
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Node.js By Example

Learn to use Node.js by creating a fully functional
social network

Krasimir Tsonev

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Node.js By Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1190515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-571-1

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits

Author
Krasimir Tsonev

Reviewers
Danny Allen

Alex (Shurf) Frenkel

Commissioning Editor
Akram Hussain

Acquisition Editors
Purav Motiwalla

Llewellyn Rozario

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Mrunal M. Chavan

Copy Editor
Vedangi Narvekar

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Author

Krasimir Tsonev is a coder with over 10 years of experience in web development.
The author of Node.js Blueprints, Packt Publishing, he works with a strong focus on
quality and usability. Krasimir is interested in delivering cutting-edge applications.
He enjoys working in the software industry and has a passion for creating and
discovering new and effective digital experiences. Right now, he is working with
technologies such as HTML5/CSS3, JavaScript, PHP, and Node.js, but he originally
started out as a graphic designer. Later, being a Flash developer, he spent several
years using ActionScript3 and frameworks such as RobotLegs. After that, as a
freelancer, he continued to deliver full-stack web services for his clients, taking care
of the graphic design and frontend and backend programming. Right now, with the
rise of mobile application development, Krasimir is enthusiastic about working on
responsive applications that target various devices. He currently lives and works
in Bulgaria. He graduated from the Technical University of Varna with both a
bachelor's and a master's degree in computer science. He loves blogging, writing
books, and giving talks on the latest trends in web development.

He has authored Node.js Blueprints, Packt Publishing (https://www.packtpub.com/
web-development/nodejs-blueprints).

I want to thank my family, who supported me in the last
several months.

www.allitebooks.comwww.allitebooks.com

https://www.packtpub.com/web-development/nodejs-blueprints
https://www.packtpub.com/web-development/nodejs-blueprints
http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers

Danny Allen is a full-stack web developer who focuses on usability, user
experience, localization, and accessibility issues as the founder and director of
the international user experience development consultancy Wonderscore Ltd.

Skilled in a wide range of backend and frontend technologies including Python,
Django, JavaScript, Node.js, as well as HTML5/CSS3, his recent work has involved
the design and implementation of e-learning and government projects in the
United Kingdom.

His portfolio and contact details can be found at http://dannya.uk.

Alex (Shurf) Frenkel has worked in the field of web application development
since 1998 (the beginning of PHP 3.X) and has extensive experience in system
analysis and project management. Alex is a PHP 5.3 Zend Certified Engineer and is
considered to be one of the most prominent LAMP developers in Israel. He is also a
food blogger at http://www.foodstuff.guru.

In the past, Alex was the CTO of ReutNet, one of the leading Israeli web
technology-based companies. He also worked as the CEO/CTO of OpenIview
LTD—a company built around the innovative idea of breaching the IBM mainframe
business with PHP applications. He was also the CTO and the chief architect of
a start-up, GBooking. He also provided expert consulting services to different
companies in various aspects of web-related technology.

Frenkel-Online is a project-based company that works with a number of professional
freelance consultants in Israel and abroad. Currently, their permanent staff comprises
several consultants in Israel and abroad for the company's PHP projects and a number
of specialists in other programming languages for the rest of the projects.

Foodstuff.Guru is a pet project that brings not only high-style food, but also every day
food to the Web that can be reviewed by people for people. The blog is multilingual
and you can visit it at http://www.foodstuff.guru.

www.allitebooks.comwww.allitebooks.com

http://dannya.uk
http://www.foodstuff.guru
http://www.foodstuff.guru
http://www.allitebooks.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.comwww.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Node.js Fundamentals 1

Understanding the Node.js architecture 1
Installing Node.js 3

Running Node.js server 3
Defining and using modules 4
Managing and distributing packages 7

Creating a module 7
Using modules 8
Updating our module 9

Introducing built-in modules 10
Creating a server with the HTTP module 10
Reading and writing to files 11
Working with events 11
Managing child processes 13

Summary 14
Chapter 2: Architecting the Project 15

Introducing the basic layers of the application 15
The task runner and building system 18

Introducing Grunt 19
Discovering Gulp 22
Test-driven development 24
The Model-View-Controller pattern 27
Introducing the REST API concept 30
Summary 32

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Managing Assets 33
Serving files with Node.js 33
CSS preprocessing 37
Packing client-side JavaScript 39

Concatenating with Gulp 39
Modularity in the browser with RequireJS 40
Moving from Node.js to the browser with Browserify 43

Delivering HTML templates 45
Defining the templates in script tags 45
Loading the template externally 46
Writing HTML inside the JavaScript 46
Precompiling templates 47

Summary 49
Chapter 4: Developing the Model-View-Controller Layers 51

Evolving the current setup 51
Directory structure 52
Forming the main server handlers 52

Implementing the router 54
Introducing Ractive.js 59
Constructing the entry point of the application 61
Defining a controller 62
Managing our views 64
Creating a model 65
Summary 68

Chapter 5: Managing Users 69
Working with the MongoDB database 69

Installing MongoDB 70
Running MongoDB 70
Connecting to the database server 71

Extending the code from the previous chapter 72
Updating our base model class 72
Updating page navigation and routing 74

Registering a new user 75
Updating the frontend 75
Updating the backend API 78

User authentication with sessions 81
Managing a user's profile 86
Summary 89

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Adding Friendship Capabilities 91
Finding friends 91

Adding the search page 91
Writing the model 94
Fetching friends from the database 97

Marking users as friends 99
Displaying the linked users on the Profile page 102
Summary 104

Chapter 7: Posting Content 105
Posting and storing text 105

Adding a form to post text messages 105
Introducing the content's model 106
Updating the controller of the home page 107
Storing content in the database 109

Showing the user's feed 110
Posting files 114
Summary 120

Chapter 8: Creating Pages and Events 121
Refactoring the API 121
Adding a form to create pages 124
Creating a record in the database 126
Showing the currently added pages 129
Showing a specific page 130
Posting a comment to a page 133
Showing the comments 135
Managing events attached to a particular page 137
Summary 140

Chapter 9: Tagging, Sharing, and Liking 141
Selecting friends and sending their IDs to the backend 141
Storing the tagged users and displaying them in the user's feed 143

Sharing a post 147
Liking posts and counting the number of likes 151
Showing the number of likes 154
Summary 155

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

[iv]

Chapter 10: Adding Real-time Chat 157
Getting to know WebSockets 157
Bringing Socket.IO to the project 159
Preparing the UI of the chat area 161
Exchanging messages between the client and the server 164
Sending messages to the user's friends only 169
Customizing the output of the chat 172
Summary 175

Chapter 11: Testing the User Interface 177
Introducing the basic testing toolset 177

The testing framework 177
The assertion library 178
Runner 178

Preparing our project to run tests 178
Running our test with PhantomJS 184
Testing user registration 185

Simulating user interaction 185
Filling and submitting the registration form 186
Tweaking the code's execution order 188
Listening to the form-submitted event 190

Testing with DalekJS 191
Installing DalekJS 191
Using the DalekJS API 192

Summary 194
Index 195

[v]

Preface
Node.js is one of the present day's most popular technologies. Its growing
community is known to produce a large number of modules every day. These
modules can be used as building blocks for server-side applications. The fact that
we use the same language (JavaScript) on both the server- and client-side make
development fluent.

This book contains 11 chapters that contain a step-by-step guide to building a social
network. Systems such as Facebook and Twitter are complex and challenging to
develop. It is nice that we will learn what Node.js is capable of, but it is going to
be much more interesting if we do that within a concrete context. The book covers
basic phases such as the architecture and management of the assets' pipeline, and it
discusses features such as users' friendship and real-time communication.

What this book covers
Chapter 1, Node.js Fundamentals, teaches the basics of Node.js, what stands behind the
technology, and its module management system and package manager.

Chapter 2, Architecting the Project, reveals the power of build systems such as Gulp.
Before starting with our social network, we will plan the project. We will talk about
test-driven development and the Model-View-Controller pattern. The chapter will
cover the Node.js modules that are needed to bootstrap the project.

Chapter 3, Managing Assets, covers the building of a web application. So, we have to
deal with HTML, CSS, JavaScript, and images. In this chapter, we will go through the
processes behind the serving of assets.

Chapter 4, Developing the Model-View-Controller Layers, is about the basic structure of
our application. We will create classes for views, models, and controllers. In the next
few chapters, we will use these classes as a base.

Preface

[vi]

Chapter 5, Managing Users, is about implementing user registration, authorization,
and profile management.

Chapter 6, Adding Friendship Capabilities, explains one of the main concepts behind
modern social networks—friendship. The ability to find friends and follow their
walls is an important part. This chapter is dedicated to the development of this
relationship between users.

Chapter 7, Posting Content, states that the backbone of every social network is the
content that users add into the system. In this chapter, we will implement the
process of post making.

Chapter 8, Creating Pages and Events, states that providing the ability to users to create
pages and events will make our social network more interesting. Users can add as
many pages as they want. Other users will be able to join the newly created places
in our network. We will also add code to collect statistics.

Chapter 9, Tagging, Sharing, and Liking, explains that besides posting and reviewing
content, the users of a social network should be able to tag, share, and like posts.
This chapter is dedicated to the development of these functions.

Chapter 10, Adding Real-time Chat, talks about the expectations of users, in today's
world, to see everything that is happening right away. They want to communicate
faster with each other. In this chapter, we will develop a real-time chat so that the
users can send messages instantly.

Chapter 11, Testing the User Interface, explains that it is important to get the job done,
but it is also important to cover working functionalities with tests. In this chapter,
we will see how to test a user interface.

What you need for this book
The book is based on Node.js version 0.10.36. We will also use MongoDB (http://
www.mongodb.org/) as a database and Ractive.js (http://www.ractivejs.org/) as
a client-side framework.

Who this book is for
If you have knowledge of JavaScript and want to see how you can use it in the
backend, this book is for you. It will lead you through the creation of a fairly complex
social network. You will learn how to work with a database and create real-time
communication channels.

http://www.mongodb.org/
http://www.mongodb.org/
http://www.ractivejs.org/

Preface

[vii]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If
the Ractive component has a friends property, then we will render a list of users."

A block of code is set as follows:

<li class="right"><a on-click="goto:logout">Logout
<li class="right"><a on-click="goto:profile">Profile
<li class="right"><a on-click="goto:find-friends">Find
friends

Any command-line input or output is written as follows:

sudo apt-get update

sudo apt-get install nodejs

sudo apt-get install npm

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "It shows
their name and a Add as a friend button."

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[viii]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[ix]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Node.js Fundamentals
Node.js is one of the most popular JavaScript-driven technologies nowadays.
It was created in 2009 by Ryan Dahl and since then, the framework has evolved
into a well-developed ecosystem. Its package manager is full of useful modules
and developers around the world have started using Node.js in their production
environments. In this chapter, we will learn about the following:

• Node.js building blocks
• The main capabilities of the environment
• The package management of Node.js

Understanding the Node.js architecture
Back in the days, Ryan was interested in developing network applications. He found
out that most high performance servers followed similar concepts. Their architecture
was similar to that of an event loop and they worked with nonblocking input/output
operations. These operations would permit other processing activities to continue
before an ongoing task could be finished. These characteristics are very important if
we want to handle thousands of simultaneous requests.

Most of the servers written in Java or C use multithreading. They process every
request in a new thread. Ryan decided to try something different—a single-threaded
architecture. In other words, all the requests that come to the server are processed by
a single thread. This may sound like a nonscalable solution, but Node.js is definitely
scalable. We just have to run different Node.js processes and use a load balancer that
distributes the requests between them.

Node.js Fundamentals

[2]

Ryan needed something that is event-loop-based and which works fast. As he
pointed out in one of his presentations, big companies such as Google, Apple, and
Microsoft invest a lot of time in developing high performance JavaScript engines.
They have become faster and faster every year. There, event-loop architecture is
implemented. JavaScript has become really popular in recent years. The community
and the hundreds of thousands of developers who are ready to contribute made
Ryan think about using JavaScript. Here is a diagram of the Node.js architecture:

In general, Node.js is made up of three things:

• V8 is Google's JavaScript engine that is used in the Chrome web
browser (https://developers.google.com/v8/)

• A thread pool is the part that handles the file input/output operations.
All the blocking system calls are executed here (http://software.schmorp.
de/pkg/libeio.html)

• The event loop library (http://software.schmorp.de/pkg/libev.html)

On top of these three blocks, we have several bindings that expose low-level
interfaces. The rest of Node.js is written in JavaScript. Almost all the APIs that we
see as built-in modules and which are present in the documentation, are written
in JavaScript.

https://developers.google.com/v8/
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libev.html

Chapter 1

[3]

Installing Node.js
A fast and easy way to install Node.js is by visiting https://nodejs.org/
download/ and downloading the appropriate installer for your operating system.
For OS X and Windows users, the installer provides a nice, easy-to-use interface.
For developers that use Linux as an operating system, Node.js is available in the APT
package manager. The following commands will set up Node.js and Node Package
Manager (NPM):

sudo apt-get update
sudo apt-get install nodejs
sudo apt-get install npm

Running Node.js server
Node.js is a command-line tool. After installing it, the node command will be
available on our terminal. The node command accepts several arguments, but the
most important one is the file that contains our JavaScript. Let's create a file called
server.js and put the following code inside:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(9000, '127.0.0.1');
console.log('Server running at http://127.0.0.1:9000/');

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
that you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

If you run node ./server.js in your console, you will have the Node.js server
running. It listens for incoming requests at localhost (127.0.0.1) on port 9000. The
very first line of the preceding code requires the built-in http module. In Node.js,
we have the require global function that provides the mechanism to use external
modules. We will see how to define our own modules in a bit. After that, the scripts
continue with the createServer and listen methods on the http module. In this
case, the API of the module is designed in such a way that we can chain these two
methods like in jQuery.

www.allitebooks.comwww.allitebooks.com

https://nodejs.org/download/
https://nodejs.org/download/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org
http://www.allitebooks.org

Node.js Fundamentals

[4]

The first one (createServer) accepts a function that is also known as a callback,
which is called every time a new request comes to the server. The second one makes
the server listen.

The result that we will get in a browser is as follows:

Defining and using modules
JavaScript as a language does not have mechanisms to define real classes. In fact,
everything in JavaScript is an object. We normally inherit properties and functions
from one object to another. Thankfully, Node.js adopts the concepts defined by
CommonJS—a project that specifies an ecosystem for JavaScript.

