

 1

2

Python Succinctly

By

Jason Cannon

Foreword by Daniel Jebaraj

 3

Copyright © 2016 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from,

out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Graham High, content producer, Syncfusion, Inc.

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books .. 9

About the Author ... 11

Introduction .. 12

A Note on the Text .. 12

Getting Started ... 12

Configuring Your Environment for Python ... 13

Installing Python ... 13

Choosing Python 2 or Python 3 .. 13

Windows Installation Instructions ... 13

Mac Installation Instructions ... 16

Linux Installation Instructions ... 20

Preparing Your Computer for Python ... 24

Running Python Programs ... 24

Creating and Editing Python Source Code .. 27

Downloading the Source Code Examples .. 29

Review .. 29

Resources... 29

Chapter 1 Variables and Strings ... 31

Variables ... 31

Strings ... 32

Using Quotes within Strings ... 32

Indexing .. 33

Built-in Functions .. 34

The print() Function .. 34

 5

The len() Function .. 34

String Methods ... 36

The lower() String Method .. 36

The upper() String Method ... 36

String Concatenation .. 37

Repeating Strings ... 38

The str() Function ... 39

Formatting Strings .. 40

Getting User Input .. 43

Review .. 44

Exercises .. 45

Animal, Vegetable, Mineral .. 45

Copy Cat ... 46

Pig Speak ... 47

Resources... 48

Chapter 2 Numbers, Math, and Comments .. 49

Numeric Operations .. 49

Strings and Numbers .. 52

The int() Function ... 53

The float() Function .. 53

Comments .. 54

Review .. 56

Exercises .. 56

Calculate the Cost of Cloud Hosting .. 56

Calculate the Cost of Cloud Hosting, Continued .. 57

Chapter 3 Booleans and Conditionals .. 60

Comparators ... 60

Boolean Operators ... 62

6

Conditionals .. 65

Review .. 68

Exercises .. 69

Walk, Drive, or Fly .. 69

Resources... 70

Chapter 4 Functions ... 71

Review .. 78

Exercises .. 79

Fill in the Blank Word Game ... 79

Resources... 81

Chapter 5 Lists .. 82

Adding Items to a List ... 83

Slices .. 85

String Slices .. 86

Finding an Item in a List ... 87

Exceptions .. 87

Looping through a List .. 89

Sorting a List ... 90

List Concatenation .. 91

Ranges ... 92

Review .. 94

Exercises .. 95

Grocery List .. 95

Resources... 96

Chapter 6 Dictionaries .. 98

Adding Items to a Dictionary .. 99

Removing Items from a Dictionary ... 99

 7

Finding a Key in a Dictionary .. 101

Finding a Value in a Dictionary ... 102

Looping through a Dictionary.. 103

Nesting Dictionaries .. 104

Review .. 106

Exercises .. 106

Interesting Facts ... 106

Resources... 107

Chapter 7 Tuples ... 108

Switching between Tuples and Lists .. 110

Looping through a Tuple... 111

Tuple Assignment ... 112

Review .. 114

Exercises .. 115

ZIP Codes ... 115

Resources... 116

Chapter 8 File I/O .. 117

File Position .. 118

Closing a File .. 119

Automatically Closing a File ... 121

Reading a File One Line at a Time ... 121

File Modes .. 123

Writing to a File ... 124

Binary Files ... 126

Exceptions .. 126

Review .. 127

Exercises .. 128

Line Numbers ... 128

8

Alphabetize ... 128

Resources... 130

Chapter 9 Modules .. 131

Modules .. 131

Peeking Inside a Module .. 133

The Module Search Path .. 133

The Python Standard Library.. 136

Creating Your Own Modules .. 137

Using main .. 139

Review .. 140

Exercises .. 140

Pig Speak, Redux ... 140

Resources... 143

Conclusion ... 144

Appendix... 146

Appendix A: Trademarks .. 146

 9

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always being on
the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every
other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are being
published, even on topics that are relatively new, one aspect that continues to inhibit us is the inability
to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for relevant
blog posts and other articles. Just as everyone else who has a job to do and customers to serve, we
find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that would
be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can be
translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything wonderful
born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The book you
now hold in your hands, and the others available in this series, are a result of the authors’ tireless work.
You will find original content that is guaranteed to get you up and running in about the time it takes to
drink a few cups of coffee.

S

10

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free. Any
updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and sell
against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon to
cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic of
study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 11

About the Author

Jason Cannon started his career as a Unix and Linux System Engineer in 1999. Since that time he has
utilized his Linux skills at companies such as Xerox, UPS, Hewlett-Packard, and Amazon.com.
Additionally, he has acted as a technical consultant and independent contractor for small businesses as
well as Fortune 500 companies.

Jason has professional experience with CentOS, RedHat Enterprise Linux, SUSE Linux Enterprise
Server, and Ubuntu. He has used several Linux distributions on personal projects including Debian,
Slackware, CrunchBang, and others. In addition to Linux, Jason has experience supporting proprietary
Unix operating systems including AIX, HP-UX, and Solaris.

He enjoys teaching others how to use and exploit the power of open source software. Jason is the
author of Command Line Kung Fu, Shell Scripting, and Linux for Beginners. He is also the founder of
the Linux Training Academy where he blogs and teaches online video training courses.

http://www.amazon.com/gp/product/B00JRGCFLA/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00JRGCFLA&linkCode=as2&tag=ebook0a6b-20&linkId=Y3NXNRAK4M57HOSL
http://www.amazon.com/gp/product/B015FZAXU6/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B015FZAXU6&linkCode=as2&tag=jasoncame-20&linkId=SGF2J2K72RLZYG7B&keywords=shell+scripting
http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/

12

Introduction

A Note on the Text

This e-book is an update to an existing book, Python Programming for Beginners: An Introduction to the
Python Computer Language and Computer Programming. This e-book includes revised text and is the
most up-to-date version available at the time of publication.

Getting Started

Choosing a place to begin when learning a new skill can often be difficult, especially when you are
dealing with a broad or complex topic. In many cases, there is so much information available that it can
be a real challenge to decide exactly where to start. Even worse, you may finally take the first steps
toward learning, only to quickly discover far too many concepts, programming examples, and nuances
that aren't fully and thoughtfully explained. This type of experience can be incredibly frustrating,
ultimately leaving you with more questions than answers.

Python Succinctly will help you sidestep this frustration. In this book we make no assumptions about
your technical background, your knowledge of computer programming, or your general understanding
of the Python language. You need no prior knowledge to benefit from reading this book. In these pages
you will be guided step-by-step using a logical and systematic approach. While there will be new
concepts, code, and jargon introduced, they will be explained in plain language, making it easy for
absolutely anyone to understand.

Throughout the book you will be presented with many examples, as well as various Python programs.
You can download all of these examples, as well as additional resources, at
https://bitbucket.org/syncfusiontech/python-succinctly.

Let's get started.

https://bitbucket.org/syncfusiontech/python-succinctly

 13

Configuring Your Environment for Python

Installing Python

Choosing Python 2 or Python 3

If you are a Python beginner, or are just getting started on a new project, I highly recommend using
Python 3. Released in 2008, Python 3 is the most current incarnation of the program, with the Python
2.x series now considered legacy. Keep in mind however that there are still many Python 2 programs in
use today, and you may encounter them from time to time. For the most part though this isn’t an issue,
as the Python 2.7 release effectively bridges the gap between Python 2 and Python 3. Much of the
code written for Python 3 will work on Python 2.7. Unfortunately, it is important to note that the same
code will most likely not run unmodified on Python versions 2.6 and lower.

That’s why, when it is at all possible, you should try to use the latest version of Python available. If you
absolutely must use Python 2, definitely use Python 2.7, as it is compatible with all Python 2 code, and
much of Python 3 code. The primary reason that you might opt to choose Python 2 over Python 3 is if
your project requires third-party software that is not yet compatible with Python 3.

Windows Installation Instructions

It is important to note that Python does not come installed on the Windows operating system. In order
to access the program you will need to download the Python installer from the Python downloads page
at https://www.python.org/downloads. Click the Download link next to the desired version of Python to
download the installer. Double-clicking on the file will begin the installation process. From here, simply
keep clicking Next to accept all of the defaults. If you are asked if you want to install software on this
computer, click Yes. To exit the installer and complete your Python installation, simply click Finish.

Depending on which version of Python you install, the images shown in Figures 1–5 may be somewhat
different. In version 3.4, the installation process does not automatically edit the system Path
environment variable. Starting with version 3.5, the installation process allows you to automatically edit
the Path variable. I strongly suggest you ensure the Add Python 3.5 to PATH check box is selected.

https://www.python.org/downloads

14

Figure 1: Installing Python

Figure 2: Installing Python

 15

Figure 3: Installing Python

Figure 4: Installing Python

16

Figure 5: Installing Python

Figure 6: Python Installed

Mac Installation Instructions

At the time of this writing the current Mac operating system ships with Python 2. You will most likely
want to upgrade to the most current version of Python, and to do this you will need to download and
install it yourself. Visit the Python downloads page at https://www.python.org/downloads and click
Download Python 3.x.x. Once downloaded, double-click the file to access the contents of the disk
image. Double-click the Python.mpkg file to run the installer. You may encounter a message stating
that "Python.mpkg can’t be opened because it is from an unidentified developer." If this occurs you will
need to hold control and click the Python.mpkg file. From there, select Open with, and finally, click
Installer. Once asked if you are sure you want to open it, click Open. If you are asked to enter an
administrator's username and password, do so.

https://www.python.org/downloads

 17

Figure 7: Installing Python

Figure 8: Installing Python

Figure 9: Installing Python

18

Figure 10: Installing Python

Accept all of the defaults as you click through the installer.

Figure 11: Installing Python

 19

Figure 12: Installing Python

Figure 13: Python Installed

Once the installation is complete, you will find your Python folder inside the Applications folder on your
computer. Within the Python folder you will discover a link to IDLE, the Integrated DeveLopment
Environment, as well as a link to some Python documentation. In addition to accessing Python from
IDLE, you will also be able to open the Terminal application, located at /Application/Utilities/Terminal,
and run python3. Later in this chapter we will discuss in more detail how to run Python programs using

IDLE and the command line.To check whether the installation was successful, run the following
commands. The first command shows where Python was installed. The second command displays the
version of Python that was installed.

Code Listing 1

[jason@mac ~]$ which python3

20

/Library/Frameworks/Python.framework/Versions/3.4/bin/python3

[jason@mac ~]$ python3 --version

Python 3.4.1

Linux Installation Instructions

In the case of Linux distributions, there will be some that ship with only Python 2 installed. However, it
is becoming increasingly common to see Python 2 and Python 3 installed by default. To determine
which version of Python you have installed, try opening a terminal emulator application such as xterm
or console and type python --version and python3 --version at the command prompt. Many

times the python command will actually be Python 2, and there will be a separate python3 command

used for running Python 3.

Code Listing 2

[jason@linuxsvr ~]$ python --version

Python 2.7.9

[jason@linuxsvr ~]$ python3 --version

Python 3.4.1

In the specific case where python or python3 is not installed on your Linux system, you will receive an

error message stating "command not found." In the following example, Python 2 is installed, but Python
3 is not.

Code Listing 3

[jason@linuxsvr ~]$ python --version

Python 2.7.9

[jason@linuxsvr ~]$ python3 --version

python3: command not found

 21

Installing Python on Debian-Based Linux Distributions

In order to install Python 3 on Debian-based distributions such as Debian, Ubuntu, and Linux Mint, try
running apt-get install -y python3 idle3. In any instance where you are attempting to install

software, you will need to use superuser privileges. To do this you will need to execute the apt

command as the root user, or precede the command with sudo. Keep in mind that sudo will work only if

it has been previously configured, either by you, the distribution, or the system administrator. The
following listing is an example of using sudo to install Python 3 on an Ubuntu Linux system.

Code Listing 4

[jason@ubuntu ~]$ sudo apt-get install -y python3 idle3

...

Setting up python3

[jason@ubuntu ~]$ python3 --version

3.4.1

In order to perform the installation as root, you will need to either switch to the root user using the su -

command, or log into the Linux system as root.

Code Listing 5

[jason@ubuntu ~]$ su -

Password:

[root@ubuntu ~]# apt-get install -y python3 idle3

...

Setting up python3

[root@ubuntu ~]# python3 --version

3.4.1

[root@ubuntu ~]# exit

[jason@ubuntu ~]$

22

Installing Python on RPM Based Linux Distributions

For RPM-based Linux distributions such as RedHat, CentOS, Fedora, and Scientific Linux, use the
command yum install -y python3 python3-tools when you are attempting to install Python 3.

Installing software requires root privileges, so ensure that you run the command as root, or precede it
with sudo. Note that sudo will only work in the instance where it has been previously configured, either

by you, the distribution, or the system administrator. Here is an example of installing Python 3 on a
Fedora Linux system using sudo.

Code Listing 6

[jason@fedora ~]$ sudo yum install -y python3 python3-tools

...

Complete!

[jason@fedora ~]$ python3 --version

3.4.1

If during installation you receive an error message such as "No package python3 available," or "Error:
Nothing to do," then it will be necessary for you to install Python 3 directly from source code. Begin this
process by installing the tools required in order to build and install Python. You can do this by running
yum groupinstall -y 'development tools' with root privileges. From there, install the remaining

dependencies by running yum install -y zlib-dev openssl-devel sqlite-devel bzip2-devel
tk-devel.

Code Listing 7

[jason@centos ~]$ sudo yum groupinstall -y 'development tools'

...

Complete!

[jason@centos ~]$ sudo yum install -y zlib-dev openssl-devel sqlite-devel bzip2-
devel tk-devel

...

Complete!

 23

Your next step will be to visit the Python downloads page at https://www.python.org/downloads, and
click Download Python 3.x.x. Using a terminal emulator application, navigate to the directory where
you just saved the Python download. Extract the contents of the file using tar xf Python*z. Change

into the directory that was created by performing the extraction with the cd Python-* command. Run

./configure, followed by make, and finally, as root, run make install. If sudo is configured on your

system you can run sudo make install. This process will install Python 3 into the /usr/local/bin

directory.

Code Listing 8

[jason@centos ~]$ cd ~/Downloads

[jason@centos ~/Downloads]$ tar xf Python*z

[jason@centos ~/Downloads/Python-3.4.1]$ cd Python-*

[jason@centos ~/Downloads/Python-3.4.1]$./configure

...

creating Makefile

[jason@centos ~/Downloads/Python-3.4.1]$ make

...

[jason@centos ~/Downloads/Python-3.4.1]$ sudo make install

...

[jason@centos ~/Downloads/Python-3.4.1]$ which python3

/usr/local/bin/python3

[jason@centos ~/Downloads/Python-3.4.1]$ python3 --version

Python 3.4.1

To acquire a greater depth of knowledge regarding Linux operating systems, I encourage you to read
Linux for Beginners. You can get your copy by visiting http://www.LinuxTrainingAcademy.com/linux.

https://www.python.org/downloads
http://www.linuxtrainingacademy.com/linux

24

Preparing Your Computer for Python

It is important to be able to run the Python interpreter interactively, as well as execute existing Python
programs. We refer to Python as an interpreter because it translates the Python language into a format
that is understood by the underlying operating system and hardware. When you use the Python
interpreter interactively, you are able to type Python commands and receive immediate feedback. It's
an excellent way to experiment with Python, as well as answer the age old question, "I wonder what
happens when I do this?"

