

2

By

Samer Buna

Foreword by Daniel Jebaraj

3

Copyright © 2016 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books.. 6

About the Author ... 8

Introduction ... 9

Chapter 1 What Is React? ... 11

Chapter 2 Why React? .. 12

Generating HTML ... 13

Enhancing HTML .. 14

React’s way .. 15

Chapter 3 Declarative User Interfaces ... 19

React’s language .. 19

To JSX or not to JSX .. 20

Chapter 4 React Components .. 22

Readability ... 22

Reusability.. 23

Composability ... 24

React’s stateful components ... 25

Creating React components.. 26

Chapter 5 Composability .. 33

Chapter 6 Reusability ... 37

Input validation ... 37

Input default values .. 41

Shared component behavior ... 42

Chapter 7 Working with User Input .. 45

5

React’s synthetic events ... 45

Working with DOM nodes in the browser .. 47

Controlled components ... 49

Chapter 8 Component Lifecycle... 51

componentWillMount() .. 56

componentDidMount() .. 57

componentWillReceiveProps(nextProps) .. 61

shouldComponentUpdate(nextProps, nextState) ... 62

componentWillUpdate(nextProps, nextState) .. 63

componentDidUpdate(prevProps, prevState) .. 64

componentWillUnmount() ... 65

Chapter 9 Let’s Build a Game with React .. 67

The memory grid game ... 67

Implementation increments ... 69

Challenges ... 101

6

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

7

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

8

About the Author

It was 1993 when my geeky uncle realized my passion for computers and set me up on a path
to empower that passion. I am forever grateful to him.

I was just a kid back then, with a natural love for math and physics, but when I started learning
to program (using Pascal at the time), I knew I found my life-long hobby!

I am not sure I can describe coding as my hobby; it is certainly a career that pays the bills.
However, whenever I have some free time, I often just start coding for a side project, or learn
that brand-new framework which smart person X tweeted about the other day.

I don't write in Pascal anymore; my favorite server-side language has been Ruby for over a
decade, and for the past few years, I have been mainly coding in JavaScript. With the modern
changes that are happening to JavaScript, I am starting to favor JavaScript over Ruby.

When React was first released, I was an Ember fan. I still favor Ember over Angular today, but
after learning the simple and powerful React, I left the school of MVC frameworks for good.
Today, I do my front-end work exclusively with React and vanilla JavaScript.

You can stalk me on Twitter @samerbuna or email me at samer@agilelabs.com. You can also
find a list of all the books and courses I have authored on my LinkedIn profile at
linkedin.com/in/samerbuna.

Special thanks to my friend Julia Hunt for her excellent contributions to this book. Her feedback
was spot-on as always, and this book is much better because of her.

I hope that you enjoy this book and that it will teach you the great benefits of the React library.

 Samer Buna

https://twitter.com/samerbuna
mailto:samer@agilelabs.com
https://linkedin.com/in/samerbuna

9

Introduction

Since 2010 or so, Angular has been the MVC framework of choice for top developers. It's the
most popular of all, and it offers the most impressive features out of the box. This all changed in
2015, and the change came from Facebook engineers this time. React started to claim a big
portion of the market, with huge players adopting it: Netflix, Yahoo, and Airbnb, to name a few.

React is a huge revolutionary success; it’s simple and effective, and it changed the way we
design our views for good.

React is not an MVC framework—it's just a view library. The concepts introduced by React are
what make it a big deal. Other frameworks out there, Angular included, have learned from what
React does and copied it in parts or fully.

This story, however, is not about a shiny new library from Facebook that is taking over. The
story here is about MVC not being the best approach for big applications, and REST APIs,
which have been the standard so far, not being the best solution for data communication
between clients and servers.

Facebook engineers are challenging both the MVC and the REST standards. Here are their
alternative proposals, in summary:

 Instead of MVC and data-binding, a front-end system should have a one-way data flow.
The views should never change the models directly; they can only read from the models.
For writing, the views trigger actions that eventually get dispatched to the models (the
models are referred to as “Stores” in this flow). React fits perfectly in the way it reacts to
the data changes in the stores. React components will be listening to those changes,
and React will re-render the views efficiently when those changes happen.

 Instead of REST and having the logic of what data to expose on the server-side, and
instead of managing different end-points for different needs (for example, one end-point
to expose top posts, one to expose a post, and one to expose a post with comments
included), let the clients ask the servers for exactly what they need. The servers will then
parse the clients' questions, and respond with what they asked for (no over-fetching or
under-fetching). This is the concept behind the GraphQL runtime and query language
that Facebook engineers released in 2015.

 Instead of the standard recommendation of separating data and views, have the data
requirement expressed in the view component itself. Since the view knows exactly which
data elements it needs to render, these two shouldn’t be separate at all. This is the
concept behind the Relay.js framework that Facebook engineers released in 2015.

This book will not cover GraphQL or Relay, but an understanding of React itself is the first step
toward understanding the rest of the architecture proposed by Facebook engineers.

10

Why did I write this book?

I love big frameworks (and I cannot lie). They serve a great purpose, especially for young teams
and startups. Lots of smart design decisions are already made for us, and there is a clear path
to writing good code. This allows us to focus on our application’s logic.

Frameworks, however, come with some disadvantages, and for big applications and
experienced developers, those disadvantages are sometimes a deal breaker.

I’ll name two of the relevant disadvantages of going with a framework:

 Frameworks are not flexible, although some will claim to be. Frameworks want us to
code everything a certain way; if we try to deviate from that way, the framework usually
ends up fighting us about that.

 Frameworks are big and full of features. If we need to use only a small piece of them, we
have to include the whole thing anyway (hopefully this will change with HTTP2).

Some frameworks are going modular, which I think is great, but I am a big fan of the Unix
philosophy:

“Write programs that do one thing and do it well. Write programs to work together. Write
programs to handle text streams, because that is a universal interface.” —Doug McIlroy

React is a small program that does one thing, and it does it really well. There is a lot of buzz
around the performance of React’s virtual DOM, but I don’t think that’s the greatest thing about
React. The virtual DOM performance is a nice plus.

What React does really well is speak a common language between developers and browsers
that allows developers to declaratively describe user interfaces, and to model the state of these
interfaces and not the transactions on them. Basically, React taught us and the machines a new
language that we both now understand: the language of UI outcomes.

This realization was the most important one I made about React, and I think it deserves a book
focused on making it clear to everyone learning React.

Who should read this book?

You need basic knowledge of JavaScript to survive this book. This book will not teach you
JavaScript. If you’re comfortable with JavaScript itself, but have never used a JavaScript
framework or library before, this book is for you.

If you’re learning React after using other JavaScript libraries, this book will also have an answer
to the “Why?” question that’s probably on your mind: Why bother learning something new?

11

Chapter 1 What Is React?

React is a JavaScript library that can be used to describe views (for example, HTML elements)
based on some state (which is often in the form of data). When you’re working with React in a
browser, React can mount the described views in the browser’s DOM (Document Object Model)
and automatically update what needs to be updated whenever the original state changes.

React is a small but powerful library, with the power being more in the concepts than in the
implementation. Some of the concepts under which React operates are:

Reusable, composable, and stateful components

In React, we build views using smaller components. We can reuse a single component in
multiple places, with different states and properties, and components can contain other
components. Every component in a React application has a private state that may change over
time, and React will take care of updating the component's view when its state changes.

The nature of reactive updates

React's name is the simple explanation for this concept. When the state of a component
changes, those changes need to be reflected somewhere. For example, we need to regenerate
the HTML views for the browser's Document Object Model (DOM) whenever their state
changes. With React, we do not need to worry about how to reflect the state changes; React will
simply react to the changes and automatically update the views when needed.

The virtual representation of views in memory

With React, we write HTML using JavaScript. We rely on the power of JavaScript to generate
HTML that depends on some data, rather than enhancing HTML to make it work with that data.
Enhancing HTML is what other JavaScript frameworks usually do. For example, Angular
extends HTML with features like loops, conditionals, and others.

If we are receiving just the data from the server (with AJAX), we need something more than
HTML to work with it, so it's either using an enhanced HTML, or using the power of JavaScript
itself to generate the HTML. Both approaches have advantages and disadvantages, and React
embraces the latter one, with the argument that the advantages are stronger than the
disadvantages.

Using JavaScript to render HTML allows React to have a virtual representation of HTML in
memory (which is aptly named the virtual DOM), and React uses that to render the views
virtually first. Every time a state changes and we have a new HTML tree that needs to be written
back to the browser's DOM, instead of writing the whole tree, React will only write the difference
between the new tree and the previous tree since it has both trees in memory. This process is
known as tree reconciliation, and I think it’s the best thing that’s happened in web development
since AJAX!

12

Chapter 2 Why React?

HTML is a great language, and what makes it great, in my opinion, is how it allows us to be
declarative when building our webpages. We basically tell the browsers what we want with
HTML.

For example, when we tell the browser to render a paragraph of text in a page, we don't care
how the browser is actually going to do that. We don't have to worry about what steps the
browser needs to do to make our text look like a paragraph, such as how many pixels of white
space should be around it, how many words to display per line, or what to do when the screen is
resized. We just want a paragraph, and with HTML we have the power to command the browser
to make it happen.

But HTML by itself is not enough. We don't have loops, if statements, or variables in HTML,
which means we can't write dynamic HTML based on data. HTML works great for static content,
but when we have data in the equation, we need something else.

The simple truth is data is always in the equation. We write HTML to represent some data, even
when we use HTML for static content. When we write static content, we are manually writing
HTML by hand to represent some data, and that's okay for small sites where the data is not
frequently changed.

The word “change” is key here. When the data we represent with HTML is changed, we need to
manually update the HTML to reflect that change. For example, when that small business for
which you built a website gets a new phone number, it’ll be time to drop into an HTML editor,
make that change, and then upload the new HTML files to the server.

If the nature of the change is more frequent though, for example, if the business now wants to
feature a different product on the home page every hour, you will not agree (I hope) to make
that manual change every hour. Imagine if Facebook was all static content, and every time you
update your status someone at Facebook needs to edit an HTML file and upload it to the server.

We realized a long time ago that HTML is not enough, and we have since been trying to
enhance HTML to make it support dynamic content.

Let’s assume that we want to represent a list of products in HTML. For every product, we have a
name and a price. Here’s some sample data:

Code Listing 1: Sample Products Data

{
 "products": [
 { "name": "React.js Essentials", "price": 2999 },
 { "name": "Pro React", "price": 2856 },
 { "name": "Learning React Native", "price": 2199 }
]
}

13

A small business mentality would reason that we have only these three products, and their
prices rarely change. Manually writing some static HTML for these three products would be
okay.

But a list of products is dynamic—some products will be added, some will be removed, and the
prices will change seasonally. Manually writing HTML will not scale, so we need to come up with
HTML that always represents the last state of the products’ data.

Generating HTML

We can use database tables (or collections) to represent data in a database. For our products
example, we can use a products table.

Code Listing 2: Products Table

create table products (
 name text,
 price integer
)

The rows of this table each represent a single product. We can then give the client write access
on the table to allow them to add, remove, and update their list of products whenever they want.

To come up with HTML to represent these products, we can read the last state of the data from
this table and process it in some programming language—like Java—to make the program
concatenate together HTML strings based on the data.

Code Listing 3: HTML Strings

html = "<html><body>";

// Loop over rows in table, and for every row:
html += "" + name + " - " + price + "";

// When the loop is done:
html += "</body></html>";

We can now write the value of that html variable to an HTML file and ship it. Every time the

customer updates their data table, we can regenerate and ship the new HTML.

This worked great, and it gave us a lot of power to work with dynamic data, but something was
wrong; it didn't feel right.

We wanted to write HTML, not concatenate strings.

14

Enhancing HTML

A genius mind came up with an idea to create a new language that is somewhere between
HTML and programming languages like Java. A language where we can still write normal HTML
tags, but also use special tags that will act like loops and conditionals when we need them. JSP
and PHP are examples of this.

Here's how we can represent our product data using an enhanced HTML language:

Code Listing 4: HTML+ (Pseudocode)

<html><body>
 <% FOR each product in the list of products %>
 <%= the product's name %> - <%= the product's price %>
 <% END FOR %>
</body></html>

This is clearly a bit more pleasant to work with than concatenating strings. The compiler will take
care of doing the string concatenations for us, and we will get HTML that always reflects our
exact data.

This has been the standard way to create dynamic websites for years. In fact, until recently,
Facebook did exactly that to show you the list of updates from your friends.

But just like everything else in life, browsers evolved and became smarter. JavaScript became a
standard language that is supported in all browsers, and someone invented AJAX, which
allowed us to ask servers questions in the background of a webpage.

We realized that we could be more efficient in the way we represent our data. Instead of
preparing the HTML server-side and shipping it ready to the client, we can send just the data to
the client, and we'll have the fancy, smart browsers prepare the HTML themselves. JavaScript
can do that.

Since we didn't want to concatenate strings, we needed something like JSP and PHP, but
something that would work with the JavaScript engine in the browser.

Frameworks like Angular, Ember, and a handful of others were developed to make this process
easier.

Just like server-side enhanced HTML languages, with Angular we do:

Code Listing 5: Angular Loop

<html><body>
 <li *ngFor="#product of products">
 {{product.name}} - {{product.price}}

</body></html>

15

Now we're being more efficient over the wire, and we are generating dynamic HTML without
having to deal with concatenating strings.

This worked great, but as we used it to build big applications, a few issues came up:

 Performance: Since we are no longer hitting the refresh button every time we click a link,
our use of memory should now be managed more carefully.

 Browsers are great for rendering an HTML tree of elements dynamically, but they are
still slow, especially when we need to update the tree. Every time an update is needed,
there are tree traversals that need to happen, and when we reach the node and update
it, the browser needs to redraw the user screen, which is an expensive process.

 In some cases, we were not modeling the state of our data directly with user interfaces,
and instead we were writing code that expressed the steps and the transitions needed to
update those interfaces. This is not ideal.

React’s way

The engineers at Facebook, realizing the problems of all other JavaScript frameworks, wanted
something better, so they went back to the drawing board. A few months later, they came up
with what eventually became React.

They had a couple simple rules to guide their genius solution:

 Enhancements to HTML are noise—let's just concatenate strings in JavaScript itself, and
yes, sacrifice some readability for performance.

 The DOM is a bottleneck; we should avoid it as much as possible.

HTML views are hierarchical. An HTML document is a big tree of nodes. With the power and
flexibility of JavaScript, Facebook engineers realized that if HTML nodes were represented as
JavaScript objects, we would have a new world of possibilities for working with them.

Having the power and flexibility of JavaScript, Facebook engineers realized that if HTML nodes
were represented as JavaScript objects, we would have a new world of possibilities to work with
them.

That led to their first major decision: Represent every HTML element with a JavaScript object.

 Note: If you want to test the React code samples in this book, the easiest way to get a
React environment for testing is to use one of the web development online playground
applications. My favorite is JS Bin; here's a React-ready bin that you can fork to start
testing.

React’s API today has the createElement function, which can be used to do exactly that.

http://jsbin.com/nufuwas/edit?js,output

16

Code Listing 6: Void Element

// Instead of:

// We do:
React.createElement("img", { src: "logo.png" })

The createElement function returns a JavaScript object. To inspect that object, go to the main

React website and paste the createElement line in the developer tools JavaScript console:

Figure 1: createElement in JS Console

Notice the type property for that object, and take a look at the props property as well.