We encapsulate logic in modules. Every module is defined in its own file. Let's
illustrate how everything works with a simple example. Let's say that we have a
module that represents this book and we save it in a file called book.js:

// book.js
exports.name = 'Node.js by example';
exports.read = function() {
 console.log('I am reading ' + exports.name);
}

We defined a public property and a public function. Now, we will use require to
access them:

// script.js
var book = require('./book.js');
console.log('Name: ' + book.name);
book.read();

Chapter 1

[5]

We will now create another file named script.js. To test our code, we will run
node ./script.js. The result in the terminal looks like this:

Along with exports, we also have module.exports available. There is a difference
between the two. Look at the following pseudocode. It illustrates how Node.js
constructs our modules:

var module = { exports: {} };
var exports = module.exports;
// our code
return module.exports;

So, in the end, module.exports is returned and this is what require produces.
We should be careful because if at some point we apply a value directly to exports
or module.exports, we may not receive what we need. Like at the end of the
following snippet, we set a function as a value and that function is exposed to
the outside world:

exports.name = 'Node.js by example';
exports.read = function() {
 console.log('Iam reading ' + exports.name);
}
module.exports = function() { ... }

In this case, we do not have an access to .name and .read. If we try to execute node
./script.js again, we will get the following output:

To avoid such issues, we should stick to one of the two options—exports or
module.exports—but make sure that we do not have both.

Node.js Fundamentals

[6]

We should also keep in mind that by default, require caches the object that is
returned. So, if we need two different instances, we should export a function. Here is
a version of the book class that provides API methods to rate the books and that do
not work properly:

// book.js
var ratePoints = 0;
exports.rate = function(points) {
 ratePoints = points;
}
exports.getPoints = function() {
 return ratePoints;
}

Let's create two instances and rate the books with different points value:

// script.js
var bookA = require('./book.js');
var bookB = require('./book.js');
bookA.rate(10);
bookB.rate(20);
console.log(bookA.getPoints(), bookB.getPoints());

The logical response should be 10 20, but we got 20 20. This is why it is a common
practice to export a function that produces a different object every time:

// book.js
module.exports = function() {
 var ratePoints = 0;
 return {
 rate: function(points) {
 ratePoints = points;
 },
 getPoints: function() {
 return ratePoints;
 }
 }
}

Now, we should also have require('./book.js')() because require returns a
function and not an object anymore.

Chapter 1

[7]

Managing and distributing packages
Once we understand the idea of require and exports, we should start thinking
about grouping our logic into building blocks. In the Node.js world, these blocks are
called modules (or packages). One of the reasons behind the popularity of Node.js is
its package management.

Node.js normally comes with two executables—node and npm. NPM is a
command-line tool that downloads and uploads Node.js packages. The official
site, https://npmjs.org/, acts as a central registry. When we create a package
via the npm command, we store it there so that every other developer may use it.

Creating a module
Every module should live in its own directory, which also contains a metadata
file called package.json. In this file, we have set at least two properties—name
and version:

{
 "name": "my-awesome-nodejs-module",
 "version": "0.0.1"
}

We can place whatever code we like in the same directory. Once we publish the
module to the NPM registry and someone installs it, he/she will get the same files.
For example, let's add an index.js file so that we have two files in the package:

// index.js
console.log('Hello, this is my awesome Node.js module!');

Our module does only one thing—it displays a simple message to the console.
Now, to upload the modules, we need to navigate to the directory containing the
package.json file and execute npm publish. This is the result that we should see:

We are ready. Now our little module is listed in the Node.js package manager's site
and everyone is able to download it.

https://npmjs.org/

Node.js Fundamentals

[8]

Using modules
In general, there are three ways to use the modules that are already created. All three
ways involve the package manager:

• We may install a specific module manually. Let's say that we have a folder
called project. We open the folder and run the following:
npm install my-awesome-nodejs-module

The manager automatically downloads the latest version of the module and
puts it in a folder called node_modules. If we want to use it, we do not need
to reference the exact path. By default, Node.js checks the node_modules
folder before requiring something. So, just require('my-awesome-nodejs-
module') will be enough.

• The installation of modules globally is a common practice, especially if
we talk about command-line tools made with Node.js. It has become an
easy-to-use technology to develop such tools. The little module that we
created is not made as a command-line program, but we can still install
it globally by running the following code:
npm install my-awesome-nodejs-module -g

Note the -g flag at the end. This is how we tell the manager that we want
this module to be a global one. When the process finishes, we do not have a
node_modules directory. The my-awesome-nodejs-module folder is stored
in another place on our system. To be able to use it, we have to add another
property to package.json, but we'll talk more about this in the next section.

• The resolving of dependencies is one of the key features of the package
manager of Node.js. Every module can have as many dependencies as you
want. These dependences are nothing but other Node.js modules that were
uploaded to the registry. All we have to do is list the needed packages in the
package.json file:

{
 "name": "another-module",
 "version": "0.0.1",
 "dependencies": {
 "my-awesome-nodejs-module": "0.0.1"
 }
}

Chapter 1

[9]

Now we don't have to specify the module explicitly and we can simply
execute npm install to install our dependencies. The manager reads
the package.json file and saves our module again in the node_modules
directory. It is good to use this technique because we may add several
dependencies and install them at once. It also makes our module transferable
and self-documented. There is no need to explain to other programmers what
our module is made up of.

Updating our module
Let's transform our module into a command-line tool. Once we do this, users will
have a my-awesome-nodejs-module command available in their terminals. There
are two changes in the package.json file that we have to make:

{
 "name": "my-awesome-nodejs-module",
 "version": "0.0.2",
 "bin": "index.js"
}

A new bin property is added. It points to the entry point of our application. We have
a really simple example and only one file—index.js.

The other change that we have to make is to update the version property. In
Node.js, the version of the module plays important role. If we look back, we will
see that while describing dependencies in the package.json file, we pointed out
the exact version. This ensures that in the future, we will get the same module with
the same APIs. Every number from the version property means something. The
package manager uses Semantic Versioning 2.0.0 (http://semver.org/). Its format
is MAJOR.MINOR.PATCH. So, we as developers should increment the following:

• MAJOR number if we make incompatible API changes
• MINOR number if we add new functions/features in a

backwards-compatible manner
• PATCH number if we have bug fixes

Sometimes, we may see a version like 2.12.*. This means that the developer is
interested in using the exact MAJOR and MINOR version, but he/she agrees that
there may be bug fixes in the future. It's also possible to use values like >=1.2.7 to
match any equal-or-greater version, for example, 1.2.7, 1.2.8, or 2.5.3.

http://semver.org/

Node.js Fundamentals

[10]

We updated our package.json file. The next step is to send the changes to the
registry. This could be done again with npm publish in the directory that holds
the JSON file. The result will be similar. We will see the new 0.0.2 version number
on the screen:

Just after this, we may run npm install my-awesome-nodejs-module -g and the
new version of the module will be installed on our machine. The difference is that
now we have the my-awesome-nodejs-module command available and if you run it,
it displays the message written in the index.js file:

Introducing built-in modules
Node.js is considered a technology that you can use to write backend applications.
As such, we need to perform various tasks. Thankfully, we have a bunch of helpful
built-in modules at our disposal.

Creating a server with the HTTP module
We already used the HTTP module. It's perhaps the most important one for web
development because it starts a server that listens on a particular port:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(9000, '127.0.0.1');
console.log('Server running at http://127.0.0.1:9000/');

We have a createServer method that returns a new web server object. In most
cases, we run the listen method. If needed, there is close, which stops the server
from accepting new connections. The callback function that we pass always accepts
the request (req) and response (res) objects. We can use the first one to retrieve
information about incoming request, such as, GET or POST parameters.

Chapter 1

[11]

Reading and writing to files
The module that is responsible for the read and write processes is called fs
(it is derived from filesystem). Here is a simple example that illustrates how to
write data to a file:

var fs = require('fs');
fs.writeFile('data.txt', 'Hello world!', function (err) {
 if(err) { throw err; }
 console.log('It is saved!');
});

Most of the API functions have synchronous versions. The preceding script could be
written with writeFileSync, as follows:

fs.writeFileSync('data.txt', 'Hello world!');

However, the usage of the synchronous versions of the functions in this module
blocks the event loop. This means that while operating with the filesystem,
our JavaScript code is paused. Therefore, it is a best practice with Node to use
asynchronous versions of methods wherever possible.

The reading of the file is almost the same. We should use the readFile method in
the following way:

fs.readFile('data.txt', function(err, data) {
 if (err) throw err;
 console.log(data.toString());
});

Working with events
The observer design pattern is widely used in the world of JavaScript. This is
where the objects in our system subscribe to the changes happening in other objects.
Node.js has a built-in module to manage events. Here is a simple example:

var events = require('events');
var eventEmitter = new events.EventEmitter();
var somethingHappen = function() {
 console.log('Something happen!');
}
eventEmitter
.on('something-happen', somethingHappen)
.emit('something-happen');

Node.js Fundamentals

[12]

The eventEmitter object is the object that we subscribed to. We did this with the
help of the on method. The emit function fires the event and the somethingHappen
handler is executed.

The events module provides the necessary functionality, but we need to use it
in our own classes. Let's get the book idea from the previous section and make it
work with events. Once someone rates the book, we will dispatch an event in the
following manner:

// book.js
var util = require("util");
var events = require("events");
var Class = function() { };
util.inherits(Class, events.EventEmitter);
Class.prototype.ratePoints = 0;
Class.prototype.rate = function(points) {
 ratePoints = points;
 this.emit('rated');
};
Class.prototype.getPoints = function() {
 return ratePoints;
}
module.exports = Class;

We want to inherit the behavior of the EventEmitter object. The easiest way to
achieve this in Node.js is by using the utility module (util) and its inherits
method. The defined class could be used like this:

var BookClass = require('./book.js');
var book = new BookClass();
book.on('rated', function() {
 console.log('Rated with ' + book.getPoints());
});
book.rate(10);

We again used the on method to subscribe to the rated event. The book class
displays that message once we set the points. The terminal then shows the Rated
with 10 text.

Chapter 1

[13]

Managing child processes
There are some things that we can't do with Node.js. We need to use external
programs for the same. The good news is that we can execute shell commands from
within a Node.js script. For example, let's say that we want to list the files in the
current directory. The file system APIs do provide methods for that, but it would be
nice if we could get the output of the ls command:

// exec.js
var exec = require('child_process').exec;
exec('ls -l', function(error, stdout, stderr) {
 console.log('stdout: ' + stdout);
 console.log('stderr: ' + stderr);
 if (error !== null) {
 console.log('exec error: ' + error);
 }
});

The module that we used is called child_process. Its exec method accepts the
desired command as a string and a callback. The stdout item is the output of the
command. If we want to process the errors (if any), we may use the error object or
the stderr buffer data. The preceding code produces the following screenshot:

Along with the exec method, we have spawn. It's a bit different and really
interesting. Imagine that we have a command that not only does its job, but also
outputs the result. For example, git push may take a few seconds and it may send
messages to the console continuously. In such cases, spawn is a good variant because
we get an access to a stream:

var spawn = require('child_process').spawn;
var command = spawn('git', ['push', 'origin', 'master']);
command.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});
command.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});
command.on('close', function (code) {
 console.log('child process exited with code ' + code);
});

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Node.js Fundamentals

[14]

Here, stdout and stderr are streams. They dispatch events and if we subscribe to
these events, we will get the exact output of the command as it was produced. In the
preceding example, we run git push origin master and sent the full command
responses to the console.

Summary
Node.js is used by many companies nowadays. This proves that it is mature enough
to work in a production environment. In this chapter, we saw what the fundamentals
of this technology are. We covered some of the commonly used cases. In the next
chapter, we will start with the basic architecture of our example application. It is
not a trivial one. We are going to build our own social network.

[15]

Architecting the Project
Software development is a complex process. We can't just start writing some code
and expect that we will reach our goal. We need to plan and define the base of
our application. In other words, before you dive into actual scripting, you have to
architect the project. In this chapter, we will cover the following:

• The basic layers of a Node.js application
• Using the task runner and building system
• Test-driven development
• The Model-View-Controller pattern
• The REST API concept

Introducing the basic layers of the
application
If we plan to build a house, we will probably want to start with a very good base.
We simply can't build the first and second floor if the base of the building is
not solid.

However, with software, it is a bit different. We can start developing code without
the existence of a good base. We call this brute-force-driven development. In this,
we produce feature after feature without actually caring about the quality of our
code. The result may work in the beginning, but in the long term, it consumes more
time and probably money. It's well-known that software is nothing but building
blocks placed on top of one another. If the lower layers of our program are poorly
designed, then the whole solution will suffer because of this.

Architecting the Project

[16]

Let's think about our project—the social network that we want to build with
Node.js. We start with a simple code like this one:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

The very first thing that you may notice is that you served a text to the user, but you
probably wanted to serve file content. Node.js is similar to PHP. However, there is
one fundamental difference. PHP needs a server that accepts the requests and passes
them to the PHP interpreter. Then, the PHP code is processed and the response
is delivered to the user again by the server. In the Node.js world, we don't have a
separate external server. Node.js itself plays that role. It is up to the developer to
handle the incoming requests and decide what to do with them.

If we take the preceding code and assume that we have page.html containing our
basic HTML layout and the styles.css file holding the CSS styles, our next step
will be as follows (check out the planning folder in the book's code samples):

var http = require('http');
var fs = require('fs');
http.createServer(function (req, res) {
 var content = '';
 var type = '';
 if(req.url === '/') {
 content = fs.readFileSync('./page.html');
 type = 'text/html';
 } else if(req.url === '/styles.css') {
 content = fs.readFileSync('./styles.css');
 type = 'text/css';
 }
 res.writeHead(200, {'Content-Type': type});
 res.end(content + '\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

We will check the incoming request's URL. If we just open http://127.0.0.1:1337/,
we will receive the code of page.html as a response. If we have a <link> tag in the
page.html file that requests style.css, the browser will fire a request for that too.
The URL is different, but it is again caught by the if clause and then the proper
content is served.

Chapter 2

[17]

This is fine for now, but we will probably need to serve not two but many files.
We do not want to describe all of them. So, this process should be optimized.
The first layer of every Node.js server usually deals with routing. It parses the
request's URL and decides what to do. If we need to deliver static files, then we
will end up placing logic for that in an external module that finds the files, reads
them, and sends a response with the proper content type. This can be the second
layer of our architecture.

Along with the delivery of files, we will need to write some backend logic.
This will be the third layer. Again, based on the URL, we will perform some
actions related to the business logic, as follows:

var http = require('http');
var fs = require('fs');
http.createServer(function (req, res) {
 var content = '';
 var type = '';
 if(req.url === '/') {
 content = fs.readFileSync('./page.html');
 type = 'text/html';
 } else if(req.url === '/styles.css') {
 content = fs.readFileSync('./styles.css');
 type = 'text/css';
 } else if(req.url === '/api/user/new') {
 // Do actions like
 // reading POST parameters
 // storing the user into the database
 content = '{"success": true}';
 type = 'application/json';
 }
 res.writeHead(200, {'Content-Type': type});
 res.end(content + '\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Note that we returned the JSON data. So now, our Node.js server acts as an API.
We will talk about this at the end of this chapter.

