
may have heard of procedural programming as a way of describing code
that only consists of procedures (aka functions) calling other func‐
tions, without any higher abstractions. You may have been taught that
classes were the proper way to transform procedural-style “spaghetti
code” into well-formed, well-organized code.

Of course, if you have experience with functional programming (Mo‐
nads, etc.), you know very well that classes are just one of several
common design patterns. But for others, this may be the first time
you’ve asked yourself if classes really are a fundamental foundation for
code, or if they are an optional abstraction on top of code.

Some languages (like Java) don’t give you the choice, so it’s not very
optional at all—everything’s a class. Other languages like C/C++ or
PHP give you both procedural and class-oriented syntaxes, and it’s left
more to the developer’s choice which style or mixture of styles is
appropriate.

JavaScript “Classes”
Where does JavaScript fall in this regard? JS has had some class-like
syntactic elements (like new and instanceof) for quite a while, and
more recently in ES6, some additions, like the class keyword (see
Appendix A).

But does that mean JavaScript actually has classes? Plain and simple:
NO.
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Since classes are a design pattern, you can, with quite a bit of effort (as
we’ll see throughout the rest of this chapter), implement approxima‐
tions for much of classical class functionality. JS tries to satisfy the
extremely pervasive desire to design with classes by providing seem‐
ingly class-like syntax.

While we may have a syntax that looks like classes, it’s as if JavaScript
mechanics are fighting against you using the class design pattern, be‐
cause behind the curtain, the mechanisms that you build on are op‐
erating quite differently. Syntactic sugar and (extremely widely used)
JS “class” libraries go a long way toward hiding this reality from you,
but sooner or later you will face the fact that the classes you have in
other languages are not like the “classes” you’re faking in JS.

What this boils down to is that classes are an optional pattern in soft‐
ware design, and you have the choice to use them in JavaScript or not.
Since many developers have a strong affinity to class-oriented software
design, we’ll spend the rest of this chapter exploring what it takes to
maintain the illusion of classes with what JS provides, and the pain
points we experience.

Class Mechanics
In many class-oriented languages, the “standard library” provides a
“stack” data structure (push, pop, etc.) as a Stack class. This class
would have an internal set of variables that stores the data, and it would
have a set of publicly accessible behaviors (“methods”) provided by
the class, which gives your code the ability to interact with the (hidden)
data (adding and removing data, etc.).

But in such languages, you don’t really operate directly on Stack (un‐
less making a static class member reference, which is outside the scope
of our discussion). The Stack class is merely an abstract explanation
of what any “stack” should do, but it’s not itself a “stack.” You must
instantiate the Stack class before you have a concrete data structure
thing to operate against.

Building
The traditional metaphor for “class”- and “instance”-based thinking
comes from building construction.
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An architect plans out all the characteristics of a building: how wide,
how tall, how many windows and in what locations, even what type of
material to use for the walls and roof. She doesn’t necessarily care, at
this point, where the building will be built, nor does she care how
many copies of that building will be built.

The architect also doesn’t care very much about the contents of the
building—the furniture, wallpaper, ceiling fans, etc.—only what type
of structure they will be contained by.

The architectural blueprints are only plans for a building. They don’t
actually constitute a building where we can walk in and sit down. We
need a builder for that task. A builder will take those plans and follow
them, exactly, as he builds the building. In a very real sense, he is
copying the intended characteristics from the plans to the physical
building.

Once complete, the building is a physical instantiation of the blueprint
plans, hopefully an essentially perfect copy. And then the builder can
move to the open lot next door and do it all over again, creating yet
another copy.

The relationship between the building and blueprint is indirect. You
can examine a blueprint to understand how the building was struc‐
tured, for any parts where direct inspection of the building itself was
insufficient. But if you want to open a door, you have to go to the
building itself—the blueprint merely has lines drawn on a page that
represent where the door should be.

A class is a blueprint. To actually get an object we can interact with,
we must build (aka instantiate) something from the class. The end
result of such “construction” is an object, typically called an instance,
which we can directly call methods on and access any public data
properties from, as necessary.

This object is a copy of all the characteristics described by the class.

You likely wouldn’t expect to walk into a building and find, framed
and hanging on the wall, a copy of the blueprints used to plan the
building, though the blueprints are probably on file with a public re‐
cords office. Similarly, you don’t generally use an object instance to
directly access and manipulate its class, but it is usually possible to at
least determine which class an object instance comes from.
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It’s more useful to consider the direct relationship of a class to an object
instance, rather than any indirect relationship between an object in‐
stance and the class it came from. A class is instantiated into object
form by a copy operation:

As you can see, the arrows move from left to right, and from top to
bottom, which indicates the copy operations that occur, both concep‐
tually and physically.

Constructor
Instances of classes are constructed by a special method of the class,
usually of the same name as the class, called a constructor. This meth‐
od’s explicit job is to initialize any information (state) the instance will
need.

For example, consider this loose pseudocode (invented syntax) for
classes:

class CoolGuy {
    specialTrick = nothing

    CoolGuy( trick ) {
        specialTrick = trick
    }

    showOff() {
        output( "Here's my trick: ", specialTrick )
    }
}

To make a CoolGuy instance, we would call the class constructor:
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Joe = new CoolGuy( "jumping rope" )

Joe.showOff() // Here's my trick: jumping rope

Notice that the CoolGuy class has a constructor CoolGuy(), which is
actually what we call when we say new CoolGuy(..). We get an object
back (an instance of our class) from the constructor, and we can call
the method showOff(), which prints out that particular CoolGuy’s
special trick.

Obviously, jumping rope makes Joe a pretty cool guy.

The constructor of a class belongs to the class, and almost universally
has the same name as the class. Also, constructors pretty much always
need to be called with new to let the language engine know you want
to construct a new class instance.

Class Inheritance
In class-oriented languages, not only can you define a class that can
be instantiated itself, but you can define another class that inherits
from the first class.

The second class is often said to be a “child class,” whereas the first is
the “parent class.” These terms obviously come from the metaphor of
parents and children, though the metaphors here are a bit stretched,
as you’ll see shortly.

When a parent has a biological child, the genetic characteristics of the
parent are copied into the child. Obviously, in most biological repro‐
duction systems, there are two parents who coequally contribute genes
to the mix. But for the purposes of the metaphor, we’ll assume just one
parent.

Once the child exists, he is separate from the parent. The child was
heavily influenced by the inheritance from his parent, but is unique
and distinct. If a child ends up with red hair, that doesn’t mean the
parent’s hair was or automatically becomes red.

In a similar way, once a child class is defined, it’s separate and distinct
from the parent class. The child class contains an initial copy of the
behavior from the parent, but can then override any inherited behavior
and even define new behavior.

It’s important to remember that we’re talking about parent and child
classes, which aren’t physical things. This is where the metaphor of
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parent and child gets a little confusing, because we actually should say
that a parent class is like a parent’s DNA and a child class is like a child’s
DNA. We have to make (aka instantiate) a person out of each set of
DNA to actually have a physical person to have a conversation with.

Let’s set aside biological parents and children, and look at inheritance
through a slightly different lens: different types of vehicles. That’s one
of the most canonical (and often groan-worthy) metaphors to under‐
stand inheritance.

Let’s revisit the Vehicle and Car discussion from earlier in this chapter.
Consider this loose pseudocode (invented syntax) for inherited
classes:

class Vehicle {
    engines = 1

    ignition() {
        output( "Turning on my engine." );
    }

    drive() {
        ignition();
        output( "Steering and moving forward!" )
    }
}

class Car inherits Vehicle {
    wheels = 4

    drive() {
        inherited:drive()
        output( "Rolling on all ", wheels, " wheels!" )
    }
}

class SpeedBoat inherits Vehicle {
    engines = 2

    ignition() {
        output( "Turning on my ", engines, " engines." )
    }

    pilot() {
        inherited:drive()
        output( "Speeding through the water with ease!" )
    }
}
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For clarity and brevity, constructors for these classes have been
omitted.

We define the Vehicle class to assume an engine, a way to turn on the
ignition, and a way to drive around. But you wouldn’t ever manufac‐
ture just a generic “vehicle,” so it’s really just an abstract concept at this
point.

So then we define two specific kinds of vehicle: Car and SpeedBoat.
They each inherit the general characteristics of Vehicle, but then they
specialize the characteristics appropriately for each kind. A car needs
four wheels, and a speedboat needs two engines, which means it needs
extra attention to turn on the ignition of both engines.

Polymorphism
Car defines its own drive() method, which overrides the method of
the same name it inherited from Vehicle. But then, Car’s drive()
method calls inherited:drive(), which indicates that Car can refer‐
ence the original pre-overridden drive() it inherited. SpeedBoat’s
pilot() method also makes a reference to its inherited copy of
drive().

This technique is called polymorphism, or virtual polymorphism. More
specifically to our current point, we’ll call it relative polymorphism.

Polymorphism is a much broader topic than we will exhaust here, but
our current “relative” semantics refer to one particular aspect: the idea
that any method can reference another method (of the same or dif‐
ferent name) at a higher level of the inheritance hierarchy. We say
“relative” because we don’t absolutely define which inheritance level
(aka class) we want to access, but rather relatively reference it by es‐
sentially saying “look one level up.”

In many languages, the keyword super is used, in place of this exam‐
ple’s inherited:, which leans on the idea that a “superclass” is the
parent/ancestor of the current class.

Another aspect of polymorphism is that a method name can have
multiple definitions at different levels of the inheritance chain, and
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these definitions are automatically selected as appropriate when re‐
solving which methods are being called.

We see two occurrences of that behavior in our previous example:
drive() is defined in both Vehicle and Car, and ignition() is de‐
fined in both Vehicle and SpeedBoat.

Another thing that traditional class-oriented languages give
you via super is a direct way for the constructor of a child class
to reference the constructor of its parent class. This is largely
true because with real classes, the constructor belongs to the
class. However, in JS, it’s the reverse—it’s actually more appro‐
priate to think of the “class” belonging to the constructor (the
Foo.prototype... type references). Since in JS the relation‐
ship between child and parent exists only between the
two .prototype objects of the respective constructors, the
constructors themselves are not directly related, and thus
there’s no simple way to relatively reference one from the oth‐
er (see Appendix A on the ES6 class, which “solves” this with
super).

An interesting implication of polymorphism can be seen specifically
with ignition(). Inside pilot(), a relative-polymorphic reference is
made to (the inherited) Vehicle’s version of drive(). But that drive()
references an ignition() method just by name (no relative reference).

Which version of ignition() will the language engine use, the one
from Vehicle or the one from SpeedBoat? It uses the SpeedBoat ver‐
sion of ignition(). If you were to instantiate the Vehicle class itself,
and then call its drive(), the language engine would instead just use
Vehicle’s ignition() method definition.

Put another way, the definition for the method ignition() poly‐
morphs (changes) depending on which class (level of inheritance) you
are referencing an instance of.

This may seem like overly deep academic detail. But understanding
these details is necessary to properly contrast similar (but distinct)
behaviors in JavaScript’s [[Prototype]] mechanism.

When classes are inherited, there is a way for the classes themselves
(not the object instances created from them!) to relatively reference
the class inherited from, and this relative reference is usually called
super.
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Remember this figure from earlier?

Notice how for both instantiation (a1, a2, b1, and b2) and inheritance
(Bar), the arrows indicate a copy operation.

Conceptually, it would seem a child class Bar can access behavior in
its parent class Foo using a relative polymorphic reference (aka
super). However, in reality, the child class is merely given a copy of
the inherited behavior from its parent class. If the child “overrides” a
method it inherits, both the original and overridden verions of the
method are actually maintained, so that they are both accessible.

Don’t let polymorphism confuse you into thinking a child class is
linked to its parent class. A child class instead gets a copy of what it
needs from the parent class. Class inheritance implies copies.

Multiple Inheritance
Recall our earlier discussion of parent(s) and children and DNA? We
said that the metaphor was a bit weird because biologically most off‐
spring come from two parents. If a class could inherit from two other
classes, it would more closely fit the parent/child metaphor.

Some class-oriented languages allow you to specify more than one
“parent” class to “inherit” from. Multiple inheritance means that each
parent class definition is copied into the child class.

On the surface, this seems like a powerful addition to class orientation,
giving us the ability to compose more functionality together. However,
there are certainly some complicating questions that arise. If both

Class Inheritance | 75



parent classes provide a method called drive(), which version would
a drive() reference in the child resolve to? Would you always have to
manually specify which parent’s drive() you meant, thus losing some
of the gracefulness of polymorphic inheritance?

There’s another variation, the so-called diamond problem, which refers
to the scenario where a child class D inherits from two parent classes
(B and C), and each of those in turn inherits from a common A parent.
If A provides a method drive(), and both B and C override (poly‐
morph) that method, when D references drive(), which version
should it use (B:drive() or C:drive())?

These complications go much deeper than this quick glance. We ad‐
dress them here only so we can contrast with how JavaScript’s mech‐
anisms work.

JavaScript is simpler: it does not provide a native mechanism for
“multiple inheritance.” Many see this is a good thing, because the
complexity savings more than make up for the “reduced” functionality.
But this doesn’t stop developers from trying to fake it in various ways,
as we’ll see next.

Mixins
JavaScript’s object mechanism does not automatically perform copy
behavior when you inherit or instantiate. Plainly, there are no “classes”
in JavaScript to instantiate, only objects. And objects don’t get copied
to other objects, they get linked together (more on that in Chapter 5).

Since observed class behaviors in other languages imply copies, let’s
examine how JS developers fake the missing copy behavior of classes

76 | Chapter 4: Mixing (Up) “Class” Objects



in JavaScript: mixins. We’ll look at two types of mixin: explicit and
implicit.

Explicit Mixins
Let’s again revisit our Vehicle and Car example from before. Since
JavaScript will not automatically copy behavior from Vehicle to Car,
we can instead create a utility that manually copies. Such a utility is
often called extend(..) by many libraries/frameworks, but we will
call it mixin(..) here for illustrative purposes:

// vastly simplified `mixin(..)` example:
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        // only copy if not already present
        if (!(key in targetObj)) {
            targetObj[key] = sourceObj[key];
        }
    }

    return targetObj;
}

var Vehicle = {
    engines: 1,

    ignition: function() {
        console.log( "Turning on my engine." );
    },

    drive: function() {
        this.ignition();
        console.log( "Steering and moving forward!" );
    }
};

var Car = mixin( Vehicle, {
    wheels: 4,

    drive: function() {
        Vehicle.drive.call( this );
        console.log(
           "Rolling on all " + this.wheels + " wheels!"
        );
    }
} );
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Subtly but importantly, we’re not dealing with classes any‐
more, because there are no classes in JavaScript. Vehicle and
Car are just objects that we make copies from and to, respec‐
tively.

