
www.allitebooks.com

http://www.allitebooks.org

Object-Oriented JavaScript
Create scalable, reusable high-quality JavaScript
applications, and libraries

Stoyan Stefanov

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Object-Oriented JavaScript
Create scalable, reusable high-quality JavaScript applications,
and libraries

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2008

Production Reference: 1160708

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-14-5

www.packtpub.com

Cover Image by Nilesh Mohite (nilpreet2000@yahoo.co.in)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Stoyan Stefanov

Reviewers

Dan Wellman

Douglas Crockford

Gamaiel Zavala

Jayme Cousins

Julie London

Nicolas Zakas

Nicole Sullivan

Philip Tellis

Ross Harmes

Tenni Theurer

Wayne Shea

Yavor Paunov

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

Gagandeep Singh

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Monica Ajmera

Proofreader

Dirk Manuel

Production Coordinator

Rajni Thorat

Cover Designer

Rajni Thorat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Stoyan Stefanov is a Yahoo! web developer, Zend Certified Engineer, and book
author. He talks regularly about JavaScript, PHP, and other web development topics
at conferences and on his blog at www.phpied.com, and also runs a number of other
sites, including JSPatterns.com—a site dedicated to exploring JavaScript patterns.
Stoyan is the engineering lead of Yahoo!'s performance optimization tool YSlow, and
contributes to other open-source projects such as Firebug and PEAR.

A "citizen of the world", Stoyan was born and raised in Bulgaria, but is also a
Canadian citizen, and is currently residing in Los Angeles, California. In his rare
offline moments, he enjoys playing the guitar and going to the Santa Monica beaches
and pools with his family.

www.allitebooks.com

http://www.allitebooks.org

 About the Reviewers

Dan Wellman lives with his wife and three children in his home town of
Southampton on the south coast of England. By day his mild-mannered alter-ego
works for a small yet accomplished e-commerce production agency. By night he battles
the forces of darkness and fights for truth, justice, and less intrusive JavaScript.

He has been writing computer-related articles, tutorials, and reviews for around five
years and is rarely very far from a keyboard of some description.

Douglas Crockford is a product of the US public education system. A registered
voter, he owns his own car. He is the world's foremost living authority on JavaScript.
He is the author of JavaScript: The Good Parts. He has developed office automation
systems. He did research in games and music at Atari. He was Director of
Technology at Lucasfilm. He was Director of New Media at Paramount.

He was the founder and CEO of Electric Communities/Communities.com. He was
founder and CTO of State Software, where he discovered JSON, the data interchange
standard. He is now an architect at Yahoo!

Gamaiel Zavala is a frontend engineer at Yahoo! in Santa Monica, California.
He enjoys writing all types of code and strives to understand the big picture, from
protocols and packets to the wide gamut of technologies delivering user experience
to the front end. Aside from the geeky stuff, he is enjoying a new family with his
lovely wife and baby boy.

www.allitebooks.com

http://www.allitebooks.org

Jayme Cousins started creating commercial websites once released from
University with a degree in Geography. His projects include marketing
super-niche spatial analysis software, preparing online content overnight for his
city's newspaper, printing road names on maps, painting houses, and teaching
College tech courses to adults. He currently lives behind a keypad in London,
Canada with his wife Heather and newborn son Alan. Jayme previously reviewed
Learning Mambo from Packt Publishing. He enjoys matching technology with
real-world applications for real-world people and often feels that his primary role is
that of a translator of technobabble for entrepreneurs.

Jayme now provides web development, consulting, and technical training through
his business, In House Logic (www.inhouselogic.com).

Julie London is a software engineer with over eight years of experience in building
enterprise-level web applications. A Flash developer for many years, she now
concentrates on other client-side technologies including CSS, JavaScript, and XSL. She
currently lives in Los Angeles where she works as a frontend engineer for Yahoo!

Nicholas C. Zakas is principal frontend engineer for the Yahoo! front page, a
contributor to YUI, and JavaScript teacher at Yahoo! He is the author of two books,
Professional JavaScript for Web Developers and Professional Ajax, as well as over a dozen
online articles on JavaScript.

Nicholas began his career as webmaster of a small software company, transitioning
into a user interface designer and prototyper before moving fully into software
engineering. He moved to Silicon Valley from Massachusetts in 2006 to join Yahoo!
Nicholas can be contacted through his website at www.nczonline.net.

Nicole Sullivan is a CSS performance guru living in California. She began her
professional career in 2000, when her future husband (then a W3C employee) told
her that if her website didn't validate he wouldn't be able to sleep at night. She
thought she'd better figure out what this ‘validator' thing was all about, and a love
for standards was born.

She began building Section 508 compliant, accessible websites. As her appreciation
for performance and large-scale sites grew, she went on to work in the online
marketing business, building CSS framework solutions for many well-known
European and world-wide brands, such as SFR, Club Med, SNCF, La Poste, FNAC,
Accor Hotels, and Renault.

www.allitebooks.com

http://www.allitebooks.org

Nicole now works for Yahoo! in the Exceptional Performance group. Her role
involves researching and evangelizing performance best practices and building tools
like YSlow that help other F2E's create better sites. She writes about standards, her
dog, and her obsession with object oriented CSS at www.stubbornella.org.

Philip Tellis is a lazy geek working with Yahoo! He likes letting the computer do
his work for him, and if it can't, he'll just reprogram it.

When he isn't hacking code, Philip rides his bike around Silicon Valley, and tries his
hand at food hacking, but not at the same time.

Ross Harmes works as a frontend engineer for Flickr in San Francisco, California.
He's also an author of the book Pro JavaScript Design Patterns. Some of his technical
writings and online projects, such as the YUI Bundle for TextMate, can be found at
www.techfoolery.com.

Tenni Theurer joined Yahoo! in early 2006 as a technical evangelist in Yahoo!'s
Exceptional Performance group. She then took the reins as manager and grew the
engineering team to lead the global effort in making Yahoo! products faster and
accelerating the user experience worldwide. Tenni is currently a Sr. Product Manager
in Yahoo!'s Search Distribution group. Tenni has spoken at several conferences
including Web 2.0 Expo, Ajax Experience, Rich Web Experience, AJAXWorld,
BlogHer, WITI, and CSDN-DrDobbs. She is a featured guest blogger on Yahoo!
Developer Network and Yahoo! User Interface Blog. Prior to Yahoo!, Tenni worked
in IBM's Pervasive Computing group on enterprise mobile solutions where she
worked directly with high profile customers on large-scale deployments.

Wayne Shea is a software engineer at Yahoo!. His projects at Yahoo! include
research on improving mobile web performances and developing scalable
high-performance web services. Before joining Yahoo!, he had been busy
creating mobile web browsers for cell phones at Openwave and Access.

www.allitebooks.com

http://www.allitebooks.org

Yavor Paunov is a product of the joined efforts of the Computer Science
departments of the Technical University, Sofia, Bulgaria, and Concordia
University in Montreal, Canada. His experience spans from two-person startups
to multi-national companies. Outside work, Yavor's habits include listening to live
music and extended walks with his charming shoe-eating cocker spaniel.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction 9

A Bit of History 10
The Winds of Change 11
The Present 11
The Future 12
Object-Oriented Programming 12

Objects 13
Classes 13
Encapsulation 14
Aggregation 15
Inheritance 15
Polymorphism 16

OOP Summary 16
Setting up Your Training Environment 17

Getting the Tools You Need 17
Using the Firebug Console 18
Summary 20

Chapter 2: Primitive Data Types, Arrays, Loops,
and Conditions 21

Variables 21
Variables are Case Sensitive 22

Operators 23
Primitive Data Types 26

Finding out the Value Type —the typeof Operator 27
Numbers 27

Octal and Hexadecimal Numbers 28
Exponent Literals 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Infinity 30
NaN 31

Strings 32
String Conversions 33
Special Strings 34

Booleans 35
Logical Operators 36
Operator Precedence 38
Lazy Evaluation 39
Comparison 40

Undefined and null 41
Primitive Data Types Recap 43
Arrays 44

Adding/Updating Array Elements 45
Deleting Elements 46
Arrays of arrays 46

Conditions and Loops 48
Code Blocks 48

if Conditions 49
Checking if a Variable Exists 50
Alternative if Syntax 52
Switch 52

Loops 54
While Loops 54
Do-while loops 55
For Loops 55
For-in Loops 58

Comments 59
Summary 59
Exercises 60

Chapter 3: Functions 61
What is a Function? 62

Calling a Function 62
Parameters 62

Pre-defined Functions 64
parseInt() 65
parseFloat() 66
isNaN() 67
isFinite() 68
Encode/Decode URIs 68
eval() 69
A Bonus—the alert() Function 69

Scope of Variables 70

Table of Contents

[iii]

Functions are Data 72
Anonymous Functions 73
Callback Functions 73
Callback Examples 74
Self-invoking Functions 76
Inner (Private) Functions 77
Functions that Return Functions 78
Function, Rewrite Thyself! 78

Closures 80
Scope Chain 80
Lexical Scope 81
Breaking the Chain with a Closure 82

Closure #1 84
Closure #2 85
A Definition and Closure #3 85
Closures in a Loop 86

Getter/Setter 88
Iterator 89

Summary 90
Exercises 91

Chapter 4: Objects 93
From Arrays to Objects 93

Elements, Properties, Methods 95
Hashes, Associative Arrays 95
Accessing Object's Properties 96
Calling an Object's Methods 97
Altering Properties/Methods 98
Using this Value 99
Constructor Functions 99
The Global Object 100
constructor Property 102
instanceof Operator 102
Functions that Return Objects 103
Passing Objects 104
Comparing Objects 105
Objects in the Firebug Console 106

Built-in Objects 107
Object 108
Array 109

Interesting Array Methods 112
Function 113

Table of Contents

[iv]

Properties of the Function Objects 115
Methods of the Function Objects 116
The arguments Object Revisited 118

Boolean 119
Number 121
String 122

Interesting Methods of the String Objects 124
Math 127
Date 129

Methods to Work with Date Objects 132
RegExp 134

Properties of the RegExp Objects 135
Methods of the RegExp Objects 136
String Methods that Accept Regular Expressions as Parameters 136
search() and match() 137
replace() 137
Replace callbacks 138
split() 139
Passing a String When a regexp is Expected 140

Summary 144
Exercises 145

Chapter 5: Prototype 149
The prototype Property 149

Adding Methods and Properties Using the Prototype 150
Using the Prototype's Methods and Properties 151
Own Properties versus prototype Properties 152
Overwriting Prototype's Property with Own Property 154

Enumerating Properties 155
isPrototypeOf() 157
The Secret __proto__ Link 158

Augmenting Built-in Objects 160
Augmenting Built-in Objects—Discussion 161
Some Prototype gotchas 162

Summary 165
Exercises 165

Chapter 6: Inheritance 167
Prototype Chaining 167

Prototype Chaining Example 168
Moving Shared Properties to the Prototype 171

Inheriting the Prototype Only 173
A Temporary Constructor—new F() 175

Uber—Access to the Parent from a Child Object 176
Isolating the Inheritance Part into a Function 178

Table of Contents

[v]

Copying Properties 179
Heads-up When Copying by Reference 180
Objects Inherit from Objects 183
Deep Copy 184
object() 186
Using a Mix of Prototypal Inheritance and Copying Properties 187
Multiple Inheritance 188

Mixins 190
Parasitic Inheritance 190
Borrowing a Constructor 191

Borrow a Constructor and Copy its Prototype 193
Summary 194
Case Study: Drawing Shapes 198

Analysis 198
Implementation 199
Testing 203

Exercises 204
Chapter 7: The Browser Environment 205

Including JavaScript in an HTML Page 205
BOM and DOM—An Overview 206
BOM 207

The window Object Revisited 207
window.navigator 208
Firebug as a Cheat Sheet 208
window.location 209
window.history 210
window.frames 211
window.screen 212
window.open()/close() 213
window.moveTo(), window.resizeTo() 214
window.alert(), window.prompt(), window.confirm() 214
window.setTimeout(), window.setInterval() 216
window.document 217

DOM 218
Core DOM and HTML DOM 220
Accessing DOM Nodes 222

The document Node 222
documentElement 224
Child Nodes 224
Attributes 225
Accessing the Content Inside a Tag 226
DOM Access Shortcuts 227

Table of Contents

[vi]

Siblings, Body, First, and Last Child 229
Walk the DOM 230

Modifying DOM Nodes 231
Modifying Styles 232
Fun with Forms 233

Creating New Nodes 234
DOM-only Method 235
cloneNode() 236
insertBefore() 237

Removing Nodes 237
HTML-Only DOM Objects 239

Primitive Ways to Access the Document 239
document.write() 241
Cookies, Title, Referrer, Domain 241

Events 243
Inline HTML Attributes 243
Element Properties 244
DOM Event Listeners 244
Capturing and Bubbling 246
Stop Propagation 248
Prevent Default Behavior 250
Cross-Browser Event Listeners 250
Types of Events 252

XMLHttpRequest 253
Send the Request 253
Process the Response 254
Creating XMLHttpRequest Objects in IE prior to version 7 255
A is for Asynchronous 256
X is for XML 257
An Example 257

Summary 260
Exercises 261

Chapter 8: Coding and Design Patterns 265
Coding Patterns 266

Separating Behavior 266
Content 266
Presentation 267
Behavior 267
Example of Separating Behavior 268

Namespaces 268
An Object as a Namespace 269
Namespaced Constructors 269
A namespace() Method 270

Table of Contents

[vii]

Init-Time Branching 271
Lazy Definition 272
Configuration Object 273
Private Properties and Methods 275
Privileged Methods 276
Private Functions as Public Methods 276
Self-Executing Functions 277
Chaining 278
JSON 279

Design Patterns 280
Singleton 281
Singleton 2 281

Global Variable 282
Property of the Constructor 282
In a Private Property 283

Factory 283
Decorator 285

Decorating a Christmas Tree 285
Observer 287

Summary 290
Appendix A: Reserved Words 291

Keywords 291
Future Reserved Words 292

Appendix B: Built-in Functions 295
Appendix C: Built-in Objects 299

Object 299
Members of the Object Constructor 300
Members of the Objects Created by the Object Constructor 300

Array 302
Members of the Array Objects 303

Function 305
Members of the Function Objects 306

Boolean 306
Number 307

Members of the Number Constructor 308
Members of the Number Objects 309

String 310
Members of the String Constructor 310
Members of the String Objects 311

Date 313
Members of the Date Constructor 314

Table of Contents

[viii]

Members of the Date Objects 314
Math 318

Members of the Math Object 319
RegExp 320

Members of RegExp Objects 321
Error Objects 322

Members of the Error Objects 323
Appendix D: Regular Expressions 325
Index 331

Preface
This book explores JavaScript for what it is: a highly expressive and flexible
prototype-based object-oriented programming language. Once dismissed as a toy for
designers to make things such as rollover buttons, today this interesting and unique
language is back, stronger than ever. Today's Web 2.0 world of AJAX,
fat-client programming, desktop-like rich Internet applications, drag-and-drop maps
and webmail clients, rely heavily on JavaScript to provide a highly interactive user
experience. And if we never had the chance to properly explore JavaScript before,
now is the time to sit down and (re-)learn it.

This book doesn't assume any prior knowledge of JavaScript and works from the
ground up to give you a thorough understanding of the language.

What This Book Covers
Chapter 1 talks briefly about the history, present, and future of JavaScript, and then
moves on to explore the basics of object-oriented programming (OOP) in general.
You then learn how to set up your training environment (Firebug) in order to dive
into the language on your own, using the book examples as a base.

Chapter 2 discuses the language basics: variables, data types, arrays, loops,
and conditionals.

Chapter 3 covers functions. JavaScript has many uses for functions and here
you learn to master them all. You also learn about the scope of variables and
JavaScript's built-in functions. An interesting, but often misunderstood feature of
the language—closures—is demystified at the end of the chapter.

Chapter 4 introduces objects: how to work with properties and methods, and the
various ways to create your objects. There's also an overview of the built-in objects in
JavaScript, such as Math and Date (just an overview, Appendix C has all the details).

Preface

[2]

Chapter 5 is dedicated to the all-important concept of prototypes in JavaScript.

Chapter 6 expands your "thinking in JavaScript" horizon, discussing a dozen ways to
implement inheritance in JavaScript.

Chapter 7 is the browser chapter. In this chapter, you learn about BOM (Browser
Object Model), DOM (W3C's Document Object Model), browser events, and AJAX.

Chapter 8 dives into various unique JavaScript coding patterns, as well as several
language-independent design patterns, translated to JavaScript from the Book of
Four, the most influential work of software design patterns.

Appendix A lists the reserved words in JavaScript.

Appendix B is a reference to the built-in JavaScript functions, together with
sample uses.

Appendix C is a reference that provides detail and provides examples of the use of
every method and property of every built-in object in JavaScript.

Appendix D is a regular expressions pattern reference.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " The key/value pairs are divided by
colons, in the format key: value ."

A block of code will be set as follows:

var book = {
 name: 'Catch-22',
 published: 1961,
 author: {
 firstname: 'Joseph',
 lastname: 'Heller'
 }
};

Preface.

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

function TwoDShape(){}
// take care of inheritance
TwoDShape.prototype = Shape.prototype;

TwoDShape.prototype.constructor = TwoDShape;

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book— what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any mistakes, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of the error. Once your comments have been verified, your submission will be
accepted and added to the list of existing errata for the book. Any existing errata can
be viewed by selecting your book from http://www.packtpub.com/support.

Questions
If you are having a problem with some aspect of the book you can contact us at
questions@packtpub.com, and we will do our best to address it.

I'd like to dedicate this book to my wife Eva and my daughters Zlatina and Nathalie. Thank
you for your patience, support, and encouragement.

To my reviewers who volunteered their time reviewing drafts of this book and whom I deeply
respect and look up to: a big thank you for your invaluable input.

Introduction
What do Yahoo! Maps, Google Maps, Yahoo! Mail, My Yahoo!, Gmail, Digg,
YouTube and a plethora of other popular "Web 2.0" applications have in common?
They all offer rich and responsive user interfaces, heavily employing code written
in the JavaScript language. JavaScript started with simple one-liners embedded in
HTML, but is now used in much more sophisticated ways. Developers leverage the
object-oriented nature of the language to build scalable code architectures made up
of reusable pieces. JavaScript provides behavior, the third pillar in today's paradigm
that sees web pages as consisting of three clearly distinguishable parts: content
(HTML), presentation (CSS), and behavior (JavaScript).

JavaScript programs run inside a host environment. The web browser is the most
common environment, but it is not the only one. Using JavaScript, you can create
all kinds of widgets, application extensions, and other pieces of software. Learning
JavaScript is a pretty good deal: you learn one language and can then code all kinds
of different applications.

This book is about JavaScript and focuses on its object-oriented nature. The book
starts from zero, and does not assume any prior programming knowledge. Although
there is one chapter dedicated to the web browser environment, the rest of the book
is about JavaScript in general, so is applicable to all environments.

Let's start with the first chapter, which gives you an overview of the story behind
JavaScript. It also introduces the basic concepts you'll encounter in discussions on
object-oriented programming.

Introduction

[10]

A Bit of History
Initially, the Web was conceived as a collection of static HTML documents, tied
together with hyperlinks. Soon, as the Web grew in popularity and size, the
webmasters who were creating static HTML web pages felt they needed something
more. They wanted the opportunity for richer user interaction, mainly driven by desire
to save server round-trips for simple tasks such as form validation. Two options came
up: Java applets (they failed) and LiveScript, which was conceived by Netscape in 1995
and later included in the Netscape 2.0 browser under the name of JavaScript.

The ability to alter otherwise static elements of a web page was very well received
and other browsers followed suit. Microsoft's Internet Explorer (IE) 3.0 shipped
with JScript, which was a copy of the same language plus some IE-specific features.
Eventually there was an effort to standardize the various implementations of
the language and this is how ECMAScript (European Computer Manufacturers
Association) was born. Today we have the standard, called ECMA-262, and
JavaScript is just one implementation of this standard, albeit the most popular one.

For better or for worse, JavaScript's instant popularity happened during the period
of the Browser Wars I (approximately 1996-2001). Those were the times of the initial
Internet boom when the two major browser vendors—Netscape and Microsoft,
were competing for market share. These two vendors were constantly adding more
bells and whistles to their browsers and their versions of JavaScript. This situation,
together with the lack of agreed-upon standards brought a lot of bad opinions of
JavaScript. More often than not, development was a pain: you write a script while
working in one browser. Once you're done with development, you test in the other
browser and it simply doesn't work. At the same time, the browser vendors were
busy adding features, but falling behind on providing proper development tools.

Browser vendors were introducing incompatibilities that annoyed the web developers,
but this was only one part of the problem. The other part of the problem were the
web developers themselves, who were adding too many features to their web pages.
Developers were eager to make use of every new possibility that the browsers
provided and ended up "enhancing" their web pages with things like animations in
the status bar, flashing colors, blinking texts, shaking browser windows, snowflakes,
objects stalking your mouse cursor, and so on, often at the expense of usable pages.
These various ways to abuse JavaScript was the other reason why the language got its
bad reputation. This caused "the real programmers" (developers with background in
more established languages such as Java or C/C++) to dismiss JavaScript as nothing
but a toy for front-end designers to play around with.

The JavaScript backlash caused some web projects to completely ban any client-side
programming and trust only their predictable and reliable server. And really, why
would you double the time to deliver a project and spend this additional time
debugging problems with the different browsers?

Chapter 1

[11]

The Winds of Change
Everything changed in the years following the end of the Browser Wars I. A number
of processes reshaped the web development landscape in a very positive way.

Microsoft won the war, and for about five years (which is more or less
forever in Internet time), they stopped adding features to Internet Explorer
and JScript. This allowed time for other browsers as well as developers to
catch up and even surpass IE's capabilities.
The movement for web standards was embraced by developers and browser
vendors alike. Naturally, developers didn't like having to code everything
two (or more) times to account for browsers' differences; therefore they
liked the idea of having agreed-upon standards that everyone would follow.
We're still far from being able to develop in a fully standards-compliant
environment, but ideally, this will happen in the future.
Developers and technologies matured and more people started caring about
things like usability, progressive enhancement techniques, and accessibility.

In this healthier environment, developers started finding out new and better
ways to use the instruments that were already available. After the public release
of applications such as Gmail and Google Maps, which were rich on client-side
programming, it became clear that JavaScript is a mature, unique in certain
ways, and powerful prototypal object-oriented language. The best example
of it's rediscovery is the wide adoption of the functionality provided by the
XMLHttpRequest object, which was once an IE-only innovation, but was thenonce an IE-only innovation, but was thenan IE-only innovation, but was then
implemented by most other browsers. XMLHttpRequest allows JavaScript to make
HTTP requests and get fresh content from the server in order to update some parts of
a page, without a full page reload. Due to the wide use of XMLHttpRequest, a new
breed of desktop-like web applications, dubbed AJAX applications, was born.

The Present
An interesting thing about JavaScript is that it always runs inside a host environment.
The browser is the most popular host environment, but it is not the only one.
JavaScript can run on the server, on the desktop, and in rich media. Today, you can
use JavaScript to do all of this:

Create rich and powerful web applications (the kind of applications that run
inside the web browser, such as Gmail)
Write server-side code such as ASP scripts or, for example, code that is run
using Rhino (a JavaScript engine written in Java)
Create rich media applications (Flash, Flex) using ActionScript, which is
based on ECMAScript

•

•

•

•

•

•

Introduction

[12]

Write scripts that automate administrative tasks on your Windows desktop,
using Windows Scripting Host
Write extensions/plugins for a plethora of desktop application such as
Firefox, Dreamweaver, and Fiddler
Create web applications that store information in an off-line database on the
user's desktop, using Google Gears
Create Yahoo! Widgets, Mac Dashboard widgets, or Adobe Air applications
that run on your desktop

This is by no means an extensive list. JavaScript started inside web pages, but today
it's safe to say it is practically everywhere.

The Future
We can only speculate what the future will be, but it's quite certain that it will
include JavaScript. For quite some time JavaScript may have been underestimated
and underused (or rather overused in the wrong ways), but every day we witness
new uses of JavaScript in much more interesting and creative ways. Where they once
wrote simple one-liners, often embedded in-line in HTML tag attributes (such as
onclick), developers nowadays ship sophisticated, well-designed and architected,
extensible applications, and libraries. JavaScript is indeed taken seriously and
developers are starting to rediscover and enjoy its unique object-oriented features
more and more.

Once listed in the "nice to have" sections of job postings, these days the knowledge
of JavaScript is a yes/no factor when it comes to hiring web developers. Common
job interview questions you can hear today include: "Is JavaScript an object-oriented
language? Good. Now how do you implement inheritance in JavaScript?" After
reading this book, you'll be prepared to ace your JavaScript job interview and even
impress your interviewers with some bits that maybe they didn't know.

Object-Oriented Programming
Before diving into JavaScript let's take a moment to review what people mean when
they say "object-oriented", and what the main features of this programming style are.
Here's a list of concepts that are most often used when talking about object-oriented
programming (OOP):

Object, method, property
Class
Encapsulation

•

•

•

•

•

•

•

Chapter 1

[13]

Aggregation
Reusability/inheritance
Polymorphism

Let's take a closer look into each one of these concepts.

Objects
As the name object-oriented suggests, objects are quite important. An object is a
representation of a "thing" (someone or something), and this representation is
expressed with the help of a programming language. The thing can be anything—a
real-life object, or some more convoluted concept. Taking a common object like a
cat for example, you can see that it has certain characteristics (color, name, weight)
and can perform some actions (meow, sleep, hide, escape). The characteristics of the
object are called properties in OOP and the actions are called methods.

There is also an analogy with the spoken language:

Objects are most often named using nouns (book, person)
Methods are verbs (read, run)
Values of the properties are adjectives

Let's take, for example, the sentence "The black cat sleeps on my head". "The cat"
(a noun) is the object ,"black" (adjective) is the value of the color property, and
"sleep" (a verb) is an action, or a method in OOP. For the sake of the analogy, we
can go a step further and say that "on my head" specifies something about the action
"sleep", so it's acting as a parameter passed to the sleep method.

Classes
In real life, similar objects can be grouped based on some criteria. A hummingbird
and an eagle are both birds, so they can be classified as belonging to the Birds class.
In OOP, a class is a blueprint, or recipe for an object. Another name for "object" is
"instance", so we say that the eagle is an instance of the Birds class. You can create
different objects using the same class, because a class is just a template, while the
objects are concrete instances, based on the template.

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Introduction

[14]

There's a difference between JavaScript and the "classic" OO languages like C++
and Java. You should understand right from the start that in JavaScript there are no
classes; everything is based on objects. JavaScript has the notion of prototypes, which
are also objects (we'll discuss them later in detail). In a classic OO language, you'd
say something like "create me a new object called Bob which is of class Person". In a
prototypal OO language, you'd say, "I'm going to take this object Person that I have
lying around and reuse it as a prototype for a new object that I'll call Bob".

Encapsulation
Encapsulation is another OOP-related concept, which illustrates the fact that an object
contains (encapsulates) both:

Data (stored in properties) and
The means to do something with the data (using methods)

One other term that goes together with encapsulation is information hiding. This is a
rather broad term and can mean different things, but let's see what people usually
mean when they use it in the context of OOP.

Imagine an object, say an MP3 player. You, as a user of the object, are given some
interface to work with, such as buttons, the display, and so on. You use the interface
in order to get the object to do something useful for you, like playing a song. Exactly
how it is working on the inside, you don't know and, most often, don't care. In other
words, the implementation of the interface is hidden from you. The same thing
happens in OOP, when your code uses an object by calling its methods. It doesn't
matter if you coded the object yourself or it came from some third party library; your
code doesn't need to know how the methods work internally. In compiled languages,
you can't actually read the code that makes an object work. In JavaScript, because
it's an interpreted language, you can see the source code, but the concept is still the
same—you work with the object's interface, without worrying about
its implementation.

Another aspect of information hiding is the visibility of methods and properties.
In some languages, objects can have public, private, and protected methods and
properties. This categorization defines the level of access the users of the object have.
For example, only the internal implementation of the object has access to the private
methods, while anyone has access to the public ones. In JavaScript, all methods and
properties are public, but we'll see that there are ways to protect the data inside an
object and achieve privacy.

•

•

Chapter 1

[15]

Aggregation
Combining several objects into a new one is known as aggregation or composition.
The aggregation concept illustrates the ability to combine several objects into a new
one. Aggregation is a powerful way to separate a problem into smaller and more
manageable parts (divide and conquer). When a problem scope is so complex that
it's impossible to think about it at a detailed level in its entirety, you can separate
the problem into several smaller areas, and possibly then separate each of these
into even smaller chunks. This allows you to think about the problem on several
levels of abstraction. A personal computer is a very complex object. You cannot think
about all the things that need to happen when you start your computer. But you can
abstract the problem saying that you need to initialize the objects it consists of: the
Monitor object, the Mouse object, the Keyboard object, and so on. Then you can dive
deeper into each of the sub-objects. This way you are composing complex objects by
assembling reusable parts.

To use another analogy, a Book object could can contain (aggregate) one or more
author objects, a publisher object, several chapter objects, a table of contents, and
so on.

Inheritance
Inheritance is a very elegant way to reuse code that has already been written. For
example, you can have a generic object Person, which has properties such as name
and date of birth, and that implements the functionality walk, talk, sleep, eat. Then
you figure out that you need an object Programmer. You could re-implement all
the methods and properties that Person has, but it would be smarter to just say that
Programmer inherits Person, and save yourself some work. The Programmer object
only needs to implement more-specific functionality, such as the method "write
code", while reusing all of the Person's functionality.

In classical OOP, classes inherit from other classes, but in JavaScript, because there
are no classes, objects inherit from other objects.

When an object inherits from another object, it usually adds new methods to the
inherited ones, thus extending the old object. Often the following phrases can be
used interchangeably: "B inherits from A" and "B extends A". Also, the object that
inherited a number of methods, can pick one or more methods and redefine them,
customizing them for its own needs. This way the interface stays the same, the
method name is the same, but when called on the new object, the method behaves
differently. This way of redefining how an inherited method works is known
as overriding.

Introduction

[16]

Polymorphism
In the example above, we had a Programmer object that inherited all of the methods
of the parent Person object. This means that both objects provide a "talk" method,
among others. Now imagine that somewhere in our code, there's a variable called
Bob and it so happens that we don't know if Bob is a Person, or a Programmer object.so happens that we don't know if Bob is a Person, or a Programmer object.happens that we don't know if Bob is a Person, or a Programmer object.
We can still call the "talk" method on the Bob object and the code will work. This
ability to call the same method on different objects and have each of them respond in
their own way is called polymorphism.

OOP Summary
If you are new to the OO programming lingo and you're not sure you've fully
grasped the concepts above, don't worry. We'll look at some code and you'll see that,
although they may seem complicated when just talking about high-level concepts,
things are much simpler in practice.

Thus said, let's rehash the concepts once more. said, let's rehash the concepts once more.

Feature Illustrates concept
Bob is a man (an object). objects
Bob's date of birth is June 1st, 1980, gender: male, hair: black. properties
Bob can eat, sleep, drink, dream, talk and calculate his age. methods
Bob is an instance of class Programmer. class (in classical OOP)
Bob is based on another object, called Programmer. prototype

(in prototypal OOP)
Bob holds data (such as birth date) and methods that work with
the data (such as calculate age).

encapsulation

We don't need to know how the calculation method works
internally. The object might have some private data, such as the
number of days in February in a leap year, we don't know, nor
do we want to know.

information hiding

Bob is part of a Web Dev Team object, together with Jill, a
Designer object and Jack, a Project Manager object.

aggregation, composition

Chapter 1

[17]

Feature Illustrates concept
Designer, Project Manager and Programmer are all based on
and extend a Person object.

inheritance

You can call the methods Bob:talk, Jill:talk and Jack:talk and
they'll all work fine, albeit producing different results (Bob will
probably talk more about performance, Jill about beauty and
Jack about deadlines). Each object inherited the method talk
from Person and customized it.

polymorphism, method
overriding

Setting up Your Training Environment
This book takes a "do it yourself" approach when it comes to writing code, because
the author firmly believes that the best way to really learn a programming language
is by writing code. So there's no cut-and-paste-ready code downloads, which you
can simply put in your pages. On the contrary, you're expected to type in code, see
how it works and then tweak it and play around with it. When trying out the code
examples, you're encouraged to enter the code into Firebug's console. Let's see how
you go about doing this.

Getting the Tools You Need
As a developer, you most likely already have Firefox installed and use it for your
daily web browsing pleasure. If not, do yourself a favor and install it right now.
It's free and runs on any platform—Windows, Linux, or Mac. Download it from
http://www.mozilla.com/firefox/.

The Firefox browser is extensible and there are lots of useful extensions out there
(all written in JavaScript!). A popular extension is Firebug—an indispensable
tool for web development, with lots of useful features. Download Firebug from
http://www.getfirebug.com/, install it, and try it out by starting Firefox and going
to any page and pressing F12 (on Windows) or clicking on the little bug icon at the
bottom right corner of the Firefox screen. This will open the Firebug feature we're
most interested in—the console.

Introduction

[18]

Using the Firebug Console

You can type code directly into the Firebug console, and when you press Enter, the
code is evaluated and executed. The return value of the code is printed in the console.
The code is executed in the context of the currently-loaded page, so for example if you
type document.location.href it will return the URL of the current page.

The console also has an auto-complete feature. It works similarly to the normal
command line prompt in your operating system. If, for example, you type docu and
hit the Tab key, docu will be auto-completed to document. Then if you type . (the dot
operator), you can press Tab several times and it will iterate through all the available
properties and methods you can call on the document object.

By using the UP and DOWN arrow keys, you can go through the list of
already-executed commands and bring them back in the console.

The console gives you only one line to type in, but you can execute several JavaScript
statements by separating them with semi-colons. If you need more space or more
lines, you can open the console in a multi-line mode, by clicking the upward-facing
arrow on the far right of the input line. An example of multi-line mode is shown in
the next screenshot.

Chapter 1

[19]

This example shows how you can use the console to type in some code that swaps
the logo on the google.com home page with an image of your choice. As you see,
you can test your JavaScript code live on any page.

One configuration option you should set in Firefox is the strictness of JavaScript
warnings you will see in the console. This will help you make sure that the code
you write is of better quality. Although warnings are not errors, you should aim at
writing code that doesn't throw any warnings. For example using an undeclared
variable is not an error, but it's not a good idea, so Firefox's JavaScript engine will
generate a warning, which will be displayed in the console if the strict setting is
turned on. To set the "strict" setting, do this:

1. Type about:config in Firefox's address bar.
2. Search for strict by typing it in the Filter field and pressing Enter.
3. Double-click the line that says javascript.options.strict. This should set its

Value to true.

Introduction

[20]

Summary
In this chapter, you learned about how JavaScript came to be and where it is today.
You were also introduced to Object-oriented programming concepts and saw how
JavaScript is not a classic OO language, but a prototypal one. Finally, you learned
how to set up and use your training environment—the Firebug console. Now you're
ready to dive into JavaScript and learn how to use its powerful OO features. For
additional information on the topics discussed in this chapter, take a look at the
following web pages.

On the YUI Theater (http://developer.yahoo.com/yui/theater/), there
are several talks by Douglas Crockford that are highly recommended. Part
1 of the "Theory of the DOM" talks about browser history, and Part 1 oftalks about browser history, and Part 1 of, and Part 1 of
"The JavaScript Programming Language" talks about history of JavaScript
(amongst other things).
For OOP concepts see the Wikipedia article (http://en.wikipedia.org/
wiki/Object-oriented_programming) and Sun's Java documentation
(http://java.sun.com/docs/books/tutorial/java/concepts/index.
html), although the latter talks about OOP using classes.
For examples of what's possible today with JavaScript, take a look at the
Yahoo! Widgets page (http://widgets.yahoo.com/), Google Maps
(http://maps.google.com), or the JavaScript version of the Processing
visualization language (http://ejohn.org/blog/processingjs/).

•

•

•

Primitive Data Types, Arrays,
Loops, and Conditions

Before diving into the object-oriented features of JavaScript, let's first take a look atfirst take a look attake a look at
some of the basics. This chapter walks you through:

The primitive data types in JavaScript, such as strings and numbers
Arrays
Common operators, such as +, -, delete, and typeof
Flow control statements, such as loops and if-else conditions

Variables
Variables are used to store data. When writing programs, it is convenient to use
variables instead of the actual data, as it's much easier to write pi instead of
3.141592653589793 especially when it happens several times inside your program.
The data stored in a variable can be changed after it was initially assigned, hence
the name "variable". Variables are also useful for storing data that is unknown to the
programmer when the code is written, such as the result of later operations.

There are two steps required in order to use a variable. You need to:steps required in order to use a variable. You need to:required in order to use a variable. You need to:

Declare the variable
Initialize it, that is, give it a value

In order to declare a variable, you use the var statement, like this:

var a;
var thisIsAVariable;
var _and_this_too;
var mix12three;

•

•

•

•

•

•

Primitive Data Types, Arrays, Loops, and Conditions

[22]

For the names of the variables, you can use any combination of letters, numbers, and
the underscore character. However, you can't start with a number, which means that
this is invalid:

var 2three4five;

To initialize a variable means to give it a value for the first (initial) time. You have
two ways to do so:

Declare the variable first, then initialize it, or
Declare and initialize with a single statement

An example of the latter is:

var a = 1;

Now the variable named a contains the value 1.

You can declare (and optionally initialize) several variables with a single var
statement; just separate the declarations with a comma:

var v1, v2, v3 = 'hello', v4 = 4, v5;

Variables are Case Sensitive
Variable names are case-sensitive. You can verify this statement using the Firebug
console. Try typing this, pressing Enter after each line:

var case_matters = 'lower';
var CASE_MATTERS = 'upper';
case_matters
CASE_MATTERS

To save keystrokes, when you enter the third line, you can only type ca and press
the Tab key. The console will auto-complete the variable name to case_matters.
Similarly, for the last line—type CA and press Tab. The end result is shown on the
following figure.

•

•

Chapter 2

[23]

Throughout the rest of this book, only the code for the examples will be given,
instead of a screenshot:

>>> var case_matters = 'lower';
>>> var CASE_MATTERS = 'upper';
>>> case_matters

 "lower"

>>> CASE_MATTERS

 "upper"

The three consecutive greater-than signs (>>>) show the code that you type, the rest
is the result, as printed in the console. Again, remember that when you see such
code examples, you're strongly encouraged to type in the code yourself and
experiment tweaking it a little here and there, so that you get a better feeling of how
it works exactly.exactly..

Operators
Operators take one or two values (or variables), perform an operation, and return
a value. Let's check out a simple example of using an operator, just to clarify the
terminology.

>>> 1 + 2

 3

www.allitebooks.com

http://www.allitebooks.org

Primitive Data Types, Arrays, Loops, and Conditions

[24]

In this code:

+ is the operator
The operation is addition
The input values are 1 and 2 (the input values are also called operands)
The result value is 3

Instead of using the values 1 and 2 directly in the operation, you can use variables.
You can also use a variable to store the result of the operation, as the following
example demonstrates:

>>> var a = 1;
>>> var b = 2;
>>> a + 1

 2

>>> b + 2

 4

>>> a + b

 3

>>> var c = a + b;
>>> c

 3

The following table lists the basic arithmetic operators:

Operator symbol Operation Example

+ Addition >>> 1 + 2

 3
- Substraction >>> 99.99 – 11

 88.99
* Multiplication >>> 2 * 3

 6
/ Division >>> 6 / 4

 1.5

•

•

•

•

Chapter 2

[25]

Operator symbol Operation Example

% Modulo, the reminder
of a division

>>> 6 % 3

 0
>>> 5 % 3

 2
It's sometimes useful to test if a number is even
or odd. Using the modulo operator it's easy. All
odd numbers will return 1 when divided by 2,
while all even numbers will return 0.

>>> 4 % 2

 0
>>> 5 % 2

 1

++ Increment a value
by 1

Post-increment is when the input value is
incremented after it's returned.

>>> var a = 123; var b = a++;
>>> b

 123
>>> a

 124
The opposite is pre-increment; the input value is
first incremented by 1 and then returned.

>>> var a = 123; var b = ++a;
>>> b

 124
>>> a

 124
-- Decrement a value

by 1
Post-decrement

>>> var a = 123; var b = a--;
>>> b

 123
>>> a

 122
Pre-decrement

>>> var a = 123; var b = --a;
>>> b

 122
>>> a

 122

Primitive Data Types, Arrays, Loops, and Conditions

[26]

When you type var a = 1; this is also an operation; it's the simple assignment operation
and = is the simple assignment operator.

There is also a family of operators that are a combination of an assignment and an
arithmetic operator. These are called compound operators. They can make your code
more compact. Let's see some of them with examples.

>>> var a = 5;
>>> a += 3;

 8

In this example a += 3; is just a shorter way of doing a = a + 3;

>>> a -= 3;

 5

Here a -= 3; is the same as a = a - 3;

Similarly:

>>> a *= 2;

 10

>>> a /= 5;

 2

>>> a %= 2;

 0

In addition to the arithmetic and assignment operators discussed above, there are
other types of operators, as you'll see later in this and the following chapters.

Primitive Data Types
Any value that you use is of a certain type. In JavaScript, there are the following
primitive data types:

1. Number—this includes floating point numbers as well as integers, for
example 1, 100, 3.14.

2. String—any number of characters, for example "a", "one", "one 2 three".
3. Boolean—can be either true or false.

Chapter 2

[27]

4. Undefined—when you try to access a variable that doesn't exist, you get the
special value undefined. The same will happen when you have declared a
variable, but not given it a value yet. JavaScript will initialize it behind the
scenes, with the value undefined.

5. Null—this is another special data type that can have only one value, thehave only one value, theonly one value, the
null value. It means no value, an empty value, nothing. The difference with
undefined is that if a variable has a value null, it is still defined, it only
happens that its value is nothing. You'll see some examples shortly.

Any value that doesn't belong to one of the five primitive types listed above is an
object. Even null is considered an object, which is a little awkward—having an
object (something) that is actually nothing. We'll dive into objects in Chapter 4, but
for the time being just remember that in JavaScript the data types are either:

Primitive (the five types listed above), or
Non-primitive (objects)

Finding out the Value Type —the
typeof Operator
If you want to know the data type of a variable or a value, you can use the special
typeof operator. This operator returns a string that represents the data type. The
return values of using typeof can be one of the following—"number", "string",
"boolean", "undefined", "object", or "function". In the next few sections, you'll see
typeof in action using examples of each of the five primitive data types.

Numbers
The simplest number is an integer. If you assign 1 to a variable and then use the
typeof operator, it will return the string "number". In the following example
you can also see that the second time we set a variable's value, we don't need the
var statement.

>>> var n = 1;
>>> typeof n;

 "number"

>>> n = 1234;
>>> typeof n;

 "number"

•

•

Primitive Data Types, Arrays, Loops, and Conditions

[28]

Numbers can also be floating point (decimals):

>>> var n2 = 1.23;
>>> typeof n;

 "number"

You can call typeof directly on the value, without assigning it to a variable first:

>>> typeof 123;

 "number"

Octal and Hexadecimal Numbers
When a number starts with a 0, it's considered an octal number. For example, the
octal 0377 is the decimal 255.

>>> var n3 = 0377;
>>> typeof n3;

 "number"

>>> n3;

 255

The last line in the example above prints the decimal representation of the octal
value. While you may not be very familiar with octal numbers, you've probably used
hexadecimal values to define, for example, colors in CSS stylesheets.

In CSS, you have several options to define a color, two of them being:

Using decimal values to specify the amount of R (red), G (green) and B (blue)
ranging from 0 to 255. For example rgb(0, 0, 0) is black and rgb(255, 0,
0) is red (maximum amount of red and no green or blue).
Using hexadecimals, specifying two characters for each R, G and B. For
example, #000000 is black and #ff0000 is red. This is because ff is the
hexadecimal for 255.

In JavaScript, you put 0x before a hexadecimal value (also called hex for short).

>>> var n4 = 0x00;
>>> typeof n4;

 "number"

>>> n4;

 0

•

•

Chapter 2

[29]

>>> var n5 = 0xff;
>>> typeof n5;

 "number"

>>> n5;

 255

Exponent Literals
1e1 (can also be written as 1e+1 or 1E1 or 1E+1) represents the number one with one
zero after it, or in other words 10. Similarly, 2e+3 means the number 2 with 3 zeros
after it, or 2000.

>>> 1e1

 10

>>> 1e+1

 10

>>> 2e+3

 2000

>>> typeof 2e+3;

 "number"

2e+3 means moving the decimal point 3 digits to the right of the number 2. There's
also 2e-3 meaning you move the decimal point 3 digits to the left of the number 2.

2e+3

2e 3

2 .0 .0 .0.

0 .0 .0 .2.

2000

0.002

1 2 3

3 2 1

>>> 2e-3

 0.002

>>> 123.456E-3

 0.123456

Primitive Data Types, Arrays, Loops, and Conditions

[30]

>>> typeof 2e-3

 "number"

Infinity
There is a special value in JavaScript called Infinity. It represents a number too big
for JavaScript to handle. Infinity is indeed a number, as typing typeof Infinity
in the console will confirm. You can also quickly check that a number with 308 zeros
is ok, but 309 zeros is too much. To be precise, the biggest number JavaScript can
handle is 1.7976931348623157e+308 while the smallest is 5e-324.

>>> Infinity

 Infinity

>>> typeof Infinity

 "number"

>>> 1e309

 Infinity

>>> 1e308

 1e+308

Dividing by 0 will give you infinity.

>>> var a = 6 / 0;
>>> a

 Infinity

Infinity is the biggest number (or rather a little bigger than the biggest), but how
about the smallest? It's infinity with a minus sign in front of it, minus infinity.

>>> var i = -Infinity;
>>> i

 -Infinity

>>> typeof i

 "number"

Chapter 2

[31]

Does this mean you can have something that's exactly twice as big as Infinity—
from 0 up to infinity and then from 0 down to minus infinity? Well, this is purely for
amusement and there's no practical value to it. When you sum infinity and minus
infinity, you don't get 0, but something that is called NaN (Not A Number).

>>> Infinity - Infinity

 NaN

>>> -Infinity + Infinity

 NaN

Any other arithmetic operation with Infinity as one of the operands will give you
Infinity:

>>> Infinity - 20

 Infinity

>>> -Infinity * 3

 -Infinity

>>> Infinity / 2

 Infinity

>>> Infinity - 99999999999999999

 Infinity

NaN
What was this NaN you saw in the example above? It turns out that despite its name,
"Not A Number", NaN is a special value that is also a number.

>>> typeof NaN

 "number"

>>> var a = NaN;
>>> a

 NaN

You get NaN when you try to perform an operation that assumes numbers but the
operation fails. For example, if you try to multiply 10 by the character "f", the result
is NaN, because "f" is obviously not a valid operand for a multiplication.

Primitive Data Types, Arrays, Loops, and Conditions

[32]

>>> var a = 10 * "f";
>>> a

 NaN

NaN is contagious, so if you have even only one NaN in your arithmetic operation,
the whole result goes down the drain.

>>> 1 + 2 + NaN

 NaN

Strings
A string is a sequence of characters used to represent text. In JavaScript, any value
placed between single or double quotes is considered a string. This means that 1 is a
number but "1" is a string. When used on strings, typeof returns the string "string".

>>> var s = "some characters";
>>> typeof s;

 "string"

>>> var s = 'some characters and numbers 123 5.87';
>>> typeof s;

 "string"

Here's an example of a number used in string context:

>>> var s = '1';
>>> typeof s;

 "string"

If you put nothing in quotes, it's still a string (an empty string):

>>> var s = ""; typeof s;

 "string"

As you saw before, when you use the plus sign with two numbers, this is the
arithmetic operation addition. However, if you use the plus sign on strings, this is a
string concatenation operation and it returns the two strings glued together.

>>> var s1 = "one"; var s2 = "two"; var s = s1 + s2; s;

 "onetwo"

>>> typeof s;

 "string"

Chapter 2

[33]

The dual function of the + operator can be a source of errors. Therefore, it is always
best to make sure that all of the operands are strings if you intend to concatenate
them, and are all numbers if you intend to add them. You will learn various ways to
do so further in the chapter and the book.

String Conversions
When you use a number-like string as an operand in an arithmetic operation, the
string is converted to a number behind the scenes. (This works for all operations
except addition, because of addition's ambiguity)

>>> var s = '1'; s = 3 * s; typeof s;

 "number"

>>> s

 3

>>> var s = '1'; s++; typeof s;

 "number"

>>> s

 2

A lazy way to convert any number-like string to a number is to multiply it by 1 (a
better way is to use a function called parseInt(), as you'll see in the next chapter):

>>> var s = "100"; typeof s;

 "string"

>>> s = s * 1;

 100

>>> typeof s;

 "number"

If the conversion fails, you'll get NaN:

>>> var d = '101 dalmatians';
>>> d * 1

 NaN

www.allitebooks.com

http://www.allitebooks.org

Primitive Data Types, Arrays, Loops, and Conditions

[34]

A lazy way to convert anything to a string is to concatenate it with an empty string.