, however, is a void (self-closing) element; let's take a look at another example for a
normal element.

Code Listing 7: Normal Element

// Instead of:
Home

// We do:
React.createElement("a", { href: "/" }, "Home");

To represent a parent-child relation, we can use the arguments of the React.createElement

function. We can pass one or more React objects, starting from the third argument of
React.createElement.

For example, to make the logo image clickable:

Code Listing 8: Parent-Child Relation

// Instead of:

// We do:
React.createElement("a", { href: "/" },

http://facebook.github.io/react/
http://facebook.github.io/react/

17

 React.createElement("img", { src: "logo.png" })
);

If we inspect this last object in the console, we’ll notice how the props attribute for the <a>

element has a children attribute, and that in turn holds the object for the element.
This is how we represent a tree with React.

Of course, under the hood, React will eventually generate HTML strings from these JavaScript
objects and concatenate them together.

There are big benefits to writing HTML with JavaScript:

 We have the power of JavaScript itself to work with data. Our product example
becomes:

Code Listing 9: The Power of JavaScript

React.createElement("ul", {},
 ...products.map(product =>
 React.createElement("li", {}, `${product.name} - ${product.price}`)
)
);

 It's all JavaScript, so we don't mix HTML with new tags or anything. We also don't have
to learn a new language, and instead learn how to use the few JavaScript functions that
React defines.

 We'll always have a representation of our HTML in memory, separate from the one in the
browser. This means that we can optimize our DOM operations by using a smart diffing
algorithm on the structures we have in memory. This is only relevant when things
change. This concept is what we call the virtual DOM in React.

The virtual DOM

After rendering HTML for the product data example that we started with, we’ll have three
products with their names and prices displayed in the browser. With an Ajax call, we've

determined that the price for product #2 has changed, and we now have a fourth product to
display.

React has the original user interface state for three products stored in memory (because we
wrote it in JavaScript first). Before sending anything to the browser, React will compute the new
state, which now has four products.

With both states available in memory now, React can compute the difference between the new
state and the original state, and it can conclude that it needs to add a node #4 and modify node
#2. All other nodes will remain unchanged.

18

Having the original state in memory represents a big performance benefit. Other frameworks
that don’t have an original state in memory have two options:

 Generate the new state’s UI and replace the whole tree in the browser.

 Try to change nodes #2 and #4, but rely on what is in the DOM. This results in making a
bunch of READ operations in the DOM, and processing the tree to figure out where node
#2 begins and where node #3 ends. These DOM operations are usually expensive.

React’s virtual representation of the browser's DOM in memory (known as the virtual DOM) is
clearly a better alternative. In fact, it's so good that most other JavaScript frameworks today
have changed their algorithms to do exactly what React does for updating the DOM.

React’s power is more than a virtual DOM with a smart diffing algorithm. Views in React have
private state, so our product list view can have its original three products object represented in
that private state, and when the new data comes in, we just update the private state. React
triggers a DOM reload whenever the private state of the view changes. It basically hits a special
refresh button in the browser.

From the point of view of a user inspecting the state, the view has been completely refreshed,
and the new view represents the new state. But under the hood, React is doing this refresh
operation smartly by using the diff it computed via the virtual DOM, and only applying that diff to
the browser's tree. As developers, however, we don't have to worry about that; we just declare
our state changes and let React take care of the steps needed to get those changes efficiently
reflected in the browser's DOM.

This is so important to understand that it's worth repeating: With React, we model the state of
our user interfaces, and not the transitions on them. If there are changes, we just model the new
state.

React has effectively taught both the browsers and us developers to speak a new language: the
language of user interface outcomes. We can now communicate with our browsers in this
higher-level language that allows us to express our user interfaces in a declarative way.

Using the React language for our products example, we're basically saying, “Browser, I have
three products for you.” Then a minute later, we come back and say, “Browser, I now have four
products for you.” We don't have to worry about the changes in the prices or names, since this
is not part of the language; it's a transition, and we just model the new state: four products. In
fact, even the number of products does not matter because of the reactive update nature of
React, which will take care of re-rendering the views when that number changes. Our command
to the browser ends up being, “Browser, we have a list of products for you, and changes might
happen to that list.”

19

Chapter 3 Declarative User Interfaces

React’s language

With React's new language of outcomes, which browsers now understand, we can build
declarative user interfaces (like we used to do with pure HTML), but now we can work with data
as well.

For our products example, we just command the browser to display a list of products; we don’t
even worry about how many products are actually on that list.

Our command to the browser is this: Display this list of products as an unordered list; for every
product, display its name, then display its price.

After that, we’re done. When the data we have for the list of products changes, we don’t need to
do anything to our UI to get it updated with the new data. Our command to the browser does not
need to be changed.

In other words, if we have transitions on the data, we don't have to worry about the user
interface—we just manage the new state of our data.

Data transitions include operations like the following:

 One product was removed from the catalog.

 Three more products were added to the catalog.

 A product name has changed.

 Five products' prices have changed.

 The order of the products in the catalog has changed.

Of course, we have to change our views if the structure of our data changes. For example,
when we add a Boolean flag to every product to track whether the product is in stock or not,

and we want to display the out-of-stock products in gray, this would be a structure transition, not
just a data transition. Once we account for the new structure for the first time though, updating
that new flag becomes just a data transition that we don't have to worry about in the UI.

This mental model about modeling the final state is much easier to understand and work with,
especially when our views have lots of data transitions.

For example, consider the view that tells you how many of your friends are online. The view
state will be just one single number of how many of friends are currently online. This view does
not care that a moment ago, three friends came online, then one of them disconnected, then
two more joined. It just knows that at this current moment, four friends are online.

20

To JSX or not to JSX

Writing HTML in JavaScript gives us a lot of power and advantages over using templates and
display logic. But working with HTML directly has great advantages that we would sacrifice in
this case. HTML is familiar and concise, and if you work with designers, they would certainly
hate to work with our JavaScript-created elements.

JSX is the optional compromise. It is a simple HTML-like JavaScript syntax extension used to
create React elements. You can think of JSX as an enhancement of JavaScript to allow for
syntax that looks like HTML. We can use it in the return statement of a component’s render
function.

JSX is labeled “HTML-like” because it can’t be exactly HTML. Some element attributes have to
be used the way the DOM API defines them; class and for are both examples of this. To use

them in React, we use className and htmlFor instead.

The following example is an email input field interface.

Code Listing 10: JSX

// The desired HTML:
<form>
 <label for="email">Email:</label>
 <input type="email" id="email" class="form-control" />
</form>

// How to represent it with React:
React.createElement(
 "form",
 null,
 React.createElement(
 "label",
 { htmlFor: "email" },
 "Email:"
),
 React.createElement(
 "input",
 { type: "email", id: "email", className: "form-control" }
)
);

// How to represent it with JSX:
<form>
 <label htmlFor="email">Email:</label>
 <input type="email" id="email" className="form-control" />
</form>

It’s important to understand that JSX is completely optional, and not required to use React. We
can write React in plain JavaScript; we don’t need the JSX extension.

21

JSX is actually not shipped with React at all; we will need third-party tools to make our project
work with JSX. The Facebook-recommended tool is Babel.

Writing components render functions in JSX instead of pure JavaScript has the advantage of
being concise and familiar, and that’s especially true for designers. Balanced opening and
closing tags are much easier to read and parse with the human eye than JavaScript functions
and object literals.

22

Chapter 4 React Components

User interfaces are defined as components in React. The term component is used by many
other frameworks. We can also write web components natively using HTML5 features like
custom elements and HTML imports.

Components have many advantages, and whether we are working with them natively using
HTML5, or using a library like React, we get the following great benefits.

Readability

Consider this UI:

Code Listing 11: HTML-Based UI

What does this UI represent? If you speak HTML, you can parse it quickly here and say, “it’s a
clickable image.” If we’re to convert this UI into a component, maybe ClickableImage is a
good name for it.

Code Listing 12: Component-Based UI

<ClickableImage />

When things get more complex, this parsing of HTML becomes harder, so components allow us
to know quickly what the UI represents using the language that we’re comfortable with (English
in this case).

Here’s a bigger example:

Code Listing 13: Component-Based UI

<TweetBox>
 <TextAreaWithLimit limit={140} />
 <RemainingCharacters />
 <TweetButton />
</TweetBox>

Without looking at the actual HTML code, we know exactly what this UI represents.
Furthermore, if we need to modify the output of the remaining characters section, we know
exactly where to go.

23

Reusability

Think of components as functions. This analogy is actually very close to the truth, especially in
React. Functions take input, they do something (possibly on that input), and then give us back
an output.

In functional programming, we also have pure functions, which are basically protected against
any outside state; if we give them the same input, we'll always get the same output.

In React, a component is modeled after a function. Every component has private properties,
which act like the input to that function, and we have a virtual DOM output. If the component
does not depend on anything outside of its definition (for example, if it does not use a global
variable), then we label that component pure as well.

All React components can be reused in the same application and across multiple applications.
Pure components, however, have a better chance at being reused without any problems.

For an example, let's implement our ClickableImage component.

Code Listing 14: ClickableImage Render Function

var ClickableImage = function(props) {
 return (

);
};

ReactDOM.render(
 <ClickableImage href="http://google.com" src="http://goo.gl/QlB7wl" />,
 document.getElementById("react")
);

Having variables for both the href and the src properties is what makes this component
reusable.

Note how we defined the component as an actual function. We can create React components in
multiple ways. The simplest way is to use a normal JavaScript function that receives the
component's props as an argument.

The function’s output is the virtual HTML view, which this component represents.

Don't worry about the syntax now—just focus on the concepts. To reuse this component, we
could do something like render ClickableImage with a Google logo:

props = { href: "http://google.com", src: "google.png" }

We can simply reuse the same component with different props:

24

props = { href: "http://bing.com", src: "bing.png" }

The src properties should be replaced with actual images, as we did in the render function of
the previous example.

Composability

We create components to represent views. For ReactDOM, the React components we define
will represent HTML DOM nodes.

The ClickableImage component in the last example was composed of two HTML elements.
We can think of HTML elements as built-in components in the browser. We can also use our
own custom components to compose bigger ones. For example, let's write a component that
displays a list of search engines.

Code Listing 15: SearchEngines Mockup

var SearchEngines = function(props) {
 return (
 <div className="search-engines">
 <ClickableImage href="http://google.com" src="google.png" />
 <ClickableImage href="http://bing.com" src="bing.png" />
 </div>
);
}

If, for example, we have the data in this format:

Code Listing 16: SearchEngines Data

var data = [
 { href: "http://google.com", src: "google.png" },
 { href: "http://bing.com", src: "bing.png" },
 { href: "http://yahoo.com", src: "yahoo.png" }
];

Then, to make <SearchEngines data={data} /> work, we just map the data array from a list
of objects to a list of ClickableImage components:

Code Listing 17: SearchEngines Render Function

var SearchEngines = function(props) {
 return (
 <List>
 {props.data.map(engine => <ClickableImage {...engine} />)}
 </List>

25

);
};

...

ReactDOM.render(
 <SearchEngines data={data} />,
 document.getElementById("react")
);

The three dots in ...engine mean spread the attribute of an engine as flat properties for
ClickableImage, which is equivalent to doing:

href={engine.href} src={engine.src}

This SearchEngines component is now reusable. It can work with any list of search engines we
give to it. We also used the ClickableImage component to compose the SearchEngines

component.

React’s stateful components

Everything changes eventually. In React, a component manages its changes using a state
object. In addition to the data we pass to components as props, React components can also
have a private state, which can change over time.

For example, a timer component can store its current timer value in its state.

Code Listing 18: Timer Component

<Timer initialSeconds={42} />

This timer will start at 42 seconds and count down to 0, decrementing its state every second. At
second 0, its private state will be 42; at second 1, the private state will be 41; and at second 42,
the private state will be 0.

With React, we just make the timer component display its private state.

Code Listing 19: Timer Render Function

function() {
 return (
 <div>
 {this.state.counter}
 </div>
)

26

}

Every second, we decrement the counter state.

Code Listing 20: Changing the State (Pseudocode)

Every second:
 state.counter = state.counter - 1
 if state.counter reaches 0
 stop the timer

Here's the great news: React components recognize the private state changes. When changes
happen, React automatically hits the Refresh button for us and re-renders the UI of a
component. This is where React gets its name—it will react to the state changes, and reflect
them in the UI.

Creating React components

It's time to officially learn how to create React components.

Let’s define our ClickableImage component, which understands two input properties, href
and src. Once we have this ClickableImage component ready, we can mount it in the browser

using the ReactDOM render function.

Code Listing 21: Rendering a React Component to the DOM

ReactDOM.render(
 <ClickableImage href="google.com", src="google.com" />,
 document.getElementById("react")
);

 Note: ReactDOM is a library that's maintained separately and can be used with React
to work with a browser’s DOM. To be able to use it, you need to include its CDN entry or
import it in your project. This JSBin template has a working example of a component
mounted with ReactDOM.

The first argument to the ReactDOM.render method is the React element that needs to be
rendered, and the second argument is where to render that element in the browser. In this case,
we’re rendering it to the HTML node with id="react".

There are three main ways to define a React component:

 Stateless function components

 React.createClass

http://jsbin.com/nufuwas/edit?js,output

27

 React.Component

Stateless function components

Since components are modeled after functions, we can use a vanilla JavaScript function to write
pure components:

Code Listing 22: Stateless Function Component

var ClickableImage = function(props) {
 return (

);
};

When we use a function component, we’re not creating an instance from a component class;
rather, the function itself represents what would be the render method in a regular component
definition. If we design our application in a functional and declarative way, most of our
components could just be simple stateless function components.

Stateless function components can’t have any internal state, they don’t expose any lifecycle
methods, and we can’t attach any refs to them. If we need any of these features (which I will
explain in later chapters), we will need a class-based component definition.

With the new ES2015 arrow function syntax, the ClickableImage component can be defined

more concisely with:

Code Listing 23: Stateless Function Component with Arrow Function

var ClickableImage = props => (

);

React.createClass

React has an official API to define a stateful component. Our simple ClickableImage
component would be:

Code Listing 24: React.createClass Syntax

var ClickableImage = React.createClass({
 render: function() {
 return (

28

);
 }
});

The createClass function takes a single argument, a JavaScript configuration object. That

object requires one property, the render property, which is where we define the component’s
function that describes its UI.

Note how with createClass, we don’t pass the props object to the render call. Instead,
elements created from this component class can access their properties using this.props

within the render function.

The this keyword references the instance of the component that we mounted in the DOM

(using ReactDOM.render). Every time we mount a <ClickableImage /> element, we’re
creating an instance of the ClickableImage component class.

In object-oriented programming terms, ClickableImage is the class, and
<ClickableImage /> is the object instantiated from that class.

With createClass, we can use the private state of the component object, and we can invoke
custom behavior in its lifecycle methods. To demonstrate both concepts, let's implement a
Timer component.