Car now has a copy of the properties and functions from Vehicle.
Technically, functions are not actually duplicated, but rather refer‐
ences to the functions are copied. So, Car now has a property called
ignition, which is a copied reference to the ignition() function, as
well as a property called engines with the copied value of 1 from
Vehicle.

Car already had a drive property (function), so that property refer‐
ence was not overridden (see the if statement in mixin(..) earlier).

Polymorphism revisited

Let’s examine this statement: Vehicle.drive.call( this ). This is
what I call explicit pseudopolymorphism. Recall in our previous pseu‐
docode this line was inherited:drive(), which we called relative
polymorphism.

JavaScript does not have (prior to ES6; see Appendix A) a facility for
relative polymorphism. So, because both Car and Vehicle had a func‐
tion of the same name, drive(), to distinguish a call to one or the
other, we must make an absolute (not relative) reference. We explicitly
specify the Vehicle object by name and call the drive() function on
it.

But if we said Vehicle.drive(), the this binding for that function
call would be the Vehicle object instead of the Car object (see Chap‐
ter 2), which is not what we want. So, instead we use .call( this )
(Chapter 2) to ensure that drive() is executed in the context of the
Car object.
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If the function name identifier for Car.drive() hadn’t
overlapped with (aka “shadowed”; see Chapter 5) Vehi
cle.drive(), we wouldn’t have been exercising method poly‐
morphism. So, a reference to Vehicle.drive() would have
been copied over by the mixin(..) call, and we could have
accessed directly with this.drive(). The chosen identifier
overlap shadowing is why we have to use the more complex
explicit pseudopolymorphism approach.

In class-oriented languages, which have relative polymorphism, the
linkage between Car and Vehicle is established once, at the top of the
class definition, which makes for only one place to maintain such
relationships.

But because of JavaScript’s peculiarities, explicit pseudopolymorphism
(because of shadowing!) creates brittle manual/explicit linkage in
every single function where you need such a (pseudo)polymorphic
reference. This can significantly increase the maintenance cost. More‐
over, while explicit pseudopolymorphism can emulate the behavior of
multiple inheritance, it only increases the complexity and brittleness.

The result of such approaches is usually more complex, harder-to-
read, and harder-to-maintain code. Explicit pseudopolymorphism
should be avoided wherever possible, because the cost outweighs the
benefit in most respects.

Mixing copies

Recall the mixin(..) utility from earlier:

// vastly simplified `mixin()` example:
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        // only copy if not already present
        if (!(key in targetObj)) {
            targetObj[key] = sourceObj[key];
        }
    }

    return targetObj;
}

Now, let’s examine how mixin(..) works. It iterates over the proper‐
ties of sourceObj (Vehicle, in our example), and if there’s no matching
property of that name in targetObj (Car, in our example), it makes a
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copy. Since we’re making the copy after the initial object exists, we are
careful to not copy over a target property.

If we made the copies first, before specifying the Car-specific contents,
we could omit this check against targetObj, but that’s a little more
clunky and less efficient, so it’s generally less preferred:

// alternate mixin, less "safe" to overwrites
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        targetObj[key] = sourceObj[key];
    }

    return targetObj;
}

var Vehicle = {
    // ...
};

// first, create an empty object with
// Vehicle's stuff copied in
var Car = mixin( Vehicle, { } );

// now copy the intended contents into Car
mixin( {
    wheels: 4,

    drive: function() {
        // ...
    }
}, Car );

With either approach, we have explicitly copied the nonoverlapping
contents of Vehicle into Car. The name “mixin” comes from an al‐
ternate way of explaining the task: Car has Vehicle’s contents mixed
in, just like you mix in chocolate chips into your favorite cookie dough.

As a result of the copy operation, Car will operate somewhat separately
from Vehicle. If you add a property onto Car, it will not affect Vehi
cle, and vice versa.

A few minor details have been skimmed over here. There are
still some subtle ways the two objects can “affect” each other
even after copying, such as if they both share a reference to a
common object (such as an array).
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Since the two objects also share references to their common functions,
that means that even manual copying of functions (aka mixins) from
one object to another doesn’t actually emulate the real duplication
from class to instance that occurs in class-oriented languages.

JavaScript functions can’t really be duplicated (in a standard, reliable
way), so what you end up with instead is a duplicated reference to the
same shared function object (functions are objects; see Chapter 3). If
you modified one of the shared function objects (like ignition()) by
adding properties on top of it, for instance, both Vehicle and Car
would be “affected” via the shared reference.

Explicit mixins are a fine mechanism in JavaScript. But they appear
more powerful than they really are. Not much benefit is actually de‐
rived from copying a property from one object to another, as opposed
to just defining the properties twice, once on each object. And that’s
especially true given the function-object reference nuance we just
mentioned.

If you explicitly mix in two or more objects into your target object,
you can partially emulate the behavior of multiple inheritance, but
there’s no direct way to handle collisions if the same method or prop‐
erty is being copied from more than one source. Some developers/
libraries have come up with “late binding” techniques and other exotic
workarounds, but fundamentally, these “tricks” are usually more effort
(with less performance!) than the payoff.

Take care only to use explicit mixins where it actually helps make more
readable code, and avoid the pattern if you find it making code that’s
harder to trace, or if you find it creates unnecessary or unwieldy de‐
pendencies between objects.

If it starts to get harder to properly use mixins than before you used
them, you should probably stop using mixins. In fact, if you have to
use a complex library/utility to work out all these details, it might be
a sign that you’re going about it the harder way, perhaps unnecessarily.
In Chapter 6, we’ll try to distill a simpler way that accomplishes the
desired outcomes without all the fuss.

Parasitic inheritance
A variation on this explicit mixin pattern, which is both in some ways
explicit and in other ways implicit, is called “parasitic inheritance,”
popularized mainly by Douglas Crockford.
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Here’s how it can work:

// "Traditional JS Class" `Vehicle`
function Vehicle() {
    this.engines = 1;
}
Vehicle.prototype.ignition = function() {
    console.log( "Turning on my engine." );
};
Vehicle.prototype.drive = function() {
    this.ignition();
    console.log( "Steering and moving forward!" );
};

// "Parasitic Class" `Car`
function Car() {
    // first, `car` is a `Vehicle`
    var car = new Vehicle();

    // now, let's modify our `car` to specialize it
    car.wheels = 4;

    // save a privileged reference to `Vehicle::drive()`
    var vehDrive = car.drive;

    // override `Vehicle::drive()`
    car.drive = function() {
        vehDrive.call( this );
        console.log(
           "Rolling on all " + this.wheels + " wheels!"
        );

    return car;
}

var myCar = new Car();

myCar.drive();
// Turning on my engine.
// Steering and moving forward!
// Rolling on all 4 wheels!

As you can see, we initially make a copy of the definition from the
Vehicle parent class (object), then mix in our child class (object) def‐
inition (preserving privileged parent-class references as needed), and
pass off this composed object car as our child instance.
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When we call new Car(), a new object is created and refer‐
enced by Car’s this reference (see Chapter 2). But since we
don’t use that object, and instead return our own car object,
the initially created object is just discarded. So, Car() could be
called without the new keyword, and the functionality just de‐
scribed would be identical, but without the wasted object cre‐
ation/garbage collection.

Implicit Mixins
Implicit mixins are closely related to explicit pseudopolymorphism,
as explained previously. As such, they come with the same caveats and
warnings.

Consider this code:

var Something = {
    cool: function() {
        this.greeting = "Hello World";
        this.count = this.count ? this.count + 1 : 1;
    }
};

Something.cool();
Something.greeting; // "Hello World"
Something.count; // 1

var Another = {
    cool: function() {
        // implicit mixin of `Something` to `Another`
        Something.cool.call( this );
    }
};

Another.cool();
Another.greeting; // "Hello World"
Another.count; // 1 (not shared state with `Something`)

With Something.cool.call( this ), which can happen either in a
constructor call (most common) or in a method call (shown here), we
essentially “borrow” the function Something.cool() and call it in the
context of Another (via its this binding; see Chapter 2) instead of
Something. The end result is that the assignments that Some
thing.cool() makes are applied against the Another object rather
than the Something object.
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So, it is said that we “mixed in” Something’s behavior with (or into)
Another.

While this sort of technique seems to take useful advantage of this
rebinding functionality, it’s a brittle Something.cool.call( this )
call, which cannot be made into a relative (and thus more flexible)
reference, that you should heed with caution. Generally, avoid such
constructs wherever possible to keep cleaner and more maintainable
code.

Review
Classes are a design pattern. Many languages provide syntax that en‐
ables natural class-oriented software design. JS also has a similar
syntax, but it behaves very differently from what you’re used to with
classes in those other languages.

Classes mean copies.

When traditional classes are instantiated, a copy of behavior from class
to instance occurs. When classes are inherited, a copy of behavior from
parent to child also occurs.

Polymorphism (having different functions at multiple levels of an in‐
heritance chain with the same name) may seem like it implies a ref‐
erential relative link from child back to parent, but it’s still just a result
of copy behavior.

JavaScript does not automatically create copies (as classes imply) be‐
tween objects.

The mixin pattern (both explicit and implicit) is often used to sort of
emulate class copy behavior, but this usually leads to ugly and brittle
syntax like explicit pseudopolymorphism (OtherObj.method
Name.call(this, ...)), which often results in code that is harder to
understand and maintain.

Explicit mixins are also not exactly the same as class-copy behavior,
since objects (and functions!) only have shared references duplicated,
not the objects/functions themselves. Not paying attention to such
nuance is the source of a variety of gotchas.

In general, faking classes in JS often sets more landmines for future
coding than solving present real problems.
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CHAPTER 5

Prototypes

In Chapters 3 and 4, we mentioned the [[Prototype]] chain several
times, but haven’t said what exactly it is. We will now examine proto‐
types in detail.

All of the attempts to emulate class-copy behavior described
previously in Chapter 4, labeled as variations of mixins, com‐
pletely circument the [[Prototype]] chain mechanism we
examine here in this chapter.

[[Prototype]]
Objects in JavaScript have an internal property, denoted in the speci‐
fication as [[Prototype]], which is simply a reference to another ob‐
ject. Almost all objects are given a non-null value for this property, at
the time of their creation.

Note: we will see shortly that it is possible for an object to have an
empty [[Prototype]] linkage, though this is somewhat less common.

Consider:

var myObject = {
    a: 2
};

myObject.a; // 2

What is the [[Prototype]] reference used for? In Chapter 3, we ex‐
amined the [[Get]] operation that is invoked when you reference a
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property on an object, such as myObject.a. For that default [[Get]]
operation, the first step is to check if the object itself has a property a
on it, and if so, it’s used.

ES6 Proxies are outside of our discussion scope in this book
(they will be covered in a later book in the series), but every‐
thing we discuss here about normal [[Get]] and [[Put]] be‐
havior does not apply if a Proxy is involved.

But it’s what happens if a isn’t present on myObject that brings our
attention now to the [[Prototype]] link of the object.

The default [[Get]] operation proceeds to follow the [[Proto
type]] link of the object if it cannot find the requested property on
the object directly:

var anotherObject = {
    a: 2
};

// create an object linked to `anotherObject`
var myObject = Object.create( anotherObject );

myObject.a; // 2

We will explain what Object.create(..) does, and how it
operates, shortly. For now, just assume it creates an object with
the [[Prototype]] linkage we’re examining to the object
specified.

So, we have myObject that is now [[Prototype]] linked to another
Object. Clearly myObject.a doesn’t actually exist, but nevertheless,
the property access succeeds (being found on anotherObject instead)
and indeed finds the value 2.

But, if a weren’t found on anotherObject either, its [[Prototype]]
chain, if nonempty, is again consulted and followed.

This process continues until either a matching property name is found,
or the [[Prototype]] chain ends. If no matching property is ever
found by the end of the chain, the return result from the [[Get]]
operation is undefined.
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Similar to this [[Prototype]] chain lookup process, if you use a
for..in loop to iterate over an object, any property that can be reached
via its chain (and is also enumerable—see Chapter 3) will be enumer‐
ated. If you use the in operator to test for the existence of a property
on an object, in will check the entire chain of the object (regardless of
enumerability):

var anotherObject = {
    a: 2
};

// create an object linked to `anotherObject`
var myObject = Object.create( anotherObject );

for (var k in myObject) {
    console.log("found: " + k);
}
// found: a

("a" in myObject); // true

So, the [[Prototype]] chain is consulted, one link at a time, when you
perform property lookups in various fashions. The lookup stops once
the property is found or the chain ends.

Object.prototype
But where exactly does the [[Prototype]] chain “end”?

The top end of every normal [[Prototype]] chain is the built-in
Object.prototype. This object includes a variety of common utilities
used all over JS, because all normal (built-in, not host-specific exten‐
sion) objects in JavaScript “descend from” (aka have at the top of their
[[Prototype]] chain) the Object.prototype object.

Some utilities found here you may be familiar with include .to
String() and .valueOf(). In Chapter 3, we introduced anoth‐
er: .hasOwnProperty(..). And yet another function on Object.pro
totype you may not be familiar with is .isPrototypeOf(..), which
we’ll address later in this chapter.

Setting and Shadowing Properties
Back in Chapter 3, we mentioned that setting properties on an object
was more nuanced than just adding a new property to the object or
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changing an existing property’s value. We will now revisit this situation
more completely:

myObject.foo = "bar";

If the myObject object already has a normal data accessor property
called foo directly present on it, the assignment is as simple as chang‐
ing the value of the existing property.

If foo is not already present directly on myObject, the [[Proto
type]] chain is traversed, just like for the [[Get]] operation. If foo is
not found anywhere in the chain, the property foo is added directly
to myObject with the specified value, as expected.

However, if foo is already present somewhere higher in the chain,
nuanced (and perhaps surprising) behavior can occur with the myOb
ject.foo = "bar" assignment. We’ll examine that more in just a mo‐
ment.

If the property name foo ends up both on myObject itself and at a
higher level of the [[Prototype]] chain that starts at myObject, this
is called shadowing. The foo property directly on myObject shadows
any foo property that appears higher in the chain, because the myOb
ject.foo lookup would always find the foo property that’s lowest in
the chain.

As we just hinted, shadowing foo on myObject is not as simple as it
may seem. We will now examine three scenarios for the myObject.foo
= "bar" assignment when foo is not already on myObject directly, but
is at a higher level of myObject’s [[Prototype]] chain:

1. If a normal data accessor (see Chapter 3) property named foo is
found anywhere higher on the [[Prototype]] chain, and it’s not
marked as read-only (writable:false), then a new property
called foo is added directly to myObject, resulting in a shadowed
property.