There are two ways to start the Python interpreter. The first way is through launching the IDLE
application, otherwise known as the Integrated DeveLopment Environment. The other way to start the
Python interpreter is by using the command line. When using Windows, start the command prompt and
type python. This process will be explained in more detail shortly. On Mac and Linux systems, execute

python3 directly from the command line. To exit the Python interpreter type exit() or quit(). You

can also press Ctrl+D on Mac and Linux, or Ctrl+Z on Windows, to exit the interpreter. The following is
an example of running the Python interpreter on a Mac system using the command line.

Code Listing 9

[jason@mac ~]$ python3

Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 00:54:21)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print('Hello')

Hello

>>> exit()

[jason@mac ~]$

Don’t worry about the print('Hello') line at this point. In the following chapters you will learn the

details of that and other important commands. For now, just know that you can either start the IDLE
application or execute the Python command in order to interact directly with the Python interpreter.

Running Python Programs

Once you’ve understood how to use the Python interpreter interactively, you will need to find a way to
create, save, and execute Python programs. Keep in mind that Python programs are simply text files
that include a series of Python commands. Typically Python programs end with a .py extension.

 25

Running Python Programs on Windows

If you are going to run a Python program on Windows, one way is to navigate to the location of the
Python file using Windows Explorer. Once you’ve found the file, double-click it. The disadvantage of
using this method is that once the program exits, the program's window will close. In this instance you
may not be able to view the output that was generated by the program, especially if no user interaction
was involved. A far better way to run Python programs is by using the command line, sometimes called
the command prompt in Windows.

To do this we first need to make sure that the Python interpreter is actually in our path. Using Windows
Explorer, navigate to the folder where you have Python installed. If you accepted the defaults during the
installation process, then the path should be C:\PythonNN, where NN is the version number. For
example, if you installed Python 3.4 it would be C:\Python34. From there, navigate to the Tools folder,
and then to the Scripts folder. Double-click the win_add2path file. The full path to this file is
C:\Python34\Tools\Scripts\win_add2path.py. You will briefly see a window pop up and then disappear.
This script adds the location of Python to your PATH so you can launch Python from the command
prompt. If you are using version 3.5, you can select the Add Python 3.5 to PATH check box during
installation to have this step performed for you. Also note that the default install location is different in
version 3.5.

Locate the Command Prompt application and open it. There are a number of ways you can do this,
depending on the version of Windows you are currently using. The following procedure will work on
most, if not all, versions of Windows. Press the Windows logo key+R. The Run prompt will open. Type
cmd and press Enter.

Figure 14: Locating the Command Prompt on Windows

Searching for the command prompt is also an option. For Windows Vista and Windows 7, just click the
Start button, type cmd in the search box, and press Enter. When using Windows 8, click the Search
icon, type cmd in the Search box, and press Enter.

Once the command prompt has been opened, you can run Python interactively by typing python, or

run a Python application by typing python program_name.py. At this point you may receive an error

message such as, "python is not recognized as an internal or external command, operable program or
batch file." If this is the case, try rebooting your computer and then repeat the process.

The following figure shows the option of running Python interactively from the command line, and then
from there running the hello.py program.

26

Figure 15: Running Python Interactively

Running Python Programs on Mac and Linux

When using Mac and Linux you can execute a Python program by running python3 program_name.py

directly from the command line. From here the Python interpreter will read, interpret, and execute the
code in the file that follows the python command.

The following code listing is the body of the hello.py file.

Code Listing 10

print('Hello')

The following code listing is what you will see when you run the program.

Code Listing 11

[jason@mac ~]$ python3 hello.py

Hello

[jason@mac ~]$

As well as supplying a Python file to the python3 command, you can also directly execute the file by

setting the execute bit on the file, and specifying Python in the interpreter directive on the first line. To
set the execute bit on the file, run chmod +x program_name.py from the command line. To set the

interpreter directive, make sure #!/usr/bin/env python3 is the very first line in the Python file. Now

you can run the Python program by using either a relative or an absolute path to the file.

The following code is the body of the hello2.py file.

 27

Code Listing 12

#!/usr/bin/env python3

print('Hello')

The following example demonstrates how you can set the executable bit on hello2.py, execute it

using a relative path, execute it using an absolute path, and execute it by supplying it as an argument
to the python3 command.

Code Listing 13

[jason@mac ~]$ chmod +x hello2.py

[jason@mac ~]$./hello2.py

Hello

[jason@mac ~]$ /Users/jason/hello2.py

Hello

[jason@mac ~]$ python3 hello2.py

Hello

[jason@mac ~]$

It is important to note that is completely safe to include the interpreter directive, even if the program will
be executed using a Windows system. Windows will simply ignore the line and execute the remaining
Python code.

Creating and Editing Python Source Code

The IDLE application is useful in that it not only allows you to use the Python interpreter interactively,
but also grants you the ability to create, edit, and execute Python programs. To create a new Python
program, open the File menu and select New File. If you are looking to open an existing Python file, go
to the File menu and select Open. From here you can type or edit your Python program. Save your
program simply by accessing the File menu and selecting Save. To run the program, press F5 or open
the Run menu and select Run Module.

28

Figure 16: IDLE

Keep in mind that since Python source code is nothing more than a text file, you are not purely limited
to using the IDLE editor. Feel free to use your favorite text editor to create Python files, and then
execute them from the command line as discussed previously. You don’t have to be limited as there are
many great text editors available. I’ve listed below some of my favorite editors for Windows, Mac, and
Linux.

Windows

Geany: http://www.geany.org/

JEdit: http://www.jedit.org/

Komodo Edit: http://komodoide.com/komodo-edit/

Notepad++: http://notepad-plus-plus.org/

Mac

JEdit: http://www.jedit.org/

Komodo Edit: http://komodoide.com/komodo-edit/

Sublime Text: http://www.sublimetext.com/

TextWrangler: http://www.barebones.com/products/textwrangler/

Linux

Emacs: https://www.gnu.org/software/emacs/

Geany: http://www.geany.org/

JEdit: http://www.jedit.org/

Komodo Edit: http://komodoide.com/komodo-edit/

Sublime Text: http://www.sublimetext.com/

Vim: http://www.vim.org/

http://www.geany.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://notepad-plus-plus.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
https://www.gnu.org/software/emacs/
http://www.geany.org/
http://www.jedit.org/
http://komodoide.com/komodo-edit/
http://www.sublimetext.com/
http://www.vim.org/

 29

In Python, indentation is important. The recommended indentation is four spaces but some
programmers prefer two or three spaces. However many spaces you use, it’s critically important to be
consistent. I highly recommend you program your editor to insert these four spaces when you press the
Tab key. Also, make sure to configure your editor to save files using Unix line endings. This will ensure
that your programs will be cross-platform compatible. If you do this you will then have no issue using
the same file on Windows, Mac, and Linux.

Downloading the Source Code Examples

If at any point you would like to download the examples from this book, visit
https://bitbucket.org/syncfusiontech/python-succinctly. While it may be easier to simply look at the code
examples and run them, it is far more beneficial for you to take the extra time to type them out yourself.
Typing the source code will help establish and reinforce exactly what you are learning. It also allows
you valuable practical experience in fixing the issues that will ultimately arise when you are creating
your own code. A key example of this is when you have to find and spot spelling mistakes, as well as
locate syntax errors in your code. They may seem like little things, but details like spacing, spelling,
capitalization, and punctuation marks are all crucial to writing functional programs. Of course you may
get stuck on an exercise and need to refer back to the examples in this book. If so, compare your code
to the code you have both downloaded and read about in this book, and from there try to spot the
differences.

Review

Install Python. When at all possible use Python 3. If you do need to use Python 2, opt for Python 2.7.

Run Python interactively either by using IDLE, or by executing the Python command at the command
line. Use python for Windows, and python3 for Mac and Linux.

Press F5 or navigate to the Run menu and select Run Module in order to run Python programs in
IDLE. You can also run Python programs from the command line by executing the Python command
followed by a Python file. Keep in mind that for Windows the pattern is python program_name.py,

while for Mac and Linux the pattern is python3 program_name.py.

While you can use IDLE to edit your Python source code, you may also opt to use any text editor of
your choice.

Download the example source code from https://bitbucket.org/syncfusiontech/python-succinctly.

Resources

Integrated Development Environments for Python:
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Open the Command Prompt in Windows: http://www.wikihow.com/Open-the-Command-Prompt-in-
Windows

Python 3 Installation Video for Linux: https://www.youtube.com/watch?v=RLPYBxfAud4

https://bitbucket.org/syncfusiontech/python-succinctly
https://bitbucket.org/syncfusiontech/python-succinctly
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.wikihow.com/Open-the-Command-Prompt-in-Windows
http://www.wikihow.com/Open-the-Command-Prompt-in-Windows
https://www.youtube.com/watch?v=RLPYBxfAud4

30

Python 3 Installation Video for Mac: https://www.youtube.com/watch?v=EZ_6tmtbDSM

Python 3 Installation Video for Windows: https://www.youtube.com/watch?v=CihHoWzmFe4

Should I use Python 2 or Python 3 for my development activity?
https://wiki.python.org/moin/Python2orPython3

Source Code Examples for this Book: http://www.LinuxTrainingAcademy.com/python-succinctly

https://www.youtube.com/watch?v=EZ_6tmtbDSM
https://www.youtube.com/watch?v=CihHoWzmFe4
https://wiki.python.org/moin/Python2orPython3
http://www.linuxtrainingacademy.com/python-succinctly/?utm_source=python-succinctly&utm_medium=ebook&utm_term=ebook&utm_content=ebook&utm_campaign=python-succinctly

 31

Chapter 1 Variables and Strings

Variables

Put quite simply, variables are named storage locations. They can also be described as name-value
pairs. It is possible for you to assign values to a variable, and then recall those values by the variable
name. To assign a value to a variable, use the equal sign. The pattern is variable_name = value.

In the following example, the value asparagus is assigned to the variable called vegetable.

Code Listing 14

vegetable = 'asparagus'

It is possible to change the value of a variable simply by reassigning it. View the following example to
see how to reset the value of the vegetable variable to the value onion.

Code Listing 15

vegetable = 'onion'

Note that there is nothing significant about the variable named vegetable in this example. We could

have just as easily used the words food, crop, produce, or almost any other variable name that we

could possibly think of. When choosing a variable name, you want to select something that will
ultimately represent the data the variable will hold. While you may know what a variable named v

represents today, it may not be so fresh in your mind when you return to the code a few months from
now. However, if you come across a variable named vegetable, chances are you’ll have a greater

understanding of what data it might hold.

Keep in mind that variable names are always case sensitive. So, variables Vegetable and vegetable

will be two distinct and separate variables. By convention, variables are usually named with all lower
case letters, but this is by no means a requirement. While variable names can contain numbers in the
body of the name, they must always start with a letter. Another rule to remember is that you cannot use
a hyphen (-), plus sign (+), or other various symbols in variable names. You can however use the

underscore (_) character.

The following are some examples of valid variable names.

Code Listing 16

last3letters = 'XYZ'

32

last_three_letters = 'XYZ'

lastThreeLetters = 'XYZ'

Strings

A string is utilized to represent text. In the previous examples strings were represented by the text
asparagus, onion, and XYZ. In Python strings are always surrounded by quotes. Let’s revisit the first

example in this chapter when we created a variable named vegetable and assigned it the string

asparagus.

Code Listing 17

vegetable = 'asparagus'

Strings can also be encapsulated by the use of double quotes.

Code Listing 18

vegetable = "asparagus"

Using Quotes within Strings

It is important to remember that Python requires matching quotation marks for all strings that you enter.
Whenever you begin a string definition by using a double quotation mark, Python will interpret the next
double quotation mark you enter as the end of that string. The same will be true when using single
quotation marks. If you begin a string with a single quotation mark, the next single quotation mark will
represent the end of that particular string.

In instances where you want to include double quotations in a string, make sure to place them inside
single quotation marks as in the following example.

Code Listing 19

sentence = 'He said, "That asparagus tastes great!"'

If you want to incorporate single quotes in a string, make sure to enclose the entire string in double
quotation marks.

 33

Code Listing 20

sentence = "That's some great tasting asparagus!"

What if you were looking to use both single and double quotes in the same string? At this point you
would need to escape the offending quotation character by prepending it with a backslash (\). The

following code listing demonstrates how to escape the following string when making use of double and
single quotes.

He said, "That's some great tasting asparagus!"

Code Listing 21

sentence_in_double = "He said, \"That's some great tasting asparagus!\""

sentence_in_single = 'He said, "That\'s some great tasting asparagus!"'

Indexing

It is important to note that each character in a string will be assigned an index. All string indices are
zero based, which means that the first character in any string will have an index of 0, the second
character will have an index of 1, and so on.

Code Listing 22

String: a s p a r a g u s

 Index: 0 1 2 3 4 5 6 7 8

In order to access the character at a given index, append [N] to a string where N is the index number.

The following example creates a variable which is named a and assigns it the character in position 0 of

the string asparagus. Similarly, a variable of r is created using the character from position 4 of

asparagus.

Code Listing 23

a = 'asparagus'[0]

r = 'asparagus'[4]

34

Since variables are quite simply names that represent their values, the [N] syntax will also work with

any other variable. In the following example, first_char will be assigned the value a.

Code Listing 24

vegetable = 'asparagus'

first_char = vegetable[0]

Built-in Functions

A function is an action-performing section of reusable code. A function will always have a name and will
be called, or executed, by that name. Optionally, functions are able to accept arguments as well as
return data.

The print() Function

The print() function is just one of Python’s many built-in functions. Any time a value is provided as an

argument to the print() function, it will display that value to the screen. You can supply literal values

like "cat" or 7 to the print statement or opt to pass in variables.

Code Listing 25

vegetable = 'asparagus'

print(vegetable)

print('onion')

Output:

Code Listing 26

asparagus

onion

The len() Function

Another useful built-in Python function is the len() function. When a string is passed as an argument

to the len() function, it returns the length of that string. Put more simply, len() returns the number of

characters in a string.

 35

In the following example the value asparagus is assigned to the variable named vegetable. From

there we assign the result of len(vegetable) to the vegetable_len variable. Finally we display that

value to the screen by making use of the print(vegetable_len) function.

Code Listing 27

vegetable = 'asparagus'

vegetable_len = len(vegetable)

print(vegetable_len)

Output:

Code Listing 28

9

You can also skip the intermediary step of assigning it to a variable and pass the len() function

directly to the print() function. This works because len(vegetable) is evaluated first, and from there

its value is used by the print() function.

Code Listing 29

vegetable = 'asparagus'

print(len(vegetable))

Output:

Code Listing 30

9

If you’re so inclined you can even skip using variables all together.

Code Listing 31

print(len('asparagus'))

Output:

36

Code Listing 32

9

String Methods

Without delving too deeply into the subject of object-oriented programming (OOP), it can be helpful to
understand a few key concepts before continuing. One of the first things you should know is that
absolutely everything in Python is an object. In turn, every object has a type. Though you are currently
learning about the string data type, we will cover various other types throughout the course of this book.

For now let’s focus our attention on strings. For example, 'asparagus' is an object with a type of str,

which is short for string. Simply put, 'asparagus' is a string object. If we assign the value asparagus

to the variable vegetable using vegetable = 'asparagus', then vegetable is also a string object.

Keep in mind that variables are names that represent their values.

As mentioned previously, a function is a section of reusable code that will perform an action. Up to this
point you have been using built-in functions like print() and len(). Objects also have functions, but

they are not usually described as such. In fact, they are called methods. Methods are merely functions
that are run against an object. In order to call a method on an object, simply follow the object with a
period, then the method name, and finally a set of parentheses. Make sure to enclose any parameters
within the parentheses.