>>> var n = 1;
>>> typeof n;

 "number"

>>> n = "" + n;

 "1"

>>> typeof n;

 "string"

Special Strings
Some strings that have a special meaning, as listed in the following table:

String Meaning Example

\
\\
\'
\"

\ is the escape character.
When you want to have
quotes inside your string,
you escape them, so that
JavaScript doesn't think
they mean the end of the
string.
If you want to have an
actual backslash in the
string, escape it with
another backslash.

>>> var s = 'I don't know';

This is an error, because JavaScript thinks the string is
"I don" and the rest is invalid code. The following are
valid:

>>> var s = 'I don\'t know';

>>> var s = "I don\'t know";

>>> var s = "I don't know";

>>> var s = '"Hello", he said.';

>>> var s = "\"Hello\", he said.";

Escaping the escape:
>>> var s = "1\\2"; s;

 "1\2"

\n End of line >>> var s = '\n1\n2\n3\n';

>>> s

 "
 1
 2
 3
 "

Chapter 2

[35]

String Meaning Example

\r Carriage return All these:
>>> var s = '1\r2';

>>> var s = '1\n\r2';

>>> var s = '1\r\n2';

Result in:
>>> s

 "1
 2"

\t Tab >>> var s = "1\t2"

>>> s

 "1 2"

\u \u followed by a character
code allows you to use
Unicode

Here's my name in Bulgarian written with Cyrillic
characters:

>>> "\u0421\u0442\u043E\u044F\u043D"

 "Стoян"

There are some additional characters which are rarely used: \b (backspace), \v
(vertical tab), and \f (form feed).

Booleans
There are only two values that belong to the boolean data type: the values true and
false, used without quotes.

>>> var b = true; typeof b;

 "boolean"

>>> var b = false; typeof b;

 "boolean"

If you quote true or false, they become strings.

>>> var b = "true"; typeof b;

 "string"

Primitive Data Types, Arrays, Loops, and Conditions

[36]

Logical Operators
There are three operators, called logical operators, that work with boolean values.
These are:

!—logical NOT (negation)
&&—logical AND
||—logical OR

In everyday meaning, if something is not true, it is false. Here's the same statement
expressed using JavaScript and the logical ! operator.

>>> var b = !true;
>>> b;

 false

If you use the logical NOT twice, you get the original value:

>>> var b = !!true;
>>> b;

 true

If you use a logical operator on a non-boolean value, the value is converted to
boolean behind the scenes.

>>> var b = "one";
>>> !b;

 false

In the case above, the string value "one" was converted to a boolean true and then
negated. The result of negating true is false. In the next example, we negate twice
so the result is true.

>>> var b = "one";
>>> !!b;

 true

Using double negation is an easy way to convert any value to its boolean equivalent.
This is rarely useful, but on the other hand understanding how any value converts
to a boolean is important. Most values convert to true with the exception of the
following (which convert to false):

The empty string ""
null

•

•

•

•
•

Chapter 2

[37]

undefined

The number 0
The number NaN
The boolean false

These six values are sometimes referred to as being falsy, while all others are truthy
(including, for example, the strings "0", " ", and "false").

Let's see some examples of the other two operators—the logical AND and the logical
OR. When you use AND, the result is true only if all of the operands are true. When
using OR, the result is true if at least one of the operands is true.

>>> var b1 = true; var b2 = false;
>>> b1 || b2

 true

>>> b1 && b2

 false

Here's a table that lists the possible operations and their results:

Operation Result
true && true true

true && false false

false && true false

false && false false

true || true true

true || false true

false || true true

false || false false

You can use several logical operations one after the other:

>>> true && true && false && true

 false

>>> false || true || false

 true

•

•

•

•

Primitive Data Types, Arrays, Loops, and Conditions

[38]

You can also mix && and || in the same expression. In this case, you should use
parentheses to clarify how you intend the operation to work. Consider these:

>>> false && false || true && true

 true

>>> false && (false || true) && true

 false

Operator Precedence
You might wonder why the expression above (false && false || true &&
true) returned true. The answer lies in operator precedence. As you know from
mathematics:

>>> 1 + 2 * 3

 7

This is because multiplication has precedence over addition, so 2 * 3 is evaluated
first, as if you've typed:

>>> 1 + (2 * 3)

 7

Similarly for logical operations, ! has the highest precedence and is executed first,
assuming there are no parentheses that demand otherwise. Then, in the order of
precedence, comes && and finally ||. In other words:

>>> false && false || true && true

 true

is the same as:

>>> (false && false) || (true && true)

 true

Best Practice
Use parentheses instead of relying on operator precedence. This makes
your code easier to read and understand.

Chapter 2

[39]

Lazy Evaluation
If you have several logical operations one after the other, but the result becomes clear
at some point before the end, the final operations will not be performed, because
they can't affect the end result. Consider this:

>>> true || false || true || false || true

 true

Since these are all OR operations and have the same precedence, the result will be
true if at least one of the operands is true. After the first operand is evaluated,
it becomes clear that the result will be true, no matter what values follow. So the
JavaScript engine decides to be lazy (ok, efficient) and not do unnecessary work by
evaluating code that doesn't affect the end result. You can verify this behavior by
experimenting in the console:

>>> var b = 5;
>>> true || (b = 6)

 true

>>> b

 5

>>> true && (b = 6)

 6

>>> b

 6

This example also shows another interesting behavior—if JavaScript encounters
a non-boolean expression as an operand in a logical operation, the non-boolean is
returned as a result.

>>> true || "something"

 true

>>> true && "something"

 "something"

Primitive Data Types, Arrays, Loops, and Conditions

[40]

This behavior is something to watch out for and avoid, because it makes the code
harder to understand. Sometimes you might see this behavior being used to define
variables when you're not sure whether they were previously defined. In the next
example, if the variable v is defined, its value is kept; otherwise, it's initialized with
the value 10.

var mynumber = mynumber || 10;

This is simple and looks elegant, but be aware that it is not completely bulletproof. If
mynumber is defined and initialized to 0 (or to any of the six falsy values), this code
might not behave in exactly the way it was designed to work.

Comparison
There's another set of operators that all return a boolean value as a result of the
operation. These are the comparison operators. The following table lists them, together
with some examples.

Operator symbol Description Example
== Equality comparison:

Returns true when both operands are
equal. The operands are converted to
the same type before being compared.

>>> 1 == 1

 true
>>> 1 == 2

 false
>>> 1 == '1'

 true
=== Equality and type comparison:

Returns true if both operands are
equal and of the same type. It's generally
better and safer if you compare this way,
because there's no behind-the-scenes type
conversions.

>>> 1 === '1'

 false
>>> 1 === 1

 true

!= Non-equality comparison:
Returns true if the operands are
not equal to each other (after a type
conversion)

>>> 1 != 1

 false
>>> 1 != '1'

 false
>>> 1 != '2'

 true
!== Non-equality comparison without type

conversion:
Returns true if the operands are not
equal OR they are different types.

>>> 1 !== 1

 false
>>> 1 !== '1'

 true

Chapter 2

[41]

Operator symbol Description Example
> Returns true if the left operand is greater

than the right one.
>>> 1 > 1

 false
>>> 33 > 22

 true
>= Returns true if the left operand is greater

than or equal to the right one.
>>> 1 >= 1

 true
< Returns true if the left operand is less

than the right one.
>>> 1 < 1

 false
>>> 1 < 2

 true
<= Returns true if the left operand is less

than or equal to the right one.
>>> 1 <= 1

 true
>>> 1 <= 2

 true

An interesting thing to note is that NaN is not equal to anything, not even itself.

>>> NaN == NaN

 false

Undefined and null
You get the undefined value when you try to use a variable that doesn't exist, or
one that hasn't yet been assigned a value. When you declare a variable withoutyet been assigned a value. When you declare a variable withoutbeen assigned a value. When you declare a variable without
initializing it, JavaScript automatically initializes it to the value undefined.

If you try using a non-existing variable, you'll get an error message.

>>> foo

 foo is not defined

If you use the typeof operator on a non-existing variable, you get the string
"undefined".

>>> typeof foo

 "undefined"

Primitive Data Types, Arrays, Loops, and Conditions

[42]

If you declare a variable without giving it a value, you won't get an error when you
use that variable. But the typeof still returns "undefined".

>>> var somevar;
>>> somevar
>>> typeof somevar

 "undefined"

The null value, on the other hand, is not assigned by JavaScript behind the scenes; it
can only be assigned by your code.

>>> var somevar = null

 null

>>> somevar

 null

>>> typeof somevar

 "object"

Although the difference between null and undefined is small, it may be important
at times. For example, if you attempt an arithmetic operation, you can get different
results:

>>> var i = 1 + undefined; i;

 NaN

>>> var i = 1 + null; i;

 1

This is because of the different ways null and undefined are converted to the other
primitive types. Below are examples that show the possible conversions.

Conversion to a number:

>>> 1*undefined

 NaN

>>> 1*null

 00

Chapter 2

[43]

Conversion to a boolean:

>>> !!undefined

 falsefalse

>>> !!null

 falsefalse

Conversion to a string:

>>> "" + null

 "null"

>>> "" + undefined

 "undefined"

Primitive Data Types Recap
Let's quickly summarize what has been discussed so far:

There are five primitive data types in JavaScript:
number
string
boolean
undefined
null

Everything that is not a primitive is an object
The number data type can store positive and negative integers or floats,
hexadecimal numbers, octal numbers, exponents, and the special numbers
NaN, Infinity, and –Infinity
The string data type contains characters in quotes
The only values of the boolean data type are true and false
The only value of the null data type is the value null
The only value of the undefined data type is the value undefined

•

°

°

°

°

°

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Primitive Data Types, Arrays, Loops, and Conditions

[44]

All values become true when converted to a boolean, with the exception of
the six falsy values:

""
null

undefined
0
NaN

false

Arrays
Now that you know the basic primitive data types in JavaScript, it's time to move to
a more interesting data structure—the array.

To declare a variable that contains an empty array, you use square brackets with
nothing between them:

>>> var a = [];
>>> typeof a;

 "object"

typeof returns "object", but don't worry about this for the time being, we'll get to
that when we take a closer look at objects.

To define an array that has three elements, you do this:

>>> var a = [1,2,3];

When you simply type the name of the array in the Firebug console, it prints the
contents of the array:

>>> a

 [1, 2, 3]

So what is an array exactly? It's simply a list of values. Instead of using one variable
to store one value, you can use one array variable to store any number of values as
elements of the array. Now the question is how to access each of these stored values?

•

°

°

°

°

°

°

Chapter 2

[45]

The elements contained in an array are indexed with consecutive numbers starting
from zero. The first element has index (or position) 0, the second has index 1 and so
on. Here's the three-element array from the previous example:

Index Value
0 1
1 2
2 3

In order to access an array element, you specify the index of that element inside
square brackets. So a[0] gives you the first element of the array a, a[1] gives you
the second, and so on.

>>> a[0]

 1

>>> a[1]

 2

Adding/Updating Array Elements
Using the index, you can also update elements of the array. The next example
updates the third element (index 2) and prints the contents of the new array.

>>> a[2] = 'three';

 "three"

>>> a

 [1, 2, "three"]

You can add more elements, by addressing an index that didn't exist before.

>>> a[3] = 'four';

 "four"

>>> a

 [1, 2, "three", "four"]

Primitive Data Types, Arrays, Loops, and Conditions

[46]

If you add a new element, but leave a gap in the array, those elements in between are
all assigned the undefined value. Check out this example:

>>> var a = [1,2,3];
>>> a[6] = 'new';

 "new"

>>> a

 [1, 2, 3, undefined, undefined, undefined, "new"]

Deleting Elements
In order to delete an element, you can use the delete operator. It doesn't actually
remove the element, but sets its value to undefined. After the deletion, the length of
the array does not change.

>>> var a = [1, 2, 3];
>>> delete a[1];

 true

>>> a

 [1, undefined, 3]

Arrays of arrays
An array can contain any type of values, including other arrays.

>>> var a = [1, "two", false, null, undefined];
>>> a

 [1, "two", false, null, undefined]

>>> a[5] = [1,2,3]

 [1, 2, 3]

>>> a

 [1, "two", false, null, undefined, [1, 2, 3]]

Chapter 2

[47]

Let's see an example where you have an array of two elements, each of them being
an array.

>>> var a = [[1,2,3],[4,5,6]];
>>> a

 [[1, 2, 3], [4, 5, 6]]

The first element of the array is a[0] and it is an array itself.

>>> a[0]

 [1, 2, 3]

To access an element in the nested array, you refer to the element index in another
set of square brackets.

>>> a[0][0]

 1

>>> a[1][2]

 6

Note also that you can use the array notation to access individual characters inside
a string.

>>> var s = 'one';
>>> s[0]

 "o"

>>> s[1]

 "n"

>>> s[2]

 "e"

There are more ways to have fun with arrays (and we'll get to that in Chapter 4), but
let's stop here for now, remembering that:

An array is a data store
An array contains indexed elements
Indexes start from zero and increment by one for each element in the array
To access array elements we use the index in square brackets
An array can contain any type of data, including other arrays

•
•
•
•

•

Primitive Data Types, Arrays, Loops, and Conditions

[48]

Conditions and Loops
Conditions provide a simple but powerful way to control the flow of execution
through a piece of code. Loops allow you to perform repeating operations with less
code. Let's take a look at:

if conditions,
switch statements,
while, do-while, for, and for-in loops.

Code Blocks
Let's start by clarifying what a block of code is, as blocks are used extensively when
constructing conditions and loops.

A block of code consists of zero or more expressions enclosed in curly brackets.

{
 var a = 1;
 var b = 3;
}

You can nest blocks within each other indefinitely:

{
 var a = 1;
 var b = 3;
 var c, d;
 {
 c = a + b;
 {
 d = a - b;
 }}
 }
}

•

•

•

Chapter 2

[49]

Best Practice Tips
Use end-of-line semicolons. Although the semicolon is optional
when you have one expression per line, it's good to develop
the habit of using them. For best readability, the individual
expressions inside a block should be placed one per line and
separated by semi-colons.
Indent any code placed within curly brackets. Some people use one
tab indentation, some use four spaces, and some use two spaces. It
really doesn't matter, as long as you're consistent. In the example
above the outer block is indented with two spaces, the code in the
first nested block is indented with four spaces and the innermost
block is indented with six spaces.
Use curly brackets. When a block consists of only one expression,
the curly brackets are optional, but for readability and
maintainability, you should get into the habit of always using
them, even when they're optional.

•

•

•

Ready to jump into loops and ifs? Note that the examples in the following sections
require you to switch to the multi-line Firebug console.

if Conditions
Here's a simple example of an if condition:

var result = '';
if (a > 2) {
 result = 'a is greater than 2';
}

The parts of the if condition are:

The if statement
A condition in parentheses—"is a greater than 2?"
Code block to be executed if the condition is satisfied

The condition (the part in parentheses) always returns a boolean value and
may contain:

A logical operation: !, && or ||
A comparison, such as ===, !=, >, and so on
Any value or variable that can be converted to a boolean
A combination of the above

•

•

•

•

•

•

•

Primitive Data Types, Arrays, Loops, and Conditions

[50]

There can also be an optional else part of the if condition. The else statement is
followed by a block of code to be executed if the condition was evaluated to false.

if (a > 2) {
 result = 'a is greater than 2';
} else {
 result = 'a is NOT greater than 2';
}

In between the if and the else, there can also be an unlimited number of else if
conditions. Here's an example:

if (a > 2 || a < -2) {
 result = 'a is not between -2 and 2';
} else if (a === 0 && b === 0) {
 result = 'both a and b are zeros';
} else if (a === b) {
 result = 'a and b are equal';
} else {
 result = 'I give up';
}

You can also nest conditions by putting new conditions within any of the blocks.

if (a === 1) {
 if (b === 2) {
 result = 'a is 1 and b is 2';
 } else {
 result = 'a is 1 but b is not 2';
 }
} else {
 result = 'a is not 1, no idea about b';
}

Checking if a Variable Exists
It's often useful to check whether a variable exists. The laziest way to do this is simply
putting the variable in the condition part of the if, for example if (somevar) {...},
but this is not necessarily the best method. Let's take a look at an example that tests
whether a variable called somevar exists, and if so, sets the result variable to yes:

>>> var result = '';
>>> if (somevar){result = 'yes';}

 somevar is not defined

>>> result;
 ""

Chapter 2

[51]

This code obviously works, because at the end result was not "yes". But firstly,
the code generated a warning: somevar is not defined and as a JavaScript whiz you
don't want your code to do anything like that. Secondly, just because if (somevar)
returned false doesn't mean that somevar is not defined. It could be that somevar is
defined and initialized but contains a falsy value, like false or 0.

A better way to check if a variable is defined is to use typeof.

>>> if (typeof somevar !== "undefined"){result = 'yes';}
>>> result;

 ""

typeof will always return a string and you can compare this string with
"undefined". Note that the variable somevar may have been declared but not
assigned a value yet and you'll still get the same result. So when testing with typeof
like this, you're really testing whether the variable has any value (other than the
value undefined).

>>> var somevar;
>>> if (typeof somevar !== "undefined"){result = 'yes';}
>>> result;

 ""

>>> somevar = undefined;
>>> if (typeof somevar !== "undefined"){result = 'yes';}
>>> result;

 ""

If a variable is defined and initialized with any value other than undefined, its type
returned by typeof is no longer "undefined".

>>> somevar = 123;
>>> if (typeof somevar !== "undefined"){result = 'yes';}
>>> result;

 "yes"

Primitive Data Types, Arrays, Loops, and Conditions

[52]

Alternative if Syntax
When you have a very simple condition you can consider using an alternative if
syntax. Take a look at this:

var a = 1;
var result = '';
if (a === 1) {
 result = "a is one";
} else {
 result = "a is not one";
}

The if condition can be expressed simply as:

var result = (a === 1) ? "a is one" : "a is not one";

You should only use this syntax for very simple conditions. Be careful not to abuse it,
as it can easily make your code unreadable.

The ? is called ternary operator.

Switch
If you find yourself using an if condition and having too many else if parts, you
could consider changing the if to a switch.

var a = '1';
var result = '';
switch (a) {
 case 1:
 result = 'Number 1';
 break;
 case '1':
 result = 'String 1';
 break;
 default:
 result = 'I don\'t know';
 break;
}
result;

The result of executing this will be "String 1". Let's see what the parts of a
switch are:

The switch statement.
Some expression in parentheses. The expression most often contains a
variable, but can be anything that returns a value.

•

•

Chapter 2

[53]

A number of case blocks enclosed in curly brackets.
Each case statement is followed by an expression. The result of the
expression is compared to the expression placed after the switch statement.
If the result of the comparison is true, the code that follows the colon after
the case is executed.
There is an optional break statement to signal the end of the case block. If
this break statement is reached, we're all done with the switch. Otherwise, if
the break is missing, we enter the next case block, which should be avoided.
There's an optional default statement, which is followed by a block of code
that is executed if none of the previous cases evaluated to true.

In other words, the step-by-step procedure for executing a switch statement is
as follows:

1. Evaluate the switch expression found in parentheses, remember it.
2. Move to the first case, compare its value with the one from step 1.
3. If the comparison in step 2 returns true, execute the code in the case block.
4. After the case block is executed, if there's a break statement at the end of it,

exit the switch.
5. If there's no break or step 2 returned false, move on to the next case block.
 Repeat steps 2 to 5.
6. If we're still here (we didn't exit in step 4), execute the code following the

default statement.

Best Practice Tips
Indent the case line, and then further indent the code that
follows it.
Don't forget to break.
Sometimes you may want to omit the break intentionally,
but that's rare. It's called a fall-through and should always be
documented because it may look like an accidental omission. On
the other hand, sometimes you may want to omit the whole code
block following a case and have two cases sharing the same code.
This is fine, but doesn't change the rule that if there's code that
follows a case statement, this code should end with a break. In
terms of indentation, aligning the break with the case or with
the code inside the case is a personal preference; again, being
consistent is what matters.
Use the default case. This will help you make sure you have
a meaningful result after the switch, even if none of the cases
matched the value being switched.

•

•

•

•
•

•

•

www.allitebooks.com

http://www.allitebooks.org

Primitive Data Types, Arrays, Loops, and Conditions

[54]

Loops
if-else and switch statements allow your code to take different paths, as if you're
at a crossroads and decide which way to go depending on a condition. Loops, on
the other hand, allow your code to take a few roundabouts before merging back into
the main road. How many repetitions? That depends on the result of evaluating a
condition before (or after) each iteration.

Let's say you are (your program execution is) traveling from A to B. At some point,
you reach a place where you evaluate a condition C. The result of evaluating C tells
you if you should go into a loop L. You make one iteration. Then you evaluate the
condition once again to see if another iteration is needed. Eventually, you move on
your way to B.

An infinite loop is when the condition is always true and your code gets stuck in
the loop "forever". This is, of course, is a logical error and you should look out for
such scenarios.

In JavaScript, there are four types of loops:

while loops
do-while loops
for loops
for-in loops

While Loops

C

L

A B

while loops are the simplest type of loop. They look like this:

var i = 0;
while (i < 10) {
 i++;
}

The while statement is followed by a condition in parentheses and a code block in
curly brackets. As long as the condition evaluates to true, the code block is executed
over and over again.

•

•

•

•

Chapter 2

[55]

Do-while loops
do-while loops are a slight variation of the while loops. An example:

var i = 0;
do {
 i++;
} while (i < 10)

Here, the do statement is followed by a code block and a condition after the block.
This means that the code block will always be executed, at least once, before the
condition is evaluated.

If you initialize i to 11 instead of 0 in the last two examples, the code block in the
first example (the while loop) will not be executed and i will still be 11 at the end,
while in the second (do-while loop), the code block will be executed once and i will
become 12.

For Loops
for is the most widely used type of loop and you should make sure you're
comfortable with this one. It requires a just little bit more in terms of syntax.

C

L

A B

++

O

In addition to the condition C and the code block L, you have the following:

Initialization—some code that is executed before you even enter the loop
(marked with 0 in the diagram)
Increment—some code that is executed after every iteration (marked with ++
in the diagram)

The most widely used pattern of using a for loop is:

In the initialization part you define a variable, most often called i, like this:
var i = 0;
In the condition part you compare i to a boundary value, like i < 100
In the increment part, you increase i by 1, like i++

•

•

•

•

•

Primitive Data Types, Arrays, Loops, and Conditions

[56]

Here's an example:

var punishment = '';
for (var i = 0; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

All three parts (initialization, condition, increment) can contain multiple expressions
separated by commas. You can rewrite the example and define the variable
punishment inside the initialization part of the loop.

for (var i = 0, punishment = ''; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

Can you move the body of the loop inside the increment part? Yes, you can,
especially as it's a one-liner. This will give you a loop that looks a little awkward, as
it has no body:

for (var i = 0, punishment = '';
 i < 100;
 i++, punishment += 'I will never do this again, ')
{
 // nothing here
}

These three parts are actually all optional. Here's another way of rewriting the same
example:

var i = 0, punishment = '';
for (;;) {
 punishment += 'I will never do this again, ';
 if (++i == 100) {
 break;
 }
}

Although the last rewrite works exactly the same way as the original, it is longer and
harder to read. It's also possible to achieve the same result by using a while loop. But
for loops make the code tighter and more robust, because the mere syntax of the for
loop makes you think about the three parts (initialization, condition, increment) and
thus, helps you reconfirm your logic and avoid situations such as being stuck in an
infinite loop.

Chapter 2

[57]

for loops can be nested within each other. Here's an example of a loop that is nested
inside another loop and assembles a string containing 10 rows and 10 columns of
asterisks. Think of i being the row and j being the column of an "image".

var res = '\n';
for(var i = 0; i < 10; i++) {
 for(var j = 0; j < 10; j++) {
 res += '* ';
 }
 res+= '\n';
}

The result is a string like:

"
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

"

Here's another example that uses nested loops and a modulus operation in order to
draw a little snowflake-like result.

var res = '\n', i, j;
for(i = 1; i <= 7; i++) {
 for(j = 1; j <= 15; j++) {
 res += (i * j) % 8 ? ' ' : '*';
 }
 res+= '\n';

}

Primitive Data Types, Arrays, Loops, and Conditions

[58]

"

 *

 * * *

 *

 * * * * * * *

 *

 * * *

 *

"

For-in Loops
The for-in loop is used to iterate over the elements of an array (or an object, as
we'll see later). This is its only use; it cannot be used as a general-purpose repetition
mechanism that replaces for or while. Let's see an example of using a for-in to
loop through the elements of an array. But bear in mind that this is for informational
purposes only, as for-in is mostly suitable for objects, and the regular for loop
should be used for arrays.

In this example, we'll iterate over all of the elements of an array and print out the
index (the key) and the value of each element:

var a = ['a', 'b', 'c', 'x', 'y', 'z'];'a', 'b', 'c', 'x', 'y', 'z'];
var result = '\n';
for (var i in a) {
 result += 'index: ' + i + ', value: ' + a[i] + '\n';
}

The result is:

"

index: 0, value: a

index: 1, value: b

index: 2, value: c

index: 3, value: x

Chapter 2

[59]

index: 4, value: y

index: 5, value: z

"

Comments
One last thing for this chapter: comments. Inside your JavaScript code you can put
comments. These are ignored by the JavaScript engine and don't have any effect on
how the program works. But they can be invaluable when you revisit your code after
a few months, or transfer the code to someone else for maintenance.

Two types of comments are allowed:

Single line comments—start with // and end at the end of the line
Multi-line comments—start with /* and end with */ on the same line or any
subsequent line. Note that any code in between the comment start and the
comment end will be ignored.

Some examples:

// beginning of line
var a = 1; // anywhere on the line
/* multi-line comment on a single line */
/*
 comment
 that spans
 several lines
 */

There are even utilities, such as JSDoc, that can parse your code and extract
meaningful documentation based on your comments.

Summary
In this chapter, you learned a lot about the basic building blocks of a JavaScript
program. Now you know the primitive data types:

number
string
boolean
undefined
null

•

•

•
•
•
•

•

Primitive Data Types, Arrays, Loops, and Conditions

[60]

You also know quite a few operators:

Arithmetic operators: +, -, *, /, and %.
Increment operators: ++ and --.
Assignment operators: =, +=, -=, *=, /=, and %=.
Special operators: typeof and delete.
Logical operators: &&, ||, and !.
Comparison operators: ==, ===, !=, !==, <, >, >=, and <=.

Then you learned how to use arrays to store and access data, and finally you saw
different ways to control the flow of your program—using conditions (if-else or
switch) and loops (while, do-while, for, for-in).

This is quite a bit of information and it is recommended that you now go through
the exercises below, then give yourself a well-deserved pat on the back before diving
into the next chapter. More fun is coming up!

Exercises
1. What is the result of executing each of these lines in the console? Why?

var a; typeof a;
var s = '1s'; s++;
!!"false"
!!undefined

typeof -Infinity
10 % "0"
undefined == null
false === ""
typeof "2E+2"
a = 3e+3; a++;

2. What is the value of v after the following?
 >>> var v = v || 10;

Experiment by first setting v to 100, 0, null, or unset it (delete v).

3. Write a script that prints out the multiplication table. Hint: use a loop nested
inside another loop.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Functions
Mastering functions is an important skill when you learn any programming
language and even more so when it comes to JavaScript. This is because
JavaScript has many uses for functions, and much of the language's flexibility and
expressiveness comes from them. Where most programming languages have a
special syntax for some object-oriented features, JavaScript just uses functions. This
chapter will cover:

How to define and use a function
Passing parameters to a function
Pre-defined functions that are available to you "for free"
The scope of variables in JavaScript
The concept that functions are just data, albeit a special type of data

Understanding these topics will provide a solid base that will allow you to dive
into the second part of the chapter, which shows some interesting applications
of functions:

Using anonymous functions
Callbacks
Self-invoking functions
Inner functions (functions defined inside functions)
Functions that return functions
Functions that redefine themselves
Closures

•

•

•

•

•

•

•

•

•

•

•

•

Functions

[62]

What is a Function?
Functions allow you group together some code, give this code a name, and reuse it
later, addressing it by name. Let's see an example:

function sum(a, b) {
 var c = a + b;
 return c;
}

What are the parts that make up a function?

The function statement.
The name of the function, in this case sum.
Expected parameters (arguments), in this case a and b. A function can accept
zero or more arguments, separated by commas.
A code block, also called the body of the function.
The return statement. A function always returns a value. If it doesn't return
value explicitly, it implicitly returns the value undefined.

Note that a function can only return a single value. If you need to return more
values, then simply return an array that contains all of the values as elements
of this array.

Calling a Function
In order to make use of a function, you need to call it. You call a function simply bysimply byby
using its name followed by any parameters in parentheses. "To invoke" a function is
another way of saying "to call".

Let's call the function sum(), passing two parameters and assigning the value that
the function returns to the variable result:

>>> var result = sum(1, 2);
>>> result;

 3

Parameters
When defining a function, you can specify what parameters the function expects to
receive when it is called. A function may not require any parameters, but if it does
and you forget to pass them, JavaScript will assign the value undefined to the ones
you skipped. In the next example, the function call returns NaN because it tries to sum
1 and undefined:

•
•
•

•
•

Chapter 3

[63]

>>> sum(1)

 NaN

JavaScript is not picky at all when it comes to parameters. If you pass more
parameters than the function expects, the extra parameters will be silently ignored:

>>> sum(1, 2, 3, 4, 5)

 3

What's more, you can create functions that are flexible about the number of
parameters they accept. This is possible thanks to the arguments array that is created
automatically inside each function. Here's a function that simply returns whatever
parameters are passed to it:

>>> function args() { return arguments; }
>>> args();

 []

>>> args(1, 2, 3, 4, true, 'ninja');

 [1, 2, 3, 4, true, "ninja"]

By using the arguments array you can improve the sum() function to accept any
number of parameters and add them all up.

function sumOnSteroids() {
 var i, res = 0;
 var number_of_params = arguments.length;
 for (i = 0; i < number_of_params; i++) {
 res += arguments[i];
 }
 return res;
}

If you test this function by calling it with a different number of parameters (or even
no parameters at all), you can verify that it works as expected:

>>> sumOnSteroids(1, 1, 1);

 3

>>> sumOnSteroids(1, 2, 3, 4);

 10

Functions

[64]

>>> sumOnSteroids(1, 2, 3, 4, 4, 3, 2, 1);

 20

>>> sumOnSteroids(5);

 5

>>> sumOnSteroids();

 0

The expression arguments.length returns the number of parameters passed when
the function was called. Don't worry if the syntax is unfamiliar, we'll examine it in
detail in the next chapter. We'll also see that arguments is technically not an array,
but an array-like object.

Pre-defined Functions
There are a number of functions that are built into the JavaScript engine and
available for you to use. Let's take a look at them. While doing so, you'll have a
chance to experiment with functions, their parameters and return values , and
become comfortable in working with them. The list of the built-in functions is:

parseInt()
parseFloat()
isNaN()
isFinite()
encodeURI()
decodeURI()
encodeURIComponent()
decodeURIComponent()
eval()

The Black Box Function
Often, when you invoke functions, your program doesn't need to know
how these functions work internally. You can think of a function as a
black box: you give it some values (as input parameters) and then you
take the output result it returns. This is true for any function—one that's
built into the JavaScript engine, one that you create, or one that a co-
worker or someone else created.

•

•

•

•

•

•

•

•

•

Chapter 3

[65]

parseInt()
parseInt() takes any type of input (most often a string) and tries to make an integer
out of it. If it fails, it returns NaN.

>>> parseInt('123')

 123

>>> parseInt('abc123')

 NaN

>>> parseInt('1abc23')

 1

>>> parseInt('123abc')

 123

The function accepts an optional second parameter, which is the radix, telling the
function what type of number to expect—decimal, hexadecimal, binary, and so on.
For example trying to extract a decimal number out of the string FF makes no sense,
so the result is NaN, but if you try FF as a hexadecimal, then you get 255.

>>> parseInt('FF', 10)

 NaN

>>> parseInt('FF', 16)

 255

Another example would be parsing a string with a base 10 (decimal) and base
8 (octal).

>>> parseInt('0377', 10)

 377

>>> parseInt('0377', 8)

 255

If you omit the second parameter when calling parseInt(), the function will assume
10 (a decimal), with these exceptions:

If you pass a string beginning with 0x as a first parameter, then the second is
assumed to be 16 (a hexadecimal number is assumed)

•

Functions

[66]

If the first parameter starts with 0, the function assumes 8 as a second
parameter (an octal number is assumed)

>>> parseInt('377')

 377

>>> parseInt('0377')

 255

>>> parseInt('0x377')

 887

The safest thing to do is to always specify the radix. If you omit the radix, your codealways specify the radix. If you omit the radix, your code specify the radix. If you omit the radix, your code
will probably still work in 99% of cases (because most often you parse decimals),probably still work in 99% of cases (because most often you parse decimals),still work in 99% of cases (because most often you parse decimals),
but every once in a while it might cause you a bit of hair loss while debugging some
problems. For example, imagine you have a form field that accepts calendar days
and the user types 08; if you omit the radix you might get unexpected results.

parseFloat()
parseFloat() is the same as parseInt() but it also looks for decimals when trying
to figure out a number from your input. This function takes only one parameter.

>>> parseFloat('123')

 123

>>> parseFloat('1.23')

 1.23

>>> parseFloat('1.23abc.00')

 1.23

>>> parseFloat('a.bc1.23')

 NaN

As with parseInt(), parseFloat() gives up at the first occurrence of an
unexpected character, even though the rest of the string might have usable
numbers in it.

>>> parseFloat('a123.34')

 NaN

•

Chapter 3

[67]

>>> parseFloat('12a3.34')

 12

parseFloat() understands exponents in the input (unlike parseInt()).

>>> parseFloat('123e-2')

 1.23

>>> parseFloat('123e2')

 12300

>>> parseInt('1e10')

 1

isNaN()
Using isNaN() you can check if an input value is a valid number that can safely
be used in arithmetic operations. This function is also a convenient way to check
whether parseInt() or parseFloat() succeeded.

>>> isNaN(NaN)

 true

>>> isNaN(123)

 false

>>> isNaN(1.23)

 false

>>> isNaN(parseInt('abc123'))

 true

The function will also try to convert the input to a number:

>>> isNaN('1.23')

 false

>>> isNaN('a1.23')

 true

The isNaN() function is useful because NaN is not equal to itself. So, surprisingly, NaN
=== NaN is false.

Functions

[68]

isFinite()
isFinite() checks whether the input is a number that is neither Infinity nor NaN.

>>> isFinite(Infinity)

 false

>>> isFinite(-Infinity)

 false

>>> isFinite(12)

 true

>>> isFinite(1e308)

 true

>>> isFinite(1e309)

 false

If you wonder about the results returned by last two calls, remember
from the previous chapter that the biggest number in JavaScript is
1.7976931348623157e+308.

Encode/Decode URIs
In a URL (Uniform Resource Locator) or a URI (Uniform Resource Identifier), some
characters have special meanings. If you want to "escape" those characters, you can
use the functions encodeURI() or encodeURIComponent(). The first one will return
a usable URL, while the second one assumes you're only passing a part of the URL,
like a query string for example, and will encode all applicable characters.

>>> var url = 'http://www.packtpub.com/scr ipt.php?q=this and that';
>>> encodeURI(url);

 "http://www.packtpub.com/scr%20ipt.php?q=this%20and%20that"

>>> encodeURIComponent(url);

 "http%3A%2F%2Fwww.packtpub.com%2Fscr%20ipt.php%3Fq%3Dthis%
 20and%20that"

The opposites of encodeURI() and encodeURIComponent() are decodeURI() and
decodeURIComponent() respectively. Sometimes, in older code, you might see
the similar functions escape() and unescape() but these functions have been
deprecated and should not be used.

Chapter 3

[69]

eval()
eval() takes a string input and executes it as JavaScript code:

>>> eval('var ii = 2;')
>>> ii

 2

So eval('var ii = 2;') is the same as simply var ii = 2;

eval() can be useful sometimes, but should be avoided if there are other options.
Most of the time there will be alternatives and, in most cases, the alternatives are
more elegant and easier to write and maintain. "Eval is evil" is a mantra you can
often hear from seasoned JavaScript programmers. The drawbacks of using
eval() are:

Performance—it is slower to evaluate "live" code, than to have the code
directly in the script.
Security—JavaScript is powerful, which also means it can cause damage. If
you don't trust the source of the input you pass to eval(), just don't use it.

A Bonus—the alert() Function
Let's take a look at one very common function—alert(). This is not part of the
core JavaScript (it is not in the ECMA specification), but it is provided by the host
environment—the browser. It shows a string of text in a message box. It can also be
useful for debugging sometimes, although the Firebug debugger is a much better
tool for this purpose.

Here's a screenshot showing the result of executing the code alert("hello!")

Before using this function, bear in mind that it blocks the browser thread, meaning
that no other code will be executed until the user closes the alert. If you have a busy
AJAX-type application, it is generally not a good idea to use alert().

•

•

Functions

[70]

Scope of Variables
It is important to note, especially if you have come to JavaScript from another
language, that variables in JavaScript are not defined in a block scope, but in a
function scope. This means that if a variable is defined inside a function, it's not visible
outside of the function. However, a variable defined inside an if or a for code block
is visible outside the code block. The term "global variables" describes variables you
define outside of any function, as opposed to "local variables" which are defined
inside a function. The code inside a function has access to all global variables as well
as to its own local variables.

In the next example:

The function f() has access to the variable global
Outside of the function f(), the variable local doesn't exist

var global = 1;
function f() {
 var local = 2;
 global++;
 return global;
}
>>> f();

 2

>>> f();

 3

>>> local

 local is not defined

It is also important to note that if you don't use var to declare a variable, this variable
is automatically assigned global scope. Let's see an example:

•

•

Chapter 3

[71]

What happened? The function f() contains the variable local. Before calling the
function, the variable doesn't exist. When you call the function for the first time, the
variable local is created with a global scope. FThen if you access local outside the
function, it's available.

Best Practice Tips
Minimize the number of global variables. Imagine two
people working on two different functions in the same script
and they both decide to use the same name for their global
variable. This could easily lead to unexpected results and
hard-to-find bugs.
Always declare your variables with the var statement.

•

•

Here's an interesting example that shows an important aspect of the local versus
global scoping.

var a = 123;
function f() {
 alert(a);
 var a = 1;
 alert(a);
}
f();

Functions

[72]

You might expect that the first alert() will display 123 (the value of the global
variable a) and the second will display 1 (the local a). This is not the case. The first
alert will show "undefined". This is because inside the function the local scope is
more important than the global scope. So a local variable overwrites any global
variable with the same name. At the time of the first alert() a was not yet defined
(hence the value undefined) but it still existed in the local space.

Functions are Data
This is an important concept that we'll need later on—functions in JavaScript
are actually data. This means that the following two ways to define a function
are exactly the same:

function f(){return 1;}
var f = function(){return 1;}

The second way of defining a function is known as function literal notation.

When you use the typeof operator on a variable that holds a function value,
it returns the string "function".

>>> function f(){return 1;}
>>> typeof f

 "function"

So JavaScript functions are data, but a special kind of data with two important
features:

They contain code
They are executable (can be invoked)

As you saw before, the way to execute a function is by adding parentheses after its
name. As the next example demonstrates, this works regardless of how the function
was defined. In the example, you can also see how a function is treated as a normal
variable—it can be copied to a different variable and even deleted.

>>> var sum = function(a, b) {return a + b;}
>>> var add = sum;
>>> delete sum

 true

•

•

Chapter 3

[73]

>>> typeof sum;

 "undefined"

>>> typeof add;

 "function"

>>> add(1, 2);

 3

Because functions are data assigned to variables, the same rules for naming functions
apply as for naming variables—a function name cannot start with a number and it
can contain any combination of letters, numbers, and the underscore character.

Anonymous Functions
In JavaScript, it's ok to have pieces of data lying around your program. Imagine you
have the following in your code.

>>> "test"; [1,2,3]; undefined; null; 1;

This code may look a little odd, because it doesn't actually do anything, but the
code is valid and is not going to cause an error. You can say that this code contains
anonymous data—anonymous because the data pieces are not assigned to any
variable and therefore don't have a name.

As you now know, functions are like any other variable so they can also be usednow know, functions are like any other variable so they can also be usedknow, functions are like any other variable so they can also be used
without being assigned a name:

>>> function(a){return a;}

Now, these anonymous pieces of data scattered around your code are not really
useful, except if they happen to be functions. In this case, there can be two elegant
uses for them:

You can pass an anonymous function as a parameter to another function. The
receiving function can do something useful with the function that you pass.
You can define an anonymous function and execute it right away.

Let's see these two applications of the anonymous functions in more detail.

Callback Functions
Because a function is just like any other data assigned to a variable, it can be defined,
deleted, copied, and why not also passed as an argument to other functions?

•

•

Functions

[74]

Here's an example of a function that accepts two functions as parameters, executes
them, and returns the sum of what each of them returns.

function invoke_and_add(a, b){
 return a() + b();
}

Now let's define two simple additional functions that only return hardcoded values:

function one() {
 return 1;
}
function two() {
 return 2;
}

Now we can pass those functions to the original function add() and get the result:

>>> invoke_and_add(one, two);

 3

Another example of passing a function as a parameter is to use anonymous
functions. Instead of defining one() and two(), you can simply do:

invoke_and_add(function(){return 1;}, function(){return 2;})

When you pass a function A to another function B and B executes A, it's often said
that A is a callback function. If A doesn't have a name, then you can say that it's an
anonymous callback function.

When are the callback functions useful? Let's see some examples that demonstrate
the benefits of the callback functions, namely:

They let you pass functions without the need to name them (which means
there are less global variables)
You can delegate the responsibility of calling a function to another function
(which means there is less code to write)
They can help with performance

Callback Examples
Take a look at this common scenario: you have a function that returns a value,
which you then pass to another function. In our example, the first function,
multiplyByTwo(), accepts three parameters, loops through them, multiplying them
by two and returns an array containing the result. The second function, addOne(),
takes a value, adds one to it and returns it.

•

•

•

Chapter 3

[75]

function multiplyByTwo(a, b, c) {
 var i, ar = [];
 for(i = 0; i < 3; i++) {
 ar[i] = arguments[i] * 2;
 }
 return ar;
}
function addOne(a) {
 return a + 1;
}

Testing the functions we have so far:

>>> multiplyByTwo(1, 2, 3);

 [2, 4, 6]

>>> addOne(100)

 101

Now let's say we want to have an array myarr that contains three elements, and each
of the elements is to be passed through both functions. First, let's start with a call to
multiplyByTwo().

>>> var myarr = [];
>>> myarr = multiplyByTwo(10, 20, 30);

 [20, 40, 60]

Now loop through each element, passing it to addOne().

>>> for (var i = 0; i < 3; i++) {myarr[i] = addOne(myarr[i]);}
>>> myarr

 [21, 41, 61]

As you see everything works fine, but there's still room for improvement. One
thing is that there were two loops. Loops can be expensive if they go through a lot
or repetitions. We can achieve the result we want with one loop only. Here's how
to modify multiplyByTwo() so that it accepts a callback function and invokes
callback on every iteration:

function multiplyByTwo(a, b, c, callback) {
 var i, ar = [];
 for(i = 0; i < 3; i++) {
 ar[i] = callback(arguments[i] * 2);
 }
 return ar;
}

Functions

[76]

By using the modified function, the whole work is now done with just one functionthe whole work is now done with just one functionnow done with just one function
call, which passes the start values and the callback.

>>> myarr = multiplyByTwo(1, 2, 3, addOne);

 [3, 5, 7]

Instead of defining addOne() we can use an anonymous function, this way saving an
extra global variable.

>>> myarr = multiplyByTwo(1, 2, 3, function(a){return a + 1});

 [3, 5, 7]

Anonymous functions are easy to change should the need arise:

>>> myarr = multiplyByTwo(1, 2, 3, function(a){return a + 2});

 [4, 6, 8]

Self-invoking Functions
So far we have discussed using anonymous functions as callbacks. Let's see another
application of an anonymous function—calling this function right after it was
defined. Here's an example:

(
 function(){
 alert('boo');
 }
)()

The syntax may look a little scary at first, but it's actually easy—you simply place
an anonymous function definition inside parentheses followed by another set of
parentheses. The second set basically says "execute now" and is also the place to put
any parameters that your anonymous function might accept.

(
 function(name){
 alert('Hello ' + name + '!');
 }
)('dude')

One good reason for using self-invoking anonymous functions is to have some
work done without creating global variables. A drawback, of course, is that you
cannot execute the same function twice (unless you put it inside a loop or another
function). This makes the anonymous self-invoking functions best suited for one-off
or initialization tasks.

Chapter 3

[77]

Inner (Private) Functions
Bearing in mind that a function is just like any other value, there's nothing that stops
you from defining a function inside another function.

function a(param) {
 function b(theinput) {
 return theinput * 2;
 };
 return 'The result is ' + b(param);
};

Using the function literal notation, this can also be written as:

var a = function(param) {
 var b = function(theinput) {
 return theinput * 2;
 };
 return 'The result is ' + b(param);
};

When you call the global function a(), it will internally call the local function b().
Since b() is local, it's not accessible outside a(), so we can say it's a private function.

>>> a(2);

 "The result is 4"

>>> a(8);

 "The result is 16"

>>> b(2);

 b is not defined

The benefit of using private functions are as follows:

You keep the global namespace clean (smaller chance of naming collisions).
Privacy—you expose only the functions you decide to the "outside world",only the functions you decide to the "outside world", to the "outside world",
keeping to yourself functionality that is not meant to be consumed by the rest
of the application.

•

•

Functions

[78]

Functions that Return Functions
As mentioned earlier, a function always returns a value, and if it doesn't do
it explicitly with return, then it it does so implicitly by returning undefined.
A function can return only one value and this value could just as easily be
another function.

function a() {
 alert('A!');
 return function(){
 alert('B!');
 };
}

In this example the function a() does its job (says A!) and returns another function
that does something else (says B!). You can assign the return value to a variable and
then use this variable as a normal function:

>>> var newFunc = a();
>>> newFunc();

Here the first line will alert A! and the second will alert B!.

If you want to execute the returned function immediately, without assigning it to a
new variable, you can simply use another set of parentheses. The end result will be
the same.

>>> a()();

Function, Rewrite Thyself!
Because a function can return a function, you can use the new function to replace the
old one. Continuing with the previous example, you can take the value returned by
the call to a() to overwrite the actual a() function:

>>> a = a();

The above alerts A!, but the next time you call a() it alerts B!.

This is useful when a function has some initial one-off work to do. The function
overwrites itself after the first call in order to avoid doing unnecessary repetitive
work every time it's called.

In the example above, we redefined the function from the outside—we got the
returned value and assigned it back to the function. But the function can actually
rewrite itself from the inside.

Chapter 3

[79]

function a() {
 alert('A!');
 a = function(){
 alert('B!');
 };
}

If you call this function for the first time, it will:

Alert A! (consider this as being the one-off preparatory work)
Redefine the global variable a, assigning a new function to it

Every subsequent time that the function is called, it will alert B!

Here's another example that combines several of the techniques discussed in the last
few sections of this chapter:

var a = function() {
 function someSetup(){
 var setup = 'done';
 }
 function actualWork() {
 alert('Worky-worky');
 }
 someSetup();
 return actualWork;
}();

In this example:

You have private functions—someSetup() and actualWork().
You have a self-invoking function—the function a() calls itself using the
parentheses following its definition.
The function executes for the first time, calls someSetup() and then returns
a reference to the variable actualWork, which is a function. Notice that there
are no parentheses in the return, because it is returning a function reference,
not the result of invoking this function.
Because the whole thing starts with var a =..., the value returned by the
self-invoked function is assigned to a.

If you want to test your understanding of the topics just discussed, answer the
following questions. What will the code above alert when:

It is initially loaded?
You call a() afterwards?

•

•

•

•

•

•

•

•

Functions

[80]

These techniques could be really useful when working in the browser environment.
Because different browsers can have different ways of achieving the same thing and
you know that the browser features don't change between function calls, you can
have a function determine the best way to do the work in the current browser, then
redefine itself, so that the "browser feature sniffing" is done only once. You'll see
concrete examples of this scenario later in this book.

Closures
The rest of the chapter is about closures (what better way to close a chapter?).
Closures could be a little hard to grasp initially, so don't feel discouraged if you
don't "get it" during the first read. You should go through the rest of the chapter and
experiment with the examples on you own, but if you feel you don't fully understand
the concept, you can come back to it later when the topics discussed previously in
this chapter have had a chance to sink in.