First, here's how we’re going to use this Timer component:

Code Listing 25: Rendering the Timer Component

ReactDOM.render(
 <Timer initialSeconds={42} />,
 document.getElementById("react")
);

The simple definition of this component, before considering the private state or the tick
operation, is:

Code Listing 26: Timer Component render() Function

var Timer = React.createClass({
 render: function() {
 return (
 <div>{this.state.counter}</div>
);
 }
});

29

The counter variable is part of the private state within a component instance. The private state
object can be accessed using this.state.

Our Timer component has the property initialSeconds, which is where the counter should
start. Properties of a component instance can be accessed using this.props, so if we need to

read the value that we're passing to the initialSeconds property, we use
this.props.initialSeconds.

The state of a React component can be initialized using a getInitialState function in the
createClass definition object. Anything we return from the getInitialState function will be
used as the initial private state for a component instance.

We want the initial state for our counter variable to start as this.props.initialSeconds, so
we do the following:

Code Listing 27: Timer Component Initial State

var Timer = React.createClass({
 getInitialState: function() {
 return {
 counter: this.props.initialSeconds
 };
 },
 render: function() {
 return (
 <div>{this.state.counter}</div>
);
 }
});

Let's now define the “tick” operation. We can use a vanilla setInterval function to tick every

second (1000 milliseconds). Inside the interval function, we need to change our component
state and decrement the counter.

The ticking operation should start after the component gets rendered to the DOM so that we’re
sure there is a div in the DOM whose content we can now control. For that, we need a lifecycle
method.

Lifecycle methods act like hooks for us to define custom behavior at certain points in the
lifecycle of a React component instance. The one we need here is componentDidMount(), and
it allows us to define a custom behavior right after the component is mounted in the DOM.

Code Listing 28: Timer Interval in componentDidMount()

var Timer = React.createClass({
 getInitialState: function() {
 return { counter: this.props.initialSeconds };
 },
 componentDidMount: function() {

30

 var component = this;
 setInterval(function() {
 component.setState({
 counter: component.state.counter - 1
 });
 }, 1000);
 },
 render: function() {
 return <div>{this.state.counter}</div>;
 }
});

There are a couple of things to notice here:

 We had to use a closure around the setInterval so that we have access to the this

keyword in there. It’s an old-school JavaScript trick (which we don't need anymore with
the new ES2015 arrow function syntax).

 To change the state of the component, we used the setState function. In React, we

should never mutate the state directly as a variable. All changes to the state should be
done using setState.

This Timer component is ready, except that the timer will not stop, and it will keep going to the

negative side. We can use the clearTimeout function to stop the timer. Go ahead and try to do
that for our component, and come back to see the following full solution.

Code Listing 29: Timer Component Full Definition

var Timer = React.createClass({
 getInitialState: function() {
 return { counter: this.props.initialSeconds };
 },
 componentDidMount: function() {
 var component = this, currentCounter;
 component.timerId = setInterval(function() {
 currentCounter = component.state.counter;
 if (currentCounter === 1) {
 clearInterval(component.timerId);
 }
 component.setState({ counter: currentCounter - 1 });
 }, 1000);
 },
 render: function() {
 return <div>{this.state.counter}</div>;
 }
});

ReactDOM.render(

31

 <Timer initialSeconds={42} />,
 document.getElementById("react")
);

React.Component

ES2015 was finalized in 2015, and with it, we can now use the class syntax. A class is syntax
sugar for JavaScript’s constructor functions, and classes can inherit from each other using the
extends keyword.

Code Listing 30: ES2015 Class Syntax

class Student extends Person { }

With this line, we define a new Student class that inherits from a Person class.

The React API has a class that we can extend to define a React component. Our
ClickableImage definition becomes:

Code Listing 31: React.Component Syntax

class ClickableImage extends React.Component {
 render() {
 return (

);
 }
}

Within the class definition, the render function is basically the same, except that we used a new

ES2015 syntax to define it. The word function can be completely avoided in ES2015.

Let's look at our Timer example using the ES2015 syntax. Try to identify the differences.

Code Listing 32: Timer Component Using Class Syntax

class Timer extends React.Component {
 constructor(props) {
 super(props);
 this.state = { counter: this.props.initialSeconds };
 }
 componentDidMount() {
 let currentCounter;
 this.timerId = setInterval(() => {

32

 currentCounter = this.state.counter;
 if (currentCounter === 1) {
 clearInterval(this.timerId);
 }
 this.setState({ counter: currentCounter - 1 });
 }, 1000);
 }
 render() {
 return (
 <div>{this.state.counter}</div>
);
 }
}

Here are the differences explained:

 Instead of getInitialState, we now use the ES2015 class constructor function, and
just assign a value to this.state in the constructor. We need to invoke the super()
call there as well to fire the React.Component constructor call.

 In the setInterval, we used an arrow function, i.e. () => { }. With an arrow function,
we don't need to do the closure trick we did before because arrow functions have a
lexically bound “this” that captures the enclosing context by default.

 All the functions are defined using the new function property syntax. For example,
componentDidMount() { ... }.

Component classes, elements, and instances

Sometimes you’ll find these terms mixed up in guides and tutorials. It’s important to understand
that we have three different things here:

 What’s usually referred to as “Component” is the class. The blueprint. The global
definition. In the Timer example, the variable Timer itself is the component class.

 <Timer /> on the other hand, is a React element that we constructed from the Timer
component class. This is a stateless, immutable virtual DOM object.

 When a React element is mounted in the browser’s DOM, it becomes a component
instance, which is stateful. The result of a ReactDOM.render call is a component
instance.

33

Chapter 5 Composability

Several React components can be combined to produce another React component. This is one
of the best features of React. It’s a simple concept with great advantages.

Composability enables abstraction and allows us to understand code without having to care
about all the details all the time. If a Profile component is composed of a ProfilePicture
component and a ContactInformation component, we’ll have a pretty good idea about what’s

going on there without looking at the details of each component.

Composability also enables a more uniform behavior. If we have a ContactInformation
component, whenever we need to display a person’s contact information, whether that person is
a guest, client, vendor, or employee of your business, we can uniformly use the
ContactInformation component. This also means less repetition of code in any UI that
represents a contact information section.

Every time we reuse a component to write another, we are cashing out our original time
investment that we put into creating the original one.

The most important benefit of composability, however, is that it allows us to separate the
different concerns of our applications with great flexibility.

Let me explain composability with an example. Let’s try to describe Twitter’s account page with
components.

Figure 2: Twitter’s User Profile Page

A simplified component list for this page could be something like the following (omitting the
details of every component for brevity):

34

Code Listing 33: Twitter UserHomePage

class Avatar extends React.Component {
 render() {
 return ;
 }
}

class UserInfo extends React.Component {
 render() {
 // name, bio, ...
 }
}

class Counts extends React.Component {
 render() {
 // tweets, following, ...
 }
}

class Tweets extends React.Component {
 render() {
 // The list of tweets.
 }
}

class UserHomePage extends React.Component {
 render() {
 return (
 <div>
 <Avatar src={} />
 <UserInfo user={} />
 <Counts tweets={} following={} ... />
 <Tweets list={} />
 </div>
);
 }
}

Understanding the hierarchical relationships between components here is important. Since
Avatar, UserInfo, Counts, and Tweets all appear in the render method for UserHomePage,
this makes UserHomePage the owner of them.

An owner component can set the props of the components it uses in the render method. For
example, the src property for the Avatar component was passed to it from its owner,

UserHomePage.

35

Component children

Just like we can include HTML elements within the opening and closing tags of another HTML
element, we can also include React elements within the opening and closing tags of another
React element. We can mix HTML elements and React elements in both cases.

Code Listing 34: Children Example

<Counts>
 <TweetsCount />
 <FollowingCount />
 <FollowersCount />
 <LikesCount />
</Counts>

The inner elements (TweetsCount, FollowingCount, etc.) are called the “children" of the outer

element (Counts). Within the definition of the Counts component, we can access the list of
children used within any instance of the component using the special this.props.children

property.

Code Listing 35: this.props.children

class Counts extends React.Component {
 render() {
 <div id="counts-headers">
 {this.props.children}
 </div>
 }
}

React’s tree reconciliation process uses the order of the children in the diffing algorithm. This
unfortunately means that if a child is removed from the tree, all siblings after it will need to be
updated in the process. Be aware of this problem.

This problem becomes a serious one when the children are driven by a dynamic array that can
be shifted and unshifted. It’s also a problem when the elements of that array are shuffled.

To force React to respect the identity and state of each child in a list, we need to uniquely
identify each child instance by assigning it a key prop.

Code Listing 36: key Prop

class ProductList extends React.Component {
 render() {
 return (
 <div>
 {this.products.map(product =>
 <Product key={product.id} product={product} />)}
 </div>

36

);
 }
}

We used product.id here as the special key prop for the Product component.

React will actually warn us if we do not supply a unique key to a mapped array. Take that
warning—and all React’s warnings, really—seriously.

Note that this key prop cannot be used within the Product component definition—it will not be
available as this.props.key.

Do not use the index of the array elements as the key value here. If you do that, when you
remove an element from the array, you would practically be changing the identities of the
children, and you’ll get very unpredictable behavior.

One-way data binding flow

When owners set the props of owned components, they are doing one-way data binding there.
The owner will most likely bind the props of its owned components based on some
computations on its own props and state. This process happens recursively, and any changes in
the computations for the top-level owner component will be automatically reflected everywhere
down the chain where they’re passed to other components.

37

Chapter 6 Reusability

Function components are the best components when it comes to reusability because they are
pure function with no state. They are predictable—the same input will always give us the same
output.

Stateful components can be reusable too, as long as the state being managed is completely
private to every instance of the component. When we start depending on an external state,
reusability becomes more challenging. There are a few things we can add to a React
component to enhance its reusability score.

Input validation

If you are the only one using your component, you probably know exactly what that component
needs in terms of input. What are the different props needed? What data type does it need for
every prop?

When that component is reused in multiple places, the manual validation of input becomes a
problem. Sometimes you end up with a component that does not work, but no errors are being
reported.

Even if you are the only one using your component, and you use it only once, you may not have
complete control over the input values. For example, you could be feeding the component
something that is read from an API, which makes the component dependent on what the API
returns, and that could change any time.

Let’s say you have a component that takes an array of unique numbers and displays each one
of them in a div. The component also takes a number value, and it highlights that value in the
array if it exists.

Here’s a possible implementation with a pure stateless component:

Code Listing 37: NumbersList

const NumbersList = props => (
 <div>
 {props.list.map(number =>
 <div key={number} className={`highlight-${number === props.x}`}>
 {number}
 </div>
)}
 </div>
);

props.list is the array of numbers, and props.x is the number to highlight if it exists in
props.list.

38

To style highlighted elements differently, let's just give them a different color.

.highlight-true {
 color: red;
}

Here’s how we can use this NumbersList component in the DOM:

Code Listing 38: Using NumbersList

ReactDOM.render(
 <NumbersList list={[5, 42, 12]} x={42} />,
 document.getElementById("react")
);

Now, try to feed this component the string "42" instead of a number.

Code Listing 39: Wrong Prop Type

ReactDOM.render(
 <NumbersList list={[5, 42, 12]} x="42" />,
 document.getElementById("react")
);

Not only will things not work as expected, but we will also not get any errors or warnings about
the problem.

It would be great if we could perform input validation on this x prop (and all other props),
effectively telling the component to expect only an integer value for x.

React has a way for us to do exactly that, through React.PropTypes.

We can set a propType property on every component. In that property, we can provide an

object where the keys are the input props that need to be validated, and the values map to what
data type React should use to validate. For example, our NumbersList component should have
x validated as a number.

Here’s how we can do that:

Code Listing 40: React PropTypes

NumbersList.propTypes = {
 x: React.PropTypes.number
};

If we now try to pass x as a string instead of a number, React will give us an explicit warning

about it in the console.

39

Figure 3: Invalid Prop Type Warning

If we pass a correct numeric value for x, we won’t get any warnings.

While these validation errors only show up in development (primarily for performance reasons),
they are extremely helpful in making sure all developers use the components correctly. They
also make debugging problems in components an easier task.

React.PropTypes has a range of validators we can use on any input. Here are some examples:

 JavaScript primitive validators:

o React.PropTypes.array

o React.PropTypes.bool

o React.PropTypes.number

o React.PropTypes.object

o React.PropTypes.string

 React.PropTypes.node: Anything that can be rendered.

 React.PropTypes.element: A React element.

 React.PropTypes.instanceOf(SomeClass): This uses the instanceof operator.

 React.PropTypes.oneOf(['Approved', 'Rejected']): For ENUMs.

 React.PropTypes.oneOfType([..., ...]): Either this or that.

 React.PropTypes.arrayOf(React.PropTypes.number): An array of a certain type.

 React.PropTypes.objectOf(React.PropTypes.number): An object with property
values of a certain type.

 React.PropTypes.func: A function reference.

By default, all props we pass to components are optional. We can change that using
React.PropTypes.isRequired, which can be chained to other validators.

For example, to make x required in our NumbersList example, we can do the following:

40

Code Listing 41: isRequired

NumbersList.propTypes = {
 x: React.PropTypes.number.isRequired
};

And if we try to omit x from the props at this point, we’ll get the following:

Figure 4: Required Prop Type Warning

In addition to the list of validators we can use with React.PropTypes, we can also use custom

validators. These are just functions that we can use to do any custom checks on inputs. For
example, to validate that the input value tweetText is not longer than 140 characters, we can
do something like:

Code Listing 43: Custom PropTypes

Tweet.propTypes = {
 tweetText: (props, propName) => {
 if (props[propName] && props[propName].length > 140) {
 return new Error('Too long');
 }
 }
}

For components created with React.createClass, propTypes is just a property on the input
object. For the regular class syntax, we can use a static property (which is a proposed feature in
JavaScript).

Code Listing 44: propTypes Syntax

// With React.createClass syntax:
let NumbersList = React.createClass({
 propTypes: {
 x: React.PropTypes.number
 },
});

// For class syntax:
class NumbersList extends React.Component {
 static propTypes = {
 x: React.PropTypes.number
 };

41

}

// For functions syntax (and also works for class syntax):
NumberList.propTypes = {
 x: React.PropTypes.number
}

Input default values

One other useful thing we can do on any input prop for a React component is assign it a default
value in case we use the component without passing a value to that prop.

For example, here’s an alert box component that displays an error message in an alert div. If
we don’t specify any message when we use it, it will default to “Something went wrong.”

Code Listing 45: React defaultProps

const AlertBox = props => (
 <div className="alert alert-danger">
 {props.message}
 </div>
);

AlertBox.defaultProps = {
 message: "Something went wrong"
};

ReactDOM.render(
 <AlertBox />,
 document.getElementById("react")
);

The syntax to use defaultProps with React.Component is similar to propTypes. For

React.createClass, we use the method getDefaultProps instead:

Code Listing 46: getDefaultProps()

const AlertBox = React.createClass({
 getDefaultProps() {
 return { message: "Something went wrong" };
 }
});

42

Shared component behavior

Sometimes, reusing the whole component is not an option; we’ll have cases where some
components share most of their functionalities but are different in a few areas.

If we need different components to share common behavior, we have two options:

 If we’re using the React.createClass syntax, we can use mixins.

 If we’re using the React.Component class syntax, we can create a new class and have

all components extend it. We can also manually inject the external methods we'd like our
classes to have in their constructor functions.

Mixins are objects that we can “mix” into any component defined with React.createClass.