The lower() String Method

The lower() method of a string object will return a copy of the string in all lowercase letters.

Code Listing 33

vegetable = 'Asparagus'

print(vegetable.lower())

Output:

Code Listing 34

asparagus

The upper() String Method

Conversely, the upper() string method will return a copy of the string in all uppercase letters.

 37

Code Listing 35

vegetable = 'Asparagus'

print(vegetable.upper())

Output:

Code Listing 36

ASPARAGUS

String Concatenation

To concatenate, or combine two strings, use the plus sign. A simple way of thinking about this is
imagining that you were adding strings together. You can concatenate multiple strings by using
additional plus signs and strings. In the following example take note of how spaces are included in the
strings. String concatenation only combines the strings as they are.

Code Listing 37

print('Python ' + is ' + 'fun.')

print('Python' + ' is' + ' Python.')

Output:

Code Listing 38

Python is fun.

Python is fun.

If you fail to include extra spaces, it will be reflected in your output, as in the following example.

Code Listing 39

print('Python' + 'is' + 'fun.')

Output:

38

Code Listing 40

Pythonisfun.

The next example demonstrates string concatenation using variables combined with the space
character literal.

Code Listing 41

first = 'Python'

second = 'is'

third = 'fun'

sentence = first + ' ' + second + ' ' + third + '.'

print(sentence)

Output:

Code Listing 42

Python is fun.

Repeating Strings

It is important to note that whenever you are working with strings, the asterisk is the repetition operator.
The pattern is 'string' * number_of_times_to_repeat. For example, if you want to display a

hyphen twelve times, use '-' * 12.

Code Listing 43

print('-' * 12)

Output:

Code Listing 44

 39

Keep in mind that you don’t have to use repetition with just single character strings.

Code Listing 45

good_times = 'fun ' * 3

print(good_times)

Output:

Code Listing 46

fun fun fun

The str() Function

In a later chapter of this book you will learn about numeric data types. For now though, just know that
unlike strings, numbers will not be enclosed within quotation marks. To concatenate a string with a
number, you must first convert the number to a string with the built-in str() function. The str()

function will turn non-strings, such as numbers, into strings.

Code Listing 47

version = 3

print('Python ' + str(version) + ' is fun.')

Output:

Code Listing 48

Python 3 is fun.

The following example shows you what will happen if a number is not converted to a string before you
attempt concatenation.

Code Listing 49

version = 3

print('Python ' + version + ' is fun.')

40

Output:

Code Listing 50

 File "string_example.py", line 2, in <module>

 print('Python ' + version + ' is fun.')

TypeError: Can't convert 'int' object to str implicitly

Formatting Strings

Calling the format() method on a string to produce the format you desire is an alternative to directly

concatenating strings. Do this by creating placeholders, also known as format fields, by using curly
braces in the string and passing in values for those fields to format().

By default the first pair of curly braces will always be replaced by the first value passed to format().

The second pair of curly braces will be replaced by the second value passed to format(), and so on.

The following example illustrates this.

Code Listing 51

print('Python {} fun.'.format('is'))

print('{} {} {}'.format('Python', 'is', 'fun.'))

Output:

Code Listing 52

Python is fun.

Python is fun.

Be sure to note that when you pass multiple objects to a function or method you must separate them
using a comma.

Also, you can implicitly state which positional parameter will be used for a format field simply by
providing a number inside the braces. {0} will be replaced with the first item passed to format(), {1}

will be replaced by the second item passed in, and so on.

 41

Code Listing 53

print('Python {0} {1} and {1} {0} awesome!'.format('is', 'fun'))

Output:

Code Listing 54

Python is fun and fun is awesome!

The following formatting example makes use of variables.

Code Listing 55

first = 'Python'

second = 'is'

third = 'fun'

print('{} {} {}.'.format(first, second, third))

Output:

Code Listing 56

Python is fun.

With what we’ve learned we can now rewrite our previous example combining strings and numbers by
using the format() method. This completely eliminates the need to use the str() function.

Code Listing 57

version = 3

print('Python {} is fun.'.format(version))

Output:

42

Code Listing 58

Python 3 is fun.

When needed, you can also supply a format specification. Format specifications will be confined within
the curly braces. To create a field with a minimum character width, simply supply a number after the
colon. The format field {0:9} will translate to “use the first value provided to format() and make it at

least nine characters wide.” The format field {1:8} means “use the second value provided to format()

and make it at least eight characters wide.” This method can be useful in many instances, including the
creation of tables.

Code Listing 59

print('{0:9} | {1:8}'.format('Vegetable', 'Quantity'))

print('{0:9} | {1:8}'.format('Asparagus', 3))

print('{0:9} | {1:8}'.format('Onions', 10))

Output:

Code Listing 60

Vegetable | Quantity

Asparagus | 3

Onions | 10

In order to control the alignment, always use < for left, ^ for center, and > for right. If no particular

alignment is specified, left alignment will always be assumed. Making use of our previous example, let’s
try to left align the numbers.

Code Listing 61

print('{0:9} | {1:<8}'.format('Vegetable', 'Quantity'))

print('{0:9} | {1:<8}'.format('Asparagus', 3))

print('{0:9} | {1:<8}'.format('Onions', 10))

Output:

 43

Code Listing 62

Vegetable | Quantity

Asparagus | 3

Onions | 10

If needed, you can also specify a data type. The most common instance of this is to use f which will

represent a float. Floats, or floating point numbers, will be addressed in depth in the following chapter.
Also, you can stipulate the number of decimal places by using .Nf where N is the number of decimal

places. A common currency format would be .2f which specifies two decimal places. The following is

an idea of what our table might look like once we’ve taken a few nibbles out of our asparagus.

Code Listing 63

print('{0:8} | {1:<8}'.format('Vegetable', 'Quantity'))

print('{0:9} | {1:<8.2f}'.format('Asparagus', 2.33333))

print('{0:9} | {1:<8.2f}'.format('Onions', 10))

Output:

Code Listing 64

Vegetable | Quantity

Asparagus | 2.33

Onions | 10.00

Getting User Input

To accept standard input use the built-in function input(). By default, standard input originates from a

person typing at a keyboard. This will allow you to prompt the user directly for their input. In more
complex cases standard input can come from other sources. For example, you are able to send the
output from one command as the standard input to another command just by using pipes. (For more
info on this topic refer to Linux for Beginners at http://www.linuxtrainingacademy.com/linux.)

Keep in mind that you can pass in a prompt to display to the input() function.

http://www.linuxtrainingacademy.com/linux
http://www.linuxtrainingacademy.com/linux

44

Code Listing 65

vegetable = input('Enter a name of a vegetable: ')

print('{} is a lovely vegetable.'.format(vegetable))

Output:

Code Listing 66

Name a vegetable: asparagus

asparagus is a lovely vegetable.

Review

Variables are names that store values.

Variable names may contain letters, numbers, and underscores, but must always begin using a letter.

Values can be assigned to variables using the variable_name = value pattern.

Strings are always surrounded by single or double quotation marks.

An index is assigned to each character in a string.

A function is an action performing reusable code.

Built-in functions:

 print(): Displays values.

 len(): Returns the length of an item.

 str(): Returns a string object.

 input(): Reads a string.

Absolutely everything in Python is an object.

It is possible for objects to have methods.

Methods are functions that will operate on an object.

 45

String methods:

 upper(): Returns a copy of the string in uppercase.

 lower(): Returns a copy of the string in lowercase.

 format(): Returns a formatted version of the string.

Exercises

Animal, Vegetable, Mineral

Try to write a Python program that makes use of three variables. The variables you will use in your
program will be animal, vegetable, and mineral. Make sure to assign a string value to each one of

these independent variables. Your program should be able to display “Here is an animal, a vegetable,
and a mineral.” From there, display the value for animal, followed by vegetable, and then finally

mineral. Each one of the values should be printed on their own individual line. The output should be

four lines in total.

Sample output:

Code Listing 67

Here is an animal, a vegetable, and a mineral.

Deer

spinach

aluminum

I strongly encourage you to successfully create a Python program that is capable of producing the
output in the previous code listing before continuing. For the remainder of this book the solutions to the
exercises will follow the exercise explanation and sample output. If you want to attempt the exercise on
your own—and I encourage you to do so—stop reading now.

Solution

Code Listing 68

animal = 'deer'

vegetable = 'spinach'

46

mineral = 'aluminum'

print('Here is an animal, a vegetable, and a mineral.')

print(animal)

print(vegetable)

print(mineral)

Copy Cat

Try writing a Python program that directly prompts the user for input, and then simply repeats the
information the user entered.

Sample output:

Code Listing 69

Please type something and press enter: Hello world!

You entered:

Hello world!

The following is one possible solution. It may be that your program looks slightly different, but ideally it
should be fairly similar. One example of a possible difference is that you may find you have used a
different variable name. If you successfully reproduced the previous output, keep at it! You’re doing
great!

Code Listing 70

user_input = input('Please type something and press enter: ')

print('You entered:')

print(user_input)

 47

Pig Speak

Try writing a Python program that will prompt for input and then display a pig “saying” whatever text
was provided by the user. Place the input you receive from the user inside a speech bubble. Expand or
contract the speech bubble in order to make it fit around the input provided.

Sample output:

Code Listing 71

 < Feed me and I'll oink! >

 /

 ^..^ /

~((oo)

 ,, ,,

Solution

Code Listing 72

text = input('What would you like the pig to say? ')

text_length = len(text)

print(' {}'.format('_' * text_length))

print(' < {} >'.format(text))

print(' {}'.format('-' * text_length))

print(' /')

print(' ^..^ /')

print('~((oo)')

print(' ,, ,,')

Output:

48

Code Listing 73

What would you like the pig to say? Oink

 < Oink >

 /

 ^..^ /

~((oo)

 ,, ,,

Resources

Common String Operations: https://docs.python.org/3/library/string.html

input() documentation: https://docs.python.org/3/library/functions.html?highlight=input#input

len() documentation: https://docs.python.org/3/library/functions.html?highlight=input#len

print() documentation: https://docs.python.org/3/library/functions.html?highlight=input#print

str() documentation: https://docs.python.org/3/library/functions.html?highlight=input#func-str

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/functions.html?highlight=input#input
https://docs.python.org/3/library/functions.html?highlight=input#len
https://docs.python.org/3/library/functions.html?highlight=input#print
https://docs.python.org/3/library/functions.html?highlight=input#func-str

 49

Chapter 2 Numbers, Math, and Comments

While we discussed in the previous chapter how to create strings by placing text within quotation
marks, it is important to note that numbers in Python require no such special treatment. If you’d like to
use a number, simply include it in your source code. If you want to assign a number to a variable, use
the pattern variable_name = number as shown in the following example.

Code Listing 74

height = 70

temperature = 98.6

It is important to note that Python supports both integers and floating point numbers. Integers are
numbers without a decimal point, otherwise known as whole numbers. Floating point numbers however
will always contain a decimal point. The data type for integers is int, while the data type for floating

point numbers is float.

Numeric Operations

Keep in mind that the Python interpreter is capable of performing several operations using numbers.
The following table lists the most commonly used numeric operations.

Table 1: Numeric Operators

Symbol Operation

+ add

- subtract

* multiply

/ divide

** exponentiate

50

Symbol Operation

% modulo

You are most likely familiar with the common symbols +, -, *, and /. The ** operator represents

exponentiation, otherwise known as “raising to the power of.” For example, 2 ** 4 means “2 raised to
the power of 4.” The written out equivalent to this is 2 * 2 * 2 * 2, which will result in an outcome of

16.

The modulo operation is performed by the percent sign. Put quite simply, it will return the remainder.
For example, 3 % 2 is 1 because 3 divided by 2 is 1 with a remainder of 1. 4 % 2 returns 0 since 4

divided by 2 is 2 with a remainder of 0. In general, modulo arithmetic is done using non-negative
integers. Modulo arithmetic with negative numbers can be very tricky. For example, -5 % 4 returns 3.

By making use of these symbols, Python allows you to perform mathematical calculations directly within
the interpreter.

Code Listing 75

[jason@mac ~]$ python3

Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 00:54:21)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 2 + 3

5

>>> exit()

[jason@mac ~]$

You can also assign the resulting value of a mathematical operation to a variable.

Code Listing 76

sum = 3 + 2

difference = 88 – 2

 51

product = 4 * 2

quotient = 16 / 4

power = 3 ** 5

remainder = 7 % 3

print('Sum: {}'.format(sum))

print('Difference: {}'.format(difference))

print('Product: {}'.format(product))

print('Quotient: {}'.format(quotient))

print('Power: {}'.format(power))

print('Remainder: {}'.format(remainder))

Output:

Code Listing 77

Sum: 5

Difference: 86

Product: 8

Quotient: 4.0

Power: 243

Remainder: 1

Take note that even though the result of 16 / 4 is the integer 4, the floating point number 4.0 was

displayed in the output created using the example in Code Listing 76. The division operator (/)

performs floating point division, and will in every case return a floating point number and not an integer.
Also, be aware that if you add an integer to a floating point number the result will always be a float.

The following example demonstrates the capability of Python to perform mathematical operations using
variables.

52

Code Listing 78

sum = 3 + 4

difference = 200 – 2

new_number = sum + difference

print(new_number)

print(sum / sum)

print(sum + 1)

Output:

Code Listing 79

205

1.0

8

Strings and Numbers

The following example establishes a variable named quantity and assigns it the numeric value 4. It

also creates a variable named quantity_string and assigns it the string 4.

Code Listing 80

quantity = 4

quantity_string = '4'

Keep in mind that if you try to perform a mathematical operation against a string, you will encounter an
error. Try to be aware that if you surround a number with quotes it will become a string.

Code Listing 81

quantity_string = '4'

 53

total = quantity_string + 1

Output:

Code Listing 82

Traceback (most recent call last):

 File "string_test.py", line 2, in <module>

 total = quantity_string + 1

TypeError: Can't convert 'int' object to str implicitly

The int() Function

If you are looking to convert a string into an integer, use the int() function and pass in the string to

convert.

Code Listing 83

quantity_string = '4'

total = int(quantity_string) + 1

print(total)

Output:

Code Listing 84

5

The float() Function

In order to convert a string into a floating point number, use the float() function and pass in the string

to convert.

54

Code Listing 85

quantity_string = '4'

quantity_float = float(quantity_string)

print(quantity_float)

Output:

Code Listing 86

4.0

Comments

Comments can be a great benefit to us humans, but will be totally ignored by Python. The main benefit
of comments is that they give you a way to document your code. For example, a comment can help
summarize what is about to happen in a complex piece of code. This can be incredibly helpful if you or
a fellow programmer need to look at the code at a later date. Using comments can quickly explain what
the intention of the code was at the time it was written.

A single-line comment is prefixed with an octothorpe (#), which is also known as a pound sign, number

sign, or hash.

Code Listing 87

This is a comment. Python simply skips comments.

If desired, you can also chain multiple single-line comments together.

Code Listing 88

The following code:

Computes the hosting costs for one server.

Determines the duration of hosting that can be purchased given a budget.

Another option is to create multi-line comments by using triple quotes. You can use either single quotes
or double quotes. The comment will begin directly after the first set of triple quotes and will end directly
before the following set of triple quotes.

 55

Code Listing 89

""" The comment starts here.

This is another line in the comment.

Here is the last line of the comment. """

Here is another example.

Code Listing 90

"""

This starts a comment down here!