Before we get to closures, let's review and expand on the concept of scope in
JavaScript.

Scope Chain
As you know, in JavaScript, unlike many other languages, there is no curly braces
scope, but there is function scope. A variable defined in a function is not visible
outside the function, but a variable defined in a code block (an if or a for loop) is
visible outside the block.

>>> var a = 1; function f(){var b = 1; return a;}
>>> f();

 1

>>> b

 b is not defined

The variable a is in the global space, whereas b is in the scope of the function f(). So:

Inside f(), both a and b are visible
Outside f(), a is visible, but b is not

•

•

Chapter 3

[81]

If you define a function n() nested inside f(), n() will have access to variables in its
own scope, plus the scope of its "parents". This is known as scope chain, and the chain
can be as long (deep) as you need it to be.

var a = 1;
function f(){
 var b = 1;
 function n() {
 var c = 3;
 }
}

Lexical Scope
In JavaScript, functions have lexical scope. This means that functions create their
environment (scope) when they are defined, not when they are executed. Let's see an
example:

>>> function f1(){var a = 1; f2();}
>>> function f2(){return a;}
>>> f1();

 a is not defined

Inside the function f1() we call the function f2(). Because the local variable a is also
inside f1(), one might expect that f2() will have access to a, but that's not the case.
At the time when f2() was defined (as opposed to executed), there was no a in sight.
f2(), just like f1(), only has access to its own scope and the global scope.only has access to its own scope and the global scope.has access to its own scope and the global scope. f1() and
f2() don't share their local scopes.

When a function is defined, it "remembers" its environment, its scope chain. This
doesn't mean that the function also remembers every single variable that is in scope.
Just the opposite—you can add, remove or update variables inside the scope of the
function and the function will see the latest, up-to-date state of the variables. If you
continue with the example above and declare a global variable a, f2() will see it,
because f2() knows the path to the global environment and can access everything in
that environment. Also notice how f1() includes a call to f2(), and it works- even
though although f2() is not yet defined. All f1() needs to know is its scope, so that
everything that shows up in scope becomes immediately available to f1().

>>> function f1(){var a = 1; return f2();}
>>> function f2(){return a;}
>>> f1();

 a is not defined

Functions

[82]

>>> var a = 5;
>>> f1();

 5

>>> a = 55;
>>> f1();

 55

>>> delete a;

 true

>>> f1();

 a is not defined

This behavior gives JavaScript great flexibility—you can add and remove variables
and add them again, and it's totally fine. You can keep experimenting and delete the
function f2(), then redefine it again with a different body. In the end, f1() will still
work, because all it needs to know is how to access its scope and not what this scope
used to contain at some point in time. Continuing with the example above:

>>> delete f2;

 true

>>> f1()

 f2 is not defined

>>> var f2 = function(){return a * 2;}
>>> var a = 5;

 5

>>> f1();

 10

Breaking the Chain with a Closure
Let's introduce closures with an illustration.

There is the global scope. Think of it as the Universe, as if it contains everything.

Chapter 3

[83]

a1

a2
a3

a4

F

YOU ARE HERE

G

It can contain variables such as a and functions such as F.

F

a

G

Functions have their own private space and can use it to store other variables (and
functions). At some point, you end up with a picture like this:

F

a

G

b c

N

Functions

[84]

If you're at point a, you're inside the global space. If you're at point b, which is
inside the space of the function F, then you have access to the global space and to
the F-space. If you're at point c, which is inside the function N, then you can access
the global space, the F-space and the N-space You cannot reach from a to b, because
b is invisible outside F. But you can get from c to b if you want, or from N to b. The
interesting thing—the closure—happens when somehow N breaks out of F and ends
up in the global space.

F

a

G

b
c

N

What happens then? N is in the same global space as a. And since functions
remember the environment in which they were defined, N will still have access to the
F-space, and hence can access b. This is interesting, because N is where a is and yet N
does have access to b, but a doesn't.

And how does N break the chain? By making itself global (omitting var) or by having
F deliver (or return) it to the global space. Let's see how this is done in practice.

Closure #1
Take a look at this function:

function f(){
 var b = "b";
 return function(){
 return b;
 }
}

This function contains a variable b, which is local, and therefore inaccessible from the
global space:

>>> b

 b is not defined

Chapter 3

[85]

Check out the return value of f(): it's another function. Think of it as N in the
illustrations above. This new function has access to its private space, to f()'s space
and to the global space. So it can see b. Because f() is callable from the global space
(it's a global function), you can call it and assign the returned value to another global
variable. The result—a new global function that has access to f()'s private space.

>>> var n = f();
>>> n();

 "b"

Closure #2
The final result of the next example will be the same as the previous example, but
the way to achieve it is a little different. f() doesn't return a function, but instead it
creates a new global function n() inside its body.

Let's start by declaring a placeholder for the global function-to-be. This is optional,
but it's always good to declare your variables. Then you can define the function f()
like this:

var n;
function f(){
 var b = "b";
 n = function(){
 return b;
 }
}

Now what happens if you invoke f()?

>>> f();

A new function is defined inside f() and since it's missing the var statement, it
becomes global. During definition time, n() was inside f(), so it had access to f()'s
scope. n() will keep its access to f()'s scope, even though n() becomes part of the
global space.

>>> n();

 "b"

A Definition and Closure #3
Based on what we have discussed so far, you can say that a closure is created when a
function keeps a link to its parent's scope even after the parent has returned.

Functions

[86]

When you pass an argument to a function it becomes available as a local variable.
You can create a function that returns another function, which in turn returns its
parent's argument.

function f(arg) {
 var n = function(){
 return arg;
 };
 arg++;
 return n;
}

You use the function like this:

>>> var m = f(123);
>>> m();

 124

Notice how arg++ was incremented after the function was defined and yet, when
called, m() returned the updated value. This demonstrates how the function binds to
its scope, not to the current variables and their values found in the scope.

Closures in a Loop
Here's something that can easily lead to hard-to-spot bugs, because, on the surface,
everything looks normal.

Let's loop three times, each time creating a new function that returns the loop
sequence number. The new functions will be added to an array and we'll return the
array at the end. Here's the function:

function f() {
 var a = [];
 var i;
 for(i = 0; i < 3; i++) {
 a[i] = function(){
 return i;
 }
 }
 return a;
}

Let's run the function, assigning the result to the array a.

>>> var a = f();

Chapter 3

[87]

Now you have an array of three functions. Let's invoke them by adding parentheses
after each array element. The expected behavior is to see the loop sequence printed
out: 0, 1, and 2. Let's try:

>>> a[0]()

 3

>>> a[1]()

 3

>>> a[2]()

 3

Hmm, not quite what we expected. What happened here? We created three closures
that all point to the same local variable i. Closures don't remember the value, they
only link (reference) the i variable and will return its current value. After the loop,
i's value is 3. So all the three functions point to the same value.

(Why 3 and not 2 is another good question to think about, for better understanding
the for loop.)

So how do you implement the correct behavior? You need three different variables.
An elegant solution is to use another closure:

function f() {
 var a = [];
 var i;
 for(i = 0; i < 3; i++) {
 a[i] = (function(x){
 return function(){
 return x;
 }
 })(i);
 }
 return a;
}

This gives the expected result:

>>> var a = f();
>>> a[0]();

 0

Functions

[88]

>>> a[1]();

 1

>>> a[2]();

 2

Here, instead of just creating a function that returns i, you pass i to another self-
executing function. For this function, i becomes the local value x, and x has a
different value every time.

Alternatively, you can use a "normal" (as opposed to self-invoking) inner function to
achieve the same result. The key is to use the middle function to "localize" the value
of i at every iteration.

function f() {
 function makeClosure(x) {
 return function(){
 return x;
 }
 }
 var a = [];
 var i;
 for(i = 0; i < 3; i++) {
 a[i] = makeClosure(i);
 }
 return a;
}

Getter/Setter
Let's see two more examples of using closures. The first one involves the creation
of getter and setter functions. Imagine you have a variable that will contain a very
specific range of values. You don't want to expose this variable because you don't
want just any part of the code to be able to alter its value. You protect this variable
inside a function and provide two additional functions—one to get the value and
one to set it. The one that sets it could contain some logic to validate a value before
assigning it to the protected variable (let's skip the validation part for the sake of
keeping the example simple).

You place both the getter and the setter functions inside the same function that
contains the secret variable, so that they share the same scope:

Chapter 3

[89]

var getValue, setValue;
(function() {
 var secret = 0;
 getValue = function(){
 return secret;
 };
 setValue = function(v){
 secret = v;
 };
})()

In this case, the function that contains everything is a self-invoking anonymous
function. It defines setValue() and getValue() as global functions, while the
secret variable remains local and inaccessible directly.

>>> getValue()

 0

>>> setValue(123)
>>> getValue()

 123

Iterator
The last closure example (also the last example in the chapter) shows the use of a
closure to accomplish Iterator functionality.

You already know how to loop through a simple array, but there might be cases
where you have a more complicated data structure with different rules as to what
the sequence of values is. You can wrap the complicated "who's next" logic into an
easy-to-use next() function. Then you simply call next() every time you need the
consecutive value. For this example, we'll just use a simple array, and not a complex
data structure.

Here's an initialization function that takes an input array and also defines a private
pointer i that will always point to the next element in the array.

function setup(x) {
 var i = 0;
 return function(){
 return x[i++];
 };
}

Functions

[90]

Calling the setup() function with a data array will create the next() function
for you.

>>> var next = setup(['a', 'b', 'c']);

From there it's easy and fun: calling the same function over and over again gives
you the next element.

>>> next();

 "a"

>>> next();

 "b"

>>> next();

 "c"

Summary
You have now completed the introduction to the fundamental concepts related to
functions in JavaScript. You've been laying the groundwork that will allow you to
quickly grasp the concepts of object-oriented JavaScript and the patterns that are
in use in modern JavaScript programming. So far, we've been avoiding the OO
features, but as you have reached this point in the book, it is only going to get more
interesting from here on in. Let's take a moment and review the topics discussed in
this chapter:

The basics of how to define and invoke (call) a function
Function parameters and their flexibility
Built-in functions—parseInt(), parseFloat(), isNaN(), isFinite(),
eval(), and the four functions to encode/decode a URL
The scope of variables in JavaScript—no curly braces scope, variables have
only function scope; functions have lexical scope and follow a scope chain

•

•

•

•

Chapter 3

[91]

Functions as data—a function is like any other piece of data that you assign
to a variable and a lot of interesting applications follow from this, such as:

Private functions and private variables
Anonymous functions
Callbacks
Self-invoking functions
Functions overwriting themselves

Closures

Exercises
1. Write a function that converts a hexadecimal color, for example blue

"#0000FF", into its RGB representation "rgb(0, 0, 255)". Name your function
getRGB() and test it with this code:

 >>> var a = getRGB("#00FF00");
 >>> a;

 "rgb(0, 255, 0)"

2. What does each of these lines print in the console?
 >>> parseInt(1e1)
 >>> parseInt('1e1')
 >>> parseFloat('1e1')
 >>> isFinite(0/10)
 >>> isFinite(20/0)
 >>> isNaN(parseInt(NaN));

3. What does this following code alert()?
 var a = 1;
 function f() {
 var a = 2;
 function n() {
 alert(a);
 }
 n();
 }
 f();

•

°

°

°

°

°

•

Functions

[92]

4. All these examples alert "Boo!". Can you explain why?
4.1. var f = alert;

 eval('f("Boo!")');

4.2. var e;
 var f = alert;
 eval('e=f')('Boo!');

4.3.(
 function(){
 return alert;
 }
)()('Boo!');

Objects
Now that you've mastered JavaScript's primitive data types, arrays, and functions, it
is time for the best part—objects. In this chapter, you will learn:

How to create and use objects
What are the constructor functions
What types of built-in JavaScript objects exist and what they can do for you

From Arrays to Objects
As you already know from Chapter 2, an array is just a list of values. Each value has
an index (a numeric key) starting from zero and incrementing by one for each value.

>>>> var myarr = ['red', 'blue', 'yellow', 'purple'];
>>> myarr;

 ["red", "blue", "yellow", "purple"]

>>> myarr[0]

 "red""red"

>>> myarr[3]

 "purple""purple"

If you put the indexes in one column and the values in another, you'll end up with a
table of key/value pairs like this:

Key Value
0 red
1 blue
2 yellow
3 purple

•
•
•

Objects

[94]

An object is very similar to an array but with the difference that you define the keys
yourself. You're not limited to using only numeric indexes but can use friendlier
keys, such as first_name, age, and so on.

Let's take a look at a simple object and examine its parts:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

You can see that:

The name of the variable that contains the object is hero
Instead of [and] which you use to define an array, you use { and }
for objects
You separate the elements (called properties) contained in the object
with commas
The key/value pairs are divided by colons, as key: value

The keys (names of the properties) can optionally be placed in quotation marks.
For example these are all the same:

var o = {prop: 1};
var o = {"prop": 1};
var o = {'prop': 1};

It's recommended that you don't quote the names of the properties (it is also less
typing!), but there are some cases when you have must use quotes:

If the property name is one of the reserved words in JavaScript (see
Appendix A)
If it contains spaces or special characters (anything other than letters,
numbers, and the underscore character)
If it starts with a number

Basically, if the name you have chosen for a property is not a valid name for a
variable in JavaScript, then you need to in place in quotes.

Have a look at this bizarre-looking object:

var o = {
 something: 1,
 'yes or no': 'yes',
 '!@#$%^&*': true
};

•
•

•

•

•

•

•

Chapter 4

[95]

This is a valid object. The quotes are required for the second and the third properties,
otherwise you will get an error.

Later in this chapter you will see other ways to define objects and arrays, in addition
to [] and {}. But first, let's introduce this bit of terminology: defining an array with
[] is called array literal notation and defining an object using the curly braces {} is
called object literal notation.

Elements, Properties, Methods
When talking about arrays, you say that they contain elements. When talking about
objects, you say that they contain properties. There isn't any significant difference in
JavaScript; it is just the terminology that people are used to, probably from other
programming languages.

A property of an object can contain a function, because functions are just data. In this
case, you say that this property is a method.

var dog = {
 name: 'Benji',
 talk: function(){
 alert('Woof, woof!');
 }
};

It's also possible to store functions as array elements and invoke them, but you will
not see much code like this in practice:

>>> var a = [];
>>> a[0] = function(what){alert(what);};
>>> a[0]('Boo!');

Hashes, Associative Arrays
In some programming languages, there is distinction between:

A normal array, also called indexed or enumerated (the keys are numbers) and
An associative array, also called a hash (the keys are strings)

JavaScript uses arrays to represent indexed arrays and objects to represent
associative arrays. If you want a hash in JavaScript, you use an object.

•

•

Objects

[96]

Accessing Object's Properties
There are two ways to access a property of an object:

Using square bracket notation, for example hero['occupation']
Using the dot notation, for example hero.occupation

The dot notation is easier to read and write but it cannot always be used. The same
rules apply as for quoting property names: if the name of the property is not a valid
variable name, you cannot use the dot notation.

Let's take this object:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

Accessing a property with the dot notation:

>>> hero.breed;

 "Turtle""Turtle"

Accessing a property with the bracket notation:

>>> hero['occupation'];

 "Ninja""Ninja"

Accessing a non-existing property returns undefined:

>>> 'Hair color is ' + hero.hair_color;

 "�air color is undefined""�air color is undefined"

Objects can contain any data, including other objects.

var book = {
 name: 'Catch-22',
 published: 1961,
 author: {
 firstname: 'Joseph',
 lastname: 'Heller'
 }
};

•

•

Chapter 4

[97]

To get to the firstname property of the object contained in the author property of
the book object, you use:

>>> book.author.firstname

 "Joseph""Joseph"

Or using the square braces notation:

>>> book['author']['lastname']

 "Heller""Heller"

It works even if you mix both:

>>> book.author['lastname']

 "Heller""Heller"

>>> book['author'].lastname

 "Heller""Heller"

One other case where you need square brackets is if the name of the property you
need to access is not known beforehand. During runtime, it is dynamically stored in
a variable:

>>> var key = 'firstname';
>>> book.author[key];

 "Joseph""Joseph"

Calling an Object's Methods
Because a method is just a property that happens to be a function, you can access
methods in the same way as you would access properties: using the dot notation or
using square brackets. Calling (invoking) a method is the same as calling any other
function: just add parentheses after the method name, which effectively
say "Execute!".

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja',
 say: function() {
 return 'I am ' + hero.occupation;
 }
}
>>> hero.say();

 "I am Ninja""I am Ninja"

Objects

[98]

If there are any parameters that you want to pass to a method, you proceed as with
normal functions:

>>> hero.say('a', 'b', 'c');

Because you can use the array-like square brackets to access a property, this means
you can also use brackets to access and invoke methods, although this is not at a
common practice:

>>> hero['say']();

Best Practice Tip: No quotes
1. Use the dot notation to access methods and properties
2. Don't quote properties in your object literals

Altering Properties/Methods
JavaScript is a dynamic language; it allows you to alter properties and methods of
existing objects at any time. This includes adding new properties or deleting them.
You can start with a blank object and add properties later. Let's see how you can
go about doing this.

An empty object:

>>> var hero = {};

Accessing a non-existing property:

>>> typeof hero.breed

 "undefined""undefined"

Adding some properties and a method:

>>> hero.breed = 'turtle';
>>> hero.name = 'Leonardo';
>>> hero.sayName = function() {return hero.name;};

Calling the method:

>>> hero.sayName();

 "Leonardo""Leonardo"

Chapter 4

[99]

Deleting a property:

>>> delete hero.name;

 truetrue

Calling the method again will no longer work:

>>> hero.sayName();

 reference to undefined �ro�erty �ero.namereference to undefined �ro�erty �ero.name

Using this Value
In the previous example, the method sayName() used hero.name to access the name
property of the hero object. When you're inside a method though, there is another
way to access the object this method belongs to: by using the special value this.

var hero = {
 name: 'Rafaelo',
 sayName: function() {
 return this.name;
 }
}
>>> hero.sayName();

 "Rafaelo""Rafaelo"

So when you say this, you are actually saying "this object" or "the current object".

Constructor Functions
There is another way to create objects: by using constructor functions. Let's see
an example:

function Hero() {
 this.occupation = 'Ninja';
}

In order to create an object using this function, you use the new operator, like this:

>>> var hero = new Hero();
>>> hero.occupation;

 "Ninja""Ninja"

Objects

[100]

The benefit of using constructor functions is that they accept parameters, which
can be used when creating new objects. Let's modify the constructor to accept one
parameter and assign it to the name property.

function Hero(name) {
 this.name = name;
 this.occupation = 'Ninja';
 this.whoAreYou = function() {
 return "I'm " + this.name + " and I'm a " + this.occupation;
 }
}

Now you can create different objects using the same constructor:

>>> var h1 = new Hero('Michelangelo');
>>> var h2 = new Hero('Donatello');
>>> h1.whoAreYou();

 "I�m Michelangelo and I�m a Ninja""I�m Michelangelo and I�m a Ninja"

>>> h2.whoAreYou();

 "I�m Donatello and I�m a Ninja""I�m Donatello and I�m a Ninja"

By convention, you should capitalize the first letter of your constructor functions so
that you have a visual clue that this is not a normal function. If you call a function
that is designed to be a constructor, but you omit the new operator, this is not an
error, but it may not behave as you could expect.

>>> var h = Hero('Leonardo');
>>> typeof h

 "undefined""undefined"

What happened here? As there was no new operator, we didn't create a new object.
The function was called like any other function, so h contains the value that the
function returns. The function does not return anything (there's no return), so it
actually returns undefined, which gets assigned to h.

In this case, what does this refer to? It refers to the global object.

The Global Object
Previously we discussed global variables (and how you should avoid them) and also
the fact that JavaScript programs run inside a host environment (the browser forfor
example). Now that you know about objects, it is time for the whole truth: the host). Now that you know about objects, it is time for the whole truth: the host
environment provides a global object and all global variables are actually properties
of the global object.

Chapter 4

[101]

If your host environment is the web browser, the global object is called window.

As an illustration, you can try declaring a global variable, outside of any
function, such as:

>>> var a = 1;

Then you can access this global variable in various ways:

As a variable a
As a property of the global object, for examplefor example window['a'] or window.a

Let's go back to the case where you define a constructor function and call it without
the new operator. In such cases this refers to the global object and all properties set
with this become properties of window.

Declaring a constructor function and calling it without new, returns "undefined":

>>> function Hero(name) {this.name = name;}
>>> var h = Hero('Leonardo');
>>> typeof h

 "undefined""undefined"

>>> typeof h.name

 h has no propertiesh has no properties

Because you had this inside Hero, a global variable (a property of the global object)
called name was created.

>>> name

 "Leonardo""Leonardo"

>>> window.name

 "Leonardo""Leonardo"

If you call the same constructor function but this time using new, then a new object is
returned and this refers to it.

>>> var h2 = new Hero('Michelangelo');
>>> typeof h2

 "object""object"

>>> h2.name

 "Michelangelo""Michelangelo"

•

•

Objects

[102]

The global functions you saw in Chapter 3 can also be invoked as methods of the
window object. So the following two codes are equivalent:

>>> parseInt('101 dalmatians')

 101101

>>> window.parseInt('101 dalmatians')

 101101

constructor Property
When an object is created, a special property is assigned to it behind the scenes—the
constructor property. It contains a reference to the constructor function used to
create this object.

Continuing from the previous example:

>>> h2.constructor

 Hero(name)Hero(name)

Because the constructor property contains a reference to a function, you might as
well call this function to produce a new object. The following code is like saying, "I
don't care how object h2 was created, but I want another one just like it".

>>> var h3 = new h2.constructor('Rafaello');
>>> h3.name;

 "Rafaello""Rafaello"

If an object was created using the object literal notation, its constructor is the built-in
Object() constructor function (more about this later in this chapter).

>>> var o = {};
>>> o.constructor;

 Object()

>>> typeof o.constructor;

 "function""function"

instanceof Operator
Using the instanceof operator, you can test if an object was created with a specific
constructor function:

Chapter 4

[103]

>>> function Hero(){}
>>> var h = new Hero();
>>> var o = {};
>>> h instanceof Hero;

 truetrue

>>> h instanceof Object;

 falsefalse

>>> o instanceof Object;

 truetrue

Note that you don't put parentheses after the function name (don't use h
instanceof Hero()). This is because you're not invoking this function, but just
referring to it by name, as for any other variable.

Functions that Return Objects
In addition to using constructor functions and the new operator to create objects,
you can also use a normal function and create objects without new. You can have a
function that does some preparatory work and has an object as a return value.

For example, here's a simple factory() function that produces objects:

function factory(name) {
 return {
 name: name
 };
}

Using the factory():

>>> var o = factory('one');
>>> o.name

 "one""one"

>>> o.constructor

 Object()Object()

In fact, you can also use constructor functions and return objects, different from
this. This means you can modify the default behavior of the constructor function.
Let's see how.

Objects

[104]

Here's the normal constructor scenario:

>>> function C() {this.a = 1;}
>>> var c = new C();
>>> c.a

 1

But now look at this scenario:

>>> function C2() {this.a = 1; return {b: 2};}
>>> var c2 = new C2();
>>> typeof c2.a

 "undefined"

>>> c2.b

 22

What happened here? Instead of returning the object this, which contains the
property a, the constructor returned another object that contains the property b.
This is possible only if the return value is an object. Otherwise, if you try to return
anything that is not an object, the constructor will proceed with its usual behavior
and return this.

Passing Objects
When you copy an object or pass it to a function, you only pass a reference to
that object. Consequently, if you make a change to the reference, you are actually
modifying the original object.

Here's an example of how you can assign an object to another variable and then
make a change to the copy. As a result, the original object is also changed:

>>> var original = {howmany: 1};
>>> var copy = original;
>>> copy.howmany

 1

>>> copy.howmany = 100;

 100

>>> original.howmany

 100

Chapter 4

[105]

The same thing applies when passing objects to functions:

>>> var original = {howmany: 100};
>>> var nullify = function(o) {o.howmany = 0;}
>>> nullify(original);
>>> original.howmany

 00

Comparing Objects
When you compare objects, you'll get true only if you compare two references to
the same object. Comparing two distinct objects that happen to have the exact same
methods and properties will return false.

Let's create two objects that look the same:

>>> var fido = {breed: 'dog'};
>>> var benji = {breed: 'dog'};

Comparing them will return false:

>>> benji === fido

 false

>>> benji == fido

 false

You can create a new variable mydog and assign one of the objects to it, this way
mydog actually points to the same object.

>>> var mydog = benji;

In this case benji is mydog because they are the same object (changing mydog's
properties will change benji's). The comparison returns true.

>>> mydog === benji

 true

And because fido is a different object, it does not compare to mydog:

>>> mydog === fido

 false

Objects

[106]

Objects in the Firebug Console
Before diving into the built-in objects in JavaScript, let's quickly say a few words
about working with objects in the Firebug console.

After playing around with the examples in this chapter, you might have already
noticed how objects are displayed in the console. If you create an object and type its
name, you'll get a string representation of the object including the properties (but
only the first few properties if there are too many of them).

The object is clickable and takes you to the DOM tab in Firebug, which lists all of the
properties of the object. If a property is also an object, there is a plus (+) sign
to expand it. This is handy as it gives you an insight into exactly what this
object contains.

Chapter 4

[107]

The console also offers you an object called console and some methods, such as
console.log(), console.error(), and console.info() which you can use to
display any value you want in the console.

console.log() is convenient when you want to quickly test something, as well as in
your real scripts when you want to dump some intermediate debuging information.
Here's how you can experiment with loops, for example:

>>> for(var i = 0; i < 5; i++) { console.log(i); }

 0

 1

 2

 3

 44

Built-in Objects
Earlier in this chapter we came across the Object() constructor function. It is
returned when you create objects with the object literal notation and access their
constructor property. Object() is one of the built-in constructors; there are others
and in the rest of this chapter you'll see all of them.

Objects

[108]

The built-in objects can be divided into three groups:

Data wrapper objects—Object, Array, Function, Boolean, Number, and
String. These objects correspond to the different data types in JavaScript.
Basically, there is a data wrapper object for each different value returned by
typeof (discussed in Chapter 2) with the exception of "undefined" and "null".
Utility objects—These are Math, Date, RegExp and can come in very handy.
Error objects—The generic Error object as well as other, more specific objects
that can help your program recover its working state when something
unexpected happens.

Only a handful of methods of the built-in objects will be discussed in this chapter.
For a full reference, see Appendix C.

If you're confused about what is a built-in object and what is a built-in constructor,
well, they are the same thing. In a moment, you will see how functions, and therefore
constructor functions, are also objects.

Object
Object is the parent of all JavaScript objects, which means that every object you
create inherits from it. To create a new empty object you can use the literal notation
or the Object() constructor function. The following two lines are equivalent:

>>> var o = {};
>>> var o = new Object();

An empty object is not completely useless because it already contains some methods
and properties. Let's see a few:

o.constructor property returns the constructor function
o.toString() is a method that returns a string representation of the object
o.valueOf() returns a single-value representation of the object, often this is
the object itself

Let's see these methods in action. First, create an object:

>>> var o = new Object();

Calling toString() returns a string representation of the object.

>>> o.toString()

 "[object Object]""[object Object]"

•

•

•

•

•

•

Chapter 4

[109]

toString() will be called internally by JavaScript, when an object is used in a string
context. For example alert() works only with strings, so if you call the alert()
function passing an object, the method toString() will be called behind the scenes.
These two lines will produce the same result:

>>> alert(o)
>>> alert(o.toString())

Another type of string context is the string concatenation. If you try to concatenate an
object with a string, the object's toString() will be called first:

>>> "An object: " + o

 "An object: [object Object]"

valueOf() is another method that all objects provide. For the simple objects (whose
constructor is Object()) the valueOf() method will return the object itself.

>>> o.valueOf() === o

 true

To summarize:

You can create objects either with var o = {}; (object literal notation, the
preferred method) or with var o = new Object();
Any object, no matter how complex, inherits from the Object object and
therefore offers methods such as toString() and properties such as
constructor.

Array
Array() is a built-in function that you can use as a constructor to create arrays:

>>> var a = new Array();

This is equivalent to the array literal notation:

>>> var a = [];

No matter how the array is created, you can add elements to it as usual:

>>> a[0] = 1; a[1] = 2; a;

 [1, 2]

•

•

Objects

[110]

When using the Array() constructor, you can also pass values which will be
assigned to the new array's elements.

>>> var a = new Array(1,2,3,'four');
>>> a;

 [1, 2, 3, "four"]

An exception to this is when you pass a single number to the constructor. In this
case, the number passed will be considered to be the length of the array.

>>> var a2 = new Array(5);
>>> a2;

 [undefined, undefined, undefined, undefined, undefined]

Because arrays are created with a constructor, does this mean that arrays are in fact
objects? Yes, and you can verify this by using the typeof operator:

>>> typeof a;

 "object"

Because arrays are objects, this means that they inherit the properties and methods of
the parent Object.

>>> a.toString();

 "1,2,3,four"

>>> a.valueOf()

 [1, 2, 3, "four"]

>>> a.constructor

 Array()

Arrays are objects, but of a special type because:

The names of their properties are automatically assigned using numbers
starting from 0
They have a length property which contains the number of elements in
the array
They have additional built-in methods in addition to those inherited from the
parent object

•

•

•

Chapter 4

[111]

Let's examine the differences between an array and an object, starting by creating the
empty object o and the empty array a:

>>> var a = [], o = {};

Array objects have a length property automatically defined for them, while normal
objects do not:

>>> a.length

 0

>>> typeof o.length

 "undefined"

It's OK to add both numeric and non-numeric properties to both arrays and objects:

>>> a[0] = 1; o[0] = 1;
>>> a.prop = 2; o.prop = 2;

The length property is always up-to-date with the number of numeric properties,
ignoring the non-numeric ones.

>>> a.length

 1

The length property can also be set by you. Setting it to a greater value than the
current number of items in the array creates empty elements (with a value of
undefined).

>>> a.length = 5

 5

>>> a

 [1, undefined, undefined, undefined, undefined]

Setting the length to a lower value removes the trailing elements:

>>> a.length = 2;

 2

>>> a

 [1, undefined]

Objects

[112]

Interesting Array Methods
In addition to the methods inherited from the parent object, array objects also have
some more useful methods, such as sort(), join(), and slice(), among others
(see Appendix C for the full list).

Let's take one array and experiment with some of these methods:

>>> var a = [3, 5, 1, 7, 'test'];

The push() method appends a new element at the end of the array. The pop()
method removes the last element. a.push('new') works just like a[a.length] =
'new' and a.pop() is the same as a.length--.

push() returns the length of the changed array, pop() returns the element that
it removed.

>>> a.push('new')

 6

>>> a

 [3, 5, 1, 7, "test", "new"]

>>> a.pop()

 "new"

>>> a

 [3, 5, 1, 7, "test"][3, 5, 1, 7, "test"]

The sort() method sorts the array and returns the modified array. In the next
example, after the sort, both a and b contain pointers to the same array.

>>> var b = a.sort();
>>> b

 [1, 3, 5, 7, "test"]

>>> a

 [1, 3, 5, 7, "test"]

join() returns a string containing the values of all the elements in the array,
concatenated together using the string parameter passed to join()

>>> a.join(' is not ');

 "1 is not 3 is not 5 is not 7 is not test"

Chapter 4

[113]

slice() returns a piece of the array without modifying the source array. The first
parameter to slice() is the start index and the second is the end index (both indices
are zero-based).

>>> b = a.slice(1, 3);

 [3, 5]

>>> b = a.slice(0, 1);

 [1]

>>> b = a.slice(0, 2);

 [1, 3]

After all the slicing, the source array is still the same:

>>> a

 [1, 3, 5, 7, "test"]

splice() modifies the source array. It removes a slice, returns it, and optionally
fills the gap with new elements. The first two parameters define start and end of the
slice to be removed; the other parameters pass the new values.

>>> b = a.splice(1, 2, 100, 101, 102);

 [3, 5]

>>> a

 [1, 100, 101, 102, 7, "test"]

Filling the gap with new elements is optional and you can skip it:

>>> a.splice(1, 3)

 [100, 101, 102]

>>> a

 [1, 7, "test"]

Function
You already know that functions are a special data type. But it turns out that there's
more to it than that—functions are actually objects. There is a built-in constructor
function called Function() which allows an alternative (but not recommended) way
to create a function.

Objects

[114]

The following three ways of defining a function are equivalent:

>>> function sum(a, b) {return a + b;};
>>> sum(1, 2)

 3

>>> var sum = function(a, b) {return a + b;};
>>> sum(1, 2)

 3

>>> var sum = new Function('a', 'b', 'return a + b;');
>>> sum(1, 2)

 3

When using the Function() constructor, you pass the parameter names first (as
strings) and then the source code for the body of the function (again as a string). The
JavaScript engine then needs to evaluate the source code you pass and create the new
function for you. This source code evaluation suffers from the same drawbacks as the
eval() function, so defining functions using the Function() constructor should be
avoided when possible.

If you use the Function constructor to create functions that have lots of parameters,
bear in mind that the parameters can be passed as a single comma-delimited list, so,
for example, these are the same:

>>> var first = new Function('a, b, c, d', 'return arguments;');
>>> first(1,2,3,4);

 [1, 2, 3, 4]

>>> var second = new Function('a, b, c', 'd', 'return arguments;');
>>> second(1,2,3,4);

 [1, 2, 3, 4]

>>> var third = new Function('a', 'b', 'c', 'd',
 'return arguments;');
>>> third(1,2,3,4);

 [1, 2, 3, 4]

Best Practice
Do not use the Function() constructor. As with eval() and
setTimeout() (discussed further in the book), always try to stay
away from cases where you pass JavaScript code as a string.

Chapter 4

[115]

Properties of the Function Objects
Like any other object, functions have a constructor property that contains a
reference to the Function() constructor function.

>>> function myfunc(a){return a;}
>>> myfunc.constructor

 Function()

Functions also have a length property, which contains the number of parameters the
function accepts.

>>> function myfunc(a, b, c){return true;}
>>> myfunc.length

 3

There is another interesting property, which doesn't exist in the ECMA standard, but is
implemented across the browsers—the caller property. This returns a reference to the
function that called our function. Let's say there is a function A() that gets called from
function B(). If inside A() you put A.caller, it will return the function B().

>>> function A(){return A.caller;}
>>> function B(){return A();}
>>> B()

 B()

This could be useful if you want your function to respond differently depending on
the function from which it was called. If you call A() from the global space (outside
of any function), A.caller will be null.

>>> A()

 null

The most important property of a function is the prototype property. We'll discuss
this property in detail in the next chapter, but for now let's just say this:

The prototype property of a function contains an object
It is only useful when you use this function as a constructor
All objects created with this function keep a reference to the prototype
property and can use its properties as their own

•

•

•

Objects

[116]

Let's see a quick example to demonstrate the prototype property. Let's start with a
simple object that has a property name and a method say().

var some_obj = {
 name: 'Ninja',
 say: function(){
 return 'I am a ' + this.name;
 }
}

If you create a hollow function, you can verify that it automatically has a prototype
property that contains an empty object.

>>> function F(){}
>>> typeof F.prototype

 "object"

It gets interesting when you modify the prototype property. You can replace
the default empty object with any other object. Let's assign our some_obj
to the prototype.

>>> F.prototype = some_obj;

Now, using the function F() as a constructor function, you can create a new object
obj which will have access to the properties of F.prototype as if it were its own.

>>> var obj = new F();
>>> obj.name

 "Ninja"

>>> obj.say()

 "I am a Ninja"

There will be more about the prototype property in the next chapter.

Methods of the Function Objects
The function objects, being a descendant of the top parent Object, get the default
methods, such as toString(). When invoked on a function, the toString() method
returns the source code of the function.

>>> function myfunc(a, b, c) {return a + b + c;}
>>> myfunc.toString()

Chapter 4

[117]

 "function myfunc(a, b, c) {

 return a + b + c;

}"

If you try to peek into the source code of the built-in functions, you'll get the hardly
useful [native code] string:

>>> eval.toString()

 "function eval() {

 [native code]

}"

Two useful methods of the function objects are call() and apply(). They allow
your objects to borrow methods from other objects and invoke them as their own.
This is an easy and powerful way to reuse code.

Let's say you have a some_obj object, which contains the method say()

var some_obj = {
 name: 'Ninja',
 say: function(who){
 return 'Haya ' + who + ', I am a ' + this.name;
 }
}

You can call the say() method which internally uses this.name to gain access to its
own name property.

>>> some_obj.say('Dude');

 "Haya Dude, I am a Ninja"

Now let's create a simple object my_obj, which only has a name property:

>>> my_obj = {name: 'Scripting guru'};

my_obj likes some_obj's say() method so much that it wants to invoke it as its own.
This is possible using the call() method of the say() function object:

>>> some_obj.say.call(my_obj, 'Dude');

 "Haya Dude, I am a Scripting guru"

Objects

[118]

It worked! But what happened here? We invoked the call() method of the say()
function object passing two parameters: the object my_obj and the string �Dude�.
The result is that when say() was invoked, the references to this value that it
contains, pointed to my_obj. This way this.name didn't return Ninja, but Scripting
guru instead.

If you have more parameters to pass when invoking the call() method, you just
keep adding them:

some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

If you don't pass an object as a first parameter to call() or pass null, the global
object will be assumed.

The method apply() works the same way as call() but with the difference that all
parameters you want to pass to the method of the other object are passed as an array.
The following two lines are equivalent:

some_obj.someMethod.apply(my_obj, ['a', 'b', 'c']);
some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

Continuing the example above, you can use:

>>> some_obj.say.apply(my_obj, ['Dude']);

 "Haya Dude, I am a Scripting guru""Haya Dude, I am a Scripting guru"

The arguments Object Revisited
In the previous chapter, you saw how, from inside a function, you have access to
something called arguments, which contains the values of all parameters passed to
the function:

>>> function f() {return arguments;}
>>> f(1,2,3)

 [1, 2, 3]

arguments looks like an array but is actually an array-like object. It resembles an
array because it contains indexed elements and a length property. However, the
similarity ends here, as arguments doesn't provide any of the array methods, such as
sort() or slice().

The arguments object has another interesting property—the callee property.
This contains a reference to the function being called. If you create a function
that returns arguments.callee and you call this function, it will simply return a
reference to itself.

Chapter 4

[119]

>>> function f(){return arguments.callee;}
>>> f()

 f()

arguments.callee allows anonymous functions to call themselves recursively.
Here's an example:

(
 function(count){
 if (count < 5) {
 alert(count);
 arguments.callee(++count);
 }
 }
)(1)

Here you have an anonymous function that receives a count parameter, alerts it,
and then calls itself with an incremented count. The whole function is wrapped in
parentheses and followed by another set of parentheses, which invokes the function
right away, passing the initial value 1. The result of this code is four alerts showing
the numbers 1, 2, 3, and 4.

Boolean
Our journey through the built-in objects in JavaScript continues, and the next
ones are fairly easy; they merely wrap the primitive data types boolean, number,
and string.

You already know a lot about booleans from Chapter 2. Now, let's meet the
Boolean() constructor:

>>> var b = new Boolean();

It is important to note that this creates a new object b, and not a primitive boolean
value. To get the primitive value, you can call the valueOf() method (inherited
from Object).

>>> var b = new Boolean();
>>> typeof b

 "object"

>>> typeof b.valueOf()

 "boolean"

Objects

[120]

>>> b.valueOf()

 false

Overall, objects created with the Boolean() constructor are not too useful, as they
don't provide any methods or properties, other than the inherited ones.

The Boolean() function is useful when called as a normal function, without new.
This converts non-booleans to booleans (which is the same as using a double
negation !!value).

>>> Boolean("test")

 true

>>> Boolean("")

 false

>>> Boolean({})

 true

Apart from the six falsy values, everything else is truthy in JavaScript, including the
empty objects. This also means that all boolean objects created with new Boolean()
evaluate to true, as they are objects.

Let's create two boolean objects, one truthy and one falsy:

>>> var b1 = new Boolean(true)
>>> b1.valueOf()

 true

>>> var b2 = new Boolean(false)
>>> b2.valueOf()

 false

Now let's convert them to primitive boolean values. They both convert to true
because all objects are truthy.

>>> Boolean(b1)

 true

>>> Boolean(b2)

 true

Chapter 4

[121]

Number
Similarly to Boolean(), the Number() function can be used:

As a normal function in order to try to convert any value to a number. This is
similar to the use of parseInt() or parseFloat().
As a constructor function (with new) to create objects

>>> var n = Number('12.12');
>>> n

 12.12

>>> typeof n

 "number"

>>> var n = new Number('12.12');
>>> typeof n

 "object"

Because functions are objects, they can have properties. The Number() function
contains some interesting built-in properties (which you cannot modify):

>>> Number.MAX_VALUE

 1.7976931348623157e+308

>>> Number.MIN_VALUE

 5e-324

>>> Number.POSITIVE_INFINITY

 Infinity

>>> Number.NEGATIVE_INFINITY

 -Infinity

>>> Number.NaN

 NaN

The number objects provide three methods—toFixed(), toPrecision() and
toExponential() (see Appendix C for details).

>>> var n = new Number(123.456)
>>> n.toFixed(1)

 "123.5"

•

•

Objects

[122]

Note that you can use these methods without explicitly creating a number
object. In such cases, the number object will be created (and destroyed) for you
behind the scenes:

>>> (12345).toExponential()

 "1.2345e+4"

As with all objects, number objects also provide the toString() method. It is
interesting to note that this method accept an optional radix parameter (10 is
the default).

>>> var n = new Number(255);
>>> n.toString();

 "255"

>>> n.toString(10);

 "255""255"

>>> n.toString(16);

 "ff""ff"

>>> (3).toString(2);

 "11""11"

>>> (3).toString(10);

 "3"

String
Using the String() constructor function you can create string objects. Objects
produced this way provide some useful methods when it comes to text
manipulation, but if you don't plan on using these methods, you're probably better
off just using primitive strings.

Here's an example that shows the difference between a string object and a primitive
string data type.

>>> var primitive = 'Hello';
>>> typeof primitive;

 "string"

Chapter 4

[123]

>>> var obj = new String('world');
>>> typeof obj;

 "object"

A string object is very similar to an array of characters. The string objects have an
indexed property for each character and they also have a length property.

>>> obj[0]

 "w"

>>> obj[4]

 "d"

>>> obj.length

 5

To extract the primitive value from the string object, you can use the valueOf() or
toString() methods inherited from Object. You'll probably never need to do this,
as toString() is called behind the scenes if you use an object in a string context.

>>> obj.valueOf()

 "world"

>>> obj.toString()

 "world"

>>> obj + ""

 "world"

Primitive strings are not objects, so they don't have any methods or properties. But
JavaScript still offers you the syntax to treat primitive strings as objects.

In the following example, string objects are being created (and then destroyed)
behind the scenes every time you access a primitive string as if it was an object:

>>> "potato".length

 6

>>> "tomato"[0]

 "t"

Objects

[124]

>>> "potato"["potato".length - 1]

 "o"

One final example to illustrate the difference between a string primitive and a string
object: let's convert them to boolean. The empty string is a falsy value, but any string
object is truthy.

>>> Boolean("")

 false

>>> Boolean(new String(""))

 true

Similarly to Number() and Boolean(), if you use the String() function without
new, it converts the parameter to a primitive string. This means calling toString()
method, if the input is an object.

>>> String(1)

 "1"

>>> String({p: 1})

 "[object Object]"

>>> String([1,2,3])

 "1,2,3"

Interesting Methods of the String Objects
Let's experiment with some of the methods you can call for string objects (see
Appendix C for the full list).

Start off by creating a string object:

>>> var s = new String("Couch potato");

toUpperCase() and toLowerCase() are convenient ways to transform the
capitalization of the string:

>>> s.toUpperCase()

 "COUCH POTATO"

>>> s.toLowerCase()

 "couch potato""couch potato"

Chapter 4

[125]

charAt() tells you the character found at the position you specify, which is the same
as using square brackets (a string is an array of characters).

>>> s.charAt(0);

 "C""C"

>>> s[0]

 "C""C"

If you pass a non-existing position to charAt(), you get an empty string:

>>> s.charAt(101)

 ""

indexOf() allows you to search within a string. If there is a match, the method
returns the position at which the first match is found. The position count starts at 0,
so the second character in "Couch" is "o" at position 1.

>>> s.indexOf('o')

 1

You can optionally specify where (at what position) to start the search. The following
finds the second "o", because indexOf() is instructed to start the search at position 2:

>>> s.indexOf('o', 2)

 7

lastIndexOf() starts the search from the end of the string (but the position of the
match is still counted from the beginning):

>>> s.lastIndexOf('o')

 11

You can search for strings, not only characters, and the search is case sensitive:

>>> s.indexOf('Couch')

 0

If there is no match, the function returns a position -1:

>>> s.indexOf('couch')

 -1

Objects

[126]

To perform a case-insensitive search you can transform the string to lowercase first
and then search it:

>>> s.toLowerCase().indexOf('couch')

 0

When you get 0, this means that the matching part of the string starts at position 0.
This can cause confusion when you check with if, because if will convert
the position 0 to a boolean false. So while this is syntactically correct, it is
logically wrong:

if (s.indexOf('Couch')) {...}

The proper way to check if a string contains another string is to compare the result of
indexOf() to the number -1.

if (s.indexOf('Couch') !== -1) {...}

slice() and substring() return a piece of the string when you specify start and
end positions:

>>> s.slice(1, 5)

 "ouch"

>>> s.substring(1, 5)

 "ouch"

Note that the second parameter you pass is the end position, not the length of
the piece. The difference between these two methods is how they treat negative
arguments. substring() treats them as zeros, while slice() adds them to the
length of the string. So if you pass parameters (1, -1) it's the same as substring(1,
0) and slice(1, s.length - 1):

>>> s.slice(1, -1)

 "ouch potat""ouch potat"

>>> s.substring(1, -1)

 "C""C"

The split() method creates an array from the string, using a string that you pass as
a separator:

>>> s.split(" ")

 ["Couch", "potato"]["Couch", "potato"]

Chapter 4

[127]

split() is the opposite of join() which creates a string from an array:

>>> s.split(' ').join(' ');

 "Couch potato"

concat() glues strings together, the way the + operator does for primitive strings:

>>> s.concat("es")

 "Couch potatoes"

Note that while some of the methods discussed above return new primitive strings,
none of them modify the source string. After all the methods we called, our initial
string is still the same:

>>> s.valueOf()

 "Couch potato"

We looked at indexOf() and lastIndexOf() to search within strings, but there are
more powerful methods (search(), match(), and replace()) which take regular
expressions as parameters. You'll see these later, when we get to the RegExp()
constructor function.

At this point we're done with all of the data wrapper objects, so off we go to the
utility objects Math, Date, and RegExp.

Math
Math is a little different from the other built-in global objects you saw above. It's not
a normal function and therefore cannot be used with new to create objects. Math is a
built-in global object, which provides a number of methods and properties that are
useful for mathematical operations.

Math's properties are constants so you can't change their values. Their names are
all in upper case to emphasize the difference between them and a normal variable
property. Let's see some of these constant properties:

The number π:

>>> Math.PI

 3.141592653589793

Objects

[128]

Square root of 2:

>>> Math.SQRT2

 1.4142135623730951

Euler's constant e:

>>> Math.E

 2.718281828459045

Natural logarithm of 2:

>>> Math.LN2

 0.6931471805599453

Natural logarithm of 10:

>>> Math.LN10

 2.302585092994046

Now you know how to impress your friends the next time they (for whatever
awkward reason) start wondering, "What was the value of e? I can't remember."
Just type Math.E in the console and you have the answer.

Let's take a look at some of the methods the Math object provides (the full list is
in Appendix C).

Generating random numbers:

>>> Math.random()

 0.3649461670235814

random() returns a number between 0 and 1, so if you want a number between, let's
say 0 and 100, you can do:

>>> 100 * Math.random()

For numbers between any two values min and max, use the formula ((max - min) *
Math.random()) + min. For example, a random number between 2 and 10 would be:

>>> 8 * Math.random() + 2

 9.175650496668485

Chapter 4

[129]

If you only need an integer, you can use one of rounding methods—floor() to
round down, ceil() to round up or round() to round to the nearest. For example to
get either 0 or 1:

>>> Math.round(Math.random())

If you need the lowest or the highest among a set of numbers, you have the methods
min() and max(). So if you have a form on a page that asks for a valid month, you
can make sure that you always work with sane data:

>>> Math.min(Math.max(1, input), 12)

The Math object also provides you with the ability to perform mathematical
operations for which you don't have a designated operator. This means that you can
raise to a power using pow(), find the square root using sqrt() and perform all the
trigonometric operations—sin(), cos(), atan(), and so on.