Architecting the Project

[18]

The following diagram shows the three layers that we just talked about:

These will be the main layers of our application. In the chapters that follow, we will
work on them. But before that, let's see what other work we have to do before we
reach that point.

The task runner and building system
Along with the practice of running the Node.js server, there are other best practices
pertaining to web development tasks that you can consider. We are building a web
application. So, we have client-side JavaScript and CSS that has to be delivered in the
best possible way. In other words, to increase the performance of our website, we need
to merge all the JavaScript into a single file and compress it. The same is valid for the
CSS style sheets. If you do this, the browser will make fewer requests to the server.

Node.js is a common tool for command-line utilities, except for when you want
to run web servers. There are many modules available for the packaging and
optimizing of assets. It is great that there are task runners and build systems that
help you manage these processes.

Chapter 2

[19]

Introducing Grunt
Grunt is one of the most popular task runners that are based on Node.js.
It is available in the package manager registry and can be installed by
using the following command:

npm install -g grunt-cli

Once we run that in the terminal, we will get a global grunt command at our
disposal. We need to create a Gruntfile.js file in the root directory of the
project, which is where we will define our tasks. By tasks, we mean actions
such as concatenation and minification that we want to perform on specific files.
Here is a simple Gruntfile.js:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.registerTask('default', ['concat']);
}

In the first chapter of this book, we saw how one can define Node.js modules.
The configuration needed by Grunt is just a simple module. We export a function
that accepts a grunt object containing all the public API functions of the runner.
In the initConfig block, we place our actions, and with registerTask, we
combine actions and tasks. There should be at least one task that is defined with
the name default. This is what Grunt runs if we don't pass additional parameters
in the terminal.

There is one last function used in the preceding example—loadNpmTasks. The real
power of Grunt is the fact that we have hundreds of plugins available. The grunt
command is an interface that you can use to control these plugins when the real job is
done. Since they are all registered in the Node.js package manager, we need to include
them in the package.json file. For the preceding code, we need the following:

{
 "name": "GruntjsTest",
 "version": "0.0.1",

Architecting the Project

[20]

 "description": "GruntjsTest",
 "dependencies": {},
 "devDependencies": {
 "grunt-contrib-concat": "0.3.0"
 }
}

Let's continue by adding two other functionalities to our Grunt setup. Once we
have the JavaScript concatenated, we will probably want a minified version of the
compiled file; grunt-contrib-uglify is the module that does this job:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 },
 uglify: {
 javascript: {
 files: {
 'build/scripts.min.js': '<%= concat.javascript.dest %>'
 }
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.registerTask('default', ['concat', 'uglify']);
}

We should mention that the uglify task should be run after the concat one because
they depend on each other. There is also a shortcut—<%= concat.javascript.dest
%>. We use such expressions to simplify the maintenance of the Gruntfile.js file.

Chapter 2

[21]

We have Grunt tasks to process our JavaScript. However, it will be too annoying
if we have to go back to the console and run grunt every time we make a change.
This is why there exists grunt-contrib-watch. It is a module that looks out for file
changes and runs our tasks. Here is the updated Gruntfile.js:

module.exports = function(grunt) {
 grunt.initConfig({
 concat: {
 javascript: {
 src: 'src/**/*.js',
 dest: 'build/scripts.js'
 }
 },
 uglify: {
 javascript: {
 files: {
 'build/scripts.min.js': '<%= concat.javascript.dest %>'
 }
 }
 },
 watch: {
 javascript: {
 files: ['<%= concat.javascript.src %>'],
 tasks: ['concat', 'uglify']
 }
 }
 });
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.registerTask('default', ['concat', 'uglify', 'watch']);
}

To get the script working, we have to additionally run npm install
grunt-contrib-watch grunt-contrib-uglify –save. The command
will install the modules and will update the package.json file.

Architecting the Project

[22]

The following screenshot shows what the result in the terminal looks like when we
call the grunt command:

We can now see how our tasks run and the watching task starts. Once we save
changes to a watched file, both the operations—concatenation and minification—are
fired again.

Discovering Gulp
Gulp is a build system that automates common tasks. As in Grunt, we can compose
our asset pipeline. However, there are a few differences between the two:

• We still have a configuration file, but it is called gulpfile.js.
• Gulp is a streaming-based tool. It doesn't store anything on the disc when it

is working. Grunt needs to create temporary files in order to pass data from
one task to another, but Gulp keeps the data in the memory.

• Gulp follows the code-over-configuration principle. In the gulpfile.js file,
we write our tasks like a regular Node.js script. We will see a demonstration
of this in a minute.

Chapter 2

[23]

To use Gulp, we have to install it first. The following command will set up the
tool globally:

npm install -g gulp

We are going to use a few plugins—gulp-concat, gulp-uglify, and gulp-rename.
After adding them to our package.json file, run npm install so that we can
install them.

The next step is to create a new gulpfile.js file in the root directory of our project
and run the gulp command. Let's keep the same tasks from the previous section
and translate them to Gulp:

var gulp = require('gulp');
var concat = require('gulp-concat');
var uglify = require('gulp-uglify');
var rename = require('gulp-rename');

gulp.task('js', function() {
 gulp.src('./src/**/*.js')
 .pipe(concat('scripts.js'))
 .pipe(gulp.dest('./build/'))
 .pipe(rename({suffix: '.min'}))
 .pipe(uglify())
 .pipe(gulp.dest('./build/'))
});
gulp.task('watchers', function() {
 gulp.watch('src/**/*.js', ['js']);
});
gulp.task('default', ['js', 'watchers']);

There are a few require calls at the top of the file. We initialized the public API of
Gulp (the gulp object) and the plugins needed for the operations that we want to
perform. We need to add all these modules to our package.json file. Just after that,
we define three tasks by using the (task_name, callback_function) syntax:

• js: This is the task that gets our JavaScript files, pipes them to the plugin that
concatenates files, and saves the result. We continue by sending the data to
the uglify module that minifies our code and in the end, we save a new file
with a .min suffix.

• watchers: With this task, we can monitor our JavaScript for changes and run
the js task.

• default: By default, Gulp runs that part of our file. We may specify the task
by adding one more argument to the gulp call in the terminal.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Architecting the Project

[24]

The result of the preceding script should look like the following screenshot.
Again, we can see how automation happens. The watching part is present, too.

Test-driven development
Test-driven development is a software development process in which automated
tests drive the development cycle of a new product or functionality. It speeds up the
development in the long run and tends to produce better code. Nowadays, many
frameworks have tools that help you create automated tests. So as developers, we need
to write and run tests first before writing any new code. We always check what the
result of our work is. In web development, we usually open the browser and interact
with our application to see how our code behaves. So, a major part of our time goes
into testing. The good news is that we may optimize this process. It is possible to write
code that does the job instead of us. Sometimes, relying on manual testing is not the
best option, because it takes time. Here are a few benefits of having tests:

• The tests improve the stability of our application
• Automated testing saves time that can be spent in improving or refactoring

the system's code
• Test-driven development tends to produce better code over time because it

makes us think about better structuring and modular approaches
• Continuous testing helps us develop new features on an existing app since

the automated tests will fail if we introduce a code that breaks an old feature
• The tests could be used as documentation, especially for developers who

have just joined the team

Chapter 2

[25]

At the beginning of the process, we want our test to fail. After that, we implement
step-by-step the required logic till the test passes. The following diagram shows
the process:

Very often, developers use tools that help them write tests. We are going to use a
testing framework called Mocha. It is available for Node.js and the browser, and it
is one of the most popular solutions when it comes to automated testing. Let's install
Mocha and see how TDD works. We will run the following command:

npm install mocha -g

As we already did several times in the book, we will have the package globally
installed. For the purpose of this example, we will assume that our application needs
a module that reads external JSON files. Let's create an empty folder and put the
following content into a test.js file:

var assert = require('assert');
describe('Testing JSON reader', function() {
 it('should get json', function(done) {
 var reader = require('./JSONReader');
 assert.equal(typeof reader, 'object');
 assert.equal(typeof reader.read, 'function');
 done();
 });
});

The describe and it functions are Mocha-specific functions. They are global and we
have them readily available. The assert module is a native Node.js module that we
may use to perform checks. Some of the popular testing frameworks have their own
assertion methods. Mocha does not have one, but it works well with libraries such as
Chai or Expect.js.

Architecting the Project

[26]

We use describe to form a series of tests and it to define logical blocks. We assume
that there is a JSONReader.js file in the current directory and when the module
inside is required, we have a public read method available. Now, let's run our test
with mocha .\test.js. The result is as follows:

Of course, our test fails because there is no such file. If we create the file and place the
following code in it, our test will pass:

// JSONReader.js
module.exports = {
 read: function() {
 // get JSON
 return {};
 }
}

The JSONReader module exports an object with the help of the read public method.
We will run mocha .\test.js again. However, this time, all the requirements listed
in the test are covered. Now, the terminal should look like this:

Chapter 2

[27]

Let's assume that our JSONReader module has been becoming bigger and bigger.
New methods have come in, and different developers have worked on the same file.
Our test will still check if the module exists and if there is a read function. This is
important because somewhere at the beginning of the project, the programmer has
used the JSONReader module and expects it to have the read function available.

In our test, we added just a few assertions. However, in the real world, there will be
many more describe and it blocks. The more cases the test covers, the better. Very
often, companies rely on their test suites before releasing a new product version.
If there is a test that has failed, they just don't publish anything. In the next few
chapters of the book, we will often write tests.

The Model-View-Controller pattern
It's always difficult to start a new project or the implementation of a new feature. We
just don't know how to structure our code, what modules to write, and how they are
going to communicate. In such cases, we often trust well-known practices—design
patterns. Design patterns are reusable solutions to commonly occurring problems.
For example, the Model-View-Controller pattern has proven to be one of the most
effective patterns for web development due to its clear separation of the data, logic,
and presentation layers. We will base our social network on a variation of this
pattern. The traditional parts and their responsibilities are as follows:

• Model: The Model is the part that stores the data or the state. It triggers an
update on the View once there is a change.

Architecting the Project

[28]

• View: The View is usually the part that the user can see. It is a direct
representation of the data or the state of the Model.

• Controller: The user interacts with the help of the Controller (sometimes
through the View). It can send commands to the Model to update its state.
In some cases, it can also notify the View so that the user can see another
representation of the Model.

However, in web development (especially the code that runs in the browser), the
View and the Controller share the same functions. Very often, there is no strict
distinction between the two. In this book, the controllers will also deal with UI
elements. Let's start with the Node.js environment. To simplify the example, we will
place our code in a file called server.js. Our application will do only one thing—it
will update the value of a variable stored in the memory.

In our context, the View will produce HTML markup. Later, that markup will be
sent to the browser, as follows:

var view = {
 render: function() {
 var html = '';
 html += '<!DOCTYPE html>';
 html += '<html>';
 html += '<head><title>Node.js byexample</title></head>';
 html += '<body>';
 html += '<h1>Status ' + (model.status ? 'on' : 'off') + '</h1>';
 html += 'switch on
';
 html += 'switch off';
 html += '</body>';
 html += '</html>';
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html + '\n');
 }
};

In this code, there is a JavaScript object literal with only one render method.
To construct proper content for the h1 tag, we will use the model and its status
variable. There are two links as well. The first one changes model.status to true
and the second one changes it to false.

Chapter 2

[29]

The Model object is fairly small. Like the View, it has only one method:

var model = {
 status: false,
 update: function(s) {
 this.status = s;
 view.render();
 }
};

Note that Model triggers the rendering of the view. It is important to mention here
that the Model should not know about the representation of its data in the view
layer. All it has to do is send a signal to the view to notify that it is updated.

The last part of our pattern is the Controller. We may consider it as an entry point
of our script. If we are building a Node.js server, this is the function that accepts the
request and response object:

var http = require('http'), res;
var controller = function(request, response) {
 res = response;
 if(request.url === '/on') {
 model.update(true);
 } else if(request.url === '/off') {
 model.update(false);
 } else {
 view.render();
 }
}
http.createServer(controller).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

We cached the response parameter in a global variable so we that can access it from
other functions.

This is similar to the instance that occurred at the beginning of this chapter where we
used the request.url property to control the flow of the application. The preceding
code changes the state of the model when the user visits the /on or /off URLs. If it
does not, then it simply triggers the render function of the view.

Architecting the Project

[30]

The Model-View-Controller pattern fits Node.js well. As we saw, it can be easily
implemented. Since it is really popular, there are modules and even frameworks
that use this concept. In the next few chapters, we will see how the pattern works
in large-scale applications.

Introducing the REST API concept
REST stands for Representational State Transfer. By definition, it is an architectural
principle of the Web. In practice, it is a set of rules that simplify client-server
communication. A lot of companies provide REST APIs because they are simple
and highly scalable.

To better understand what REST exactly means, let's take a simple example. We
have an online store and we want to manage the users in our system. We have the
backend logic implemented in various controllers. We want to trigger functionalities
there via HTTP requests. In other words, we need an application program interface
for these controllers. We start by planning the URLs to access our server. If we follow
the REST architecture, then we may have the following routes:

• GET requests to /users return a list of all the users in the system
• POST requests to /users create new user
• PUT requests to /users/24 edit the data of a user with the unique

identification number 24
• DELETE requests to /users/24 delete the profile of a user with the unique

identification number 24

There is a resource defined—user. The URL is what makes REST simple. The GET
request is used to retrieve data, POST is for storing, PUT is for editing and DELETE is
for removing records.

Some parts of our small social network will be based on the REST architecture.
We will have controllers that handle the four types of requests and perform the
necessary operations. However, before we reach that part of the book, let's write
a simple Node.js server that accepts GET, POST, PUT, and DELETE requests. The
following code goes to a file called server.js:

var http = require('http');
var url = require('url');
var controller = function(req, res) {
 var message = '';
 switch(req.method) {

Chapter 2

[31]

 case 'GET': message = "Thats GET message"; break;
 case 'POST': message = "That's POST message"; break;
 case 'PUT': message = "That's PUT message"; break;
 case 'DELETE': message = "That's DELETE message"; break;
 }
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(message + '\n');
}
http.createServer(controller).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

The req object has a method property. It tells us about the type of the request.
We may run the preceding server with node .\server.js and send different
types of requests. In order to test it, we will use the popular curl command:

Let's try a more complex PUT request. The following example uses cURL. It is a
command-line tool that helps you run requests. In our case, we will perform a PUT
request to our server:

We changed the request method with the -X option. Along with this, we passed a
variable called book with the Node.js by example value. However, our server
does not have code that processes parameters. We will add the following function
to our server.js:

var qs = require('querystring');
var processRequest = function(req, callback) {
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 callback(qs.parse(body));
 });
}

Architecting the Project

[32]

The code accepts the req object and a callback function because collecting the data is
an asynchronous operation. The body variable is filled with the incoming data and
once all the chunks are collected, we trigger the callback by passing the parsed body
of the request. Here is the updated controller:

var controller = function(req, res) {
 var message = '';
 switch(req.method) {
 case 'GET': message = "That's GET message"; break;
 case 'POST': message = "That's POST message"; break;
 case 'PUT':
 processRequest(req, function(data) {
 message = "That's PUT message. You are editing " +
 data.book + " book.";
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(message + "\n");
 });
 return;
 break;
 case 'DELETE': message = "That's DELETE message"; break;
 }
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(message + '\n');
}

Note that we called return in the PUT catch statement. We did this so that the
application flow stops there and waits till the request is processed. This is the
result in the terminal:

Summary
The developing of software is a complex task. Like every complex process, it needs
planning. It needs a good base and a well-designed architecture. In this chapter, we
saw a few different aspects of planning a big Node.js application. In the next chapter,
we will learn how to manage our assets.