Python will not attempt to interpret these lines as they are comments.

"""

It is even possible to create a single line quote by using the triple quote syntax.

Code Listing 91

"""Yet another comment."""

If we go back to our “Pig Speak” exercise in the previous chapter, you can practice adding in some of
your own comments to make your code clearer.

Code Listing 92

Get the input from the user.

text = input('What would you like the pig to say? ')

Determine the length of the input.

Text_length = len(text)

Make the border the same size as the input.

56

Print(' {}'.format('_' * text_length))

print(' < {} >'.format(text))

print(' {}'.format('-' * text_length))

print(' /')

print(' ^..^ /')

print('~((oo)')

print(' ,, ,,')

Review

Unlike strings, numbers require no special decoration. When you enclose a number in quotes it will
become a string.

Use the int() function to convert a string to an integer.

Use the float() function to convert a string to a float.

An octothorpe (#) will begin a single line comment.

Multiline comments must be enclosed with triple quotes (""").

Exercises

Calculate the Cost of Cloud Hosting

In this exercise let's assume that you are planning to build a social networking service using your new
Python skills. You make the decision to host your application on servers running in the cloud. Once
you’ve selected a hosting provider, you want to know how much it will cost to operate per day and per
month. You will launch your service using one server, and your provider will charge $1.02 per hour.

Try to write a Python program that will display the answers to the following questions:

How much will it cost to operate one server per day?

How much will it cost to operate one server per month?

 57

Solution

The following is one way to use Python to find the answers to the preceding questions. Take note of the
fact that comments are used throughout the code. Also, while this is one possible solution, keep in mind
that there are multiple ways to go about solving the same problem.

Code Listing 93

The cost of one server per hour.

Cost_per_hour = 1.02

Compute the costs for one server.

Cost_per_day = 24 * cost_per_hour

cost_per_month = 30 * cost_per_day

Display the results.

Print('Cost to operate one server per day is ${:.2f}.'.format(cost_per_day))

print('Cost to operate one server per month is ${:.2f}.'.format(cost_per_month))

Output:

Code Listing 94

Cost to operate one server per day is $24.48.

Cost to operate one server per month is $734.40.

Calculate the Cost of Cloud Hosting, Continued

Building upon the previous example, let's add some more information. Assuming that you have saved
$1,836 to fund your new business venture, you are now wondering how many days you can keep one
server running before your money runs out. Ideally though, you are hoping that your social network
becomes incredibly popular and ultimately requires 20 servers to keep up with the demand. So,
factoring in this information, how much will it cost to operate at that point?

Try writing a Python program that will display answers to the following questions:

How much will it cost to operate one server per day?

58

How much will it cost to operate one server per month?

How much will it cost to operate twenty servers per day?

How much will it cost to operate twenty servers per month?

How many days can I operate one server with $1,836?

Solution

Code Listing 95

The cost of one server per hour.

Cost_per_hour = 1.02

Compute the costs for one server.

Cost_per_day = 24 * cost_per_hour

cost_per_month = 30 * cost_per_day

Compute the costs for twenty servers

cost_per_day_twenty = 20 * cost_per_day

cost_per_month_twenty = 20 * cost_per_month

Budgeting

budget = 1836

operational_days = budget / cost_per_day

Display the results.

Print('Cost to operate one server per day is ${:.2f}.'.format(cost_per_day))

print('Cost to operate one server per month is ${:.2f}.'.format(cost_per_month))

 59

print('Cost to operate twenty servers per day is
${:.2f}.'.format(cost_per_day_twenty))

print('Cost to operate twenty servers per month is
${:.2f}.'.format(cost_per_month_twenty))

print('A server can operate on a ${0:.2f} budget for {1:.0f} days.'.format(budget,
operational_days))

Output:

Code Listing 96

Cost to operate one server per day is $24.48.

Cost to operate one server per month is $734.40.

Cost to operate twenty servers per day is $489.60.

Cost to operate twenty servers per month is $14688.00.

A server can operate on a $1836.00 budget for 75 days.

60

Chapter 3 Booleans and Conditionals

A Boolean is a specific data type that is only capable of having one of two possible values: True or

False. Another way to think of a Boolean is to consider it either on or off. To assign a Boolean to a

variable use variable_name = boolean, where boolean is either True or False. Do not use quotes

around True or False. Remember, quotes should only be used for strings.

Code Listing 97

the_true_boolean = True

the_other_boolean = False

print(the_true_boolean)

print(the_other_boolean)

Output:

Code Listing 98

True

False

Comparators

The following chart lists six operators that compare one numeric value with another and will result in a
Boolean.

Table 2: Comparison Operators

Operator Description

== Equal to

> Greater than

 61

Operator Description

>= Greater than or equal

< Less than

<= Less than or equal

!= Not equal

When you see 1 == 2 you can think “Is 1 equal to 2?” If the answer is yes, then it is True. If the answer

is no, then it is False. In the following example the answer is no, so the condition will be False. Note

that while = assigns a value to a variable, == performs a comparison.

Code Listing 99

is_two_equal_to_three = 2 == 3

print(is_two_equal_to_three)

Output:

Code Listing 100

False

Let’s try running the numbers 1 and 2 through all six comparators interactively within the Python

interpreter.

Code Listing 101

>>> 1 == 2

False

>>> 1 > 2

False

62

>>> 1 >= 2

False

>>> 1 < 2

True

>>> 1 <= 2

True

>>> 1 != 2

True

Boolean Operators

Keep in mind that Boolean logic is used extensively in the field of computer programming. There are
only three Boolean operators: and, or, and not. Each one of them can be used to compare two

conditions or negate a condition. Like comparators, they will result in a Boolean.

Table 3: Boolean Logic Operators

Operator Description

and Evaluates to True if both statements are true. Otherwise evaluates to False.

Or Evaluates to True if either of the statements is true. Otherwise evaluates to False.

Not Evaluates to the opposite of the statement.

The following is a truth table that clearly explains Boolean operators and their outcomes.

Code Listing 102

True and True is True

True and False is False

 63

False and True is False

False and False is False

True or True is True

True or False is True

False or True is True

False or False is False

Not True is False

Not False is True

Let’s take a moment and evaluate two statements using the Boolean and operator. The first statement

is 43 > 29 and it evaluates to True. The second statement is 43 < 44 and it also evaluates to True.

43 > 29 and 43 < 44 evaluates to True because True and True evaluates to True.

Code Listing 103

>>> 43 > 29

True

>>> 43 < 44

True

>>> 43 > 29 and 43 < 44

True

>>>

What is the result of 43 > 29 or 43 < 44?

Code Listing 104

>>> 43 > 29 or 43 < 44

True

64

The not Boolean operator will evaluate to the reverse of the statement. Since 43 > 29 is True, not 43
> 29 is False.

Code Listing 105

>>> 43 > 29

True

>>> not 43 > 29

False

The order of operations for Boolean operators is:

1. not

2. and

3. or

Just as an example, True and False or not False is True. First, not False is assessed and is

True. Next, True and False is calculated and is False. Finally, True or False is evaluated and is

True.

Code Listing 106

>>> not False

True

>>> True and False

False

>>> True or False

True

>>> True and False or not False

True

To control the order of operations, use parentheses. Anything surrounded by parentheses will be
evaluated first and as its own independent unit. True and False or not False is the same as (True
and False) or (not False). It’s also the same as ((True and False) or (not False)). Using

parentheses will allow you to avoid memorizing the order of operations, and more importantly ensure
that your intentions are explicit and clear.

 65

Conditionals

The if statement will evaluate a Boolean expression and if it is True the code associated with it will be

executed. Let’s look at the following example to see this demonstrated.

Code Listing 107

if 43 < 44:

 print('Forty-three is less than forty-four.')

Output:

Code Listing 108

Forty-three is less than forty-four.

Because the Boolean expression 43 < 44 is True, the code indented under the if statement will be

executed. This indented code is referred to as a code block. Any statements that are the same distance
to the right will also belong to that code block. A code block can contain one or more lines, and its
ending will be marked by a line that is less indented than the current code block. Also, keep in mind that
code blocks can be nested. The following code listing is a logical view of code blocks.

Code Listing 109

Block One

 Block Two

 Block Two

 Block Three

Block One

Block One

In most cases code blocks are indented using four spaces, but this occurs more out of sense of
convention and is not strictly enforced. Python will allow you to use other levels of indentation within
your programs. For example, while using four spaces is the most popular option for indentation, using
two spaces is the next most popular choice. It is important however that whichever you choose you use
it consistently. If you make the decision to use two spaces for indentation, then continue to use two
spaces throughout the entire program. When in doubt though, it is always best to follow established
conventions unless you have a particular reason not to do so. Also, if you encounter the following error,
it means you have a problem within your spacing.

66

Code Listing 110

IndentationError: expected an indented block

Now let’s get back to the if statement. Notice that the line containing the if statement will always end

with a colon.

Code Listing 111

age = 32

if age >= 35:

 print('You are old enough to be the President.')

print('Have a nice day!')

Output:

Code Listing 112

Have a nice day!

In this example, since age >= 35 is False, the Python code indented underneath the if statement

was not executed. The final print function will always execute because it exists outside of the if

statement. Notice that it is not indented.

The if statement can also be paired with else. The code indented under else will execute in

instances where the if statement is false. Try to think of the if/else statement as meaning, “If the

statement is true, run the code underneath if. Otherwise run the code underneath else.”

Code Listing 113

age = 32

if age >= 35:

 print('You are old enough to be the President.')

else:

 67

 print('You are not old enough to be the President.')

print('Have a nice day!')

Output:

Code Listing 114

You are not old enough to be the President.

Have a nice day!

You can also evaluate multiple conditions by using elif, which is short for “else if.” Such as in the case

of if and else, you want to end the line of the elif statement with a colon, as well as indent the code

to execute underneath it.

Code Listing 115

age = 32

if age >= 35:

 print('You are old enough to be a Senator or the President.')

elif age >= 30:

 print('You are old enough to be a Senator.')

else:

 print('You are not old enough to be a Senator or the President.')

print('Have a nice day!')

Output:

Code Listing 116

You are old enough to be a Senator.

Have a nice day!

68

In this instance, since age >= 35 is False, the code underneath the if statement was not executed.

Since age >= 30 is True, the code underneath elif did execute. The code under else will only

execute in instances where all of the preceding if and elif statements evaluate to False. Also, the

first if or elif statement to evaluate to True will execute, with any remaining elif or else blocks not

executing. The following listing is a final example to illustrate the points explained previously.

Code Listing 117

age = 103

if age >= 35:

 print('You are old enough to be a Representative, Senator, or the President.')

elif age >= 30:

 print('You are old enough to be a Senator.')

elif age >= 25:

 print('You are old enough to be a Representative.')

else:

 print('You are not old enough to be a Representative, Senator, or the
President.')

print('Have a nice day!')

Output:

Code Listing 118

You are old enough to be a Representative, Senator, or the President.

Have a nice day!

Review

Booleans are always either True or False.

Comparators contrast one numeric value with another and will result in a Boolean.

Boolean operators (and, or, not) either compare or negate two conditions and will result in a Boolean.

 69

Parentheses can be utilized to control the order of operations.

A code block is marked by a section of code at the same level of indentation.

Conditional keywords include if, if/else, and if/elif/else.

Exercises

Walk, Drive, or Fly

Try creating a program that will ask the user how far they wish to travel. If they express a desire to
travel less than three miles, have the program tell them to walk. If they desire to travel more than three
miles, but less than three hundred miles, advise them that they should drive. In any instance where
they want to travel three hundred or more miles, tell them to fly.

Sample output:

Code Listing 119

What distance are you traveling in miles? 3125

I suggest flying to your destination.

Solution

Code Listing 120

Ask for the distance.

Distance = input(' What distance are you traveling in miles? ')

Convert the distance into an integer.

Distance = int(distance)

Determine what transportation to use.

if distance < 3:

 transportation = 'walking'

70

elif distance < 300:

 transportation = 'driving'

else:

 transportation = 'flying'

Display the result.

Print('I suggest {} to your destination.'.format(transportation))

Resources

Built-in Types: https://docs.python.org/3/library/stdtypes.html

Order of Operations (PEMDAS): http://www.purplemath.com/modules/orderops.htm

Style Guide for Python Code (PEP 8): http://legacy.python.org/dev/peps/pep-0008/

https://docs.python.org/3/library/stdtypes.html
http://www.purplemath.com/modules/orderops.htm
http://legacy.python.org/dev/peps/pep-0008/

 71

Chapter 4 Functions

Among computer programmers there is an important concept known as DRY: Don’t Repeat Yourself.
Instead of repeating several lines of code every time you want to perform a particular task, use a
function that will allow you to write a block of Python code once and then use it many times. This can
help reduce the overall length of your programs, as well as give you a single place to change, test,
troubleshoot, and document any given task. Ultimately, this makes your application much easier to
maintain in the long run.

To create a function, use the def keyword followed by the name of the function. Always follow the

function name with a set of parentheses. If your function accepts parameters you may include the
names of those parameters within the parentheses, separating them with commas. Finally, conclude
the function definition line with a colon. The code block that follows the function definition will be
executed any time the function is called. The pattern is def function_name():. The following is a

very simple function.

Code Listing 121

def say_hello():

 print('Hello!')

If you were to attempt to execute this code, no output would be presented because the function is
defined but never called. When calling a function you must ensure that you include the parentheses.

Code Listing 122

def say_hello():

 print('Hello!')

say_hello()

Output:

Code Listing 123

Hello!

A function will have to be defined before it can be called. Define your functions at the top of your Python
program. Here you’ll see what will happen if you try to use a function that has not yet been defined.

72

Code Listing 124

say_hello()

def say_hello():

 print('Hello!')

Output:

Code Listing 125

Traceback (most recent call last):

 File "say_hello.py", line 1, in <module>

 say_hello()

NameError: name 'say_hello' is not defined

Now let’s extend the function so that it accepts a parameter. Try to think of parameters as variables that
can be used inside of the function. The pattern is def function_name(parameter_name):.

Code Listing 126

def say_hello(name):

 print('Hello {}!'.format(name))

say_hello('Erin')

say_hello('everybody')

Output:

Code Listing 127

Hello Erin!

Hello everybody!

 73

Once you’ve defined a parameter, the function will expect and require a value for that parameter. The
actual value specified for a function parameter when the function is invoked is sometimes called the
argument. If one is not provided you will encounter an error.

Code Listing 128

def say_hello(name):

 print('Hello {}!'.format(name))

say_hello()

Output:

Code Listing 129

 File "say_hello.py", line 4, in <module>

 say_hello()

TypeError: say_hello() missing 1 required positional argument: 'name'

If you’d like to make the parameter optional, set a default value for it by using the equals sign. The
pattern is def function_name(parameter_name = default_value):.

Code Listing 130

def say_hello(name = 'there'):

 print('Hello {}!'.format(name))

say_hello()

say_hello('Erin')

Output:

Code Listing 131

Hello there!

74

Hello Erin!

Keep in mind that functions are capable of accepting multiple parameters. All you need to do is include
them within the parentheses of the function definition, and separate them with a comma. When you are
calling the function, always supply the arguments and separate them with commas as well.

Code Listing 132

def say_hello(first, last):

 print('Hello {} {}!'.format(first, last))

say_hello('Josiah', 'Carberry')

Output:

Code Listing 133

Hello Josiah Carberry!