2 to the power of 8:

>>> Math.pow(2, 8)

 256

Square root of 9:

>>> Math.sqrt(9)

 33

Date
Date() is a constructor function that creates date objects. You can create a new
object by passing:

Nothing (defaults to today's date)
A date-like string
Separate values for day, month, time, and so on
A timestamp

An object instantiated with today's date/time:

>>> new Date()

 Tue Jan 08 2008 01:10:42 GMT-0800 (Pacific Standard Time)

•

•

•

•

Objects

[130]

(As with all objects, the Firefox console displays the result of the toString()
method, so this long string "Tue Jan 08...." is what you get when you call toString()
on a date object.)

Here are some examples of using strings to initialize a date object. It's interesting
how many different formats you can use to specify the date.

>>> new Date('2009 11 12')

 T�u Nov 12 2009 00:00:00 GMT-0800 (Pacific Standard Time)

>>> new Date('1 1 2012')

 Sun Jan 01 2012 00:00:00 GMT-0800 (Pacific Standard Time)

>>> new Date('1 mar 2012 5:30')

 T�u Mar 01 2012 05:30:00 GMT-0800 (Pacific Standard Time)

It is good that JavaScript can figure out a date from different strings, but this is not
really a reliable way of defining a precise date. The better way is to pass numeric
values to the Date() constructor representing:

Year
Month: 0 (January) to 11 (December)
Day: 1 to 31
Hour: 0 to 23
Minutes: 0 to 59
Seconds: 0 to 59
Milliseconds: 0 to 999

Let's see some examples.

Passing all the parameters:

>>> new Date(2008, 0, 1, 17, 05, 03, 120)

 Tue Jan 01 2008 1�:05:03 GMT-0800 (Pacific Standard Time)Tue Jan 01 2008 1�:05:03 GMT-0800 (Pacific Standard Time)

Passing date and hour:

>>> new Date(2008, 0, 1, 17)

 Tue Jan 01 2008 1�:00:00 GMT-0800 (Pacific Standard Time)

•

•

•

•

•

•

•

Chapter 4

[131]

Watch out for the fact that the month starts from 0, so 1 is February:

>>> new Date(2008, 1, 28)

 T�u Feb 28 2008 00:00:00 GMT-0800 (Pacific Standard Time)

If you pass a value greater than allowed, your date "overflows" forward. Because
there's no February 30 in 2008, this means it has to be March 1st (remember that 2008
was a leap-year).

>>> new Date(2008, 1, 29)

 Fri Feb 29 2008 00:00:00 GMT-0800 (Pacific Standard Time)

>>> new Date(2008, 1, 30)

 Sat Mar 01 2008 00:00:00 GMT-0800 (Pacific Standard Time)

Similarly, Dec 32nd becomes Jan 01st of the next year:

>>> new Date(2008, 11, 31)

 Wed Dec 31 2008 00:00:00 GMT-0800 (Pacific Standard Time)

>>> new Date(2008, 11, 32)

 T�u Jan 01 2009 00:00:00 GMT-0800 (Pacific Standard Time)

Finally, a date object can be initialized with a timestamp (the number of milliseconds
since the UNIX epoch, where 0 milliseconds is 1st January 1970).

>>> new Date(1199865795109)

 Wed Jan 09 2008 00:03:15 GMT-0800 (Pacific Standard Time)

If you call Date() without new, you get a string representing the current date,
whether or not you pass any parameters. This gives the current time (current when
this example was run):

>>> Date()

 "T�u Jan 1� 2008 23:11:32 GMT-0800 (Pacific Standard Time)"

>>> Date(1, 2, 3, "it doesn't matter");

 "T�u Jan 1� 2008 23:11:35 GMT-0800 (Pacific Standard Time)""T�u Jan 1� 2008 23:11:35 GMT-0800 (Pacific Standard Time)"

Objects

[132]

Methods to Work with Date Objects
Once you've created a date object, there are lots of methods you can call on that
object. Most of the methods can be divided into set*() and get*() methods. For
example getMonth(), setMonth(), getHours(), setHours(), and so on. Let's see
some examples.

Creating a date object:

>>> var d = new Date();
>>> d.toString();

 "Wed Jan 09 2008 00:26:39 GMT-0800 (Pacific Standard Time)"

Setting the month to March (months start from 0):

>>> d.setMonth(2);

 1205051199562

>>> d.toString();

 "Sun Mar 09 2008 00:26:39 GMT-0800 (Pacific Standard Time)"

Getting the month:

>>> d.getMonth();

 2

In addition to all the methods of the date instances, there are also two methods that
are properties of the Date() function/object. These do not need a date instance; they
work just like Math's methods. In class-based languages, such methods would be
called "static" because they don't require an instance.

Date.parse() takes a string and returns a timestamp:

>>> Date.parse('Jan 1, 2008')

 1199174400000

Date.UTC() takes all parameters for year, month, day, and so on, and produces a
timestamp in Universal time.

>>> Date.UTC(2008, 0, 1)

 1199145600000

Chapter 4

[133]

Because the new Date() constructor can accept timestamps, you can pass the result
of Date.UTC() to it. Using the following example you can see how UTC() works with
universal time, while new Date() works with local time:

>>> new Date(Date.UTC(2008, 0, 1));

 Mon Dec 31 200� 16:00:00 GMT-0800 (Pacific Standard Time)

>>> new Date(2008, 0, 1);

 Tue Jan 01 2008 00:00:00 GMT-0800 (Pacific Standard Time)

Let's see one final example of working with the Date object. I was curious about
which day my birthday falls on in 2012:

>>> var d = new Date(2012, 5, 20);
>>> d.getDay();

 3

Starting the count from 0 (Sunday), 3 means Wednesday. Is that so?

>>> d.toDateString();

 "Wed Jun 20 2012"

OK, Wednesday is good but not necessarily the best day for a party. So how about
a loop that tells how many times June 20 is a Friday from year 2012 to year 3012.
Actually, let's see the distribution of all the days of the week. (After all, with all the
medical progress, we're all going to be alive and kicking in 3012.)

First, let's initialize an array with seven elements, one for each day of the week.
These will be used as counters. As we loop our way up to 3012, we'll increment
the counters.

var stats = [0,0,0,0,0,0,0];

The loop:

for (var i = 2012; i < 3012; i++) {
 stats[new Date(i, 5, 20).getDay()]++;
}

And the result:

>>> stats;

 [139, 145, 139, 146, 143, 143, 145]

143 Fridays and 145 Saturdays. Woo-hoo!

Objects

[134]

RegExp
Regular expressions provide a powerful way to search and manipulate text. If you're
familiar with SQL, you can think of regular expressions as being somewhat similar
to SQL: you use SQL to find and update data inside a database, and you use regular
expressions to find and update data inside a piece of text.

Different languages have different implementations (think "dialects") of the regular
expressions syntax. JavaScript uses the Perl 5 syntax.

Instead of saying "regular expression", people often shorten it to "regex" or "regexp".

A regular expression consists of:

A pattern you use to match text
Zero or more modifiers (also called flags) that provide more instructions on
how the pattern should be applied

The pattern can be as simple as literal text to be matched verbatim, but that is rare
and in such cases you're better off using indexOf(). Most of the times, the pattern is
more complex and could be difficult to understand. Mastering regular expressions
patterns is a large topic, which won't be discussed in details here; instead, you'll see
what JavaScript provides in terms of syntax, objects and methods in order to support
the use of regular expressions. You can also refer to Appendix D as a reference when
writing patterns.

JavaScript provides the RegExp() constructor which allows you to create regular
expression objects.

>>> var re = new RegExp("j.*t");

There is also the more convenient regexp literal:

>>> var re = /j.*t/;

In the example above, j.*t is the regular expression pattern. It means, "Match
any string that starts with j, ends with t and has zero or more characters in
between". The asterisk * means "zero or more of the preceding"; the dot (.) means
"any character". The pattern needs to be placed in quotation marks when used in a
RegExp() constructor.

•

•

Chapter 4

[135]

Properties of the RegExp Objects
The regular expression objects have the following properties:

global: If this property is false, which is the default, the search stops when
the first match is found. Set this to true if you want all matches.
ignoreCase: Case sensitive match or not, defaults to false.
multiline: Search matches that may span over more than one line,
defaults to false.
lastIndex: The position at which to start the search, defaults to 0.
source: Contains the regexp pattern.

None of these properties, except for lastIndex, can be changed once the object
has created.

The first three parameters represent the regex modifiers. If you create a regex object
using the constructor, you can pass any combination of the following characters as
a second parameter:

"g" for global
"i" for ignoreCase
"m" for multiline

These letters can be in any order. If a letter is passed, the corresponding modifier is
set to true. In the following example, all modifiers are set to true:

>>> var re = new RegExp('j.*t', 'gmi');

Let's verify:

>>> re.global;

 truetrue

Once set, the modifier cannot be changed:

>>> re.global = false;
>>> re.global

 true

To set any modifiers using the regex literal, you add them after the closing slash.

>>> var re = /j.*t/ig;
>>> re.global

 truetrue

•

•

•

•

•

•

•

•

Objects

[136]

Methods of the RegExp Objects
The regex objects provide two methods you can use to find matches: test() and
exec(). They both accept a string parameter. test() returns a boolean (true when
there's a match, false otherwise), while exec() returns an array of matched strings.
Obviously exec() is doing more work, so use test() unless you really need to do
something with the matches. People often use regular expressions for validation
purposes, in this case test() would probably be enough.

No match, because of the capital J:

>>> /j.*t/.test("Javascript")

 false

Case insensitive test gives a positive result:

>>> /j.*t/i.test("Javascript")

 true

The same test using exec() returns an array and you can access the first element as
shown below:

>>> /j.*t/i.exec("Javascript")[0]

 "Javascript""Javascript"

String Methods that Accept Regular Expressions
as Parameters
Previously in this chapter we talked about the String object and how you can use the
methods indexOf() and lastIndexOf() to search within text. Using these methods
you can only specify literal string patterns to search. A more powerful solution would
be to use regular expressions to find text. String objects offer you this ability.

The string objects provide the following methods that accept regular expression
objects as parameters:

match() returns an array of matches
search() returns the position of the first match
replace() allows you to substitute matched text with another string
split() also accepts a regexp when splitting a string into array elements

•

•

•

•

Chapter 4

[137]

search() and match()
Let's see some examples of using the methods search() and match(). First, you
create a string object.

>>> var s = new String('HelloJavaScriptWorld');

Using match() you get an array containing only the first match:

>>> s.match(/a/);

 ["a"]["a"]

Using the g modifier, you perform a global search, so the result array contains
two elements:

>>> s.match(/a/g);

 ["a", "a"]

Case insensitive match:

>>> s.match(/j.*a/i);

 ["Java"]

The search() method gives you the position of the matching string:

>>> s.search(/j.*a/i);

 55

replace()
replace() allows you to replace the matched text with some other string. The
following example removes all capital letters (it replaces them with blank strings):

>>> s.replace(/[A-Z]/g, '');

 "elloavacriptorld"

If you omit the g modifier, you're only going to replace the first match:

>>> s.replace(/[A-Z]/, '');

 "elloJavaScriptWorld"

Objects

[138]

When a match is found, if you want to include the matched text in the replacement
string, you can access it using $&. Here's how to add an underscore before the match
while keeping the match:

>>> s.replace(/[A-Z]/g, "_$&");

 "_Hello_Java_Script_World"

When the regular expression contains groups (denoted by parentheses), the matches
of each group are available as $1 is the first group, $2 the second and so on.

>>> s.replace(/([A-Z])/g, "_$1");

 "_Hello_Java_Script_World"

Imagine you have a registration form on your web page that asks for email address,
username, and password. The user enters their email, and then your JavaScript kicks
in and suggests the username, taking it from the email address:

>>> var email = "stoyan@phpied.com";
>>> var username = email.replace(/(.*)@.*/, "$1");
>>> username;

 "stoyan"

Replace callbacks
When specifying the replacement, you can also pass a function that returns a string.
This gives you the ability to implement any special logic you may need before
specifying the replacements.

>>> function replaceCallback(match){return "_" +
 match.toLowerCase();}
>>> s.replace(/[A-Z]/g, replaceCallback);

 "_hello_java_script_world"

The callback function will receive a number of parameters (we ignored all but the
first one in the example above):

The first parameter is the match
The last is the string being searched
The one before last is the position of the match
The rest of the parameters contain any strings matched by any groups in
your regex pattern

•
•
•
•

Chapter 4

[139]

Let's test this. First, let's create a variable to store the whole arguments array passed
to the callback function:

>>> var glob;

Next, we'll define a regular expression that has three groups and matches email
addresses in the format something@something.something:

>>> var re = /(.*)@(.*)\.(.*)/;

Finally, we’ll define a callback function that stores the arguments in glob and then
returns the replacement:

var callback = function(){
 glob = arguments;
 return arguments[1] + ' at ' + arguments[2] + ' dot ' +
 arguments[3];
}

We can then call this as follows:

>>> "stoyan@phpied.com".replace(re, callback);

 "stoyan at phpied dot com"

Here's what the callback function received as arguments:

>>> glob

 ["stoyan@phpied.com", "stoyan", "phpied", "com", 0,
 "stoyan@phpied.com"]

split()
You already know about the method split(), which creates an array from an input
string and a delimiter string. Let's take a string of comma-separated values and split it:

>>> var csv = 'one, two,three ,four';
>>> csv.split(',');

 ["one", " two", "three ", "four"]

Because the input string has some inconsistent spaces before and after the commas,
the array result has spaces too. With a regular expression, we can fix this, using \s*,
which means "zero or more spaces":

>>> csv.split(/\s*,\s*/)

 ["one", "two", "three", "four"]["one", "two", "three", "four"]

Objects

[140]

Passing a String When a regexp is Expected
One last thing to note is that the four methods you just saw (split(), match(),
search(), and replace()) can also take strings as opposed to regular expressions.
In this case the string argument is used to produce a new regex as if it was passed to
new RegExp().

Example of passing a string to replace:

>>> "test".replace('t', 'r')

 "rest"

The above is the same as:

>>> "test".replace(new RegExp('t'), 'r')

 "rest"

When you pass a string, you cannot set modifiers as you can with a normal
constructor or regex literal.

Error Objects
Errors happen, and it's good to have the mechanisms in place so that your code
can realize that there has been an error condition and recover from it in a graceful
manner. JavaScript provides the statements try, catch, and finally to help
you deal with errors. If an error occurs, an error object is thrown. Error objects
are created by using one of these built-in constructors: EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError. All of these constructors
inherit from the Error object.

Let's just cause an error and see what happens. An example of an error will be trying
to call a function that doesn't exist. Type this into the Firebug console:

>>> iDontExist();

You'll get something like this:

Chapter 4

[141]

In the bottom right corner, instead of Firebug's usual icon, you'll see:

If you open Firefox's error console (Tools | Error console), you'll see:

The display of errors can vary greatly between browsers and other host
environments. In Internet Explorer you might see something like this in the lower
left corner of the window:

If you double-click the message, you can get some more information:

Objects

[142]

Depending on your browser's configuration, you might not even notice that an
error occurred. However, you cannot assume that all of your users have disabled
the display of errors and it is your responsibility to ensure an error-free experience
for them. The error above propagated to the user because the code didn't try to
trap (catch) this error, it didn't expect the error and was unprepared for handling
it. Fortunately, it's really easy to trap the error. All you need is the try statement,
followed by a catch.

This code will not cause any of the error displays from the screenshots above

try {
 iDontExist();
} catch (e){
 // do nothing
}

Here you have:

The try statement, followed by a block of code
catch statement, followed by a variable name in parentheses and another
block of code

There is also an optional finally statement, not used in this example, which is
executed regardless of whether there was an error or not.

In the example above, the code block that follows the catch didn't do anything, but
this is the place where you put the code that will recover from the error, or at least
give some feedback to the user that you application is aware that there was a
special condition.

The variable e in the parentheses after the catch statement contains an error object.
Like any other object, it contains some useful properties and methods. Unfortunately,
different browsers implement these methods and properties differently, but there are
two properties that are consistently implemented—e.name and e.message.

Let's try this code now:

try {
 iDontExist();
} catch (e){
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This will present an alert() showing e.name and e.message and then another
alert() saying Finally!.

•

•

Chapter 4

[143]

In Firefox, the first alert will say ReferenceError: iDontExist is not defined. In
Internet Explorer it will be TypeError: Object expected. This tells us two things:

e.name contains the name of the constructor that was used to create the
error object.
Because the error objects are not consistent across host environments
(browsers), it would be somewhat tricky to have your code act differently
depending on the type of error (the value of e.name).

You can also create error objects yourself using new Error() or any of the other
error constructors, and then let the JavaScript engine know that there's an erroneous
condition, using the throw statement.

For example, imagine a scenario where you call maybeExists() function and
after that make some calculations. You want to trap all errors in a consistent way,
no matter whether the error is that maybeExists() doesn't exist or that your
calculations found a problem. Consider this code:

try {
 var total = maybeExists();
 if (total === 0) {
 throw new Error('Division by zero!');
 } else {
 alert(50 / total);
 }
} catch (e){
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This code will alert() different messages, depending on whether or not
maybeExists() is defined and the values it returns:

If maybeExists() doesn't exist, you get ReferenceError: maybeExists() is
not defined in Firefox and TypeError: Object expected in IE
If maybeExists() returns 0, you'll get Error: Division by zero!
If maybeExists() returns 2, you'll get an alert that says 25

In all cases, there will be a second alert that says Finally!

•

•

•

•

•

Objects

[144]

Instead of throwing a generic error throw new Error('Division by zero!'),
you can be more specific if you choose to, for example, by throwing throw new
RangeError('Division by zero!'). Alternatively, you don't need any constructor;
you can simply throw a normal object:

throw {
 name: "MyError",
 message: "OMG! Something terrible has happened"
}

Summary
In Chapter 2, you saw that there are five primitive data types (number, string,
boolean, null, and undefined) and we also said that everything that is not a primitive
piece of data is an object. Now you also know that:

Objects are like arrays but you specify the keys.
Objects contain properties.
Some of the properties can be functions (functions are data, var f =
function(){};). Properties that are functions are also called methods.
Arrays are actually objects with predefined numeric properties and a
length property.
Array objects have a number of useful methods (such as sort() or slice()).
Functions are also objects and they have properties (such as length and
prototype) and methods (such as call() and apply()).

Regarding the five primitive data types, apart from undefined (which is essentially
nothing) and null (which is also an object), the other three have corresponding
constructor functions: Number(), String(), and Boolean(). Using these, you
can create objects, called wrapper objects, which contain some useful methods for
working with primitive data elements.

Number(), String(), and Boolean() can be invoked:

With the new operator—to create new objects
Without new—to convert any value to a corresponding primitive data type

Other built-in constructor functions you're now familiar with include: Object(),
Array(), Function(), Date(), RegExp(), and Error(). You are also familiar with
Math, which is not a constructor.

Now you can see how objects have a central role in the JavaScript programming, as
pretty much everything is an object or can be wrapped into an object.

•

•

•

•

•

•

•

•

Chapter 4

[145]

Finally, let's wrap up the literal notations you're now familiar with.

Name literal constructor Example
Object {} new Object() {prop: 1}
Array [] new Array() [1,2,3,'test']

regular
expression

/pattern/modifiers new RegExp('pattern',
'modifiers')

/java.*/img

Exercises
1. Look at this code:
 function F() {
 function C() {
 return this;
 }
 return C();
 }
 var o = new F();

The value of this refers to the global object or the object o?

 2. What's the result of executing this piece of code?
 function C(){
 this.a = 1;
 return false;
 }
 console.log(typeof new C());

3. What's the result of executing the following piece of code?
 >>> c = [1, 2, [1, 2]]; 2, [1, 2]];
 >>> c.sort();
 >>> c.join('--');
 >>> console.log(c);

4. Imagine the String() constructor didn't exist. Create a constructor function
MyString() that acts like String() as closely as possible. You're not
allowed to use any built-in string methods or properties, and remember that
String() doesn't exist. You can use this code to test your constructor:

 >>> var s = new MyString('hello');
 >>> s.length;

 55

Objects

[146]

>>> s[0];

 "h"

>>> s.toString();

 "hello"

>>> s.valueOf();

 "hello"

>>> s.charAt(1);

 "e"

>>> s.charAt('2');

 "l"

>>> s.charAt('e');

 "h"

>>> s.concat(' world!');

 "hello world!"

>>> s.slice(1,3);

 "el"

>>> s.slice(0,-1);

 "hell"

>>> s.split('e');

 ["h", "llo"]

>>> s.split('l');

 ["he", "", "o"]

You can use a for-in to loop through the input string, treating it as
an array.

5. Update your MyString() constructor to include a reverse()method..

Chapter 4

[147]

 Try to leverage the fact that arrays have a reverse() method.

6. Imagine Array() doesn't exist and the array literal notation doesn't exist
either. Create a constructor called MyArray() that behaves as close to
Array() as possible. Test with this code:

 >>> var a = new MyArray(1,2,3,"test");
 >>> a.toString();

 "1,2,3,test"

 >>> a.length;

 4

 >>> a[a.length - 1]

 "test"

 >>> a.push('boo');

 5

 >>> a.toString();

 "1,2,3,test,boo"

 >>> a.pop();

 [1, 2, 3, "test"]

 >>> a.toString();

 "1,2,3,test"

 >>> a.join(',')

 "1,2,3,test"

 >>> a.join(' isn\'t ')

 "1 isn�t 2 isn�t 3 isn�t test"

Objects

[148]

If you found this exercise amusing, don't stop with the join(); go on with as many
methods as possible.

7. Imagine Math didn't exist. Create a MyMath object that also provides some
additional methods:

MyMath.rand(min, max, inclusive)—generates a random number
between min and max, inclusive if inclusive is true (default)
MyMath.min(array)—returns the smallest number in a given array
MyMath.max(array)—returns the largest number in a given array

•

•

•

Prototype
In this chapter you'll learn about the prototype property of the function objects.
Understanding how the prototype works is an important part of learning the
JavaScript language. After all, JavaScript is classified as having a prototype-based
object model. There's nothing particularly difficult about the prototype, but it is a
new concept and as such may sometimes take some time to sink in. It's one of these
things in JavaScript (closures are another) which, once you "get" them, they seem
so obvious and make perfect sense. As with the rest of the book, you're strongly
encouraged to type in and play around with the examples; this makes it much easier
to learn and remember the concepts.

The following topics are discussed in this chapter:

Every function has a prototype property and it contains an objectit contains an objectan object
Adding properties to the prototype object
Using the properties added to the prototype
The difference between own properties and properties of the prototype
__proto__, the secret link every object keeps to its prototype
Methods such as isPrototypeOf(), hasOwnProperty(), and
propertyIsEnumerable()

How to enhance built-in objects, such as arrays or strings

The prototype Property
The functions in JavaScript are objects and they contain methods and properties.
Some of the methods that you are already familiar with are apply() and call()
and some of the properties are length and constructor. Another property of the
function objects is prototype.

•

•

•

•

•

•

•

Prototype

[150]

If you define a simple function foo() you can access its properties as you would do
with any other object:

>>> function foo(a, b){return a * b;}
>>> foo.length

 22

>>> foo.constructor

 Function()Function()

prototype is a property that gets created as soon as you define the function. Its
initial value is an empty object.

>>> typeof foo.prototype

 "object""object"

It's as if you added this property yourself like this:

>>> foo.prototype = {}

You can augment this empty object with properties and methods. They won't have
any effect of the foo() function itself; they'll only be used when you use foo()
as a constructor.

Adding Methods and Properties Using
the Prototype
In the previous chapter you learned how to define constructor functions which can
be used to create (construct) new objects. The main idea was that inside a function
invoked with new you have access to the value this, which contains the object to be
returned by the constructor. Augmenting (adding methods and properties to) this
object is the way to add functionality to the object being created.

Let's take a look at the constructor function Gadget() which uses this to add two
properties and one method to the objects it creates.

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.whatAreYou = function(){
 return 'I am a ' + this.color + ' ' + this.name;
 }
}

Chapter 5

[151]

Adding methods and properties to the prototype property of the constructor
function is another way to add functionality to the objects this constructor produces.
Let's add two more properties, price and rating, and a getInfo() method. Since
prototype contains an object, you can just keep adding to it like this:

Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;
Gadget.prototype.getInfo = function() {
 return 'Rating: ' + this.rating + ', price: ' + this.price;
};

Instead of adding to the prototype object, another way to achieve the above result is
to overwrite the prototype completely, replacing it with an object of your choice:

Gadget.prototype = {
 price: 100,
 rating: 3,
 getInfo: function() {
 return 'Rating: ' + this.rating + ', price: ' + this.price;
 }
};

Using the Prototype's Methods and Properties
All the methods and properties you have added to the prototype are directly
available as soon as you create a new object using the constructor. If you create a
newtoy object using the Gadget() constructor, you can access all the methods and
properties already defined.

>>> var newtoy = new Gadget('webcam', 'black');
>>> newtoy.name;

 "webcam""webcam"

>>> newtoy.color;

 "black""black"

>>> newtoy.whatAreYou();

 "I am a black webcam""I am a black webcam"

>>> newtoy.price;

 100100

Prototype

[152]

>>> newtoy.rating;

 33

>>> newtoy.getInfo();

 "Rating: 3, price: 100"

It's important to note that the prototype is "live". Objects are passed by reference in
JavaScript, and therefore the prototype is not copied with every new object instance.
What does this mean in practice? It means that you can modify the prototype at
any time and all objects (even those created before the modification) will inherit the
changes.

Let's continue the example, adding a new method to the prototype:

Gadget.prototype.get = function(what) {
 return this[what];
};

Even though newtoy was created before the get() method was defined, newtoy will
still have access to the new method:

>>> newtoy.get('price');

 100

>>> newtoy.get('color');

 "black"

Own Properties versus prototype Properties
In the example above getInfo() used this internally to address the object. It
could've also used Gadget.prototype to achieve the same result:

Gadget.prototype.getInfo = function() {
 return 'Rating: ' + Gadget.prototype.rating + ', price: ' + Gadget.
prototype.price;
};

What's is the difference? To answer this question, let's examine how the prototype
works in more detail.

Let's again take our newtoy object:

>>> var newtoy = new Gadget('webcam', 'black');

Chapter 5

[153]

When you try to access a property of newtoy, say newtoy.name the JavaScript
engine will look through all of the properties of the object searching for one called
name and, if it finds it, will return its value.

>>> newtoy.name

 "webcam"

What if you try to access the rating property? The JavaScript engine will examine all
of the properties of newtoy and will not find the one called rating. Then the script
engine will identify the prototype of the constructor function used to create this
object (same as if you do newtoy.constructor.prototype). If the property is found
in the prototype, this property is used.

>>> newtoy.rating

 3

This would be the same as if you accessed the prototype directly. Every object has a
constructor property, which is a reference to the function that created the object, so in
our case:

>>> newtoy.constructor

 Gadget(name, color)

>>> newtoy.constructor.prototype.rating

 3

Now let's take this lookup one step further. Every object has a constructor. The
prototype is an object, so it must have a constructor too. Which in turn has a
prototype. In other words you can do:

>>> newtoy.constructor.prototype.constructor

 Gadget(name, color)

>>> newtoy.constructor.prototype.constructor.prototype

 Object price=100 rating=3

This might go on for a while, depending on how long the prototype chain is, butthe prototype chain is, butis, but
you eventually end up with the built-ineventually end up with the built-inend up with the built-in Object() object, which is the highest-level
parent. In practice, this means that if you try newtoy.toString() and newtoy
doesn't have an own toString() method and its prototype doesn't either, in the end
you'll get the Object's toString()

>>> newtoy.toString()

 "[object Object]""[object Object]"

Prototype

[154]

Overwriting Prototype's Property with
Own Property
As the above discussion demonstrates, if one of your objects doesn't have a certain
property of its own, it can use one (if exists) somewhere up the prototype chain.
What if the object does have its own property and the prototype also has one with
the same name? The own property takes precedence over the prototype's.

Let's have a scenario where a property name exists both as an own property and as a
property of the prototype object:

function Gadget(name) {
 this.name = name;
}
Gadget.prototype.name = 'foo';

 "foo"

Creating a new object and accessing its name property gives you the object's own
name property.

>>> var toy = new Gadget('camera');
>>> toy.name;

 "camera""camera"

If you delete this property, the prototype's property with the same name
"shines through":

>>> delete toy.name;

 truetrue

>>> toy.name;

 "foo""foo"

Of course, you can always re-create the object's own property:

>>> toy.name = 'camera';
>>> toy.name;

 "camera""camera"

Chapter 5

[155]

Enumerating Properties
If you want to list all properties of an object, you can use a for-in loop. In Chapter 2,
you saw how you could loop through all the elements of an array:

var a = [1, 2, 3];
for (var i in a) {
 console.log(a[i]);
}

Arrays are objects, so you can expect that the for-in loop works for objects too:

var o = {p1: 1, p2: 2};
for (var i in o) {
 console.log(i + '=' + o[i]);
}

This produces:

 p1=1

 p2=2

There are some details to be aware of:

Not all properties show up in a for-in loop. For example, the length (for
arrays) and constructor properties will not show up. The properties that
do show up are called enumerable. You can check which ones are enumerable
with the help of the propertyIsEnumerable() method that every
object provides.
Prototypes that come through the prototype chain will also show up,
provided they are enumerable. You can check if a property is an own
property versus prototype's using the hasOwnProperty() method.
propertyIsEnumerable() will return false for all of the prototype's
properties, even those that are enumerable and will show up in the
for-in loop.

Let's see these methods in action. Take this simplified version of Gadget():

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.someMethod = function(){return 1;}
}
Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;

•

•

•

Prototype

[156]

Creating a new object:

var newtoy = new Gadget('webcam', 'black');

Now if you loop using a for-in, you see of the object's all properties, including
those that come from the prototype:

for (var prop in newtoy) {
 console.log(prop + ' = ' + newtoy[prop]);
}

The result also contains the object's methods (as methods are just properties that
happen to be functions):

 name = webcam

 color = black

 someMethod = function () { return 1; }

 price = 100

 rating = 3

If you want to distinguish between the object's own properties versus the prototype's
properties, use hasOwnProperty(). Try first:

>>> newtoy.hasOwnProperty('name')

 truetrue

>>> newtoy.hasOwnProperty('price')

 falsefalse

Let's loop again, but showing only own properties:

for (var prop in newtoy) {
 if (newtoy.hasOwnProperty(prop)) {
 console.log(prop + '=' + newtoy[prop]);
 }
}

The result:

 name=webcam

 color=black

 someMethod=function () { return 1; }

Chapter 5

[157]

Now let's try propertyIsEnumerable(). This method returns true for own
properties that are not built-in:

>>> newtoy.propertyIsEnumerable('name')

 truetrue

Most built-in properties and methods are not enumerable:

>>> newtoy.propertyIsEnumerable('constructor')

 falsefalse

Any properties coming down the prototype chain are not enumerable:

>>> newtoy.propertyIsEnumerable('price')

 falsefalse

Note, however, that such properties are enumerable if you reach the object contained
in the prototype and invoke its propertyIsEnumerable().

>>> newtoy.constructor.prototype.propertyIsEnumerable('price')

 truetrue

isPrototypeOf()
Every object also gets the isPrototypeOf() method. This method tells you whether
that specific object is used as a prototype of another object.

Let's take a simple object monkey.

var monkey = {
 hair: true,
 feeds: 'bananas',
 breathes: 'air'
};

Now let's create a Human() constructor function and set its prototype property to
point to monkey.

function Human(name) {
 this.name = name;
}
Human.prototype = monkey;

Prototype

[158]

Now if you create a new Human object called george and ask: "Is monkey george's
prototype?", you'll get true.

>>> var george = new Human('George');
>>> monkey.isPrototypeOf(george)

 truetrue

The Secret __proto__ Link
As you know already, the prototype property will be consulted when you try to
access a property that does not exist in the current object.

Let's again have an object calledhave an object calledan object called monkey and use it as a prototype when creating
objects with the Human() constructor.

var monkey = {
 feeds: 'bananas',
 breathes: 'air'
};
function Human() {}
Human.prototype = monkey;

Now let's create a developer object and give it some properties:

var developer = new Human();
developer.feeds = 'pizza';
developer.hacks = 'JavaScript';

Now let's consult some of the properties. hacks is a property of the
developer object.

>>> developer.hacks

 "JavaScript""JavaScript"

feeds could also be found in the object.

>>> developer.feeds

 "pizza""pizza"

breathes doesn't exist as a property of the developer object, so the prototype is
looked up, as if there is a secret link pointing to the prototype object.

>>> developer.breathes

 "air""air"

Chapter 5

[159]

Can you get from the developer object to the prototype object? Well, you could,
using constructor as the middleman, so having something like developer.
constructor.prototype should point to monkey. The problem is that this is not
very reliable, because constructor is more for informational purposes and can
easily be overwritten at any time. You can overwrite it with something that's not
even an object and this will not affect the normal functioning of the prototype chain.

Let's set the constructor property to some string:

>>> developer.constructor = 'junk'

 "junk""junk"

It seems like the prototype is now all messed up:

>>> typeof developer.constructor.prototype

 "undefined""undefined"

...but it isn't, because the developer still breathes "air":

>>> developer.breathes

 "air""air"

This shows that the secret link to the prototype still exists. The secret link is exposed
in Firefox as the __proto__ property (the word "proto" with two underscores before
and two after).

>>> developer.__proto__

 Object feeds=bananas breathes=airObject feeds=bananas breathes=air

You can use this secret property for learning purposes but it's not a good idea to use
it in your real scripts, because it does not exist in Internet Explorer, so your scripts
won't be portable. For example, let's say you have created a number of objects with
monkey as a prototype and now you want to change something in all objects. You can
change monkey and all instances will inherit the change:

>>> monkey.test = 1

 11

>>> developer.test

 11

Prototype

[160]

__proto__ is not the same as prototype. __proto__ is a property of the instances,
whereas prototype is a property of the constructor functions.

>>> typeof developer.__proto__

 "object""object"

>>> typeof developer.prototype

 "undefined""undefined"

Once again, you should use __proto__ only for learning or debugging purposes.

Augmenting Built-in Objects
The built-in objects such as the constructor functions Array, String, and even
Object, and Function can be augmented through their prototypes, which means
that you can, for example, add new methods to the Array prototype and in this way
make them available to all arrays. Let's do this.

In PHP there is a function called in_array() that tells you if a value exists in an
array. In JavaScript there is no inArray() method, so let's implement it and add it to
Array.prototype.

Array.prototype.inArray = function(needle) {
 for (var i = 0, len = this.length; i < len; i++) {
 if (this[i] === needle) {
 return true;
 }
 }
 return false;
}

Now all arrays will have the new method. Let's test:

>>> var a = ['red', 'green', 'blue'];
>>> a.inArray('red');

 truetrue

>>> a.inArray('yellow');

 falsefalse

Chapter 5

[161]

That was nice and easy! Let's do it again. Imagine your application often needs to
reverse strings and you feel there should be a built-in reverse() method for string
objects. After all, arrays have reverse(). You can easily add this reverse() method
to the String prototype, borrowing Array.prototype.reverse() (there was a
similar exercise at the end of Chapter 4).

String.prototype.reverse = function() {
 return Array.prototype.reverse.apply(this.split('')).join('');
}

This code uses split() to create an array from a string, then calls the reverse()
method on this array, which produces a reversed array. The result array is turned
back into a string using join(). Let's test the new method:

>>> "Stoyan".reverse();

 "nayotS""nayotS"

Augmenting Built-in Objects—Discussion
Augmenting built-in objects through the prototype is a very powerful technique and
you can use it to shape JavaScript any way you like. Because of its power, you should
always thoroughly consider your options before using this approach.

Take the popular JavaScript library called Prototype. Its creator liked this approach
so much that he even named the library after it. Using this library, you can work
with JavaScript using methods very similar to the Ruby language.

YUI (Yahoo! User Interface) library is another popular JavaScript library. Its creators
are on the exact opposite side of the spectrum: they won't modify the built-in objects
in any way. The reason is that once you know JavaScript, you're expecting it to work
the same way, no matter which library you're using. Modifying core objects could
only confuse the user of the library and create unexpected errors.

The fact is that JavaScript changes and browsers come up with new versions that
support more features. What you consider a missing feature today and decide to
augment a prototype for, might be a built-in method tomorrow. In this case, your
method is no longer needed. However, what if you have already written a lot of code
that uses the method and your method is slightly different from the new built-in
implementation?

Prototype

[162]

The very least you can do is check if the method exists before implementing it. Our
last example should read something like:

if (!String.prototype.reverse) {
 String.prototype.reverse = function() {
 return Array.prototype.reverse.apply(this.split('')).join('');
 }
}

Best Practice
If you decide to augment the prototype of built-in objects with a new
property, do check for existence of the new property first.

Some Prototype gotchas
Here are two interesting behaviors to consider when dealing with prototypes:

The prototype chain is live with the exception of when you completely
replace the prototype object
prototype.constructor is not reliable

Creating a simple constructor function and two objects:

>>> function Dog(){this.tail = true;}
>>> var benji = new Dog();
>>> var rusty = new Dog();

Even after you create the objects, you can still add properties to the prototype and
the objects will have access to the new properties. Let's throw in the method say():

>>> Dog.prototype.say = function(){return 'Woof!';}

Both objects have access to the new method:

>>> benji.say();

 "Woof!""Woof!"

>>> rusty.say();

 "Woof!""Woof!"

Up to this point if you consult your objects, asking which constructor function was
used to create them, they'll report it correctly.

>>> benji.constructor;

 Dog()Dog()

•

•

Chapter 5

[163]

>>> rusty.constructor;

 Dog()Dog()

It is interesting to note that if you ask what is the constructor of the prototype object,
you'll also get Dog(), which is not quite correct. The prototype is just a normal object
created with Object(). It doesn't have any of the properties of an object constructed
with Dog().

>>> benji.constructor.prototype.constructor

 Dog()Dog()

>>> typeof benji.constructor.prototype.tail

 "undefined""undefined"

Now let's completely overwrite the prototype object with a brand new object:

>>> Dog.prototype = {paws: 4, hair: true};

It turns out that our old objects do not get access to the new prototype's properties;
they still keep the secret link pointing to the old prototype object:

>>> typeof benji.paws

 "undefined""undefined"

>>> benji.say()

 "Woof!""Woof!"

>>> typeof benji.__proto__.say

 "function""function"

>>> typeof benji.__proto__.paws

 "undefined""undefined"

Any new objects you create from now on will use the updated prototype:

>>> var lucy = new Dog();
>>> lucy.say()

 TypeError: lucy.say is not a functionTypeError: lucy.say is not a function

>>> lucy.paws

 44

Prototype

[164]

The secret __proto__ link points to the new prototype object:

>>> typeof lucy.__proto__.say

 "undefined""undefined"

>>> typeof lucy.__proto__.paws

 "number""number"

Now the constructor property of the new objects no longer reports correctly. It
should point to Dog(), but instead it points to Object().

>>> lucy.constructor

 Object()Object()

>>> benji.constructor

 Dog()Dog()

The most confusing part is when you look up the prototype of the constructor:

>>> typeof lucy.constructor.prototype.paws

 "undefined""undefined"

>>> typeof benji.constructor.prototype.paws

 "number""number"

The following would have fixed all of the unexpected behavior described above:

>>> Dog.prototype = {paws: 4, hair: true};
>>> Dog.prototype.constructor = Dog;

Best Practice
When you overwrite the prototype, it is a good idea to reset the
constructor property.

Chapter 5

[165]

Summary
Let's summarize the most important topics you have learned in this chapter.

All functions have a property called prototype. Initially it contains an empty
object.
You can add properties and methods to the prototype object. You can even
replace it completely with an object of your choice.
When you create objects using a function as a constructor (with new), the
objects will have a secret link pointing to their prototype, and can access the
prototype's properties as their own.
Own properties take precedence over prototype's properties with the
same name.
Use the hasOwnProperty() method to differentiate between own properties
and prototype properties.
There is a prototype chain: if your object foo doesn't have a property
bar, when you do foo.bar, JavaScript will look for a bar property of
the prototype. If none is found, it will keep searching in the prototype's
prototype, then the prototype of the prototype's prototype and keep going all
the way up to the highest-level parent Object.
You can augment built-in constructor functions and all objects will see
your additions. Assign a function to Array.prototype.flip and all arrays
will immediately get a flip() method, [1,2,3].flip(). Do check if the
method/property you want to add already exists, so you can future-proof
your scripts.

Exercises
1. Create an object called shape that has a type property and a

getType() method.
2. Define a Triangle() constructor function whose prototype is shape.

Objects created with Triangle() should have three own properties—a, b, c
representing the sides of a triangle.

3. Add a new method to the prototype called getPerimeter().

•

•

•

•

•

•

•

Prototype

[166]

4. Test your implementation with this code:
 >>> var t = new Triangle(1, 2, 3);
 >>> t.constructor

 Triangle(a, b, c)Triangle(a, b, c)

 >>> shape.isPrototypeOf(t)

 truetrue

 >>> t.getPerimeter()

 66

 >>> t.getType()

 "triangle""triangle"

5. Loop over t showing only own properties and methods (none of the
prototype's).

6. Make this code work:

 >>> [1,2,3,4,5,6,7,8,9].shuffle()

 [2, 4, 1, 8, 9, 6, 5, 3, 7][2, 4, 1, 8, 9, 6, 5, 3, 7]

Inheritance
If you go back to Chapter 1 and review the section that listed the different aspects of
object-oriented programming, you will see that you already know how most of them
apply to JavaScript. You know what objects, methods, and properties are. You know
that there are no classes in JavaScript, although you can fake them with constructor
functions. Encapsulation? Yes, the objects encapsulate both the data and the means
(methods) to do something with the data. Aggregation? Sure, an object can contain
other objects. Actually, this is almost always the case as methods are functions, and
functions are also objects. Now let's focus on the inheritance part. This is one of the
most interesting features, as it allows you to reuse existing code, thus promoting
laziness, which is probably what brought us to computer programming in the
first place.

JavaScript is a dynamic language and there is usually more than one way to achieve
any given task. Inheritance is not an exception to this and in this chapter, you'll see
some common patterns for implementing inheritance, starting with the way specified
in the ECMAScript standard. Having a good understanding of these patterns will
help you pick the right one, or the right mix, depending on your project and
your style.

You'll see the name of Douglas Crockford mentioned a few times in this chapter;
it's hard to talk about JavaScript and inheritance without quoting his work. In
addition to the videos, mentioned in Chapter 1 (http://developer.yahoo.com/
yui/theater/), you can also read the articles on his website at
http://crockford.com/javascript.

Prototype Chaining
Let's start with the default way of implementing inheritance—inheritance chaining
through the prototype.

Inheritance

[168]

As you already know, every function has a prototype property, which contains an
object. When this function is invoked using the new operator, an object is created and
this object has a secret link to the prototype object. The secret link (called __proto__
in some environments) allows methods and properties of the prototype object to be
used as if they belong to the newly-created object.

The prototype object is just a regular object and therefore it also contains a link to its
prototype. And so a chain is created, called a prototype chain.

__proto__

__proto__

__proto__
C

B

A

In this illustration, an object A contains a number of properties. One of the properties
is the hidden __proto__ property, which points to another object, B. B's __proto__
property points to C. This chain ends with the Object object, which is the highest-
level parent, and every object inherits from it.

This is all good to know, but how does it help us? The practical side is that when
object A lacks a property but B has it, A can still access this property as its own. The
same applies if B also doesn't have the required property, but C does. This is how
inheritance takes place: an object can access any property found somewhere up the
inheritance chain.

Throughout the rest of this chapter, you'll see different examples that use the
following hierarchy: a generic Shape parent is inherited by 2D shape, which in turn
is inherited by any number of specific two-dimensional shapes such as Triangle,
Rectangle, and so on.

Prototype Chaining Example
Prototype chaining is the default way to implement inheritance, and is described in
the ECMAScript standard. In order to implement our hierarchy, let's define three
constructor functions.

function Shape(){
 this.name = 'shape';
 this.toString = function() {return this.name;};
}

Chapter 6

[169]

function TwoDShape(){
 this.name = '2D shape';
}

function Triangle(side, height) {
 this.name = 'Triangle';
 this.side = side;
 this.height = height;
 this.getArea = function(){return this.side * this.height / 2;};
}

The code that performs the inheritance magic is as follows:

TwoDShape.prototype = new Shape();
Triangle.prototype = new TwoDShape();

What is happening here? You take the object contained in the prototype property of
TwoDShape and instead of augmenting it with individual properties, you completely
overwrite it with another object, created by invoking the Shape() constructor with
new. The same for Triangle: its prototype is replaced with an object created by new
TwoDShape(). The important thing to note, especially if you are already familiar
with a language such as Java, C++, or PHP, is that JavaScript works with objects,
not classes. You need to create an instance using the new Shape() constructor and
after that you can inherit its properties; you don't inherit from Shape() directly.
Additionally, after inheriting, you can modify Shape(), overwrite it or even delete it,
and this will have no effect on TwoDShape, because all you needed was one instance
to inherit from.

As you know from the previous chapter, when you completely overwrite the
prototype (as opposed to just augmenting it), this has some negative side effects
on the constructor property. Therefore, it's a good idea to reset the constructor
after inheriting:

TwoDShape.prototype.constructor = TwoDShape;
Triangle.prototype.constructor = Triangle;

Now let's test what we have so far. Creating a Triangle object and calling its own
getArea() method works as expected:

>>> var my = new Triangle(5, 10);
>>> my.getArea();

 2525

Inheritance

[170]

Although the my object doesn't have its own toString() method, it inherited one
and can call it. Note how the inherited method toString() binds the this object
to my.

>>> my.toString()

 "Triangle""Triangle"

It's interesting to note what the JavaScript engine does when you call
my.toString():

It loops through all of the properties of my and doesn't find a method called
toString().
It looks at the object that my.__proto__ points to; this object is the instance
new TwoDShape() created during the inheritance process.
Now the JavaScript engine loops through the instance of TwoDShape and
doesn't find a toString() method. It then checks the __proto__ of that
object. This time __proto__ points to the instance created by new Shape().
The instance of new Shape() is examined and toString() is finally found!
This method is invoked in the context of my, meaning that this points to my.

If you ask my, "who's your constructor?" it will report it correctly because of the
constructor property reset that we did after inheriting:

>>> my.constructor

 Triangle(side, height)Triangle(side, height)

Using the instanceof operator you can validate that my is an instance of all
three constructors.

>>> my instanceof Shape

 truetrue

>>> my instanceof TwoDShape

 truetrue

>>> my instanceof Triangle

 truetrue

>>> my instanceof Array

 falsefalse

•

•

•

•

•

Chapter 6

[171]

The same happens when you call the isPropertyOf() method of the constructors
passing my:

>>> Shape.prototype.isPrototypeOf(my)

 truetrue

>>> TwoDShape.prototype.isPrototypeOf(my)

 truetrue

>>> Triangle.prototype.isPrototypeOf(my)

 truetrue

>>> String.prototype.isPrototypeOf(my)

 falsefalse

You can also create objects using the other two constructors. Objects created with new
TwoDShape() also get the method toString(), inherited from Shape()

>>> var td = new TwoDShape();
>>> td.constructor

 TwoDShape()TwoDShape()

>>> td.toString()

 "2D shape""2D shape"

>>> var s = new Shape();
>>> s.constructor

 Shape()

Moving Shared Properties to the Prototype
When you create objects using a constructor function, own properties are added
using this. This could be inefficient in cases where properties don't change across
instances. In the example above, Shape() was defined like so:

function Shape(){
 this.name = 'shape';
}

This means that every time you create a new object using new Shape() a new name
property will be created and stored somewhere in memory. The other option is to
have the name property added to the prototype and shared among all the instances:

function Shape(){}
Shape.prototype.name = 'shape';

Inheritance

[172]

Now every time you create an object using new Shape(), this object will not have
its own property name, but will use the one added to the prototype. This is more
efficient, but you should only use it for properties that don't change from one
instance to another. Methods are ideal for this type of sharing.

Let's improve on the example above by adding all methods and suitable properties
to the prototype. In the case of Shape() and TwoDShape() everything is meant to
be shared:

function Shape(){}
// augment prototype
Shape.prototype.name = 'shape';
Shape.prototype.toString = function() {return this.name;};
function TwoDShape(){}
// take care of inheritance
TwoDShape.prototype = new Shape();
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

As you can see you have to take care of inheritance first before augmenting the
prototype, otherwise anything you add to TwoDShape.prototype will be wiped out
when you inherit.