[33]

Managing Assets
The first two chapters were a good introduction to the building blocks and structures
of Node.js application development. We learned about the fundamentals of the
technology and revealed important patterns such as Model-View-Controller. We
talked about test-driven development and REST APIs. In this chapter, we will
create the base of our social network. The proper delivery and management of
an application's assets is an essential part of the system. In most of the cases, it
determines our workflow. We will go through the following topics in this chapter:

• Serving files with Node.js
• CSS preprocessing
• Packing client-side JavaScript
• Delivering HTML templates

Serving files with Node.js
Node.js differs from the usual Linux-Apache-MySQL-PHP setup. We have to write
the server that handles the incoming request. When the user requires an image from
our backend, Node.js doesn't serve it automatically. The very first file of our social
network will be server.js with the following content:

var http = require('http');
var fs = require('fs');
 var path = require('path');

var files = {};
var port = 9000;
var host = '127.0.0.1';

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Managing Assets

[34]

var assets = function(req, res) {
 // ...
};

var app = http.createServer(assets).listen(port, host);
console.log("Listening on " + host + ":" + port);

We require three native modules that we will use to drive the server and deliver
assets. The last two lines of the preceding code run the server and print a message
to the console.

For now, the entry point of our application is the assets function. The main purpose
of this method is to read files from the hard disk and serve it to the users. We will use
req.url to fetch the current request path. When a web browser accesses our server
and requests http://localhost:9000/static/css/styles.css in the browser,
req.url will be equal to /static/css/styles.css. From this point onwards, we
have a few tasks to handle:

• Checking whether the file exists and if not, sending a proper message
(HTTP error code) to the user

• Reading the file and finding out its extension
• Sending the file's content to the browser with the correct content type

The last point is an important one. Serving files with a wrong or missing content
type may cause problems. The browser may not be able to recognize and process
the resource properly.

To make the process smooth, we will create a separate function for each of the tasks
mentioned. The shortest one is the one that sends an error message to the user:

var sendError = function(message, code) {
 if(code === undefined) {
 code = 404;
 }
 res.writeHead(code, {'Content-Type': 'text/html'});
 res.end(message);
}

By default, the value of the code variable is 404, which means Not Found. However,
there are different types of errors, such as client errors (4XX) and server errors (5XX).
It is good to leave an option to change the error's code.

Chapter 3

[35]

Let's say that we have the content of the file and its extension. We need a function
that recognizes the correct content type and delivers the resource to the client. For
the sake of simplicity, we will perform a simple string-to-string check of the file's
extension. The following code does exactly that:

var serve = function(file) {
 var contentType;
 switch(file.ext.toLowerCase()) {
 case "css": contentType = "text/css"; break;
 case "html": contentType = "text/html"; break;
 case "js": contentType = "application/javascript"; break;
 case "ico": contentType = "image/ico"; break;
 case "json": contentType = "application/json"; break;
 case "jpg": contentType = "image/jpeg"; break;
 case "jpeg": contentType = "image/jpeg"; break;
 case "png": contentType = "image/png"; break;
 default: contentType = "text/plain";
 }
 res.writeHead(200, {'Content-Type': contentType});
 res.end(file.content);
}

The serve method accepts a file object with two properties—ext and content.
In the next few chapters, we will probably add more file types to the list. However,
for now, serving JavaScript, CSS, HTML, JPG, and PNG images is enough.

The last task that we have to cover is the actual reading of the file. Node.js has a
built-in module to read files called fs. We will use the asynchronous versions of
its methods. With synchronous functions, the JavaScript engine may be blocked till
the particular operation is fully executed. In this case, that is a reading of a file. In
asynchronous programming, we allow our program to execute the rest of the code.
In this scenario, we normally pass a callback—a function that will be executed when
the operation ends:

var readFile = function(filePath) {
 if(files[filePath]) {
 serve(files[filePath]);
 } else {
 fs.readFile(filePath, function(err, data) {
 if(err) {
 sendError('Error reading ' + filePath + '.');

Managing Assets

[36]

 return;
 }
 files[filePath] = {
 ext: filePath.split(".").pop(),
 content: data
 };
 serve(files[filePath]);
 });
 }
}

The function accepts the path and opens the file. If the file is missing or there is
a problem reading it, it sends an error to the user. In the beginning, we defined a
files variable, which is an empty object. Every time we read a file, we are storing its
content there so that the next time we read it, we don't have to access the disk again.
Every I/O operation, such as reading a file, takes time. By using this simple caching
logic, we improve the performance of our application. If everything is okay, we call
the serve method.

Here is how you combine all the preceding snippets:

var http = require('http');
var fs = require('fs');
var path = require('path');
var files = {};
var port = 9000;

var assets = function(req, res) {
 var sendError = function(message, code) { ... }
 var serve = function(file) { ... }
 var readFile = function(filePath) { ... }

 readFile(path.normalize(__dirname + req.url));
}

var app = http.createServer(assets).listen(port, '127.0.0.1');
console.log("Listening on 127.0.0.1:" + port);

Every HTTP request sent to our server is processed by the assets handler. We
compose the file's path, starting from the current directory. The path.normalize
parameter guarantees that our string looks alright on different operating systems.
For example, it does not contain multiple slashes.

Chapter 3

[37]

CSS preprocessing
CSS preprocessors are tools that accept source and produce CSS. Very often, the
input is similar to the CSS language with regard to the syntax. However, the main
idea of preprocessing is to add features that are missing and, at the same time,
wanted by the community. Over the past few years, CSS preprocessing has become
a hot topic. It comes with lots of benefits and the concept has been warmly accepted
by the community. There are two main CSS preprocesors—Less (http://lesscss.
org/) and Sass (http://sass-lang.com/). Sass is based on the Ruby language and
it requires more effort to run it in a Node.js project. So in this book, we are going to
use Less.

In the previous chapter, we talked about building systems and task runners.
CSS preprocessing and a few other tasks that we will talk about in a bit should
happen automatically. Gulp seems like a good option. Let's move forward and
 add a package.json file where we will describe all the Gulp-related modules
that we need:

{
 "name": "nodejs-by-example",
 "version": "0.0.1",
 "description": "Node.js by example",
 "scripts": {
 "start": "node server.js"
 },
 "dependencies": {
 "gulp": "3.8.8",
 "gulp-less": "1.3.6",
 "gulp-rename": "~1.2.0",
 "gulp-minify-css": "~0.3.11"
 }
}

The setting of "start": "node server.js" will allow us to type npm start and
run our server. The dependencies that we will start with are as follows:

• Gulp itself
• gulp-less: This is a plugin that wraps the Less preprocessor
• gulp-rename: This changes the name of the produced file
• gulp-minify-css: This compresses our CSS

http://lesscss.org/
http://lesscss.org/
http://sass-lang.com/

Managing Assets

[38]

So, along with server.js, we now have package.json. We run npm install
and the package manager adds a node_modules directory containing the modules.
Let's define our Gulp tasks in another file named gulpfile.js:

var path = require('path');
var gulp = require('gulp');
var less = require('gulp-less');
var rename = require("gulp-rename");
var minifyCSS = require('gulp-minify-css');

gulp.task('css', function() {
 gulp.src('./less/styles.less')
 .pipe(less({
 paths: [path.join(__dirname, 'less', 'includes')]
 }))
 .pipe(gulp.dest('./static/css'))
 .pipe(minifyCSS({keepBreaks:true}))
 .pipe(rename({suffix: '.min'}))
 .pipe(gulp.dest('./static/css'));
});

gulp.task('watchers', function() {
 gulp.watch('less/**/*.less', ['css']);
});

gulp.task('default', ['css', 'watchers']);

We start with two tasks—css and watchers. The first one expects us to have a less
directory and a styles.less file inside. This will be our entry point to all the CSS
styles. As seen from the Gulp task, we pipe the content of the file to the preprocessor
and export the result to the static/css directory. Since everything with Gulp is a
stream, we can continue and minify the CSS, rename the file to styles.min.css,
and export it to the same folder.

We do not want to run the building processes by ourselves every time we make
changes to a file. So, we register watchers for the files in the less folder. A watcher
is a process that monitors specific files and notifies the rest of the system once these
files are changed.

Chapter 3

[39]

At the end of this step, our project looks like this:

Packing client-side JavaScript
As with CSS, our goal should be to serve only one JavaScript file to the client's
browser. We do not want to force the user to make more than one request, because
this is less efficient and it means that the web browser takes longer to process and
display the content of the page. Nowadays, the client-side part of applications is
fairly complex. As with complex systems, we split our logic into different modules.
Often, different modules mean different files. Thankfully, Node.js is full of tools that
can be used to pack JavaScript. Let's see two of the most popular tools.

Concatenating with Gulp
Gulp, as a build system, has several modules to concatenate files. The one that we are
interested in is called gulp-concat. Let's add it to the package.json file:

"dependencies": {
 "gulp": "3.8.8",
 "gulp-less": "1.3.6",
 "gulp-rename": "1.2.0",
 "gulp-minify-css": "0.3.11",
 "gulp-concat": "2.4.1"
}

Managing Assets

[40]

The next step is to write a task that uses it. Again, we will use the src and dest Gulp
methods, and in between is the concatenation:

var concat = require('gulp-concat');

gulp.task('js', function() {
 gulp.src('./js/*.js')
 .pipe(concat('scripts.js'))
 .pipe(gulp.dest('./static/js'))
});

It's important to mention that the files will be added to the final file in alphabetical
order. So, we should be careful whenever there are some code dependencies. If this is
the case, we should name the files in such a way that their names start with a unique
number—01, 02, 03, and so on.

The next logical task that we will do is to minify our JavaScript. Like the Less
compilation, we want to serve a file that is as small as possible. The module that will
help us achieve this is gulp-uglify. Again, we should add it to the package.json
file ("gulp-uglify": "1.0.1"). After this, a little tweak to our newly created task
will minify the JavaScript:

var concat = require('gulp-concat');
var uglify = require('gulp-uglify');

gulp.task('js', function() {
 gulp.src('./js/*.js')
 .pipe(concat('scripts.js'))
 .pipe(gulp.dest('./static/js'))
 .pipe(uglify())
 .pipe(rename({suffix: '.min'}))
 .pipe(gulp.dest('./static/js'))
});

Note that we used the gulp-rename plugin again. This is necessary because we want
to produce a different file.

Modularity in the browser with RequireJS
While building software, one of the most important concepts to think about is the
splitting of our system into modules. Node.js has a nice built-in system to write
modules. We mentioned this in Chapter 1, Node.js Fundamentals. We encapsulate our
code in a single file and use module.exports or exports to create the public API.
Later, via the require function, we access the created functionalities.

Chapter 3

[41]

However, for the client-side JavaScript, we do not have such a built-in system.
We need to use an additional library that allows us to define modules. There are
several possible solutions. The first one that we will take a look at is RequireJS
(http://requirejs.org/). We will download the library (version 2.1.16) from
the official site and include it in our page like this:

<script data-main="scripts/main" src="scripts/require.js">
</script>

The key attribute here is data-main. It tells RequireJS about our application's entry
point. In fact, we should have the scripts/main.js file in our project's folder to get
the preceding line working. In main.js, we can use the require global function:

// scripts/main.js
require(["modules/ajax", "modules/router"], function(ajax, router) {
 // ... our logic
});

Let's say that our code in main.js depends on two other modules—the Ajax
wrapper and router. We describe these dependencies in an array and provide
a callback, which is later executed with two parameters. These parameters are
actually references to the necessary modules.

The defining of modules is possible with the help of another global
function—define. Here is how the Ajax wrapper looks:

// modules/ajax.js
define(function () {
 // the Ajax request implementation
 ...
 // public API
 return {
 request: function() { ... }
 }
});

By default, behind the scenes, RequireJS resolves the dependencies asynchronously.
In other words, it performs an HTTP request for every required module. In some
cases, this may lead to performance issues because every request takes time.
Thankfully, RequireJS has a tool (optimizer) that solves the problem. It can bundle
all the modules into a single file. The tool is available for Node.js too and it is
distributed with the requirejs package:

npm install -g requirejs

http://requirejs.org/

Managing Assets

[42]

After a successful installation, we will have the r.js command in our terminal.
The basic call looks like this:

// in code_requirejs folder
r.js -o build.js

As with Grunt and Gulp, we have a file that instructs RequireJS on how to work.
The following is a snippet that covers our example:

// build.js
({
 baseUrl: ".",
 paths: {},
 name: "main",
 out: "main-built.js"
})

The name property is the entry point and out is the resulting file. It's nice that we
have the paths property available. It is a place where we can describe the modules
directly; for example, jquery: "some/other/jquery". Later in our code, we do not
have to write the full path to the files. Just a simple require(['jquery'], ...)
is enough.

By default, the output of the r.js command is minified. If we add an
optimize=none argument to the command in the terminal, we will get
the following:

// main-built.js
define('modules/ajax',[],function () {
 ...
});

define('modules/router',[],function () {
 ...
});

require(['modules/ajax', 'modules/router'], function(ajax, router) {
 ...
});
define("main", function(){});

The main-built.js file contains the main module and its dependencies.

Chapter 3

[43]

Moving from Node.js to the browser with
Browserify
RequireJS indeed solves the problem with modularity. However, it makes us write
more code. Also, we should always describe our dependencies by following a strict
format. Let's look at the code that we used in the previous section:

require(['modules/ajax', 'modules/router'], function(ajax, router) {
 ...
});

It is indeed better if we use the following code:

var ajax = require('modules/ajax');
var router = require('modules/router');

The code is much simpler now. This is how we should fetch a module in the Node.js
environment. It would be nice if we could use the same approach in the browser.