When parameters are accepted by a function they can also be called positional parameters. This is
because their order is important. Notice here that Josiah was assigned to first while Carberry was

assigned to last. You can also explicitly pass values into a function by name. Whenever you are

calling the function make sure to supply the parameter name, followed by the equal sign, and then the
value for that parameter. When using named parameters, order is not important. Here’s an example.

Def say_hello(first, last):

 print('Hello {} {}!'.format(first, last))

say_hello(first = 'Josiah', last = 'Carberry')

say_hello(last = 'Carberry', first = 'Hank')

Output:

 75

Code Listing 134

Hello Josiah Carberry!

Hello Hank Carberry!

It is also possible to combine required and optional parameters as in the following example. If you use
both required and optional parameters, the required parameters should come first.

Code Listing 135

def say_hello(first, last='Carberry'):

 print('Hello {} {}!'.format(first, last))

say_hello('Josiah')

say_hello('Hank', 'Mobley')

Output:

Code Listing 136

Hello Josiah Carberry!

Hello Hank Mobley!

Often, the first statement of a function is a documentation string, or docstring for short. You can create
a docstring by surrounding text with three double quotes. This docstring will offer a brief summary of the
function. When writing the docstring make sure to ask yourself, “What does this function do?” or “Why
does this function exist?” You can access this docstring by using the built-in help() function. Pass the

name of the function you want more information about to help(). Type q to exit the help screen.

Code Listing 137

def say_hello(first, last='Carberry'):

 """Say hello."""

 print('Hello {} {}!'.format(first, last))

76

help(say_hello)

Output:

Code Listing 138

Help on function say_hello in module __main__:

say_hello(first, last='Carberry')

 Say hello.

Not only are functions capable of performing a task, they can also return data by using the return

statement. This statement makes it possible for you to return any data type that you require. Once the
return statement is called, no further code in the function will be executed. The following code is a

function that returns a string.

Code Listing 139

def even_or_odd(number):

 """Determine if a number is odd or even."""

 if number % 2 == 0:

 return 'Even'

 else:

 return 'Odd'

even_or_odd_string = even_or_odd(9)

print(even_or_odd_string)

Output:

Code Listing 140

Odd

 77

See the following example for a similar function that returns a Boolean.

Code Listing 141

def is_odd(number):

 """Determine if a number is odd."""

 if number % 2 == 0:

 return False

 else:

 return True

print(is_odd(9))

Output:

Code Listing 142

True

It is entirely possible for you to create functions that call other functions. The following listing is an
example.

Code Listing 143

def get_name():

 """Get and return a name"""

 name = input('What is your name? ')

 return name

def say_name(name):

 """Say a name"""

 print('Your name is {}.'.format(name))

78

def get_and_say_name():

 """Get and display name"""

 name = get_name()

 say_name(name)

get_and_say_name()

Output:

Code Listing 144

What is your name? Erin

Your name is Erin.

Review

A function is a block of reusable code that can perform an action as well as optionally return data.

A function can be called only after it has been defined.

A function is defined by the basic pattern: def function_name(parameter_name):.

A function is capable of accepting parameters. To make a parameter optional simply supply a default
value for that particular parameter.

You can supply a docstring as the first line of your function.

The return statement will exit the function and pass back anything that follows return.

Use the built-in help() function to get assistance with a particular object. When supplying a function to

help(), the docstring enclosed within the function will be displayed.

 79

Exercises

Fill in the Blank Word Game

This exercise involves creating a fill in the blank word game. Try prompting the user to enter a noun,
verb, and an adjective. Use the provided responses to fill in the blanks and then display the story.

First, write a short story. Remove a noun, verb, and an adjective.

Create a function that asks for input from the user.

Create another function that will fill the blanks in the story you’ve just created.

Ensure that each function contains a docstring.

After the noun, verb, and adjective have been collected from the user, display the story that has been
created using their input.

Solution

Code Listing 145

def get_word(word_class):

 """Get a word from standard input and return that word."""

 if word_class.lower() == 'adjective':

 article = 'an'

 else:

 article = 'a'

 return input('Enter a word that is {0} {1}: '.format(article, word_class))

def fill_in_the_blanks(noun, verb, adjective):

 """Fills in the blanks and returns a completed story."""

 story = "I never knew anyone that hadn't {1} at least once in their life,
except for {2}, old Aunt Polly. She never {1}, not even when that {0} came to
town.".format(noun, verb, adjective)

 return story

80

def print_story(story):

 """Prints a story."""

 print()

 print('Here is the story you made. Enjoy!')

 print()

 print(story)

def create_story():

 """Creates a story by collecting the input and printing a finished story."""

 noun = get_word('noun')

 verb = get_word('verb')

 adjective = get_word('adjective')

 the_story = fill_in_the_blanks(noun, verb, adjective)

 print_story(the_story)

create_story()

Output:

Code Listing 146

Enter a word that is a noun: unicorn

Enter a word that is a verb: hid

Enter a word that is an adjective: vivacious

Here is the story you created. Enjoy!

 81

I never knew anyone that hadn't hid at least once in their life, except for
vivacious, old Aunt Polly. She never hid, not even when that unicorn came to town.

Resources

DRY: https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Documentation for the help() built-in function: https://docs.python.org/3/library/functions.html#help

Docstring Conventions (PEP 257): http://legacy.python.org/dev/peps/pep-0257/

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://docs.python.org/3/library/functions.html#help
http://legacy.python.org/dev/peps/pep-0257/

82

Chapter 5 Lists

In the previous chapters we’ve addressed string, integer, float, and Boolean data types. In this chapter
we’ll look at lists, a data type that holds an organized collection of items. The items, or values, that are
contained within the list can be various data types themselves. In fact, you can even have lists that
exist within lists.

Note that lists are created by using comma separated values between square brackets. The pattern is
list_name = [item_1, item_2, item_N]. To create an empty list use: list_name = []. Items

within a list can always be accessed by index. List indices are always zero based, which means that the
first item in the list will have an index of 0, the second item an index of 1, and so on. To access any
item in a list using an index, simply enclose the index in square brackets directly following the list name.
The pattern is list_name[index].

Code Listing 147

animals = ['toad', 'lion', 'seal']

print(animals[0])

print(animals[1])

print(animals[2])

Output:

Code Listing 148

toad

lion

seal

Keep in mind that not only can you access values by index, you can also set values by index.

Code Listing 149

animals = ['toad', 'lion', 'seal']

print(animals[0])

 83

animals[0] = 'sheep'

print(animals[0])

Output:

Code Listing 150

toad

sheep

Also, you can access items starting at the end of the list by making use of a negative index. The -1

index will represent the last item on the list, with -2 representing the second to last item on the list, and

so on.

Code Listing 151

animals = ['toad', 'lion', 'seal']

print(animals[-1])

print(animals[-2])

print(animals[-3])

Output:

Code Listing 152

seal

lion

toad

Adding Items to a List

To add an item to the end of a list use the append() method and pass in the item that you wish to add.

84

Code Listing 153

animals = ['toad', 'lion', 'seal']

animals.append('fox')

print(animals[-1])

Output:

Code Listing 154

fox

If you wish to add multiple items to the end of a list, use the extend() method. The extend() method

takes a list. You pass in a list by name or create one by surrounding a list of items within brackets.

Code Listing 155

animals = ['toad', 'lion', 'seal']

animals.extend(['fox', 'owl'])

print(animals)

more_animals = ['whale', 'elk']

animals.extend(more_animals)

print(animals)

Output:

Code Listing 156

['toad', 'lion', 'seal', 'fox', 'owl']

['toad', 'lion', 'seal', 'fox', 'owl', 'whale', 'elk']

It is also possible to add a single item at any point in the list simply by making use of the insert()

method. Pass in the index where you want to add the item, follow it with a comma, and then the item
itself. All of the current items in the list will be moved over by one.

 85

Code Listing 157

animals = ['toad', 'lion', 'seal']

animals.insert(0, 'whale')

print(animals)

animals.insert(2, 'owl')

print(animals)

Output:

Code Listing 158

['whale', 'toad', 'lion', 'seal']

['whale', 'toad', 'owl', 'lion', 'seal']

Slices

To access a selected portion of a list, which can be referred to as a slice, specify two indices and then
separate them with a colon placed within brackets. The slice will begin at the first index and go up to,
but not include, the very last index. If the first index is omitted then 0 is assumed. If the second index is

omitted the number of items in the list is implied.

Code Listing 159

animals = ['toad', 'lion', 'seal', 'fox', 'owl', 'whale']

some_animals = animals[1:4]

print('Some animals: {}'.format(some_animals))

first_two = animals[0:2]

print('First two animals: {}'.format(first_two))

86

first_two_again = animals[:2]

print('First two animals: {}'.format(first_two_again))

last_two = animals[4:6]

print('Last two animals: {}'.format(last_two))

last_two_again = animals[-2:]

print('Last two animals: {}'.format(last_two_again))

Output:

Code Listing 160

Some animals: ['lion', 'seal', 'fox']

First two animals: ['toad', 'lion']

First two animals: ['toad', 'lion']

Last two animals: ['owl', 'whale']

Last two animals: ['owl', 'whale']

String Slices

It is possible to use slices with strings. Just think of a string as a list of characters.

Code Listing 161

part_of_a_whale = 'whale'[1:3]

print(part_of_a_whale)

Output:

 87

Code Listing 162

ha

Finding an Item in a List

Keep in mind that the index() method will accept a value as a parameter and then return the index of

the first value on the list. For example, if there were two incidences of lion in the animals list, then

animals.index('lion') would return the index of the first occurrence of lion. If the value is not

discovered on the list, then Python will raise an exception.

Code Listing 163

animals = ['toad', 'lion', 'seal']

lion_index = animals.index('lion')

print(lion_index)

Output:

Code Listing 164

1

Exceptions

An exception is most often a clear indication that something has either unexpectedly occurred, or has
just generally gone wrong within your program. If you don’t account for, or handle exceptions within,
your program, Python will print out a message which explains the exception, as well as halt the
execution of the program. The following is an example of an exception that hasn’t been handled.

Code Listing 165

animals = ['toad', 'lion', 'seal']

sheep_index = animals.index('sheep')

print(sheep_index)

88

Output:

Code Listing 166

Traceback (most recent call last):

 File "exception_example.py", line 2, in <module>

 sheep_index = animals.index('sheep')

ValueError: 'sheep' is not in list

These messages that Python provides can be a valuable resource for correcting mistakes that exist
within your code. As you can see from the previous example, Python clearly displayed the line number
as well as the code that caused the exception.

A key thing to remember though is that you often need to prevent Python from exiting whenever it
encounters an exception. In order to avoid this you need to tell your program what it should do
whenever it encounters an exception. Do this by surrounding any code you think may raise an
exception in a try/except block. Let's update the previous example with a try/except block.

Code Listing 167

animals = ['toad', 'lion', 'seal']

try:

 sheep_index = animals.index('sheep')

except:

 sheep_index = 'No sheep found.'

print(sheep_index)

Output:

Code Listing 168

No sheep found.

If any exception is raised while you are executing the code in the try: code block, the code in the

except: code block will be executed. If no exception is met in the try: code block, the code in the

except: code block is omitted and will not be executed.

 89

Looping through a List

If you are looking to perform an action on every item in a list, use a for loop. The pattern you will use is

for item_variable in list_name:. Like if statements and function definitions, the for statement

will always end in a colon. The code block that follows the for statement will be executed for every

item within the list. Effectively what happens is that the first item in the list, list[0], is assigned to

item_variable and the code block is executed. The next item in the list, list[1], is assigned to

item_variable and the code block is executed. This process lasts until the list is finished. If there are

no items in the list, the code block will not be executed.

The following example prints the uppercase version of every item in the animals list.

Code Listing 169

animals = ['toad', 'lion', 'seal']

for animal in animals:

 print(animal.upper())

Output:

Code Listing 170

TOAD

LION

SEAL

In addition to the for loop, Python also has a while loop. The pattern is while condition: followed

by a code block. As long as this condition evaluates to true, the code block following the while

statement will be executed. Typically, the code block will modify a variable that is part of the condition.
At some point the condition will evaluate to false and the program continues after the while loop. In

cases where the condition never evaluates to false it will become an infinite loop. To halt the execution
of a Python program press Ctrl+C. Ctrl+C will allow you an out if you accidentally create an infinite loop,
breaking you out of your program.

The following example creates an index variable to store an integer, and will be employed as the index

of the animals list. The while loop will execute when the index is less than the length of the animals

list. During the code block the index variable will be incremented by one. The plus-equals operator adds
a value to the variable’s existing value, and assigns the new value to that variable. Using index += 1

will increment the index variable by one. Note that unlike many programming languages, Python does
not have a “++” increment operator.

90

Code Listing 171

animals = ['toad', 'lion', 'seal', 'fox', 'owl', 'whale', 'elk']

index = 0

while index < len(animals):

 print(animals[index])

 index += 1

Output:

Code Listing 172

toad

lion

seal

fox

owl

whale

elk

Sorting a List

To sort a list, call the sort() method on the list, making sure to avoid using any arguments. This will

reorder the current list. If you wish to create a new list, simply use the built-in sorted() function and

provide a list as an argument.

Code Listing 173

animals = ['toad', 'lion', 'seal']

 91

sorted_animals = sorted(animals)

print('Animals list: {}'.format(animals))

print('Sorted animals list: {}'.format(sorted_animals))

animals.sort()

print('Animals after sort method: {}'.format(animals))

Output:

Code Listing 174

Animals list: ['toad', 'lion', 'seal']

Sorted animals list: ['lion', 'seal', 'toad']

Animals after sort method: ['lion', 'seal', 'toad']

List Concatenation

To concatenate or combine two or more lists, use the plus sign.

Code Listing 175

animals = ['toad', 'lion', 'seal']

more_animals = ['fox', 'owl', 'whale']

all_animals = animals + more_animals

print(all_animals)

Output:

Code Listing 176

['toad', 'lion', 'seal', 'fox', 'owl', 'whale']

To determine the number of items on a list, use the built-in len()function and pass in a list.

92

Code Listing 177

animals = ['toad', 'lion', 'seal']

print(len(animals))

animals.append('fox')

print(len(animals))

Output:

Code Listing 178

3

4

Ranges

Another important built-in function is the range() function, which creates a list of numbers and is often

combined with the for statement. This function is useful when you want to complete an action a given

number of times, or when you want to have access to the index of a list.

The range() function necessitates at least one parameter that will denote a stop. By default, range()

produces a list that begins at zero and continues up to, but not including, the stop. To generate a list
that encompasses N items, pass N to range() like so: range(N). For example, if you want to get a list

of 4 items use range(4). The list starts at zero and will contain the numbers 0, 1, 2, and 3.

Code Listing 179

for number in range(4):

 print(number)

Output:

Code Listing 180

0

 93

1

2

3

It is possible for you to define the start as well as the stop. The pattern is range(start, stop). To

begin a list at 2 and stop at 4, use range(2, 4). This will produce a list that is made up of only two

items, 2 and 3.

Code Listing 181

for number in range(2, 4):

 print(number)

2

3

In addition to the start and stop parameters, the range() function is also capable of accepting a step

parameter. In cases where all three parameters are being utilized, the list will begin at the start value,
cease just before the stop value, and increment the list by the step value. If there is no step value
specified, as in the previous examples, its default value is 1. Let’s try generating a list that incorporates

all of the even numbers from 0 to 8.

Code Listing 182

for number in range(0, 10, 2):

 print(number)

Output:

Code Listing 183

0

2

4

6

8

94

The following is an example of using the range() function in conjunction with a list to print every other

item in that list.