2. If a foo is found higher on the [[Prototype]] chain, but it’s
marked as read-only (writable:false), then both the setting of
that existing property as well as the creation of the shadowed
property on myObject are disallowed. If the code is running in
strict mode, an error will be thrown. Otherwise, the setting of
the property value will silently be ignored. Either way, no shad‐
owing occurs.
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3. If a foo is found higher on the [[Prototype]] chain and it’s a
setter (see Chapter 3), then the setter will always be called. No foo
will be added to (aka shadowed on) myObject, nor will the foo
setter be redefined.

Most developers assume that assignment of a property ([[Put]]) will
always result in shadowing if the property already exists higher on the
[[Prototype]] chain, but as you can see, that’s only true in one of the
three situations just described (case 1).

If you want to shadow foo in cases 2 and 3, you cannot use = assign‐
ment, but must instead use Object.defineProperty(..) (see Chap‐
ter 3) to add foo to myObject.

Case 2 may be the most surprising of the three. The presence
of a read-only property prevents a property of the same name
from being implicitly created (shadowed) at a lower level of a
[[Prototype]] chain. The reason for this restriction is pri‐
marily to reinforce the illusion of class-inherited properties. If
you think of the foo at a higher level of the chain as having
been inherited (copied down) to myObject, then it makes sense
to enforce the nonwritable nature of that foo property on my
Object. If you however separate the illusion from the fact, and
recognize that no such inheritance copying actually occured
(see Chapters 4 and 5), it’s a little unnatural that myObject
would be prevented from having a foo property just because
some other object had a nonwritable foo on it. It’s even strang‐
er that this restriction only applies to = assignment, but is not
enforced when using Object.defineProperty(..).

Shadowing methods leads to ugly explicit pseudopolymorphism (see
Chapter 4) if you need to delegate between them. Usually, shadowing
is more complicated and nuanced than it’s worth, so you should try to
avoid it if possible. See Chapter 6 for an alternative design pattern,
which among other things, discourages shadowing in favor of cleaner
alternatives.

Shadowing can even occur implicitly in subtle ways, so care must be
taken if trying to avoid it. Consider:

var anotherObject = {
    a: 2
};
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var myObject = Object.create( anotherObject );

anotherObject.a; // 2
myObject.a; // 2

anotherObject.hasOwnProperty( "a" ); // true
myObject.hasOwnProperty( "a" ); // false

myObject.a++; // oops, implicit shadowing!

anotherObject.a; // 2
myObject.a; // 3

myObject.hasOwnProperty( "a" ); // true

Though it may appear that myObject.a++ should (via delegation) look
up and just increment the anotherObject.a property itself in place,
instead the ++ operation corresponds to myObject.a = myObject.a
+ 1. The result is [[Get]] looking up a property via [[Prototype]]
to get the current value 2 from anotherObject.a, incrementing the
value by one, then [[Put]] assigning the 3 value to a new shadowed
property a on myObject. Oops!

Be very careful when dealing with delegated properties that you mod‐
ify. If you wanted to increment anotherObject.a, the only proper way
is anotherObject.a++.

“Class”
At this point, you might be wondering: Why does one object need to
link to another object? What’s the real benefit? That is a very appro‐
priate question to ask, but we must first understand what [[Proto
type]] is not before we can fully understand and appreciate what it is
and how it’s useful.

As we explained in Chapter 4, in JavaScript, there are no abstract pat‐
terns/blueprints for objects called classes as there are in class-oriented
languages. JavaScript just has objects.

In fact, JavaScript is almost unique among languages as perhaps the
only language with the right to use the label “object-oriented,” because
it’s one of a very short list of languages where an object can be created
directly, without a class at all.
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In JavaScript, classes can’t (being that they don’t exist!) describe what
an object can do. The object defines its own behavior directly. There’s
just the object.

“Class” Functions
There’s a peculiar kind of behavior in JavaScript that has been shame‐
lessly abused for years to hack something that looks like classes. We’ll
examine this approach in detail.

The peculiar “sort-of class” behavior hinges on a strange characteristic
of functions: all functions by default get a public, nonenumerable (see
Chapter 3) property on them called prototype, which points at an
otherwise arbitrary object:

function Foo() {
    // ...
}

Foo.prototype; // { }

This object is often called Foo’s prototype, because we access it via an
unfortunately named Foo.prototype property reference. However,
that terminology is hopelessly destined to lead us into confusion, as
we’ll see shortly. Instead, I will call it “the object formerly known as
Foo’s prototype.” Just kidding. How about “the object arbitrarily la‐
beled Foo dot prototype”?

Whatever we call it, what exactly is this object?

The most direct way to explain it is that each object created from calling
new Foo() (see Chapter 2) will end up (somewhat arbitrarily)
[[Prototype]]-linked to this “Foo dot prototype” object.

Let’s illustrate:

function Foo() {
    // ...
}

var a = new Foo();

Object.getPrototypeOf( a ) === Foo.prototype; // true
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When a is created by calling new Foo(), one of the things that happens
(see Chapter 2 for all four steps) is that a gets an internal [[Proto
type]] link to the object that Foo.prototype is pointing at.

Stop for a moment and ponder the implications of that statement.

In class-oriented languages, multiple copies (aka instances) of a class
can be made, like stamping something out from a mold. As we saw in
Chapter 4, this happens because the process of instantiating (or in‐
heriting from) a class means, “copy the behavior plan from that class
into a physical object,” and this is done again for each new instance.

But in JavaScript, there are no such copy actions performed. You don’t
create multiple instances of a class. You can create multiple objects that
are [[Prototype]]-linked to a common object. But by default, no
copying occurs, and thus these objects don’t end up totally separate
and disconnected from each other, but rather, quite linked.

new Foo() results in a new object (we called it a), and that new object
a is internally [[Prototype]]-linked to the Foo.prototype object.

We end up with two objects, linked to each other. That’s it. We didn’t
instantiate a class. We certainly didn’t do any copying of behavior from
a “class” into a concrete object. We just caused two objects to be linked
to each other.

In fact, the secret, which eludes most JS developers, is that the new
Foo() function calling had really almost nothing direct to do with the
process of creating the link. It was sort of an accidental side effect. new
Foo() is an indirect, roundabout way to end up with what we want: a
new object linked to another object.

Can we get what we want in a more direct way? Yes! The hero is
Object.create(..). But we’ll get to that in a little bit.

What’s in a name?
In JavaScript, we don’t make copies from one object (“class”) to another
(“instance”). We make links between objects. For the [[Prototype]]
mechanism, visually, the arrows move from right to left, and from
bottom to top:
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This mechanism is often called prototypal inheritance (we’ll explore
the code in detail shortly), which is commonly said to be the dynamic-
language version of classical inheritance. It’s an attempt to piggyback
on the common understanding of what “inheritance” means in the
class-oriented world, but tweak (read: pave over) the understood se‐
mantics, to fit dynamic scripting.

The word “inheritance” has a very strong meaning (see Chapter 4),
with plenty of mental precedent. Merely adding “prototypal” in front
to distinguish the actually nearly opposite behavior in JavaScript has
left in its wake nearly two decades of miry confusion.

I like to say that sticking “prototypal” in front of “inheritance” to dras‐
tically reverse its actual meaning is like holding an orange in one hand,
an apple in the other, and insisting on calling the apple a “red orange.”
No matter what confusing label I put in front of it, that doesn’t change
the fact that one fruit is an apple and the other is an orange.

The better approach is to plainly call an apple an apple—to use the
most accurate and direct terminology. That makes it easier to under‐
stand both their similarities and their many differences, because we
all have a simple, shared understanding of what “apple” means.

Because of the confusion and conflation of terms, I believe the label
“prototypal inheritance” itself (and trying to misapply all its associated
class-orientation terminology, like “class,” “constructor,” “instance,”
“polymorphism,” etc.) has done more harm than good in explaining
how JavaScript’s mechanism really works.
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Inheritance implies a copy operation, and JavaScript doesn’t copy ob‐
ject properties (natively, by default). Instead, JS creates a link between
two objects, where one object can essentially delegate property/func‐
tion access to another object. Delegation (see Chapter 6) is a much
more accurate term for JavaScript’s object-linking mechanism.

Another term that is sometimes thrown around in JavaScript is dif‐
ferential inheritance. The idea here is that we describe an object’s be‐
havior in terms of what is different from a more general descriptor.
For example, you explain that a car is a kind of vehicle, but one that
has exactly four wheels, rather than redescribing all the specifics of
what makes up a general vehicle (engine, etc.).

If you try to think of any given object in JS as the sum total of all
behavior that is available via delegation, and in your mind you flatten
all that behavior into one tangible thing, then you can (sorta) see how
differential inheritance might fit.

But just like with prototypal inheritance, differential inheritance pre‐
tends that your mental model is more important than what is phys‐
cially happening in the language. It overlooks the fact that object B is
not actually differentially constructed, but is instead built with specific
characteristics defined, alongside “holes” where nothing is defined. It
is in these “holes” (gaps in, or lack of, definition) that delegation can
take over and, on the fly, “fill them in” with delegated behavior.

The object is not, by native default, flattened into the single differential
object, through copying, that the mental model of differential inheri‐
tance implies. As such, differential inheritance is just not as natural a
fit for describing how JavaScript’s [[Prototype]] mechanism actually
works.

You can choose to prefer the differential inheritance terminology and
mental model, as a matter of taste, but there’s no denying the fact that
it only fits the mental acrobatics in your mind, not the physical be‐
havior in the engine.

“Constructors”
Let’s go back to some earlier code:

function Foo() {
    // ...
}

var a = new Foo();
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What exactly leads us to think Foo is a “class”?

For one, we see the use of the new keyword, just as we see in class-
oriented languages when they construct class instances. For another,
it appears that we are in fact executing a constructor method of a class,
because Foo() is actually a method that gets called, just like how a real
class’s constructor gets called when you instantiate that class.

To further the confusion of “constructor” semantics, the arbitrarily
labeled Foo.prototype object has another trick up its sleeve. Consider
this code:

function Foo() {
    // ...
}

Foo.prototype.constructor === Foo; // true

var a = new Foo();
a.constructor === Foo; // true

The Foo.prototype object by default (at declaration-time on line 1 of
the snippet!) gets a public, nonenumerable (see Chapter 3) property
called .constructor, and this property is a reference back to the func‐
tion (Foo in this case) that the object is associated with. Moreover, we
see that object a created by the “constructor” call new Foo() seems to
also have a property on it called .constructor, which similarly points
to “the function which created it.”

This is not actually true. a has no .constructor property on
it, and though a.constructor does in fact resolve to the Foo
function, “constructor” does not actually mean “was construc‐
ted by,” as it appears. We’ll explain this strangeness shortly.

Oh, yeah, also…by convention in the JavaScript world, a “class” is
named with a capital letter, so the fact that it’s Foo instead of foo is a
strong clue that we intend it to be a “class.” That’s totally obvious to
you, right!?
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This convention is so strong that many JS linters actually com‐
plain if you call new on a method with a lowercase name, or if
we don’t call new on a function that happens to start with a
capital letter. It sort of boggles the mind that we struggle so
much to get (fake) “class orientation” right in JavaScript that
we create linter rules to ensure we use capital letters, even
though the capital letter doesn’t mean anything at all to the JS
engine.

Constructor or call?

In the previous snippet, it’s tempting to think that Foo is a constructor,
because we call it with new and we observe that it “constructs” an object.

In reality, Foo is no more a “constructor” than any other function in
your program. Functions themselves are not constructors. However,
when you put the new keyword in front of a normal function call, that
makes that function call a “constructor call.” In fact, new sort of hijacks
any normal function and calls it in a fashion that constructs an object,
in addition to whatever else it was going to do.

For example:

function NothingSpecial() {
    console.log( "Don't mind me!" );
}

var a = new NothingSpecial();
// "Don't mind me!"

a; // {}

NothingSpecial is just a plain old normal function, but when called
with new, it constructs an object, almost as a side effect, which we hap‐
pen to assign to a. The call was a constructor call, but NothingSpe
cial is not, in and of itself, a constructor.

In other words, in JavaScript, it’s most appropriate to say that a “con‐
structor” is any function called with the new keyword in front of it.

Functions aren’t constructors, but function calls are “constructor calls”
if and only if new is used.
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Mechanics
Are those the only common triggers for ill-fated “class” discussions in
JavaScript?

Not quite. JS developers have strived to simulate as much as they can
of class orientation:

function Foo(name) {
    this.name = name;
}

Foo.prototype.myName = function() {
    return this.name;
};

var a = new Foo( "a" );
var b = new Foo( "b" );

a.myName(); // "a"
b.myName(); // "b"

This snippet shows two additional “class orientation” tricks in play:

1. this.name = name adds the .name property onto each object (a
and b, respectively; see Chapter 2 about this binding), similar to
how class instances encapsulate data values.

2. Foo.prototype.myName = ... is perhaps the more interesting
technique; this adds a property (function) to the Foo.prototype
object. Now, a.myName() works, but perhaps surprisingly. How?

In the previous snippet, it’s strongly tempting to think that when a and
b are created, the properties/functions on the Foo.prototype object
are copied over to each of the a and b objects. However, that’s not what
happens.

At the beginning of this chapter, we explained the [[Prototype]] link,
and how it provides the fallback lookup steps if a property reference
isn’t found directly on an object, as part of the default [[Get]]
algorithm.

So, by virtue of how they are created, a and b each end up with an
internal [[Prototype]] linkage to Foo.prototype. When myName is
not found on a or b, respectively, it’s instead found (through delega‐
tion; see Chapter 6) on Foo.prototype.
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“Constructor” redux

Recall the discussion from earlier about the .constructor property,
and how it seems like a.constructor === Foo being true means that
a has an actual .constructor property on it, pointing at Foo? Not
correct.

This is just unfortunate confusion. In actuality, the .constructor
reference is also delegated up to Foo.prototype, which happens to, by
default, have a .constructor that points at Foo.

It seems awfully convenient that an object a “constructed by” Foo would
have access to a .constructor property that points to Foo. But that’s
nothing more than a false sense of security. It’s a happy accident, almost
tangentially, that a.constructor happens to point at Foo via this de‐
fault [[Prototype]] delegation. There are actually several ways that
the ill-fated assumption of .constructor meaning “was constructed
by” can come back to bite you.

For one, the .constructor property on Foo.prototype is only there
by default on the object created when Foo the function is declared. If
you create a new object, and replace a function’s default .prototype
object reference, the new object will not by default magically get
a .constructor on it.