Browserify (http://browserify.org/) is a module that brings the require module
of Node.js to the browser. Let's install it first by using the following code:

npm install -g browserify

Similarly, to illustrate how the tool works, we will create the main.js, ajax.js and
router.js files. This time, we are not going to use a global function such as define.
Instead, we will use the usual Node.js module.exports:

// main.js
var ajax = require('./modules/ajax');
var router = require('./modules/router');

// modules/ajax.js
module.exports = function() {};

// modules/router.js
module.exports = function() {};

By default, Browserify comes as a command-line tool. We need to provide an entry
point and an output file:

browserify ./main.js -o main-built.js

www.allitebooks.comwww.allitebooks.com

http://browserify.org/
http://www.allitebooks.org
http://www.allitebooks.org

Managing Assets

[44]

The result in the compiled file is as follows:

// main-built.js
(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var
a=typeof require=="function"&&require;if(!u&&a)return
a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module
'"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var
l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var
n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return
n[o].exports}var i=typeof require=="function"&&require;for(var
o=0;o<r.length;o++)s(r[o]);return
s})({1:[function(require,module,exports){
var ajax = require('./modules/ajax');
var router = require('./modules/router');
},{"./modules/ajax":2,"./modules/router":3}],2:[function(require,
module,exports){
module.exports = function() {};
},{}],3:[function(require,module,exports){
module.exports=require(2)
},{".../modules/ajax.js":2}]},{},[1]);

Note that along with the modules, the compiled file also contains the require
function's definition and implementation. It's really just a few bytes of code that
makes Browserify one of the most popular ways to deliver modular JavaScript in
the browser. This is what we are going to use in the next few chapters.

We have started a Gulp setup. Let's add Browserify there. We have already made
a concatenation of the JavaScript. Let's replace it with Browserify. We will add the
module to the package.json file as follows:

"dependencies": {
 "gulp": "3.8.8",
 "gulp-less": "1.3.6",
 "gulp-rename": "1.2.0",
 "gulp-minify-css": "0.3.11",
 "gulp-concat": "2.4.1",
 "gulp-uglify": "1.0.1",
 "gulp-browserify": "0.5.0"
}

Chapter 3

[45]

After running npm install, we will get the plugin installed and ready to use.
We need to make two changes, replacing concat with browserify and pointing
out the application's main file:

var browserify = require('gulp-browserify');
var uglify = require('gulp-uglify');

gulp.task('js', function() {
 gulp.src('./js/app.js')
 .pipe(browserify())
 .pipe(gulp.dest('./static/js'))
 .pipe(uglify())
 .pipe(rename({suffix: '.min'}))
 .pipe(gulp.dest('./static/js'))
});

Now, the src method accepts only one file. It's our entry point. This is the place
where Browserify starts resolving dependencies. The rest is the same. We still use
uglify for minification and rename to change the file's name.

Delivering HTML templates
In the previous sections, you saw how you can package CSS and JavaScript for the
browser. At the end of this chapter, we will explore the various ways to deliver
HTML. In the context of client-side applications, the templates still contain HTML.
However, we need a dynamic way to render and fill them with data.

Defining the templates in script tags
The Ember.js framework adopts the concept of adding HTML templates directly into
the page by using the popular handlebars (http://handlebarsjs.com/) template
engine. However, since we do not want to mess up the markup that is already there,
we place them in the <script> tags. The good thing about this is that if we set a
custom value of the type attribute, the browser does not process the code inside.
Here's a demonstration of this:

<script type="text/x-handlebars" id="my-template">
 <p>Hello, !</p>
</script>

http://handlebarsjs.com/

Managing Assets

[46]

Since the tag has an id attribute, we can get its content easily in the following way:

var template = document.querySelector('#my-template').innerHTML;

The benefit of this technique is that the template is on the page and we have instant
access to it. Also, templates only display the desired content after being processed by
JavaScript. So, if JavaScript is not enabled in the browser, we do not want to display
the unprocessed raw template. A major problem with this concept is the fact that we
will flood our HTML page with a lot of code. If we have a big application, then the
user will have to download all the templates even if he/she uses only a part of it.

Loading the template externally
It's also a common practice to define the templates as external files and load them on
the page with an Ajax request. The following pseudocode uses jQuery's get method
to do the job:

$.get('/templates/template.html', function(html) {
 // ...
});

We have clear markup, but the user has to make an additional HTTP request in
order to fetch the template. This approach makes the code more complex because the
process is asynchronous. It also makes the processing and rendering of the content
slower than the preceding method.

Writing HTML inside the JavaScript
With the rise of mobile applications, many big companies have started developing
their own frameworks. Since these companies have enough resources, they usually
produce something interesting. For example, Facebook created a framework called
React (http://facebook.github.io/react/). It defines its templates directly in the
JavaScript as follows:

<script type="text/jsx">
 var HelloMessage = React.createClass({
 render: function() {
 // Note: the following line is invalid JavaScript,
 // and only works using React parser.
 return <div>Hello {this.props.name}</div>;
 }
 });
</script>

http://facebook.github.io/react/

Chapter 3

[47]

The developers from Facebook adopted the first technique mentioned in this section.
They put some code inside a <script> tag. In order to get things working, they have
their own parser. It processes the script and converts it into valid JavaScript.

There are solutions that do not have templates in the form of HTML. There
are tools that use templates written in JSON or YAML. For example, AbsurdJS
(http://absurdjs.com/) can keep its template inside the JavaScript class
definition as follows:

body: {
 'section.content#home': {
 nav: [
 { 'a[href="#" class="link"]': 'A' },
 { 'a[href="#" class="link"]': 'B' },
 { 'a[href="#" class="link"]': 'C' }
]
 },
 footer: {
 p: 'Text in the Footer'
 }
}

Precompiling templates
Another popular way to deliver templates to the client side is by using
precompilation. This is what we are going to use in our project. Precompilation is a
process that converts the HTML template to a JavaScript object, which is ready for
use in our code. This approach has several benefits, some of which are as follows:

• We do not have to think about accessing the HTML template
• The markup is still separated from the JavaScript code
• We do not lose time in fetching and processing the HTML

Different client-side frameworks have different tools to precompile templates.
We will cover this in detail later, but the instrument that we are going to use for
our social network application is called Ractive.js (http://www.ractivejs.org/). It's
a client-side framework that was originally developed by the people at TheGuardian to
produce a news application. It's cross-browser and it performs well on mobile devices.

http://absurdjs.com/
http://www.ractivejs.org/

Managing Assets

[48]

In order to transform our HTML into Ractive-precompiled templates, we need two
new modules in the package.json file:

"ractive": "0.6.1",
"gulp-tap": "0.1.3"

The gulp-tap plugin allows us to process every file sent to the Gulp's pipeline.
Here is the new task that we have to add to the gulpfile.js file:

var Ractive = require('ractive');
var tap = require('gulp-tap');

gulp.task('templates', function() {
 gulp.src('./tpl/**/*.html')
 .pipe(tap(function(file, t) {
 var precompiled = Ractive.parse(file.contents.toString());
 precompiled = JSON.stringify(precompiled);
 file.contents = new Buffer('module.exports = ' + precompiled);
 }))
 .pipe(rename(function(path) {
 path.extname = '.js';
 }))
 .pipe(gulp.dest('./tpl'))
});

gulp.task('default', ['css', 'templates', 'js', 'watchers']);

Ractive.parse returns the precompiled template. Since it is a JavaScript object,
we use JSON.stringify to convert it to a string. We use Browserify to control our
client-side modularity so module.exports is attached in front of the template's code.
In the end, we use gulp-rename and produce a JavaScript file.

Let's say that we have a /tpl/template.html file with the following content:

<section>
 <h1>Hello {{name}}</h1>
</section>

When we run the gulp command, we will receive /tpl/template.js , which
contains the JavaScript that is equivalent to the preceding markup:

module.exports =
{"v":1,"t":[{"t":7,"e":"section","f":[{"t":7,"e":"h1","f":["Hello
",{"t":2,"r":"name"}]}]}]}

It probably looks strange now, but in the next few chapters, you will see how you
can use such templates.

Chapter 3

[49]

Summary
Assets are a major part of web applications. Often, companies do not pay enough
attention to this part, which leads to slower loading time and increased web hosting
costs, especially when your site grows in popularity. In this chapter, we saw that it is
important to find the right setup and deliver the images, CSS, JavaScript, and HTML
in the most efficient way.

In the next chapter, we will start working heavily on our social network. We will
explore the world of the Model-View-Controller pattern.

[51]

Developing the
Model-View-Controller Layers
In the previous chapter, we learned how to prepare the assets needed by our
application. It is time to move forward and start writing the base levels of our social
network. In this chapter, we will use the Model-View-Controller pattern and prepare
our code base to implement the future of our application. Here is what we will talk
about in this chapter:

• Transforming the code from the previous chapter to a better file structure
• Implementing a router that works in both backend and frontend

environments
• Briefly introducing Ractive.js—a framework that we will use in the

client-side part of the project
• Developing the main file of the application
• Implementing controller, view, and model classes

Evolving the current setup
Writing software is difficult. Often, it's a process of change. In order to evolve and
extend our systems, we have to make changes in the code. We will take the code
from the previous chapter and introduce a couple of new folders and files. We will
change the architecture a bit so that it fits in the development afterwards.

Developing the Model-View-Controller Layers

[52]

Directory structure
It is a common practice to split the logic into frontend and backend. We are going to
follow the same approach. Here is the new file structure:

The backend directory will contain files used in the Node.js environment. As we can
see, we moved the files that were previously in the main directory to the frontend
folder. These are the files that produce the resources placed in the static directory.
We still have the necessary gulpfile.js, package.json, and server.js files that
contain the code of the Node.js server.

Forming the main server handlers
So far, our server only has one request handler—assets. Here is how we started
our server in the previous chapter:

var app = http.createServer(assets).listen(port, '127.0.0.1');

Along with the serving assets, we have to add two other handlers, which are
as follows:

• API handler: The client-side part of our application will communicate with
the backend via the REST API. We introduced this concept in Chapter 2,
Architecting the Project.

• Page handler: If the request that comes to the server is not for an asset or API
resource, we will serve an HTML page, which is the page that normal users
will see.

Chapter 4

[53]

It's not really a good idea to keep everything in a single file. So, the first step is to
extract the assets function to its own module:

// backend/Assets.js
module.exports = function(req, res) {
...
}

// server.js
var Assets = require('./backend/Assets');

We will follow a similar approach and create a backend/API.js file. It will be
responsible for the REST API. We will use JSON as a format to transfer data.
The simplest code that we can use for this is as follows:

// backend/API.js
module.exports = function(req, res) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end('{}' + '\n');
}

Setting the correct Content-Type value is important. If it is missing or if it is a
wrong value, then the browser that receives the response may not process the
result properly. In the end, we are returning a minimal empty JSON string.

Towards the end, we will add backend/Default.js. This is the file that will
generate the HTML page that users will see in the browser:

// backend/Default.js
var fs = require('fs');
var html = fs.readFileSync(__dirname + '/tpl/page.html').
toString('utf8');
module.exports = function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html + '\n');
}

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Developing the Model-View-Controller Layers

[54]

The content of Default.js looks similar to API.js. We will again set the Content-
Type value and use the end() method of the response object. However, here we
load the HTML Unicode string from an external file, which is stored in backend/
tpl/page.html. The reading of the file is synchronous, and it happens only once in
the beginning. Here is the code of page.html:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Node.js by example</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="description" content="Node.js by examples">
 <meta name="author" content="Packt">
 <link rel="stylesheet" href="/static/css/styles.css">
</head>
<body>
 <script src="/static/js/ractive.js"></script>
 <script src="/static/js/app.js"></script>
</body>
</html>

This is a basic HTML5 boilerplate code containing head, body tag, CSS, and
JavaScript imports. Our application will only need the following two JavaScript
files to work:

• ractive.js: This is the framework that we will use in the client-side.
More about this will be discussed in the next few sections.

• app.js: This is our client-side JavaScript. As seen in a previous chapter,
it is produced by the Gulp setup.

Having mentioned the handlers in the backend, we are ready to jump into the code
that will be run in the browser.

Implementing the router
Almost every web application needs a router, which is a component that acts as
a front door and accepts the incoming queries. It analyzes the parameters of the
request and decides which module of our system will serve the result.

Chapter 4

[55]

We are using JavaScript language in the backend (via Node.js) and frontend
(interpreted by the web browser). In this section, we will write a router that works in
both the sides of our application. Let's start examining what the Node.js part needs:

// frontend/js/lib/Router.js
module.exports = function() {
 return {
 routes: [],
 add: function(path, handler) {
 // ...
 },
 check: function(fragment, params) {
 // ...
 }
 }
};

Router.js exports two methods. The first one registers routes by accepting a path
and a handler function, which will be called if the current URL matches the path.
The check function simply performs the actual check.

Here is how the add method looks:

add: function(path, handler) {
 if(typeof path === 'function') {
 handler = path;
 path = '';
 }
 this.routes.push({
 path: path,
 handler: handler
 });
 return this;
}

We can skip the path parameter and just register a function that matches every
route. It is nice to support such behavior in cases where we want to define a
default route.

Developing the Model-View-Controller Layers

[56]

The check function is slightly more complex. It not only covers simple
string-to-string matching, but should also support dynamic parameters.
We are going to use :id for these dynamic parameters. For example:

• /home: This matches http://localhost/home
• /user/feed: This matches http://localhost/user/feed
• /user/:id/profile: This matches http://localhost/user/45/profile
• /user/:id/:action: This matches http://localhost/user/45/update

In order to implement this functionality, we will use regular expressions in the
following way:

check: function(f, params) {
 var fragment, vars;
 if(typeof f !== 'undefined') {
 fragment = f.replace(/^\//, '');
 } else {
 fragment = this.getFragment();
 }
 for(var i=0; i<this.routes.length; i++) {
 var match, path = this.routes[i].path;
 path = path.replace(/^\//, '');
 vars = path.match(/:[^\s/]+/g);
 var r = new RegExp('^' + path.replace(/:[^\s/]+/g,
 '([\\w-]+)'));
 match = fragment.match(r);
 if(match) {
 match.shift();
 var matchObj = {};
 if(vars) {
 for(var j=0; j<vars.length; j++) {
 var v = vars[j];
 matchObj[v.substr(1, v.length)] = match[j];
 }
 }
 this.routes[i].handler.apply({},
(params || []).concat([matchObj]));
 return this;
 }
 }
 return false;
}

Chapter 4

[57]

Let's go through the function line by line. The arguments of the method are f and
parameters. The fragment is actually a path. This is the URL against which we run
the check. In the add method, we added a handler that should be fired once we have
a match. It would be nice if we were able to send additional variables to this method.
The parameters argument covers this functionality. We can send an array, which is
later translated to the parameters of the handler.

The function continues with the checking whether the fragment is defined. In the
Node.js environment, we have to send the URL. However, since we will use the
same code in the browser, we define a getFragment helper method:

getFragment: function() {
 var fragment = '';
 fragment = this.clearSlashes(decodeURI(window.location.pathname
 + location.search));
 fragment = fragment.replace(/\?(.*)$/, '');
 fragment = this.root !== '/' ? fragment.replace(this.root, '') :
 fragment;
 return this.clearSlashes(fragment);
}

The main idea of this helper is to get the current URL of the browser by using the
global window.location object. You may notice another clearSlashes function.
It does exactly what its name suggests. It removes the unnecessary slashes from the
beginning and end of the string:

clearSlashes: function(path) {
 return path.toString().replace(/\/$/, '').replace(/^\//, '');
}

Let's get back to the check function. We will continue looping over the registered
routes. For every route, we perform the following actions:

• We prepare a regular expression by extracting the dynamic parts (if any); for
example, users/:id/:action is transformed to test/([\w-]+)/([\w-]+).
We will use this later in the book.