The Triangle constructor is a little different, because every object it creates is a new
triangle, which may have different dimensions. So it's good to keep side and height
as its own properties and share the rest. The method getArea(), for example, is
the same regardless of the actual dimensions of each triangle. Again, you do the
inheritance bit first and then augment the prototype.

function Triangle(side, height) {
 this.side = side;
 this.height = height;
}
// take care of inheritance
Triangle.prototype = new TwoDShape();
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function(){return this.side * this.height
/ 2;};

All the test code from above will work in exactly the same way, for example:

>>> var my = new Triangle(5, 10);
>>> my.getArea()

 2525

Chapter 6

[173]

>>> my.toString()

 "Triangle""Triangle"

There is only a slight behind-the-scenes difference when calling my.toString(). The
difference is that there is one more lookup to be done before the method is found in
the Shape.prototype, as opposed to in the new Shape() instance like it was in the
previous example.

You can also play with hasOwnProperty() to see the difference between the own
property versus a property coming down the prototype chain.

>>> my.hasOwnProperty('side')

 truetrue

>>> my.hasOwnProperty('name')

 falsefalse

The calls to isPrototypeOf() and the instanceof operator from the previous
example will work in exactly the same way, like:

>>> TwoDShape.prototype.isPrototypeOf(my)

 truetrue

>>> my instanceof Shape

 truetrue

Inheriting the Prototype Only
As explained above, for reasons of efficiency you should consider adding the
reusable properties and methods to the prototype. If you do so, then it's probably
a good idea to inherit only the prototype, because all the reusable code is there.
This means that inheriting the object contained in Shape.prototype is better than
inheriting the object created with new Shape(). After all, new Shape() will only
give you own shape properties which are not meant to be reused (otherwise they
would be in the prototype). You gain a little more efficiency by:

Not creating a new object for the sake of inheritance alone, and
Having less lookups during runtime when it comes to searching for
toString() for example.

•

•

Inheritance

[174]

Here's the updated code; the changes are highlighted:

function Shape(){}
// augment prototype
Shape.prototype.name = 'shape';
Shape.prototype.toString = function() {return this.name;};

function TwoDShape(){}
// take care of inheritance
TwoDShape.prototype = Shape.prototype;
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
 this.side = side;
 this.height = height;
}

// take care of inheritance
Triangle.prototype = TwoDShape.prototype;
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function(){return this.side * this.height
/ 2;}

The test code will give the same result:

>>> var my = new Triangle(5, 10);
>>> my.getArea()

 2525

>>> my.toString()

 "Triangle""Triangle"

What's the difference in the lookups when calling my.toString()? First, as usual,
the JavaScript engine looks for a method toString() of the my object itself. The
engine doesn't find such a method, so it inspects the prototype. The prototype turns
out to be pointing to the same object that TwoDShape's prototype points to and also
the same object that Shape.prototype points to. Remember that objects are not
copied by value, but only by reference. So the lookup is only a two-step process as
opposed to four (in the previous example) or three (in the first example).

Chapter 6

[175]

Simply copying the prototype is more efficient but it has a side effect: because all
of the children and parents point to the same object, when a child modifies the
prototype, the parents get the changes, and so do the siblings.

Look at this line:

Triangle.prototype.name = 'Triangle';

It changes the name property, so it effectively changes Shape.prototype.name too. If
you create an instance using new Shape(), its name property will say "Triangle":

>>> var s = new Shape()
>>> s.name

 "Triangle""Triangle"

A Temporary Constructor—new F()
A solution to the problem outlined above, where all prototypes point to the same
object and the parents get children's properties, is to use an intermediary to break the
chain. The intermediary is in the form of a temporary constructor function. Creating
an empty function F() and setting its prototype to the prototype of the parent
constructor, allows you to call new F() and create objects that have no properties of
their own, but inherit everything from the parent's prototype.

Let's take a look at the modified code:

function Shape(){}
// augment prototype
Shape.prototype.name = 'shape';
Shape.prototype.toString = function() {return this.name;};

function TwoDShape(){}
// take care of inheritance
var F = function(){};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
 this.side = side;
 this.height = height;
}

Inheritance

[176]

// take care of inheritance
var F = function(){};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function(){return this.side * this.height
/ 2;};

Creating my triangle and testing the methods:

>>> var my = new Triangle(5, 10);
>>> my.getArea()

 2525

>>> my.toString()

 "Triangle""Triangle"

Using this approach, we keep the prototype chain in place and the parents'
properties are not overwritten by the children:

>> my.__proto__.__proto__.__proto__.constructor

 Shape()Shape()

>>> var s = new Shape();
>>> s.name

 "shape""shape"

At the same time, this approach supports the idea that only properties and methods
added to the prototype should be inherited, and own properties should not be
inherited. The rationale behind this is are that own properties are likely to be too
specific to be reusable.

Uber—Access to the Parent from a
Child Object
Classical OO languages usually have a special syntax that gives you access to
the parent class, also referred to as superclass. This could be convenient when a
child wants to have a method that does everything the parent's method does plus
something in addition. In such cases, the child calls the parent's method with the
same name and works with the result.

Chapter 6

[177]

In JavaScript, there is no such special syntax, but it's easy to achieve the same
functionality. Let's rewrite the last example and, while taking care of inheritance,
also create an uber property that points to the parent's prototype object.

function Shape(){}
// augment prototype
Shape.prototype.name = 'shape';
Shape.prototype.toString = function(){
 var result = [];
 if (this.constructor.uber) {
 result[result.length] = this.constructor.uber.toString();
 }
 result[result.length] = this.name;
 return result.join(', ');
};

function TwoDShape(){}
// take care of inheritance
var F = function(){};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
TwoDShape.uber = Shape.prototype;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
 this.side = side;
 this.height = height;
}

// take care of inheritance
var F = function(){};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
Triangle.uber = TwoDShape.prototype;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function(){return this.side * this.height
/ 2;}

The new things here are:

The way the uber property is set to point to the parent's prototype
The updated toString()

•

•

Inheritance

[178]

Previously, toString() only returned this.name. Now, in addition to that, there
is a check to see whether this.constructor.uber exists and, if it does, call its
toString() first. this.constructor is the function itself, and this.constructor.
uber points to the parent's prototype. The result is that when you call toString()
for a Triangle instance, all toString() methods up the prototype chain are called:

>>> var my = new Triangle(5, 10);
>>> my.toString()

 "shape, 2D shape, Triangle""shape, 2D shape, Triangle"

The name of the property uber could've been "superclass" but this would suggest
that JavaScript has classes. Ideally it could've been "super" (as in Java), but "super"
is a reserved word in JavaScript. The German word "über" suggested by Douglass
Crockford, means more or less the same as "super" and, you have to admit, it
sounds uber-cool.

Isolating the Inheritance Part into
a Function
Let's move the code that takes care of all of the inheritance details into a reusable
extend() function:

function extend(Child, Parent) {
 var F = function(){};
 F.prototype = Parent.prototype;
 Child.prototype = new F();
 Child.prototype.constructor = Child;
 Child.uber = Parent.prototype;
}

Using this function (or your own custom version of it) will help you keep your
code clean with regard to the repetitive inheritance-related tasks. This way you can
inherit by simply using:

extend(TwoDShape, Shape);

and

extend(Triangle, TwoDShape);

This approach is the way the YUI (Yahoo! User Interface) library implements
inheritance through its extend() method. For example, if you use YUI and you want
your Triangle to inherit from Shape, you use:

YAHOO.lang.extend(Triangle, Shape)

Chapter 6

[179]

Copying Properties
Now let's try a slightly different approach. Since inheritance is about reusing code,
you can simply copy properties from the parent to the child. Keeping the same
interface as the extend() function above, you can create a function extend2()
which takes two constructor functions and copies all of the properties from the
parent's prototype to the child's prototype. This will include methods, as methods
are just properties that happen to be functions.

function extend2(Child, Parent) {
 var p = Parent.prototype;
 var c = Child.prototype;
 for (var i in p) {
 c[i] = p[i];
 }
 c.uber = p;
}

As you can see, a simple loop through the properties is all it takes. As with the
previous example, you can set an uber property if you want to have easy access
to parent's methods from the child. Unlike the previous example though, it is not
necessary to reset the Child.prototype.constructor because here the child
prototype is augmented, not overwritten completely, so the constructor property
will point to the correct value.

This method may be a little inefficient compared to the previous method because
properties of the child prototype are being duplicated instead of simply being looked
up via the prototype chain during execution. Bear in mind that this is only true for
properties containing primitive types. All objects (including functions and arrays)
are not duplicated, because these are passed by reference only.

Let's see an example of using two constructor functions, Shape() and TwoDShape().
Shape()'s prototype object contains a primitive property, name, and a non-primitive
one—the method toString():

var Shape = function(){};
var TwoDShape = function(){};
Shape.prototype.name = 'shape';
Shape.prototype.toString = function(){return this.name;};

If you inherit with extend(), neither the instances of TwoDShape() nor its prototype
will get a name property, but they will have access to the one they inherit.

>>> extend(TwoDShape, Shape);
>>> var td = new TwoDShape();
>>> td.name

 "shape""shape"

Inheritance

[180]

>>> TwoDShape.prototype.name

 "shape""shape"

>>> td.__proto__.name

 "shape""shape"

>>> td.hasOwnProperty('name')

 falsefalse

>>> td.__proto__.hasOwnProperty('name')

 falsefalse

If you inherit with extend2(), the prototype of TwoDShape() will get its own copy
of the name property. It will also get its own copy of toString(), but this a reference
copy, so the function will not be recreated a second time.

>>> extend2(TwoDShape, Shape);
>>> var td = new TwoDShape();
>>> td.__proto__.hasOwnProperty('name')

 truetrue

>>> td.__proto__.hasOwnProperty('toString')

 truetrue

>>> td.__proto__.toString === Shape.prototype.toString

 truetrue

As you can see, the two toString() methods are actually the same function
object. This is good because it means that no unnecessary duplicates of the methods
are created.

So we can say that extend2() is less efficient than extend() because it recreates
the properties of the prototype. Nevertheless, this is not so bad because only the
primitive data types are duplicated. Furthermore, it can actually be a benefit during
the prototype chain lookups as there will be fewer chain links to follow before
finding the property.

Heads-up When Copying by Reference
The fact that objects (including functions and arrays) are copied by reference could
sometimes lead to results you don't expect.

Chapter 6

[181]

Let's create two constructor functions and add some properties to the prototype of
the first one:

>>> var A = function(){}, B = function(){};
>>> A.prototype.stuff = [1,2,3];

 [1, 2, 3][1, 2, 3]

>>> A.prototype.name = 'a';

 "a""a"

Now let's have B inherit from A (either extend() or extend2() will do):

>>> extend2(B, A);

Using extend2(), B's prototype inherited A.prototype's properties as
own properties.

>>> B.prototype.hasOwnProperty('name')

 truetrue

>>> B.prototype.hasOwnProperty('stuff')

 truetrue

The name property is primitive so a new copy of it is created. The property stuff is
an array object so it is copied by reference:

>>> B.prototype.stuff

 [1, 2, 3][1, 2, 3]

>>> B.prototype.stuff === A.prototype.stuff

 truetrue

Changing B's copy of name doesn't affect A:

>>> B.prototype.name += 'b'

 "ab""ab"

>>> A.prototype.name

 "a""a"

Changing B's stuff property, however, affects A, because both prototypes point to
the same array.

>>> B.prototype.stuff.push(4,5,6);

 66

Inheritance

[182]

>>> A.prototype.stuff

 [1, 2, 3, 4, 5, 6][1, 2, 3, 4, 5, 6]

It's a different story when you completely overwrite B's copy of stuff with another
object (as opposed to modifying the existing one). In this case A's stuff keeps
pointing to the old object, while B's points to a new one.

>>> B.prototype.stuff = ['a', 'b', 'c'];

 ["a", "b", "c"]["a", "b", "c"]

>>> A.prototype.stuff

 [1, 2, 3, 4, 5, 6][1, 2, 3, 4, 5, 6]

Think of an object as something that is created and stored in a physical location in
memory. Variables and properties just point to this location, so when you assign a
brand new object to B.prototype.stuff you basically say, "Hey, forget about this
old object, move your pointer to this new one instead".

A A = {};

A B = A;B

A

A

B.color ="white";

B = {};

B

B

Chapter 6

[183]

Objects Inherit from Objects
All of the examples so far in this chapter assume that you create your objects with
constructor functions and you want objects created with one constructor to inherit
properties that come from another constructor. However, you can also create objects
without the help of a constructor function, just by using the object literal and this is,
in fact, less typing. So how about inheriting those?

In Java or PHP, you define classes and have them inherit from other classes. Hence
the name, classical, because the OO functionality comes from the use of classes.
In JavaScript, there are no classes so programmers that come from a classical
background resort to constructor functions because it's the closest to what they are
used to. In addition, JavaScript provides the new operator, which can further suggest
that JavaScript is like Java. The truth is that, in the end, it all comes back to objects.
The first example in this chapter used this syntax:

Child.prototype = new Parent();

Here the Child constructor (or class, if you will) inherits from Parent. But this is
done through creating an object using new Parent() and inheriting from it. That's
why this is also referred to as a pseudo-classical inheritance pattern, because it looks
like classical inheritance, although it isn't (because there are no classes involved).

So why not get rid of the middle-man (the constructor/class) and just have objects
inherit from objects? In extend2() the properties of the parent prototype object were
copied as properties of the child prototype object. The two prototypes are in essence
just objects. Forgetting about prototypes and constructor functions, you can simply
take an object and copy all of its properties into another object.

Objects can start as a blank canvas by using var o = {}; and get properties later.
Instead of doing this, you can start by copying all of the properties of an existing
object. Here's a function that does exactly that: it takes an object and returns a new
copy of it.

function extendCopy(p) {
 var c = {};
 for (var i in p) {
 c[i] = p[i];
 }
 c.uber = p;
 return c;
}

Simply copying all of the properties is a very simple pattern, but it is widely used.
The code behind Firebug has an extend() function that works this way. Also, some
popular JavaScript libraries like jQuery and Prototype followed this basic pattern in
earlier versions.

Inheritance

[184]

Let's see this function in action. You start by having a base object:

var shape = {
 name: 'shape',
 toString: function() {return this.name;}
}

In order to create a new object that builds upon the old one, you can call the function
extendCopy() which returns a new object. Then you can augment the new object
with additional functionality.

var twoDee = extendCopy(shape);
twoDee.name = '2D shape';
twoDee.toString = function(){return this.uber.toString() + ', ' +
this.name;};

A triangle object that inherits the 2D shape object:

var triangle = extendCopy(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function(){return this.side * this.height / 2;}

Using the triangle:

>>> triangle.side = 5; triangle.height = 10; triangle.getArea();

 2525

>>> triangle.toString();

 "shape, 2D shape, Triangle""shape, 2D shape, Triangle"

A possible drawback of this method is the somewhat verbose way of initializing the
new triangle object, where you manually set values for side and height, as opposed
to passing them as values to a constructor. But this is easily resolved by having a
function, for example called init() (or __construct() if you come from PHP5) that
acts as constructor and accepts initialization parameters.

Deep Copy
The function extendCopy(), discussed above, creates what is called a shallow copy
of an object. The opposite of a shallow copy would be, naturally, a deep copy. As
discussed above (in the section "Heads-up When Copying by Reference", when you
copy objects you only copy pointers to the location in memory where the object is
stored. This is what happens in a shallow copy. If you modify an object in the copy,
you also modify the original. The deep copy avoids this problem.

Chapter 6

[185]

The deep copy is implemented the same way as the shallow copy: you loop through
the properties and copy them one by one. Only when you encounter a property that
points to an object, do you call the deep copy function again:

function deepCopy(p, c) {
 var c = c || {};
 for (var i in p) {
 if (typeof p[i] === 'object') {
 c[i] = (p[i].constructor === Array) ? [] : {};[] : {};
 deepCopy(p[i], c[i]);
 } else {
 c[i] = p[i];c[i] = p[i];
 }
 }
 return c;
}

Let's create an object that has arrays and a sub-object as properties.

var parent = {
 numbers: [1, 2, 3],
 letters: ['a', 'b', 'c'],
 obj: {
 prop: 1
 },
 bool: true
};

Let's test this by creating a deep copy and a shallow copy. Unlike the shallow copy,
when you update the numbers property of a deep copy, the original is not affected.

>>> var mydeep = deepCopy(parent);
>>> var myshallow = extendCopy(parent);
>>> mydeep.numbers.push(4,5,6);

 66

>>> mydeep.numbers

 [1, 2, 3, 4, 5, 6][1, 2, 3, 4, 5, 6]

>>> parent.numbers

 [1, 2, 3][1, 2, 3]

>>> myshallow.numbers.push(10)

 44

>>> myshallow.numbers

 [1, 2, 3, 10][1, 2, 3, 10]

Inheritance

[186]

>>> parent.numbers[1, 2, 3, 10]

>>> mydeep.numbers

 [1, 2, 3, 4, 5, 6][1, 2, 3, 4, 5, 6]

The idea of the deep copy inheritance is implemented in more recent versions
of jQuery.

object()
Based on the idea that objects inherit from objects, Douglas Crockford suggests the
use of an object() function that accepts an object and returns a new one that has the
parent as a prototype.

function object(o) {
 function F() {}
 F.prototype = o;
 return new F();
}

If you need access to an uber property, you can modify the object() function
like so:

function object(o) {
 var n;
 function F() {}
 F.prototype = o;
 n = new F();
 n.uber = o;
 return n;
}

Using this function will be the same as the extendCopy(): you basically take an
object such as twoDee, create a new object from it and then proceed to augmenting
the new object.

var triangle = object(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function(){return this.side * this.height / 2;};

The new triangle still behaves the same way:

>>> triangle.toString()

 "shape, 2D shape, Triangle""shape, 2D shape, Triangle"

This pattern is also referred to as prototypal inheritance, because you use a parent
object as the prototype of a child object.

Chapter 6

[187]

Using a Mix of Prototypal Inheritance and
Copying Properties
When you use inheritance, you will most likely want to take some existing
functionality and then build upon it. This means creating a new object by inheriting
from an existing object and then adding some additional methods and properties.
You can do this with one function call, using a combination of the last two
approaches just discussed.

You can:

Use prototypal inheritance to clone an existing object
Copy all of the properties of another object

function objectPlus(o, stuff) {
 var n;
 function F() {}
 F.prototype = o;
 n = new F();
 n.uber = o;

 for (var i in stuff) {
 n[i] = stuff[i];
 }
 return n;
}

This function takes an object o to inherit from and another object stuff that has the
additional methods and properties that are to be copied. Let's see this in action.

Start with the base shape object:

var shape = {
 name: 'shape',
 toString: function() {return this.name;}
};

Create a 2D object by inheriting shape and adding more properties. The additional
properties are simply created in an anonymous object literal.

var twoDee = objectPlus(shape, {
 name: '2D shape',
 toString: function(){return this.uber.toString() + ', ' + this.name}
});

•

•

Inheritance

[188]

Now let's create a triangle object that inherits from 2D and adds some
more properties.

var triangle = objectPlus(twoDee, {
 name: 'Triangle',
 getArea: function(){return this.side * this.height / 2;},
 side: 0,
 height: 0
});

Testing how it all works by creating a concrete triangle my with defined side
and height:

>>> var my = objectPlus(triangle, {side: 4, height: 4});
>>> my.getArea()

 88

>>> my.toString()

 "shape, 2D shape, Triangle, Triangle""shape, 2D shape, Triangle, Triangle"

The difference here, when executing toString(), is that the Triangle name is
repeated twice. That's because our concrete instance was created by inheriting
triangle, so there was one more level of inheritance. You could give the new
instance a name:

>>> var my = objectPlus(triangle, {side: 4, height: 4,
 name: 'My 4x4'});
>>> my.toString()

 "shape, 2D shape, Triangle, My 4x4""shape, 2D shape, Triangle, My 4x4"

Multiple Inheritance
Multiple inheritance is where a child inherits from more than one parent. Some
OO languages support multiple inheritance, and some don't. You can argue both
ways: that multiple inheritance is convenient, or that it's unnecessary, complicates
application design, and it's better to use an inheritance chain instead. In any event,
it's easy to implement multiple inheritance in dynamic languages such as JavaScript,
although the language doesn't have a specific syntax for it. Leaving the discussion of
multiple inheritance's pros and cons to the long, cold winter nights, let's see how you
can do it in practice.

The implementation can be pretty simple. Just take the idea of inheritance by
copying properties, and expand it so that it takes an unlimited number of input
objects to inherit from.

Chapter 6

[189]

Let's create a multi() function that accepts any number of input objects. You can
wrap the loop that copies properties in another loop that goes through all the objects
passed as arguments to the function.

function multi() {
 var n = {}, stuff, j = 0, len = arguments.length;
 for (j = 0; j < len; j++) {
 stuff = arguments[j];
 for (var i in stuff) {
 n[i] = stuff[i];
 }
 }
 return n;
}

Let's test this by creating three objects: shape, twoDee and a third, unnamed object.
Creating a triangle object will mean calling multi() and passing all three objects.

var shape = {
 name: 'shape',
 toString: function() {return this.name;}
};

var twoDee = {
 name: '2D shape',
 dimensions: 2
};

var triangle = multi(shape, twoDee, {
 name: 'Triangle',
 getArea: function(){return this.side * this.height / 2;},
 side: 5,
 height: 10
});

Will it work? Let's see:

>>> triangle.getArea()

 2525

>>> triangle.dimensions

 22

>>> triangle.toString()

 "Triangle""Triangle"

Inheritance

[190]

Bear in mind that multi() loops through the input objects in the order they appear
and if it happens that two of them have the same property, the one passed later will
take precedence.

Mixins
You might come across the term mixin, which is quite popular in some languages
such as Ruby. You can think of a mixin as an object that provides some useful
functionality but is not meant to be inherited and extended by sub-objects.
The approach to multiple inheritance outlined above can be considered an
implementation of the mixins idea. When you create a new object you can pick and
choose any other objects to mix into your new object. By passing them all to multi()
you get all their functionality without making them part of the inheritance tree.

Parasitic Inheritance
If you like the fact that you can have all kinds of different ways to implement
inheritance in JavaScript, and you're hungry for more, here's another one. This
pattern, courtesy of Douglas Crockford, is called parasitic inheritance. It basically
means that you can have a function that creates objects by taking all of the
functionality of another object, augmenting it and returning it, "pretending that
it has done all the work".

Here's an ordinary object, defined with an object literal, and unaware of the fact that
it is soon going to fall victim to parasitism:

var twoD = {
 name: '2D shape',
 dimensions: 2
};

A function that creates triangle objects could:

Clone the twoD object into an object called that. This can be done in any
way you saw above, for example using the object() function or copying all
the properties.
Augment that with more properties.
Return that.

•

•
•

Chapter 6

[191]

function triangle(s, h) {
 var that = object(twoD);
 that.name ='Triangle';
 that.getArea = function(){return this.side * this.height / 2;};
 that.side = s;
 that.height = h;
 return that;
}

Because triangle() is a normal function, not a constructor, it doesn't require the
new operator. But because it returns an object, calling it with new by mistake will
work in exactly the same way.

>>> var t = triangle(5, 10);
>>> t.dimensions

 22

>>> var t2 = new triangle(5,5);
>>> t2.getArea();

 12.512.5

Note that that is just a name; it doesn't have a special meaning, the way this does.

Borrowing a Constructor
One more way of implementing inheritance (the last one in the chapter, I promise)
has to do again with constructor functions, and not the objects directly. In this
pattern the constructor of the child calls the constructor of the parent using either
of the call() or apply() methods. This can be called stealing a constructor, or
borrowing a constructor if you want to be more subtle about it.

call() and apply() were discussed in Chapter 4, but here's a refresher: they allow
you to call a function and pass an object that the function should bind to its this
value. So for inheritance purposes, the child constructor calls the parent's constructor
and binds child's newly-created this object as the parent's this.

Let's have this parent constructor Shape():

function Shape(id) {
 this.id = id;
}
Shape.prototype.name = 'shape';
Shape.prototype.toString = function(){return this.name;};

Inheritance

[192]

Now let's define Triangle() which uses apply() to call the Shape()
constructor, passing this (an instance created with new Triangle()) and
any additional arguments.

function Triangle() {
 Shape.apply(this, arguments);
}
Triangle.prototype.name = 'Triangle';

Note that both Triangle() and Shape() add some extra properties to
their prototypes.

Now let's test this by creating a new triangle object:

>>> var t = new Triangle(101);
>>> t.name

 "Triangle""Triangle"

The new triangle object inherits the id property from the parent, but it doesn't inherit
anything added to the parent's prototype:

>>> t.id

 101101

>>> t.toString();

 "[object Object]""[object Object]"

The triangle failed to get Shape's prototype properties because we never created a
new Shape() instance, so the prototype was never used. This is easy to do, as you
saw at the very beginning of this chapter. You can redefine Triangle like this:

function Triangle() {
 Shape.apply(this, arguments);
}
Triangle.prototype = new Shape();
Triangle.prototype.name = 'Triangle';

In this inheritance pattern, the parent's own properties are recreated as the child's
own properties (as opposed to children's prototype properties as was the case in the
prototype-chaining pattern). That's also the main benefit of borrowing constructors:
if a child inherits an array or other object, it's a completely new value (not a
reference) and modifying it won't affect the parent.

The drawback is that the parent's constructor gets called twice: once with apply()
to inherit own properties and once with new to inherit the prototype. In fact the own
properties of the parent will be inherited twice. Let's take this simplified scenario:

Chapter 6

[193]

function Shape(id) {
 this.id = id;
}
function Triangle() {
 Shape.apply(this, arguments);
}
Triangle.prototype = new Shape(101);

Creating a new instance:

>>> var t = new Triangle(202);
>>> t.id

 202202

There's an own property id, but there's also one that comes down the prototype
chain, ready to shine through:

>>> t.__proto__.id

 101101

>>> delete t.id

 truetrue

>>> t.id

 101101

Borrow a Constructor and Copy its Prototype
The problem of the double work performed by calling the constructor twice can
easily be corrected. You can call apply() on the parent constructor to get all own
properties and then copy the prototype's properties using a simple iteration (or
extend2() as discussed previously).

function Shape(id) {
 this.id = id;
}
Shape.prototype.name = 'shape';
Shape.prototype.toString = function(){return this.name;};

function Triangle() {
 Shape.apply(this, arguments);
}
extend2(Triangle, Shape);
Triangle.prototype.name = 'Triangle';

Inheritance

[194]

Testing:

>>> var t = new Triangle(101);
>>> t.toString();

"Triangle"
>>> t.id

 101101

No double inheritance:

>>> typeof t.__proto__.id

 "undefined""undefined"

extend2() also gives access to uber if needed:

>>> t.uber.name

 "shape""shape"

Summary
In this chapter you learned quite a few ways (patterns) for implementing inheritance.
The different types can roughly be divided into:

Patterns that work with constructors
Patterns that work with objects

You can also classify the patterns based on whether they:

Use the prototype
Copy properties
Do both (copy properties of the prototype)

•

•

•

•

•

Chapter 6

[195]

Method Name Example Classification Notes
1 Prototype

chaining
(pseudo-
classical)

Child.prototype =
new Parent();

Works with
constructors
Uses the
prototype
chain

The default mechanism
described in the ECMA
standard.
Tip: move all properties/
methods that are meant to be
reused to the prototype, and
add the non-reusable as own
properties

2 Inherit
only the
prototype

Child.prototype =
Parent.prototype;

Works with
constructors
Copies the
prototype (no
prototype
chain,
all share
the same
prototype
object)

More efficient since no new
instances are created just for
the sake of inheritance.
Prototype chain lookup during
runtime is fast, since there's
no chain.
Drawback: children can
modify parents' functionality

3 Temporary
constructor

function
extend(Child,
Parent) {

 var F =
function(){};

 F.prototype =
Parent.prototype;

 Child.prototype
= new F();

 Child.prototype.
constructor =
Child;

 Child.uber =
Parent.prototype;

}

Works with
constructors
Uses the
prototype
chain

Unlike #1, it only inherits
properties of the prototype.
Own properties (created with
this inside the constructor)
are not inherited.
Used in YUI and Ext.js
libraries
Provides convenient access to
the parent (through uber)

Inheritance

[196]

Method Name Example Classification Notes
4 Copying the

prototype
properties

function
extend2(Child,
Parent) {

 var p = Parent.
prototype;

 var c = Child.
prototype;

 for (var i in
p) {

 c[i] = p[i];

 }

 c.uber = p;

}

Works with
constructors
Copies
properties
Uses the
prototype
chain

All properties of the parent
prototype become properties
of the child prototype
No need to create a new object
only for inheritance
Shorter prototype chains

5 Copy all
properties
(shallow
copy)

function
extendCopy(p) {

 var c = {};

 for (var i in
p) {

 c[i] = p[i];

 }

 c.uber = p;

 return c;

}

Works with
objects
Copies
properties

Very simple
Used in Firebug, earlier jQuery
and Prototype.js versions
Also known as shallow copy
Doesn't use prototypes

6 Deep copy same as above, but
recurse into objects

Works with
objects
Copies
properties

Same as #5, but copies the
objects by value
Used in more recent versions
of jQuery

7 Prototypal
inheritance

function
object(o){

 function F() {}

 F.prototype = o;

 return new F();

}

Works with
objects
Uses the
prototype
chain

No pseudo-classes; objects
inherit from objects
Leverages the benefits of the
prototype

Chapter 6

[197]

Method Name Example Classification Notes
8 Extend and

augment
function
objectPlus(o,
stuff) {

 var n;

 function F() {}

 F.prototype = o;

 n = new F();

 n.uber = o;

 for (var i in
stuff) {

 n[i] =
stuff[i];

 }

 return n;

}

Works with
objects
Uses the
prototype
chain
Copies
properties

Mix of prototypal inheritance
(#7) and copying properties
(#5)
One function call to inherit
and extend at the same time

9 Multiple
inheritance

function multi() {

 var n = {},
stuff, j = 0,

 len =
arguments.length;

 for (j = 0; j <
len; j++) {

 stuff =
arguments[j];

 for (var i in
stuff) {

 n[i] =
stuff[i];

 }

 }

 return n;

}

Works with
objects
Copies
properties

A mixin-style implementation

Copies all the properties of all
the parent objects in the order
of appearance

10 Parasitic
inheritance

function
parasite(victim) {
 var that =
object(victim);
 that.more = 1;
 return that;
}

Works with
objects
Uses the
prototype
chain

Constructor-like function,
creates objects
Copies an object; augments
and returns the copy

Inheritance

[198]

Method Name Example Classification Notes

11 Borrowing
constructors

function Child() {

 Parent.
apply(this,
arguments);

}

Works with
constructors

Inherits only own properties
Can be combined with #1 to
inherit prototype too
Easy way to deal with the
issues when a child inherits a
property that is an object (and
therefore passed by reference)

12 Borrow a
constructor
and
copy the
prototype

function Child() {

 Parent.
apply(this,
arguments);

}

extend2(Child,
Parent);

Works with
constructors
Uses the
prototype
chain
Copies
properties

Combination of #11 and #4
Allows you to inherit both
own properties and prototype
properties without calling the
parent constructor twice

Given so many options, you are probably wondering which is the right one? That
depends on your style and preferences, your project, task, and team. Are you more
comfortable thinking in terms of classes? Then pick one of the methods that work
with constructors. Are you going to need just one or a few instances of your "class"?
Then choose an object-based pattern.

Are these the only ways of implementing inheritance? No. You can chose a pattern
from the table above or you can mix them, or you can think of your own. The
important thing is to understand and be comfortable with objects, prototypes, and
constructors; the rest is easy.

Case Study: Drawing Shapes
Let's finish off this chapter with a more practical example of using inheritance. The
task is to be able to calculate the area and the perimeter of different shapes, as well as
to draw them, while reusing as much code as possible.

Analysis
Let's have one Shape constructor that contains all of the common parts. From there,
we can have Triangle, Rectangle and Square constructors, all inheriting from
Shape. A square is really a rectangle with same-length sides, so let's reuse Rectangle
when building the Square.

Chapter 6

[199]

In order to define a shape, we'll use points with x and y coordinates. A generic shape
can have any number of points. A triangle is defined with three points, a rectangle
(to keep it simpler)—with one point and the lengths of the sides. The perimeter
of any shape is the sum of its sides' lengths. The area is shape-specific and will be
implemented by each shape.

The common functionality in Shape would be:

A draw() method that can draw any shape given the points
A getParameter() method

A property that contains an array of points
Other methods and properties as needed

For the drawing part we'll use a <canvas> tag. It's not supported in IE, but hey, this
is just an exercise.

Let's have two other helper constructors—Point and Line. Point will help when
defining shapes; Line will ease some calculations, as it can give the length of the line
connecting any two given points.

You can play with a working example here: http://www.phpied.com/files/
canvas/. Just open the Firebug console and start creating new shapes as you'll
see in a moment.

Implementation
Let's start by adding a canvas tag to a blank HTML page:

<canvas height="600" width="800" id="canvas" />

Then, inside <script> tags, we'll put the JavaScript code:

<script type="text/javascript">
 // ... code goes here
</script>

Now let's take a look at what's in the JavaScript part.

First, the helper Point constructor. It just can't get any more trivial than this:

function Point(x, y) {
 this.x = x;
 this.y = y;
}

•

•

•

•

Inheritance

[200]

Bear in mind that the coordinates of the points on the canvas start from x=0, y=0,
which is the top left. The bottom right will be x = 800, y = 600.

0 x

y

x=800
y=600

Next, the Line constructor. It takes two points and calculates the length of the line
between them, using the Pythagorean Theorem a2 + b2 = c2 (imagine a right -angled
triangle where the hypotenuse connects the two given points).

function Line(p1, p2) {
 this.p1 = p1;
 this.p2 = p2;
 this.length = Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y -
p2.y, 2));
}

Next comes the Shape constructor. The shapes will have their points (and the lines
that connect them) as own properties. The constructor also invokes an initialization
method, init(), that will be defined in the prototype.

function Shape() {
 this.points = [];
 this.lines = [];
 this.init();
}

Now the big part: the methods of Shape.prototype. Let's define all of these methods
using the object literal notation. Refer to the comments for guidelines as to what each
method does.

Shape.prototype = {
 // reset pointer to constructor
 constructor: Shape,
 // initialization, sets this.context to point
 // to the context of the canvas object
 init: function() {
 if (typeof this.context === 'undefined') {
 var canvas = document.getElementById('canvas');
 Shape.prototype.context = canvas.getContext('2d');

Chapter 6

[201]

 }
 },
 // method that draws a shape by looping through this.points
 draw: function() {
 var ctx = this.context;
 ctx.strokeStyle = this.getColor();
 ctx.beginPath();
 ctx.moveTo(this.points[0].x, this.points[0].y);
 for(var i = 1; i < this.points.length; i++) {
 ctx.lineTo(this.points[i].x, this.points[i].y);
 }
 ctx.closePath();
 ctx.stroke();
 },
 // method that generates a random color
 getColor: function() {
 var rgb = [];
 for (var i = 0; i < 3; i++) {
 rgb[i] = Math.round(255 * Math.random());
 }
 return 'rgb(' + rgb.join(',') + ')';
 },
 // method that loops through the points array,
 // creates Line instances and adds them to this.lines
 getLines: function() {
 if (this.lines.length > 0) {
 return this.lines;
 }
 var lines = [];
 for(var i = 0; i < this.points.length; i++) {
 lines[i] = new Line(this.points[i], (this.points[i+1]) ?
 this.points[i+1] : this.points[0]);
 }
 this.lines = lines;
 return lines;
 },
 // shell method, to be implemented by children
 getArea: function(){},
 // sums the lengths of all lines
 getPerimeter: function(){
 var lines = this.getLines();
 var perim = 0;var perim = 0;
 for (var i = 0; i < lines.length; i++) {
 perim += lines[i].length;
 }}
 return perim;
 }
}

Inheritance

[202]

Now the children constructor functions. Triangle first:

function Triangle(a, b, c){
 this.points = [a, b, c];
 this.getArea = function(){
 var p = this.getPerimeter();
 var s = p / 2;
 return Math.sqrt(
 s
 * (s - this.lines[0].length)
 * (s - this.lines[1].length)
 * (s - this.lines[2].length)
);
 };
}

The Triangle constructor takes three point objects and assigns them to this.points
(its own collection of points). Then it implements the getArea() method, using
Heron's formula:

Area = s(s-a)(s-b)(s-c)

s is the semi-perimeter (perimeter divided by two).

Next comes the Rectangle constructor. It receives one point (the upper-left point)
and the lengths of the two sides. Then it populates its points array starting from that
one point.

function Rectangle(p, side_a, side_b){
 this.points = [
 p,
 new Point(p.x + side_a, p.y), // top right
 new Point(p.x + side_a, p.y + side_b), // bottom right
 new Point(p.x, p.y + side_b) // bottom left
];
 this.getArea = function() {return side_a * side_b;};
}

The last child constructor is Square. A square is a special case of a rectangle,
so it makes sense to reuse Rectangle. The easiest thing to do here is to borrow
the constructor.

function Square(p, side){
 Rectangle.call(this, p, side, side);
}

Chapter 6

[203]

Now that we have all constructors, let's take care of inheritance. Any pseudo-
classical pattern (one that works with constructors as opposed to objects) will do.
Let's try using a modified and simplified version of the prototype-chaining pattern
(the first method described in this chapter). This pattern calls for creating a new
instance of the parent and setting it as the child's prototype. In this case, it's not
necessary to have a new instance for each child—they can all share it.

(function () {
 var s = new Shape();
 Triangle.prototype = s;
 Rectangle.prototype = s;
 Square.prototype = s;
})()

Testing
Let's test this by drawing some shapes. First, let's define three points for a triangle:

>>> var p1 = new Point(100, 100);
>>> var p2 = new Point(300, 100);
>>> var p3 = new Point(200, 0);

Now you can create a triangle by passing the three points to the Triangle constructor:

>>> var t = new Triangle(p1, p2, p3);

You can call the methods to draw the triangle on the canvas and get its area
and perimeter:

>>> t.draw();
>>> t.getPerimeter()

 482.842712474619482.842712474619

>>> t.getArea()

 10000.00000000000210000.000000000002

Now let's play with a rectangle instance:

>>> var r = new Rectangle(new Point(200, 200), 50, 100);
>>> r.draw();
>>> r.getArea()

 50005000

>>> r.getPerimeter()

 300300

Inheritance

[204]

And finally, a square:

>>> var s = new Square(new Point(130, 130), 50);
>>> s.draw();
>>> s.getArea()

 25002500

>>> s.getPerimeter()

 200200

It's fun to draw these shapes. You can also be as lazy as the following example,
which draws another square, reusing a triangle's point:

>>> new Square(p1, 200).draw()

The result of the tests will be something like this:

Exercises
Use the canvas example to practice. Try out different things, for example:

1. Draw some triangles, squares, and rectangles.
2. Add constructors for more shapes, such as Trapezoid, Rhombus, Kite,

Diamond, and Pentagon. If you want to learn more about the canvas tag,
create a Circle constructor too. It will need to overwrite the draw() method
of the parent.

3. Can you think of another way to approach the problem and use some other
type of inheritance?

4. Pick one of the methods that uses uber as a way for a child to access its
parent. Add functionality where the parents can keep track of who their
children are. Perhaps by using a property that contains a children array?

The Browser Environment
You know that JavaScript programs don't run on their own; they need a host
environment. Pretty much everything discussed so far in this book was related toso far in this book was related to in this book was related towas related torelated to
core ECMAScript/JavaScript and can be used in many different host environments.
Now let's shift our focus to the browser, as this is the most popular and natural host
environment for JavaScript programs. In this chapter, you will learn about:

The BOM (Browser Object Model)
The DOM (Document Object Model)
Listening to browser events
The XMLHttpRequest object

Including JavaScript in an HTML Page
In order to include JavaScript in an HTML page, you need to use the <script> tag:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>JS test</title>
 <script type="text/javascript" src="somefile.js"></script>

 </head>
 <body>
 <script type="text/javascript">

 var a = 1;

 a++;

 </script>

 </body>
</html>

•

•

•

•

The Browser Environment

[206]

In this example, the first <script> tag includes an external file, somefile.js, which
contains JavaScript code. The second <script> tag includes the JavaScript code
directly in the HTML code of the page. In both cases, the <script> tag takes a
type attribute, which is required in XHTML 1.0, although the code will work even
without it. The browser executes the JavaScript in the sequence it finds it in the
page. This means that if you define a variable in somefile.js, it will also exist in the
second <script> block.

BOM and DOM—An Overview
The JavaScript code in a page has access to a number of objects. These objects can be
divided into:

Objects that have to do with the currently loaded page (the page is also called
the document), and
Objects that deal with things outside the page (the browser window and the
desktop screen)

The first collection of objects makes up the Document Object Model (DOM) and the
second the Browser Object Model (BOM).

The DOM is a standard, governed by the World Wide Web Consortium (W3C)
and has different versions, called levels, such as DOM Level 1, DOM Level 2,
and—the last one so far—DOM Level 3. Modern browsers have different degrees of
compliance with the standard, but in general, they almost all completely implement
DOM Level 1. The DOM was standardized post-factum, after the browser vendors
had each implemented their own ways to access the document. The legacy part (from
before the W3C took over) is still around and is referred to as DOM 0, although
no real DOM Level 0 standard exists. Some parts of DOM 0 have become de-facto
standards as all major browsers support them. Some of these were added to the
DOM Level 1 standard. The rest of DOM 0 that didn't find its way to DOM 1 is too
browser-specific and won't be discussed here.

BOM is not a part of any standard. Similar to DOM 0, it has a subset of objects that is
supported by all major browsers, and another subset that is browser-specific.

This chapter will discuss only cross-browser subsets of BOM and DOM Level 1
(unless noted otherwise in the text). Even these "safe" subsets constitute a large topic,
and a full reference is beyond the scope of this book. You can also consult:

•

•

Chapter 7

[207]

The Mozilla DOM reference for Firefox information (http://developer.
mozilla.org/en/docs/Gecko_DOM_Reference)
Microsoft's documentation for Internet Explorer (http://msdn2.microsoft.
com/en-us/library/ms533050(vs.85).aspx)
W3C' DOM specs (http://www.w3.org/DOM/DOMTR)

BOM
The BOM (Browser Object Model) is a collection of objects that give you access to
the browser and the computer screen. These objects are accessible through the global
objects window and window.screen.

The window Object Revisited
As you know already, in JavaScript there's a global object provided by every host
environment. In the browser environment, this is the window object. All global
variables become properties of the window object.

>>> window.somevar = 1;

 1

>>> somevar

 1

Also, all of the core JavaScript functions (discussed in Chapter 2) are methods of the
window object.

>>> parseInt('123a456')

 123

>>> window.parseInt('123a456')

 123

In addition to being the global object, the window object also serves a second purpose
and that is to provide data about the browser environment. There's a window object
for every frame, iframe, popup, or browser tab.

Let's see some of the browser-related properties of the window object. Again, these
can vary from one browser to another, so we'll only bother with those properties that
are implemented consistently and reliably across all modern browsers.

•

•

•

The Browser Environment

[208]

window.navigator
The navigator is an object that has some information about the browser and its
capabilities. One property is navigator.userAgent, which is a long string of
browser identification. In Firefox, you'll get something like this:

>>> window.navigator.userAgent

 "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080201
 Firefox/2.0.0.12"

The userAgent string in Microsoft Internet Explorer would be something like:

 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET
 CLR 2.0.50727; .NET CLR 3.0.04506.30)

Because the browsers have different capabilities, developers have been using the
userAgent string to identify the browser and provide different versions of the
code. For example, this code searches for the presence of the string MSIE to identify
Internet Explorer:

if (navigator.userAgent.indexOf('MSIE') !== -1) {
 // this is IE
} else {
 // not IE
}

It is better not to rely on the user agent string, but to use feature sniffing (also called
capabilities detection) instead. The reason for this is that it's hard to keep track of allinstead. The reason for this is that it's hard to keep track of all. The reason for this is that it's hard to keep track of all
browsers and their different versions. It's much easier to simply check if the feature
you intend to use is indeed available in the user's browser. For example:

if (typeof window.addEventListener === 'function') {
 // feature is supported, let's use it
} else {
 // hmm, this feature is not supported, will have to
 // think of another way
}

Another reason to avoid user agent sniffing is that some browsers allow users to
modify the string and pretend they are using a different browser.

Firebug as a Cheat Sheet
The Firebug console offers a lazy way to inspect what's in an object, and this includes
all the BOM and DOM properties. Therefore, you can type:

>>> navigator

Chapter 7

[209]

Then click the result. Alternatively, you can type:

>>> console.dir(navigator)

The result is a list of properties and their values.

window.location
The location property points to an object that contains information about the URL
of the currently loaded page. For example, location.href, is the full URL and
location.hostname is only the domain. With a simple loop, you can see the full list
of properties of the location object.

Imagine you're on a page with a URL like this:

http://search.phpied.com:8080/search?p=javascript#results

>>> for(var i in location) {console.log(i + ' = "' + location[i] +
 '"')}

 href = "http://search.phpied.com:8080/search?p=javascript#results"
 hash = "#results"
 host = "search.phpied.com:8080"
 hostname = "search.phpied.com"

The Browser Environment

[210]

 pathname = "/search"

 port = "8080"

 protocol = "http:"

 search = "?p=javascript"

There are also three methods that location provides—reload(), assign(),
and replace().

It's interesting to note how many different ways exist for you to navigate to another
page. Here's a partial list:

>>> window.location.href = 'http://www.packtpub.com'
>>> location.href = 'http://www.packtpub.com'
>>> location = 'http://www.packtpub.com'
>>> location.assign('http://www.packtpub.com')

replace() is almost the same as assign(). The difference is that it doesn't create an
entry in the browser's history list:

>>> location.replace('http://www.yahoo.com')

To reload a page you can use:

>>> location.reload()

Alternatively, you can use location.href to point it to itself, like so:

>>> window.location.href = window.location.href

Or simply:

>>> location = location

window.history
window.history allows limited access to the previously-visited pages in the same
browser session. For example, you can see how many pages the user has visited
before coming to your page:

>>> window.history.length

 5

You cannot see the actual URLs though. For privacy reasons this doesn't work:

>>> window.history[0]

Chapter 7

[211]

You can, however, navigate back and forth through the user's session as if the user
had clicked the Back/Forward browser buttons:

>>> history.forward()
>>> history.back()

You can also skip pages back and forth with history.go(). This is same as calling
history.back():

>>> history.go(-1);

Two pages back:

>>> history.go(-2);

Reload the current page:

>>> history.go(0);

window.frames
window.frames is a collection of all of the frames in the current page. Note that it
doesn't distinguish between frames and iframes. Regardless of whether there are
frames on the page or not, window.frames always exists and points to window.

>>> window.frames === window

 true

In order to tell if there are any frames on the page, you can check the length property:

>>> frames.length

 1

Each frame contains another page which has its own global window object. Imagine
you have a page with one iframe.

<iframe name="myframe" src="about:blank" />

To get access to the iframe's window, you can do any of these:

>>> window.frames[0]
>>> window.frames[0].window
>>> frames[0].window
>>> frames[0]

The Browser Environment

[212]

From the parent page, you can access properties of the child frame so, for example,
you can reload the frame like this:

>>> frames[0].window.location.reload()

From inside the child you can access the parent:

>>> frames[0].parent === window

 true

Using a property called top, you can access the topmost page (the one that contains
all the other frames) from within any frame:

>>> window.frames[0].window.top === window

 true

>>> window.frames[0].window.top === window.top

 true

>>> window.frames[0].window.top === top

 true

In addition, self is the same as window.

>>> self === window

 true

>>> frames[0].self == frames[0].window

 true

If a frame has a name attribute, you can also access the frame by name, not only
by index.

>>> window.frames['myframe'] === window.frames[0]

 true

window.screen
screen provides information about the desktop outside the browser. The screen.
colorDepth property contains the color bit-depth (the color quality) of the monitor.
This could be useful for statistical purposes.

>>> window.screen.colorDepth

 32

Chapter 7

[213]

You can also check the available screen real estate (the resolution):

>>> screen.width

 1440

>>> screen.availWidth

 1440

>>> screen.height

 900

>>> screen.availHeight

 847

The difference between height and availHeight is that the height is the total
resolution, while availHeight subtracts any operating system menus such as the
Windows task bar. The same is the case for width and availWidth.

window.open()/close()
Having explored some of the most common cross-browser properties of the window
object, let's move to some of the methods. One such method is open(), which allows
you to open up new browser windows (popups). Various browser policies and user
settings may prevent you from opening a popup (due to abuse of the technique for
marketing purposes), but generally you should be able to open a new window if it
was initiated by the user. Otherwise, if you try to open a popup as the page loads, it
will most likely be blocked, because the user didn't initiate it explicitly.

window.open() accepts the following parameters:

URL to load in the new window
Name of the new window, which can be used as the value of a form's
target attribute
Comma-separated list of features, such as:

resizable—should the user be able to resize the
new window
width, height of the popup
status—should the status bar be visible
and so on

•

•

•

°

°

°

°

The Browser Environment

[214]

window.open() returns a reference to the window object of the newly created
browser instance. Here's an example:

var win = window.open('http://www.packtpub.com', 'packt',
 'width=300,height=300,resizable=yes');

win points to the window object of the popup. You can check if win has a falsy value,
which means that the popup was blocked.

win.close() closes the new window.