Consider:

function Foo() { /* .. */ }

Foo.prototype = { /* .. */ }; // create a new prototype object

var a1 = new Foo();
a1.constructor === Foo; // false!
a1.constructor === Object; // true!

Object(..) didn’t “construct” a1, did it? It sure seems like Foo()
“constructed” it. Most developers think of Foo() as doing the
construction, but where everything falls apart is when you think “con‐
structor” means “was constructed by,” because by that reasoning,
a1.constructor should be Foo, but it isn’t!

What’s happening? a1 has no .constructor property, so it delegates
up the [[Prototype]] chain to Foo.prototype. But that object doesn’t
have a .constructor either (like the default Foo.prototype object
would have had!), so it keeps delegating, this time up to Object.pro
totype, the top of the delegation chain. That object indeed has
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a .constructor on it, which points to the built-in Object(..)
function.

Misconception: busted.

Of course, you can add .constructor back to the Foo.prototype
object, but this takes manual work, especially if you want to match
native behavior and have it be nonenumerable (see Chapter 3).

For example:

function Foo() { /* .. */ }

Foo.prototype = { /* .. */ }; // create a new prototype object

// Need to properly "fix" the missing `.constructor`
// property on the new object serving as `Foo.prototype`.
// See Chapter 3 for `defineProperty(..)`.
Object.defineProperty( Foo.prototype, "constructor" , {
    enumerable: false,
    writable: true,
    configurable: true,
    value: Foo    // point `.constructor` at `Foo`
} );

That’s a lot of manual work to fix .constructor. Moreover, all we’re
really doing is perpetuating the misconception that “constructor”
means “was constructed by.” That’s an expensive illusion.

The fact is, .constructor on an object arbitrarily points, by default,
at a function that, reciprocally, has a reference back to the object—a
reference that it calls .prototype. The words “constructor” and “pro‐
totype” only have a loose default meaning that might or might not hold
true later. The best thing to do is remind yourself that “constructor
does not mean constructed by.”

.constructor is not a magic immutable property. It is nonenumerable
(see previous snippet), but its value is writable (can be changed), and
moreover, you can add or overwrite (intentionally or accidentally) a
property of the name constructor on any object in any [[Proto
type]] chain, with any value you see fit.

By virtue of how the [[Get]] algorithm traverses the [[Proto
type]] chain, a .constructor property reference found anywhere
may resolve quite differently than you’d expect.

See how arbitrary its meaning actually is?
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The result? Some arbitrary object-property reference like a1.con
structor cannot actually be trusted to be the assumed default function
reference. Moreover, as we’ll see shortly, just by simple omission,
a1.constructor can even end up pointing somewhere quite surpris‐
ing and insensible.

a1.constructor is extremely unreliable, and it’s an unsafe reference
to rely upon in your code. Generally, such references should be avoided
where possible.

(Prototypal) Inheritance
We’ve seen some approximations of class mechanics as typically
hacked into JavaScript programs. But JavaScript classes would be rath‐
er hollow if we didn’t have an approximation of “inheritance.”

Actually, we’ve already seen the mechanism commonly called proto‐
typal inheritance at work when a was able to “inherit from” Foo.pro
totype, and thus get access to the myName() function. But we tradi‐
tionally think of inheritance as being a relationship between two
classes, rather than between class and instance:

Recall this figure from earlier, which shows not only delegation from
an object (aka “instance”) a1 to object Foo.prototype, but from
Bar.prototype to Foo.prototype, which somewhat resembles the
concept of parent-child class inheritance. Resembles, except of course
for the direction of the arrows, which show these are delegation links
rather than copy operations.
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And, here’s the typical “prototype-style” code that creates such links:

function Foo(name) {
    this.name = name;
}

Foo.prototype.myName = function() {
    return this.name;
};

function Bar(name,label) {
    Foo.call( this, name );
    this.label = label;
}

// here, we make a new `Bar.prototype`
// linked to `Foo.prototype`
Bar.prototype = Object.create( Foo.prototype );

// Beware! Now `Bar.prototype.constructor` is gone,
// and might need to be manually "fixed" if you're
// in the habit of relying on such properties!

Bar.prototype.myLabel = function() {
    return this.label;
};

var a = new Bar( "a", "obj a" );

a.myName(); // "a"
a.myLabel(); // "obj a"

To understand why this points to a in the previous code snip‐
pet, see Chapter 2.

The important part is Bar.prototype = Object.create( Foo.pro
totype ). The call to Object.create(..) creates a “new” object out
of thin air, and links that new object’s internal [[Prototype]] to the
object you specify (Foo.prototype in this case).

In other words, that line says: “make a new Bar dot prototype object
that’s linked to Foo dot prototype.”

When function Bar() { .. } is declared, Bar, like any other func‐
tion, has a .prototype link to its default object. But that object is not
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linked to Foo.prototype like we want. So, we create a new object that
is linked as we want, effectively throwing away the original incorrectly
linked object.

A common misconception here is that either of the following ap‐
proaches would also work, but they do not work as you’d expect:

// doesn't work like you want!
Bar.prototype = Foo.prototype;

// works kinda like you want, but with
// side effects you probably don't want :(
Bar.prototype = new Foo();

Bar.prototype = Foo.prototype doesn’t create a new object for
Bar.prototype to be linked to. It just makes Bar.prototype another
reference to Foo.prototype, which effectively links Bar directly to the
same object to which Foo links: Foo.prototype. This means when you
start assigning, like Bar.prototype.myLabel = ..., you’re modifying
not a separate object but the shared Foo.prototype object itself, which
would affect any objects linked to Foo.prototype. This is almost cer‐
tainly not what you want. If it is what you want, then you likely don’t
need Bar at all, and should just use only Foo and make your code
simpler.

Bar.prototype = new Foo() does in fact create a new object that is
duly linked to Foo.prototype as we’d want. But, it used the Foo(..)
“constructor call” to do it. If that function has any side effects (such as
logging, changing state, registering against other objects, adding data
properties to this, etc.), those side effects happen at the time of this
linking (and likely against the wrong object!), rather than only when
the eventual Bar() “descendents” are created, as would likely be
expected.

So, we’re left with using Object.create(..) to make a new object
that’s properly linked, but without having the side effects of calling
Foo(..). The slight downside is that we have to create a new object,
throwing the old one away, instead of modifying the existing default
object we’re provided.

It would be nice if there was a standard and reliable way to modify the
linkage of an existing object. Prior to ES6, there’s a nonstandard and
not fully cross-browser way, via the .__proto__ property, which is
settable. ES6 adds a Object.setPrototypeOf(..) helper utility, which
does the trick in a standard and predictable way.
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Compare the pre-ES6 and ES6-standardized techniques for linking
Bar.prototype to Foo.prototype, side by side:

// pre-ES6
// throws away default existing `Bar.prototype`
Bar.prototype = Object.create( Foo.prototype );

// ES6+
// modifies existing `Bar.prototype`
Object.setPrototypeOf( Bar.prototype, Foo.prototype );

Ignoring the slight performance disadvantage (throwing away an ob‐
ject that’s later garbage-collected) of the Object.create(..) ap‐
proach, it’s a little bit shorter and may be perhaps a little easier to read
than the ES6+ approach. But it’s probably a syntactic wash either way.

Inspecting “Class” Relationships
What if you have an object like a and want to find out what object (if
any) it delegates to? Inspecting an instance (just an object in JS) for its
inheritance ancestry (delegation linkage in JS) is often called intro‐
spection (or reflection) in traditional class-oriented environments.

Consider:

function Foo() {
    // ...
}

Foo.prototype.blah = ...;

var a = new Foo();

How do we then introspect a to find out its “ancestry” (delegation
linkage)? The first approach embraces the “class” confusion:

a instanceof Foo; // true

The instanceof operator takes a plain object as its lefthand operand
and a function as its righthand operand. The question instanceof
answers is: in the entire [[Prototype]] chain of a, does the object
arbitrarily pointed to by Foo.prototype ever appear?

Unfortunately, this means that you can only inquire about the “an‐
cestry” of some object (a) if you have some function (Foo, with its
attached .prototype reference) to test with. If you have two arbitrary
objects, say a and b, and want to find out if the objects are related to

(Prototypal) Inheritance | 103



each other through a [[Prototype]] chain, instanceof alone can’t
help.

If you use the built-in .bind(..) utility to make a hard-
bound function (see Chapter 2), the function created will not
have a .prototype property. Using instanceof with such a
function transparently substitutes the .prototype of the tar‐
get function that the hard-bound function was created from.
It’s fairly uncommon to use hard-bound functions as “con‐
structor calls”, but if you do, it will behave as if the original
target function was invoked instead, which means that using
instanceof with a hard-bound function also behaves accord‐
ing to the original function.

This snippet illustrates the ridiculousness of trying to reason about
relationships between two objects using “class” semantics and
instanceof:

// helper utility to see if `o1` is
// related to (delegates to) `o2`
function isRelatedTo(o1, o2) {
    function F(){}
    F.prototype = o2;
    return o1 instanceof F;
}

var a = {};
var b = Object.create( a );

isRelatedTo( b, a ); // true

Inside isRelatedTo(..), we borrow a throwaway function F, reassign
its .prototype to arbitrarily point to some object o2, and then ask if
o1 is an “instance of ” F. Obviously o1 wasn’t actually inherited or de‐
scended or even constructed from F, so it should be clear why this kind
of exercise is silly and confusing. The problem comes down to the
awkwardness of class semantics forced upon JavaScript, in this case as
revealed by the indirect semantics of instanceof.

The second, and much cleaner, approach to [[Prototype]] reflection
is:

Foo.prototype.isPrototypeOf( a ); // true

Notice that in this case, we don’t really care (or even need) Foo, we just
need an object (in our case, arbitrarily labeled Foo.prototype) to test

104 | Chapter 5: Prototypes



against another object. The question isPrototypeOf(..) answers is:
in the entire [[Prototype]] chain of a, does Foo.prototype ever
appear?

Same question, and exact same answer. But in this second approach,
we don’t actually need the indirection of referencing a function (Foo)
whose .prototype property will automatically be consulted.

We just need two objects to inspect a relationship between them. For
example:

// Simply: does b appear anywhere in
// c's [[Prototype]] chain?
b.isPrototypeOf( c );

Notice that this approach doesn’t require a function (“class”) at all. It
just uses object references directly to b and c, and inquires about their
relationship. In other words, our isRelatedTo(..) utility is built in
to the language, and it’s called isPrototypeOf(..).

We can also directly retrieve the [[Prototype]] of an object. As of
ES5, the standard way to do this is:

Object.getPrototypeOf( a );

And you’ll notice that object reference is what we’d expect:

Object.getPrototypeOf( a ) === Foo.prototype; // true

Most browsers (not all!) have also long supported a nonstandard al‐
ternate way of accessing the internal [[Prototype]]:

a.__proto__ === Foo.prototype; // true

The strange .__proto__ (not standardized until ES6!) property “mag‐
ically” retrieves the internal [[Prototype]] of an object as a reference,
which is quite helpful if you want to directly inspect (or even tra‐
verse: .__proto__.__proto__...) the chain.

Just as we saw earlier with .constructor, .__proto__ doesn’t actually
exist on the object you’re inspecting (a in our running example).
In fact, it exists (nonenumerable; see Chapter 2) on the built-in
Object.prototype, along with the other common utilities (.to
String(), .isPrototypeOf(..), etc.).

Moreover, .__proto__ looks like a property, but it’s actually more ap‐
propriate to think of it as a getter/setter (see Chapter 3).
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Roughly, we could envision .__proto__ implemented (see Chapter 3
for object property definitions) like this:

Object.defineProperty( Object.prototype, "__proto__", {
    get: function() {
        return Object.getPrototypeOf( this );
    },
    set: function(o) {
        // setPrototypeOf(..) as of ES6
        Object.setPrototypeOf( this, o );
        return o;
    }
} );

So, when we access (retrieve the value of) a.__proto__, it’s like calling
a.__proto__() (calling the getter function). That function call has a
as its this even though the getter function exists on the Object.pro
totype object (see Chapter 2 for this binding rules), so it’s just like
saying Object.getPrototypeOf( a ).

.__proto__ is also a settable property, just like using ES6’s Object.set
PrototypeOf(..) shown earlier. However, generally you should not
change the [[Prototype]] of an existing object.

There are some very complex, advanced techniques used deep in some
frameworks that allow tricks like “subclassing” an Array, but this is
commonly frowned on in general programming practice, as it usually
leads to much harder to understand/maintain code.

As of ES6, the class keyword will allow something that ap‐
proximates “subclassing” of built-ins like Array. See Appen‐
dix A for discussion of the class syntax added in ES6.

The only other narrow exception (as mentioned earlier) would be set‐
ting the [[Prototype]] of a default function’s .prototype object to
reference some other object (besides Object.prototype). That would
avoid replacing that default object entirely with a new linked object.
Otherwise, it’s best to treat object [[Prototype]] linkage as a read-
only characteristic for ease of reading your code later.
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The JavaScript community unofficially coined a term for the
double underscore, specifically the leading one in properties
like __proto__: “dunder.” So, the “cool kids” in JavaScript
would generally pronounce __proto__ as “dunder proto.”

Object Links
As we’ve now seen, the [[Prototype]] mechanism is an internal link
that exists on one object that references some other object.

This linkage is (primarily) exercised when a property/method refer‐
ence is made against the first object, and no such property/method
exists. In that case, the [[Prototype]] linkage tells the engine to look
for the property/method on the linked-to object. In turn, if that object
cannot fulfill the lookup, its [[Prototype]] is followed, and so on.
This series of links between objects forms what is called the “prototype
chain.”

Create()ing Links
We’ve thoroughly debunked why JavaScript’s [[Prototype]] mecha‐
nism is not like classes, and we’ve seen how it instead creates links
between proper objects.

What’s the point of the [[Prototype]] mechanism? Why is it so com‐
mon for JS developers to go to so much effort (emulating classes) in
their code to wire up these linkages?

Remember we said much earlier in this chapter that Object.cre
ate(..) would be a hero? Now, we’re ready to see how:

var foo = {
    something: function() {
        console.log( "Tell me something good..." );
    }
};

var bar = Object.create( foo );

bar.something(); // Tell me something good...

Object.create(..) creates a new object (bar) linked to the object we
specified (foo), which gives us all the power (delegation) of the [[Pro
totype]] mechanism, but without any of the unnecessary complica‐
tion of new functions acting as classes and constructor calls,
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confusing .prototype and .constructor references, or any of that
extra stuff.