• We check whether the regular expression matches the fragment. If it does,
then we compose an array of parameters and call the route's handler.

It's interesting that if we pass our own path (the fragment), we can use the same
JavaScript in both the Node.js and browser environments.

Developing the Model-View-Controller Layers

[58]

The client side of the application will need two other methods. So far, we have
routes' registration and checking whether these rules match the URL specifically.
This may work for the backend, but in the frontend, we need to constantly monitor
the current browser location. That's why we will add the following function:

listen: function() {
 var self = this;
 var current = self.getFragment();
 var fn = function() {
 if(current !== self.getFragment()) {
 current = self.getFragment();
 self.check(current);
 }
 }
 clearInterval(this.interval);
 this.interval = setInterval(fn, 50);
 return this;
}

By using setInterval, we will run the fn closure again and again. It checks whether
the current URL has changed, and if it has, then it fires the check method, which has
already been explained.

The last addition to the class is the navigate function:

navigate: function(path) {
 path = path ? path : '';
 history.pushState(null, null, this.root + this.clearSlashes(path));
 return this;
}

We will probably want to change the current page from within our code. The
router is a good instrument for this. Once we change the browser's URL, the class
automatically calls the right handler. The preceding code uses the HTML5 history
API (http://diveintohtml5.info/history.html). The pushState method
changes the string of the browser's address bar.

Adding the navigate method, we finalized our router, which is a module that can
be used in the backend as it is in the frontend. Before we continue with the Model-
View-Controller components, we will briefly introduce Ractive.js—the framework
that we will use as a driving power for user interface development.

http://diveintohtml5.info/history.html

Chapter 4

[59]

Introducing Ractive.js
Ractive.js is a framework developed by TheGuardian, a well-known news
organization (http://www.theguardian.com/). It simplifies the DOM interaction
and provides features like two-way data binding and custom component creation.
We are not going to cover all the capabilities of the framework now. A new feature
will be introduced in later chapters.

In complex web applications like ours, it is extremely important to split different
logical parts into components. Thankfully, Ractive.js provides an interface for this.
Here is how a typical component looks:

var Component = Ractive.extend({
 template: '<div><h1>{{title}}</h1></div>',
 data: {
 title: 'Hello world'
 }
});
var instance = new Component();
instance.render(document.'body);

The template property contains an HTML markup or (as in our case) a precompiled
template. The data object is accessible inside our templates. Ractive.js uses mustache
(http://mustache.github.io/) as a template language. We can add another
property called el and directly choose where the component will be rendered after
initialization. However, there is another way—the render method. This method
accepts a DOM element. In the preceding code, this is just the body of the page.

Similarly, like the DOM tree in the browser, we will need the nesting of the
components. This is nicely handled by the framework by introducing a custom
tag definition, as demonstrated in the following example:

var SubComponent = Ractive.extend({
 template: '<small>Hello there!</small>'
});
var Component = Ractive.extend({
 template: '\
 <div>\
 <h1>{{title}}</h1>\
 <my-subcomponent />\
 </div>\
 ',

http://www.theguardian.com/
http://mustache.github.io/

Developing the Model-View-Controller Layers

[60]

 data: {
 title: 'Hello world'
 },
 components: {
 'my-subcomponent': SubComponent
 }
});
var instance = new Component();
instance.render(document.querySelector('body'));

Every component may have a hash map object (components) that defines our
custom tags. We can nest as many components as we want. The HTML produced
by the preceding code is as follows:

<div>
 <h1>Hello world</h1>
 <small>Hello there!</small>
</div>

There are several ways to establish communication between different Ractive.js
components. The most convenient one involves triggering and listening to events.
Let's check the following code snippet:

var Component = Ractive.extend({
 template: '<div><h1>{{title}}</h1></div>',
 notifyTheOutsideWorld: function() {
 this.fire('custom-event');
 }
});
var instance = new Component();
instance.on('custom-event', function() {
 this.set('title', 'Hey!');
 instance.render(document.querySelector('body'));
});
instance.notifyTheOutsideWorld();

We brought up a few new concepts. First, we defined a public function—
notifyTheOutsideWorld. Ractive.js allows you to register custom methods.
With the on method, we subscribed to a specific event, and with fire, we
dispatched events.

In the preceding example, we used another method that has not been explained so
far. The set function modifies the data object of the component. We will use this
function regularly.

Chapter 4

[61]

The last thing about Ractive.js that we will mention in this chapter is its function
of observing the changes in the component's data properties. The following code
demonstrates the observation of the title property:

var Component = Ractive.extend({
 template: '<div><h1>{{title}}</h1></div>'
});
var instance = new Component();
instance.observe('title', function(value) {
 alert(value);
});
instance.set('title', 'Hello!');

The preceding example shows an alert window with the Hello! text. Let's
continue with the process of defining the main application's file, or in other
words, the client-side entry point of our social network.

Constructing the entry point of the
application
While we were constructing the Gulp setup, we created a task for JavaScript
bundling. Browserify needs an entry point to resolve dependencies. We set
frontend/js/app.js. Similarly, for the backend, we will build our logic around
the router. The following code sets two routes and provides a helper function to
render the Ractive.js component on the page:

// frontend/js/app.js
var Router = require('./lib/Router')();
var Home = require('./controllers/Home');
var currentPage;
var body;

var showPage = function(newPage) {
 if(currentPage) { currentPage.teardown(); }
 currentPage = newPage;
 body.innerHTML = '';
 currentPage.render(body);
}

window.onload = function() {

Developing the Model-View-Controller Layers

[62]

 body = document.querySelector('body');

 Router
 .add('home', function() {
 var p = new Home();
 showPage(p);
 })
 .add(function() {
 Router.navigate('home');
 })
 .listen()
 .check();

}

We require the Router variable at the top. Along with this, we need to fetch the
controller responsible for the home page. We will learn more about this in the next
section. For now, we will just say that it is a Ractive.js component.

We don't want to run any JavaScript until the resources of the page are fully loaded.
So, we will wrap our bootstrapping code in a window.onload handler. The holder
of the Ractive.js components will be the body tag and we will create a reference to it.
We defined a helper function called showPage. Its job is to render the current page
and make sure that the page that was last added is removed properly. The teardown
method is a built-in function of the framework. It unrenders the component and
removes all the event handlers.

For this chapter, we will have only one page—the home page. We will use the router
that we created for the backend and register a /home route. The second handler that
we pass to the add function is basically called in case there is no matching route.
What we did was immediately forward the user to the /home URL. In the end,
we triggered the router's listening and fired the initial check.

In the next section, we will define our first controller—the component that will
control our home page.

Defining a controller
The role of controllers in our context will be to orchestrate the pages. In other words,
they will act as page wrappers that manage the processes that happen between
subcomponents. The content of the controllers/Home.js file is as follows:

module.exports = Ractive.extend({
 template: require('../../tpl/home'),

Chapter 4

[63]

 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 onrender: function() {
 console.log('Home page rendered');
 }
});

Before you go through the properties of the template and components, we have to
say a few words about onrender. The Ractive.js components provide an interface to
define handlers for processes that happen internally at each stage of the component's
life cycle. For example, we will need to perform some actions almost every time after
the component is rendered on the page. Also, there are onconstruct, onteardown,
or onupdate. This is surely a nice way to implement business logic. All properties
such as these are listed in the official documentation of the framework at
http://docs.ractivejs.org/latest/options.

We already mentioned the template property while introducing you to Ractive.js.
However, in the following code we do not have a string as a value. We require another
JavaScript file—the precompiled HTML template. The precompilation is done by the
build system Gulp in the following way:

// gulpfile.js
gulp.task('templates', function() {
 gulp.src('./frontend/tpl/**/*.html')
 .pipe(tap(function(file, t) {
 var precompiled = Ractive.parse(file.contents.toString());
 precompiled = JSON.stringify(precompiled);
 file.contents = new Buffer('module.exports = ' + precompiled);
 }))
 .pipe(rename(function(path) {
 path.extname = '.js';
 }))
 .pipe(gulp.dest('./frontend/tpl'))
});

We will get all the HTML files from the frontend/tpl directory and convert them
to JavaScript files that Ractive.js and Browserify understand. In the end, Gulp creates
a file with the same name in the same directory but with a different extension.
For example, the template for our home page can be as follows:

// frontend/tpl/home.html
<header>

http://docs.ractivejs.org/latest/options

Developing the Model-View-Controller Layers

[64]

 <navigation />
 <div class="hero">
 <h1>Node.js by example</h1>
 </div>
</header>
<appfooter />

When we run gulp in the terminal, we will get frontend/tpl/home.js with the
following content:

module.exports =
{"v":1,"t":[{"t":7,"e":"footer","f":["Version:
",{"t":2,"r":"version"}]}]}

We do not have to fully understand what these properties mean. The conversion of
the JavaScript file to HTML is a job that is reserved for the framework.

If you check the template and component definition in the preceding code, you will
notice that there are two subcomponents, navigation and appfooter. Let's see how
to create them.

Managing our views
Again, the views are Ractive.js components. They have their own templates.
In fact, the Home.js module can also be called a view. The Model-View-Controller
pattern in the browser is often transformed, and it does not follow the exact
definitions. This is the case with our application because we are using a framework
that has some rules and which provides specific functionalities that do not align with
the typical MVC. Of course, there is nothing wrong with this. As long as we separate
the responsibilities, our architecture will be in good shape.

The navigation view is fairly simple. It just defines the template that needs rendering:

// views/navigation.js
module.exports = Ractive.extend({
 template: require('../../tpl/navigation')
});

Chapter 4

[65]

In order to make things more interesting and introduce the model's definition, we
will display a version number in the footer. This number will come from a model
created in models/Version.js. Here is the code of the views/Footer.js file:

var FooterModel = require('../models/Version');

module.exports = Ractive.extend({
 template: require('../../tpl/footer'),
 onrender: function() {
 var model = new FooterModel();
 model.bindComponent(this).fetch();
 }
});

Before explaining what exactly happened with bindComponent, let's check what we
have in tpl/footer.html:

<footer>
 Version: {{version}}
</footer>

We have a dynamic variable, version. In case we do not use a model, we have to
define it in the data property of the component or use this.set('data', value).
However, the FooterModel module will make our life easier and update the
variables of the component that are bound to it. This is why we are passing this
module to bindComponent. The fetch method, as we will see in the next section,
synchronizes the model's data with the data in the backend.

Creating a model
We will probably have several models and all of them will share the same methods.
Normally, the models make HTTP requests to the server and get data. So, this is
something that we need to abstract. Thankfully, Ractive.js makes it possible for you
to extend components. Here is the code for the models/Version.js file:

var Base = require('./Base');
module.exports = Base.extend({
 data: {
 url: '/api/version'
 }
});

Developing the Model-View-Controller Layers

[66]

We have models/Base.js, the file that will contain these common functions.
It will be a base class that we will later inherit.

var ajax = require('../lib/Ajax');
module.exports = Ractive.extend({
 data: {
 value: null,
 url: ''
 },
 fetch: function() {
 var self = this;
 ajax.request({
 url: self.get('url'),
 json: true
 })
 .done(function(result) {
 self.set('value', result);
 })
 .fail(function(xhr) {
 self.fire('Error fetching ' + self.get('url'))
 });
 return this;
 },
 bindComponent: function(component) {
 if(component) {
 this.observe('value', function(v) {
 for(var key in v) {
 component.set(key, v[key]);
 }
 }, { init: false });
 }
 return this;
 }
});

We defined two methods—fetch and bindComponent. The first one uses a helper
Ajax wrapper. We are not going to go into the details of this for now. It's similar to
jQuery's .ajax method and it implements the promise interface pattern. The actual
source code can be found in the files that came with this book.

The component that extends the Base module should provide a URL. This is the
endpoint where the model will make requests. In our case, this is /api/version.
Our backend will serve content on this URL.

Chapter 4

[67]

If you go back and check what we did with the URLs starting with /api, we will see
that the result is just an empty object. Let's change this and cover the implementation
of the /api/version route. We will update backend/API.js as follows:

var response = function(result, res) {
 res.writeHead(200, {'Content-Type': 'application/json'});
 res.end(JSON.stringify(result) + '\n');
}
var Router = require('../frontend/js/lib/router')();
Router
.add('api/version', function(req, res) {
 response({
 version: '0.1'
 }, res);
})
.add(function(req, res) {
 response({
 success: true
 }, res);
});

module.exports = function(req, res) {
 Router.check(req.url, [req, res]);
}

We used the same router to map the URL to the specific response. So, after this
change, our model will fetch 0.1 as a value.

Finally, let's reveal the magic that happens in the bindComponent function:

bindComponent: function(component) {
 if(component) {
 this.observe('value', function(v) {
 for(var key in v) component.set(key, v[key]);
 }, { init: false });
 }
 return this;
}

We observe the local data property value for changes. It is updated after a successful
fetch method call. The new value is passed to the handler and we simply transfer
the variables to the component. They are just a few lines of code, but they manage to
bring about a nice abstraction. In the actual model definition, we only have to specify
the URL. The Base module takes care of the rest.

Developing the Model-View-Controller Layers

[68]

Summary
In this chapter, we constructed the base of our application. We also created the base
of our system—the router. The controllers are now nicely bound to routes and the
views are rendered on the page, updating the display automatically when changes
are made to the values in the model. We also introduced a simple model that gets
data from the backend's API.

In the next chapter, we will implement a real working feature—we will manage the
users of our system.

[69]

Managing Users
In Chapter 4, Developing the Model-View-Controller Layers, we used the Model-View-
Controller pattern and wrote the base of our social network. We split our application
into backend and frontend directories. The code in the first folder serves the assets
and generates the home page. Along with this, we made the base of our backend
API. The client side of the project is driven by the Ractive.js framework. This is the
place where we store our controllers, models, and views. With these elements, we
will continue with the management of users. In this part of the book, we will cover
the following topics:

• Working with the MongoDB database
• Registering a new user
• User authentication with sessions
• Managing a user's profile

Working with the MongoDB database
Nowadays, almost every web application stores and retrieves data from a database.
One of the most popular databases that works well with Node.js is MongoDB
(http://www.mongodb.org/). This is what we are going to use. The main
characteristic of MongoDB is that it is a NoSQL database with a different data
format and query language.

http://www.mongodb.org/

Managing Users

[70]

Installing MongoDB
As with every other popular software, MongoDB is available for all operating
systems. If you are a Windows user, there is an installer that you can download
from the official page http://www.mongodb.org/downloads. For Linux or OS X
developers, MongoDB is reachable through most popular package management
systems. We are not going to cover the installation in detail, but you will find nicely
written instructions at http://docs.mongodb.org/manual/installation/.