For example, in one application, we have links and buttons with unique ids, and we would like
to track all clicks that happen on them. Every time a user clicks a button or a link, we want to hit
an API endpoint to log that event to our database.

We have two components in this app, Link and Button, and both have a click handler
handleClick.

To log every click before handling it, we need something like this:

Code Listing 47: logClick Function

logClick() {
 console.log(`Element ${this.props.id} clicked`);
 $.post(`/clicks/${this.props.id}`);
}

We can add this method to both components, but instead of repeating it twice, we can put
logClick() in a mixin, and include the mixin in every component where we need to log the

clicks.

Here’s how we put the logClick feature in a mixin and use it in both Link and Button:

Code Listing 48: logClickMixin

const logClicksMixin = {
 logClick() {
 console.log(`Element ${this.props.id} clicked`);
 $.post(`/clicks/${this.props.id}`);
 },
};

const Link = React.createClass({
 mixins: [logClicksMixin],
 handleClick(e) {

43

 this.logClick();
 e.preventDefault();
 console.log("Handling a link click...");
 },
 render() {
 return (
 Link
);
 }
});

const Button = React.createClass({
 mixins: [logClicksMixin],
 handleClick(e) {
 this.logClick();
 e.preventDefault();
 console.log("Handling a button click...");
 },
 render() {
 return (
 <button onClick={this.handleClick}>Button</button>
);
 }
});

ReactDOM.render(
 <div>
 <Link id="link1" />

 <Button id="button1" />
 </div>,
 document.getElementById("react")
);

This is a better approach, since now the logClick implementation is abstracted in one place. If

in the future we need to change that implementation, we only need to do it in that one place.

If we want to do the exact same thing with React.Component class syntax (which is vanilla
JavaScript where we don’t have mixins), we have many options. Here’s one possible way:
Create a new class Loggable, implement the logClick in there, and then make both Button
and Link components extend Loggable.

Code Listing 49: The Loggable Class

class Loggable extends React.Component {
 logClick() {
 console.log(`Element ${this.props.id} clicked`);
 $.post(`/clicks/${this.props.id}`);

44

 }
}

class Link extends Loggable {
 handleClick(e) {
 this.logClick();
 e.preventDefault();
 console.log("Handling a link click...");
 }
 render() {
 return (
 Link
);
 }
}

class Button extends Loggable {
 handleClick(e) {
 this.logClick();
 e.preventDefault();
 console.log("Handling a button click...");
 }
 render() {
 return (
 <button onClick={this.handleClick.bind(this)}>Button</button>
);
 }
}

ReactDOM.render(
 <div>
 <Link id="link1" />

 <Button id="button1" />
 </div>,
 document.getElementById("react")
);

45

Chapter 7 Working with User Input

We modeled our data state and declaratively defined our UI as a function of our state. It’s now
time to start accounting for UI events and capturing input from the user.

The nature of user input can be described as a reverse data flow when compared to how
React’s components represent data. In fact, with active user input on a page, the data starts
depending on the UI.

Suppose, for example, we have a UI that displays a list of comments. We start with an array of
comments in the data layer, make the UI represent that, and then add a form on the page to add
a new comment. Our array of data now depends on the user interactions with this form.

If we handle the input events, capture the data that users enter, and then manipulate our
original data source to account for the new input, React will refresh the views that are using that
data.

I’ll first explain the simple way to work with user input: refs attributes. Then I’ll explain how to
work with user input using the recommended way: controlled components.

Before we go into that, however, we need to understand the synthetic events system in React.

React’s synthetic events

We can define native browser events on DOM elements. For example, to console.log the
content of a div when it's clicked, we can do the following:

Code Listing 50: HTML Event

<div onclick="console.log(this.textContent);">
 You might not need React...
</div>

To do that exact same thing in React, we use an onClick synthetic event.

Code Listing 51: React Event

<div onClick={se => console.log(se.target.textContent)} >
 You might not need React...
</div>

The differences between these events are:

 Casing is important. React uses camelCase for the event attributes (onClick,
onKeyPress).

46

 We don’t use strings with React events; we use JavaScript directly.

 We use a function for the value. The function gets defined when we define the
component, and it will be invoked when we click on the element.

An onClick used within a React component works with a synthetic event. That’s why I named

the variable passed to the function “se”. React’s synthetic events are wrappers around the
browser’s native events. We can still access the native event object itself using the
nativeEvent attribute on any synthetic event. We can see the native event if we
console.log(se.nativeEvent) in the previous example.

Browsers historically had significant differences in the way they handled and invoked their
native events. This is getting a lot better with the W3C standards now, but browser quirks are
not to be trusted. With React synthetic events, we don’t have to worry about that. React will
make sure events work identically across all browsers.

One notable example of an event that React made standard between multiple inputs and in all
browsers is the onChange event. The native onChange event works differently among different
input types, and it usually does not mean “change,” but rather that “the user is done changing.”
With React events, the onChange event means that on any change, anywhere, anytime, and for

any input:

 If we’re typing in an input or textarea element, React will fire the onChange event on

every key stroke (much like keyboard events, but also with support for paste and
automated entries).

 If we select or clear a check box, React will fire the onChange event.

 When we select an option from a drop-down select element, React will fire the onChange
event.

Here are examples of some of the popular events that we can use with React:

 Keyboard events: onKeyDown, onKeyPress, onKeyUp

 Focus events: onFocus, onBlur

 Form events: onChange, onInput, onSubmit

 Touch events: onTouchStart, onTouchEnd, onTouchMove, onTouchCancel

 Mouse events: onClick, onDrag, onMouseOver, onMouseOut, etc.

There are also clipboard events, UI events, wheel events, composition events, media events,
and image events.

We can even work with events that are not supported in React by using addEventListener
(usually in componentDidMount) and removeEventListener (in componentWillUnmount).

47

Working with DOM nodes in the browser

React’s powerful performance feature, the virtual DOM, frees us from ever needing to touch the
DOM. When adding React’s synthetic events to the mix, React (in a way) has created a “fake
browser” that respects all the standards, is way faster, and is a lot easier to work with.

This, however, does not mean that we can’t use the original browser’s DOM and events with
React if we need to. Sometimes we need to do special things with the DOM, such as integrate
our components with third-party libraries.

If we need to access a native DOM node in any React component, we can use React’s special
attribute, ref.

We can pass that attribute either a string or a function. You’ll find a lot of examples that use a
string value (which acts like a unique identifier), but don’t do that; instead, use functions.

To work through an example, let’s say we have an email input field where the user is supposed
to type an email, and we have a Save button. Before we save, we want to make sure that the
input is a valid email. If we use the <input type="email" /> element, we can use the native
API method element.checkValidity() to figure out whether or not the user entered a valid
email. To invoke that API method, we need access to the native DOM element.

Here’s the full example implemented with React’s ref attribute:

Code Listing 52: Ref Attributes

const EmailForm = React.createClass({
 handleClick() {
 if (this.inputRef.checkValidity()) {
 console.log(`Email Ok. Saving Email as ${this.inputRef.value}`);
 }
 },
 render() {
 return (
 <div>
 <input type="email" ref={inputRef => this.inputRef = inputRef} />
 <button onClick={this.handleClick}>Save</button>
 </div>
);
 }
})

ReactDOM.render(<EmailForm />, document.getElementById("react"));

48

When we define a ref attribute on the input element and use a function for its value, React will
execute that function when the input element gets mounted with the EmailForm component.

React will also pass a reference to the DOM input element (inputRef in the example) as an
argument to that ref function. Inside the ref function, we can access the EmailForm
component instance via the this keyword, so we can store the input reference as an instance

variable.

Once we have the reference to the native DOM element (this.inputRef), we can access all of
its API normally. In handleClick, we are calling the native checkValidity() function on the

DOM reference.

We can use the same trick to read the value of any input at any point. In handleClick, the

console.log line actually reports the email input text value (using the native API property
“value”) when the input is valid.

Changing a React component’s state with native API calls

We can use React's ref attributes to read input from the user by assigning component variables
to input fields like we did in the previous example. However, every time the user types
something into an input field, they’re practically changing the “state” of that field. Since we are
representing elements with stateful components in React, not reflecting the input state change
back to the enclosing component’s state means that our component is no longer an exact
representation of its current state that is defined in React.

Here’s an example to make that point easy to understand:

Code Listing 53: Input State

const EmailForm = React.createClass({
 getInitialState() {
 return {
 currentEmail: this.props.currentEmail
 };
 },
 render() {
 return (
 <div>
 <input type="email" value={this.state.currentEmail} />
 <button>Save</button>
 </div>
);
 }
})

ReactDOM.render(
 <EmailForm currentEmail="mark@fb.com" />,
 document.getElementById("react")
);

49

We rendered the same EmailForm to save an email field, but this time we’re displaying an initial
value of the email field, and users can change it if they want (an “edit” feature).

Since the email is something that can be changed in this component, we put it on the state of
the component. React rendered the input email and used the component state to display the
default value. If we change the currentEmail state in memory, React will update the value
displayed in the input box.

However, if the user is allowed to change the value of that input field directly using the browser
API (by typing in the text box), then the displayed DOM in the browser will be different than the
current copy of the virtual DOM that we have in memory because that one is reflecting the
currentEmail state, which has not changed. If something else changes in the state of the

EmailForm component, React will re-render the EmailForm component, and the value the user
typed in the email will be lost. This is why React would not allow the user to type in this
example’s email input.

React components should always represent their state in the DOM, and the input field is part of
that state. If we can make the input field always represent the React component's state, even
when the user types in it, then we can just read React’s state whenever we need to read the
new input from the user.

A component where we control the input to always reflect the state is called a controlled
component.

Controlled components

By using controlled components, we don’t have to reach to an input field's native DOM element
to read its value since whatever the user types in there will be reflected on the component state
itself.

To achieve this level of control, we use an onChange event handler. Every time a change event

is fired, we update the component state associated with the input.

Here’s the previous example updated to be a controlled component:

Code Listing 54: Controlled Component

const EmailForm = React.createClass({
 getInitialState() {
 return { currentEmail: this.props.currentEmail };
 },
 setCurrentEmailState(se) {
 this.setState({ currentEmail: se.target.value });
 },
 handleClick() {
 console.log(`Saving New Email value: ${this.state.currentEmail}`);
 },
 render() {

50

 return (
 <div>
 <input type="email" value={this.state.currentEmail}
 onChange={this.setCurrentEmailState} />
 <button onClick={this.handleClick}>Save</button>
 </div>
);
 }
})

ReactDOM.render(
 <EmailForm currentEmail="mark@fb.com" />,
 document.getElementById("react")
);

By using the setCurrentEmailState onChange handler, we’re updating the state of the
EmailForm component every time the user types in the email field. This way we make sure that

the new DOM in the browser and React’s in-memory virtual DOM are both in sync, reflecting the
current state of the EmailForm component.

Note how in the console.log line, we can read any new input value the user entered using

this.state.currentEmail.

51

Chapter 8 Component Lifecycle

Every React component has a story.

The story starts when we define the component class. This is the template that we use every
time we want to create a component instance to be mounted in the browser.

Let me tell you the story of a Quote component that we are going to use to display funny, short

quotes on a webpage. The Quote story begins when we define its class, which might start with
a mockup like the following:

Code Listing 55: Quote Component Mockup

class Quote extends React.Component {
 render() {
 return (
 <div className="quote-container">
 <div className="quote-body">Quote body here...</div>
 <div className="quote-author-name">Quote author here...</div>
 </div>
);
 }
}

The component class is our guide for the markup that should be used to represent a single
quote element. By looking at this guide, we know that we’re going to display the quote body and
its author’s name. The previous definition, however, is just a mockup of what a quote would look
like. To make the component class useful and able to generate different quotes, the definition
should be made generic.

 For example:

Code Listing 56: Generic Quote Component

class Quote extends React.Component {
 render() {
 return (
 <div className="quote-container">
 <div className="quote-body">{this.props.body}</div>
 <div className="quote-author-name">{this.props.authorName}</div>
 </div>
);
 }
}

This template is now ready to be used to represent any quote object, as long as it has a body
attribute and an authorName attribute.

52

Our Quote component story continues; the next major event in its history is when we instantiate
it. This is when we tell the component class to generate a copy from the template to represent
an actual quote data object.

For example:

Code Listing 57: Quote React Element

<Quote body="..." authorName="..." />

The instantiated <Quote /> element is now full-term and ready to be born. We can render it
somewhere (for example, in the browser).

Let’s define some actual data to help us through the next events in our component’s lifecycle.

Code Listing 58: Quotes Data

var quotesData = [
 {
 body: "Insanity is hereditary. You get it from your children",
 authorName: "Sam Levenson"
 },
 {
 body: "Be yourself; everyone else is already taken",
 authorName: "Oscar Wilde" },
 {
 body: "Underpromise and overdeliver",
 authorName: "Unknown"
 },
 ...
];

To render the first quote in the browser, we first instantiate it with an object representing the first
quote in our data: quotesData[0].

Code Listing 59: Instantiating a React Element

var quote1 = quotesData[0];

var quote1Element = <Quote body={quote1.body}
 authorName={quote1.authorName} />;

// Or using the spread operator
var quote1Element = <Quote {...quote1} />;

We now have an official <Quote /> element (quota1Element), which represents the first object

from our quote data.

Let’s take a look at its content.

53

Code Listing 60: renderToStaticMarkup

console.log(ReactDOMServer.renderToStaticMarkup(quote1Element));

// Output
<div className="quote-container">
 <div className="quote-body">
 Insanity is hereditary. You get it from your children.
 </div>
 <div className="quote-author-name">
 Sam Levenson
 </div>
</div>

The output will be one big string that represents the first quote in our data, according to the
HTML template defined in the component class.

We used renderToStaticMarkup to inspect the content, which works just like render, but
does not require a DOM node. renderToStaticMarkup is a useful method if we want to

generate static HTML from data. There is also a renderToString method that’s similar, but
compatible with React’s virtual DOM on the client. We can use it to generate HTML on the
server and send it to the client on the initial request of the application. This makes for a faster
page load and allows search engines to crawl your application and see the actual data, not just
JavaScript with one empty HTML node.

 Note: Applications that leverage the trick of rendering HTML for the initial request are
known as universal applications (or isomorphic applications). They use the same
components to render a ready HTML string for any client (including search engine bots).
Normal clients will also get the static version, and they can start their process with it. For
example, if we give React on the client-side a static version generated on the server-side
using the same components, React will start by doing nothing at first, and it will update
the DOM only when the state changes.

Both renderToString and renderToStaticMarkup are part of the ReactDOMServer library,
which we can import from "react-dom/server".

Code Listing 61: ReactDOMServer (ES2015 Import Syntax)

import ReactDOMServer from "react-dom/server";

// For static content
ReactDOMServer.renderToStaticMarkup(<Quote {...quote1} />);

// To work with React virtual DOM
ReactDOMServer.renderToString(<Quote {...quote1} />);

However, on the client-side, we would like our application to be interactive, so we need to
render it using the regular ReactDOM.render method.

54

Code Listing 62: Component Instance

ReactDOM.render(
 <Quote {...quote1} />,
 document.getElementById("react")
);

A Quote component instance is now in the browser, fully mounted, and is part of the browser’s

native DOM.