Code Listing 184

animals = ['toad', 'lion', 'seal', 'fox', 'owl', 'whale', 'elk']

for number in range(0, len(animals), 2):

 print(animals[number])

Output:

Code Listing 185

toad

seal

owl

elk

Review

Lists can be made using square brackets to enclose comma separated values. The pattern is
list_name = [item_1, item_2, item_N].

An index can be used to access items in a list. List indices are zero based. The pattern is
list_name[index].

Use negative indices to access items from the end of the list. The last item in a list is list_name[-1].

Items can be added to a list by using the append() or extend() list methods.

A slice allows you to access a portion of a list. The pattern is list_name(start, stop)

The list index() method will accept a value as a parameter and return the index of the first value in the

list, or create an exception if the value is not found within the list. The pattern is
list_name.index(value).

Loop through a list by utilizing a for loop. The pattern is for item_variable in list_name:

followed by a code block.

The code block in a while loop will execute as long as the condition evaluates to true. The pattern is

while condition: followed by a code block.

 95

To sort a list, use the built-in sorted() function or the sort() list method.

The built-in range() function will produce a list of numbers. The pattern is range(start, stop,
step).

Unhandled exceptions will cause Python programs to terminate. You can avoid this by handling
exceptions using try/except blocks.

Exercises

Grocery List

Try creating a Python program that will capture and display a person’s grocery shopping list. Make it so
the program will continually prompt the user for another item until the point where they enter a blank
item. After all the items have been entered, try displaying the shopping list back to the user.

Sample output:

Code Listing 186

Enter an item for your grocery list. Press <ENTER> when done: bread

Item added.

Enter an item for your grocery list. Press <ENTER> when done: milk

Item added.

Enter an item for your grocery list. Press <ENTER> when done: coffee

Item added.

Enter an item for your grocery list. Press <ENTER> when done:

Your Grocery List:

bread

milk

coffee

96

Solution

Code Listing 187

Create a list to hold the grocery items.

Grocery_list = []

finished = False

while not finished:

 item = input('Enter an item for your grocery list. Press <ENTER> when done:
')

 if len(item) == 0:

 finished = True

 else:

 grocery_list.append(item)

 print('Item added.')

Display the grocery list.

Print()

print('Your Grocery List:')

print('-' * 18)

for item in grocery_list:

 print(item)

Resources

Data Structures (Lists): https://docs.python.org/3/tutorial/datastructures.html

Exceptions: https://docs.python.org/3/library/exceptions.html

For Loops: https://wiki.python.org/moin/ForLoop

Handling Exceptions: https://wiki.python.org/moin/HandlingExceptions

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/exceptions.html
https://wiki.python.org/moin/ForLoop
https://wiki.python.org/moin/HandlingExceptions

 97

Sorted: https://docs.python.org/3/library/functions.html#sorted

While Loops: https://wiki.python.org/moin/WhileLoop

https://docs.python.org/3/library/functions.html#sorted
https://wiki.python.org/moin/WhileLoop

98

Chapter 6 Dictionaries

Another data type in Python is a dictionary. A dictionary holds key-value pairs, which are referred to as
items. You will hear dictionaries referred to in different ways including: associative arrays, hashes, or
hash tables.

Dictionaries are generated using comma separated items surrounded by curly braces. The item begins
with a key, followed by a colon, and concluded with a value. The pattern is dictionary_name =
{key_1: value_1, key_N: value_N}. In order to create an empty dictionary, use dictionary_name
= {}.

Any items in a dictionary can be retrieved by key. To do so, enclose the key within brackets
immediately following the dictionary name. The pattern is dictionary_name[key].

Code Listing 188

contacts = {'David': '555-0123', 'Tom': '555-5678'}

davids_phone = contacts['David']

toms_phone = contacts['Tom']

print('Dial {} to call David.'.format(davids_phone))

print('Dial {} to call Tom.'.format(toms_phone))

Output:

Code Listing 189

Dial 555-0123 to call David.

Dial 555-5678 to call Tom.

Not only are you able to access values by key, you can also set values by key. The pattern is
dictionary_name[key] = value.

Contacts = {'David': '555-0123', 'Tom': '555-5678'}

contacts['David'] = '555-0000'

 99

davids_phone = contacts['David']

print('Dial {} to call David.'.format(davids_phone))

Output:

Code Listing 190

Dial 555-0000 to call David.

Adding Items to a Dictionary

Keep in mind that you can easily add new items to a dictionary through the process of assignment. The
pattern for this is dictionary_name[new_key] = value. In order to determine the number of items in

a dictionary, first use the len() built-in function and pass in a dictionary.

Code Listing 191

contacts = {'David': '555-0123', 'Tom': '555-5678'}

contacts['Nora'] = '555-2413'

print(contacts)

print(len(contacts))

Output:

Code Listing 192

{'Nora': '555-2413', 'Tom': '555-5678', 'David': '555-0123'}

3

Removing Items from a Dictionary

To remove an item from a dictionary, use the del statement. The pattern is del
dictionary_name[key].

100

Code Listing 193

contacts = {'David': '555-0123', 'Tom': '555-5678'}

del contacts['David']

print(contacts)

Output:

Code Listing 194

{'Tom': '555-5678'}

Keep in mind that the values within a dictionary do not have to be of the same data type. In the
following example you’ll see that while the value for the David key is a list, the value for the Tom key is

a string.

Code Listing 195

contacts = {

 'David': ['555-0123', '555-0000'],

 'Tom': '555-5678'

}

print('David:')

print(contacts['David'])

print('Tom:')

print(contacts['Tom'])

Output:

Code Listing 196

David:

['555-0123', '555-0000']

 101

Tom:

555-5678

When you are assigning the items to the contacts dictionary you can use additional spaces as it will

greatly improve readability

As a result of the fact dictionary_name(‘key_name’) is capable of storing its associated value, you

can act upon it like you would the actual values. To illustrate this, let’s use a for loop for all of David’s

phone numbers.

Code Listing 197

contacts = {

 'David': ['555-0123', '555-0000'],

 'Tom': '555-5678'

}

for number in contacts['David']:

 print('Phone: {}'.format(number))

Output:

Code Listing 198

Phone: 555-0123

Phone: 555-0000

Finding a Key in a Dictionary

If you would like to find out whether a certain key exists within a dictionary, use the value in
dictionary_name.keys() syntax. If the value is in fact a key in the dictionary, True will be returned. If

it is not, then False will be returned.

102

Code Listing 199

contacts = {

 'David': ['555-0123', '555-0000'],

 'Tom': '555-5678'

}

if 'David' in contacts.keys():

 print("David's phone number is:")

 print(contacts['David'][0])

if 'Nora' in contacts.keys():

 print("Nora's phone number is:")

 print(contacts['Nora'][0])

Output:

Code Listing 200

David's phone number is:

555-0123

Take note that 'David' in contacts evaluates to True, so the code block which follows the if

statement will be executed. Since 'Nora' in contacts evaluates to False, the code block which

follows that statement will not execute. Also, since contacts['David'] holds a list, you can act on it

as a list. Accordingly, contacts['David'][0] will return the first value in the list.

Finding a Value in a Dictionary

Using the values() dictionary method returns a list of values within the dictionary. Use the value in
list syntax to determine if the value actually exists within the list. If the value is in the list, True will be

returned. Otherwise False will be returned.

 103

Code Listing 201

contacts = {

 'David': ['555-0123', '555-0000'],

 'Tom': '555-5678'

}

print ('555-5678' in contacts.values())

Output:

Code Listing 202

True

Looping through a Dictionary

If you are looking to loop through items in a dictionary, one pattern you can use is for key_variable
in dictionary_name:. The code block that follows after the for statement will then be executed for

every item listed in the dictionary. To access the value of the item in the for loop, use the

dictionary_name[key_variable] pattern. Unlike lists, dictionaries are unordered. The for loop will

ensure that all of the items in the dictionary will be processed; however, there is absolutely no
guarantee that they will be processed in the order you desire.

It is a common practice to name dictionaries by using a plural noun, such as in the case of contacts.
The standard pattern of the for loop will use the singular form of the dictionary name as the key

variable. For example, for contact in contacts or for person in people.

Code Listing 203

contacts = {

 'David': '555-0123',

 'Tom': '555-5678'

}

for contact in contacts:

104

 print('The number for {0} is {1}.'.format(contact, contacts[contact]))

Output:

Code Listing 204

The number for Tom is 555-5678.

The number for David is 555-0123.

You may also opt to utilize two variables when defining a for loop in order to process items within a

dictionary. While the first variable comprises the key, the second one will contain the value. The pattern
is for key_variable, value_variable in dictionary_name.items():.

Code Listing 205

contacts = {'David': '555-0123', 'Tom': '555-5678'}

for person, phone_number in contacts.items():

 print('The number for {0} is {1}.'.format(person, phone_number))

Output:

Code Listing 206

The number for Tom is 555-5678.

The number for David is 555-0123.

Nesting Dictionaries

Since the values contained in a dictionary can be of any data type you have the ability to nest
dictionaries. In the following example, names are the keys for the contacts dictionary, while phone and

email are the keys used within the nested dictionary. Each individual in this contact list has both a

phone number and an email address. If you want to know David’s email address you can retrieve that
information using contacts['David']['email'].

Make sure to pay close attention to the location of colons, quotation marks, commas, and braces. Try
using additional white space when you are coding these types of data structures to help visually
represent the data structure.

 105

Code Listing 207

contacts = {

 'David': {

 'phone': '555-0123',

 'email': 'david@gmail.com'

 },

 'Tom': {

 'phone': '555-5678',

 'email': 'tom@gmail.com'

 }

}

for contact in contacts:

 print("{}'s contact info:".format(contact))

 print(contacts[contact]['phone'])

 print(contacts[contact]['email'])

Output:

Code Listing 208

Tom's contact info:

555-5678

tom@gmail.com

David's contact info:

555-0123

david@gmail.com

106

Review

Dictionaries hold key-value pairs, known as items. Dictionary_name = {key_1: value_1, key_N:
value_N}

A key allows you to access the values stored in a dictionary. Dictionary_name[key]

Assignments allow you to add or change values in a dictionary. Dictionary_name[key] = value

The del statement removes items from a dictionary. Del dictionary_name[key]

To determine if a key exists within a dictionary, use the value in dictionary_name syntax, which will

return a Boolean.

The values() dictionary method will return a list of the values that are stored in that dictionary.

Loop through a dictionary using the for key_variable in dictionary_name: syntax.

Dictionary values can be made up of any data type, including other dictionaries.

Exercises

Interesting Facts

Try to create a dictionary that has a listing of people and includes one interesting fact about each of
them. Display each person and their interesting fact on the screen. From there, alter a fact about one of
the people on the list. Also, add an extra person and corresponding fact to the list. Display the newly
created list of people and facts. Try running the program multiple times and take note of whether the
order changes.

Sample output:

Code Listing 209

Jeff: Was born in France.

David: Was a mascot in college.

Anna: Has arachnophobia.

Dylan: Has a pet hedgehog.

Jeff: Was born in France.

 107

David: Can juggle.

Anna: Has arachnophobia.

Solution

Code Listing 210

def display_facts(facts):

 """Displays facts"""

 for fact in facts:

 print('{}: {}'.format(fact, facts[fact]))

 print()

facts = {

 'David': 'Was a mascot in college.',

 'Jeff': 'Was born in France.',

 'Anna': 'Has arachnophobia.'

}

display_facts(facts)

facts['David'] = 'Can juggle.'

facts['Dylan'] = 'Has a pet hedgehog.'

display_facts(facts)

Resources

Data Structures (Dictionaries): https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/tutorial/datastructures.html

108

Chapter 7 Tuples

A tuple is an immutable list, meaning that once it is defined it cannot be changed. This is different from
normal lists in which you can add, remove, and change the values. With tuples none of these actions
are an option. Where tuples are similar to lists is that they are ordered in the same fashion, and the
values in the tuple can be still be accessed by index. In fact, you can perform many of the same
operations on a tuple that you can on a list. You can concatenate tuples, you can iterate over the
values in a tuple with a for loop, you can access values from the end of the tuple using negative

indices, and you can access slices of a tuple. Tuples are created using comma separated values
between parentheses. The pattern is tuple_name = (item_1, item_2, item_N). If you only want a

single item in a tuple, that single item must always be followed by a comma. The pattern is tuple_name
= (item_1,).

Tuples are key for organizing and holding data that will not, or should not change at any point during
the execution of your program. Using a tuple is a great way to ensure that the values are not
accidentally altered. For example, the months of the year should not change.

Code Listing 211

months_of_the_year = ('January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December')

jan = months_of_the_year[0]

print(jan)

print()

for month in months_of_the_year:

 print(month)

You cannot modify values in a tuple. This will raise an exception.

Months_of_the_year[0] = 'New January'

 109

Code Listing 212

January

January

February

March

April

May

June

July

August

September

October

November

December

Traceback (most recent call last):

 File "tuples.py", line 10, in <module>

 months_of_the_year[0] = 'New January'

TypeError: 'tuple' object does not support item assignment

Even though you are unable to change the values within a tuple, you can always remove the entire
tuple during the execution of your program by making use of the previously mentioned del statement.

Code Listing 213

months_of_the_year = ('January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December')

print(months_of_the_year)

110

del months_of_the_year

This will raise an exception since the tuple was deleted.

Print(months_of_the_year)

Output:

Code Listing 214

('January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December')

Traceback (most recent call last):

 File "tuples2.py", line 5, in <module>

 print(months_of_the_year)

NameError: name 'months_of_the_year' is not defined

Switching between Tuples and Lists

In order to make a list from a tuple, use the list() built-in function and pass in the tuple. To create a

tuple from a list, use the tuple() built-in function. The built-in function type() will display an object’s

type.

Code Listing 215

months_of_the_year_tuple = ('January', 'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September', 'October', 'November', 'December')

months_of_the_year_list = list(months_of_the_year_tuple)

print('months_of_the_year_tuple is {}.'.format(type(months_of_the_year_tuple)))

print('months_of_the_year_list is {}.'.format(type(months_of_the_year_list)))

animals_list = ['toad', 'lion', 'seal']

animals_tuple = tuple(animals_list)

 111

print('animals_list is {}.'.format(type(animals_list)))

print('animals_tuple is {}.'.format(type(animals_tuple)))

Output:

Code Listing 216

months_of_the_year_tuple is <class 'tuple'>.

Months_of_the_year_list is <class 'list'>.

Animals_list is <class 'list'>.

Animals_tuple is <class 'tuple'>.

Looping through a Tuple

If you are looking to perform a particular action on every item within a tuple, use a for loop. The pattern

is for item_variable in tuple_name followed by a code block.

Code Listing 217

months_of_the_year = ('January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December')

for month in months_of_the_year:

 print(month)

Output:

Code Listing 218

January

February

March

April

May

112

June

July

August

September

October

November

December

Tuple Assignment

You can use tuples to assign values to multiple variables at the same time. In the following example,
the variables jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, and dec are assigned the

months of the year from the months_of_the_year tuple.

Code Listing 219

months_of_the_year = ('January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December')

(jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec) = months_of_the_year

print(jan)

print(dec)

Output:

Code Listing 220

January

December

It is also possible to use tuple assignment with lists.

 113

Code Listing 221

contact_info = ['555-0123', 'david@gmail.com']

(phone, email) = contact_info

print(phone)

print(email)

Output:

Code Listing 222

555-0123

david@gmail.com

Tuple assignment can also be used with functions as well. For example, you could create a function
that returns a tuple and assigns those values to different variables.