It's best to stay away from opening new windows for accessibility and usability
reasons. If you don't like sites to pop-up windows to you, why would do it to your
users? There may be legitimate purposes, such as providing help information while
filling out a form, but often the same can be achieved with alternative solutions, such
as using a floating <div> inside the page.

window.moveTo(), window.resizeTo()
Continuing with the shady practices from the past, here are more methods to irritate
your users, provided their browser and personal settings allow you to.

window.moveTo(100, 100) will move the browser window to screen location
x = 100 and y = 100 (counted from the top left corner).
window.moveBy(10, -10) will move the window 10 pixels to the right and
10 pixels up from its current location.
window.resizeTo(x, y) and window.resizeBy(x, y) accept the same
parameters as the move methods but they resize the window as opposed to
moving it.

Again, try to solve the problem you're facing without resorting to these methods.

window.alert(), window.prompt(),
window.confirm()
In Chapter 2 we came across the function alert(). Now you know that global
functions are methods of the global object so alert('Watch out!') and
window.alert('Watch out!') are exactly the same.

•

•

•

Chapter 7

[215]

alert() is not an ECMAScript function, but a BOM method. In addition to it, two
other BOM methods allow you to interact with the user through system messages:

confirm() gives the user two options—OK and Cancel, and
prompt() collects textual input

See how this works:

>>> var answer = confirm('Are you cool?');
 console.log(answer);

It presents you with a window similar to the following (the exact look depends on
the browser and the operating system):

You'll notice that:

Nothing gets written to the Firebug console until you close this message,
this means that any JavaScript code execution freezes, waiting for the
user's answer.
Clicking OK returns true, clicking Cancel or closing the message using the
X icon (or the ESC key) returns false.

This is handy for confirming user actions, such as:

if (confirm('Are you sure you want to delete this item?')) {
 // delete
} else {
 // abort
}

Make sure you provide an alternative way to confirm user actions for people who
have disabled JavaScript (or for search engine spiders).

window.prompt() presents the user with a dialog to enter text.

>>> var answer = prompt('And your name was?'); console.log(answer);

•

•

•

•

The Browser Environment

[216]

This results in the following dialog box (on Windows/Firefox):

The value of answer will be:

null if you click Cancel or the X icon, or press ESC
"" (empty string) if you click OK or press Enter without typing anything
A text string if you type something and then click OK (or press Enter)

The function also takes a string as a second parameter and displays it as a default
value pre-filled into the input field.

window.setTimeout(), window.setInterval()
setTimeout() and setInterval() allow for scheduling the execution of a piece
of code. setTimeout() executes the given code once after a specified number of
milliseconds. setInterval() executes it repeatedly after a specified number of
milliseconds has passed.

This will show an alert after 2 seconds (2000 milliseconds):

>>> function boo(){alert('Boo!');}
>>> setTimeout(boo, 2000);

 4

As you can see the function returned the integer 4, this is the ID of the timeout.
You can use this ID to cancel the timeout using clearTimeout(). In the following
example, if you're quick enough, and clear the timeout before two seconds have
passed, the alert will never be shown.

>>> var id = setTimeout(boo, 2000);
>>> clearTimeout(id);

Let's change boo() to something less intrusive:

>>> function boo() {console.log('boo')};

•
•
•

Chapter 7

[217]

Now, using setInterval() you can schedule boo() to execute every two seconds,
until you cancel the scheduled execution with clearInterval().

>>> var id = setInterval(boo, 2000);

 boo

 boo

 boo

 boo

 boo

 boo

>>> clearInterval(id)

Note that both functions accept a pointer to a callback function as a first parameter.
They can also accept a string which will be evaluated with eval() but, as you
know, eval() is evil, so it should be avoided. And what if you want to pass
arguments to the function? In such cases, you can just wrap the function call
inside another function.

The code below is valid, but not recommended:

var id = setInterval("alert('boo, boo')", 2000);

This alternative is preferred:

var id = setInterval(
 function(){
 alert('boo, boo')
 }, 2000
);

window.document
window.document is a BOM object that refers to the currently loaded document
(page). Its methods and properties fall into the DOM category of objects. Take a deep
breath (and maybe look at the BOM exercises at the end of the chapter) and let's dive
into the DOM.

The Browser Environment

[218]

DOM
The DOM (Document Object Model) is a way to represent an XML or an HTML
document as a tree of nodes. Using DOM methods and properties, you can access
any element on the page, modify or remove elements, or add new ones. The DOM
is a language-independent API (Application Programming Interface) and can be
implemented not only in JavaScript, but also in any other language. For example,
you can generate pages on the server-side with PHP's DOM implementation
(http://php.net/dom).

Take a look at this example HTML page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>My page</title>
 </head>
 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>
</html>

Taking the second paragraph (<p>second paragraph</p>), you see that
it's a p tag, and it's contained in the body tag. You can say that body is the parent
of p and p is the child. The first and the third paragraphs would be children of the
body too, and they're also siblings of the second paragraph. The em tag is a child of
the second p, so p is its parent. The parent-child relationships can be represented
graphically in an ancestry tree, called the DOM tree.

Chapter 7

[219]

You can see how all of the tags are shown as expandable nodes on the tree. The
words #text scattered around the tree also represent nodes but a different type—text
nodes. For example the #text inside the EM is the word "second". Whitespace is also
considered a text node, that's why, for example, there is a #text between BODY and
the first P although there's no actual text in the code there, just spaces. Comments
inside the HTML code are also nodes in the tree; the <!-- and that's about
it --> comment in the HTML source is the node #comment on the tree.

The screenshot above is taken from the DOM Inspector feature of Firefox. This
feature doesn't get installed by default, so, if you are running Firefox 2, you may
need to reinstall Firefox on top of your existing installation (you won't lose any
preferences or extensions) and when prompted for the type of installation, choose
Custom instead of Standard and then make sure you select the DOM Inspector
checkbox. If you are running Firefox 3, you can get the DOM Inspector as an add-on
from https://addons.mozilla.org/en-us/firefox/addon/6622.

Once installed, the DOM Inspector is reachable via Tools|DOM Inspector.

The Browser Environment

[220]

In the DOM Inspector, you have the DOM tree on the left and then information
about the selected node on the right. The screenshot above shows the Javascript
Object panel for the selected HTML node. The Javascript Object is not the default
view, but you can bring it up by clicking the small "Views" icon as shown in the
following screenshot.

Every node in the DOM tree is an object and the Javascript Object view of the DOM
Inspector lists all of the properties and methods of these objects. You can also see the
constructor function that was used behind the scenes to create each of these objects.
Although this is not very useful for day-to-day tasks, it may be interesting to know
that, for example, window.document is created by the HTMLDocument() costructor;
the object that represents the head tag is created by HTMLHeadElement() and so on.
You cannot create objects using these constructors directly, though.

Core DOM and HTML DOM
One last diversion before moving on to examples that are more practical. As you
now know, the DOM represents both XML documents and HTML documents. Inknow, the DOM represents both XML documents and HTML documents. In
fact, HTML documents are XML documents, but a little more specific. Therefore,
as part of DOM Level 1, there is a Core DOM specification that is applicable to all
XML documents, and there is also an HTML DOM specification which extends and
builds upon the core DOM. Of course, the HTML DOM doesn't apply to all XML
documents, but only to HTML documents. Let's see some example of Core DOM and
HTML DOM constructors.

Chapter 7

[221]

Constructor Inherits from Core or
HTML

Comment

Node Core Any node on the tree.
Document Node Core The document object; the main entry

point to any XML document.
HTMLDocument Document HTML This is window.document or simply

document, the HTML-specific version
of the previous object, which you'll
use extensively.

Element Node Core Every tag in the source is represented
by an element. That's why you say
"the P element" meaning
"the <p></p> tag".

HTMLElement Element HTML General-purpose constructor; all
constructors for HTML elements inherit
from it.

HTMLBodyElement HTMLElement HTML Element representing the <body> tag.
HTMLLinkElement HTMLElement HTML An A element (an <a href="..."

> tag).
.... HTMLElement HTML All the rest of the HTML elements...
CharacterData Node Core General-purpose constructor for dealing

with texts.
Text CharacterData Core Text node inside a tag. In

second you have the
element node EM and the text node with
value "second".

Comment CharacterData Core <!-- any comment -->-- any comment -->any comment -->

Attr Node Core Represents an attribute of a tag,
In <p id="closer"> the id attribute
is a DOM object created by the
Attr() constructor.

NodeList Core A list of nodes; an array-like object that
has a length property.

NamedNodeMap Core Same as above but the nodes can
be accessed by name, not only by
numeric index.

HTMLCollection HTML Similar to above but specific for HTML.

These are by no means all of the Core DOM and HTML DOM objects. For the full list
consult http://www.w3.org/TR/DOM-Level-1/.

The Browser Environment

[222]

Now that this bit of DOM theory is behind us let's focus on the practical side of
things. In the following sections, you'll learn how to:

Access DOM nodes
Modify nodes
Create new nodes
Remove nodes

Accessing DOM Nodes
Before you can validate a form on a page, or swap an image, you need to get access
to the element you want to inspect or modify. Luckily, there are many ways to get
to any element, either by navigating around traversing the DOM tree or by using
a shortcut.

It's best if you start experimenting with all of the new objects and methods. The
examples you'll see use the same simple document that you saw at the beginning of
the DOM section, and which you can access at http://www.phpied.com/files/
jsoop/ch7.html. Open the Firebug console, and let's get started.

The document Node
document gives you access to the current document. To explore this object, you can
once again use Firebug as a cheat sheet. Typeuse Firebug as a cheat sheet. Type Firebug as a cheat sheet. Type document and click on the result.

This takes you to the DOM tab where you can browse all of the properties and
methods of the document object.

•

•

•

•

Chapter 7

[223]

All nodes (this also includes the document node, text nodes, element nodes, and
attribute nodes) have nodeType, nodeName, and nodeValue properties.

>>> document.nodeType

 9

There are 12 node types, represented by integers. As you can see, the document node
type is 9. The most useful are 1 (element), 2 (attribute), and 3 (text).

Nodes also have names. For HTML tags the node name is the tag name (tagName
property). For text nodes, it is #text, and for document nodes:

>>> document.nodeName

 "#document"

Nodes can also have node values, for example for text nodes; the value is the actual
text. The document node doesn't have a value:

>>> document.nodeValue

 null

The Browser Environment

[224]

documentElement
Now let's move around the tree. XML documents always have one root node that
wraps the rest of the document. For HTML documents, the root is the <html> tag. To
access the root, you use the documentElement property of the document object.

>>> document.documentElement

 <html>

nodeType is 1 (an element node):

>>> document.documentElement.nodeType

 1

For element nodes, both nodeName and tagName properties contain the name of
the tag.

>>> document.documentElement.nodeName

 "HTML"

>>> document.documentElement.tagName

 "HTML"

Child Nodes
In order to tell if a node has any children you use hasChildNodes():

>>> document.documentElement.hasChildNodes()

 true

The HTML element has two children—the head and the body elements. You can
access them using the childNodes array-like collection.

>>> document.documentElement.childNodes.length

 2

>>> document.documentElement.childNodes[0]

 <head>

>>> document.documentElement.childNodes[1]

 <body>

Chapter 7

[225]

Any child has access to its parent through the parentNode property:

>>> document.documentElement.childNodes[1].parentNode

 <html>

Let's assign a reference to body to a variable:

>>> var bd = document.documentElement.childNodes[1];

How many children does the body element have?

>>> bd.childNodes.length

 9

As a refresher, here again is the body of the document we're looking at:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

How come body has 9 children? Well, 3 paragraphs plus one comment makes 4
nodes. The white space between these 4 nodes makes 3 more text nodes. This makes
a total of 7 so far. The white space between body and the first p is the eighth node.
The white space between the comment and the closing </body> is another text node.
This makes a total of 9 child nodes.

Attributes
Because the first child of the body is a white space, the second child (index 1) is the
first paragraph:

>>> bd.childNodes[1]

 <p class="opener">

You can check whether an element has attributes using hasAttributes():

>>> bd.childNodes[1].hasAttributes()

 true

The Browser Environment

[226]

How many attributes? In this example, one, the class attribute.

>>> bd.childNodes[1].attributes.length

 1

You can access the attributes by index and by name. You can also get the value using
the getAttribute() method

>>> bd.childNodes[1].attributes[0].nodeName

 "class""class"

>>> bd.childNodes[1].attributes[0].nodeValue

 "opener""opener"

>>> bd.childNodes[1].attributes['class'].nodeValue

 "opener""opener"

>>> bd.childNodes[1].getAttribute('class')

 ""opener"

Accessing the Content Inside a Tag
Let's take a look at the first paragraph:

>>> bd.childNodes[1].nodeName

 "P""P"

You can get the text contained in the paragraph by using the textContent property.
textContent doesn't exist in IE, but another property called innerText does and it
returns the same value.

>>> bg.childNodes[1].textContent

 "first �aragra��""first �aragra��"

There is also the innerHTML property. It's not part of the DOM standard, but exists
in all major browsers. It returns any HTML code contained in the node. You can see
how this is a little inconsistent, as DOM treats the document as a tree of nodes, not as
a string of tags. But innerHTML is so convenient to use that you'll see it everywhere.

>>> bd.childNodes[1].innerHTML

 "first �aragra��""first �aragra��"

Chapter 7

[227]

The first paragraph only has text, so innerHTML is the same as textContent (or
innerText in IE). However, the second paragraph does contain an em node, so you
can see the difference:

>>> bd.childNodes[3].innerHTML

 "second paragraph"

>>> bd.childNodes[3].textContent

 "second paragraph""second paragraph"

Another way to get the text contained in the first paragraph is by using the
nodeValue of the text node contain inside the p node:

>>> bd.childNodes[1].childNodes.length

 11

>>> bd.childNodes[1].childNodes[0].nodeName

 "#text""#text"

>>> bd.childNodes[1].childNodes[0].nodeValue

 "first �aragra��""first �aragra��"

DOM Access Shortcuts
By using childNodes, parentNode, nodeName, nodeValue, and attributes,
you can navigate up and down the tree and pretty much do anything with the
document. But the fact that white space is a text node makes this a slightly fragile
way of working with the DOM. If the page changes slightly, your script may no
longer work correctly. Also, if you want to get to a node deeper in the tree, it might
take a bit of code before you get there. That's why you have the shortcut methods—
getElementsByTagName(), getElementsByName(), and getElementById().

getElementsByTagName() takes a tag name (the name of an element node) and
returns an HTML collection (array-like object) of nodes with the matching tag name:

>>> document.getElementsByTagName('p').length

 33

The Browser Environment

[228]

You can access an item in the list, by using the brackets notation, or the method
item(), and passing the index (0 for the first element). Using item() is discouraged,
as array brackets are more consistent and also shorter to type.

>>> document.getElementsByTagName('p')[0]

 <p class="opener"><p class="opener">

>>> document.getElementsByTagName('p').item(0)

 <p class="opener"><p class="opener">

Getting the contents of the first p:

>>> document.getElementsByTagName('p')[0].innerHTML

 "first �aragra��""first �aragra��"

Accessing the last p:

>>> document.getElementsByTagName('p')[2]

 <p id="closer"><p id="closer">

In order to access element's attributes, you can use the attributes collection, or
getAttribute() as shown above. But a shorter way is to use the attribute name as a
property of the element you're working with. So to get the value of the id attribute,
you just use id as a property:

>>> document.getElementsByTagName('p')[2].id

 "closer""closer"

Getting the class attribute of the first paragraph won't work though. It's an
exception, because it just happens so that "class" is a reserved word in ECMAScript.
You can use className instead:

>>> document.getElementsByTagName('p')[0].className

 "opener""opener"

Using getElementsByTagName() you can get all of the elements on the page:

>>> document.getElementsByTagName('*').length

 99

Chapter 7

[229]

In earlier versions of IE, '*' is not acceptable as a tag name. In order to get all
elements you can use IE's proprietary document.all collection, although selecting
every element is rarely useful. In any case, starting with IE version 7, document.
getElementsByTagName('*') is supported, but it will return all of the nodes, not
only the element nodes.

The other shortcut mentioned above is getElementById(). This is probably the most
common way of accessing an element. You just assign IDs to the elements you plan
to play with and they'll be easy to access later on:

>>> document.getElementById('closer')

 <p id="closer"><p id="closer">

Siblings, Body, First, and Last Child
nextSibling and previousSibling are two other convenient properties to navigate
the DOM tree, once you have a reference to one element:

>>> var para = document.getElementById('closer')
>>> para.nextSibling

 "\n ""\n "

>>> para.previousSibling

 "\n ""\n "

>>> para.previousSibling.previousSibling

 <p><p>

>>> para.previousSibling.previousSibling.previousSibling

 "\n ""\n "

>>> para.previousSibling.previousSibling.nextSibling.nextSiblingpara.previousSibling.previousSibling.nextSibling.nextSiblingpreviousSibling.nextSibling.nextSibling

 <p id="closer"><p id="closer">

The body element is used so often that it has its own shortcut:

>>> document.body

 <body><body>

>>> document.body.nextSibling

 nullnull

The Browser Environment

[230]

>>> document.body.previousSibling

 <head><head>

firstChild and lastChild could also be useful. firstChild is the same as
childNodes[0] and lastChild is the same as childNodes[childNodes.length - 1].

>>> document.body.firstChild

 "\n ""\n "

>>> document.body.lastChild

 "\n ""\n "

>>> document.body.lastChild.previousSibling

 Comment length=21 nodeName=#commentComment length=21 nodeName=#comment

>>> document.body.lastChild.previousSibling.nodeValue

 " and that�s about it "

The following illustration shows the family relationships between the body and
three paragraphs in it. For simplicity, all the whitespace text nodes are removed
from the diagram.

NEXT SIBLING NEXT SIBLING

PREVIOUS SIBLING PREVIOUS SIBLING

PA
RE

NT
NO

DE

PA
RE

NT
NO

DE

FIR
ST

CH
ILD

P P P

LAST CHILD

PARENT NODE

Body

Walk the DOM
To wrap up, here's a function that takes any node and walks through the DOM tree
recursively, starting from the given node.

Chapter 7

[231]

function walkDOM(n) {
 do {
 console.log(n);
 if (n.hasChildNodes()) {
 walkDOM(n.firstChild)
 }
 } while (n = n.nextSibling)
}

You can test the function as follows:

>>> walkDOM(document.documentElement)
>>> walkDOM(document.body)

Modifying DOM Nodes
Now that you know a whole lot of methods for accessing any node of the DOM tree
and its properties, let's see how you can modify these nodes.

Let's assign a pointer to the last paragraph to the variable my.

>>> var my = document.getElementById('closer');

Now changing the text of the paragraph can be as easy as changing the
innerHTML value:

>>> my.innerHTML = 'final!!!';

 "final!!!"

Because innerHTML accepts a string of HTML source code, you can also create a new
em node in the DOM tree:

>>> my.innerHTML = 'my final';

 "my final"

The new em node becomes a part of the tree:

>>> my.firstChild

>>> my.firstChild.firstChild

 "my"

The Browser Environment

[232]

Another way to change text is to get the actual text node and change its nodeValue:

>>> my.firstChild.firstChild.nodeValue = 'your';

 "your"

Modifying Styles
Often you don't change the content of a node but its presentation. The elements have
a style property, which in turn has a property mapped to each CSS property. For
example, changing the style of the paragraph to add a red border:

>>> my.style.border = "1px solid red";

 "1px solid red""1px solid red"

CSS properties often have dashes but dashes are not acceptable in JavaScript names.
In such cases, you skip the dash and uppercase the next letter. So padding-top
becomes paddingTop, margin-left becomes marginLeft, and so on.

>>> my.style.fontWeight = 'bold';

 "bold""bold"

You can also modify attributes regardless of whether they were initially set or not:

>>> my.align = "right";

 "right""right"

>>> my.name
>>> my.name = 'myname';

 "myname""myname"

>>> my.id

 "closer""closer"

>>> my.id = 'further'

 "further""further"

Let's see how the tag looks like after all of these modifications:

>>> my

<p id="further" align="right" style="border: 1px solid red; font-weight:
bold;">

Chapter 7

[233]

Fun with Forms
As mentioned earlier, JavaScript is great for client-side input validation and can save
a few round-trips to the server. Let's practice form manipulations and play a little bit
with a form located on a popular page—google.com.

Selecting all of the input fields:

>>> var inputs = document.getElementsByTagName('input');
>>> inputs.length;

 4

Printing out inputs[0], inputs[1], and so on, you can see that the first input is a
hidden field, the second is the search query, the third is the Google Search button
and the fourth—the I�m Feeling Lucky button.

Accessing the search box:

>>> inputs[1].name;

 "q"

Changing the search query, by setting the text contained in the value attribute:

>>> inputs[1].value = 'my query';

 "my query"

Now let's have some fun. Changing the word Lucky with Tricky in the button:

>>> inputs[3].value = inputs[3].value.replace(/Lu/, 'Tri');

 "I�m Feeling Tricky"

The Browser Environment

[234]

Now let's implement the tricky part and make that button show and hide for one
second. We can do this with a simple function. Let's call it toggle(). Every time you
call the function, it checks the value of the CSS property visibility and sets it to
"visible" if it's "hidden" and vice versa.

function toggle(){
 var st = document.getElementsByTagName('input')[3].style;
 st.visibility = (st.visibility === 'hidden') ? 'visible': 'hidden';
}

Instead of calling the function manually, let's set an interval and call it every second.

>>> var myint = setInterval(toggle, 1000);

The result? The button starts blinking (making it trickier to click). When you're tired
of chasing it, just remove the timeout interval.

>>> clearInterval(myint)

Creating New Nodes
In order to create new nodes, you can use the methods createElement() and
createTextNode(). Once you have the new nodes, you add them to the DOM tree
with appendChild().

Creating a new p element and setting its innerHTML:

>>> var myp = document.createElement('p');
>>> myp.innerHTML = 'yet another';

 "yet another"

The new element automatically gets all the default properties, such as style, which
you can modify:

>>> myp.style

 CSSStyleDeclaration length=0

>>> myp.style.border = '2px dotted blue'

 "2px dotted blue"

Chapter 7

[235]

Using appendChild() you can add the new node to the DOM tree. Calling this
method on the document.body node means creating one more child node right after
the last child:

>>> document.body.appendChild(myp)

 <p style="border: 2px dotted blue;">

Here's an illustration of how the page looked like before and after the new node
was appended:

first paragraph first paragraph

second paragraph second paragraph

final final

yet another

DOM-only Method
Using innerHTML was a way to get things done a little more quickly; the pure DOM
way would've been:

1. Create a new text node containing the "yet another" text
2. Create new paragraph node
3. Append the text node as a child to the paragraph
4. Append the paragraph as a child to the body

This way you can create any number of text nodes and elements and nest them
however you like. Let's say you want to add the following HTML to the end
of the body:

<p>one more paragraphbold</p>

Presenting this as a hierarchy would be something like:

P element
 text node with value "one more paragraph"
 STRONG element
 text node with value "bold"

The Browser Environment

[236]

Let's see the code that accomplishes this:

// create P
var myp = document.createElement('p');
// create text node and append to P
var myt = document.createTextNode('one more paragraph')
myp.appendChild(myt);
// create STRONG and append another text node to it
var str = document.createElement('strong');
str.appendChild(document.createTextNode('bold'));
// append STRONG to P
myp.appendChild(str);
// append P to BODY
document.body.appendChild(myp);

cloneNode()
Another way to create nodes is by copying (or cloning) existing ones. The method
cloneNode() does this and accepts a boolean parameter (true = deep copy with all
the children, false = shallow copy, only this node). Let's test the method.

Getting a reference to the element you want to clone:

>>> var el = document.getElementsByTagName('p')[1];

Now el refers to the second paragraph on the page that looks like this:

<p>second paragraph</p>

Let's create a shallow clone of el and append it to the body:

>>> document.body.appendChild(el.cloneNode(false))

You won't see a difference on the page, because the shallow copy only copied the P
node, without any children. This means that the text inside the paragraph (which is a
text node child) was not cloned. The line above would be equivalent to:

>>> document.body.appendChild(document.createElement('p'));

Now if you create a deep copy, the whole DOM subtree starting from P will be
copied, and this includes text nodes and the EM element.

>>> document.body.appendChild(el.cloneNode(true))

You can also copy only the EM if you want:

>>> document.body.appendChild(el.firstChild.cloneNode(true))

Chapter 7

[237]

Or only the text node with value "second":

>>> document.body.appendChild(el.firstChild.
 firstChild.cloneNode(false))

 "second"

insertBefore()
Using appendChild(), you can only add new children at the end of the selected
element. For more control over the exact location, there is insertBefore(). This is
the same as appendChild(), but accepts an extra parameter, specifying before which
element to insert the new node. For example, the following code will insert a text
node at the end of the body:

>>> document.body.appendChild(document.createTextNode('boo!'));

And this will create the same text node and add it as the first child of the body:

document.body.insertBefore(
 document.createTextNode('boo!'),
 document.body.firstChild
);

Removing Nodes
To remove nodes from the DOM tree, you can use the method removeChild().
Again, let's work with this BODY:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

Here's how you can remove the second paragraph:

>>> var myp = document.getElementsByTagName('p')[1];
>>> var removed = document.body.removeChild(myp);

The method returns the removed node if you want to use it later. You can still use all
the DOM methods although the element is no longer in the tree:

>>> removed

 <p>

The Browser Environment

[238]

>>> removed.firstChild

There's also the replaceChild() method that removes a node and puts another one
in its place. Now after removing the node shown above, the tree looks like:

 <body>
 <p class="opener">first paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

Now the second paragraph is the one with the ID "closer":

>>> var p = document.getElementsByTagName('p')[1];
>>> p

 <p id="closer">

Let's replace this paragraph with the one we have in the removed variable:

>>> var replaced = document.body.replaceChild(removed, p);

Just like removeChild(), replaceChild() returns a reference to the node that is
now out of the tree:

>>> replaced

 <p id="closer">

Now the body looks like:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <!-- and that's about it -->
 </body>

A quick way to wipe out all of the content of a subtree is to set the innerHTML to a
blank string. This will remove all of the children of the BODY:

>>> document.body.innerHTML = '';

 ""

Testing:

>>> document.body.firstChild

 null

Chapter 7

[239]

Removing with innerHTML is easy but the DOM-only way would be to go over all
of the child nodes and remove each one individually. Here's a little function that
removes all nodes from a given start node:

function removeAll(n) {
 while (n.firstChild) {
 n.removeChild(n.firstChild);
 }
}

If you want to delete all BODY children and leave the page with an empty
<body></body>:

>>> removeAll(document.body);

HTML-Only DOM Objects
As you know already, the Document Object Model applies to both XML and HTML
documents. What you've learned above about traversing the tree and then adding,
removing, or modifying nodes applies to any XML document. There are, however,
some HTML-only objects and properties.

document.body is one such HTML-only object. It's so common to
have a<body> tag in HTML documents and it's accessed so often, that it
is justifiable in having an object that is much friendlier than the equivalent
document.getElementsByTagName('body')[0].

document.body is one example of an object that was actually inherited from the pre-
historic DOM Level 0 and moved to the HTML extension of the DOM specification.
There are other objects like document.body. For some of them there is no Core DOM
equivalent; for others there is an equivalent, but the DOM0 original was ported
anyway for simplicity and legacy purposes. Let's see some of those objects.

Primitive Ways to Access the Document
Unlike the DOM, which gives you access to any element (and even comments and
white-space), initially JavaScript had only a limited access to the elements of an
HTML document. This was done mainly through a number of collections:

document.images - this is a collection of all of the images on the page.
This is the same as the Core DOM equivalent document.getElementsByTag
Name('img')
document.applets—this is the same as document.getElementsByTagName
('applets')

•

•

The Browser Environment

[240]

document.links

document.anchors

document.forms

document.links contains a list of all tags on the page,
meaning the A tags that have an href attribute. document.anchors contains all links
with a name attribute ().

One of the most widely used collections is document.forms, which contains a list of
<form> tags. This will give you access to the first form on the page:

>>> document.forms[0]

This would be the same as:

>>> document.getElementsByTagName('forms')[0]

The forms collection contains input fields and buttons, accessible through the
elements property. Here's how to access the first input of the first form on the page:

>>> document.forms[0].elements[0]

Once you have access to an element, you can access the attributes of the tag as object
properties. Imagine the first field of the first form is this:

<input name="search" id="search" type="text" size="50"
 maxlength="255" value="Enter email..." />

You can change the text in the field (the value of the value attribute) by using
something like:

>>> document.forms[0].elements[0].value = 'me@example.org'

 "me@example.org"

If you want to disable the field dynamically:

>>> document.forms[0].elements[0].disabled = true;

When forms or form elements have a name attribute, you can access them by
name too:

>>> document.forms[0].elements['search']; // array notation
>>> document.forms[0].elements.search; // object property

•

•

•

Chapter 7

[241]

document.write()
The method document.write() allows you to insert HTML into the page while the
page is being loaded. You can have something like this:

<p>It is now <script>document.write("" + new Date()
 + "");</script></p>

This will be the same as if you had the date directly in source of the HTML document:

<p>It is now Sat Feb 23 2008 17:48:04 GMT-0800
 (Pacific Standard Time)</p>

There's also the document.writeln() which is the same as document.write(), but
it adds a new line "\n" at the end, so these would be equivalent:

>>> document.write('boo!\n');
>>> document.writeln('boo!');

Note that you can only use document.write() while the page is being loaded, if you
try it after page load, it will replace the content of the whole page.

It's rare that you would need document.write(), and if you think you do, try an
alternative approach. The ways to modify the content of the page provided by DOM
Level 1 are preferred and are much more flexible.

Cookies, Title, Referrer, Domain
The four additional properties of document you'll see in this section are also ported
from DOM Level 0 to the HTML extension of DOM Level 1. Unlike the previous
ones, for these properties there are no Core DOM equivalents.

document.cookie is a property that contains a string. This string is the content of the
cookies exchanged between the server and the client. When the server sends a page
to the browser, it may include the Set-Cookie HTTP header. When the client sends
a request to the server, it sends the cookie information back with the Cookie header.
Using document.cookie you can alter the cookies the browser sends to the server.
Visiting cnn.com for example and typing document.cookie in the console gives you
something like:

>>> document.cookie

 "CNNid=Ga50a0c6f-14404-1198821758-6; SelectedEdition=www; s_sess=
 %20s_dslv%...

The Browser Environment

[242]

document.title allows you to change the title of the page displayed in the browser
window. For example on cnn.com, you can do:

>>> document.title = 'My title'

 "My title"

The result will be something like:

Note that this doesn't change the value of the <title> tag, but only the display in
the browser window, so it is not equivalent to document.getElementsByTagName('
title')[0].

document.referrer tells you the URL of the previously-visited page. This is
the same value the browser sends in the Referer HTTP header when requesting
the page. (Note that Referer is misspelled in the HTTP headers, but is correct in
JavaScript's document.referrer). If you've visited the CNN page by searching
Yahoo! first, you can see something like:

>>> document.referrer

 "http://search.yahoo.com/search?p=cnn&ei=UTF-8&fr=moz2"

document.domain gives you access to the domain name of the currently-loaded page.
This is useful when you need to perform so-called domain relaxation. Imagine your page
is www.yahoo.com and you have a frame or iframe hosted on music.yahoo.com. These
are two separate domains so the browser's security restrictions won't allow the page to
communicate with the iframe. To resolve this you can set document.domain on both
pages to yahoo.com and they'll be able to "talk" to each other.

Note that you can only set the domain to a less-specific one; for example, you can
change www.yahoo.com to yahoo.com, but you cannot change yahoo.com to www.
yahoo.com or any other non-yahoo domain.

>>> document.domain

 "www.yahoo.com"

Chapter 7

[243]

>>> document.domain = 'yahoo.com'

 "yahoo.com"

>>> document.domain = 'www.yahoo.com'

 Illegal document.domain value" code: "1009

>>> document.domain = 'www.example.org'

 Illegal document.domain value" code: "1009

Previously in this chapter, you saw the window.location object. Well, the same
functionality is also available as document.location:

>>> window.location === document.location

 true

Events
Imagine you are listening to a radio program and they announce, "Big event!
Huge! Aliens have landed on Earth!" You might think "Yeah, whatever", some
other listeners might think "They come in peace" and some "We're all gonna die!".
Similarly, the browser broadcasts events and your code could be notified should
it decide to "tune in" and listen to the events as they happen. Some example
events include:

The user clicks a button
The user types a character in a form field
The page finishes loading

You can attach a JavaScript function (called an event listener or event handler) to a
specific event and the browser will execute your function as soon the event occurs.
Let's see how this is done.

Inline HTML Attributes
Adding specific attributes to a tag is the laziest way, for example:

<div onclick="alert('Ouch!')">click</div>

In this case when the user clicks on the <div>, the click event fires and the string of
JavaScript code contained in the onclick attribute is executed. There's no explicit
function that listens to the click event, but behind the scenes a function is still created
and it contains the code you specified as a value of the onclick attribute.

•
•
•

The Browser Environment

[244]

Element Properties
Another way to have some code executed when a click event fires is to assign a
function to the onclick property of a DOM node element. For example:

<div id="my-div">click</div>
<script type="text/javascript">
 var myelement = document.getElementById('my-div');
 myelement.onclick = function() {
 alert('Ouch!');
 alert('And double ouch!');
 }
</script>

This way is actually better because it helps you keep your <div> clean of any
JavaScript code. Always keep in mind that HTML is for content, JavaScript for
behavior and CSS for formatting, and you should keep these three separate as
much as possible.

This method has the drawback that you can attach only one function to the event, as
if the radio program has only one listener. It's true that you can have a lot happening
inside the same function, but this is not always convenient, as if all the radio listeners
are in the same room.

DOM Event Listeners
The best way to work with browser events is to use the event listener approach
outlined in DOM Level 2, where you can have many functions listening to an event.
When the event fires, all functions are executed. All of the listeners don't need to
know about each other and can work independently. They can tune in and out at any
time without affecting the other listeners.

Let's use the same simple markup from the previous section (available for you to
play with at http://www.phpied.com/files/jsoop/ch7.html). We had this piece
of markup:

<p id="closer">final</p>

Chapter 7

[245]

Your JavaScript code can assign listeners to the click event using the
addEventListener() method:

>>> var mypara = document.getElementById('my-div');
>>> mypara.addEventListener('click', function()
 {alert('Boo!')}, false);
>>> mypara.addEventListener('click', console.log, false);

As you can see, addEventListeners() is a method called on the node object and
accepts the type of event as its first parameter and a function pointer as its second.
You can use anonymous functions such as function(){alert('Boo!')} or existing
functions such as console.log. The listener functions you specify will be called
when the event happens, and a parameter will be passed to them. This parameter is
an event object. If you run the code above and click the last paragraph, you can see
event objects being logged to the Firebug console.

The Browser Environment

[246]

Clicking on an event object allows you to see its properties.

Capturing and Bubbling
In the calls to addEventListener() above there was a third parameter, false.
Let's see what this is for.

Say you have a link inside an unordered list, like so:

<body>

 my blog

</body>

Chapter 7

[247]

When you click the link, you're actually also clicking the list item , the list
, the <body> and eventually the document as a whole. A click on a link can
also be seen as click on the document, because of event propagation. The process of
propagating an event can be implemented in two ways:

Event capturing—the click happens on the document first, then it propagates
to the body, the list, the list item, and finally to the link.
Event bubbling—the click happens on the link and then bubbles up
to the document.

DOM Level 2 Events specification suggests that the events propagate in three phases:
capturing, at target, and bubbling. This means that the event propagates from the
document to the link (target) and then back up to the document. The event objects
have an eventPhase property, which reflects the current phase.

DOCUMENT

HTML

BODY

UL

LI

A

PHASE II :
AT TARGET

PH
AS

E
I:

CA
PT

UR
IN

G BUBBLING
PHASE

III :

CLICK !

Historically, IE and Netscape (working on their own and without a standard to
follow) implemented the exact opposites. IE implemented only bubbling, Netscape
only capturing. After the DOM specification, Firefox, Opera, and Safari implemented
the three phases, but IE kept only the bubbling.

What are the practical implications related to the event propagation?

The third parameter to addEventListener() specifies whether or not
capturing should be used. In order to have your code more portable across
browsers, it is better to always set this parameter to false and code using
bubbling only.

•

•

•

The Browser Environment

[248]

You can stop the propagation of the event, in your listeners, so that it
stops bubbling up and never reaches the document. To do this you can
call the stopPropagation() method of the event object (there is an example
in the next section).
You can also use event delegation. If you have ten buttons inside a <div>, you
can always attach ten event listeners, one for each button. But a smarter thing
to do is to attach only one listener to the wrapping <div> and when the event
happens, check which button was the target of the click.

To be completely fair, there is a way to use event capturing in IE (using
setCapture() and releaseCapture() methods) but only for mouse events.
Capturing any other events (keystroke events for example) is not supported.

Stop Propagation
Let's see an example of how you can stop the event from bubbling up. Going back to
the test document, we had:

<p id="closer">final</p>

Let's define a function that will handle clicks on the paragraph:

>>> function paraHandler(){alert('clicked paragraph');}

Now let's attach this function as a listener to the click event:

>>> var para = document.getElementById('closer');
>>> para.addEventListener('click', paraHandler, false);

Let's also attach listeners to the click event on the body, the document, and the
browser window:

>>> document.body.addEventListener('click', function(){alert
 ('clicked body')}, false);
>>> document.addEventListener('click', function(){alert
 ('clicked doc')}, false);
>>> window.addEventListener('click', function(){alert
 ('clicked window')}, false);

Note that the DOM specifications don't say anything about events on the window.
And why would they, as DOM deals with the document and not the browser. IE
doesn't propagate click events to the window, but Firefox does.

•

•

Chapter 7

[249]

Now, if you click on the paragraph, you'll see four alerts saying:

clicked paragraph
clicked body
clicked doc
clicked window

This illustrates how the same single click event propagates (bubbles up) from the
target all the way up to the window.

The opposite of addEventLister() is removeEventListener() and it accepts
exactly the same parameters. Let's remove the listener attached to the paragraph.

>>> para.removeEventListener('click', paraHandler, false);

If you try now, you'll see alerts only for the click event on the body, document, and
window, but not on the paragraph.

Now let's stop the propagation of the event. The function you add as a listener
receives the event object as a parameter and you can call the stopPropagation()
method of that event object:

function paraHandler(e){
 alert('clicked paragraph');
 e.stopPropagation();
}

Adding the modified listener:

>>> para.addEventListener('click', paraHandler, false);

Now if you click the paragraph you'll see only one alert, because the event won't
bubble up to the body, the document, or the window.

Note that you cannot remove listeners that use anonymous functions. If you remove
a listener, you have to pass a pointer to the same function you previously attached.
But two anonymous functions are still two separate function objects somewhere in
memory, even if they have the exact same bodies. Doing this will not work:

document.body.removeEventListener('click',
 function(){
 alert('clicked body')
 },
false); // does NOT remove the handler

•

•

•

•

The Browser Environment

[250]

Prevent Default Behavior
Some browser events have a pre-defined behavior. For example, clicking a link loads
another page. You can attach listeners to clicks on a link and you can also disable the
default behavior. In order to do so, you can call the method preventDefault() on
the event object.

Let's see how you can annoy your visitors by asking Are you sure you want to
follow this link? every time they click a link. If the user clicks Cancel (causing
confirm() to return false), the preventDefault() method is called:

// all links
var all_links = document.getElementsByTagName('a');
for (var i = 0; i < all_links.length; i++) { // loop all links
 all_links[i].addEventListener(
 'click', // event type
 function(e){ // handler
 if (!confirm('Are you sure you want to follow this link?')){
 e.preventDefault();
 }
 },
 false); // don't use capturing
}

Note that not all events allow you to prevent the default behavior. Most do, but if
you want to be sure, you can check the cancellable property of the event object.

Cross-Browser Event Listeners
As you already know, most modern browsers almost fully implement the DOM
Level 1 specification. However, the events were not standardized until DOM 2. As
a result, there are quite a few differences in how IE implements this functionality
compared to Firefox, Opera, and Safari.

Check out an example that causes the nodeName of a clicked element (the target
element) to be written to the console:

document.addEventListener('click', function(e){
 console.log(e.target.nodeName);
}, false);

Now let's take a look at how IE is different:

In IE there's no addEventListener() method, although since IE version 5
there is an equivalent attachEvent(). For earlier versions, your only choice
is accessing the property (such as onclick) directly.
click event becomes onclick when using attachEvent().

•

•

Chapter 7

[251]

If you listen to events the old-fashioned way (for example, by setting a
function value to the onclick property), when the callback function is
invoked, it doesn't get an event object passed as a parameter. But regardless
of how you attach the listener, in IE there is always a global object window.
event that points to the event.
In IE the event object doesn't get a target attribute telling you the
element on which the event fired, but it does have an equivalent property
called srcElement.
As mentioned before, event capturing doesn't apply to all events, so only
bubbling should be used.
There's no stopPropagation() method, but you can set the IE-only
cancelBubble property to true.
There's no preventDefault() method, but you can set the IE-only
returnValue property to false.
In order to stop listening to an event, instead of removeEventListener()
in IE you'll need detachEvent().

So here's the revised version of the code above that will work cross-browser:

function callback(evt) {
 // prep work
 evt = evt || window.event;
 var target = (typeof evt.target !== 'undefined') ? evt.target : evt.var target = (typeof evt.target !== 'undefined') ? evt.target : evt.'undefined') ? evt.target : evt.
srcElement;
 // actual callback work
 console.log(target.nodeName);
}
// start listening for click events
if (document.addEventListener){ // FF
 document.addEventListener('click', callback, false);
} else if (document.attachEvent){ // IE
 document.attachEvent('onclick', callback);
} else {
 document.onclick = callback;
}

•

•

•

•

•

•

The Browser Environment

[252]

Types of Events
Now you know how to handle cross-browser events. But all of the examples above
used only click events. What other events are happening out there? As you can
probably guess, different browsers provide different events. There is a subset of
cross-browser events and some browser-specific ones. For a full list of events,
you should consult the browser's documentation, but here's a selection of
cross-browser events:

Mouse events
mouseup, mousedown, click (the sequence is mousedown-up-
click), dblclick
mouseover (mouse is over an element), mouseout (mouse was
over an element but left it), mousemove

Keyboard events
keydown, keypress, keyup (occur in this sequence)

Loading/window events
load (an image or a page and all of its components are done
loading), unload (user leaves the page), beforeunload (the
script can provide the user with an option to stop the unload)
abort (user stops loading the page in Firefox or an image in
IE), error (a JavaScript error in Firefox and IE, also when an
image cannot be loaded in IE)
resize (browser window is resized), scroll (the page is
scrolled), contextmenu (the right-click menu appears)

Form events
focus (enter a form field), blur (leave form field)
change (leave a field after the value has changed), select
(select text in a text field)
reset, submit

This concludes the discussion of events. Refer to the exercise section at the end of
this chapter for a little challenge of creating your own event utility to handle cross-
browser events.

•
°

°

•
°

•
°

°

°

•
°

°

°

Chapter 7

[253]

XMLHttpRequest
XMLHttpRequest() is an object (a constructor function) that allows you to send
HTTP requests from JavaScript. Historically, XMLHttpRequest (or XHR for short)
was introduced in IE and was initially implemented as an ActiveX object. Starting
with IE7 it is a a native browser object, the same way as it is in Firefox, Safari, and
Opera. The common implementation of this object across browsers gave birth to
the so-called AJAX applications, where it is no longer necessary to refresh the whole
page every time you need new content. With JavaScript, you can make an HTTP
request to the server, get the response and update only a part of the page. In this way
you can build much more responsive, desktop-like web pages.

AJAX stands for Asynchronous JavaScript and XML.

Asynchronous because after sending an HTTP request your code doesn't need
to wait for the response, but it can do other stuff and be notified (through an
event) when the response arrives.
JavaScript—well, it's pretty obvious, we create XHR objects with JavaScript.
XML because initially developers were making HTTP requests for XML
documents and were using the data contained in them to update the page.
This is no longer a common practice, though, as you can request data in plain
text, in the much more convenient JSON format, or simply as HTML ready to
be inserted into the page.

There are effectively two steps to using the XMLHttpRequest:

Send the request—this includes creating an XMLHttpRequest object and
attaching an event listener
Process the response—your event listener gets notified that the response has
arrived and your code gets busy doing something useful with the response

Send the Request
In order to create an object you simply use this (we'll deal with browser
inconsistencies in a bit):

var xhr = new XMLHttpRequest();

The next thing is to attach an event listener to the readystatechange event fired by
the object:

xhr.onreadystatechange = myCallback;

•

•
•

•

•

The Browser Environment

[254]

Then you need to call the open() method, as follows:

xhr.open('GET', 'somefile.txt', true);

The first parameter specifies the type of HTTP request (GET, POST, HEAD, and so on).
GET and POST are the most common. Use GET when you don't need to send much
data with the request, otherwise useotherwise use use POST. The second parameter is the URL you
are requesting. In this example, it's the text file somefile.txt located in the same
directory as the page. The last parameter is a boolean specifying whether the request
is asynchronous (true) or not (false).

The last step is to actually fire off the request.

xhr.send('');

The method send() accepts any data you want to send with the request. For GET
requests, this is an empty string, because the data is in the URL. For POST request, it's
a query string in the form key=value&key2=value2.

At this point, the request is sent and your code (and the user) can move on to other
tasks. The callback function myCallback will be invoked when the response comes
back from the server.

Process the Response
We've attached a listener to the readystatechange event. What is the ready state
and how does it change?

There is a property of the XHR object called readyState. Every time it changes, the
readystatechange event fires. The possible values of the readyState property are
as follows:

0—uninitialized
1—loading
2—loaded
3—interactive
4—complete

When readyState gets the value of 4, it means the response is back and ready to
be processed. In myCallback, after you make sure readyState is 4, the other thing
to check is the status code of the HTTP request. You might have requested a non-
existing URL for example and get a 404 (File not found) status code. The interesting
code is the 200 (OK) code, so myCallback should check for this value. The status
code is available in the status property of the XHR object.

•

•

•

•

•

Chapter 7

[255]

Once xhr.readyState is 4 and xhr.status is 200, you can access the contents of the
requested URL, using the xhr.responseText property. Let's see how myCallback
could be implemented to simply alert() the contents of the requested URL.

function myCallback() {
 if (xhr.readyState < 4) {
 return; // not ready yet
 }
 if (xhr.status !== 200) {
 alert('Error!'); // the HTTP status code is not OK
 return;
 }
 // all is fine, do the work
 alert(xhr.responseText);
}

Once you've received the new content you requested, you can add it to the page, or
use it for some calculations, or for any other purpose you find suitable.

Overall, this two-step process (send request, process response) is the core of the
whole XHR/AJAX functionality. Now that you know the basics, you can move on
to building the next Gmail or the next Yahoo! Maps. Oh yes, let's have a look at one
minor browser inconsistency.

Creating XMLHttpRequest Objects in IE prior
to version 7
In Internet Explorer prior to version 7, the XMLHttpRequest object was an ActiveX
object, so creating an XHR instance is a little different. It goes like:

var xhr = new ActiveXObject('MSXML2.XMLHTTP.3.0');

MSXML2.XMLHTTP.3.0 is the identifier of the object you want to create. There are
several versions of the XMLHttpRequest object and if your page visitor doesn't have
the latest one installed, you can try two older ones, before you give up.

The Browser Environment

[256]

For a fully-cross-browser solution, you should first test to see if the user's browseryou should first test to see if the user's browserfirst test to see if the user's browser
supports XMLHttpRequest as a native object, and if not, try the IE way. Therefore,
the whole process of creating an XHR instance could be like this:

var ids = ['MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'];

var xhr;
if (typeof window.XMLHttpRequest === 'function') {
 xhr = new XMLHttpRequest();
} else {
 for (var i = 0; i < ids.length; i++) {
 try {
 xhr = new ActiveXObject(ids[i]);
 break;
 } catch (e){}
 }
}

What is this doing? The array ids contains a list of ActiveX program IDs to try.
The variable xhr will point to the new XHR object. The code first checks to see if
windows.XMLHttpRequest is a valid function. If it is, this means that the browser
supports XMLHttpRequest() natively (so the browser is one of Firefox, Safari, Opera,
or IE7 (or greater)). If it is not, the code will loop through ids trying to create an
object. catch(e) quietly catches failures and the loop continues. As soon as an xhr
object is created, we break out of the loop.