React has two lifecycle methods that we can use to inject custom behavior before or after a
component instance is mounted in the DOM. These are componentWillMount and
componentDidMount.

The best way to understand these lifecycle methods is to define them in our component class
and put a debugger line in both of them.

Code Listing 63: Understanding Lifecycle Methods

class Quote extends React.Component {
 componentWillMount() {
 console.log("componentWillMount...");
 debugger;
 }
 componentDidMount() {
 console.log("componentDidMount...");
 debugger;
 }

 render() { ... }
}

If we run this in the browser now, dev tools will stop the execution for debugging twice.

The first stop will be in componentWillMount. React exposes this method for us to write custom
behavior before the DOM of the component instance is written to the browser. In the following
figure, notice how the browser’s document would still be empty at this point.

55

Figure 5: componentWillMount() Debugger Line

The second stop will be in componentDidMount(). React exposes this method for us to write

custom behavior after the DOM of the component instance is written to the browser. In the
following figure, notice how the browser’s document would show the HTML for our first quote at
this point.

56

Figure 6: componentDidMount() Debugger Line

React exposes other lifecycle methods for updating and unmounting components. Every
lifecycle method has specific advantages and use cases. I’ll give one practical example for each
method so that you can understand them in context.

componentWillMount()

React invokes this method right before it attempts to render the component instance to its
target. This works on both the client (when we use ReactDOM.render) and the server (with
ReactDOMServer render methods).

Practical example

We want to create a log entry in our database every time a quote is rendered using our Quote

component. This should include quotes rendered server-side for search engine optimization
(SEO) purposes. Since componentWillMount is triggered on both the client and the server, it’s
an ideal place to implement this feature.

57

Assuming the API team wrote an endpoint for us to use, and that we just need to post to
/componentLog and send it the name of the component and its used props, and also assuming
we have an AJAX library (like jQuery.ajax, for example), we can do something like this:

Code Listing 64: componentWillMount()

componentWillMount() {
 Ajax.post("/componentLog", {
 name: this.constructor.name,
 props: this.props
 });
}

componentDidMount()

React invokes this method right after it successfully mounts the component instance inside the
browser. This only happens when we use ReactDOM.render. React does not invoke

componentDidMount when we use ReactDOMServer render methods.

componentDidMount is the ideal place to make our component integrate with plugins and APIs
to customize the rendered DOM.

Practical example

The boss wants you to integrate an API to the Quote component to display how popular a quote
is. To get the current popularity rate of a quote, you need to hit an API endpoint:

https://ratings.example.com/quotes/<quote-text-here>

The API will give you a number between 1 and 5, which you can use to show the popularity on a
five-star scale.

The boss also requested that this feature is not to be implemented server-side because it would
slow down the initial render, and the feature should not block the rendering of a quote on the
client. The quote should be rendered right away, and once we have a value for its stars-rating,
display it.

We can’t use componentWillMount here because it is invoked on both server and client render
calls. componentdDidMount, on the other hand, is invoked only on client calls.

Since we need to display the stars-rating number in our component somewhere, and since it’s
not part of the component props but instead read from an external source, we’ll need to make it
part of the component’s state to make sure React is going to trigger a re-render of the
component when the stars-rating variable gets a value.

We can do something like this:

58

Code Listing 65: componentDidMount()

componentDidMount() {
 Ajax.get(`https://rating.example.com/quotes/${this.props.body}`)
 .then(starRating => this.setState({ starRating }));
}

Once the quote is displayed in the browser, we initiate a request to the API, and when we have
the data back from the API, we’ll tell React to re-render the component’s DOM (which would
now have the stars-rating) by using a setState call.

 Note: Be careful about using setState inside componentDidMount, as it usually leads
to twice the amount of browser render operations.

Integrating jQuery plugins is another popular task where componentDidMount is a good option,
but be careful with that—when we add event listeners to the mounted component’s DOM, we
need to remove them if the component is unmounted. React exposes the lifecycle method
componentWillUnmount for that purpose.

To see the rest of the component lifecycle methods in action, let’s add control buttons to our
Quotes application to enable users to browse through all the quotes we have. So far, we’re only
showing the first quote.

Let’s create a Container component to host the currently active quote instance plus all the
control buttons we need. The only state needed by this Container component will be the index

of the current quote. To show the next quote, we just increment the index.

The Container component would be something like:

Code Listing 66: Container Component

class Container extends React.Component {
 constructor(props) {
 super(props);
 this.state = { currentQuoteIdx: 0 };
 }
 render() {
 var currentQuote = this.props.quotesData[this.state.currentQuoteIdx];
 return (
 <div className="container">
 <Quote {...currentQuote } />
 <hr />
 <div className="control-buttons">
 <button>Previous Quote</button>
 <button>Next Quote</button>
 </div>
 </div>
);

59

 }
}

And we use it with:

Code Listing 67: Using the Container Component

ReactDOM.render(
 <Container quotesData={quotesData} />,
 document.getElementById("react")
);

This is what we should see in the browser at this point:

Figure 7: One Quote and Buttons

Now let’s make the buttons work. All we need to do is increment or decrement the
currentQuoteIdx in the buttons’ click handlers.

Here’s one way to do that:

Code Listing 68: nextQuote Function

nextQuote(increment) {
 var newQuoteIdx = this.state.currentQuoteIdx + increment;
 if (!this.props.quotesData[newQuoteIdx]) {
 return;
 }
 this.setState({ currentQuoteIdx: newQuoteIdx });
}

Define the nextQuote function in the Container component class.

The if statement protects against going beyond the limits of our data—clicking “Previous
Quote” on the first quote or “Next Quote” on the last one would do nothing.

60

 Note: The if statement check is the minimum validation that we should do. Buttons
should also be disabled if they can’t be clicked. Try to implement that on your own.

 Here’s how to use the nextQuote handler when we click the buttons:

Code Listing 69: Buttons Click Handlers

<button onClick={this.nextQuote.bind(this, -1)}>
 Previous Quote
</button>
<button onClick={this.nextQuote.bind(this, 1)}>
 Next Quote
</button>

The bind call here is basically a fancy way to wrap our nextQuote function with another

function, but this new outer function would remember the increment variable value for each
button.

Go ahead and try the buttons now. They should work.

Every time we click on the buttons (given that the if statement in the handler is false), we’re
updating the DOM for the <Quote /> element. We’re doing this through React by controlling the

props passed to the mounted <Quote />.

Here’s what happens in more detail:

 The user clicks the “Next Quote” button.

 The <Container /> instance gets a new value for the currentQuoteIdx state.

 React responds to the state change in <Container /> by triggering its render()
function.

 React computes the new DOM for the <Container /> instance, and that involves re-
rendering the <Quote /> instance. Since the currentQuoteIdx was incremented, the

currentQuote object would now be different than the one we used previously.

 In a way, React updates the mounted <Quote /> instance with new props.

During that process, React invokes four lifecycle methods for us to customize the behavior if we
need to. Let’s see them in action.

Code Listing 70: Quote Update Lifecycle Methods

class Quote extends React.Component {
 componentWillReceiveProps() {
 console.log("componentWillReceiveProps...");

61

 debugger;
 }
 shouldComponentUpdate() {
 console.log("shouldComponentUpdate...");
 debugger;
 return true;
 }
 componentWillUpdate() {
 console.log("componentWillUpdate...");
 debugger;
 }
 componentDidUpdate() {
 console.log("componentDidUpdate...");
 debugger;
 }

 render() { ... }
}

Refresh your browser now, and note how none of these console.log lines will fire up on the
initial render of the first quote. However, when we click Next Quote, we’ll see all of them fire,
one by one.

I’ve added debugger lines here for you to see the UI state between these four stages. For the
first three, the browser’s DOM will still have the old quote displayed, and once you get to the
componentDidUpdate debugger line, you’ll see the new quote in the browser.

Let me explain these methods with practical examples.

componentWillReceiveProps(nextProps)

Whenever a mounted component gets called with a new set of props, React will invoke this
method passing the new props as the argument.

Practical example

You wrote a random even number generator function generateEvenRandomNumber, and you
used it in a component TestRun to render a random even number in the browser every second

using a setInterval call.

Code Listing 71: TestRun

// Render every second:
<TestRun randomNumber={generateEvenRandomNumber()} />

To test the accuracy of your generator code, you rendered 100 of these <TestRun /> instances

in your browser and let the timers run for a while.

62

You want to make sure that no component is rendered with an odd number. Instead of watching
the components, you can use componentWillReceiveProps to make the component
“remember” if it was rendered with an odd number, and how many times this happened.

Code Listing 72: TestRun Component

class TestRun extends React.Component {
 constructor(props) {
 super(props);
 this.state = { badRuns: 0 };
 }
 componentWillReceiveProps(nextProps) {
 if (nextProps.randomNumber % 2 === 1) {
 // Bad Run. Log it.
 this.setState({ badRuns: this.state.badRuns + 1 });
 }
 }
 render() { ... }
}

 Note: React will trigger the componentWillReceiveProps method even if nextProps is
identical to currentProps. The virtual DOM operation is what determines if a render to
the DOM should actually happen.

shouldComponentUpdate(nextProps, nextState)

This is a special method. If you noticed, when we tested the update lifecycle methods, this was
the only one where we returned true.

This method is similar to componentWillReceiveProps, but has some differences:

 In addition to nextProps, React also passes a nextState object to this method.

 If we write code that returns false in this method, the update process will be stopped,

and the component will not be updated. That’s why we returned true when we tested
shouldComponentUpdate previously. Go ahead and test returning false there instead,
and see how the “Next” and “Previous” buttons stop working.

This method can be used to enhance the performance of some React components. If a
component only uses its props and state in the render function and nothing global, for example,
we can compare the current props and state with nextProps and nextState in
shouldComponentUpdate, and return false if the component is receiving similar values.

Components that only read from props and state in their render functions are known as pure
components. They’re very similar to pure functions in the sense that their return value (the
output of render) is only determined by their input values (props and state).

63

For pure components we can safely do the following:

Code Listing 73: Pure Components

class PureComponentExample extends React.Component {
 shouldComponentUpdate(nextProps, nextState) {
 return notEqual(this.props, nextProps) ||
 notEqual(this.state, nextState);
 }
 render() {
 // Read only from this.props and this.state
 // Don't use any global state
 }
}

notEqual() would be a function that can compare two objects for their keys' values.

Practical example

You have a component that takes a timestamp prop and renders the date part of it, ignoring the
time.

Code Listing 74: Date Component Element

<Date timestamp={new Date()} />

If we’re rendering this component frequently, the only time we would actually want it to update
would be tomorrow, so we can short-circuit the update process with
shouldComponentUpdate().

Code Listing 75: Date Component shouldComponentUpdate()

class Date extends React.Component {
 shouldComponentUpdate(nextProps, nextState) {
 return this.props.timestamp.toDateString() !==
 nextProps.timestamp.toDateString();
 }

 render() { ... }
}

componentWillUpdate(nextProps, nextState)

When a mounted component receives new props, or when its state changes, React invokes the
componentWillUpdate method. This happens right before the render function is called.

64

Note that if we customized shouldComponentUpdate and returned false, React will not invoke
componentWillUpdate.

We cannot use setState in componentWillUpdate. It’s simply too late for that.

Practical example

In our quotes application, we’re now updating a single <Quote /> instance to render multiple
quotes. The database log entry that we do in componentWillMount is not going to be invoked

when we click the Next Quote button. componentWillMount is only invoked on the initial
render.

For this example, we could use componentWillUpdate to invoke the exact same code we used
in componentWillMount.

Code Listing 76: componentWillUpdate() Reusing Code

logEntry(component) {
 Ajax.post("/componentLog", {
 name: component.constructor.name,
 props: component.props
 });
}
componentWillMount() {
 logEntry(this);
}
componentWillUpdate() {
 logEntry(this);
}

Note, however, that this method gets invoked every time React re-renders, even if it’s rendering
with the exact same props. If we want the log entry to only happen when the props change, we’ll
need to introduce an if statement about that in componentWillUpdate.

componentDidUpdate(prevProps, prevState)

React invokes this final method after a component is updated and after the changes are synced
to the browser. If we need access to the previous props and state, we can read them from the
parameters of this method.

Just like componentDidMount, componentDidUpdate is helpful when we want to integrate
external libraries with our components, set up listeners, or work with an API.

65

Practical example

Our componentDidMount example also applies to componentDidUpdate, given the change we
made to render a new quote by updating the props. However, since we’re potentially hitting an
external API for this example, we should be careful about doing so directly in
componentDidUpdate, because we might be hitting the API endpoint for a stars-rating value
that we already have.

One thing we can do for this current example is to simply cache the stars-rating values we read
from the API.

Code Listing 77: componentDidUpdate() Reusing Code

setStarRating(ci) {
 if (ci.starRatings[ci.props.id]) {
 ci.setState({ starRating: ci.starRatings[ci.props.id] });
 return;
 }
 Ajax.get("https://rating.example.com/quotes/" + ci.props.body)
 .then(starRating => {
 ci.starRatings[ci.props.id] = starRating;
 ci.setState({ starRating });
 });
}
componentDidMount() {
 setStarRating(this);
}
componentDidUpdate() {
 setStarRating(this);
}

Note how we used a component instance variable (ci.starRating) to hold the cache of all API

calls. We can use instance variables when we don’t need React to trigger a re-render call when
their values change.

There are a lot of similarities between pairs of mounting and updating lifecycle methods, and
often you’ll find yourself extracting code into another function and invoking that function from
multiple methods (which is what we did in the previous example). However, the separation is
helpful sometimes, especially when you want to integrate third-party code, like jQuery plugins,
with your initially rendered DOM.

The last lifecycle method you should be aware of is componentWillUnmount.

componentWillUnmount()

React invokes this method right before it attempts to remove a component instance from the
DOM.

66

To see an example of that, put a componentWillUnmount method on the Quote class.

Code Listing 78: componentWillUnmount()

componentWillUnmount() {
 console.log("componentWillUnmount...");
}

Then try to remove all mounted content from the DOM. ReactDOM has a method for that.

Code Listing 79: unmountComponentAtNode()

ReactDOM.unmountComponentAtNode(document.getElementById("react"));

This will unmount any React components rendered inside the element passed to it as an
argument. We should see the console.log line from componentWillMount in the console.

Practical example

When we set up listeners or start timers in componentDidMount, we should clear them in
componentWillUnmount.

Code Listing 80: Start and Stop Listeners

componentDidMount() {
 // start listening for event X when triggered by Y
}
componentWillUnmount() {
 // stop listening for event X when triggered by Y
}

67

Chapter 9 Let’s Build a Game with React

The memory grid game

Let’s use what we learned so far to build something from scratch with React. Instead of building
a boring example app, let’s build a somewhat entertaining game.

I love memory games; I think they are a fantastic way to “maintain” your useful short-term
memory. I picked a popular and simple memory game for us to build together. This game has
many names with many variations, but I’ll just call it “the memory grid.”

This game will show the player a grid with many cells and highlight a few random ones. The
player is expected to memorize the positions of the highlighted cells. The game will then clear
the highlighted cells and challenge the user to recall their positions from memory.

I picked this game because it’s not a trivial example, but is still simple enough to fit in one
chapter. The game also has a few moving parts: there will be nested components with different
states on different levels, there will be timers, and there will be user input through clicks.