Running MongoDB
After its successful installation, we will have a mongod command available. By
running it in the terminal, we start a MongoDB server listening by default on port
27017. Our Node.js backend will connect to this port and execute database queries.
Here is how our console looks like after the execution of the mongod command:

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/installation/

Chapter 5

[71]

Connecting to the database server
A benefit of Node.js is the existence of thousands of modules. Because of the growing
community, we have a module for almost every task that we come across. We have
already used several Gulp plugins. Now, we will add the official MongoDB driver to
the package.json file:

"dependencies": {
 "mongodb": "1.4.25",
 ..
}

We have to run npm install to get the module into the node_modules directory.
Once the process finishes, we can connect to the server with the following code:

var MongoClient = require('mongodb').MongoClient;
MongoClient.connect('mongodb://127.0.0.1:27017/nodejs-by-example',
function(err, db) {
 // ...
});

In this code, nodejs-by-example is the name of our database. The callback that is
invoked gives us access to the driver's API. We can use the db object to operate with
the collections in the database or in other words, create, update, retrieve, or delete
documents. This can be demonstrated with the following example:

var collection = db.collection('users');
collection.insert({
 name: 'John',
 email: 'john@test.com'
}, function(err, result) {
 // ...
});

Now we know how to manage the data in our system. Let's continue to the next
section and extend our client-side code.

Managing Users

[72]

Extending the code from the previous
chapter
Adding new functionalities to the code base that already exists means refactoring and
extending the already written code. In order to develop the management of users, we
need to update the models/Base.js file. So far, we have a simple Version model and
we will need a new User model. An improvement in our navigation and routing is
needed so that users have pages to create, edit, and manage their accounts.

The code that comes with this chapter has a lot of additions to the CSS styles.
We are not going to discuss them, because we want to focus more on the JavaScript
part. They provide a slightly better look to the application. If you are interested in
how the final CSS is generated, check out the code pack of this book.

Updating our base model class
So far, models/Base.js has had only two methods. The first one, fetch, performs a
GET request to the server with the given URL. In Chapter 2, Architecting the Project, we
talked about REST APIs; to fully support this architecture, we have to add methods
to create, update, and remove records. In fact, all these methods will be close to the
one that we already have. Here is the create function:

create: function(callback) {
 var self = this;
 ajax.request({
 url: self.get('url'),
 method: 'POST',
 data: this.get('value'),
 json: true
 })
 .done(function(result) {
 if(callback) {
 callback(null, result);
 }
 })
 .fail(function(xhr) {
 if(callback) {
 callback(JSON.parse(xhr.responseText));
 }
 });
 return this;
}

Chapter 5

[73]

We run the method of the model, which gets the data from its value property and
executes a POST request. In the end, we fire a callback. If there is a problem, we send
the error as a first argument. If not, then the first argument (representing an error
state) is null and the second one contains the server's response.

We will follow the same approach for updating and deleting code:

save: function(callback) {
 var self = this;
 ajax.request({
 url: self.get('url'),
 method: 'PUT',
 data: this.get('value'),
 json: true
 })
 .done(function(result) { // ... })
 .fail(function(xhr) { // ... });
 return this;
},
del: function(callback) {
 var self = this;
 ajax.request({
 url: self.get('url'),
 method: 'DELETE',
 json: true
 })
 .done(function(result) { ... })
 .fail(function(xhr) { ... });
 return this;
}

The difference is the request method. For the save operation, we use PUT, and
to remove data, we use DELETE. Note that during the deletion, we do not have to
send the model's data as we are performing a simple operation to remove a specific
data object from the database and not making more complex changes as seen in the
create and save requests.

Managing Users

[74]

Updating page navigation and routing
The code from Chapter 4, Developing the Model-View-Controller Layers, contains only
two links in its navigation. We need to add a bit more to it—links to register, log
in and out, and profile management access. The frontend/tpl/navigation.html
template fragment looks like this:

<nav>

 <a on-click="goto:home">Home
 {{#if !isLogged }}
 <a on-click="goto:register">Register
 <a on-click="goto:login">Login
 {{else}}
 <li class="right"><a on-click="goto:logout">Logout
 <li class="right"><a on-click="goto:profile">Profile
 {{/if}}

</nav>

Together with the new <a> tags, we made the following two interesting additions:

• There is an {{#if}} expression. In our Ractive.js component, we need to
register an isLogged variable. It will control the state of the navigation by
hiding and showing the appropriate buttons. When the user is not logged in,
we will display the Register and Login buttons. Otherwise, our application
will show the Logout and Profile links. More about the isLogged variable
will be discussed at the end of this chapter when we cover session support.

• We have the on-click attributes. Note that these attributes are not valid
HTML, but they are interpreted by Ractive.js to produce the desired result.
Every link in the navigation will dispatch a goto event with a specific
parameter, and this will happen when the links are triggered by the user.

In the main file of the application (frontend/js/app.js), we have a showPage
function. This method has access to the current page, and it is a perfect place to
listen for the goto event. It is also a good choice because in the same file, we have a
reference to the router. Thus, we are able to change the current site's page. A little
change to this function and we are done with the switching of the pages:

var showPage = function(newPage) {
 if(currentPage) currentPage.teardown();
 currentPage = newPage;

Chapter 5

[75]

 body.innerHTML = '';
 currentPage.render(body);
 currentPage.on('navigation.goto', function(e, route) {
 Router.navigate(route);
 });
}

In the next section, we will continue with the code that will register a new user
in our system.

Registering a new user
To handle the registration of users, we need to update both our frontend and
backend code. The client-side part of the application will collect the data and the
backend will store it in the database.

Updating the frontend
We updated the navigation and now, if users click on the Register link, the app will
forward them to a /register route. We have to tweak our router and register a
handler in the following way:

var Register = require('./controllers/Register');
Router
.add('register', function() {
 var p = new Register();
 showPage(p);
})

As with the home page, we will create a new controller located in frontend/js/
controllers/Register.js, as follows:

module.exports = Ractive.extend({
 template: require('../../tpl/register'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 onrender: function() {
 var self = this;
 this.observe('firstName',
userModel.setter('value.firstName'));

Managing Users

[76]

 this.observe('lastName', userModel.setter('value.lastName'));
 this.observe('email', userModel.setter('value.email'));
 this.observe('password', userModel.setter('value.password'));
 this.on('register', function() {
 userModel.create(function(error, result) {
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 self.set('success', 'Registration successful.
Click here to login.');
 }
 });
 });
 }
});

The template attached to this controller contains a form with several fields—the first
and last name, e-mail, and a password:

<header>
 <navigation></navigation>
</header>
<div class="hero">
 <h1>Register</h1>
</div>
<form>
 {{#if error && error != ''}}
 <div class="error">{{error}}</div>
 {{/if}}
 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>
 {{else}}
 <label for="first-name">First name</label>
 <input type="text" id="first-name" value="{{firstName}}"/>
 <label for="last-name">Last name</label>
 <input type="text" id="last-name" value="{{lastName}}" />
 <label for="email">Email</label>
 <input type="text" id="email" value="{{email}}" />
 <label for="password">Password</label>
 <input type="password" id="password" value="{{password}}" />
 <input type="button" value="register" on-click="register" />
 {{/if}}
</form>
<appfooter />

Chapter 5

[77]

It is worth mentioning that we have placeholders for error and success messages.
They are protected with the {{#if}} expressions and are hidden by default. If we,
in the controller, set a value to the error or success variables, these hidden div
elements will become visible. In order to get the values of the input fields, we will
use Ractive.js bindings. By setting value="{{firstName}}", we will create a new
variable that will be available in our controller. We can even listen for changes in this
variable, as follows:

this.observe('firstName', function(value) {
 userModel.set('value.firstName', value);
});

The data from the input field should be sent to a model class that communicates with
the backend. Since we have several form fields, it makes sense to create a helper that
saves us a little writing:

this.observe('firstName', userModel.setter('value.firstName'));

The setter method returns the same closure that we used in the preceding code:

// frontend/js/models/Base.js
setter: function(key) {
 var self = this;
 return function(v) {
 self.set(key, v);
 }
}

If we look back and check controllers/Register.js, we will see all the fields from
the registration form. In this form, we have a button that dispatches the register
event. The controller is subscribed for that event and triggers the create function
of the model. Based on the result, we either show an error message or display a
registration successful message.

In the preceding code, we used a userModel object. This is an instance of the User
class, which extends the models/Base.js file. Here is the code that is stored in
frontend/js/models/User.js:

var Base = require('./Base');
module.exports = Base.extend({
 data: {
 url: '/api/user'
 }
});

Managing Users

[78]

We extended the base model. So, we got the create and setter functions
automatically. For the registration process, we do not need any other custom
methods. However, to log in and out, we will add more functions.

Several parts of our system will need this model. So, we will create its global
userModel instance. An appropriate place for this is the frontend/js/app.js file.
The listener of the window.onload event is a good host for such code:

window.onload = function() {
 ...
 userModel = new UserModel();
 ...
};

Note that we missed the var keyword in front of the variable definition. This is how
we make userModel available in the global scope.

Updating the backend API
We have our client-side code making a POST request to the backend with the new
user's data. To close the circle, we have to handle the request in our backend API and
record the information in the database. Let's first extend backend/API.js with a few
helper functions and variables:

var MongoClient = require('mongodb').MongoClient;
var database;
var getDatabaseConnection = function(callback) {
 if(database) {
 callback(database);
 return;
 } else {
 MongoClient.connect('mongodb://127.0.0.1:27017/nodejs-by-example',
 function(err, db) {
 if(err) {
 throw err;
 };
 database = db;
 callback(database);
 });
 }
};

Chapter 5

[79]

At the beginning of this chapter, we learned how to make queries to the MongoDB
database. What we need is access to the driver's API. There is a piece of code
that we will use often. So, it is a good idea to wrap it in a helper method. The
getDatabaseConnection function is exactly the function that can be used to achieve
this. It only connects to the database during the first time of its execution. Every call
after that returns the cached database object.

Another common task typical to Node.js request handling is the fetching of the POST
data. The GET parameters are available in the request object that comes to every
route handler. However, for the POST data, we need a special helper:

var querystring = require('querystring');
var processPOSTRequest = function(req, callback) {
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 callback(querystring.parse(body));
 });
};

We use the request object as a stream and subscribe to its data event. Once we
receive all the information, we use querystring.parse to format it into a usable
hashmap (key/value of the POST parameters) object and fire the callback.

In the end, we will add an e-mail validation function. We will need it during the
registration and the updating of the user's profile. The actual validation is done
with the regular expression:

var validEmail = function(value) {
 var re = /^(([^<>()[\]\\.,;:\s@\"]+(\.[^<>()
[\]\\.,;:\s@\"]+)*)|(\".+\"))@(
(\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-
9]+\.)+[a-zA-Z]{2,}))$/;
 return re.test(value);
};

Managing Users

[80]

Now let's continue with the code that will accept the POST request and register a
new user in the database. So far, we have only added two routes to the API—/api/
version and the default one. We will add one more, /api/user, as follows:

Router.add('api/user', function(req, res) {
 switch(req.method) {
 case 'GET':
 // ...
 break;
 case 'PUT':
 // ...
 break;
 case 'POST':
 processPOSTRequest(req, function(data) {
 if(!data.firstName || data.firstName === '') {
 error('Please fill your first name.', res);
 } else if(!data.lastName || data.lastName === '') {
 error('Please fill your last name.', res);
 } else if(!data.email || data.email === '' ||
 !validEmail(data.email)) {
 error('Invalid or missing email.', res);
 } else if(!data.password || data.password === '') {
 error('Please fill your password.', res);
 } else {
 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 data.password = sha1(data.password);
 collection.insert(data, function(err, docs) {
 response({
 success: 'OK'
 }, res);
 });
 });
 }
 });
 break;
 case 'DELETE':
 // ...
 break;
 };
});

Chapter 5

[81]

The same route will host different operations. To distinguish them, we will rely on
the request method as it is described in the REST API concept.

In the POST case, we will first fetch the data by using the processPOSTRequest
helper. After that, we will run a series of checks to make sure that the data sent is
correct. If it is not, we will respond with an appropriate error message. If everything
is okay, we will use the other getDatabaseConnection helper and make a new
record in the database. It's not a good practice to store the users' password as plain
text. So, before sending them to MongoDB, we will encrypt them using the sha1
module. This is a module that is available in the Node.js package manager registry.
At the top of backend/API.js, we will add the following:

var sha1 = require('sha1');

To get this line working, we have to update the package.json file and run npm
install in the console.

In the next section, we will implement the GET, PUT and DELETE cases. Together with
this, we will introduce you to a new route to log in.