As you can see, this is quite a bit of code so it's best to abstract it into a function.
Actually, one of the exercises at the end of the chapter prompts you to create your
own AJAX utility.

A is for Asynchronous
Now you know how to create an XHR object, give it a URL and handle the response
to the request. What happens when you send two requests asynchronously? What if
the response to the second request comes before the first?

In the example above, the XHR object was global and myCallback was relying on
the presence of this global object in order to access its readyState, status and
responseText properties. Another way, which will prevent you from relying on
global variables, is to wrap the callback in a closure. Let's see how:

var xhr = new XMLHttpRequest();
xhr.onreadystatechange = (function(myxhr){
 return function(){myCallback(myxhr);}

Chapter 7

[257]

})(xhr);
xhr.open('GET', 'somefile.txt', true);
xhr.send('');

In this case myCallback() will receive the XHR object as a parameter and is not
going to look for it in the global space. This also means that at the time the response
is received, the original xhr might have been reused for a second request or even
destroyed. The closure will keep pointing to the original object.

X is for XML
Although these days JSON (discussed in the next chapter) is preferred over XML
as a data transfer format, XML is still an option. In addition to the responseText
property, the XHR objects also have another property called responseXML.
If you send an HTTP request for an XML document, responseXML will point
to an XML DOM document object. To work with this document, you can use
all of the core DOM methods discussed previously in this chapter, such as
getElementsByTagName(), getElementById(), and so on.

An Example
Let's wrap up the different XHR topics with an example. You can visit the page
located at http://www.phpied.com/files/jsoop/xhr.html to work on the
example yourself.

The main page, xhr.html, is a simple static page that contains nothing but three
<div>s.

<div id="text">Text will be here</div>
<div id="html">HTML will be here</div>
<div id="xml">XML will be here</div>

Using the Firebug console, you can write code that will request three files and load
their respective contents into each <div>.

The three files to load will be:

content.txt—a simple text file containing the text "I am a text file"
content.html—a file containing some HTML code:
"I am formatted HTML"

•

•

The Browser Environment

[258]

content.xml—an XML file, containing:

<?xml version="1.0" ?>
<root>
 I'm XML data.
</root>

All of the files are stored in the same directory as xhr.html. Note that for security
reasons you can only use XMLHttpRequest to request files that are on the
same domain.

First, let's create a function to abstract the request/response part:

function request(url, callback) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = (function(myxhr){
 return function(){
 callback(myxhr);
 }
 })(xhr);
 xhr.open('GET', url, true);
 xhr.send('');
}

This function accepts a URL to request and a callback function to call once the
response arrives. We can call the function three times, once for each file, like this:

request(
 'http://www.phpied.com/files/jsoop/content.txt',
 function(o){
 document.getElementById('text').innerHTML = o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.html',
 function(o){
 document.getElementById('html').innerHTML = o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.xml',
 function(o){
 document.getElementById('xml').innerHTML =
 o.responseXML.getElementsByTagName('root')[0]
 .firstChild.nodeValue;
 }}
);

•

Chapter 7

[259]

The callback functions are defined inline. The first two are pretty much identical.
They just replace the HTML of the corresponding <div> with the contents of
the requested file. The third one is a little different, as it deals with the XML
document. First, we access the XML DOM object as o.responseXML. Then, using
getElementsByTagName(), we get a list of all <root> tags (there is only one). The
firstChild of the <root> is a text node and using nodeValue we get the text
contained in it ("I'm XML data"). Then we again replace the HTML of thewe again replace the HTML of theagain replace the HTML of the <div
id="xml"> with the new content. The result is shown in on the following illustration:

When working with the XML document, you can also use o.responseXML.
documentElement to get to the <root> element, instead of o.responseXML.getElem
entsByTagName('root')[0]. Remember that documentElement gives you the root
node of an XML document. The root in HTML documents is always the <html> tag.

The Browser Environment

[260]

Summary
We have covered quite a bit in this chapter. You have learned some cross-browser
BOM (Browser Object Model) objects:

Properties of the global window object such as navigator, location,
history, frames, screen
Methods such as setInterval() and setTimeout(); alert(), confirm(),
and prompt(); moveTo/By() and resizeTo/By()

Then you learned about the DOM (Document Object Model) as a way to represent an
HTML (or XML) document as a tree structure where each tag or text is a node on the
tree. You learned how to:

Access nodes:
Using parent/child relationship properties parentNode,
childNodes, firstChild, lastChild, nextSibling,
previousSibling
Using getElementsById(), getElementsByTagName(),
getElementsByName()

Modify nodes:
Using innerHTML or innerText/textContent
Using nodeValue or setAttribute() or just using attributes as
object properties

Remove nodes with removeChild() or replaceChild()
And add new ones with appendChild(), cloneNode(), insertBefore()

We also looked at some DOM0 (pre-standardization) properties, ported to
DOM Level 1:

Collections: document.forms, images, links, anchors, applets. Using
these is discouraged, as DOM1 has the much more flexible method
getElementsByTagName().
document.body which is convenient way to access the <body>.
document.title, cookie, referrer, domain.

Next, you learned about how the browser broadcasts events that you can listen
to. It's not straightforward to do this in a cross-browser manner, but it is possible.
Events bubble up, so you know can use event delegation to listen to events more
globally. You can also stop the propagation of events and interfere with the default
browser behavior.

•

•

•
°

°

•
°
°

•
•

•

•

•

Chapter 7

[261]

Finally, you learned about the XMLHttpRequest object that allows you to build
responsive web pages that:

Make HTTP requests to the server to get pieces of data, and
Process the response to update portions of the page

Exercises
In the previous chapters, the solutions to the exercises could pretty much be found in
the text of the chapter. This time, some of the exercises might require you to do some
more reading (or experimentation) outside this book.

1. BOM
As a BOM exercise, try coding something wrong, obtrusive, user-unfriendly,
and, all in all, very Web 1.0: the shaking browser window. Try implement-
ing code that moves the window around as if there's an earthquake. All
you'll need is one of the move*() functions, one or more calls to setInter-
val() and maybe one to setTimeout() to stop the whole thing. Or how
about opening a 200x200 popup and then resizing it slowly and gradually
to 400x400? Or here's an easier one: print the current date/time in the status
bar (window.status) and update it every second, like a clock. Note that for
these exercises, you need to allow some features in your browser that are
typically disabled by default, since people got fed up with such "effects" that
only worsen the user experience (in Firefox go to Tools | Options | Content
| Enable JavaScript | Advanced).

2. DOM
2.1. Implement walkDOM() differently. Also make it accept a callback

function instead of hardcoding console.log()
2.2. Removing content with innerHTML is easy (document.body.inner-

HTML = ''), but not always best. The thing is that if there are any event
listeners, attached to the removed elements, they won't be removed in
IE, causing the browser to leak memory, because it stores references to
something that doesn't exist. Implement a general-purpose function that
deletes DOM nodes, but removes any event listeners first. You can loop
through the attributes of a node and check if the value is a function. If
it is, it's most likely an attribute like onclick. You need to set it to null
before removing the element from the tree.

•
•

The Browser Environment

[262]

2.3. Create a function called include() that includes external scripts on de-
mand. This means create a new <script> tag dynamically and set its src
attribute. Test by using:

 >>> include('somescript.js');

2.4. Using your function from 2.3., consume a Yahoo! search service with
JavaScript. The documentation is here: http://developer.yahoo.
com/search/web/V1/webSearch.html. When constructing the URL to
request, you need to set output=json and callback=console.log. This
way the result of the service call (a JavaScript object) will be printed in
the console. Replace console.log with a function of your choice to cre-
ate something more interesting.

3. Events
3.1. Create an event utility (object) called myevent which has the following

methods working cross-browser:
addListener(element, event_name, callback)— where
element could also be an array of elements
removeListener(element, event_name, callback)

getEvent(event)—just to check for a window.event for
older versions of IE
getTarget(event)
stopPropagation(event)
preventDefault(event)

Usage example:

function myCallback(e) {
 e = myevent.getEvent(e);
 alert(myevent.getTarget(e).href);
 myevent.stopPropagation(e);
 myevent.preventDefault(e);
}
myevent.addListener(document.links, 'click', myCallback);

The result of the example code should be that all of the links in the document lead
nowhere but only alert the href attribute.

3.2. Create an absolutely positioned <div>, say at x=100px, y=100px. Write the
code to be able to move the div around the page using the arrow keys or
the keys J (left), K (right), M (down), I (up). Reuse your own event utility
from 3.1.

°

°

°

°

°

°

Chapter 7

[263]

4. XMLHttpRequest
4.1. Create your own XHR utility (object) called ajax. Example use:

 function myCallback(xhr) {
 alert(xhr.responseText);
 }
 ajax.request('somefile.txt', 'get', myCallback);
 ajax.request('script.php', 'post', myCallback,
 'first=John&last=Smith');

4.2. AJAXify the Google search. Using Firebug, you can "plug" JavaScript as if
it's part of the page. This will allow you to request pages on google.com
using XHR. So visit google.com and write the code that will allow you
to not load a second page when you do a search, but to load the results
underneath the search form without a page refresh. Reuse your own event
utility (from Exercise 3.1.) and your own AJAX utility (from 4.1.). Follow
these steps:

Attach an event listener to the submit event of the form and
prevent the default behavior so that the form is not submitted;
Create an XHR object and request the page at URL http://
www.google.com/search?q=myquery where myquery is
whatever you typed in the search field;

In the callback of the XHR, append a new <div> with
id="content" to the <body> and set its innerHTML to the
responseText of the XHR.

This way you should be able to type in the search field, Press Enter and get the search
results without loading a new page. You should be able to repeat this as many times
as you want with the difference that you create the content div only once and then
just update its HTML.

°

°

°

Coding and Design Patterns
Now that you know about the object-oriented features of JavaScript, such as
prototypes and inheritance, and you have seen some practical examples of using the
browser objects, let's move forward, or rather, move a level up. Let us have a look at
some common patterns of JavaScript utilization. First, let's define what a pattern is.
In short, a pattern is a good solution to a common problem.

Sometimes when you are facing a new programming problem, you might recognize
right away that you've previously solved another, suspiciously similar problem. In
such cases, it is worth isolating this class of problems and searching for a common
solution. A pattern is a proven and reusable solution (or an approach to a solution)
to a class of problems. Sometimes a pattern is nothing more than an idea or a name,
but sometimes just using a name helps you think more clearly about a problem. Also,
when working with other developers in a team, it's much easier to communicate when
everybody uses the same terminology when discussing a problem or a solution.

Sometimes there might be cases when your problem is rather unique and doesn't fit
into a known pattern. Blindly applying a pattern just for the sake of using a pattern
is not a good idea. It's actually better to not use a pattern (if you can't come up with ato not use a pattern (if you can't come up with anot use a pattern (if you can't come up with a
new one) than to try and change your problem so that it fits an existing solution.

This chapter talks about two types of patterns:

Coding patterns—these are mostly JavaScript-specific best practices
Design patterns—these are language-independent patterns, popularized by
the "Gang of Four" book

•

•

Coding and Design Patterns

[266]

Coding Patterns
This first part of the chapter discusses some patterns that reflect JavaScript's
unique features. Some patterns aim to help you with organizing your code (such
as namespace patterns), others are related to improving performance (such as lazy
definitions and init-time branching), and some make up for missing features such as
privately scoped properties. The patterns discussed in this section include:

Separating behavior
Namespaces
Init-time branching
Lazy definition
Configuration objects
Private variables and methods
Privileged methods
Private functions as public methods
Self-executable functions
Chaining
JSON

Separating Behavior
As discussed previously, the three building blocks of a web page are:

Content (HTML)
Presentation (CSS)
Behavior (JavaScript)

Content
HTML is the content of the web page; the actual text. The content should be marked
up using the smallest amount of HTML tags that sufficiently describe the semantic
meaning of that content. For example, if you're working on a navigation menu it's
probably a good idea to use and as a navigation menu is basically a list
of links.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 8

[267]

Your content (HTML) should be free from any formatting elements. Visual
formatting belongs to the presentation layer and should be achieved through
the use of CSS (Cascading Style Sheets). This means that:

The style attribute of HTML tags should not be used, if possible.
Presentational HTML tags such as should not be used at all.
Tags should be used for their semantic meaning, not because of how
browsers render them by default. For instance, developers sometimes use a
<div> tag where a <p> would be more appropriate. It's also favorable to use
 and instead of and <i> as the latter describe the visual
presentation rather than the meaning.

Presentation
A good approach to keep presentation out of the content is to reset, or nullify, all
browser defaults; for example using reset.css from the Yahoo! UI library. This way
the browser's default rendering won't distract you from consciously thinking about
the proper semantic tags to use.

Behavior
The third component of a page is the behavior. Behavior should be kept separate
from both the content and the presentation. Behavior is usually added by using
JavaScript that is isolated to <script> tags, and preferably contained in external
files. This means not using any inline attributes such as onclick, onmouseover, and
so on. Instead of that, you can use the addEventListener/attachEvent methods
that you have already seen in the previous chapter.

The best strategy for separating behavior from content would be:

Minimize the number of <script> tags
Avoid inline event handlers
Do not use CSS expressions
Dynamically add markup that has no purpose when JavaScript is disabled by
the user
Towards the end of your content, when you are ready to close the <body>
tag, insert a single external.js file

•

•

•

•

•

•

•

•

Coding and Design Patterns

[268]

Example of Separating Behavior
Let's say you have a search form on a page and you want to validate the form with
JavaScript. So you go ahead and keep the form tags free from any JavaScript and
then, immediately before the closingimmediately before the closing </body> tag, you insert a <script> tag which
links to an external file.

<body>
 <form id="myform" method="post" action="server.php">
 <fieldset>
 <legend>Search</legend>
 <input
 name="search"
 id="search"
 type="text"
 />
 <input type="submit" />
 </fieldset>
 </form>
 <script type="text/javascript" src="behaviors.js"></script>
</body>

In behaviors.js you attach an event listener to the submit event. In your listener,
you check to see if the text input field was left blank and if so, stop the form from
being submitted. Here's the complete content of behaviors.js. It assumes
that you've created your myevent utility from the exercise at the end of the
previous chapter:

// init
myevent.addListener('myform', 'submit', function(e){
 // no need to propagate further
 e = myevent.getEvent(e);
 myevent.stopPropagation(e);
 // validate
 var el = document.getElementById('search');
 if (!el.value) { // too bad, field is empty
 myevent.preventDefault(e); // prevent the form submission
 alert('Please enter a search string');
 }
});

Namespaces
Global variables should be avoided in order to lower the possibility of variablelobal variables should be avoided in order to lower the possibility of variable
naming collisions. One way to minimize the number of globals is by namespacing
your variables and functions. The idea is simple: you create only one global object
and all your other variables and functions become properties of that object.

Chapter 8

[269]

An Object as a Namespace
Let's create a global object called MYAPP:

// global namespace
var MYAPP = MYAPP || {};

Now instead of having a global myevent utility (from the previous chapter), you can
have it as an event property of the MYAPP object.

// sub-object
MYAPP.event = {};

Adding the methods to the event utility is pretty much the same as usual:

// object together with the method declarations
MYAPP.event = {
 addListener: function(el, type, fn) {
 // .. do the thing
 },
 removeListener: function(el, type, fn) {
 // ...
 },
 getEvent: function(e) {
 // ...
 }
 // ... other methods or properties
};

Namespaced Constructors
Using a namespace doesn't prevent you from creating constructor functions. Here is
how you can have a DOM utility that has an Element constructor which allows you
to create DOM elements more easily.

MYAPP.dom = {};
MYAPP.dom.Element = function(type, prop){
 var tmp = document.createElement(type);
 for (var i in prop) {
 tmp.setAttribute(i, prop[i]);
 }
 return tmp;
}

Similarly, you can have a Text constructor to create text nodes if you want to:

MYAPP.dom.Text = function(txt){
 return document.createTextNode(txt);
}

Coding and Design Patterns

[270]

Using the constructors to create a link at the bottom of a page:

var el1 = new MYAPP.dom.Element(
 'a',
 {href:'http://phpied.com'}
);
var el2 = new MYAPP.dom.Text('click me');
el1.appendChild(el2);
document.body.appendChild(el1);

A namespace() Method
Some libraries, such as YUI, implement a namespace utility method that makes your
life easier, so that you can do something like:

MYAPP.namespace('dom.style');

instead of the more verbose:

MYAPP.dom = {};
MYAPP.dom.style = {};

Here's how you can create such a namespace() method. First you create an array by
splitting the input string using the period (.) as a separator. Then, for every element
in the new array, you add a property to your global object if such a property doesn't
already exist.

var MYAPP = {};
MYAPP.namespace = function(name){
 var parts = name.split('.');var parts = name.split('.');
 var current = MYAPP;var current = MYAPP;
 for (var i in parts) {
 if (!current[parts[i]]) {
 current[parts[i]] = {};
 }
 current = current[parts[i]];
 }
}

Testing the new method:

MYAPP.namespace('event');
MYAPP.namespace('dom.style');

Chapter 8

[271]

The result of the above is the same as if you did:

var MYAPP = {
 event: {},
 dom: {
 style: {}
 }}
}

Init-Time Branching
In the previous chapter, you saw that different browsers often have different
implementations for the same or similar functionalities. In such cases, you need
to branch your code depending on what's supported by the browser currently
executing your script. Depending on your program this branching can happen far
too often and, as a result, can slow down the script execution.

You can mitigate this problem by branching some parts of the code during
initialization, when the script loads, rather than during runtime. Building upon the
ability to define functions dynamically, you can branch and define the same function
with a different body depending on the browser. Let's see how.

First, let's define a namespace and placeholder method for the event utility.

var MYAPP = {};
MYAPP.event = {
 addListener: null,
 removeListener: nullremoveListener: null
};

At this point, the methods to add or remove a listener are not implemented. Based on
the results from feature sniffing, these methods can be defined differently.

if (typeof window.addEventListener === 'function') {
 MYAPP.event.addListener = function(el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 MYAPP.event.removeListener = function(el, type, fn) {
 el.removeEventListener(type, fn, false);
 };
} else if (typeof document.attachEvent === 'function'){ // IE
 MYAPP.event.addListener = function(el, type, fn) {
 el.attachEvent('on' + type, fn);
 };

Coding and Design Patterns

[272]

 MYAPP.event.removeListener = function(el, type, fn) {
 el.detachEvent('on' + type, fn);
 };
} else { // older browsers
 MYAPP.event.addListener = function(el, type, fn) {
 el['on' + type] = fn;
 };
 MYAPP.event.removeListener = function(el, type, fn) {
 el['on' + type] = null;
 };
};

After this script executes, you have the addListener() and removeListener()
methods defined in a browser-dependent way. Now every time you invoke one of
these methods it will not do any more feature sniffing, and as a result will run faster
because it is doing less work.

One thing to watch out for when sniffing features is not to assume too much
after checking for one feature. In the example above, this rule is broken because
the code only checks for add* support but then defines both the add* and the
remove* methods. In this case it's probably safe to assume that in a next version
of the browser, if IE decides to implement addEventListener() it will also
implement removeEventListener(). But imagine what happens if IE implements
stopPropagation() but not preventDefault() and you haven't checked for these
individually. You have assumed that because addEventListener() is not defined,
the browser is IE and write your code using your knowledge of how IE works.
Remember that all of your knowledge is based on the way IE works today, but not
necessarily the way it will work tomorrow. So to avoid many rewrites of your code
as new browser versions are shipped, it's best to individually check for features you
intend to use and don't generalize on what a certain browser supports.

Lazy Definition
The lazy definition pattern is very similar to the previous init-time branching pattern.
The difference is that the branching happens only when the function is called
for the first time. When the function is called, it redefines itself with the best
implementation. Unlike the init-time branching where the if happens once, during
loading, here it might not happen at all—in cases when the function is never called.
The lazy definition also makes the initialization process lighter, as there's no init-time
branching work to be done.

Chapter 8

[273]

Let's see an example that illustrates this, via the definition of an addListener()
function. The function is first defined with a generic body. It checks which
functionality is supported by the browser when it is called for the first time and then
redefines itself using the most suitable implementation. At the end of the first call,
the function calls itself so that the actual event attaching is performed. The next time
you call the same function it will be defined with its new body and will be ready for
use, so no further branching is necessary.

var MYAPP = {};
MYAPP.myevent = {
 addListener: function(el, type, fn){
 if (typeof el.addEventListener === 'function') {
 MYAPP.myevent.addListener = function(el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 } else if (typeof el.attachEvent === 'function'){
 MYAPP.myevent.addListener = function(el, type, fn) {
 el.attachEvent('on' + type, fn);
 };
 } else {
 MYAPP.myevent.addListener = function(el, type, fn) {
 el['on' + type] = fn;
 };
 }
 MYAPP.myevent.addListener(el, type, fn);
 }
};

Configuration Object
This pattern is useful when you have a function or method that accepts a lot of
parameters. It's up to you to decide how many constitutes "a lot", but generally a
function with more than three parameters is probably not very convenient to call, as
you have to remember the order of the parameters, and is even more inconvenient
when some of the parameters are optional.

Instead of having many parameters, you can use one parameter and make it an
object. The properties of the object are the actual parameters. This is especially
suitable for passing configuration parameters, because these tend to be numerous
and mostly optional (with smart defaults). The beauty of using a single object as
opposed to multiple parameters is:

The order doesn't matter
You can easily skip parameters that you don't want to set

•

•

Coding and Design Patterns

[274]

It makes the function signature easily extendable should future requirements
necessitate this
It makes the code more readable because the config object's properties are
present in the calling code, along with their names

Imagine you have a Button constructor used to create input buttons. It accepts the
text to put inside the button (the value attribute of the <input> tag) and an optional
parameter of the type of button.

// a constructor that creates buttons
var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.Button = function(text, type) {
 var b = document.createElement('input');
 b.type = type || 'submit';
 b.value = text;
 return b;
}

Using the constructor is simple; you just give it a string. Then you can append the
new button to the body of the document:

document.body.appendChild(new MYAPP.dom.Button('puuush'));

This is all well and works fine, but then you decide you also want to be able to set
some of the style properties of the button, such as colors and fonts. You might end
up with a definition like:

MYAPP.dom.Button = function(text, type, color, border, font) {
 //
}

Now using the constructor can become a little inconvenient, for example when you
want to set the third and fifth parameter, but not the second or the fourth:

new MYAPP.dom.Button('puuush', null, 'white', null,
 'Arial, Verdana, sans-serif');

A better approach is to use one config object parameter for all the settings. The
function definition can become something like:

MYAPP.dom.Button = function(text, conf) {
 var type = conf.type || 'submit';
 var font = conf.font || 'Verdana';var font = conf.font || 'Verdana';
 // ...// ...
}

•

•

Chapter 8

[275]

Using the constructor:

var config = {
 font: 'Arial, Verdana, sans-serif',font: 'Arial, Verdana, sans-serif',
 color: 'white'color: 'white'
};
new MYAPP.dom.Button('puuush', config);

Another usage example:

document.body.appendChild(
 new MYAPP.dom.Button('dude', {color: 'red'})
);

As you can see, it's easy to set only selected parameters and to switch around their
order. In addition, it's friendlier and makes the code easier to understand when you
see the names of the parameters when you call the method.

Private Properties and Methods
JavaScript doesn't have the notion of access modifiers, which set the privileges of the
properties in an object. Classical languages often have access modifiers such as:

Public—all users of an object can access these properties (or methods)
Private—only the object itself can access these properties
Protected—only objects inheriting the object in question can access
these properties

JavaScript doesn't have a special syntax to denote private properties but, as
discussed in Chapter 3, you can use local variables and methods inside a constructor
and achieve the same level of protection.

Continuing with the example of the Button constructor, you can have a local
variable styles which contains all the defaults, and a local setStyle() function.
These are invisible to the code outside of the constructor. Here's how Button can
make use of the local private properties:

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.Button = function(text, conf) {
 var styles = {var styles = {
 font: 'Verdana',
 border: '1px solid black',
 color: 'black',
 background: 'grey'background: 'grey'

•

•

•

Coding and Design Patterns

[276]

 };
 function setStyles() {
 for (var i in styles) {
 b.style[i] = conf[i] || styles[i];

 }
 }
 conf = conf || {};
 var b = document.createElement('input');
 b.type = conf['type'] || 'submit';
 b.value = text;
 setStyles();
 return b;
};

In this implementation, styles is a private property and setStyle() is a private
method. The constructor uses them internally (and they can access anything inside
the constructor), but they are not available to code outside of the function.

Privileged Methods
Privileged methods (this term was coined by Douglas Crockford) are normal public
methods that can access private methods or properties. They can act like a bridge
in making some of the private functionality accessible but in a controlled manner,
wrapped in a privileged method.

Continuing with the previous example, you can create a getDefaults() method
that returns styles. In this way the code outside the Button constructor can see the
default styles but cannot modify them. In this scenario getDefaults() would be a
privileged method.

Private Functions as Public Methods
Let us say you've defined a function that you absolutely need to keep intact, so you
make it private. But you also want to provide access to the same function so that
outside code can also benefit from it. In this case, you can assign the private function
to a publicly available property.

Let's define _setStyle() and _getStyle() as private functions, but then assign
them to the public setStyle() and getStyle():

var MYAPP = {};
MYAPP.dom = (function(){
 var _setStyle = function(el, prop, value) {

Chapter 8

[277]

 console.log('setStyle');
 };
 var _getStyle = function(el, prop) {
 console.log('getStyle');
 };
 return {
 setStyle: _setStyle,
 getStyle: _getStyle,
 yetAnother: _setStyle
 };
})()

Now if you call MYAPP.dom.setStyle(), it will invoke the private _setStyle()
function. You can also overwrite setStyle() from the outside:

MYAPP.dom.setStyle = function(){alert('b')};

Now the result will be:

MYAPP.dom.setStyle points to the new function
MYAPP.dom.yetAnother still points to _setStyle()

_setStyle() is always available when any other internal code relies on it to
be working as intended, regardless of the outside code

Self-Executing Functions
Another useful pattern that helps you keep the global namespace clean is to wrap
your code in an anonymous function and execute that function immediately. This
way any variables inside the function are local (as long as you use the var statement)
and are destroyed when the function returns, if they aren't part of a closure. This
pattern was discussed in more detail in Chapter 3.

(function(){
 // code goes here...
})()

This pattern is especially suitable for one-off initialization tasks performed when the
script loads.

•

•

•

Coding and Design Patterns

[278]

The self-executable pattern can be extended to create and return objects. If the
creation of these objects is more complicated and involves some initialization work,
then you can do this in the first part of the self-executable function and return a
single object, which can access and benefit from any private properties in the
top portion:

var MYAPP = {};
MYAPP.dom = function(){
 // initialization code...
 function _private(){
 // ... body
 }
 return {
 getStyle: function(el, prop) {
 console.log('getStyle');
 _private();
 },
 setStyle: function(el, prop, value) {
 console.log('setStyle');
 }
 };
}();

Chaining
Chaining is a pattern that allows you to invoke methods on one line as if the methods
are the links in a chain. This could be pretty convenient when calling several related
methods. Basically, you invoke the next method on the result of the previous
method, without the use of an intermediate variable.

Imagine you've created a constructor that helps you work with DOM elements.
The code to create a new and add it to the <body> could look something
like the following:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello');
obj.setStyle('color', 'red');
obj.setStyle('font', 'Verdana');
document.body.appendChild(obj);

As you know, the constructors return the this object they create. You can make your
methods such as setText() and setStyle() also return this, which will allow you
to call the next method on the instance returned by the previous one. This way you
can chain method calls:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello')

Chapter 8

[279]

 .setStyle('color', 'red')
 .setStyle('font', 'Verdana');
document.body.appendChild(obj);

You might not even need the obj variable if you don't plan on using it after the new
element has been added to the tree, so the code could look like:

document.body.appendChild(
 new MYAPP.dom.Element('span')
 .setText('hello')
 .setStyle('color', 'red')
 .setStyle('font', 'Verdana')
);

jQuery makes heavy use of the chaining pattern; this is probably one of the most
recognizable features of this popular library.

JSON
Let's wrap up the coding patterns section of this chapter with a few words about
JSON. JSON is not technically a coding pattern, but you can say that using JSON is a
useful pattern.

JSON is a popular lightweight format for exchanging data. It's often preferred over
XML when using XMLHttpRequest() to retrieve data from the server. JSON stands
for JavaScript Object Notation and there's nothing specifically interesting about it
other that the fact that it's extremely convenient. The JSON format consists of data,
defined using object and array literals. Here is an example of a JSON string that your
server could respond with after an XHR request.

{
 'name': 'Stoyan',
 'family': 'Stefanov',
 'books': ['phpBB2', 'phpBB UG', 'PEAR']
}

An XML equivalent of this would be something like:

<?xml version="1.1" encoding="iso-8859-1"?>
<response>
 <name>Stoyan</name>
 <family>Stefanov</family>
 <books>
 <book>phpBB2</book>
 <book>phpBB UG</book>
 <book>PEAR</book>
 </books>
</response>

Coding and Design Patterns

[280]

Firstly, you can see how JSON is lighter in terms of the number of bytes. But the
main benefit is not the smaller byte size but the fact that it's extremely easy to work
with JSON in JavaScript. Let's say you've made an XHR request and have received a
JSON string in the responseText property of the XHR object. You can convert this
string of data into a working JavaScript object by simply using eval():

var obj = eval('(' + xhr.responseText + ')');

Now you can access the data in obj as object properties:

alert(obj.name); // Stoyan
alert(obj.books[2]); // PEAR

The problem with eval() is that it is insecure, so it's best if you use a little JavaScript
library available from http://json.org/ to parse the JSON data. Creating an object
from a JSON string is still trivial:

var obj = JSON.parse(xhr.responseText);

Due to its simplicity, JSON has quickly become popular as a language-independent
format for exchanging data and you can easily produce JSON on the server side
using your preferred language. In PHP, for example, there are the functions json_
encode() and json_decode() that let you serialize a PHP array or object into a
JSON string, and vice versa.

Design Patterns
The second part of this chapter presents a JavaScript approach to a subset of the
design patterns introduced by the book called Design Patterns: Elements of Reusable
Object-Oriented Software, an influential book most commonly referred to as the Book of
Four or the Gang of Four, or GoF (after its four authors). The patterns discussed in the
GoF book are divided into three groups:

Creational patterns that deal with how objects are created (instantiated)
Structural patterns that describe how different objects can be composed in order
to provide new functionality
Behavioral patterns that describe ways for objects to communicate with
each other

•
•

•

Chapter 8

[281]

There are 23 patterns in the Book of Four, and more patterns have been identified
since the book's publication. It is way beyond the scope of this book to discuss all
of them, so the remainder of the chapter will demonstrate only four of them, along
with examples of the implementation of these four in JavaScript. Remember that the
patterns are more about interfaces and relationships rather than implementation.
Once you have an understanding of a design pattern, it's often not difficult to
implement it, especially in a dynamic language such as JavaScript.

The patterns discussed through the rest of the chapter are:

Singleton
Factory
Decorator
Observer

Singleton
Singleton is a creational design pattern meaning that its focus is on creating objects.
It is useful when you want to make sure there is only one object of a given kind
or class. In a classical language, this would mean that an instance of a class is only
created once and any subsequent attempts to create new objects of the same class
would return the original instance.

In JavaScript, because there are no classes, a singleton is the default and most natural
pattern. Every object is a single object. If you don't copy it and don't use it as a
prototype of another object, it will remain the only object of its kind.

The most basic implementation of the singleton in JavaScript is the object literal:

var single = {};

Singleton 2
If you want to use class-like syntax and still implement the singleton, things can
become a bit more interesting. Let's say you have a constructor called Logger() and
you want to be able to do something like:

var my_log = new Logger();
my_log.log('some event');
// ... 1000 lines of code later ...
var other_log = new Logger();
other_log.log('some new event');
alert(other_log === my_log); // true

•

•

•

•

Coding and Design Patterns

[282]

The idea is that although you use new, only one instance needs to be created, and this
instance is then returned in consecutive calls.

Global Variable
One approach would be to use a global variable to store the single instance. Your
constructor could look like this:

function Logger() {
 if (typeof global_log === "undefined") {
 global_log = this;
 }
 return global_log;
}

Using this constructor gives the expected result:

var a = new Logger();
var b = new Logger();
alert(a === b); // true

The drawback is, of course, the use of a global variable. It can be overwritten at
any time, even accidentally, and you lose the instance. The opposite—your global
variable overwriting someone else's—is also possible.

Property of the Constructor
As you know, functions are objects and they have properties. You can assign the
single instance to a property of the constructor function.

function Logger() {
 if (typeof Logger.single_instance === "undefined") {
 Logger.single_instance = this;
 }
 return Logger.single_instance;
}

If you write var a = new Logger(), a will point to the newly created
Logger.single_instance property. A subsequent call var b = new Logger() will
result in b pointing to the same Logger.single_instance property, which is exactly
what you wanted.

This approach certainly solves the global namespace issue, because no global
variables are created. The only drawback is that the property of the Logger
constructor is publicly visible, so it can be overwritten at any time. In such cases,
the single instance can be lost or modified.

Chapter 8

[283]

In a Private Property
The solution to the problem of overwriting the publicly-visible property is to not useto not usenot use
a public property, but a private one. You already know how to protect variables with
a closure, so as an exercise you can implement this approach to the singleton pattern.

Factory
The factory is another creational design pattern as it deals with creating objects.
The factory is useful when you have similar types of objects and you don't know in
advance which one you want to use. Based on user input or other criteria, your code
determines the type of object it needs on the fly.

Let's say you have three different constructors which implement similar
functionality. The objects they create all take a URL but do different things with it.
One creates a text DOM node; the second creates a link and the third, an image.

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.Text = function() {
 this.insert = function(where) {
 var txt = document.createTextNode(this.url);
 where.appendChild(txt);
 };
};
MYAPP.dom.Link = function() {
 this.insert = function(where) {
 var link = document.createElement('a');
 link.href = this.url;
 link.appendChild(document.createTextNode(this.url));
 where.appendChild(link);
 };
};
MYAPP.dom.Image = function() {
 this.insert = function(where) {
 var im = document.createElement('img');
 im.src = this.url;
 where.appendChild(im);
 };
};

Coding and Design Patterns

[284]

The way to use the three different constructors is exactly the same: you set the url
property and then call the insert() method.

var o = new MYAPP.dom.Image();
o.url = 'http://images.packtpub.com/images/PacktLogoSmall.png';
o.insert(document.body);
var o = new MYAPP.dom.Text();
o.url = 'http://images.packtpub.com/images/PacktLogoSmall.png';
o.insert(document.body);
var o = new MYAPP.dom.Link();
o.url = 'http://images.packtpub.com/images/PacktLogoSmall.png';
o.insert(document.body);

Imagine your program doesn't know in advance which type of object is required.
The user decides during runtime by clicking a button for example. If type contains
the required type of object, you'll probably need to use an if or a switch, and do
something like this:

var o;
if (type === 'Image') {
 o = new MYAPP.dom.Image();
}
if (type === 'Link') {
 o = new MYAPP.dom.Link();
}
if (type === 'Text') {
 o = new MYAPP.dom.Text();
}
o.url = 'http://...'
o.insert();

This works fine, but if you have a lot of constructors, the code might become too
lengthy. Also, if you are creating a library or a framework, you might not even know
the exact names of the constructor functions in advance. In such cases, it's useful
to have a factory function that takes care of creating an object of the dynamically
determined type.

Let's add a factory method to the MYAPP.dom utility:

MYAPP.dom.factory = function(type) {
 return new MYAPP.dom[type];
}

Now you can replace the three ifs with the simpler:

var o = MYAPP.dom.factory(type);
o.url = 'http://...'
o.insert();

Chapter 8

[285]

The example factory() method above was simple, but in a real life scenario you'll
probably want to do some validation against the type value and optionally do some
setup work common to all object types.

Decorator
The Decorator design pattern is a structural pattern; it doesn't have much to do with
how objects are created but rather how their functionality is extended. Instead of
using inheritance where you extend in a linear way (parent-child-grandchild), you
can have one base object and a pool of different decorator objects that provide extra
functionality. Your program can pick and choose which decorators it wants and in
which order. For a different program, you might have a different set of requirements
and pick different decorators out of the same pool. Take a look at how the usage part
of the decorator pattern could be implemented:

var obj = {
 function: doSomething(){
 console.log('sure, asap');
 },
 // ...
};
obj = obj.getDecorator('deco1');
obj = obj.getDecorator('deco13');
obj = obj.getDecorator('deco5');
obj.doSomething();

You can see how you can start with a simple object that has a doSomething()
method. Then you can pick some of the decorator objects (identified by name) you
have lying around. All decorators provide a doSomething() method which first
calls the same method of the previous decorator and then proceeds with its own
code. Every time you add a decorator, you overwrite the base obj with an improved
version of it. At the end, when you are finished adding decorators, you call
doSomething(). As a result all of the doSomething() methods of all the decorators
are executed in sequence. Let's see an example.

Decorating a Christmas Tree
Let's illustrate the decorator pattern with an example: decorating a Christmas tree.
You start with the decorate() method.

var tree = {};
tree.decorate = function() {
 alert('Make sure the tree won\'t fall');
};

Coding and Design Patterns

[286]

Now let's implement a getDecorator() method which will be used to add extra
decorators. The decorators will be implemented as constructor functions, and they'll
all inherit from the base tree object.

tree.getDecorator = function(deco){
 tree[deco].prototype = this;
 return new tree[deco];
};

Now let's create the first decorator, RedBalls(), as a property of tree (in order to
keep the global namespace cleaner). The RedBall objects also provide a decorate()
method, but they make sure they call their parent's decorate() first.

tree.RedBalls = function() {
 this.decorate = function() {
 this.RedBalls.prototype.decorate();
 alert('Put on some red balls');
 }
};

Similarly, adding a BlueBalls() and Angel() decorators:

tree.BlueBalls = function() {
 this.decorate = function() {
 this.BlueBalls.prototype.decorate();
 alert('Add blue balls');
 }
};
tree.Angel = function() {
 this.decorate = function() {
 this.Angel.prototype.decorate();
 alert('An angel on the top');
 }
};

Now let's add all of the decorators to the base object:

tree = tree.getDecorator('BlueBalls');
tree = tree.getDecorator('Angel');
tree = tree.getDecorator('RedBalls');

Finally, running the decorate() method:

tree.decorate();

Chapter 8

[287]

This single call results in the following alerts (in this order):

Make sure the tree won�t fall
Add blue balls
An angel on the top
Put some red balls

As you see, this functionality allows you to have as many decorators as you like, and
to choose and combine them in any way you like.

Observer
The observer pattern (also known as the subscriber-publisher pattern) is a
behavioral pattern, which means that it deals with how different objects interact and
communicate with each other. When implementing the observer pattern you have
the following objects:

One or more publisher objects that announce when they do something
important, and
One or more subscribers that are tuned in to one or more publishers
and listen to what the publishers announce, then act appropriately

The observer pattern may sound familiar to the browser events discussed in the
previous chapter, and rightly so, because the browser events are one example
application of this pattern. The browser is the publisher: it announces the fact that
an event (such as onclick) has happened. Your event listener functions that are
subscribed to (listen to) this type of event will be notified when the event happens.
The browser-publisher sends an event object to all of the subscribers, but in your
custom implementation you don't have to use event objects, you can send any type
of data you find appropriate.

There are two subtypes of the observer pattern: push and pull. Push is where the
publishers are responsible for notifying each subscriber, and pull is where the
subscribers monitor for changes in a publisher's state.

•

•

•

•

•

•

Coding and Design Patterns

[288]

Let's take a look at an example implementation of the push model. Let's keep the
observer-related code into a separate object and then use this object as a mixin,
adding its functionality to any other object that decides to be a publisher. In this way
any object can become a publisher and any function object can become a subscriber.
The observer object will have the following properties and methods:

An array of subscribers that are just callback functions
addSubscriber() and removeSubscriber() methods that add to and
remove from the subscribers array
A publish() method that takes data and calls all subscribers, passing the
data to them
A make() method that takes any object and turns it into a publisher by
adding all of the above methods to it

Here's the observer mixin object which contains all the subscription-related methods
and can be used to turn any object into a publisher.

var observer = {
 addSubscriber: function(callback) {
 this.subscribers[this.subscribers.length] = callback;
 },
 removeSubscriber: function(callback) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (this.subscribers[i] === callback) {
 delete(this.subscribers[i]);
 }
 }
 },
 publish: function(what) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (typeof this.subscribers[i] === 'function') {
 this.subscribers[i](what);
 }
 }
 },
 make: function(o) { // turns an object into a publisher
 for(var i in this) {
 o[i] = this[i];
 o.subscribers = [];
 }
 }
};

•

•

•

•

Chapter 8

[289]

Now let's create some publishers. A publisher can be any object; its only duty is to
call the publish() method whenever something important occurs. Here's a blogger
object which calls publish() every time a new blog posting is ready.

var blogger = {
 writeBlogPost: function() {
 var content = 'Today is ' + new Date();
 this.publish(content);
 }
};

Another object could be the LA Times newspaper which calls publish() when a new
newspaper issue is out.

var la_times = {
 newIssue: function() {
 var paper = 'Martians have landed on Earth!';
 this.publish(paper);
 }
};

Turning these simple objects into publishers is pretty easy:

observer.make(blogger);
observer.make(la_times);

Now let's have two simple objects jack and jill:

var jack = {
 read: function(what) {
 console.log('I just read that ' + what)
 }
};
var jill = {
 gossip: function(what) {
 console.log('You didn\'t hear it from me, but ' + what)
 }
};

jack and jill can subscribe to the blogger object by providing the callback
methods they want to be called when something is published.

blogger.addSubscriber(jack.read);
blogger.addSubscriber(jill.gossip);

Coding and Design Patterns

[290]

What happens now when the blogger writes a new post? The result is that jack and
jill get notified:

>>> blogger.writeBlogPost();

 I just read that Today is Sun Apr 06 2008 00:43:54 GMT-0700
 (Pacific Daylig�t Time)

 You didn�t hear it from me, but Today is Sun Apr 06 2008 00:43:54 GMT-0700
 (Pacific Daylig�t Time)

At any time, jill may decide to cancel her subscription. Then when writing another
blog post, the unsubscribed object is no longer notified:

>>> blogger.removeSubscriber(jill.gossip);
>>> blogger.writeBlogPost();

 I just read that Today is Sun Apr 06 2008 00:44:37 GMT-0700
 (Pacific Daylig�t Time)

jill may decide to subscribe to LA Times, as an object can be a subscriber to many
publishers.

>>> la_times.addSubscriber(jill.gossip);

Then when LA Times publishes a new issue, jill gets notified and jill.gossip()
is executed.

>>> la_times.newIssue();

 You didn�t hear it from me, but Martians have landed on Earth!

Summary
In this final chapter, you learned about some common JavaScript coding patterns and
learned how to make your programs cleaner, faster, and better at working with other
programs and libraries. Then you saw a discussion and sample implementations
of some of the design patterns from the Book of Four. You can see how JavaScript
is a fully-featured dynamic object-oriented programming language and that
implementing classical patterns in a dynamic language is pretty easy. The patterns
are, in general, a large topic and you can join the author of this book in a further
discussion of the JavaScript patterns at the web site JSPatterns.com.

You now have sufficient knowledge to be able to create scalable and reusable
high-quality JavaScript applications and libraries using the concepts of
Object-Oriented Programming. Bon voyage!

Reserved Words
This Appendix provides two lists of reserved keywords. The first one is the current
list of reserved words, and the second is the list of words reserved for future
implementations.

You cannot use reserved words as variable names.

var break = 1; // syntax error

If you use these words as object properties, you have to quote them.

var o = {break: 1}; // OK in Firefox, error in IE
var o = {'break': 1}; // OK
alert(o.break); // error in IE
alert(o['break']); // OK

Keywords
break

case

catch

continue

default

delete

do

else

finally

for

function

•

•

•

•

•

•

•

•

•

•

•

Reserved Words

[292]

if

in

instanceof

new

return

switch

this

throw

try

typeof

var

void

while

with

Future Reserved Words
abstract

boolean

byte

char

class

const

debugger

double

enum

export

extends

final

float

goto

implements

import

int

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix A

[293]

interface

long

native

package

private

protected

public

short

static

super

synchronized

throws

transient

volatile

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Built-in Functions
This Appendix contains a list of the built-in functions (methods of the global object),
discussed in Chapter 3.

Function Description
parseInt() Takes two parameters: an input object and radix; then tries to

return an integer representation of the input. Doesn't handle
exponents in the input. The default radix is 10 (a decimal
number). Returns NaN on failure. Omitting the radix may lead
to unexpected results (for example for inputs such as 08), so it's
best to always specify it.

>>> parseInt('10e+3')

 10

>>> parseInt('FF')

 NaN

>>> parseInt('FF', 16)

 255
parseFloat() Takes a parameter and tries to return a floating-point number

representation of it. Understands exponents in the input.
>>> parseFloat('10e+3')

 10000

>>> parseFloat('123.456test')

 123.456

Built-in Functions

[296]

Function Description
isNaN() Abbreviated from "Is Not a Number". Accepts a parameter and

returns true if the parameter is not a valid number, false
otherwise. Attempts to convert the input to a number first.

>>> isNaN(NaN)

 true
>>> isNaN(123)

 false
>>> isNaN(parseInt('FF'))

 true
>>> isNaN(parseInt('FF', 16))

 false
isFinite() Returns true if the input is a number (or can be converted to

a number), but is not the number Infinity or -Infinity.
Returns false for infinity or non-numeric values.

>>> isFinite(1e+1000)

 false
>>> isFinite(-Infinity)

 false
>>> isFinite("123")

 true
encodeURIComponent() Converts the input into a URL-encoded string. For more details

on how URL encoding works, consult the Wikipedia article:
http://en.wikipedia.org/wiki/Url_encode

>>>encodeURIComponent
 ('http://phpied.com/')

 "http%3A%2F%2Fphpied.com%2F"
>>> encodeURIComponent
 ('some script?key=v@lue')

 "some%20script%3Fkey%3Dv%40lue"
decodeURIComponent() Takes an URL-encoded string and decodes it.

>>> decodeURIComponent('%20%40')

 " @"

Appendix B

[297]

Function Description
encodeURI() URL-encodes the input, but assumes a full URL is given, so

returns a valid URL by not encoding the protocol (for example
http://) and host name (for example www.phpied.com).

>>> encodeURI('http://phpied.com/')

 "http://phpied.com/"
>>> encodeURI('some script?key=v@lue')

 "some%20script?key=v@lue"
decodeURI() Opposite of encodeURI().

>>> decodeURI("some%20script?key=v@lue")

 "some script?key=v@lue"
eval() Accepts a string of JavaScript code and executes it. Returns the

result of the last expression in the input string.
To be avoided where possible.

>>> eval('1+2')

 3
>>> eval('parseInt("123")')

 123
>>> eval('new Array(1,2,3)')

 [1, 2, 3]
>>> eval('new Array(1,2,3); 1+1;')

 2

Built-in Objects
This Appendix lists the built-in constructor functions outlined in the ECMAScript
standard, together with the properties and methods of the objects created by
these constructors.

Object
Object() is a constructor that creates objects, for example:

>>> var o = new Object();

This is the same as using the object literal:

>>> var o = {}; // recommended

You can pass anything to the constructor and it will try to guess what it is and use a
more appropriate constructor. For example, passing a string to new Object() will be
the same as using the new String() constructor. This is not a recommended practise,
but still possible.

>>> var o = new Object('something');
>>> o.constructor

 String()

>>> var o = new Object(123);
>>> o.constructor

 Number()

All other objects, built-in or custom, inherit from Object. So the properties and
methods discussed below apply to all types of objects.

Built-in Objects

[300]

Members of the Object Constructor
Property/Method Description
Object.prototype The prototype of all objects (also an object itself). Anything

you add to this prototype will be inherited by all other objects.
>>> var s = new String('noodles');

>>> Object.prototype.custom = 1;

 1
>>> s.custom

 1

Members of the Objects Created by the
Object Constructor
Property/Method Description
constructor Points back to Object

>>> Object.prototype.
 constructor === Object

 true
>>> var o = new Object();

>>> o.constructor === Object

 true

toString(radix) Returns a string representation of the object. If the object
happens be a Number object, then the radix parameter defines
the base of the returned number. The default
radix is 10.

>>> var o = {prop: 1};

>>> o.toString()

 "[object Object]"
>>> var n = new Number(255);

>>> n.toString()

 "255"
>>> n.toString(16)

 "ff"

Appendix C

[301]

Property/Method Description
toLocaleString() Same as toString() but matching the current locale. Meant to

be implemented by objects such as Date() and provide locale-
specific values, such as different date formatting.

valueOf() Returns the this object itself, but for other types of objects may
return a different value. For example, Number objects return a
primitive number and Date objects return a timestamp.