To see a demo of what exactly we will be building in this chapter, you can play the final version
of the memory grid game here.

Figure 8: The Memorize State

http://memorygrid.reactjscamp.com/

68

Figure 9: The Recall State

Here’s what the client told us when they requested the game:

You start with an empty grid that is X by Y (make it configurable). Tell the player to get
ready, then highlight a number of cells (also configurable) for a few seconds while telling
the user to memorize those cells. The game then goes into “Recall” mode, where the
user is challenged to remember those cells after we clear the cells from the grid. If they
guess a correct cell, mark it green, and if they guess a wrong cell, mark it red. They win
if they guess all the right cells with a maximum of two wrong attempts.

This request is not too bad; you’ll be lucky to get a detailed request like that from a client.
Usually, client requests are vague and you have to innovate around them—that’s why we need
agility in the process by always engaging the clients when we have something ready to be
tested.

As with any complex problem, the key to getting to a solution is to split the problem into small,
manageable chunks. Focus on the smallest testable increment that you can do next that would
push the project forward a tiny bit, and implement just that.

69

Implementation increments

Increment 1: Make some decisions

 We will use a locally hosted React app, because that’s realistically what you’ll be doing
from now on. This would mean that we need to do a few configuration steps to get things
working. Alternatively, you can do the whole game on sites like jsbin.com or codepen.io,
but I’d recommend that you follow along and get a local React app working. It’s not too
hard, I promise.

 We will use JSX for this project. This means we need a tool to process all files that have
JSX in them for React. We will use Babel.js to do that.

 We will use JSPM, the JavaScript Package Manager, to invoke Babel.js and bundle our
app for the browser. JSPM is possibly the easiest way to start a local React project.

 We will use the modern ES2015 JavaScript syntax. By using Babel.js, we don’t have to
worry about browser support (which might be irrelevant by the time you read this
anyway). We’ll also use the React class syntax to define our components.

 We will be as modular as possible; we’ll put every component in its own file, and we’ll try
to keep components small and pure.

 We will not be spending a lot of time on the styling of the game. We’re doing this to learn
React. We’ll do minimal styling where needed.

 We will not write tests for this game to keep it simple. This is a bad decision, and unless
you’re writing an example for a Succinctly series book, do not make a similar decision.

 We will focus on readability over performance.

 We will minimize the use of component state where possible.

 Note: I’ll be intentionally “planting” some bugs and problems in this game and
potentially introduce other not-so-intentional ones. Try to identify problems as we make
progress on the game. I’ll solve the intentional ones eventually (after I challenge you to
find them), but if you find other bugs, please make sure to report them with an issue on
the GitHub project of the game.

When you’re done following along in this book, the full source code of the game is available on
GitHub.

Increment 2: Write the full specifications of the game

The client’s paragraph is a good start, but there are gaps in the specifications that we should
attempt to fill:

https://babeljs.io/
http://jspm.io/
http://github.com/reactjscamp/memory-grid-game

70

 The game starts out with a grid rendered in the center of the screen, with X rows and Y
columns. By default, it will start as 5 × 5.

 Under the initial grid, a hint message will read “Get Ready…”

 After two seconds, the hint message under the grid will change to “Memorize…” and the
grid will highlight Z cells in blue. The Z cells will be picked randomly. By default, Z will be
6.

 The user can’t do anything up to this point except watch what’s happening.

 After two more seconds, the hint message under the grid will change to “Recall…”, and
the grid will clear the six highlighted cells.

 The game will remember the positions of the highlighted cells before it clears them.

 At this point, the user can click on any cell. Clicking on a cell that was highlighted before
will turn it green. Clicking on the other cells that were not highlighted will turn them red.

 In the footer, we’ll show the number of remaining correct guesses needed to win the
game. Every new correct guess will decrement that number.

 The user loses the game if they click three wrong cells.

 The user wins the game if they guess all six cells correctly with no more than two wrong
attempts.

 If the user wins the game, the message under the grid will read “Well Played.” If they
lose, the message will read “Game Over.”

 When the game is over, it will display the active cells that the user could not guess.

Obviously, this is a lot more than what the client detailed for us, but it’s the minimum that makes
sense to me. I assumed a few things while coming up with the specs, and the client may not like
them. A logical thing to do after we have this list on paper is to make sure that the client likes
everything about it.

If approved by the client, the list will be the initial contract between you and the client. We can
go back to it for reference.

If you can’t come up with the whole list at once, that’s okay. Some people might even argue that
a list like this up front is closer to a waterfall model than to a lean one. Look at this list as the
MVP (minimal viable product) of the game, which is what the client wanted, but we made it
detailed so that it can map to a list of tasks. This list is not constant; we might need to modify
things, and we will certainly add more to it.

Increment 3: Get a React app running locally with JSPM

Time for the exciting stuff: open your terminal and create a new directory for the game. Name it
memory-grid-game.

71

Code Listing 81: mkdir

~ $ mkdir memory-grid-game

 Note: I'll be assuming a Linux-based environment for all the commands in this
example. On Microsoft Windows, the commands and outputs might be slightly different.

The JSPM library can be installed using Node Package Manager (NPM). We’ll need an active
Node.js installation to be able to install NPM libraries. The easiest way to install Node.js
depends on what operating system you’re using. On Mac and Linux, I’ve never had any issues
with Node Version Manager (NVM).

For Microsoft Windows, there are some alternatives to NVM. There is nvm-windows, and there
is nodist. You can also always just use the direct installer available here.

Once you have Node installed, you’ll also get NPM with it. You should be able to check the
version with the -v argument. Here are the versions I am using right now:

Code Listing 82: Node Version

~ $ node -v
v6.3.1
 ~ $ npm -v
3.10.3

Go ahead and install JSPM now.

Code Listing 83: JSPM Install

~ $ npm install jspm –g
└─┬ jspm@0.16.41

~ $ cd memory-grid-game

~/memory-grid-game $ npm init
Answer the questions

~/memory-grid-game $ npm install jspm --save-dev

~/memory-grid-game $ jspm init
Would you like jspm to prefix the jspm package.json properties under jspm?
[yes]:
Enter server baseURL (public folder path) [./]:
Enter jspm packages folder [./jspm_packages]:
Enter config file path [./config.js]:
Configuration file config.js doesn't exist, create it? [yes]:
Enter client baseURL (public folder URL) [/]:
Do you wish to use a transpiler? [yes]:

https://github.com/creationix/nvm
https://nodejs.org/en/download/

72

Which ES6 transpiler would you like to use, Babel, TypeScript or Traceur?
[babel]:

I kept all the default answers as they were for the jspm init command.

At this point, JSPM will install all the system dependencies it needs and put them all under a
jspm_packages directory. This includes Babel.js.

 Note: You should track your increments with Git. If you use Git, don’t forget to add
both node_modules and jspm_packages to .gitignore at this point.

JSPM is ready. We can now start a local React app. We need an index.html file first. I’ll use a

global include of the latest React and ReactDOM here for simplicity, but you can also use JSPM
itself to load a local copy of React using an import statement.

On the root level of the memory-grid-game directory, create an index.html file.

Code Listing 84: index.html—JSPM Template

<!doctype html>
<head>
 <script src="jspm_packages/system.js"></script>
 <script src="config.js"></script>
 <script src="https://fb.me/react-15.3.0.js"></script>
 <script src="https://fb.me/react-dom-15.3.0.js"></script>
</head>
<body>
 <div id="react">
 Loading...
 </div>
 <script>
 System.import('lib/main.js');
 </script>
</body>
</html>

The div with id="react" is where we’re going to mount our React app.

Now in lib/main.js, import a Container component, which will be the main top-level
component for our app, and then mount that component in the div#react element.

Code Listing 85: lib/main.js—Rendering the Container Component

import Container from "./Container";

ReactDOM.render(
 <Container />,

73

 document.getElementById("react")
);

Note: In any import line, when we import from a local JavaScript file like
“Container.js” in the previous example, we can omit the “.js” as JSPM assumes it’s the
default.

Let’s create a “Hello React” line in the Container component to test everything.

Code Listing 86: lib/Container.js—Hello React

class Container extends React.Component {
 render() {
 return <div>Hello React</div>;
 }
}

export default Container;

Go ahead and use your favorite command-line web server to serve the memory-grid-game
directory over a web server. My favorite is the NPM package serve.

Code Listing 87: Running a Local Server with serve

~/memory-grid-game $ npm install serve –g
└── serve@1.4.0
~/memory-grid-game $ serve
serving /Users/samer/memory-grid-game on port 3000

Note: At the time of this writing, JSPM used Babel 5.x, which did not require
configuring any presets. Babel 6 is different. When JSPM supports Babel 6, you’ll
potentially need to do a few different things. I’ll write a follow-up blog post about what
you need to do differently for Babel 6 on JSPM. Look for it here.

In a browser window, go to http://localhost:3000/ now, and you should see “Hello React.”

Figure 10: Hello React

https://edgecoders.com/
http://localhost:3000/

74

Increment 4: Create an empty X by Y grid

I always start a React app with a Container component. You’ll find examples where this
component is named “App” or “Main.” It’s a good idea to have a top-level wrapper component
because sometimes you need to control your actual starting component, and you can’t do that
from within.

It’s now time to “think in React.” What components do we need? Where should the state live?
What actions do we need to plan a flow for in our components? There are no immediately right
answers to these questions. Start with what makes sense to you at this moment, and iterate as
you go.

Let’s start with a Game component. The Container component will mount one instance of the
Game component and pass it the rows and columns variables as props:

Code Listing 88: lib/Container.js—Container Class

import Game from "./Game";

class Container extends React.Component {
 render() {
 return (
 <div>
 <Game rows={5} columns={5} />
 </div>
);
 }
}

export default Container;

The Game component will have this.props.rows rows and this.props.columns columns,
both of which have a value of 5.

Having these two variables passed down from Container gives us the power to later render
another game with different grid dimensions.

Within the Game component, we’ll need to draw a grid and show a message and some stats
under that grid. We’ll worry about the message and stats in a later increment.

We definitely need a Cell component to represent one cell in the grid. The Cell component is

important, as it will have its own logic, style, and actions.

Should we create a Row component? We don’t really have anything specific to a row in the grid,
but a Row component will probably make the grid code read better. So we’ll create one.

Should we create a Grid component to represent that section of the game? You’ll probably be
tempted to do that, but I think it will just introduce an unneeded level of complexity, so let's start
by drawing rows and columns directly in the Game component itself.

75

Do we have to manage any state yet? To answer this question, let’s answer this other question:
Do we need React to re-render the DOM when something changes? If yes, that thing should be
in a state somewhere. So far, however, nothing we defined should trigger a reload in the UI.
Everything is an initial property to drive the initial UI.

We have a Row component and a Cell component. We need to render this.props.rows Row
instances, and within each row, we need to render this.props.columns Cell instances.

This sounds like a nested loop. We can’t do regular loops in JSX. We have two options:

 Prepare the grid in a variable with loops, then put that variable inside the returned JSX.

 Prepare a data matrix (rows × columns), then map that matrix into Rows and Cells
components inside the returned JSX.

You might be tempted to do the first option, which I think is a bit imperative. The second option,
though it might sound weird, is the more declarative way of rendering this grid, and it would
make things easier going forward.

If we think ahead a bit, we need to eventually pick random cells in the grid, and we need to
remember them. Having a data structure representing the grid cells and giving a unique id to
every cell will certainly help us with these tasks.

Instead of preparing DOM nodes in the nested loops we identified, we’re going to create a data
matrix (which is just an array of arrays), give each cell in that matrix a unique id, then map the
matrix arrays into Rows and Cells components. Here’s what I came up with:

Code Listing 89: lib/Row.js—The Row Component

class Row extends React.Component {
 render() {
 return (
 <div className="row">
 {this.props.children}
 </div>
);
 }
}

export default Row;

Code Listing 90: lib/Cell.js—The Cell Component

class Cell extends React.Component {
 render() {
 return (
 <div className="cell">
 {this.props.id}
 </div>

76

);
 }
}

export default Cell;

Code Listing 91: lib/Game.js—The Game Component

import Row from "./Row";
import Cell from "./Cell";

class Game extends React.Component {
 render() {
 let matrix = [], row;
 for (let r = 0; r < this.props.rows; r++) {
 row = [];
 for (let c = 0; c < this.props.columns; c++) {
 row.push(`${r}${c}`);
 }
 matrix.push(row);
 }
 return (
 <div className="grid">
 {matrix.map((row, ri) => (
 <Row key={ri}>
 {row.map(cellId => <Cell key={cellId} id={cellId} />)}
 </Row>
))}
 </div>
);
 }
}

export default Game;

I added these minimal styles to get the cells divs to look like a grid:

Code Listing 92: In index.html head Element—CSS Styles

...
<style>
 body {
 text-align: center;
 }
 .cell {
 width: 100px;
 height: 100px;

77

 display: inline-block;
 border: 1px solid #aaa;
 background: #f8f8f8;
 margin-right: 4px;
 }
</style>
...

This is what I see when I refresh the browser now:

Figure 5: Empty Grid

Questions about the code so far:

 In the Row component, since this is just a wrapper around a number of cells, all we need
to do is render all the children of the instance. We do this in React using
this.props.children, which is a special structure that holds one or more elements. In
this case, it has five Cell components. We also could have made a Row component
responsible for rendering the five Cell components directly inside its render function.

Which approach do you think is better? Why?

78

 We came up with a unique id for every cell by concatenating the row index with the
column index. ids of the cells for our default grid will be strings like “00”, “01”, … “44”.

We’re showing the ids on the grid for testing, but they will not be part of the final product.
We could have also just used a serial number for the ids here. Which approach do you
think is better? Why?

 Note: Did you identify any problems with the code so far? There is one problem in
Game.js, which we will solve in Increment 6. Try to identify it.

Increment 5: Get Ready… Memorize… Recall…

Before we get into the details of the grid, let’s prepare the three game states: “ready,”
“memorize,” and “recall.”

The game starts with a “ready” state. After two seconds, we need to switch that to a “memorize”
state, and after two more seconds, we need to switch that to a “recall” state. We can use the
browser timers to accomplish this with setTimeout.

When the game state changes, we want to display a hint line in the UI of the game, right below
the grid. Let’s put that logic in a Footer component. To keep this component pure, we’ll assume
that it will receive the gameState as a prop, and we’ll use defaultProps to prepare an object of
user-friendly hints to display to the user.

Code Listing 93: lib/Footer.js—The Footer Component

class Footer extends React.Component {
 render() {
 return (
 <div className="footer">
 <div className="hint">
 {this.props.hints[this.props.gameState]}...
 </div>
 </div>
);
 }
}

Footer.defaultProps = {
 hints: {
 ready: "Get Ready",
 memorize: "Memorize",
 recall: "Recall"
 }
}

export default Footer;

79

We use defaultProps to plan for the future; instead of hard-coding the hints object in the
component instance, we’ll have a way to use a Footer component instance with different hints if

we need to. For example, when it’s time to render this game in a different language, we have a
higher level of control over these hints.

The Game component instance will render a <Footer />, passing in a gameState prop.

The gameState variable is not the best example of whether something should go into the
component state or not, because I picked a name that’s already hinting at it. But the same
question we asked before applies here: Do we need React to re-render the UI when this
gameState variable changes? Absolutely.