The following example uses the built-in max() and min() functions. The max() built-in function will

return the largest item that is passed to it. The min() built-in function will return the smallest item that is

passed to it.

Code Listing 223

def high_and_low(numbers):

 """Determine the highest and lowest number"""

 highest = max(numbers)

 lowest = min(numbers)

 return (highest, lowest)

lucky_numbers = [37, 71, 47, 13, 17, 67]

(highest, lowest) = high_and_low(lucky_numbers)

print('The highest number is: {}'.format(highest))

print('The lowest number is: {}'.format(lowest))

mailto:david@gmail.com

114

Output:

Code Listing 224

The highest number is:71

The lowest number is: 13

You can also use tuple assignment in a for loop. In the following example the contacts list is

comprised of a series of tuples. Each time the for loop is performed the variables name and phone will

be populated with the contents of a tuple from the contacts list.

Code Listing 225

contacts = [('David', '555-0123'), ('Tom', '555-5678')]

for (name, phone) in contacts:

 print("{}'s phone number is {}.".format(name, phone))

Output:

Code Listing 226

David's phone number is 555-0123.

Tom's phone number is 555-5678.

Review

A tuple is an immutable list, which means that once it has been defined the values in the tuple cannot
be changed.

The del statement can be used to delete a tuple. Del tuple_name

It is possible to convert a tuple to a list using the list() built-in function.

Lists can also be converted to tuples by using the tuple() built-in function.

You can use tuple assignment to assign values to multiple variables at the same time. (var_1,
var_N) = (value_1, value_N)

Tuple assignment can be used in for loops.

 115

The max() built-in function will return the largest item that is passed to it.

The min() built-in function will return the smallest item that is passed to it.

Exercises

ZIP Codes

Try creating a list of cities that will include a series of tuples that contain both a city’s name and its ZIP
code. Loop through the list and utilize tuple assignment. Assign one variable to denote the city name
and another variable to represent the ZIP code. Display the city’s name and ZIP code to the screen.

Sample output:

Code Listing 227

The ZIP code for Short Hills, NJ is 07078.

The ZIP code for Fairfax Station, VA is 22039.

The ZIP code for Weston, CT is 06883.

The ZIP code for Great Falls, VA is 22066.

Solution

Code Listing 228

cities = [

 ('Short Hills, NJ', '07078'),

 ('Fairfax Station, VA', '22039'),

 ('Weston, CT', '06883'),

 ('Great Falls, VA', '22066')

]

for (city, zip_code) in cities:

 print('The ZIP code for {} is {}.'.format(city, zip_code))

116

Resources

list() documentation: https://docs.python.org/3/library/functions.html#func-list

max() documentation: https://docs.python.org/3/library/functions.html#max

min() documentation: https://docs.python.org/3/library/functions.html#min

type() documentation: https://docs.python.org/3/library/functions.html#type

tuple() documentation: https://docs.python.org/3/library/functions.html#func-tuple

https://docs.python.org/3/library/functions.html#func-list
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#func-tuple

 117

Chapter 8 File I/O

In previous chapters you’ve learned how to use the built-in input() function to accept standard input

from the keyboard. You’ve also learned how to send data to standard output—the screen—using the
print() function. While understanding and utilizing standard input and output will work well for certain

types of applications, you will often need a place to store the data generated by your program. Also,
you will need a way to retrieve saved data as well. One of the most common places to store data is
within a file. You can read input and write output to a file, just like you can read input from a keyboard
and display output on a screen.

To open a file, use the built-in open() function. The pattern for this is open(path_to_file). The

path_to_file can be either an absolute or a relative path, and it includes the file name. An absolute

path will contain the entire path beginning at the root of the file system, be that a / in Mac or Linux, or a

drive letter in Windows. Examples of absolute paths are /var/log/messages and

C:\Log\Messages\data.txt. A relative path however, will comprise just the file name or a portion of

the path which starts at the current working directory. An example of a relative path is log/messages.

This example supposes the current working directory is /var.

Making use of forward slashes as a directory separator will be familiar to most of us, even those that
have never worked on a Unix or Unix-like operating system. Python however recognizes forward
slashes even when running on the Windows operating system. The Windows operating system uses
backslashes as the directory separator. For instance, C:/Users/david/Documents/python-
notes.txt is a valid absolute path within Python. Also, Documents/python-notes.txt is a valid

relative path.

The open() function will return a file object, which is sometimes referred to as a stream object. This

can be used to perform operations on the file passed to the open() function. To read the entire file in at

once, use the read() method on the file object. The read() method returns a string comprising the

file's contents. The following code listing is an example.

Code Listing 229

hosts = open('/etc/hosts')

hosts_file_contents = hosts.read()

print(hosts_file_contents)

Output:

Code Listing 230

127.0.0.1 localhost

118

In order to modify the previous example to work on a Windows system, set the hosts variable to

C:/Windows/System32/drivers/etc/hosts.

Code Listing 231

hosts = open('C:/Windows/System32/drivers/etc/hosts')

File Position

Whenever a file is read, Python will keep track of your current position within that file. In cases where
the read() method returns the entire file, the current position will always be at the end of the file. If you

were to call read() again, an empty string would be returned since there is no more data to return at

your current position in the file. To change the current file position, use the seek() method and pass in

a byte offset. For instance, to go back to the beginning of the file, use seek(0). If, however, you are

looking to start at the fifth byte of the file, use seek(5). Take note that in many cases the Nth byte will

correspond to the Nth character in the file. However, in some cases it will not, so be aware of that. For
UTF-8 encoded files you will often come across characters that are longer than one byte. You will
encounter this situation when using Kanji, Korean, or Chinese. In order to determine your current
position in the file, use the tell() method.

Code Listing 232

hosts = open('/etc/hosts')

print('Current position: {}'.format(hosts.tell()))

print(hosts.read())

print('Current position: {}'.format(hosts.tell()))

print(hosts.read())

hosts.seek(0)

print('Current position: {}'.format(hosts.tell()))

print(hosts.read())

Output:

 119

Code Listing 233

Current position: 0

127.0.0.1 localhost

Current position: 20

Current position: 0

127.0.0.1 localhost

The read() method will accept the number of bytes/characters to read. The following example

demonstrates reading the first three characters of the hosts file. In this case, the first three characters

correspond with the first three bytes.

Code Listing 234

hosts = open('/etc/hosts')

print(hosts.read(3))

print(hosts.tell())

Output:

Code Listing 235

127

3

Closing a File

It is always a best practice to completely close a file once you are finished with it. Keep in mind that if
your Python application opens too many files during its execution you could be faced with a “too many
open files” error. To close a file, simply use the close() method on the file object.

120

Code Listing 236

hosts = open('/etc/hosts')

hosts_file_contents = hosts.read()

print(hosts_file_contents)

hosts.close()

Output:

Code Listing 237

127.0.0.1 localhost

Note that each file object has a closed attribute that returns True if the file is closed and False if it is

not. You can make use of this attribute to ensure that a file is indeed closed.

Code Listing 238

hosts = open('/etc/hosts')

hosts_file_contents = hosts.read()

print('File closed? {}'.format(hosts.closed))

if not hosts.closed:

 hosts.close()

print('File closed? {}'.format(hosts.closed))

Output:

Code Listing 239

File closed? False

File closed? True

 121

Automatically Closing a File

To automatically close a file use the with statement. The pattern is with open(file_path) as
file_object_variable_name followed directly by a code block. Whenever the code block finishes,

Python will automatically close the file. Also, in cases where the code block is interrupted for any
reason, including an exception, the file will be closed.

Code Listing 240

print('Started reading the file.')

with open('/etc/hosts') as hosts:

 print('File closed? {}'.format(hosts.closed))

 print(hosts.read())

print('Finished reading the file.')

print('File closed? {}'.format(hosts.closed))

Output:

Code Listing 241

Started reading the file.

File closed? False

127.0.0.1 localhost

Finished reading the file.

File closed? True

Reading a File One Line at a Time

To read a file one line at a time, use a for loop. The pattern is for line_variable in
file_object_variable: directly followed by a code block.

Code Listing 242

with open('file.txt') as the_file:

122

 for line in the_file:

 print(line)

Output:

Code Listing 243

This is the first line of the file.

Here is the second line.

Finally! This is the third and last line!

The following code listing is the content of file.txt.

Code Listing 244

This is the first line of the file.

Here is the second line.

Finally! This is the third and last line!

The output will contain a blank line between each one of the lines in the file. This is because the line

variable encompasses the complete line from the file which includes a carriage return, or new line,
character. To remove any trailing white space, including the new line and carriage return characters,
use the rstrip() string method.

Code Listing 245

with open('file.txt') as the_file:

 for line in the_file:

 print(line.rstrip())

Output:

 123

Code Listing 246

This is the first line of the file.

Here is the second line.

Finally! This is the third and last line!

File Modes

Whenever you open a file you have the option of specifying a mode. The pattern is
open(path_to_file, mode). So far in this book we have been relying on the default file mode of r

which opens a file in read-only mode. If you want to write to a file, clearing any of its current contents,
use the w mode. If you want to create a new file and write to it, use the x mode. In cases where the file

already exists an exception will be raised. Using the x mode will prevent you from accidentally

overwriting existing files. If you are looking to keep the contents of an existing file and append or add
additional data to it, use the a mode. With both the w and a modes, if the file does not already exist, it

will be created. If you want to read and write to the same file, use the + mode.

Table 4: File Modes

Mode Description

r Open for reading (default).

w Open for writing, truncating the file first.

x Create a new file and open it for writing.

A Open for writing, appending to the end of the file if it exists.

b Binary mode.

t Text mode (default).

124

Mode Description

+ Open a disk file for updating (reading and writing).

Keep in mind that you can also specify if the file you are working with is a text file or a binary file. By
default, all files are opened as text files unless you directly specify otherwise. Simply append a t or b to

one of the read or write modes. For example, to open a file for reading in binary mode, use rb. To

append to a binary file, use ab.

Also keep in mind that while text files contain strings, binary files contain a series of bytes. Put simply,
text files are readable by humans, while binary files are not. Examples of binary files include images,
videos, and compressed files.

To look into the current mode of a file, examine the mode attribute on a file object.

Code Listing 247

with open('file.txt') as the_file:

 print(the_file.mode)

Output:

Code Listing 248

r

Writing to a File

Now that you are familiar with the different file modes, let's try writing some data to a file. This is as
simple as calling the write() method on the file object and then supplying the text you wish to write to

that file.

Code Listing 249

with open('file2.txt', 'w') as the_file:

 the_file.write('This text will be written to the file.')

 the_file.write('Here is some more text.')

 125

with open('file2.txt') as the_file:

 print(the_file.read())

Output:

Code Listing 250

This text will be written to the file.Here is some more text.

Keep in mind however that the output you receive may not be exactly what you expected. The write()

method will write exactly what was supplied to the file. In the previous example no carriage return or
line feed was provided. As a result, all the text ended up on the same line. The \r sequence represents

the carriage return character and \n represents a new line. Let’s work through the example again, but

this time let’s ensure that we are using a new line character at the end of the line.

Code Listing 251

with open('file2.txt', 'w') as the_file:

 the_file.write('This text will be written to the file.\n')

 the_file.write('Here is some more text.\n')

with open('file2.txt') as the_file:

 print(the_file.read())

Output:

Code Listing 252

This text will be written to the file.

Here is some more text.

Keep in mind that Unix-style line endings will only contain the \n character. Mac and Linux files use this

type of line ending. Windows-style line endings can be formed by using \r\n.

126

Binary Files

The key thing to remember when you are dealing with binary files is that you are working with bytes, not
characters. The read() method will always accept bytes as an argument when dealing with binary

files. Remember that the read() method will accept characters whenever the file is opened as a text

file.

Code Listing 253

with open('pig.jpg', 'rb') as pig_picture:

 pig_picture.seek(2)

 pig_picture.read(4)

 print(pig_picture.tell())

 print(pig_picture.mode)

Output:

Code Listing 254

6

rb

Exceptions

Whenever you are working with anything that exists outside of your program you greatly increase the
chance of errors and exceptions. Working with files falls squarely into this category. An example of this
may occur when a file you are attempting to write to may be read-only. Or, a file you are attempting to
read from may not be available. In a previous chapter we briefly examined the try/except block. In

the following example we’ll see how it can be put to use.

Code Listing 255

Open a file and assign its contents to a variable.

If the file is unavailable, create an empty variable.

try:

 127

 contacts = open('contacts.txt').read()

except:

 contacts = []

print(len(contacts))

Output:

Code Listing 256

3

If the file was unable to be read, the output would be:

Code Listing 257

0

Review

Use the built-in open() function to open a file. The pattern is open(path_to_file, mode).

If mode is not supplied when opening a file it will default to read-only.

Forward slashes can be used as directory separators, even when you are using Windows.

Using the read() file object method will return the entire contents of the file as a string.

Use the close() file object method to close a file.

Use the with statement to automatically close a file. The pattern is with open(file_path) as
file_object_variable_name: directly followed by a code block.

Use a for loop to read a file one line at a time. The pattern is for line_variable in
file_object_variable:.

Use the rstrip() string method to remove any trailing white space.

Write data to a file using the write() file object method.

The read() file object method accepts the number of bytes to read when a file is opened in binary

mode. When a file is opened in text mode, which is the default, read() will accept characters.

128

In the majority of cases a character will be one byte in length, but keep in mind that this does not hold
true in every situation.

Always plan for exceptions when you are working with files. Use try/except blocks.

Exercises

Line Numbers

Try creating a program that opens file.txt. Read each line of the file and then prepend it with a line

number.

Sample output:

Code Listing 258

1: This is the first line of the file.

2: Here is the second line.

3: Finally! This is the third and last line!

Solution

Code Listing 259

with open('file.txt') as file:

 line_number = 1

 for line in file:

 print('{}: {}'.format(line_number, line.rstrip()))

 line_number += 1

Alphabetize

Try reading the contents of animals.txt and from there create a file named animals-sorted.txt

that is sorted alphabetically.

The following code listing is the body of the animals.txt file.

 129

Code Listing 260

toad

lion

seal

fox

owl

whale

elk

Once the program has been executed, the contents of animals-sorted.txt should look like the

following.

Code Listing 261

elk

fox

lion

owl

seal

toad

whale

Solution

Code Listing 262

unsorted_file_name = 'animals.txt'

sorted_file_name = 'animals-sorted.txt'

animals = []

130

try:

 with open(unsorted_file_name) as animals_file:

 for line in animals_file:

 animals.append(line)

 animals.sort()

except:

 print('Could not open {}.'.format(unsorted_file_name))

try:

 with open(sorted_file_name, 'w') as animals_sorted_file:

 for animal in animals:

 animals_sorted_file.write(animal)

except:

 print('Could not open {}.'.format(sorted_file_name))

Resources

Core tools for working with streams: https://docs.python.org/3/library/io.html

Handling Exceptions: https://wiki.python.org/moin/HandlingExceptions

open() documentation: https://docs.python.org/3/library/functions.html#open

https://docs.python.org/3/library/io.html
https://wiki.python.org/moin/HandlingExceptions
https://docs.python.org/3/library/functions.html#open

 131

Chapter 9 Modules

Modules

A Python module is a file that has a .py extension. These can be used to implement a set of attributes

(variables), methods (functions), and classes (types). You can include a module in another Python
program simply by using the import statement followed by the module name. To import a module

named time, include import time within your Python program. You can now access the methods

within the time module by calling time.method_name() or attributes, sometimes called variables, by

calling time.attribute_name. The following code listing is an example using the asctime() method

and the timezone attribute from the time module. The timezone attribute includes the number of

seconds between UTC and the local time.