Object.create(null) creates an object that has an empty (aka
null) [[Prototype]] linkage, and thus the object can’t dele‐
gate anywhere. Since such an object has no prototype chain,
the instanceof operator (explained earlier) has nothing to
check, so it will always return false. These special empty-
[[Prototype]] objects are often called “dictionaries,” as they
are typically used purely for storing data in properties, most‐
ly because they have no possible surprise effects from any
delegated properties/functions on the [[Prototype]] chain,
and are thus purely flat data storage.

We don’t need classes to create meaningful relationships between two
objects. The only thing we should really care about is objects linked
together for delegation, and Object.create(..) gives us that linkage
without all the class cruft.

Object.create() polyfill

Object.create(..) was added in ES5. You may need to support pre-
ES5 environments (like older IEs), so let’s take a look at a simple par‐
tial polyfill for Object.create(..) that gives us the capability that we
need even in those older JS environments:

if (!Object.create) {
    Object.create = function(o) {
        function F(){}
        F.prototype = o;
        return new F();
    };
}

This polyfill works by using a throwaway F function, and we override
its .prototype property to point to the object we want to link to. Then
we use new F() construction to make a new object that will be linked
as we specified.

This usage of Object.create(..) is by far the most common usage,
because it’s the part that can be polyfilled. There’s an additional set of
functionality that the standard ES5 built-in Object.create(..) pro‐
vides, which is not polyfillable for pre-ES5. As such, this capability is
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far less commonly used. For completeness sake, let’s look at that ad‐
ditional functionality:

var anotherObject = {
    a: 2
};

var myObject = Object.create( anotherObject, {
    b: {
        enumerable: false,
        writable: true,
        configurable: false,
        value: 3
    },
    c: {
        enumerable: true,
        writable: false,
        configurable: false,
        value: 4
    }
} );

myObject.hasOwnProperty( "a" ); // false
myObject.hasOwnProperty( "b" ); // true
myObject.hasOwnProperty( "c" ); // true

myObject.a; // 2
myObject.b; // 3
myObject.c; // 4

The second argument to Object.create(..) specifies property
names to add to the newly created object, via declaring each new
property’s property descriptor (see Chapter 3). Because polyfilling
property descriptors into pre-ES5 is not possible, this additional func‐
tionality on Object.create(..) cannot be polyfilled.

The vast majority of usage of Object.create(..) uses the polyfill-safe
subset of functionality, so most developers are fine with using the par‐
tial polyfill in pre-ES5 environments.

Some developers take a much stricter view, which is that no function
should be polyfilled unless it can be fully polyfilled. Since Object.cre
ate(..) is one of those partial polyfillable utilities, this narrower per‐
spective says that if you need to use any of the functionality of Ob
ject.create(..) in a pre-ES5 environment, instead of polyfilling,
you should use a custom utility, and stay away from using the name
Object.create entirely. You could instead define your own utility,
like:
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function createAndLinkObject(o) {
    function F(){}
    F.prototype = o;
    return new F();
}

var anotherObject = {
    a: 2
};

var myObject = createAndLinkObject( anotherObject );

myObject.a; // 2

I do not share this strict opinion. I fully endorse the common partial
polyfill of Object.create(..) as shown earlier, and using it in your
code even in pre-ES5. I’ll leave it to you to make your own decision.

Links as Fallbacks?
It may be tempting to think that these links between objects primari‐
ly provide a sort of fallback for “missing” properties or methods. While
that may be an observed outcome, I don’t think it represents the right
way of thinking about [[Prototype]].

Consider:

var anotherObject = {
    cool: function() {
        console.log( "cool!" );
    }
};

var myObject = Object.create( anotherObject );

myObject.cool(); // "cool!"

That code will work by virtue of [[Prototype]], but if you wrote it
that way so that anotherObject was acting as a fallback just in case
myObject couldn’t handle some property/method that some developer
may try to call, odds are that your software is going to be a bit more
“magical” and harder to understand and maintain.

That’s not to say there aren’t cases where fallbacks are an appropriate
design pattern, but it’s not very common or idiomatic in JS, so if you
find yourself doing so, you might want to take a step back and recon‐
sider if that’s really appropriate and sensible design.
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In ES6, an advanced functionality called Proxy is introduced
that can provide something of a “method not found” type of
behavior. Proxy is beyond the scope of this book, but will be
covered in detail in a later book in this series.

Don’t miss an important but nuanced point here.

Designing software where you intend for a developer to, for instance,
call myObject.cool() and have that work even though there is no
cool() method on myObject, introduces some “magic” into your API
design that can be surprising for future developers who maintain your
software.

You can however design your API with less “magic” to it, but still take
advantage of the power of [[Prototype]] linkage:

var anotherObject = {
    cool: function() {
        console.log( "cool!" );
    }
};

var myObject = Object.create( anotherObject );

myObject.doCool = function() {
    this.cool(); // internal delegation!
};

myObject.doCool(); // "cool!"

Here, we call myObject.doCool(), which is a method that actually
exists on myObject, making our API design more explicit (less “mag‐
ical”). Internally, our implementation follows the delegation design
pattern (see Chapter 6), taking advantage of [[Prototype]] delega‐
tion to anotherObject.cool().

In other words, delegation will tend to be less surprising/confusing if
it’s an internal implementation detail rather than plainly exposed in
your API interface design. We will expound on delegation in great
detail in the next chapter.

Review
When attempting a property access on an object that doesn’t have that
property, the object’s internal [[Prototype]] linkage defines where
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the [[Get]] operation (see Chapter 3) should look next. This cascad‐
ing linkage from object to object essentially defines a “prototype chain”
(somewhat similar to a nested scope chain) of objects to traverse for
property resolution.

All normal objects have the built-in Object.prototype as the top of
the prototype chain (like the global scope in scope lookup), where
property resolution will stop if not found anywhere prior in the chain.
toString(), valueOf(), and several other common utilities exist on
this Object.prototype object, explaining how all objects in the lan‐
guage are able to access them.

The most common way to get two objects linked to each other is using
the new keyword with a function call, which among its four steps (see
Chapter 2) creates a new object linked to another object.

The “another object” that the new object is linked to happens to be the
object referenced by the arbitrarily named .prototype property of the
function called with new. Functions called with new are often called
“constructors,” despite the fact that they are not actually instantiating
a class as constructors do in traditional class-oriented languages.

While these JavaScript mechanisms can seem to resemble “class in‐
stantiation” and “class inheritance” from traditional class-oriented
languages, the key distinction is that in JavaScript, no copies are made.
Rather, objects end up linked to each other via an internal [[Proto
type]] chain.

For a variety of reasons, not the least of which is terminology prece‐
dent, “inheritance” (and “prototypal inheritance”) and all the other
OO terms just do not make sense when considering how JavaScript
actually works (not just applied to our forced mental models).

Instead, “delegation” is a more appropriate term, because these rela‐
tionships are not copies but delegation links.
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CHAPTER 6

Behavior Delegation

In Chapter 5, we addressed the [[Prototype]] mechanism in detail,
and why it’s confusing and inappropriate (despite countless attempts
for nearly two decades) to describe it in the context of “class” or “in‐
heritance.” We trudged through not only the fairly verbose syntax
(.prototype littering the code), but the various gotchas (like surpris‐
ing .constructor resolution or ugly pseudopolymorphic syntax). We
explored variations of the “mixin” approach, which many people use
to attempt to smooth over such rough areas.

It’s a common reaction at this point to wonder why it has to be so
complex to do something seemingly so simple. Now that we’ve pulled
back the curtain and seen just how dirty it all gets, it’s not a surprise
that most JS developers never dive this deep, and instead relegate such
mess to a “class” library to handle it for them.

I hope by now you’re not content to just gloss over and leave such
details to a “black box” library. Let’s now dig into how we could and
should be thinking about the object [[Prototype]] mechanism in JS,
in a much simpler and more straightforward way than the confusion
of classes.

As a brief review of our conclusions from Chapter 5, the [[Proto
type]] mechanism is an internal link that exists on one object that
references another object.

This linkage is exercised when a property/method reference is made
against the first object, and no such property/method exists. In that
case, the [[Prototype]] linkage tells the engine to look for the prop‐
erty/method on the linked-to object. In turn, if that object cannot fulfill
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the lookup, its [[Prototype]] is followed, and so on. This series of
links between objects forms what is called the “prototype chain.”

In other words, the actual mechanism, the essence of what’s important
to the functionality we can leverage in JavaScript, is all about objects
being linked to other objects.

That single observation is fundamental and critical to understanding
the motivations and approaches for the rest of this chapter!

Toward Delegation-Oriented Design
To properly focus our thoughts on how to use [[Prototype]] in the
most straightforward way, we must recognize that it represents a fun‐
damentally different design pattern from classes (see Chapter 4).

Some principles of class-oriented design are still very valid, so
don’t toss out everything you know (just most of it!). For ex‐
ample, encapsulation is quite powerful, and is compatible
(though not as common) with delegation.

We need to try to change our thinking from the class/inheritance de‐
sign pattern to the behavior delegation design pattern. If you have done
most or all of your programming in your education/career thinking
in classes, this may be uncomfortable or feel unnatural. You may need
to try this mental exercise quite a few times to get the hang of this very
different way of thinking.

I’m going to walk you through some theoretical exercises first, then
we’ll look side by side at a more concrete example to give you practical
context for your own code.

Class Theory
Let’s say we have several similar tasks (“XYZ,” “ABC,” etc.) that we need
to model in our software.

With classes, the way you design the scenario is as follows: define a
general parent (base) class like Task, defining shared behavior for all
the “alike” tasks. Then, you define child classes XYZ and ABC, both of
which inherit from Task, and each of which adds specialized behavior
to handle its respective task.

114 | Chapter 6: Behavior Delegation



Importantly, the class design pattern encourages you to employ meth‐
od overriding (and polymorphism) to get the most out of inheritance,
where you override the definition of some general Task method in
your XYZ task, perhaps even making use of super to call to the base
version of that method while adding more behavior to it. You’ll likely
find quite a few places where you can “abstract” out general behavior
to the parent class and specialize (override) it in your child classes.

Here’s some loose pseudocode for that scenario:

class Task {
    id;

    // constructor `Task()`
    Task(ID) { id = ID; }
    outputTask() { output( id ); }
}

class XYZ inherits Task {
    label;

    // constructor `XYZ()`
    XYZ(ID,Label) { super( ID ); label = Label; }
    outputTask() { super(); output( label ); }
}

class ABC inherits Task {
    // ...
}

Now, you can instantiate one or more copies of the XYZ child class, and
use those instance(s) to perform task “XYZ.” These instances have
copies both of the general Task defined behavior as well as the specific
XYZ defined behavior. Likewise, instances of the ABC class would have
copies of the Task behavior and the specific ABC behavior. After con‐
struction, you will generally only interact with these instances (and
not the classes), as the instances each have copies of all the behavior
you need to do the intended task.

Delegation Theory
But now let’s try to think about the same problem domain, using
behavior delegation instead of classes.

You will first define an object (not a class, nor a function as most JSers
would lead you to believe) called Task, and it will have concrete be‐
havior on it that includes utility methods that various tasks can use
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(read: delegate to!). Then, for each task (“XYZ,” “ABC”), you define an
object to hold that task-specific data/behavior. You link your task-
specific object(s) to the Task utility object, allowing them to delegate
to it when they need to.

Basically, think about needing behaviors from two sibling/peer objects
(XYZ and Task) to perform task “XYZ.” But rather than needing to
compose them together, via class copies, we can keep them in their
separate objects, and we can allow the XYZ object to delegate to Task
when needed.

Here’s some simple code to suggest how you accomplish that:

Task = {
    setID: function(ID) { this.id = ID; },
    outputID: function() { console.log( this.id ); }
};

// make `XYZ` delegate to `Task`
XYZ = Object.create( Task );

XYZ.prepareTask = function(ID,Label) {
    this.setID( ID );
    this.label = Label;
};

XYZ.outputTaskDetails = function() {
    this.outputID();
    console.log( this.label );
};

// ABC = Object.create( Task );
// ABC ... = ...

In this code, Task and XYZ are not classes (or functions), they’re just
objects. XYZ is set up via Object.create(..) to [[Prototype]]-
delegate to the Task object (see Chapter 5).

As compared to class orientation (aka object orientation), I call this
style of code OLOO (objects linked to other objects). All we really
care about is that the XYZ object delegates to the Task object (as does
the ABC object).

In JavaScript, the [[Prototype]] mechanism links objects to other
objects. There are no abstract mechanisms like “classes,” no matter
how much you try to convince yourself otherwise. It’s like paddling a
canoe upstream: you can do it, but you’re choosing to go against the
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natural current, so it’s obviously going to be harder to get where you’re
going.

Some other differences to note with OLOO-style code:

1. Both the id and label data members from the previous class ex‐
ample are data properties directly on XYZ (neither is on Task). In
general, with [[Prototype]] delegation, you want state to be on
the delegators (XYZ, ABC), not on the delegate (Task).

2. With the class design pattern, we intentionally named output
Task the same on both parent (Task) and child (XYZ), so that we
could take advantage of overriding (polymorphism). In behavior
delegation, we do the opposite: we avoid if at all possible naming
things the same at different levels of the [[Prototype]] chain
(called shadowing—see Chapter 5), because having those name
collisions creates awkward/brittle syntax to disambiguate refer‐
ences (see Chapter 4), and we want to avoid that if we can.
This design pattern calls for less use of general method names that
are prone to overriding and instead more use of descriptive meth‐
od names, specific to the type of behavior each object is doing. This
can actually create easier to understand/maintain code, because
the names of methods (not only at the definition location but
strewn throughout other code) are more obvious (self-
documenting).

3. this.setID(ID); inside of a method on the XYZ object first looks
on XYZ for setID(..), but since it doesn’t find a method of that
name on XYZ, [[Prototype]] delegation means it can follow the
link to Task to look for setID(..), which it of course finds. More‐
over, because of implicit call-site this binding rules (see Chap‐
ter 2), when setID(..) runs, even though the method was found
on Task, the this binding for that function call is XYZ, exactly as
we’d expect and want. We see the same thing with this.outpu
tID() later in the code listing.
In other words, the general utility methods that exist on Task are
available to us while interacting with XYZ, because XYZ can delegate
to Task.

Behavior delegation means to let some object (XYZ) provide a delega‐
tion (to Task) for property or method references if they are not found
on the object (XYZ).
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This is an extremely powerful design pattern, very distinct from the
ideas of parent and child classes, inheritance, polymorphism, etc.
Rather than organizing the objects in your mind vertically, with pa‐
rents flowing down to children, think of objects side by side, as peers,
with any direction of delegation links between the objects as necessary.