Every time the gameState changes, we want to re-render the mounted Footer component

instance to update the hint line. Putting the gameState variable on the state of the Game
component instance will make React do that for us.

To go from “ready” to “memorize” to “recall,” we can use two setTimeout calls, which should

start when we mount the Game component in the browser.

Code Listing 94: In lib/Game.js—Adding Footer with Timers

...
import Footer from "./Footer";

class Game extends React.Component {
 constructor(props) {
 super(props);
 this.state = { gameState: 'ready' };
 }
 componentDidMount() {
 setTimeout(() => this.setState({ gameState: 'memorize' }), 2000);
 setTimeout(() => this.setState({ gameState: 'recall' }), 4000);
 }
 render() { ... }
}
...

To complete the feature, the Footer component instance needs access to the gameState as a

prop. When I am creating components for readability and organization, I usually pass the whole
state object down to them so that I don’t have to worry about items I add later to the state.

In Game’s render(), right under the grid:

Code Listing 95: Within lib/Game.js render() Function—Spreading the state Object for Footer

...
// The Matrix Map
<Footer {...this.state} />
...

80

The three-dots spread operator will take this.state and spread all of its keys as props for the
Footer component.

When we refresh the browser now, we should see a “Get Ready…” hint. After two seconds, it
should switch to “Memorize…”, and after two more seconds, it should switch to “Recall…”.

The timers code in componentDidMount is okay, but it could be better. The “recall” state does
not depend on the “memorize” state at all, which means if the first line fails, the second one
might still run. That’s not ideal and could lead to problems down the line.

We should only go to a “recall” state once we are in a “memorize” state. setState does not
guarantee its operation to be synchronous, but it does provide a second argument optional
callback. The function we pass as a callback will be executed once the setState operation is
complete.

So we can do the following:

Code Listing 96: In lib/Game.js-—setState Callback

componentDidMount() {
 setTimeout(() => {
 this.setState({ gameState: 'memorize' }, () => {
 setTimeout(() => this.setState({ gameState: 'recall' }), 2000);
 });
 }, 2000);
}

The timer to set gameState as “recall” will now only be invoked if the first setState is complete

and the game is in the “memorize” state.

Increment 6: Highlight Z random cells on the grid during the
memorize state

Have you identified the problem I mentioned in Increment 4?

We computed the data matrix in the render method, which means that every time React
computes the component’s virtual DOM, it will create a new matrix object. If you put a
console.log line in the render, you’ll see that it is called three times with gameState changes,

and each time we’re creating a new matrix object.

Note: Putting console.log lines in the render() function can often be used to
uncover unexpected problems. Don’t be alarmed with how many times React invokes the
render() function—React will only take to the real DOM what needs to change.

This is avoidable simply by moving the matrix computation into the component’s constructor
function instead. The constructor function is executed only once when React creates the
component instance out of the component class.

81

However, since we need to access the data matrix in the render function, we’ll need to either
put it on the state (this.state.matrix) or use an instance variable (this.matrix). Both

approaches are valid, but we should put on the state only what requires a React DOM refresh.

The data matrix isn’t changing once we mount the component: We’re only using it to give the
cells unique ids and declaratively mapping the structure into Rows and Cells. Using an instance

variable here should suffice.

Here’s the exact matrix we have for our 5 × 5 grid:

Code Listing 97: The Data Matrix for the 5 × 5 Grid

[
 ["00", "01", "02", "03", "04"],
 ["10", "11", "12", "13", "14"],
 ["20", "21", "22", "23", "24"],
 ["30", "31", "32", "33", "34"],
 ["40", "41", "42", "43", "44"]
]

We want to pick Z random cells from that matrix. We’ll pass this Z variable into the Game

component instance as a prop. Let’s call it activeCellsCount and give it a default value of 6.
We need to update the Container component source so that the activeCellsCount is passed

from there.

Code Listing 98: In lib/Container.js render() Function—Adding activeCellsCount

...
 <div>
 <Game rows={5} columns={5} activeCellsCount={6} />
 </div>
...

An easy way to pick random elements from an array is to use a library like Underscore or
Lodash.

Lodash has a sampleSize function which can do that, but what we have here is an array of

arrays, not just one array, so we need to flatten it first. Luckily, we can also use Lodash to flatten
our array of arrays.

Here’s the update code for the Game constructor function:

Code Listing 99: In lib/Game.js—Picking Random Values Using Lodash

import _ from "lodash";

...
constructor(props) {
 super(props);

82

 this.matrix = [];
 for (let r = 0; r < this.props.rows; r++) {
 let row = [];
 for (let c = 0; c < this.props.columns; c++) {
 row.push(`${r}${c}`);
 }
 this.matrix.push(row);
 }

 let flatMatrix = _.flatten(this.matrix);
 this.activeCells = _.sampleSize(flatMatrix,
 this.props.activeCellsCount);

 this.state = {
 gameState: "ready"
 };
}
...

Since our app depends on lodash now, we need to install it.

Code Listing 100: Installing Lodash

memory-grid-game $ jspm install lodash

The flatMatrix variable will now be:

Code Listing 101: flatMatrix

["00", "01", "02", "03", "04",
 "10", "11", "12", "13", "14",
 "20", "21", "22", "23", "24",
 "30", "31", "32", "33", "34",
 "40", "41", "42", "43", "44"]

The activeCells variable would be an array of six random ids chosen from flatMatrix.

Once again, I opted not to put activeCells on the component state and just use an instance
variable instead. You might be tempted to put it on the state given that these cells need to show
up on the grid during the “memorize” state (and that sounds like a UI re-render). But if you think
carefully about this, all we need to do is have the activeCells in memory once, then we’ll use
the gameState to determine if they should show up or not. We compute the activeCells at the
initialization of the component instance instead of updating the state with activeCells when

we move from “ready” to “memorize” gameState.

Just like we passed the state object to the Footer component, we’ll pass it to the Cell

components. We’ll also pass the activeCells array to Cell.

83

Code Listing 102: In lib/Game.js—Mapping the Matrix to Rows and Cells

render() {
 return (
 <div className="grid">
 {this.matrix.map((row, ri) => (
 <Row key={ri}>
 {row.map(cellId => <Cell key={cellId} id={cellId}
 activeCells={this.activeCells}
 {...this.state} />)}
 </Row>
))}

 <Footer {...this.state} />
 </div>
);
}

The goal here is to have the Cell component completely in control of its different UI states, but

through props coming from the parent. This might not be the most efficient approach, but I think
it makes the code more readable.

To further simplify things in the Cell component, I’ll just use different CSS classes to represent

different states of a Cell.

Here’s what I came up with for the Cell component:

Code Listing 103: lib/Cell.js—The Cell Component

class Cell extends React.Component {
 active() {
 return this.props.activeCells.indexOf(this.props.id) >= 0;
 }
 render() {
 let className = "cell";
 if (this.props.gameState === "memorize" && this.active()) {
 className += " active";
 }

 return (
 <div className={className}>
 </div>
);
 }
}

export default Cell;

84

A cell is active if its id is part of the activeCells array, and we only want the active cells to
show up on the grid during the “memorize” gameState.

Let's give the active cells a different color.

Code Listing 104: In index.html style Element—The Active Cell Color

.active {
 background-color: #058BDA;
}

If we refresh the browser now, during the “memorize” state, we should see six randomly
highlighted cells on the grid.

Figure 6: Active Cells on the Grid

Increment 7: Click a cell to guess during the recall state

Here’s the pre-analysis:

 A Cell component should accept a click event only during a “recall” gameState.

85

 The click handler in a Cell component can compute whether this click is a correct guess
or not since it has access to all the data it needs to do so.

 We need the UI to change while guessing. Correct guesses should be marked green,
and wrong ones red. This means something has to be stored in a state somewhere
when we click.

 We want to keep the state on the Game component level, so the click handler in a Cell
component would need to invoke a function on the Game component to mutate the state
there.

What should go in the state? This is a challenging question, and the answer will greatly shape
the rest of the code for this game. Keep in mind that we only put on the state the variables for
which we want React to trigger a reload of the UI when they change.

We want the UI to be updated when there is a new correct guess, and when there is a new
wrong guess. Let’s maintain both pieces of data with arrays on the state.

Code Listing 105: In lib/Game.js—Initial Game State

...
this.state = {
 gameState: "ready",
 wrongGuesses: [],
 correctGuesses: []
};
...

This way, we’ll know that if we push new values to either of the arrays, React will refresh the
DOM in the browser.

Let’s now create a click handler in the Cell component. To invoke the handler, we add an
onClick={this.handleClick.bind(this)} on the cell’s div and define handleClick to call

a top-level function. Let’s name the top-level function recordGuess.

Code Listing 106: In lib/Cell.js—handleClick

...
handleClick() {
 if (this.props.gameState === "recall") {
 this.props.recordGuess({
 cellId: this.props.id,
 userGuessIsCorrect: this.active()
 });
 }
}
...
render() {
 ...

86

 return (
 <div className={className} onClick={this.handleClick.bind(this)}>
 </div>
);
}
...

We want to record a guess only when the game is in the “recall” state. That’s why we have an
if statement in handleClick.

The recordGuess function in the Game component needs access to the cells being clicked and

whether the user’s guess is correct. From the point of view of a Cell component, the value
returned from the active() function is what makes the guess correct or wrong.

recordGuess needs to be passed to <Cell /> as a prop. Add
recordGuess={this.recordGuess.bind(this)} in the <Cell /> line in Game.js.

recordGuess will need to update the state and push the id of the guessed cell to either
correctGuesses or wrongGuesses.

Code Listing 107: In lib/Game.js—The recordGuess() Function

...
recordGuess({ cellId, userGuessIsCorrect }) {
 let { wrongGuesses, correctGuesses } = this.state;
 if (userGuessIsCorrect) {
 correctGuesses.push(cellId);
 } else {
 wrongGuesses.push(cellId);
 }
 this.setState({ correctGuesses, wrongGuesses });
}
...

This completes the recording of a guess, but we need to reflect those guesses in the UI.

In the Cell component, if the cell’s id is in the state’s correctGuesses or wrongGuesses, we

want to give it different CSS classes so that we can mark it green or red.

Let’s create a function to return either true or false about whether the cell’s id is in

correctGuesses or wrongGuesses.

Code Listing 108: In lib/Cell.js—The Guess State

...
guessState() {
 if (this.props.correctGuesses.indexOf(this.props.id) >= 0) {

87

 return true;
 } else if (this.props.wrongGuesses.indexOf(this.props.id) >= 0) {
 return false;
 }
}
...

Both correctGuesses and wrongGuesses are available to a <Cell /> instance as props since

we spread out the full Game state keys as props on the cells and the footer.

So now all we need to do is add CSS classes to every cell based on its guessState().

The Cell.js render function would now look like:

Code Listing 109: In lib/Cell.js—The render() Function

...
render() {
 let className = "cell";
 if (this.props.gameState === "memorize" && this.active()) {
 className += " active";
 }
 className += " guess-" + this.guessState();

 return (
 <div className={className} onClick={this.handleClick.bind(this)}>
 </div>
);
}
...

And we need the following CSS style to complete this feature:

Code Listing 110: In index.html style Element—Red and Green CSS Styles

.guess-true {
 background-color: #00CC00;
}
.guess-false {
 background-color: #CC0000
}

If you test now, during the “recall” state, you can click to guess. Correct guesses should be
marked green, and wrong guesses should be marked red:

88

Figure 7: Guessing Correctly and Incorrectly

The code we have so far has a small bug. Try to identify it.

What happens if you click on an already-guessed cell?

Our code will gladly push the same cell id one more time to the suitable array. This might

sound harmless at first, but it will potentially introduce problems down the line.

The solution is simple: in the if statement of the handleClick function, don’t call recordGuess

for a cell that returns any value (true or false) from its guessState() function.

Code Listing 111: In lib/Cell.js—Don’t Guess an Already Guessed Cell

...
handleClick() {
 if (this.guessState() === undefined &&
 this.props.gameState === "recall") { ... }

89

Increment 8: Show the number of remaining guesses needed to win

the game

This one is easy; all we need to do is display the computed count. The Footer component
already has access to the total number of current correctGuesses from the state, but it needs
access to the activeCellsCount prop as well.

Code Listing 112: In lib/Game.js—Footer Props

...
<Footer {...this.state}
 activeCellsCount={this.props.activeCellsCount} />
...

In the component’s render function, we’ll display the result of a remainingCount() function.
This function will return null (to display nothing) when the state of the game is not “recall,” and it
will otherwise compute the number of correct guesses needed to finish the game.

Code Listing 113: In lib/Footer.js—remainingCount()

class Footer extends React.Component {
 remainingCount() {
 if (this.props.gameState !== "recall") { return null; }
 return (
 <div className="remaining-count">
 {this.props.activeCellsCount - this.props.correctGuesses.length}
 </div>
);
 }
 render() {
 return (
 <div className="footer">
 <div className="hint">
 {this.props.hints[this.props.gameState]}...
 </div>
 {this.remainingCount()}
 </div>
);
 }
}
...

If you test now, guessing correctly will decrement the counter below the hint line.

90

Increment 9: Game over after three wrong guesses, or win after six
correct guesses

We can compute the lost/won game state from the wrongGuesses and correctGuesses arrays:

 The game is “won” if we have the original activeCellsCount in correctGuesses.

 The game is “lost” if we have three items in wrongGuesses.

Should the won/lost variable be part of the Game’s component state—just like we did with “read,”
“memorize,” and “recall”—or should it be computed?

The won/lost variable can be computed. It does not need to go into the component state.
However, since we have a gameState structure already in place, I’d argue that making the
won/lost variable part of that structure will make the code simpler and more readable.

All we need to do in the footer is add the new state keys and their hint message.

Code Listing 114: In lib/Footer.js—Footer Hints

...
Footer.defaultProps = {
 hints: {
 ready: "Get Ready",
 memorize: "Memorize",
 recall: "Recall",
 won: "Well Played",
 lost: "Game Over"
 }
};
...

To set gameState to either “won” or “lost,” we add this computing if statement in

recordGuess.

Code Listing 115: In lib/Game.js—Updating the State for a Guess

...
recordGuess({ cellId, userGuessIsCorrect }) {
 let { wrongGuesses, correctGuesses, gameState } = this.state;
 if (userGuessIsCorrect) {
 correctGuesses.push(cellId);
 if (correctGuesses.length === this.props.activeCellsCount) {
 gameState = "won";
 }
 } else {
 wrongGuesses.push(cellId);
 if (wrongGuesses.length > this.props.allowedWrongAttempts) {
 gameState = "lost";

91

 }
 }
 this.setState({ correctGuesses, wrongGuesses, gameState });
}
...

Note how I used an allowedWrongAttempts prop on <Game /> instead of hardcoding a value
of “2” in there. With this variable, we can later spin another game with a different
allowedWrongAttempts value. Since we don’t plan on doing that yet, we can use React

components’ defaultProps to use a default value for this prop.

Code Listing 116: In lib/Game.js—allowedWrongAttempts

...
Game.defaultProps = {
 allowedWrongAttempts: 2
};
...

Go ahead and test this feature now. You should be able to win or lose the game.