>>> var o = {};

>>> typeof o.valueOf()

 "object"
>>> var n = new Number(101);

>>> typeof n.valueOf()

 "number"
>>> var d = new Date();

>>> typeof d.valueOf()

 "number"
>>> d.valueOf()

 1208158875493
hasOwnProperty(prop) Returns true if a property is an own property of the object or

false if it was inherited from the prototype chain. Also returns
false if the property doesn't exist.

>>> var o = {prop: 1};

>>> o.hasOwnProperty('prop')

 true
>>> o.hasOwnProperty('toString')

 false
isPrototypeOf(obj) Returns true if an object is used as a prototype of another

object. Any object from the prototype chain can be tested, not
only the direct ancestor.

>>> var s = new String('');

>>> Object.prototype.isPrototypeOf(s)

 true
>>> String.prototype.isPrototypeOf(s)

 true
>>> Array.prototype.isPrototypeOf(s)

 false

Built-in Objects

[302]

Property/Method Description
propertyIsEnumerable

(prop)

Returns true if a property shows up in a for-in loop.
>>> var a = [1,2,3];

>>> a.propertyIsEnumerable('length')

 false
>>> a.propertyIsEnumerable(0)

 true

Array
The Array constructor creates array objects:

>>> var a = new Array(1,2,3);

This is the same as the array literal:

>>> var a = [1,2,3]; //recommended

When you pass only one numeric value to the Array constructor, it's assumed
to be the array length. An array with this length will be created, and filled with
undefined elements.

>>> var a = new Array(3);
>>> a.length

 3

>>> a

 [undefined, undefined, undefined]

This can sometimes lead to some unexpected behavior. For example, the following
use of the array literal is valid:

>>> var a = [3.14]
>>> a

 [3.14]

However, passing the floating-point number to the Array constructor is an error:

>>> var a = new Array(3.14)

 invalid array length

Appendix C

[303]

Members of the Array Objects
Property/Method Description
length The number of elements in the array.

>>> [1,2,3,4].length

 4

concat(i1, i2,
i3,...)

Merges arrays together.
>>> [1,2].concat([10,20], [300,400])

 [1, 2, 10, 20, 300, 400]

join(separator) Turns an array into a string. The separator parameter is a string and
the default value is a comma.

>>> [1,2,3].join()

 "1,2,3"
>>> [1,2,3].join('|')

 "1|2|3"
>>> [1,2,3].join(' is less than ')

 "1 is less than 2 is less than 3"

pop() Removes the last element of the array and returns it.
>>> var a = ['une', 'deux', 'trois'];

>>> a.pop()

 "trois"
>>> a

 ["une", "deux"]

push(i1, i2,
 i3,...)

Appends elements to the end of the array and returns the length of
the modified array.

>>> var a = [];

>>> a.push('zig', 'zag', 'zebra','zoo');

 4
reverse() Reverses the elements of the array and returns the modified array.

>>> var a = [1,2,3];

>>> a.reverse()

 [3, 2, 1]
>>> a

 [3, 2, 1]

Built-in Objects

[304]

Property/Method Description
shift() Like pop() but removes the first element, not the last.

>>> var a = [1,2,3];

>>> a.shift();

 1
>>> a

 [2, 3]

slice

(start_index,

end_index)

Extracts a piece of the array without modifying the source array.
>>> var a = ['apple', 'banana',
 'js', 'css', 'orange'];

>>> a.slice(2,4)

 ["js", "css"]
>>> a

 ["apple", "banana", "js", "css", "orange"]

sort(callback) Sorts an array. Optionally accepts a callback function for custom
sorting. The callback function receives two array elements as
arguments and should return 0 if they are equal, 1 if the first is
greater and -1 if the second is greater.
An example of a custom sorting function that does a proper numeric
sort (since the default is character sorting):

function customSort(a, b){

 if (a > b) return 1;

 if (a < b) return -1;

 return 0;

}

Example use of sort():
>>> var a = [101, 99, 1, 5];

>>> a.sort();

 [1, 101, 5, 99]
>>> a.sort(customSort);

 [1, 5, 99, 101]
>>> [7,6,5,9].sort(customSort);

 [5, 6, 7, 9]

Appendix C

[305]

Property/Method Description
splice(start,
delete_count, i1,
i2, i3,...)

This is probably the most powerful of the array functions. It can
remove and add elements at the same time. The first parameter is
where to start removing, the second is how many items to remove
and the rest of the parameters are new elements to be inserted in
the place of the removed ones.

>>> var a = ['apple', 'banana',
 'js', 'css', 'orange'];

>>> a.splice(2, 2, 'pear', 'pineapple');

 ["js", "css"]
>>> a

 ["apple", "banana", "pear", "pineapple", "orange"]
unshift(i1, i2,
i3,...)

Like push() but adds the elements at the beginning of the
array as opposed to the end. Like shift() but adds to the
array as opposed to removing from it. Returns the length of
the modified array.

>>> var a = [1,2,3];

>>> a.unshift('one', 'two');

 5
>>> a

 ["one", "two", 1, 2, 3]

Function
JavaScript functions are objects. They can be defined using the Function constructor,
like so:

>>> var sum = new Function('a', 'b', 'return a + b;');

This is equivalent to the function literal:

>>> var sum = function(a, b){return a + b;};

or the more common:

>>> function sum(a, b){return a + b;}

The use of the Function constructor is discouraged in favor of the function literals.

Built-in Objects

[306]

Members of the Function Objects
Property/Method Description
apply(
this_obj,
params_array)

Allows you to call another function while overwriting its this value.
The first parameter that apply() accepts is the object to be bound to
this inside the function and the second is an array of parameters to be
passed to the function being called.

function whatIsIt(){

 return this.toString();

}

>>> var myObj = {};

>>> whatIsIt.apply(myObj);

 "[object Object]"
>>> whatIsIt.apply(window);

 "[object Window]"
call(this_obj,
p1, p2, p3,
...)

Same as apply() but accepts parameters one by one, as opposed to as
one array.

length The number of parameters the function expects.
>>> alert.length

 1
>>> parseInt.length

 2

Boolean
The Boolean constructor creates boolean objects (not to be confused with boolean
primitives). The boolean objects are not very useful and are listed here for the sake
of completeness.

>>> var b = new Boolean();
>>> b.valueOf()

 false

>>> b.toString()

 "false"

Appendix C

[307]

A boolean object is not the same as a boolean primitive value. As you know, all
objects are truthy:

>>> b === false

 false

>>> typeof b

 "object"

Boolean objects don't have any properties other than the ones inherited from Object.

Number
Creates number objects:

>>> var n = new Number(101);
>>> typeof n

 "object"

>>> n.valueOf();

 101

Number objects are not primitive objects, but if you use a number method on a
primitive number, the primitive will be converted to a Number object behind the
scenes and the code will work.

>>> var n = 123;
>>> typeof n;

 "number"

>>> n.toString()

 "123"

Built-in Objects

[308]

Members of the Number Constructor
Property/Method Description
Number.MAX_VALUE A constant property (cannot be changed) that

contains the maximum allowed number.
>>> Number.MAX_VALUE

 1.7976931348623157e+308
>>> Number.MAX_VALUE = 101;

 Number.MAX_VALUE is read-only

Number.MIN_VALUE The smallest number you can work with in
JavaScript.

>>> Number.MIN_VALUE

 5e-324
Number.NaN Contains the Not A Number number.

>>> Number.NaN

 NaN
NaN is not equal to anything including itself.

>>> Number.NaN === NaN

 false
Number.NaN is more reliable than simply
using NaN, because the latter can be overwritten
by mistake.

>>> NaN = 1; // don't do this!

 1
>>> NaN

 1
>>> Number.NaN

 NaN

Appendix C

[309]

Property/Method Description
Number.POSITIVE_INFINITY Contains the Infinity number. This is more

reliable than the global Infinity value (property
of the global object) because it is read-only.

Number.NEGATIVE_INFINITY Has the value -Infinity. See above.

Members of the Number Objects
Property/Method Description
toFixed(fractionDigits) Fixed-point representation of a number object as a

string. Rounds the returned value.
>>> var n = new Number(Math.PI);

>>> n.valueOf();

 3.141592653589793
>>> n.toFixed(3)

 "3.142"
toExponential(fractionDigits) Exponential notation of a number object as a

string. Rounds the returned value.
>>> var n = new Number(56789);

>>> n.toExponential(2)

 "5.68e+4"
toPrecision(precision) String representation of a number object, either

exponential or fixed-point, depending on the
number object.

>>> var n = new Number(56789);

>>> n.toPrecision(2)

 "5.7e+4"
>>> n.toPrecision(5)

 "56789"
>>> n.toPrecision(4)

 "5.679e+4"
>>> var n = new Number(Math.PI);

>>> n.toPrecision(4)

 "3.142"

Built-in Objects

[310]

String
The String() constructor creates string objects. Primitive strings are turned into
objects behind the scenes if you call a method on them as if they were objects.

Creating a string object and a string primitive:

>>> var s_obj = new String('something');
>>> var s_prim = 'something';
>>> typeof s_obj

 "object"

>>> typeof s_prim

 "string"

The object and the primitive are not equal when compared by type with ===:

>>> s_obj === s_prim

 false

>>> s_obj == s_prim

 true

length is a property of string objects:

>>> s_obj.length

 9

If you access length on a non-object but a primitive string, the primitive is converted
to an object behind the scenes and the operation is successful:

>>> "something".length

 9

Members of the String Constructor
Property/Method Description
String.fromCharCode
(code1, code2, code3,
...)

Returns a string created using the input character codes:
>>> String.fromCharCode
 (115, 99, 114, 105, 112, 116);

 "script"

Appendix C

[311]

Members of the String Objects
Property/Method Description
length The number of characters in the string.

>>> new String('four').length

 4
charAt(pos) Returns the character at the specified position.

Positions start at 0.
>>> "script".charAt(0);

 "s"
charCodeAt(pos) Returns the code of the character at the specified position.

>>> "script".charCodeAt(0);

 115
concat(str1, str2,
....)

Return a new string glued from the input pieces.
>>> "".concat('zig', '-', 'zag');

 "zig-zag"
indexOf(needle,
start)

If the needle matches a part of the string, the position of the
match is returned. The optional second parameter tells where
the search should start from. Returns -1 if no match is found.

>>> "javascript".indexOf('scr')

 4
>>> "javascript".indexOf('scr', 5)

 -1
lastIndexOf(needle,
start)

Same as indexOf() but starts the search from the end of the
string. The last occurence of "a":

>>> "javascript".lastIndexOf('a')

 3
localeCompare(needle) Compares two strings in the current locale. Returns 0 if the

two strings are equal, 1 if the needle gets sorted before the
string object, -1 otherwise.

>>> "script".localeCompare('crypt')

 1
>>> "script".localeCompare('sscript')

 -1
>>> "script".localeCompare('script')

 0

Built-in Objects

[312]

Property/Method Description
match(regexp) Accepts a regular expression object and returns an array of

matches.
>>> "R2-D2 and C-3PO".match(/[0-9]/g)

 ["2", "2", "3"]
replace(needle,
replacement)

Allows you to replace the matching results of a regexp
pattern. The replacement can also be a callback function.
Capturing patterns are available as $1, $2,...$9.

>>> "R2-D2".replace(/2/g, '-two')

 "R-two-D-two"
>>> "R2-D2".replace(/(2)/g, '$1$1')

 "R22-D22"
search(regexp) Returns the position of the first regular expression match.

>>> "C-3PO".search(/[0-9]/)

 2
slice(start, end) Returns the part of a string identified by start and end

position. If start is negative, then the start position is
length + start, similarly if the end parameter is negative,
the end position is length + end.

>>> "R2-D2 and C-3PO".slice(4,13)

 "2 and C-3"
>>> "R2-D2 and C-3PO".slice(4,-1)

 "2 and C-3P"
split(separator,
limit)

Turns a string into an array. The second parameter, limit, is
optional. The separator can also be a regular expression.

>>> "1,2,3,4".split(',')

 ["1", "2", "3", "4"]
>>> "1,2,3,4".split(',', 2)

 ["1", "2"]
substring(start, end) Similar to slice(). When start or end are negative or

invalid, they are considered 0. If they are greater than the
string length, they are considered to be the length. If end >
start, their values are swapped.

>>> "R2-D2 and C-3PO".substring(4, 13)

 "2 and C-3"
>>> "R2-D2 and C-3PO".substring(13, 4)

 "2 and C-3"

Appendix C

[313]

Property/Method Description
toLowerCase()

toLocaleLowerCase()

Transforms the string to lower case.
>>> "JAVA".toLowerCase()

 "java"
toUpperCase()

toLocaleUpperCase()

Transforms the string to upper case.
>>> "script".toUpperCase()

 "SCRIPT"

Date
The Date constructor can be used with several types of input:

You can pass values for year, month, date of the month, hour, minute, second
and millisecond, like so:

 >>> new Date(2011, 0, 1, 13, 30, 35, 500)

 Sat Jan 01 2011 13:30:35 GMT-0800 (Pacific Standard Time)
You can skip any of the input parameters, in which case they are assumed
to be 0. Note that month values are from 0 (January) to 11 (December), hoursNote that month values are from 0 (January) to 11 (December), hours
are from 0 to 23, minutes and seconds 0 to 59, and milliseconds 0 to 999.
You can pass a timestamp:

 >>> new Date(1293917435500)

 Sat Jan 01 2011 13:30:35 GMT-0800 (Pacific Standard Time)

If you don't pass anything, the current date/time is assumed:
 >>> new Date()

 Fri A�r 18 2008 01:13:00 GMT-0�00 (Pacific Daylig�t Time)

If you pass a string, it's parsed in attempt to extract a possible date value:

 >>> new Date('May 4, 2008')

 Sun May 04 2008 00:00:00 GMT-0�00 (Pacific Daylig�t Time)

•

•

•

•

•

Built-in Objects

[314]

Members of the Date Constructor
Property/Method Description
Date.parse(string) Similar to passing a string to new Date(), this

method parses the input string in attempt to extract a
valid date value. Returns a timestamp on success, NaN
on failure:

>>> Date.parse('May 4, 2008')

 1209884400000
>>> Date.parse('4th')

 NaN
Date.UTC(year, month, date,
hours, minutes, seconds, ms)

Returns a timestamp but in UTC (Coordinated
Universal Time), not in local time.

>>> Date.UTC
 (2011, 0, 1, 13, 30, 35, 500)

 1293888635500

Members of the Date Objects
Property/Method Description/Example
toUTCString() Same as toString() but in universal time. Here's how

Pacific Standard (PST) local time differs from UTC:
>>> var d = new Date(2010, 0, 1);

>>> d.toString()

 "Fri Jan 01 2010 00:00:00 GMT-0800
 (Pacific Standard Time)"

>>> d.toUTCString()

 "Fri, 01 Jan 2010 08:00:00 GMT"

toDateString() Returns only the date portion of toString():
>>> new Date(2010, 0, 1).toDateString();

 "Fri Jan 01 2010"

toTimeString() Returns only the time portion of toString():
>>> new Date(2010, 0, 1).toTimeString();

 "00:00:00 GMT-0800 (Pacific Standard Time)"

Appendix C

[315]

Property/Method Description/Example
toLocaleString()

toLocaleDateString()

toLocaleTimeString()

Equivalent to toString(), toDateString(), and
toTimeString() respectively, but in a friendlier format,
according to the current user's locale.

>>> new Date(2010, 0, 1).toString();

 "Fri Jan 01 2010 00:00:00 GMT-0800
 (Pacific Standard Time)"

>>> new Date(2010, 0, 1).toLocaleString();

 "Friday, January 01, 2010 12:00:00 AM"
getTime()
setTime(time)

Get or set the time (using a timestamp) of a date object.
The following example creates a date and moves it one day
forward:

>>> var d = new Date(2010, 0, 1);

>>> d.getTime();

 1262332800000
>>> d.setTime(d.getTime()
 + 1000 * 60 * 60 * 24);

 1262419200000
>>> d.toLocaleString()

 "Saturday, January 02, 2010 12:00:00 AM"
getFullYear()

getUTCFullYear()

setFullYear(year,
month, date)

setUTCFullYear(year,
month, date)

Get/Set a full year using local or UTC time. There is also
getYear() but it is not Y2K compliant, so getFullYear()
should be used.

>>> var d = new Date(2010, 0, 1);

>>> d.getYear()

 110
>>> d.getFullYear()

 2010
>>> d.setFullYear(2011)

 1293868800000
>>> d

 Sat Jan 01 2011 00:00:00 GMT-0800
 (Pacific Standard Time)

Built-in Objects

[316]

Property/Method Description/Example
getMonth()

getUTCMonth()

setMonth(month, date)

setUTCMonth(month,
date)

Get/Set month, starting from 0 (January):
>>> var d = new Date(2010, 0, 1);

>>> d.getMonth()

 0
>>> d.setMonth(11)

 1291190400000
>>> d.toLocaleDateString()

 "Wednesday, December 01, 2010"
getDate()

getUTCDate()

setDate(date)

setUTCDate(date)

Get/Set date of the month.
>>> var d = new Date(2010, 0, 1);

>>> d.toLocaleDateString()

 "Friday, January 01, 2010"
>>> d.getDate();

 1
>>> d.setDate(31);

 1264924800000
>>> d.toLocaleDateString()

 "Sunday, January 31, 2010"

Appendix C

[317]

Property/Method Description/Example
getHours()

getUTCHours()

setHours(hour, min,
sec, ms)

setUTCHours(hour, min,
sec, ms)

getMinutes()

getUTCMinutes()

setMinutes(min, sec,
ms)

setUTCMinutes(min,
sec, ms)

getSeconds()

getUTCSeconds()

setSeconds(sec, ms)

setUTCSeconds(sec, ms)

getMilliseconds()

getUTCMilliseconds()

setMilliseconds(ms)

setUTCMilliseconds
(ms)

Get/Set hour, minutes, seconds, milliseconds, all starting
from 0.

>>> var d = new Date(2010, 0, 1);

>>> d.getHours() + ':' + d.getMinutes()

 "0:0"
>>> d.setMinutes(59)

 1262336399000
>>> d.getHours() + ':' + d.getMinutes()

 "0:59"

getTimezoneOffset() Returns the difference between local and universal (UTC)
time, measured in minutes. For example the difference
between PST (Pacific Standard Time) and UTC:

>>> new Date().getTimezoneOffset()

 420
>>> 420/60

 7

Built-in Objects

[318]

Property/Method Description/Example
getDay()

getUTCDay()

Returns the day of the week, starting from 0 (Sunday):
>>> var d = new Date(2010, 0, 1);

>>> d.toLocaleDateString()

 "Friday, January 01, 2010"
>>> d.getDay()

 5
>>> var d = new Date(2010, 0, 3);

>>> d.toLocaleDateString()

 "Sunday, January 03, 2010"
>>> d.getDay()

 0

Math
Math is a little different from the other built-in objects, because it cannot be used as
a constructor to create objects. It is just a collection of functions and constants. Some
examples, to illustrate the difference, are given below:

>>> typeof String.prototype

 "object"

>>> typeof Date.prototype

 "object"

>>> typeof Math.prototype

 "undefined"

>>> typeof Math

 "object"

>>> typeof String

 "function"

Appendix C

[319]

Members of the Math Object
Property/Method Description

Math.E

Math.LN10

Math.LN2

Math.LOG2E

Math.LOG10E

Math.PI

Math.SQRT1_2

Math.SQRT2

These are some useful math constants, all read-only. Here are
their values:

>>> Math.E

 2.718281828459045
>>> Math.LN10

 2.302585092994046
>>> Math.LN2

 0.6931471805599453
>>> Math.LOG2E

 1.4426950408889634
>>> Math.LOG10E

 0.4342944819032518
>>> Math.PI

 3.141592653589793
>>> Math.SQRT1_2

 0.7071067811865476
>>> Math.SQRT2

 1.4142135623730951
Math.acos(x)

Math.asin(x)

Math.atan(x)

Math.atan2(y, x)

Math.cos(x)

Math.sin(x)

Math.tan(x)

Trigonometric functions

Math.round(x)

Math.floor(x)

Math.ceil(x)

round() gives you the nearest integer, ceil() rounds up and
floor() rounds down:

>>> Math.round(5.5)

 6
>>> Math.floor(5.5)

 5
>>> Math.ceil(5.1)

 6

Built-in Objects

[320]

Property/Method Description

Math.max(num1, num2,
num3, ...)

Math.min(num1, num2,
num3, ...)

max() returns the largest and min() returns the smallest of the
numbers passed to them as arguments. If at least one of the input
parameters is NaN, the result is also NaN.

>>> Math.max(2, 101, 4.5)

 101
>>> Math.min(2, 101, 4.5)

 2

Math.abs(x)

Absolute value.
>>> Math.abs(-101)

 101
>>> Math.abs(101)

 101
Math.exp(x) Exponential function: Math.E to the power of x
Math.log(x) Natural logarithm of x.

Math.sqrt(x)

Square root of x.
>>> Math.sqrt(9)

 3
>>> Math.sqrt(2) === Math.SQRT2

 true

Math.pow(x, y)

x to the power of y.
>>> Math.pow(3, 2)

 9

Math.random()

Random number between 0 and 1 (including 0).
>>> Math.random()

 0.8279076443185321

RegExp
You can create a regular expression object by using the RegExp() constructor and
passing the expression pattern as the first parameter and the pattern modifiers as
the second.

>>> var re = new RegExp('[dn]o+dle', 'gmi');

This matches "noodle", "doodle", "doooodle", and so on. It's equivalent to using the
regular expression literal:

>>> var re = ('/[dn]o+dle/gmi'); // recommended

Appendix C

[321]

Chapter 4 and Appendix D contain more information on regular expressions and
patterns.

Members of RegExp Objects
Property/Method Description
global Read-only. true if the g modifier was set when creating the

regexp object.
ignoreCase Read-only. true if the i modifier was set when creating the

regexp object.
multiline Read-only. true if the m modifier was set when creating the

regexp object
lastIndex Contains the position in the string where the next match should start.

test() and exec() set this position after a successful match. Only
relevant when the g (global) modifier was used.

>>> var re = /[dn]o+dle/g;

>>> re.lastIndex

 0
>>> re.exec("noodle doodle");

 ["noodle"]
>>> re.lastIndex

 6
>>> re.exec("noodle doodle");

 ["doodle"]
>>> re.lastIndex

 13
>>> re.exec("noodle doodle");

 null
>>> re.lastIndex

 0
source Read-only. Returns the regular expression pattern (without the

modifiers).
>>> var re = /[nd]o+dle/gmi;

>>> re.source

 "[nd]o+dle"

Built-in Objects

[322]

Property/Method Description
exec(string) Matches the input string with the regular expression. On a successful

match returns an array containing the match and any capturing groups.
When the g modifier is used, it matches the first occurrence and sets the
lastIndex property. Returns null when there's no match.

>>> var re = /([dn])(o+)dle/g;

>>> re.exec("noodle doodle");

 ["noodle", "n", "oo"]
>>> re.exec("noodle doodle");

 ["doodle", "d", "oo"]
test(string) Same as exec() but only returns true or false.

>>> /noo/.test('Noodle')

 false
>>> /noo/i.test('Noodle')

 true

Error Objects
Error objects are created either by the environment (the browser) or by your code.

>>> var e = new Error('jaavcsritp is _not_ how you spell it');
>>> typeof e

 "object"

Other than the Error constructor, six additional ones exist and they all inherit Error:

EvalError
RangeError
ReferenceError
SyntaxError
TypeError
URIError

•

•

•

•

•

•

Appendix C

[323]

Members of the Error Objects
Property Description
name The name of the error constructor used to create the object:

>>> var e = new EvalError('Oops');

>>> e.name

 "EvalError"
message Additional error information:

>>> var e = new Error('Oops... again');

>>> e.message

 "Oops... again"

Regular Expressions
When you use regular expressions (discussed in Chapter 4), you can match literal
strings, for example:

>>> "some text".match(/me/)

 ["me"]

But the true power of regular expressions comes from matching patterns, not literal
strings. The following table describes the different syntax you can use in your
patterns, and provides some examples of their use.

Pattern Description
[abc] Matches a class of characters.

>>> "some text".match(/[otx]/g)

 ["o", "t", "x", "t"]

[a-z] A class of characters defined as a range. For example [a-d] is the same as
[abcd], [a-z] matches all lowercase characters, [a-zA-Z0-9_] matches
all characters, numbers and the underscore character.

>>> "Some Text".match(/[a-z]/g)

 ["o", "m", "e", "e", "x", "t"]
>>> "Some Text".match(/[a-zA-Z]/g)

 ["S", "o", "m", "e", "T", "e", "x", "t"]

[^abc] Matches everything that is not matched by the class of characters.
>>> "Some Text".match(/[^a-z]/g)

 ["S", " ", "T"]

Regular Expressions

[326]

Pattern Description
a|b Matches a or b. The pipe character means OR, and it can be used more

than once.
>>> "Some Text".match(/t|T/g);

 ["T", "t"]
>>> "Some Text".match(/t|T|Some/g);

 ["Some", "T", "t"]

a(?=b) Matches a only if followed by b.
>>> "Some Text".match(/Some(?=Tex)/g);

 null
>>> "Some Text".match(/Some(?= Tex)/g);

 ["Some"]

a(?!b) Matches a only when not followed by b.
>>> "Some Text".match(/Some(?! Tex)/g);

 null
>>> "Some Text".match(/Some(?!Tex)/g);

 ["Some"]

\ Escape character used to help you match the special characters used in
patterns as literals.

>>> "R2-D2".match(/[2-3]/g)

 ["2", "2"]
>>> "R2-D2".match(/[2\-3]/g)

 ["2", "-", "2"]

\n

\r

\f

\t

\v

New line
Carriage return
Form feed
Tab
Vertical tab

Appendix D

[327]

Pattern Description
\s White space, or any of the five escape sequences above.

>>> "R2\n D2".match(/\s/g)

 ["\n", " "]

\S Opposite of the above; matches everything but white space.
Same as [^\s]:

>>> "R2\n D2".match(/\S/g)

 ["R", "2", "D", "2"]

\w Any letter, number, or underscore. Same as [A-Za-z0-9_].
>>> "Some text!".match(/\w/g)

 ["S", "o", "m", "e", "t", "e", "x", "t"]

\W Opposite of \w.
>>> "Some text!".match(/\W/g)

 [" ", "!"]

\d Matches a number, same as [0-9].
>>> "R2-D2 and C-3PO".match(/\d/g)

 ["2", "2", "3"]

\D Opposite of \d; matches non-numbers, same as [^0-9] or [^\d].
>>> "R2-D2 and C-3PO".match(/\D/g)

 ["R", "-", "D", " ", "a", "n", "d", " ", "C", "-", "P", "O"]

\b Matches a word boundary such as space or punctuation.
Matching R or D followed by 2:

>>> "R2D2 and C-3PO".match(/[RD]2/g)

 ["R2", "D2"]
Same as above but only at the end of a word:

>>> "R2D2 and C-3PO".match(/[RD]2\b/g)

 ["D2"]
Same pattern but the input has a dash, which is also an end of a word:

>>> "R2-D2 and C-3PO".match(/[RD]2\b/g)

 ["R2", "D2"]

Regular Expressions

[328]

Pattern Description
\B The opposite of \b.

>>> "R2-D2 and C-3PO".match(/[RD]2\B/g)

 null
>>> "R2D2 and C-3PO".match(/[RD]2\B/g)

 ["R2"]
[\b] Matches the backspace character
\0 The null character

\u0000 Matches a Unicode character, represented by a four-digit
hexadecimal number.

>>> "стоян".match(/\u0441\u0442\u043E/)

 ["сто"]
\x00 Matches a character code represented by a two-digit hexadecimal number.

>>> "dude".match(/\x64/g)

 ["d", "d"]
^ The beginning of the string to be matched. If you set the m modifier

(multi-line), it matches the beginning of each line.
>>> "regular\nregular\nexpression".match(/r/g);

 ["r", "r", "r", "r", "r"]
>>> "regular\nregular\nexpression".match(/^r/g);

 ["r"]
>>> "regular\nregular\nexpression".match(/^r/mg);

 ["r", "r"]

$ Matches the end of the input or, when using the multi-line modifier, the
end of each line.

>>> "regular\nregular\nexpression".match(/r$/g);

 null
>>> "regular\nregular\nexpression".match(/r$/mg);

 ["r", "r"]

. Matches any character except for the new line and the linefeed.
>>> "regular".match(/r./g);

 ["re"]
>>> "regular".match(/r.../g);

 ["regu"]

Appendix D

[329]

Pattern Description
* Matches the preceding pattern if it occurs 0 or more times. For example

/.*/ will match anything including nothing (an empty input).
>>> "".match(/.*/)

 [""]
>>> "anything".match(/.*/)

 ["anything"]
>>> "anything".match(/n.*h/)

 ["nyth"]

? Matches the preceding pattern if it occurs 0 or 1 times.
>>> "anything".match(/ny?/g)

 ["ny", "n"]

+ Matches the preceding pattern if it occurs at least once (or more times).
>>> "anything".match(/ny+/g)

 ["ny"]
>>> "R2-D2 and C-3PO".match(/[a-z]/gi)

 ["R", "D", "a", "n", "d", "C", "P", "O"]
>>> "R2-D2 and C-3PO".match(/[a-z]+/gi)

 ["R", "D", "and", "C", "PO"]

{n} Matches the preceding pattern if it occurs exactly n times.
>>> "regular expression".match(/s/g)

 ["s", "s"]
>>> "regular expression".match(/s{2}/g)

 ["ss"]
>>> "regular expression".match(/\b\w{3}/g)

 ["reg", "exp"]

Regular Expressions

[330]

Pattern Description
{min,max} Matches the preceding pattern if it occurs between min and max number

of times. You can omit max, which will mean no maximum, but only a
minimum. You cannot omit min.

An example where the input is "doodle" with the "o" repeated 10 times:
>>> "doooooooooodle".match(/o/g)

 ["o", "o", "o", "o", "o", "o", "o", "o", "o", "o"]
>>> "doooooooooodle".match(/o{2}/g)

 ["oo", "oo", "oo", "oo", "oo"]
>>> "doooooooooodle".match(/o{2,}/g)

 ["oooooooooo"]
>>> "doooooooooodle".match(/o{2,6}/g)

 ["oooooo", "oooo"]
(pattern) When the pattern is in parentheses, it is remembered so that it can be used

for replacements. This is also known as capturing patterns.
The captured matches are available as $1, $2,... $9
Matching all "r" occurrences and repeating them:

>>> "regular expression".replace(/(r)/g, '$1$1')

 "rregularr exprression"
Matching "re" and turning it to "er":

>>> "regular expression".replace
 (/(r)(e)/g, '$2$1')

 "ergular experssion"
(?:pattern) Non-capturing pattern, not remembered and not available in $1, $2...

Here's an example of how "re" is matched, but the "r" is not remembered
and the second pattern becomes $1:

>>> "regular expression".replace
 (/(?:r)(e)/g, '$1$1')

 "eegular expeession"

Make sure you pay attention when a special character can have two meanings, as is
the case with ^, ?, and \b.

Index
A
aggregation 15
AJAX 253
anonymous function 73
arguments, built-in objects 118, 119
arithmetic operators

% 25
* 24
+ 24
/ 24
m- 24

array, built-in objects
about 109, 111
array methods 112, 113

array constructor
about 302
array object, members 303-305

arrays
about 44-47
elements, adding 45
elements, deleting 46
elements, updating 45
of arrays 46, 47

assignment operators 26
Asynchronous JavaScript and XML.

See AJAX
augmenting, built-in objects 160-162

B
black box function 64
BOM

about 206, 207
exercise 261
firebug console 208

window.alert() 214, 216
window.close() 214
window.confirm() 214, 216
window.document 217
window.frames 211, 212
window.history 210, 211
window.location 209, 210
window.moveBy() 214
window.moveTo() 214
window.navigator object 208
window.open() 213, 214
window.prompt() 214, 216
window.resizeTo() 214
window.screen 212
window.setInterval() 216, 217
window.setTimeout() 216, 217
window object 207

boolean, built-in objects 119, 120
boolean constructor 306
booleans, primitive data types

about 35
comparision operators 40
lazy evaluation 39, 40
logical operators 36, 37
operator precedence 38

borrowing, constructor 191
browser environment 205
Browser Object Model. See BOM
built-in functions

decodeURI() 297
decodeURIComponent() 296
encodeURI() 297
encodeURIComponent() 296
eval() 297
isFinite() 296
isNaN() 296

[332]

parseFloat() 295
parseInt() 295

built-in objects
arguments object 118, 119
array 302
array() constructor function 109, 111
array methods 112, 113
augmenting 160-162
boolean 306
boolean() constructor 119, 120
callback function 138
callbacks, replacing 138, 139
data wrapper objects 108
date 313
date() constructor 129, 131
date objects, methods 132, 133
error objects 108, 140-144, 322
function 305
function() constructor 113, 114
function objects, methods 116-118
function objects, properties 115, 116
match() method 137
math 127-129, 318
number 121, 122, 307
object 108, 109, 299
RegExp 320
RegExp() constructor 134
RegExp objects, methods 136
RegExp objects, properties 135
replace() method 137
search() method 137
split() method 139
string 310
string() constructor 122, 123
string objects 136
string objects, methods 124-127
string passing, RegExp 140
utility objects 108

built-in objects, augmenting 160-162

C
callback function

about 73
benefits 74

classes 13

closures
about 80
chain, breaking 82-86
getter function, creating 88
in loop 86, 88
iterator functionality 89, 90
lexical scope 81, 82
scope chain 80, 81
setter function, creating 88

code blocks, conditions
about 48, 49
alternative if syntax 52
else if condition 50
if condition 49
switch statement 52, 53

coding pattern
about 266
building blocks 266
chaining pattern 278
configuration object pattern 273, 275
content. building blocks 266, 267
Init-time branching pattern 271, 272
JSON pattern 279, 280
lazy definition pattern 272, 273
namespace() method 270, 271
namespace, constructors 269
namespaces 268
object, creating as namespace 269
presentation, building blocks 267
private functions 276, 277
private properties 275, 276
privileged methods 276
self-executing functions 277
separating behavior, building blocks 267
separating behavior, example 268

comments
multi-line comments 59
single line comments 59
types 59

comparison operators
!= 40
!== 40
< 41
<= 41
== 40
=== 40

[333]

> 41
>= 41

compound operators 26
conditions

about 48
code blocks 48, 49
else if condition 50
if condition 49
switch statement 52, 53

constructor borrowing, inheritance
about 191-193
prototype, copying 193, 194

Core DOM 220-222

D
date, built-in objects 129

about 129, 131
methods 132, 133

date constructor
about 313
date object, members 314-318
members 314

deep copy 184
design pattern

about 280, 281
decorator pattern 285
decorator pattern, example 285, 287
factory pattern 283, 284
global variable 282
in a private property 283
observer pattern 287-290
property of the constructor function 282
singleton 2 281, 282
singleton pattern 281

Document Object Model. See DOM
DOM

about 218-220
Core DOM 220-222
DOM Inspector 219, 220
DOM tree 218
exercise 262
HTML-only DOM objects 239
HTML DOM 220-222
levels 206
nodes, accessing 222
nodes, creating 234, 235

nodes, modifying 231
nodes, removing 237-239

DOM Inspector 219, 220
DOM level 1 206
DOM level 2 206
DOM level 3 206
DOM tree 218

E
encapsulation 14
error object, built-in objects 140-144
error objects

about 322
members 323

event propogation
about 247
implications 247, 248

events
about 243
capturing 246
cross-browser event listeners 250, 251
default behavior, disabling 250
DOM event listeners 244, 246
element properties 244
event bubbling 247
event capturing 247
event delegation 248
event handler 243
event listener 243
event propogation 247
exercise 262
inline HTML attributes 243
propogation, stopping 248, 249
types 252

F
function

about 62
calling 62
parameters, passing 62, 64
pre-defined functions 64
redefining 78, 79
that return functions 78

function, built-in objects
about 113, 114

[334]

methods 116
properties 115

function constructor
about 305
function object, members 306

function literal notation 72, 73
functions are data

anonymous function 73
callback, examples 74, 76
callback function 73, 74
inner (private) functions 77
self-invoking functions 76

function scope 70, 71

G
global variable 282
global object 100, 102

H
HTML-only DOM objects

about 239
document, accessing ways 239, 240
document.cookie property 241
document.domain property 242
document.referrer property 242
document.title property 242
document.write() method 241

HTML DOM 220-222

I
increment operators

++ 25
minusminus-- 25

inheritance 15
constructor, borrowing 191-193
deep copy 184, 186
example 198-204
F(), temporary constructor 175, 176
multiple inheritance 188-190
object() function 186, 187
objects, copying by reference 180, 182
objects, inheriting from objects 183, 184
parasitic inheritance 190, 191
properties, copying 179, 180

prototypal inheritance 187
prototypal inheritance and copying

properties 187, 188
prototype, inheriting 173, 175
prototype chain 168
prototype chain, example 168-171
shallow copy 184
shared properties, moving to prototype

171-173
uber property 176-178

J
JavaScript

about 9, 11
coding pattern 266
design pattern 280, 281
function 62
functions are data 72, 73
history 10
including, in HTML page 205, 206
pre-defined functions 64
scope of variables 70-72
uses 11, 12

K
keywords 291

L
logical operators

! logical NOT 36
&& logical AND 36
| | logical OR 36

loops
about 54
do-while loops 55
for-in loops 58
for loops 55, 56, 57
infinite loop 54
types 54
while loops 54

M
math, built-in objects 127, 128, 129
math constructor

about 318

[335]

math object, members 319, 320
multiple inheritance

about 188-190
mixins 190

N
nodes accessing, DOM

attributes 225, 226
child nodes 224, 225
content accessing, innerHTML property

used 226
content accessing, innerText property

used 226
content accessing, nodeValue used 227
documentElement 224
document node 222, 223
firstChild property 230
getElementById() method 229
getElementByName() method 227
getElementsByTagName() method 227
lastChild property 230
nextSibling property 229
previousSibling property 229
shortcuts, accessing 227
walkDOM function 230

nodes creating, DOM
about 234, 235
cloneNode() method 236, 237
DOM-only method 235, 236
insertBefore() method 237

nodes modifying, DOM
about 231
forms, modifying 233, 234
styles, modifying 232

nodes removing, DOM 237-239
null, primitive data types 42
number, built-in objects 121
number constructor

about 307
members 308, 309
number object, members 309

numbers, primitive data types
about 27
exponent literals 29
hexadecimal number 28
infinity 30, 31

NaN 31
octal number 28

O
object, built-in objects 108, 109
object-oriented programming

about 12
aggregation 15
classes 13
encapsulation 14
inheritance 15
objects 13
polymorphism 16
summary 16

object constructor
about 299
members 300
object, members 300-302

objects 13
about 93, 94
associative array 95
comparing 105
constructor property 102
creating, constructor functions used 99
elements 95
factory() function 103, 104
global object 100, 102
hash 95
in firebug console 106, 107
instanceof operator 102, 103
methods 95
methods, altering 98, 99
methods, calling 97
passing 104
properties 95
properties, altering 98, 99
property, accessing 96, 97
this value, using 99

OOP. See object-oriented programming
operator precedence 38
operators

about 23
arithmetic operators 24
assignment operators 26
comparison operators 40, 41
compound operators 26

[336]

example 24
increment operators 25
logical operators 36

P
parasitic inheritance 190, 191
polymorphism 16
�re-defined functions

alert() function 69
eval() function 69
eval() function, drawbacks 69
isFinite() function 68
isNaN() function 67
parseFloat() function 66, 67
parseInt() function 65, 66
URI, decoding 68
URI, encoding 68

primitive data types
about 26, 27
booleans 35
null 42
numbers 27
strings 32, 33
typeof operator 27
undefined 41

private function
benefits 77

prototypal inheritance 187
prototype, copying 193
prototype chaining

about 167, 168
example 168-171
shared properties, moving 171-173

prototype property
_proto_link 158-160
about 149, 150
exercise 165
gotchas 162, 164
hasOwnProperty() method 155
isPrototypeOf() method 157
methods, adding 150, 151
methods, using 151
overwriting, with own property 154
properties, adding 150, 151
properties, enumerating 155, 157
properties, using 151

propertyIsEnumerable() method 155
versus own property 152, 153

R
RegExp, built-in objects

about 134
match() method, string object 137
methods 136
properties 135
replace() method, string object 137
search() method, string object 137
split() method 139
string, passing 140
string methods 136

RegExp constructor
about 320, 321
RegExp object, members 321, 322

regular expressions
$ 328
(?:pattern) 330
(pattern) 330
* 329
+ 329
. 328
? 329
[\b] 328
[^abc] 325
[a-z] 325
[abc] 325
\ 326
\0 328
\B 328
\b 327
\D 327
\d 327
\f 326
\n 326
\r 326
\S 327
\s 327
\u0000 328
\v 326
\W 327
\w 327
\x00 328
^ 328

[337]

{min,max} 330
{n} 329
a(?!b) 326
a(?=b) 326
a|b 326

reserved words 291, 293

S
shallow copy 185
string, built-in objects 122-124

methods 124, 127
string constructor

about 310
members 310
string object, members 311-313

strings, primitive data types
about 32, 33
special strings 34, 35
string conversions 33, 34

T
training environment, setting up

firebug console used 18-20
tools, collecting 17

typeof operator 27

U
undefined, �rimitive data ty�es 41

V
variables

about 21
case sensitivity 22, 23
declaring 21
initializing 22
using, steps 21

variables scope 70, 71

X
XMLHttpRequest

about 253
asynchronous 256, 257
example 257-259
exercise 263
objects, creating in Internet

Explorer 7 255, 256
request, sending 253
response, processing 254, 255
using, steps 253
XHR objects 257

	Object-Oriented JavaScript
	Table of Contents
	Preface
	Chapter 1: Introduction
	A Bit of History
	The Winds of Change
	The Present
	The Future

	Object-Oriented Programming
	Objects
	Classes
	Encapsulation
	Aggregation
	Inheritance
	Polymorphism

	OOP Summary
	Setting up Your Training Environment
	Getting the Tools You Need

	Using the Firebug Console
	Summary

	Chapter 2: Primitive Data Types, Arrays, Loops, and Conditions
	Variables
	Variables are Case Sensitive

	Operators
	Primitive Data Types
	Finding out the Value Type —the typeof Operator
	Numbers
	Octal and Hexadecimal Numbers
	Exponent Literals
	Infinity
	NaN

	Strings
	String Conversions
	Special Strings

	Booleans
	Logical Operators
	Operator Precedence
	Lazy Evaluation
	Comparison

	Undefined and null

	Primitive Data Types Recap
	Arrays
	Adding/Updating Array Elements
	Deleting Elements
	Arrays of arrays

	Conditions and Loops
	Code Blocks
	if Conditions
	Checking if a Variable Exists
	Alternative if Syntax
	Switch

	Loops
	While Loops
	Do-while loops
	For Loops
	For-in Loops

	Comments
	Summary
	Exercises

	Chapter 3: Functions
	What is a Function?
	Calling a Function
	Parameters

	Pre-defined Functions
	parseInt()
	parseFloat()
	isNaN()
	isFinite()
	Encode/Decode URIs
	eval()
	A Bonus—the alert() Function

	Scope of Variables
	Functions are Data
	Anonymous Functions
	Callback Functions
	Callback Examples
	Self-invoking Functions
	Inner (Private) Functions
	Functions that Return Functions
	Function, Rewrite Thyself!

	Closures
	Scope Chain
	Lexical Scope
	Breaking the Chain with a Closure
	Closure #1
	Closure #2
	A Definition and Closure #3
	Closures in a Loop

	Getter/Setter
	Iterator

	Summary
	Exercises

	Chapter 4: Objects
	From Arrays to Objects
	Elements, Properties, Methods
	Hashes, Associative Arrays
	Accessing Object's Properties
	Calling an Object's Methods
	Altering Properties/Methods
	Using this Value
	Constructor Functions
	The Global Object
	constructor Property
	instanceof Operator
	Functions that Return Objects
	Passing Objects
	Comparing Objects
	Objects in the Firebug Console

	Built-in Objects
	Object
	Array
	Interesting Array Methods

	Function
	Properties of the Function Objects
	Methods of the Function Objects
	The arguments Object Revisited

	Boolean
	Number
	String
	Interesting Methods of the String Objects

	Math
	Date
	Methods to Work with Date Objects

	RegExp
	Properties of the RegExp Objects
	Methods of the RegExp Objects
	String Methods that Accept Regular Expressions as Parameters
	search() and match()
	replace()
	Replace callbacks
	split()
	Passing a String When a regexp is Expected

	Summary
	Exercises

	Chapter 5: Prototype
	The prototype Property
	Adding Methods and Properties Using the Prototype
	Using the Prototype's Methods and Properties
	Own Properties versus prototype Properties
	Overwriting Prototype's Property with Own Property
	Enumerating Properties

	isPrototypeOf()
	The Secret __proto__ Link

	Augmenting Built-in Objects
	Augmenting Built-in Objects—Discussion
	Some Prototype gotchas

	Summary
	Exercises

	Chapter 6: Inheritance
	Prototype Chaining
	Prototype Chaining Example
	Moving Shared Properties to the Prototype

	Inheriting the Prototype Only
	A Temporary Constructor—new F()

	Uber—Access to the Parent from a Child Object
	Isolating the Inheritance Part into a Function
	Copying Properties
	Heads-up When Copying by Reference
	Objects Inherit from Objects
	Deep Copy
	object()
	Using a Mix of Prototypal Inheritance and Copying Properties
	Multiple Inheritance
	Mixins

	Parasitic Inheritance
	Borrowing a Constructor
	Borrow a Constructor and Copy its Prototype

	Summary
	Case Study: Drawing Shapes
	Analysis
	Implementation
	Testing

	Exercises

	Chapter 7: The Browser Environment
	Including JavaScript in an HTML Page
	BOM and DOM—An Overview
	BOM
	The window Object Revisited
	window.navigator
	Firebug as a Cheat Sheet
	window.location
	window.history
	window.frames
	window.screen
	window.open()/close()
	window.moveTo(), window.resizeTo()
	window.alert(), window.prompt(), window.confirm()
	window.setTimeout(), window.setInterval()
	window.document

	DOM
	Core DOM and HTML DOM
	Accessing DOM Nodes
	The document Node
	documentElement
	Child Nodes
	Attributes
	Accessing the Content Inside a Tag
	DOM Access Shortcuts
	Siblings, Body, First, and Last Child
	Walk the DOM

	Modifying DOM Nodes
	Modifying Styles
	Fun with Forms

	Creating New Nodes
	DOM-only Method
	cloneNode()
	insertBefore()

	Removing Nodes
	HTML-Only DOM Objects
	Primitive Ways to Access the Document
	document.write()
	Cookies, Title, Referrer, Domain

	Events
	Inline HTML Attributes
	Element Properties
	DOM Event Listeners
	Capturing and Bubbling
	Stop Propagation
	Prevent Default Behavior
	Cross-Browser Event Listeners
	Types of Events

	XMLHttpRequest
	Send the Request
	Process the Response
	Creating XMLHttpRequest Objects in IE prior to version 7
	A is for Asynchronous
	X is for XML
	An Example

	Summary
	Exercises

	Chapter 8: Coding and Design Patterns
	Coding Patterns
	Separating Behavior
	Content
	Presentation
	Behavior
	Example of Separating Behavior

	Namespaces
	An Object as a Namespace
	Namespaced Constructors
	A namespace() Method

	Init-Time Branching
	Lazy Definition
	Configuration Object
	Private Properties and Methods
	Privileged Methods
	Private Functions as Public Methods
	Self-Executing Functions
	Chaining
	JSON

	Design Patterns
	Singleton
	Singleton 2
	Global Variable
	Property of the Constructor
	In a Private Property

	Factory
	Decorator
	Decorating a Christmas Tree

	Observer

	Summary

	Appendix A: Reserved Words
	Keywords
	Future Reserved Words

	Appendix B: Built-in Functions
	Appendix C: Built-in Objects
	Object
	Members of the Object Constructor
	Members of the Objects Created by the Object Constructor

	Array
	Members of the Array Objects

	Function
	Members of the Function Objects

	Boolean
	Number
	Members of the Number Constructor
	Members of the Number Objects

	String
	Members of the String Constructor
	Members of the String Objects

	Date
	Members of the Date Constructor
	Members of the Date Objects

	Math
	Members of the Math Object

	RegExp
	Members of RegExp Objects

	Error Objects
	Members of the Error Objects

	Appendix D: Regular Expressions
	Index