Delegation is more properly used as an internal implementa‐
tion detail rather than exposed directly in the API interface
design. In the previous example, we don’t necessarily intend
with our API design for developers to call XYZ.setID()
(though we can, of course!). We sorta hide the delegation as an
internal detail of our API, where XYZ.prepareTask(..) dele‐
gates to Task.setID(..). See “Links as Fallbacks?” on page 110
in Chapter 5 for more detail.

Mutual delegation (disallowed)
You cannot create a cycle where two or more objects are mutually
delegated (bidirectionally) to each other. If you link B to A, and then
try to link A to B, you will get an error.

It’s a shame (not terribly surprising, but mildly annoying) that this is
disallowed. If you made a reference to a property/method that didn’t
exist in either place, you’d have an infinite recursion on the [[Proto
type]] loop. But if all references were strictly present, then B could
delegate to A, and vice versa, and it could work. This would mean you
could use either object to delegate to the other, for various tasks. There
are a few niche use cases where this might be helpful.

But it’s disallowed because engine implementors have observed that
it’s more performant to check for (and reject!) the infinite circular
reference once at set-time rather than needing to have the performance
hit of that guard check every time you look up a property on an object.

Debugged
We’ll briefly cover a subtle detail that can be confusing to developers.
In general, the JS specification does not control how browser developer
tools should represent specific values/structures to a developer, so each
browser/engine is free to interpret such things as it sees fit. As such,
browsers/tools don’t always agree. Specifically, the behavior we will
now examine is currently observed only in Chrome’s Developer Tools.
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Consider this traditional “class constructor” style JS code, as it would
appear in the console of Chrome Developer Tools:

function Foo() {}

var a1 = new Foo();

a1; // Foo {}

Let’s look at the last line of that snippet: the output of evaluating the
a1 expression, which prints Foo {}. If you try this same code in Firefox,
you will likely see Object {}. Why the difference? What do these out‐
puts mean?

Chrome is essentially saying “{} is an empty object that was constructed
by a function with name Foo.” Firefox is saying “{} is an empty object
of general construction from Object.” The subtle difference is that
Chrome is actively tracking, as an internal property, the name of the
actual function that did the construction, whereas other browsers
don’t track that additional information.

It would be tempting to attempt to explain this with JavaScript
mechanisms:

function Foo() {}

var a1 = new Foo();

a1.constructor; // Foo(){}
a1.constructor.name; // "Foo"

So, is that how Chrome is outputting Foo, by simply examining the
object’s .constructor.name? Confusingly, the answer is both yes and
no.

Consider this code:

function Foo() {}

var a1 = new Foo();

Foo.prototype.constructor = function Gotcha(){};

a1.constructor; // Gotcha(){}
a1.constructor.name; // "Gotcha"

a1; // Foo {}

Even though we change a1.constructor.name to legitimately be
something else (Gotcha), Chrome’s console still uses the Foo name.
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So, it would appear the answer to previous question (does it use .con
structor.name?) is no; it must track it somewhere else, internally.

But not so fast! Let’s see how this kind of behavior works with OLOO-
style code:

var Foo = {};

var a1 = Object.create( Foo );

a1; // Object {}

Object.defineProperty( Foo, "constructor", {
    enumerable: false,
    value: function Gotcha(){}
});

a1; // Gotcha {}

Ah-ha! Gotcha! Here, Chrome’s console did find and use the .con
structor.name. Actually, while writing this book, this exact behavior
was identified as a bug in Chrome, and by the time you’re reading this,
it may have already been fixed. So you may instead have seen the cor‐
rected a1; // Object {}.

Aside from that bug, the internal tracking (apparently only for debug
output purposes) of the “constructor name” that Chrome does (shown
in the earlier snippets) is an intentional Chrome-only extension of
behavior beyond what the JS specification calls for.

If you don’t use a “constructor” to make your objects, as we’ve dis‐
couraged with OLOO-style code here in this chapter, then you’ll get
objects that Chrome does not track an internal “constructor name” for,
and such objects will correctly only be outputted as Object {}, mean‐
ing “object generated from Object() construction.”

Don’t think this represents a drawback of OLOO-style coding. When
you code with OLOO and behavior delegation as your design pattern,
who “constructed” (that is, which function was called with new?) some
object is an irrelevant detail. Chrome’s specific internal “constructor
name” tracking is really only useful if you’re fully embracing class-style
coding, but is moot if you’re instead embracing OLOO delegation.
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Mental Models Compared
Now that you can see a difference between “class” and “delegation”
design patterns, at least theoretically, let’s see the implications these
design patterns have on the mental models we use to reason about our
code.

We’ll examine some more theoretical (Foo, Bar) code, and compare
both ways (OO versus OLOO) of implementing the code. The first
snippet uses the classical (“prototypal”) OO style:

function Foo(who) {
    this.me = who;
}
Foo.prototype.identify = function() {
    return "I am " + this.me;
};

function Bar(who) {
    Foo.call( this, who );
}
Bar.prototype = Object.create( Foo.prototype );

Bar.prototype.speak = function() {
    alert( "Hello, " + this.identify() + "." );
};

var b1 = new Bar( "b1" );
var b2 = new Bar( "b2" );

b1.speak();
b2.speak();

Parent class Foo is inherited by child class Bar, which is then instan‐
tiated twice as b1 and b2. What we have is b1 delegating to Bar.pro
totype, which delegates to Foo.prototype. This should look fairly
familiar to you, at this point. Nothing too groundbreaking going on.

Now, let’s implement the exact same functionality using OLOO-style
code:

Foo = {
    init: function(who) {
        this.me = who;
    },
    identify: function() {
        return "I am " + this.me;
    }
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};

Bar = Object.create( Foo );

Bar.speak = function() {
    alert( "Hello, " + this.identify() + "." );
};

var b1 = Object.create( Bar );
b1.init( "b1" );
var b2 = Object.create( Bar );
b2.init( "b2" );

b1.speak();
b2.speak();

We take exactly the same advantage of [[Prototype]] delegation from
b1 to Bar to Foo as we did in the previous snippet between b1, Bar.pro
totype, and Foo.prototype. We still have the same three objects linked
together.

But, importantly, we’ve greatly simplified all the other stuff going on,
because now we just set up objects linked to each other, without need‐
ing all the cruft and confusion of things that look (but don’t behave!)
like classes, with constructors and prototypes and new calls.

Ask yourself: if I can get the same functionality with OLOO-style code
as I do with class-style code, but OLOO is simpler and has less things
to think about, isn’t OLOO better?

Let’s examine the mental models involved between these two snippets.

First, the class-style code snippet implies this mental model of entities
and their relationships:
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Actually, that’s a little unfair/misleading, because it’s showing a lot of
extra detail that you don’t technically need to know at all times (though
you do need to understand it!). One takeaway is that it’s quite a complex
series of relationships. But another takeaway: if you spend the time to
follow those relationship arrows around, there’s an amazing amount
of internal consistency in JS’s mechanisms.

For instance, the ability of a JS function to access call(..), ap
ply(..), and bind(..) (see Chapter 2) is because functions them‐
selves are objects, and function-objects also have a [[Prototype]]
linkage, to the Function.prototype object, which defines those de‐
fault methods that any function-object can delegate to. JS can do those
things, and you can too!
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OK, let’s now look at a slightly simplified version of that diagram that
is a little more “fair” for comparison—it shows only the relevant en‐
tities and relationships:

Still pretty complex, eh? The dotted lines are depicting the implied
relationships when you set up the “inheritance” between Foo.proto
type and Bar.prototype and haven’t yet fixed the missing .construc
tor property reference (see ““Constructor” redux” on page 98 in
Chapter 5). Even with those dotted lines removed, the mental model
is still an awful lot to juggle every time you work with object linkages.
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Now, let’s look at the mental model for OLOO-style code:

As you can see comparing them, it’s quite obvious that OLOO-style
code has vastly less stuff to worry about, because OLOO-style code
embraces the fact that the only thing we ever really cared about was
the objects linked to other objects.

All the other “class” cruft was a confusing and complex way of getting
the same end result. Remove that stuff, and things get much simpler
(without losing any capability).

Classes Versus Objects
We’ve just seen various theoretical explorations and mental models of
“classes” versus “behavior delegation.” But, let’s now look at more con‐
crete code scenarios to show how’d you actually use these ideas.
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We’ll first examine a typical scenario in frontend web dev: creating UI
widgets (buttons, drop-downs, etc.).

Widget “Classes”
Because you’re probably still so used to the OO design pattern, you’ll
likely immediately think of this problem domain in terms of a parent
class (perhaps called Widget) with all the common base widget be‐
havior, and then child derived classes for specific widget types (like
Button).

We’re going to use jQuery here for DOM and CSS manipula‐
tion, only because it’s a detail we don’t really care about for the
purposes of our current discussion. None of this code cares
which JS framework (jQuery, Dojo, YUI, etc.), if any, you might
solve such mundane tasks with.

Let’s examine how we’d implement the “class” design in classic-style
pure JS without any “class” helper library or syntax:

// Parent class
function Widget(width,height) {
    this.width = width || 50;
    this.height = height || 50;
    this.$elem = null;
}

Widget.prototype.render = function($where){
    if (this.$elem) {
        this.$elem.css( {
            width: this.width + "px",
            height: this.height + "px"
        } ).appendTo( $where );
    }
};

// Child class
function Button(width,height,label) {
    // "super" constructor call
    Widget.call( this, width, height );
    this.label = label || "Default";

    this.$elem = $( "<button>" ).text( this.label );
}

// make `Button` "inherit" from `Widget`
Button.prototype = Object.create( Widget.prototype );
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// override base "inherited" `render(..)`
Button.prototype.render = function($where) {
    // "super" call
    Widget.prototype.render.call( this, $where );
    this.$elem.click( this.onClick.bind( this ) );
};

Button.prototype.onClick = function(evt) {
    console.log( "Button '" + this.label + "' clicked!" );
};

$( document ).ready( function(){
    var $body = $( document.body );
    var btn1 = new Button( 125, 30, "Hello" );
    var btn2 = new Button( 150, 40, "World" );

    btn1.render( $body );
    btn2.render( $body );
} );

OO design patterns tell us to declare a base render(..) in the parent
class, then override it in our child class, not to replace it per se, but
rather to augment the base functionality with button-specific behavior.

Notice the ugliness of explicit pseudopolymorphism (see Chapter 4)
with Widget.call and Widget.prototype.render.call references
for faking “super” calls from the child “class” methods back up to the
“parent” class base methods. Yuck.

ES6 class sugar

We cover ES6 class syntax sugar in detail in Appendix A, but let’s
briefly demonstrate how we’d implement the same code using class:

class Widget {
    constructor(width,height) {
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    }
    render($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
}

Classes Versus Objects | 127



class Button extends Widget {
    constructor(width,height,label) {
        super( width, height );
        this.label = label || "Default";
        this.$elem = $( "<button>" ).text( this.label );
    }
    render($where) {
        super( $where );
        this.$elem.click( this.onClick.bind( this ) );
    }
    onClick(evt) {
        console.log( "Button '" + this.label + "' clicked!" );
    }
}

$( document ).ready( function(){
    var $body = $( document.body );
    var btn1 = new Button( 125, 30, "Hello" );
    var btn2 = new Button( 150, 40, "World" );

    btn1.render( $body );
    btn2.render( $body );
} );

Undoubtedly, a number of the syntax uglies of the previous classical
approach have been smoothed over with ES6’s class. The presence of
a super(..) in particular seems quite nice (though when you dig into
it, it’s not all roses!).

Despite syntactic improvements, these are not real classes, as they still
operate on top of the [[Prototype]] mechanism. They suffer from
all the same mental-model mismatches we explored in Chapters 4 and
5 and thus far in this chapter. Appendix A will expound on the ES6
class syntax and its implications in detail. We’ll see why solving syntax
hiccups doesn’t substantially solve our class confusions in JS, though
it makes a valiant effort masquerading as a solution!

Whether you use the classic prototypal syntax or the new ES6 sugar,
you’ve still made a choice to model the problem domain (UI widgets)
with “classes.” And as the previous few chapters try to demonstrate,
this choice in JavaScript is opting you into extra headaches and mental
tax.
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Delegating Widget Objects
Here’s our simpler Widget/Button example, using OLOO-style
delegation:

var Widget = {
    init: function(width,height){
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    },
    insert: function($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
};

var Button = Object.create( Widget );

Button.setup = function(width,height,label){
    // delegated call
    this.init( width, height );
    this.label = label || "Default";

    this.$elem = $( "<button>" ).text( this.label );
};
Button.build = function($where) {
    // delegated call
    this.insert( $where );
    this.$elem.click( this.onClick.bind( this ) );
};
Button.onClick = function(evt) {
    console.log( "Button '" + this.label + "' clicked!" );
};

$( document ).ready( function(){
    var $body = $( document.body );

    var btn1 = Object.create( Button );
    btn1.setup( 125, 30, "Hello" );

    var btn2 = Object.create( Button );
    btn2.setup( 150, 40, "World" );

    btn1.build( $body );
    btn2.build( $body );
} );
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With this OLOO-style approach, we don’t think of Widget as a parent
and Button as a child. Rather, Widget is just an object and is sort of a
utility collection that any specific type of widget might want to delegate
to, and Button is also just a standalone object (with a delegation link
to Widget, of course!).

From a design pattern perspective, we didn’t share the same method
name render(..) in both objects, the way classes suggest, but instead
we chose different names (insert(..) and build(..)) that were more
descriptive of what task each does specifically. The initialization
methods are called init(..) and setup(..), respectively, for the same
reasons.

Not only does this delegation design pattern suggest different and
more descriptive names (rather than shared and more generic names),
but doing so with OLOO happens to avoid the ugliness of the explicit
pseudopolymorphic calls (Widget.call and Widget.prototype.ren
der.call), as you can see by the simple, relative, delegated calls to
this.init(..) and this.insert(..).

Syntactically, we also don’t have any constructors, .prototype, or new
present, as they are, in fact, just unnecessary cruft.

Now, if you’re paying close attention, you may notice that what was
previously just one call (var btn1 = new Button(..)) is now two
calls (var btn1 = Object.create(Button) and btn1.setup(..)).
Initially this may seem like a drawback (more code).

However, even this is something that’s a pro of OLOO-style code as
compared to classical prototype style code. How?

With class constructors, you are forced (not really, but it is strongly
suggested) to do both construction and initialization in the same step.
However, there are many cases where being able to do these two steps
separately (as you do with OLOO!) is more flexible.

For example, let’s say you create all your instances in a pool at the
beginning of your program, but you wait to initialize them with a
specific setup when they are pulled from the pool and used. We showed
the two calls happening right next to each other, but of course they can
happen at very different times and in very different parts of our code,
as needed.
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OLOO better supports the principle of separation of concerns,
where creation and initialization are not necessarily conflated into the
same operation.