Code Listing 263

import time

print(time.asctime())

print(time.timezone)

Output:

Code Listing 264

Tue Aug 25 14:28:03 2015

21600

Whenever you import module_name, all of the methods in that module will be available as

module_name.method_name(). If you opt to use a single method in a module you can import just that

method using the from module_name import method_name syntax. Now the method can be

accessed in your program by name. Instead of calling module_name.method_name(), you can now

simply call method_name().

Code Listing 265

from time import asctime

print(asctime())

Output:

132

Code Listing 266

Tue Aug 25 14:28:03 2015

It is possible to do the same thing using module attributes and classes. If you are looking to import
more than one item from a module you can create a separate from module_name import
method_name line for each one. You can also opt to provide a comma separated list like this: from
module_name import method_name1, method_name2, method_nameN. Let's import the asctime()

and sleep() methods from the time module. The sleep() method pauses the execution of your

program for an allotted number of seconds.

Code Listing 267

from time import asctime, sleep

print(asctime())

sleep(5)

print(asctime())

Output:

Code Listing 268

Tue Aug 25 14:28:03 2015

Tue Aug 25 14:28:08 2015

One of the primary benefits of importing either a single method or list of methods from a module is that
you can access it directly by name without having to precede it with the module name. For example,
sleep(5) versus time.sleep(5). If you want to be able to access everything from a module, you

could use an asterisk instead of a list of methods to import. However, this is not a practice I
recommend. It is worth mentioning here only because you will see it used from time to time. The main
reason it is best to avoid this approach is that you run the risk of overriding an existing function or
variable if you import everything into your program. Also, when you import multiple methods using an
asterisk, you will find it hard to determine what exactly came from where.

Code Listing 269

from time import *

print(timezone)

 133

print(asctime())

sleep(5)

print(asctime())

Output:

Code Listing 270

21600

Tue Aug 25 14:28:03 2015

Tue Aug 25 14:28:08 2015

Peeking Inside a Module

You can use the built-in dir() function to discover which attributes, methods, and classes exist within

any one module.

Code Listing 271

>>> import time

>>> dir(time)

['_STRUCT_TM_ITEMS', '__doc__', '__file__', '__loader__', '__name__',
'__package__', '__spec__', 'altzone', 'asctime', 'clock', 'ctime', 'daylight',
'get_clock_info', 'gmtime', 'localtime', 'mktime', 'monotonic', 'perf_counter',
'process_time', 'sleep', 'strftime', 'strptime', 'struct_time', 'time',
'timezone', 'tzname', 'tzset']

The Module Search Path

Keep in mind that you can always view the default module search path by examining sys.path.

Whenever you supply an import module_name statement, Python will look for the module in the first

path on the list. If Python cannot find it then the next path will be examined and so on. This will continue
either until the module is found or until all of the module search paths are completely exhausted. The
module search path may include zip files as well as directories. Python will search within the zip file for
a matching module as well. It is important to note that the default module search path will vary
depending on your installation of Python, the Python version, and the operating system. The following
code listing is an example from a Python installation on a Mac.

134

Code Listing 272

show_module_path.py

import sys

for path in sys.path:

 print(path)

Output:

Code Listing 273

/Users/david

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

The show_module_path.py file was located in /Users/david when I first executed python3
show_module_path.py. Notice that /Users/david is listed first in the module search path. The other

directories were decided by the Python installation.

If you want to ask Python to search other locations for modules you will need to manipulate the module
search path. There are two ways that you can do this. The first method is to modify sys.path just as

you would any other list. For example, you can append directory locations by using a string data type.

Code Listing 274

import sys

sys.path.append('/Users/david/python')

for path in sys.path:

 print(path)

Output:

 135

Code Listing 275

/Users/david

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

/Users/david/python

You are also able to manipulate the PYTHONPATH environment variable. This variable acts in a very

similar manner to the PATH environment variable. On Mac and Linux systems, PYTHONPATH can be

populated with a list of directories separated by colons. On Windows systems the PYTHONPATH

environment variable requires the use of a semicolon in order to separate the list of directories. The
directories listed in PYTHONPATH are inserted after the directory where the script resides and before the

default module search path.

In the following example, /Users/david is the directory where the show_module_path.py Python

program resides. The /Users/david/python and /usr/local/python/modules paths are included in

PYTHONPATH. The export command makes PYTHONPATH available to programs started from the shell.

Code Listing 276

[david@mac ~]$ export PYTHONPATH=/Users/david/python:/usr/local/python/modules

[david@mac ~]$ pwd

/Users/david

[david@mac ~]$ python3 show_module_path.py

/Users/david

/Users/david/python

/usr/local/python/modules

/Library/Frameworks/Python.framework/Versions/3.4/lib/python34.zip

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/plat-darwin

136

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/lib-dynload

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages

[david@mac ~]$

If you are unable to find a module within the search path, an ImportError exception will be raised.

Code Listing 277

import say_hello

Output:

Code Listing 278

Traceback (most recent call last):

 File "test_say_hello.py", line 1, in <module>

 import say_hello

ImportError: No module named 'say_hello'

The Python Standard Library

As we’ve worked through previous examples, we have been using the time module which comes
included with Python. In fact, Python is supplied with a large library of modules for you to take
advantage of. I would highly recommend that you take some time to really look at what the Python
standard library has to offer before you even think of writing any of your own code. For example, if you
are looking to read and write CSV (comma-separated values) files, don’t waste your time creating
something from scratch when it already exists. Just use Python's pre-existing csv module. Are you

looking to enable logging in your program? Well, there’s a logging module which can help you do that.

Do you want to make an HTTP request to a web service and then parse the JSON response? Try using
the urllib.request and json modules. To explore these modules and more, check out the list of

what is available in the Python Standard Library located at https://docs.python.org/3/library/.

Now, let's use the exit() method from the sys module to cleanly terminate your program if it detects

an error. In the following example, the file test.txt is opened. If the program encounters an error

while the file is opening, the code block following except: will execute. If the reading of test.txt is

mandatory for the remaining code to function correctly, there is no need to continue. The exit()

method can accept an exit code as an argument. If no exit code is provided, 0 will be used. By

convention, when an error causes a program to exit, a non-zero exit code is expected.

https://docs.python.org/3/library/

 137

Code Listing 279

import sys

file_name = 'test.txt'

try:

 with open(file_name) as test_file:

 for line in test_file:

 print(line)

except:

 print('Could not open {}.'.format(file_name))

 sys.exit(1)

Creating Your Own Modules

Just as Python has a library of its own reusable code, so can you. It’s quite simple to create your own
module. Just remember that in its least complex form, modules are files that have a .py extension.

Simply create a Python file with your code and import it from another Python program.

The following code listing is the content of say_hello.py.

Code Listing 280

def say_hello():

 print('Hello!')

Note how you can import and use the say_hello module. To call the say_hello() method within the

say_hello module, use say_hello.say_hello().

Code Listing 281

import say_hello

say_hello.say_hello()

Output:

138

Code Listing 282

Hello!

The following example is another simple module called say_hello2. The following code is the body of

say_hello2.py.

Code Listing 283

def say_hello():

 print('Hello!')

print('Hello from say_hello2.py!')

Let's find out what happens when you import the say_hello2 module.

Code Listing 284

import say_hello2

say_hello2.say_hello()

Output:

Code Listing 285

Hello from say_hello2.py!

Hello!

So what happened? Well, when say_hello2 is imported its contents are executed. First, the

say_hello() function is defined. From there the print function is executed. In this way Python

enables you to create programs that behave one way when they are executed, and another way when
they are imported. If you would like to be able to reuse functions from an existing Python program, but
have no desire to execute the main program, you can account for that.

 139

Using main

Whenever a Python file is executed as a program, the special variable __name__ will be set to

__main__. Notice that there are two underscore characters on each side of the names of these special

variables. In instances where it is imported, the __name__ variable will not be populated. Ultimately you

can use this to control the behavior of your Python program. The following code sample is the
say_hello3.py file.

Code Listing 286

def say_hello():

 print('Hello!')

def main():

 print('Hello from say_hello3.py!')

 say_hello()

if __name__ == '__main__':

 main()

Whenever it is executed as a program, the code block following if __name__ == '__main__' will be

executed. In the following example it simply calls main(). This is a very common pattern and you will

see this within many Python applications. When say_hello3.py is imported as a module nothing will

be executed unless explicitly called from the importing program.

Code Listing 287

[david@mac ~]$ python3 say_hello3.py

Hello from say_hello3.py!

Hello!

[david@mac ~]$

140

Review

Python modules are files that have a .py extension and are capable of implementing a set of variables,
functions, and classes.

Use the import module_name syntax to import a module.

The default module search path will be determined by your Python installation.

To manipulate the module search path, modify sys.path or set the PYTHONPATH environment variable.

The Python standard library is a sizeable collection of code that can be reused within your Python
programs.

Use the dir() built-in function to find out exactly what exists within a module.

You can establish your own personal library by writing your own modules.

You can influence how a Python program behaves based on whether it is run interactively or imported
by checking the value of ___name___.

The if __name__ == '__main__': syntax is a common Python idiom.

Exercises

Pig Speak, Redux

Update the "Pig Speak" program we discussed in Chapter 1 so that it can be imported as a module or
run directly. When run as a program it should prompt for input, as well as display a pig "saying" what
was provided by the user. Place the input provided by the user inside a speech bubble. This speech
bubble can be expanded or contracted to fit around the input provided by the user.

The following code listing shows the sample output when run interactively.

Code Listing 288

 < Pet me and I will oink >

 /

 ^..^ /

 141

~((oo)

 ,, ,,

From here, create a new program called pig_talk.py that imports the pig_say module. Try using a

function from the pig_say() module to display a variety of messages to the screen.

The following code listing shows the sample output when used as a module.

Code Listing 289

 < Feed me. >

 /

 ^..^ /

~((oo)

 ,, ,,

 < Oink. Oink. >

 /

 ^..^ /

~((oo)

 ,, ,,

Solution

The following code is the content of pig_say.py.

Code Listing 290

def pig_say(text):

142

 """Generate a picture of a pig saying something"""

 text_length = len(text)

 print(' {}'.format('_' * text_length))

 print(' < {} >'.format(text))

 print(' {}'.format('-' * text_length))

 print(' /')

 print(' ^..^ /')

 print('~((oo)')

 print(' ,, ,,')

def main():

 text = input('What would you like the pig to say? ')

 pig_say(text)

if __name__ == '__main__':

 main()

The following code is the content of pig_talk.py.

Code Listing 291

import pig_say

def main():

 pig_say.pig_say('Feed me.')

 143

 pig_say.pig_say('Oink. Oink.')

if __name__ == '__main__':

 main()

Resources

__main__ documentation: https://docs.python.org/3/library/__main__.html

Idioms and Anti-Idioms in Python: https://docs.python.org/3.1/howto/doanddont.html

Linux for Beginners: http://www.linuxtrainingacademy.com/linux.

PYTHONPATH documentation: https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

The Python Standard Library: https://docs.python.org/3/library/

The sys module: https://docs.python.org/3/library/sys.html

sys.path documentation: https://docs.python.org/3/library/sys.html#sys.path

virtualenv documentation: https://pypi.python.org/pypi/virtualenv

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3.1/howto/doanddont.html
http://www.linuxtrainingacademy.com/linux
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html#sys.path
https://pypi.python.org/pypi/virtualenv

144

Conclusion

Although we’ve reached the end of this book, I sincerely hope that this is just the beginning of your
Python journey. Growing steadily in popularity over the last decade, Python is key to know as it is
increasingly used in all areas of computing. In fact, Python powers many popular websites such as
Pinterest, Instagram, and Reddit. Python is also used in scientific computing and is currently running on
supercomputers all around the world. But Python’s use might even be more far reaching than you
know. Utilized in system administration tasks like configuration and package management (with YUM
and Anaconda being prime examples), Python has also been used to create popular games such as
EVE Online and Toontown. No matter what direction your programming interests lie in, Python’s
possibilities for learning, exploring, and growing are endless.

Here's one last Python program.

Code Listing 292

import this

Output:

Code Listing 293

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

 145

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

146

Appendix

Appendix A: Trademarks

BSD/OS is a trademark of Berkeley Software Design, Inc. in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Open Source is a registered certification mark of Open Source Initiative.

Python is a registered trademark of the Python Software Foundation.

UNIX is a registered trademark of The Open Group.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

All other product names mentioned herein are the trademarks of their respective owners.

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Introduction
	A Note on the Text
	Getting Started

	Configuring Your Environment for Python
	Installing Python
	Choosing Python 2 or Python 3
	Windows Installation Instructions
	Mac Installation Instructions
	Linux Installation Instructions
	Installing Python on Debian-Based Linux Distributions
	Installing Python on RPM Based Linux Distributions

	Preparing Your Computer for Python
	Running Python Programs
	Running Python Programs on Windows
	Running Python Programs on Mac and Linux

	Creating and Editing Python Source Code
	Windows
	Mac
	Linux

	Downloading the Source Code Examples

	Review
	Resources

	Chapter 1 Variables and Strings
	Variables
	Strings
	Using Quotes within Strings
	Indexing
	Built-in Functions
	The print() Function
	The len() Function

	String Methods
	The lower() String Method
	The upper() String Method

	String Concatenation
	Repeating Strings
	The str() Function
	Formatting Strings
	Getting User Input
	Review
	Exercises
	Animal, Vegetable, Mineral
	Solution

	Copy Cat
	Pig Speak
	Solution

	Resources

	Chapter 2 Numbers, Math, and Comments
	Numeric Operations
	Strings and Numbers
	The int() Function
	The float() Function
	Comments
	Review
	Exercises
	Calculate the Cost of Cloud Hosting
	Solution

	Calculate the Cost of Cloud Hosting, Continued
	Solution

	Chapter 3 Booleans and Conditionals
	Comparators
	Boolean Operators
	Conditionals
	Review
	Exercises
	Walk, Drive, or Fly
	Solution

	Resources

	Chapter 4 Functions
	Review
	Exercises
	Fill in the Blank Word Game
	Solution

	Resources

	Chapter 5 Lists
	Adding Items to a List
	Slices
	String Slices
	Finding an Item in a List
	Exceptions
	Looping through a List
	Sorting a List
	List Concatenation
	Ranges
	Review
	Exercises
	Grocery List
	Solution

	Resources

	Chapter 6 Dictionaries
	Adding Items to a Dictionary
	Removing Items from a Dictionary
	Finding a Key in a Dictionary
	Finding a Value in a Dictionary
	Looping through a Dictionary
	Nesting Dictionaries
	Review
	Exercises
	Interesting Facts
	Solution

	Resources

	Chapter 7 Tuples
	Switching between Tuples and Lists
	Looping through a Tuple
	Tuple Assignment
	Review
	Exercises
	ZIP Codes
	Solution

	Resources

	Chapter 8 File I/O
	File Position
	Closing a File
	Automatically Closing a File
	Reading a File One Line at a Time
	File Modes
	Writing to a File
	Binary Files
	Exceptions
	Review
	Exercises
	Line Numbers
	Solution

	Alphabetize
	Solution

	Resources

	Chapter 9 Modules
	Modules
	Peeking Inside a Module
	The Module Search Path
	The Python Standard Library
	Creating Your Own Modules
	Using main
	Review
	Exercises
	Pig Speak, Redux
	Solution

	Resources

	Conclusion
	Appendix
	Appendix A: Trademarks