Figure 8: Game “Won” State

92

Increment 10: Show the original active cells when game is over

Looking at the if statement controlling whether an activeCell should be displayed or not, it
checks if the gameState is “memorize” at this point. All other states will hide activeCells,

which has made sense so far.

For this feature, we need to also show the activeCells if the gameState becomes “lost.”

Instead of making a longer if statement, and for better readability, let’s extract the state-
checking logic into its own method.

Code Listing 117: In lib/Cell.js—showActiveCells()

...
showActiveCells() {
 return ["memorize", "lost"].indexOf(this.props.gameState) >= 0;
}
...

The if statement inside the render function now becomes:

Code Listing 118: In lib/Cell.js—Inside the render() Function

...
if (this.showActiveCells() && this.active()) {
 className += " active";
}
...

This is much more readable. The feature will now work as requested.

93

Figure 9: Game “Lost” State

Just because it works, though, does not mean we’re done.

Imagine yourself in a technical interview now, and I ask you out of nowhere: “What’s wrong with
this showActiveCells code? Can we do better?”

If you can’t identify a problem, I’ll give you a hint. Put a console.log line inside
showActiveCells and observe how many times it gets fired.

For our 5 × 5 grid example, on every gameState change, we call this function 25 times. More
importantly, on every cell click, we call this function 25 times. Why?

Every time the Game state changes, React will recompute its render function, which means
recomputing the render function of 25 children cells, which means invoking showActiveCells
25 times. This is not a huge deal for the small codebase we’re working with here, but we can
easily eliminate this problem.

When the state for our <Game /> instance changes, we need to compute the showActiveCells
only once. This function has no dependency on the cell-specific data, so we don’t need this
function to be on the Cell level. We can move it up to the Game level and pass it as a prop to all

cells.

The Game render function becomes:

Code Listing 119: In lib/Game.js—showActiveCells in Game’s render()

render() {
 let showActiveCells =

94

 ["memorize", "lost"].indexOf(this.state.gameState) >= 0;
 return (
 <div className="grid">
 {this.matrix.map((row, ri) => (
 <Row key={ri}>
 {row.map(cellId =>
 <Cell key={cellId} id={cellId}
 showActiveCells={showActiveCells}
 activeCells={this.activeCells}
 recordGuess={this.recordGuess.bind(this)}
 {...this.state} />)}
 </Row>
))}

 <Footer {...this.state}
 activeCellsCount={this.props.activeCellsCount} />
 </div>
);
}

In the Cell render function, we now use this.props.showActiveCells instead of
this.showActiveCells().

The indexOf() line is now called just once instead of 25 times per state change.

This was an easy problem to spot because we refactored our original if statement into a
function and realized that the function does not depend on the Cell instances at all. Whenever
you render a component multiple times in a loop, like our <Cell /> example here, be careful

about any computation you make in it. Always ask the question, “does this computation need to
go on that level or can we just pass it from the parent?”

With this increment, we have officially reached MVP status. We can proudly take the product to
the client now and have them test it for feedback.

The moment of truth about the design of our code happens when the client comes back to us
with enhancements or bugs. If we made good calls early on about the structure of our
components and state, extending and maintaining the application will be easier.

Of course, coming up with good design decisions early on is purely a matter of experience. The
more applications you build with React, the better you’ll get at making these decisions.

Let’s assume our client came back to us with two extra features that they want done before
shipping this game.

Here’s what they requested:

 Give the players 10 seconds to play the game, and “game over” if they don’t finish in
time.

95

 When a game is won or lost, show a “play again” button.

Go ahead and try to implement these two features on your own first, and then see my solution in
the next section once you’re done.

Increment 11: Give the players a 10-second window to play the game

First, let’s not use the number 10 directly in code because this might need to change, and
possibly different levels would require different timeout seconds.

Let’s put it as a default prop on the Game component for now.

Code Listing 120: In lib/Game.js-—timeoutSeconds

...
Game.defaultProps = {
 allowedWrongAttempts: 2,
 timeoutSeconds: 10
};
...

Two things are clear about this 10-second timeout feature:

 During the “recall” gameState, we need to decrement the seconds-remaining variable
every second. We can do that with a setInterval function.

 When the seconds-remaining variable hits a 0 value, we need to update gameState to
“lost.”

Did you implement this feature by adding a new variable to the game state?

You might be tempted to put a secondsRemaining variable on the state, but since the feature
didn’t instruct us to show the remaining seconds in the game UI, we don’t really need to make
this variable part of the game state. If we do, we’ll be introducing unnecessary renders.

The only UI update needed here is when secondsRemaining hits a 0 value. This update will
happen anyway because the gameState variable will change at that point.

If you need to hold a variable that is specific to a component instance outside of its official
React-supported state, you can use an instance variable: this.secondsRemaining.

If you suspect the client will come back and tell you to display the seconds remaining in the UI,
you can go ahead and use a state variable. It’s important to understand the difference.

The current code starts the “recall” gameState using a timer, inside another timer, in

componentDidMount.

Since we’re going to be adding more logic when switching the game to the “recall” state, let’s
introduce a startRecallMode function and use that in the timer.

96

Code Listing 121: In lib/Game.js—Calling a startRecallMode() Function

...
componentDidMount() {
 setTimeout(() => {
 this.setState({ gameState: 'memorize' }, () => {
 setTimeout(this.startRecallMode.bind(this), 2000);
 });
 }, 2000);
}
...

startRecallMode will update gameState to “recall.” When that update is complete, it should

initialize the secondsRemaining variable and kick off a timer to decrement it using
setInterval. When this.secondsRemaining hits 0, it will update the gameState to “lost.”

Code Listing 122: In lib/Game.js—The startRecallMode() Function

...
startRecallMode() {
 this.setState({ gameState: 'recall' }, () => {
 this.secondsRemaining = this.props.timeoutSeconds;
 setInterval(() => {
 if (--this.secondsRemaining === 0) {
 this.setState({ gameState: "lost" });
 }
 }, 1000);
 });
}
...

This should work now. Start the game and wait 10 seconds during the “recall” state, and you
should see the “Game Over” hint line.

Easy. Right?

There are at least three big problems with the code so far. Try to identify them.

Problem 1: The game will be lost after 10 seconds, even if you win it during those 10 seconds.

Solution: Stop the interval timer when the user wins the game. You should also stop it when
the user loses the game via the three wrong attempts, as it’s also not needed after that.

Problem 2: If you let the game expire, that interval timer will continue running, and
this.secondsRemaining will go negative. React will continue to re-render the Game instance
every second because of the state update.

Solution: Stop the interval timer inside its if statement.

97

These two problems are easy. We just need to put the interval timer id in an instance variable
and use the clearInterval function on that when needed. Since we’re doing the same task in

multiple places, it’s probably a good idea to do the clearInterval call in a function. Let’s call it
finishGame.

Code Listing 123: In lib/Game.js—finishGame()

...
finishGame(gameState) {
 clearInterval(this.playTimerId);
 return gameState;
}
...

playTimerId is what we’ll name the interval timer id. I also passed gameState to this function
because I’ll be invoking the function for both “won” and “lost” if statements in recordGuess,

and it makes the code cleaner.

Code Listing 124: In lib/Game.js—Using this.finishGame()

...
recordGuess({ cellId, userGuessIsCorrect }) {
 let { wrongGuesses, correctGuesses, gameState } = this.state;
 if (userGuessIsCorrect) {
 correctGuesses.push(cellId);
 if (correctGuesses.length === this.props.activeCellsCount) {
 gameState = this.finishGame("won");
 }
 } else {
 wrongGuesses.push(cellId);
 if (wrongGuesses.length > this.props.allowedWrongAttempts) {
 gameState = this.finishGame("lost");
 }
 }
 this.setState({ correctGuesses, wrongGuesses, gameState });
}
...

The timer code inside startRecallMode() becomes:

Code Listing 125: In lib/Game.js—Using this.finishGame() in the Interval Code

...
this.playTimerId = setInterval(() => {
 if (--this.secondsRemaining === 0) {
 this.setState({ gameState: this.finishGame("lost") });
 }
}, 1000);

98

...

Problem 3: What happens if we unmount the Game component during the recall mode?

In fact, it’s time to uncover another hidden bug: What happens now if we unmount the
component during the “ready” state, and during the “memorize” state? Go ahead and try that.

To unmount our game component, in the dev tools JavaScript console, invoke the
unmountComponentAtNode function.

Code Listing 126: Unmounting the Game

ReactDOM.unmountComponentAtNode(document.getElementById("react"));

You will see something like this:

Figure 10: Updating State on Unmounted Components

Any idea why is this happening?

We used two timers in componentDidMount that each set the state, and now we’re adding a
third timer that will set the state after 10 seconds. When you unmount the <Game /> instance

before these timers get invoked, they’ll try to set the state on an unmounted component.

Solution: Every time you create a timer in a component, give it an id and clear that timer using

the componentWillUnmount lifecycle hook.

Code Listing 127: In lib/Game.js—Clearing the Timers

componentDidMount() {
 this.memorizeTimerId = setTimeout(() => {
 this.setState({ gameState: 'memorize' }, () => {
 this.recallTimerId = setTimeout(
 this.startRecallMode.bind(this),
 2000
);
 });

99

 }, 2000);
}
componentWillUnmount() {
 clearTimeout(this.memorizeTimerId);
 clearTimeout(this.recallTimerId);
 this.finishGame();
}

Try the previous unmount test now and make sure you’re no longer seeing the warning.

Increment 12: Add a “Play Again” button

The “Play Again” button will go in the Footer component, and we only want to display it when

the gameState is either “won” or “lost.”

When there is a case like that, I usually create a function that returns the needed DOM only
when the condition is met, and I use that function inside the render function.

Code Listing 128: In lib/Footer.js—The playAgainButton()

...
playAgainButton() {
 if (["won", "lost"].indexOf(this.props.gameState) >= 0) {
 return (
 <button className="play-again-button"
 onClick={this.props.playAgain}>
 Play Again
 </button>
);
 }
}
render() {
 return (
 <div className="footer">
 <div className="hint">
 {this.props.hints[this.props.gameState]}...
 </div>
 {this.remainingCount()}
 {this.playAgainButton()}
 </div>
);
}
...

The action to “reset” the game will not be part of the Footer component, so we’ll pass that

action to <Footer /> as a prop. This is why the “Play Again” button’s onClick value is using a
prop.

100

Let’s think about the playAgain action. You can implement this feature in multiple ways. You
might be tempted to reset the state of the Game component, something like:

Code Listing 129: resetGame()

resetGame() {
 this.setState({
 gameState: "ready",
 wrongGuesses: [],
 correctGuesses: []
 }, () => {
 // invoke the timers to change gameState
 });
}

This is certainly a valid approach, but wouldn’t it be easier if we trashed the current <Game />

instance that we have in the DOM and mounted a new one in its place? This way, we don’t have
to have the resetGame logic.

This latter approach, although it might sound like cheating, is actually very powerful. Imagine if
the client came back to you with another feature where they wanted the “level” of the game to
increase every time the user hits play again. Since the configurations for number of cells,
allowed wrong attempts, and timeout seconds are all passed to <Game /> as props, if we renew

the <Game /> instance rendered, we can just pass it a new set of props.

However, using a direct unmount command for the browser feels a bit imperative and does not
fit well with the React way.

If you give a mounted component instance a key attribute (like the ones needed for looped-over
components), React exclusively uses the value of key to “identify” the instance. This means that

if the value of key changes, React sees a complete new instance there. We can leverage this
concept to change our mounted <Game /> instance. All we need to do is give it a key and then
change the value for that key to “play again.”

Of course, we can’t change the key of a mounted <Game /> instance from within that instance,
so this action has to happen inside the container component.

Code Listing 130: lib/Container.js—Generating a New Game

import Game from "./Game";

class Container extends React.Component {
 constructor(props) {
 super(props);
 this.state = { gameId: 1 };
 }
 createNewGame() {
 this.setState({ gameId: this.state.gameId + 1 });
 }

101

 render() {
 return (
 <div>
 <Game key={this.state.gameId}
 createNewGame={this.createNewGame.bind(this)}
 rows={5} columns={5}
 activeCellsCount={6} />
 </div>
);
 }
}

export default Container;

By putting a gameId on the state and using it as the key of the game, we can now declaratively

update the gameId to create a new game.

Since we need this action to happen from the Footer component, we’ll pass it as a prop for

<Game /> and make <Game /> pass it to <Footer />.

Code Listing 131: In lib/Game.js—Footer’s Props

<Footer {...this.state}
 playAgain={this.props.createNewGame}
 activeCellsCount={this.props.activeCellsCount} />

When the user clicks the “Play Again” button now, here’s what happens:

 <Footer /> will tell <Game /> to invoke the function it has under its createNewGame
prop.

 <Game /> will tell <Container /> to invoke the function it has under its createNewGame
prop.

 <Container /> will invoke its createNewGame function, which will update the state of
the component instance.

 React will re-render the <Container /> instance, and it’ll see a new key for <Game />.

 React will unmount the <Game /> it has in the DOM, and it will mount a new instance
with the new key.

Challenges

You took this version to the client and they loved it, but of course they want more. Here are two
major features that I’ll leave you with, as a personal challenge on this game:

102

1. Track scores:

 A perfect score of 3 happens when the user guesses all correct cells without any
wrong attempts. If they make one wrong attempt, the score is 2, and with two wrong
attempts, the score is 1.

 Make the score time-aware. If the user finishes the game in the first five seconds,
double their score.

 Display the total score in the UI somewhere.

 When the user plays the game again, add the new score to the total score.

2. Make it harder:

 When the user clicks “Play Again,” make the grid bigger: 6 × 6, then 7 × 7, and so
on.

 Increment the activeCells with each new game.

Have fun!

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Chapter 1 What Is React?
	Chapter 2 Why React?
	Generating HTML
	Enhancing HTML
	React’s way
	The virtual DOM

	Chapter 3 Declarative User Interfaces
	React’s language
	To JSX or not to JSX

	Chapter 4 React Components
	Readability
	Reusability
	Composability
	React’s stateful components
	Creating React components
	Stateless function components
	React.createClass
	React.Component

	Chapter 5 Composability
	Chapter 6 Reusability
	Input validation
	Input default values
	Shared component behavior

	Chapter 7 Working with User Input
	React’s synthetic events
	Working with DOM nodes in the browser
	Controlled components

	Chapter 8 Component Lifecycle
	componentWillMount()
	componentDidMount()
	componentWillReceiveProps(nextProps)
	shouldComponentUpdate(nextProps, nextState)
	componentWillUpdate(nextProps, nextState)
	componentDidUpdate(prevProps, prevState)
	componentWillUnmount()

	Chapter 9 Let’s Build a Game with React
	The memory grid game
	Implementation increments
	Increment 1: Make some decisions
	Increment 2: Write the full specifications of the game
	Increment 3: Get a React app running locally with JSPM
	Increment 4: Create an empty X by Y grid
	Increment 5: Get Ready… Memorize… Recall…
	Increment 6: Highlight Z random cells on the grid during the memorize state
	Increment 7: Click a cell to guess during the recall state
	Increment 8: Show the number of remaining guesses needed to win the game
	Increment 9: Game over after three wrong guesses, or win after six correct guesses
	Increment 10: Show the original active cells when game is over
	Increment 11: Give the players a 10-second window to play the game
	Increment 12: Add a “Play Again” button

	Challenges