Simpler Design
In addition to OLOO providing ostensibly simpler (and more flexi‐
ble!) code, behavior delegation as a pattern can actually lead to simpler
code architecture. Let’s examine one last example that illustrates how
OLOO simplifies your overall design.

The scenario we’ll examine is two controller objects, one for handling
the login form of a web page, and another for actually handling the
authentication (communication) with the server.

We’ll need a utility helper for making the Ajax communication to the
server. We’ll use jQuery (though any framework would do fine), since
it handles not only the Ajax for us, but it returns a Promise-like answer
so that we can listen for the response in our calling code
with .then(..).

We don’t cover Promises here, but we will cover them in a
future title of this series.

Following the typical class design pattern, we’ll put the base function‐
ality of the task in a class called Controller, and then we’ll derive two
child classes, LoginController and AuthController, which both in‐
herit from Controller and specialize some of those base behaviors:

// Parent class
function Controller() {
    this.errors = [];
}
Controller.prototype.showDialog(title,msg) {
    // display title & message to user in dialog
};
Controller.prototype.success = function(msg) {
    this.showDialog( "Success", msg );
};
Controller.prototype.failure = function(err) {
    this.errors.push( err );
    this.showDialog( "Error", err );
};
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// Child class
function LoginController() {
    Controller.call( this );
}
// Link child class to parent
LoginController.prototype =
    Object.create( Controller.prototype );
LoginController.prototype.getUser = function() {
    return document.getElementById( "login_username" ).value;
};
LoginController.prototype.getPassword = function() {
    return document.getElementById( "login_password" ).value;
};
LoginController.prototype.validateEntry = function(user,pw) {
    user = user || this.getUser();
    pw = pw || this.getPassword();

    if (!(user && pw)) {
        return this.failure(
           "Please enter a username & password!"
        );
    }
    else if (user.length < 5) {
        return this.failure(
           "Password must be 5+ characters!"
        );
    }

    // got here? validated!
    return true;
};
// Override to extend base `failure()`
LoginController.prototype.failure = function(err) {
    // "super" call
    Controller.prototype.failure.call(
       this,
       "Login invalid: " + err
    );
};

// Child class
function AuthController(login) {
    Controller.call( this );
    // in addition to inheritance, we also need composition
    this.login = login;
}
// Link child class to parent
AuthController.prototype =
   Object.create( Controller.prototype );
AuthController.prototype.server = function(url,data) {
    return $.ajax( {
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        url: url,
        data: data
    } );
};
AuthController.prototype.checkAuth = function() {
    var user = this.login.getUser();
    var pw = this.login.getPassword();

    if (this.login.validateEntry( user, pw )) {
        this.server( "/check-auth",{
            user: user,
            pw: pw
        } )
        .then( this.success.bind( this ) )
        .fail( this.failure.bind( this ) );
    }
};
// Override to extend base `success()`
AuthController.prototype.success = function() {
    // "super" call
    Controller.prototype.success.call( this, "Authenticated!" );
};
// Override to extend base `failure()`
AuthController.prototype.failure = function(err) {
    // "super" call
    Controller.prototype.failure.call(
       this,
       "Auth Failed: " + err
    );
};

var auth = new AuthController();
auth.checkAuth(
    // in addition to inheritance, we also need composition
    new LoginController()
);

We have base behaviors that all controllers share, which are suc
cess(..), failure(..), and showDialog(..). Our child classes Log
inController and AuthController override failure(..) and suc
cess(..) to augment the default base class behavior. Also note that
AuthController needs an instance of LoginController to interact
with the login form, so that becomes a member data property.

The other thing to mention is that we chose some composition to
sprinkle in on top of the inheritance. AuthController needs to know
about LoginController, so we instantiate it (new LoginControl
ler()) and keep a class member property called this.login to
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reference it, so that AuthController can invoke behavior on Logi
nController.

There might have been a slight temptation to make AuthCon
troller inherit from LoginController, or vice versa, such
that we had virtual composition through the inheritance chain.
But this is a clear example of what’s wrong with class inheri‐
tance as the model for the problem domain, because neither
AuthController nor LoginController are specializing base
behavior of the other, so inheritance between them makes lit‐
tle sense except if classes are your only design pattern. In‐
stead, we layered in some simple composition and now they can
cooperate, while still both benefiting from the inheritance from
the parent base Controller.

If you’re familiar with class-oriented (OO) design, this should all look
pretty familiar and natural.

De-class-ified
But, do we really need to model this problem with a parent Control
ler class, two child classes, and some composition? Is there a way to
take advantage of OLOO-style behavior delegation and have a much
simpler design? Yes!

var LoginController = {
    errors: [],
    getUser: function() {
        return document.getElementById(
           "login_username"
        ).value;
    },
    getPassword: function() {
        return document.getElementById(
           "login_password"
        ).value;
    },
    validateEntry: function(user,pw) {
        user = user || this.getUser();
        pw = pw || this.getPassword();

        if (!(user && pw)) {
            return this.failure(
               "Please enter a username & password!"
            );
        }
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        else if (user.length < 5) {
            return this.failure(
               "Password must be 5+ characters!"
            );
        }

        // got here? validated!
        return true;
    },
    showDialog: function(title,msg) {
        // display success message to user in dialog
    },
    failure: function(err) {
        this.errors.push( err );
        this.showDialog( "Error", "Login invalid: " + err );
    }
};

// Link `AuthController` to delegate to `LoginController`
var AuthController = Object.create( LoginController );

AuthController.errors = [];
AuthController.checkAuth = function() {
    var user = this.getUser();
    var pw = this.getPassword();

    if (this.validateEntry( user, pw )) {
        this.server( "/check-auth",{
            user: user,
            pw: pw
        } )
        .then( this.accepted.bind( this ) )
        .fail( this.rejected.bind( this ) );
    }
};
AuthController.server = function(url,data) {
    return $.ajax( {
        url: url,
        data: data
    } );
};
AuthController.accepted = function() {
    this.showDialog( "Success", "Authenticated!" )
};
AuthController.rejected = function(err) {
    this.failure( "Auth Failed: " + err );
};

Since AuthController is just an object (so is LoginController), we
don’t need to instantiate (like new AuthController()) to perform our
task. All we need to do is:
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AuthController.checkAuth();

Of course, with OLOO, if you do need to create one or more additional
objects in the delegation chain, that’s easy, and still doesn’t require
anything like class instantiation:

var controller1 = Object.create( AuthController );
var controller2 = Object.create( AuthController );

With behavior delegation, AuthController and LoginController are
just objects, horizontal peers of each other, and are not arranged or
related as parents and children in class orientation. We somewhat ar‐
bitrarily chose to have AuthController delegate to LoginControl
ler; it would have been just as valid for the delegation to go the reverse
direction.

The main takeaway from this second code listing is that we only have
two entities (LoginController and AuthController), not three as
before.

We didn’t need a base Controller class to “share” behavior between
the two, because delegation is a powerful enough mechanism to give
us the functionality we need. We also, as noted before, don’t need to
instantiate our classes to work with them, because there are no classes,
just the objects themselves. Furthermore, there’s no need for compo‐
sition, as delegation gives the two objects the ability to cooperate dif‐
ferentially as needed.

Lastly, we avoided the polymorphism pitfalls of class-oriented design
by not having the names success(..) and failure(..) be the same
on both objects, which would have required ugly explicit pseudopo‐
lymorphism. Instead, we called them accepted() and rejected(..)
on AuthController—slightly more descriptive names for their spe‐
cific tasks.

Bottom line: we end up with the same capability, but a (significantly)
simpler design. That’s the power of OLOO-style code and the power
of the behavior delegation design pattern.

Nicer Syntax
One of the nicer things that makes ES6’s class so deceptively attractive
(see Appendix A on why to avoid it!) is the shorthand syntax for de‐
claring class methods:
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class Foo {
    methodName() { /* .. */ }
}

We get to drop the word function from the declaration, which makes
JS developers everywhere cheer!

And you may have noticed and been frustrated that the previously
suggested OLOO syntax has lots of function appearances, which
seems like a bit of a detractor to the goal of OLOO simplification. But
it doesn’t have to be that way!

As of ES6, we can use concise method declarations in any object literal,
so an object in OLOO style can be declared this way (same shorthand
sugar as with the class body syntax):

var LoginController = {
    errors: [],
    getUser() { // Look ma, no `function`!
        // ...
    },
    getPassword() {
        // ...
    }
    // ...
};

About the only difference is that object literals will still require , com‐
ma separators between elements whereas class syntax doesn’t. Pretty
minor concession in the whole scheme of things.

Moreover, as of ES6, the clunkier syntax you use (like for the AuthCon
troller definition), where you’re assigning properties individually
and not using an object literal, can be rewritten using an object literal
(so that you can use concise methods), and you can just modify that
object’s [[Prototype]] with Object.setPrototypeOf(..), like this:

// use nicer object literal syntax w/ concise methods!
var AuthController = {
    errors: [],
    checkAuth() {
        // ...
    },
    server(url,data) {
        // ...
    }
    // ...
};
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// NOW, link `AuthController` to delegate to `LoginController`
Object.setPrototypeOf( AuthController, LoginController );

OLOO style as of ES6, with concise methods, is a lot friendlier than it
was before (and even then, it was much simpler and nicer than classical
prototype-style code). You don’t have to opt for class (complexity) to
get nice clean object syntax!

Unlexical
There is one drawback to concise methods that’s subtle but important
to note. Consider this code:

var Foo = {
    bar() { /*..*/ },
    baz: function baz() { /*..*/ }
};

Here’s the syntactic de-sugaring that expresses how that code will
operate:

var Foo = {
    bar: function() { /*..*/ },
    baz: function baz() { /*..*/ }
};

See the difference? The bar() shorthand became an anonymous func‐
tion expression (function()..) attached to the bar property, because
the function object itself has no name identifier. Compare that to the
manually specified named function expression (function baz()..),
which has a lexical name identifier baz in addition to being attached
to a .baz property.

So what? In the Scope & Closures title of this book series, we cover the
three main downsides of anonymous function expressions in detail.
We’ll just briefly repeat them so we can compare to the concise method
shorthand.

The lack of a name identifier on an anonymous function:

1. Makes debugging stack traces harder
2. Makes self-referencing (recursion, event (un)binding, etc.) harder
3. Makes code (a little bit) harder to understand

Items 1 and 3 don’t apply to concise methods.
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Even though the de-sugaring uses an anonymous function expression,
which normally would have no name in stack traces, concise methods
are specified to set the internal name property of the function object
accordingly, so stack traces should be able to use it (though that’s im‐
plementation dependent so not guaranteed).

Item 2 is, unfortunately, still a drawback to concise methods. They will
not have a lexical identifier to use as a self-reference. Consider:

var Foo = {
    bar: function(x) {
        if (x < 10) {
            return Foo.bar( x * 2 );
        }
        return x;
    },
    baz: function baz(x) {
        if (x < 10) {
            return baz( x * 2 );
        }
        return x;
    }
};

The manual Foo.bar(x*2) reference kind of suffices in this example,
but there are many cases where a function wouldn’t necessarily be able
to do that, such as cases where the function is being shared in delega‐
tion across different objects, using this binding, etc. You would want
to use a real self-reference, and the function object’s name identifier is
the best way to accomplish that.

Just be aware of this caveat for concise methods, and if you run into
such issues with lack of self-reference, make sure to forego the concise
method syntax just for that declaration in favor of the manual named
function expression declaration form: baz: function baz(){..}.

Introspection
If you’ve spent much time with class-oriented programming (either in
JS or other languages), you’re probably familiar with type introspec‐
tion: inspecting an instance to find out what kind of object it is. The
primary goal of type introspection with class instances is to reason
about the structure/capabilities of the object based on how it was
created.
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Consider this code that uses instanceof (see Chapter 5) for intro‐
specting on an object a1 to infer its capability:

function Foo() {
    // ...
}
Foo.prototype.something = function(){
    // ...
}

var a1 = new Foo();

// later

if (a1 instanceof Foo) {
    a1.something();
}

Because Foo.prototype (not Foo!) is in the [[Prototype]] chain (see
Chapter 5) of a1, the instanceof operator (confusingly) pretends to
tell us that a1 is an instance of the Foo “class.” With this knowledge,
we then assume that a1 has the capabilities described by the Foo “class.”

Of course, there is no Foo class, only a plain old normal function
Foo, which happens to have a reference to an arbitrary object (Foo.pro
totype) that a1 happens to be delegation-linked to. By its syntax,
instanceof pretends to be inspecting the relationship between a1 and
Foo, but it’s actually telling us whether a1 and (the arbitrary object
referenced by) Foo.prototype are related.

The semantic confusion (and indirection) of instanceof syntax
means that to use instanceof-based introspection to ask if object a1
is related to the capabilities object in question, you have to have a
function that holds a reference to that object—you can’t just directly
ask if the two objects are related.

Recall the abstract Foo/Bar/b1 example from earlier in this chapter,
which we’ll abbreviate here:

function Foo() { /* .. */ }
Foo.prototype...

function Bar() { /* .. */ }
Bar.prototype = Object.create( Foo.prototype );

var b1 = new Bar( "b1" );
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For type introspection purposes on the entities in that example, using
instanceof and .prototype semantics, here are the various checks
you might need to perform:

// relating `Foo` and `Bar` to each other
Bar.prototype instanceof Foo; // true
Object.getPrototypeOf( Bar.prototype )
   === Foo.prototype; // true
Foo.prototype.isPrototypeOf( Bar.prototype ); // true

// relating `b1` to both `Foo` and `Bar`
b1 instanceof Foo; // true
b1 instanceof Bar; // true
Object.getPrototypeOf( b1 ) === Bar.prototype; // true
Foo.prototype.isPrototypeOf( b1 ); // true
Bar.prototype.isPrototypeOf( b1 ); // true

It’s fair to say that some of that kinda sucks. For instance, intuitively
(with classes) you might want to be able to say something like Bar
instanceof Foo (because it’s easy to mix up what “instance” means to
think it includes “inheritance”), but that’s not a sensible comparison
in JS. You have to do Bar.prototype instanceof Foo instead.

Another common, but perhaps less robust, pattern for type introspec‐
tion, which many devs seem to prefer over instanceof, is called “duck
typing.” This term comes from the adage, “if it looks like a duck, and
it quacks like a duck, it must be a duck.”

Example:

if (a1.something) {
    a1.something();
}

Rather than inspecting for a relationship between a1 and an object
that holds the delegatable something() function, we assume that the
test for a1.something passing means a1 has the capability to
call .something() (regardless of if it found the method directly on a1
or delegated to some other object). In and of itself, that assumption
isn’t so risky.

But “duck typing” is often extended to make other assumptions about
the object’s capabilities besides what’s being tested, which of course
introduces more risk (aka brittle design) into the test.

One notable example of “duck typing” comes with ES6 Promises
(which as an earlier note explained, are not being covered in this book).
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For various reasons, there’s a need to determine if any arbitrary object
reference is a Promise, but the way that test is done is to check if the
object happens to have a then() function present on it. In other words,
if any object happens to have a then() method, ES6 Promises will
assume unconditionally that the object is a “thenable” and therefore
will expect it to behave conformantly to all standard behaviors of
Promises.

If you have any non-Promise object that happens for whatever reason
to have a then() method on it, you are strongly advised to keep it far
away from the ES6 Promise mechanism to avoid broken assumptions.

That example clearly illustrates the perils of “duck typing.” You should
only use such approaches sparingly and in controlled conditions.

Turning our attention once again back to OLOO-style code as pre‐
sented here in this chapter, type introspection turns out to be much
cleaner. Let’s recall (and abbreviate) the Foo/Bar/b1 OLOO example
from earlier in the chapter:

var Foo = { /* .. */ };

var Bar = Object.create( Foo );
Bar...

var b1 = Object.create( Bar );

Using this OLOO approach, where all we have are plain objects that
are related via [[Prototype]] delegation, here’s the quite simplified
type introspection we might use:

// relating `Foo` and `Bar` to each other
Foo.isPrototypeOf( Bar ); // true
Object.getPrototypeOf( Bar ) === Foo; // true

// relating `b1` to both `Foo` and `Bar`
Foo.isPrototypeOf( b1 ); // true
Bar.isPrototypeOf( b1 ); // true
Object.getPrototypeOf( b1 ) === Bar; // true

We’re not using instanceof anymore, because it’s confusingly pre‐
tending to have something to do with classes. Now, we just ask the
(informally stated) question, “Are you a prototype of me?” There’s no
more indirection necessary with stuff like Foo.prototype or the pain‐
fully verbose Foo.prototype.isPrototypeOf(..).

I think it’s fair to say these checks are significantly less complicated/
confusing that the previous set of introspection checks. Yet again, we
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see that OLOO is simpler than (but with all the same power of) class-
style coding in JavaScript.

Review
Classes and inheritance are a design pattern you can choose, or not
choose, in your software architecture. Most developers take for granted
that classes are the only (proper) way to organize code, but here we’ve
seen there’s another less-commonly talked about pattern that’s actually
quite powerful: behavior delegation.

Behavior delegation suggests objects as peers of each other, which del‐
egate among themselves, rather than parent and child class relation‐
ships. JavaScript’s [[Prototype]] mechanism is, by its very designed
nature, a behavior delegation mechanism. That means we can either
choose to struggle to implement class mechanics on top of JS (see
Chapters 4 and 5), or we can just embrace the natural state of [[Pro
totype]] as a delegation mechanism.

When you design code with objects only, not only does it simplify the
syntax you use, but it can actually lead to simpler code architecture
design.

OLOO (objects linked to other objects) is a code style that creates and
relates objects directly without the abstraction of classes. OLOO quite
naturally implements [[Prototype]]-based behavior delegation.
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APPENDIX A

ES6 Class

If there’s any takeaway message from the second half of this book
(Chapters 4-6), it’s that classes are an optional design pattern for code
(not a necessary given), and that furthermore they are often quite
awkward to implement in a [[Prototype]] language like JavaScript.

This awkwardness is not just about syntax, although that’s a big part
of it. Chapters 4 and 5 examined quite a bit of syntactic ugliness, from
the verbosity of .prototype references cluttering the code, to explicit
pseudo-polymorphism (see Chapter 4) when you give methods the
same name at different levels of the chain and try to implement a pol‐
ymorphic reference from a lower-level method to a higher-level meth‐
od. .constructor being wrongly interpreted as “was constructed by”
and yet being unreliable for that definition is yet another syntactic
ugly.

But the problems with class design are much deeper. Chapter 4 points
out that classes in traditional class-oriented languages actually pro‐
duce a copy action from parent to child to instance, whereas in [[Pro
totype]], the action is not a copy, but rather the opposite—a delega‐
tion link.

When compared to the simplicity of OLOO-style code and behavior
delegation (see Chapter 6), which embrace [[Prototype]] rather than
hide from it, classes stand out as a sore thumb in JS.
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class
But we don’t need to argue that case again. I remention those issues
briefly only so that you keep them fresh in your mind now that we
turn our attention to the ES6 class mechanism. We’ll demonstrate
here how it works, and look at whether or not class does anything
substantial to address any of those “class” concerns.

Let’s revisit the Widget/Button example from Chapter 6:

class Widget {
    constructor(width,height) {
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    }
    render($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
}

class Button extends Widget {
    constructor(width,height,label) {
        super( width, height );
        this.label = label || "Default";
        this.$elem = $( "<button>" ).text( this.label );
    }
    render($where) {
        super( $where );
        this.$elem.click( this.onClick.bind( this ) );
    }
    onClick(evt) {
        console.log( "Button '" + this.label + "' clicked!" );
    }
}

Beyond this syntax looking nicer, what problems does ES6 solve?

1. There’s no more (well, sorta, see below!) references to .proto
type cluttering the code.

2. Button is declared directly to “inherit from” (aka extends) Widg
et, instead of needing to use Object.create(..) to replace
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a .prototype object that’s linked, or having to set with .__pro
to__ or Object.setPrototypeOf(..).

3. super(..) now gives us a very helpful relative polymorphism ca‐
pability, so that any method at one level of the chain can refer
relatively one level up the chain to a method of the same name.
This includes a solution to the note from Chapter 4 about the
weirdness of constructors not belonging to their class, and so be‐
ing unrelated—super() works inside constructors exactly as
you’d expect.

4. class literal syntax has no affordance for specifying properties
(only methods). This might seem limiting to some, but it’s ex‐
pected that the vast majority of cases where a property (state) ex‐
ists elsewhere but the end-chain “instances” is usually a mistake
and surprising (as it’s state that’s implicitly “shared” among all
“instances”). So, one could say the class syntax is protecting you
from mistakes.

5. extends lets you extend even built-in object (sub)types, like Ar
ray or RegExp, in a very natural way. Doing so without class ..
extends has long been an exceedingly complex and frustrating
task, one that only the most adept of framework authors have ever
been able to accurately tackle. Now, it will be rather trivial!

In all fairness, those are some substantial solutions to many of the most
obvious (syntactic) issues and surprises people have with classical
prototype-style code.

class Gotchas
It’s not all bubblegum and roses, though. There are still some deep and
profoundly troubling issues with using “classes” as a design pattern in
JS.

First, the class syntax may convince you a new “class” mechanism
exists in JS as of ES6. Not so. class is, mostly, just syntactic sugar on
top of the existing [[Prototype]] (delegation!) mechanism.

That means class is not actually copying definitions statically at dec‐
laration time the way it does in traditional class-oriented languages. If
you change/replace a method (on purpose or by accident) on the par‐
ent “class,” the child “class” and/or instances will still be affected, in
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that they don’t get copies at declaration time; they are all still using the
live-delegation model based on [[Prototype]]:

class C {
    constructor() {
        this.num = Math.random();
    }
    rand() {
        console.log( "Random: " + this.num );
    }
}

var c1 = new C();
c1.rand(); // "Random: 0.4324299..."

C.prototype.rand = function() {
    console.log( "Random: " + Math.round( this.num * 1000 ));
};

var c2 = new C();
c2.rand(); // "Random: 867"

c1.rand(); // "Random: 432" -- oops!!!

This only seems like reasonable behavior if you already know about
the delegation nature of things, rather than expecting copies from “real
classes.” So the question to ask yourself is, why are you choosing class
syntax for something fundamentally different from classes?

Doesn’t the ES6 class syntax just make it harder to see and understand
the difference between traditional classes and delegated objects?

class syntax does not provide a way to declare class member proper‐
ties (only methods). So if you need to do that to track shared state
among instances, then you end up going back to the ugly .proto
type syntax, like this:

class C {
    constructor() {
        // make sure to modify the shared state,
        // not set a shadowed property on the
        // instances!
        C.prototype.count++;

        // here, `this.count` works as expected
        // via delegation
        console.log( "Hello: " + this.count );
    }
}
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// add a property for shared state directly to
// prototype object
C.prototype.count = 0;

var c1 = new C();
// Hello: 1

var c2 = new C();
// Hello: 2

c1.count === 2; // true
c1.count === c2.count; // true

The biggest problem here is that it betrays the class syntax by expos‐
ing (leakage!) .prototype as an implementation detail.

But, we also still have the surprise gotcha that this.count++ would
implicitly create a separate shadowed .count property on both the c1
and c2 objects, rather than updating the shared state. class offers us
no consolation from that issue, except (presumably) to imply by lack
of syntactic support that you shouldn’t be doing that at all.

Moreover, accidental shadowing is still a hazard:

class C {
    constructor(id) {
        // oops, gotcha, we're shadowing `id()` method
        // with a property value on the instance
        this.id = id;
    }
    id() {
        console.log( "Id: " + id );
    }
}

var c1 = new C( "c1" );
c1.id(); // TypeError -- `c1.id` is now the string "c1"

There’s also some very subtle nuanced issues with how super works.
You might assume that super would be bound in an analogous way to
how this gets bound (see Chapter 2), which is that super would always
be bound to one level higher than whatever the current method’s po‐
sition in the [[Prototype]] chain is.

However, for performance reasons (this binding is already expen‐
sive), super is not bound dynamically. It’s bound sort of “statically” at
declaration time. No big deal, right?
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Ehh…maybe, maybe not. If you, like most JS devs, start assigning
functions around to different objects (which came from class defi‐
nitions), in various different ways, you probably won’t be very aware
that in all those cases, the super mechanism under the covers is having
to be rebound each time.

And depending on what sorts of syntactic approaches you take to these
assignments, there may very well be cases where the super can’t be
properly bound (at least, not where you suspect), so you may (at the
time of writing, TC39 discussion is ongoing on the topic) have to
manually bind super with toMethod(..) (kinda like you have to do
bind(..) for this—see Chapter 2).

You’re used to being able to assign around methods to different objects
to automatically take advantage of the dynamicism of this via the
implicit binding rule (see Chapter 2). But the same will likely not be
true with methods that use super.

Consider what super should do here (against D and E):

class P {
    foo() { console.log( "P.foo" ); }
}

class C extends P {
    foo() {
        super();
    }
}

var c1 = new C();
c1.foo(); // "P.foo"

var D = {
    foo: function() { console.log( "D.foo" ); }
};

var E = {
    foo: C.prototype.foo
};

// Link E to D for delegation
Object.setPrototypeOf( E, D );

E.foo(); // "P.foo"
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If you were thinking (quite reasonably!) that super would be bound
dynamically at call time, you might expect that super() would auto‐
matically recognize that E delegates to D, so E.foo() using super()
should call to D.foo().

Not so. For performance pragmatism reasons, super is not late
bound (aka dynamically bound) like this is. Instead it’s derived at call
time from [[HomeObject]].[[Prototype]], where [[HomeObject]]
is statically bound at creation time.

In this particular case, super() is still resolving to P.foo(), since the
method’s [[HomeObject]] is still C and C.[[Prototype]] is P.

There will probably be ways to manually address such gotchas. Using
toMethod(..) to bind/rebind a method’s [[HomeObject]] (along with
setting the [[Prototype]] of that object!) appears to work in this
scenario:

var D = {
    foo: function() { console.log( "D.foo" ); }
};

// Link E to D for delegation
var E = Object.create( D );

// manually bind foo's `[[HomeObject]]` as
// `E`, and `E.[[Prototype]]` is `D`, so thus
// `super()` is `D.foo()`
E.foo = C.prototype.foo.toMethod( E, "foo" );

E.foo(); // "D.foo"

toMethod(..) clones the method and takes homeObject as its
first parameter (which is why we pass E), and the second pa‐
rameter (optionally) sets a name for the new method (which we
keep as “foo”).

It remains to be seen if there are other corner case gotchas that devs
will run into beyond this scenario. Regardless, you will have to be
diligent and stay aware of which places the engine automatically fig‐
ures out super for you, and which places you have to manually take
care of it. Ugh!
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Static > Dynamic?
But the biggest problem of all for the ES6 class is that all these various
gotchas mean class sorta opts you into a syntax that seems to imply
(like traditional classes) that once you declare a class, it’s a static def‐
inition of a (future instantiated) thing. You completely lose sight of the
fact C is an object, a concrete thing, which you can directly interact
with.

In traditional class-oriented languages, you never adjust the definition
of a class later, so the class design pattern doesn’t suggest such capa‐
bilities. But one of the most powerful parts of JS is that it is dynamic,
and the definition of any object is (unless you make it immutable) a
fluid and mutable thing.

class seems to imply you shouldn’t do such things, by forcing you
into the uglier .prototype syntax to do so, or forcing you think about
super gotchas, etc. It also offers very little support for any of the pitfalls
that this dynamicism can bring.

In other words, it’s as if class is telling you: “Dynamic is too hard, so
it’s probably not a good idea. Here’s a static-looking syntax, so code
your stuff statically.”

What a sad commentary on JavaScript: dynamic is too hard, let’s pre‐
tend to be (but not actually be!) static.

These are the reasons why the ES6 class is masquerading as a nice
solution to syntactic headaches, but it’s actually muddying the waters
further and making things worse for JS and for clear and concise
understanding.

If you use the .bind(..) utility to make a hard-bound func‐
tion (see Chapter 2), the function created is not subclassable
with ES6 extend like normal functions are.

Review
class does a very good job of pretending to fix the problems with the
class/inheritance design pattern in JS. But it actually does the opposite:
it hides many of the problems and introduces other subtle but dan‐
gerous ones.
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class contributes to the ongoing confusion of “class” in JavaScript that
has plagued the language for nearly two decades. In some respects, it
asks more questions than it answers, and it feels like a very unnatural
fit on top of the elegant simplicity of the [[Prototype]] mechanism.

Bottom line: if the ES6 class makes it harder to robustly leverage
[[Prototype]], and hides the most important nature of the JS object
mechanism—the live delegation links between objects—shouldn’t we
see class as creating more troubles than it solves, and just relegate it
to an antipattern?

I can’t really answer that question for you. But I hope this book has
fully explored the issue at a deeper level than you’ve ever gone before,
and has given you the information you need to answer it yourself.
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