User authentication with sessions
We implemented the functionalities that register new users in our system. The next
step is to authenticate these users. Let's first provide an interface to enter a username
and password. We need to add a new route handler in frontend/js/app.js:

Router
.add('login', function() {
 var p = new Login();
 showPage(p);
})

All the other pages so far use the same idea. We will initialize a new controller and
pass it to the showPage helper. The template that is used here is as follows:

// frontend/tpl/login.html
<header>
 <navigation></navigation>
</header>
<div class="hero">
 <h1>Login</h1>
</div>
<form>

Managing Users

[82]

 {{#if error && error != ''}}
 <div class="error">{{error}}</div>
 {{/if}}
 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>
 {{else}}
 <label for="email">Email</label>
 <input type="text" id="email" value="{{email}}" />
 <label for="password">Password</label>
 <input type="password" id="password" value="{{password}}" />
 <input type="button" value="login" on-click="login" />
 {{/if}}
</form>
<appfooter />

During the registration process, we used similar placeholders for the error and
success messages. Again, we have an HTML form. However this time, the form
contains input fields for the username and password. We will also bind two
variables and make sure that the button dispatches the login event. Here is
the code for our controller:

// frontend/js/controllers/Login.js
module.exports = Ractive.extend({
 template: require('../../tpl/login'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 onrender: function() {
 var self = this;
 this.observe('email', userModel.setter('email'));
 this.observe('password', userModel.setter('password'));
 this.on('login', function() {
 userModel.login(function(error, result) {
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 // redirecting the user to the home page
 window.location.href = '/';
 }
 });
 });
 }
});

Chapter 5

[83]

By using the same setter function, we stored the values filled into our model. There
is a userModel.login method that is similar to userModel.create. It triggers a
POST request to the server with the given data. In this case, the data is the username
and password. This time, we are not going to use functions from the base model.
We will register a new one in the /frontend/js/models/User.js file:

var ajax = require('../lib/Ajax');
var Base = require('./Base');
module.exports = Base.extend({
 data: {
 url: '/api/user'
 },
 login: function(callback) {
 var self = this;
 ajax.request({
 url: this.get('url') + '/login',
 method: 'POST',
 data: {
 email: this.get('email'),
 password: this.get('password')
 },
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
 }
});

Again, we used the Ajax helper to send information to the backend API. The request
goes to the /api/user/login URL. At the moment, we will not handle such routes.
The following code goes to /backend/API.js just above the /api/user handler:

.add('api/user/login', function(req, res) {
 processPOSTRequest(req, function(data) {
 if(!data.email || data.email === '' ||
!validEmail(data.email)) {
 error('Invalid or missing email.', res);
 } else if(!data.password || data.password === '') {
 error('Please enter your password.', res);
 } else {

Managing Users

[84]

 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 collection.find({
 email: data.email,
 password: sha1(data.password)
 }).toArray(function(err, result) {
 if(result.length === 0) {
 error('Wrong email or password', res);
 } else {
 var user = result[0];
 delete user._id;
 delete user.password;
 req.session.user = user;
 response({
 success: 'OK',
 user: user
 }, res);
 }
 });
 });
 }
 });
})

The processPOSTRequest function delivers the POST data sent by the frontend.
We will keep the same e-mail and password validation mechanisms. If everything
is okay, we will check whether the provided credentials match some of the accounts
in the database. The result for a correct e-mail and password is an object containing
the user's details. It is not a good idea to return the ID and password of the user. So,
we will remove them from the returned user object. There is one more thing that we
haven't talked about so far:

req.session.user = user;

This is how we store a session. By default, we do not have a session object available.
There is a module that delivers this functionality. It's called cookie-session. We
have to add it to package.json and run the npm install command in the terminal.
After its successful installation, we have to tweak the server.js file:

Router
.add('static', Assets)
.add('api', API)
.add(Default);

Chapter 5

[85]

var session = require('cookie-session');
var checkSession = function(req, res) {
 session({
 keys: ['nodejs-by-example']
 })(req, res, function() {
 process(req, res);
 });
}
var process = function(req, res) {
 Router.check(req.url, [req, res]);
}
var app = http.createServer(checkSession).listen(port,
'127.0.0.1');
console.log("Listening on 127.0.0.1:" + port);

Before passing the application's flow to the router, we run the checkSession
function. The method uses the newly added module and patches the request object
by attaching the session object. All API methods have access to the current's user
session. This means that we may secure every request to the backend by simply
checking whether the user is authenticated or not.

You may remember that at the beginning of this chapter, we created a global
userModel object. It's initialization occurred in the window.onload handler, which is
effectively the bootstrapping point of our frontend. We can ask the backend whether
the current user is logged in before showing the UI. This will help us display the
proper navigation buttons. So, here is how frontend/js/app.js changes:

window.onload = function() {
 userModel = new UserModel();
 userModel.fetch(function(error, result) {
 // ... router setting
 });
}

The userModel function extends the base model where the fetch method puts the
response from the server in the value property of the model. Fetching data from the
frontend means making a GET request, and in this case, this is a GET request to the
/api/user URL. Let's see how backend/API.js handles the query:

.add('api/user', function(req, res) {
 switch(req.method) {
 case 'GET':
 if(req.session && req.session.user) {

Managing Users

[86]

 response(req.session.user, res);
 } else {
 response({}, res);
 }
 break;
 …

If the user is logged in, we return what is stored in the session object. If not, the
backend responds with an empty object. For the client side, this means that the
userModel object may or may not have information in its value property based on
the current user's status. So, it makes sense to add a new isLogin method in the
frontend/js/models/User.js file:

isLogged: function() {
 return this.get('value.firstName') &&
this.get('value.lastName');
}

Adding the preceding function, we can use the userModel.isLogged() call
anywhere in our client-side code and we will know whether the user has logged in
or not. This will work because we performed the fetching at the very beginning of
our application. For example, the navigation (frontend/js/views/Navigation.js)
needs this information in order to display the correct links:

module.exports = Ractive.extend({
 template: require('../../tpl/navigation'),
 onconstruct: function() {
 this.data.isLogged = userModel.isLogged();
 }
});

Managing a user's profile
The previous sections of this chapter gave us enough knowledge to update the
information saved in the database. Again, we need to create a page in the frontend
that has an HTML form. The difference here is that the input fields of the form
should be filled by default with the data of the current user. So, let's start by
adding a route handler for the /profile URL:

Route
.add('profile', function() {
 if(userModel.isLogged()) {
 var p = new Profile();

Chapter 5

[87]

 showPage(p);
 } else {
 Router.navigate('login');
 }
})

There is no reason to allow access to this page if the user is not logged in. A simple
authentication check before calling the showPage helper forwards the user to the
login page if needed.

The template that we need for the Profile controller is identical to the one that we
used for registration. There are only two things that we have to change—we need to
remove the email field and update the label of the button from Register to Update.
The removing of the email field is not absolutely necessary, but it is a good practice
to prevent changes by the user and leave it as it was entered during the registration.
Here is how the controller looks:

module.exports = Ractive.extend({
 template: require('../../tpl/profile'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 onrender: function() {
 var self = this;
 this.set(userModel.get('value'));
 this.on('updateProfile', function() {
 userModel.set('value.firstName', this.get('firstName'));
 userModel.set('value.lastName', this.get('lastName'));
 if(this.get('password') != '') {
 userModel.set('value.password', this.get('password'));
 }
 userModel.save(function(error, result) {
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 self.set('success', 'Profile updated successfully.');
 }
 });
 });
 }
});

Managing Users

[88]

The updateProfile event is the event that is fired by the button on the page.
We update the model fields with the values from the form. The password is
changed only if the user enters something in the field. Otherwise, the backend
keeps the old value.

We will call userModel.save, which performs a PUT request to the API. Here is how
we handle the request in backend/API.js:

.add('api/user', function(req, res) {
 switch(req.method) {
 case 'PUT':
 processPOSTRequest(req, function(data) {
 if(!data.firstName || data.firstName === '') {
 error('Please fill your first name.', res);
 } else if(!data.lastName || data.lastName === '') {
 error('Please fill your last name.', res);
 } else {
 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 if(data.password) {
 data.password = sha1(data.password);
 }
 collection.update(
 { email: req.session.user.email },
 { $set: data },
 function(err, result) {
 if(err) {
 err('Error updating the data.');
 } else {
 if(data.password) delete data.password;
 for(var key in data) {
 req.session.user[key] = data[key];
 }
 response({
 success: 'OK'
 }, res);
 }
 }
);
 });
 }
 });
 break;

Chapter 5

[89]

The usual field validation is here again. We will check whether the user has typed
something for their first and last name. The password is updated only if there is
data for the same. It's important to note that we need the user's e-mail to update the
profile. This is how we refer to the exact record in our MongoDB database. Since
we stored the e-mail in the session of the user, it is quite easy to fetch it from there.
If everything goes well, we update the information in the session object. This is
needed because the frontend gets the user's details from there, and if we forget to
perform this change, our UI will show the old data.

Summary
In this chapter, we made a lot of progress. We built one of the core features of our
social network—user management. We learned how to store data in a MongoDB
database and use sessions to authenticate users.

In the next chapter, we will implement the functions of friend management.
The users of any social network will be familiar with the same. At the end of
the next chapter, users will be able to make friends using our application.

[91]

Adding Friendship
Capabilities

In Chapter 5, Managing Users, we implemented the user registration and login system.
We now have user information in our database and we can continue with one of the
most important characteristics of social networks—friendship. In this chapter, we
will add a logic for the following:

• Finding friends
• Marking users as friends
• Displaying the linked users on the Profile page

Finding friends
The process of finding friends involves a series of changes in our current codebase.
The following sections will guide us through the searching and displaying of friend
profiles. We will make a couple of improvements in our REST API and define a new
controller and model.

Adding the search page
So far, we have pages for registration, login, and profile management. We will add
one more link in our navigation—Find friends. In order to do this, we have to
update the frontend/tpl/navigation.html file as follows:

<li class="right"><a on-click="goto:logout">Logout
<li class="right"><a on-click="goto:profile">Profile
<li class="right"><a on-click="goto:find-friends">Find
friends

Adding Friendship Capabilities

[92]

The link that we added at the end will forward the user to a new route. As with the
other pages, our router will catch the URL change and fire a handler. Here is a little
update of the app.js file:

Router
.add('find-friends', function() {
 if(userModel.isLogged()) {
 var p = new FindFriends();
 showPage(p);
 } else {
 Router.navigate('login');
 }
})

The adding of new friends should not be possible if the user is not authenticated.
We will apply a simple check here in the frontend, but we will protect the API calls
too. A new FindFriends controller has to be created. The role of this controller is to
show a form with an input field and a button. The user submits the form, we query
the database, and we later display the users that match the entered string. Here is
how the controller begins:

// frontend/js/controllers/FindFriends.js
module.exports = Ractive.extend({
 template: require('../../tpl/find-friends'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 data: {
 loading: false,
 message: '',
 searchFor: '',
 foundFriends: null
 },
 onrender: function() {
 // ...
 }
});

Chapter 6

[93]

We kept the same Navigation and Footer components. There are several variables
with their respective default values. The loading keyword will be used as a flag
indicating that we are making a request to the API. The fetching of friends that match
certain criteria may be a complex operation. So, it will be a good practice to show the
user that we are working on his/her query. The message property will be used either
to display confirmation that everything went okay or to report an error. The last two
variables keep the data. The searchFor variable will host the string entered by the
user and foundFriends will host the users returned by the backend.

Let's check what we need as the HTML markup. The frontend/tpl/find-friends.
html file contains the following:

<header>
 <navigation></navigation>
</header>
<div class="hero">
 <h1>Find friends</h1>
</div>
<form onsubmit="return false;">
 {{#if loading}}
 <p>Loading. Please wait.</p>
 {{else}}
 <label for="friend-name">
 Please, type the name of your friend:
 </label>
 <input type="text" id="friend-name" value="{{friendName}}"/>
 <input type="button" value="Find" on-click="find" />
 {{/if}}
</form>
{{#if foundFriends !== null}}
 <div class="friends-list">
 {{#each foundFriends}}
 <div class="friend-list-item">
 <h2>{{firstName}} {{lastName}}</h2>
 <input type="button" value="Add as a friend"
 on-click="add:{{id}}"/>
 </div>
 {{/each}}
 </div>
{{/if}}

Adding Friendship Capabilities

[94]

{{#if message !== ''}}
 <div class="friends-list">
 <p>{{{message}}}</p>
 </div>
{{/if}}
<appfooter />

The header and the navigation sections stay untouched. We have a nicely placed
title at the top followed by the form that we mentioned. If the loading flag has true
as a value, we display the Loading. Please wait. message. If we are not in the process
of querying the backend, then we show the input field and the button. The following
screenshot demonstrates how this looks in practice:

The next part of the template renders the users sent by the backend. It shows their
name and a Add as a friend button. We will see a screenshot of this view in the
pages that follow.

The last part of the HTML markup is for the conditional displaying of a message.
If we set a value to the message variable, then Ractive.js reveals the div element
and makes our text visible.

Writing the model
We have the user interface that will accept the user's input. Now, we need to
communicate with the backend and retrieve users matching the value of the
form's field. In our system, we make requests to the API through models.

Chapter 6

[95]

So, let's create a new frontend/js/models/Friends.js model:

var ajax = require('../lib/Ajax');
var Base = require('./Base');

module.exports = Base.extend({
 data: {
 url: '/api/friends'
 },
 find: function(searchFor, callback) {
 ajax.request({
 url: this.get('url') + '/find',
 method: 'POST',
 data: {
 searchFor: searchFor
 },
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
 }
});

The endpoint of the friendship functionality will be /api/friends. To search
among users, we append /find to the URL. We are going to make a POST request
with the value of the searchFor variable. The code that handles the result again
uses the lib/Ajax module, and if everything is okay, it fires the specified callback.

Let's update the controller that calls the newly created model and its find
function. At the top of the controllers/FindFriends.js file, we will add a
require statement:

var Friends = require('../models/Friends');

Then, in the render handler of the controller, we will place the following snippet:

onrender: function() {

 var model = new Friends();
 var self = this;

Adding Friendship Capabilities

[96]

 this.on('find', function(e) {
 self.set('loading', true);
 self.set('message', '');
 var searchFor = this.get('friendName');
 model.find(searchFor, function(err, res) {

 if(res.friends && res.friends.length > 0) {
 self.set('foundFriends', res.friends);
 } else {
 self.set('foundFriends', null);
 self.set('message', 'Sorry, there is no friends matching
 ' + searchFor + '');
 }
 self.set('loading', false);
 });
 });

}

The find event is fired by the button in our form. Once we register the button's click,
we display the loading string and clear any previously shown message. We get the
value of the input field and ask the model for matching users. If there are any such
potential friends, we render them by setting a value to the foundFriends variable.
If not, we display a message saying that there are no users who match the criteria.
Once we finish with the API method implementation, the screen will look like this:

Chapter 6

[97]

Fetching friends from the database
The changes that we need to make are in backend/API.js. We need to add a couple
of new routes. However, before proceeding with the querying of users, we will add a
helper function to fetch the current user's profile. We will keep the name and e-mail
of the current user in a session variable, but that's not enough, because we want
to display more user information. So, the following function fetches the complete
profile from the database:

var getCurrentUser = function(callback, req, res) {
 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 collection.find({
 email: req.session.user.email
 }).toArray(function(err, result) {
 if(result.length === 0) {
 error('No such user', res);
 } else {
 callback(result[0]);
 }
 });
 });
};

We use the e-mail of the user as a criterion for the request. The object containing
the profile's data is returned as an argument of the callback.

Since we have all the information about the current user, we can continue
implementing the user's search. The route that should answer such queries
is as follows:

Router
.add('api/friends/find', function(req, res) {
 if(req.session && req.session.user) {
 if(req.method === 'POST') {
 processPOSTRequest(req, function(data) {
 getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 findFriends(db, data.searchFor, user.friends || []);
 }, req, res);
 });
 });

Adding Friendship Capabilities

[98]

 } else {
 error('This method accepts only POST requests.', res);
 }
 } else {
 error('You must be logged in to use this method.', res);
 }
})

The first if clause guarantees that this route is accessible only to the registered and
logged in users. This method accepts only the POST requests. The rest fetches the
searchFor variable and calls the findFriends function, which can be implemented
as follows:

var findFriends = function(db, searchFor, currentFriends) {
 var collection = db.collection('users');
 var regExp = new RegExp(searchFor, 'gi');
 var excludeEmails = [req.session.user.email];
 currentFriends.forEach(function(value, index, arr) {
 arr[index] = ObjectId(value);
 });
 collection.find({
 $and: [
 {
 $or: [
 { firstName: regExp },
 { lastName: regExp }
]
 },
 { email: { $nin: excludeEmails } },
 { _id: { $nin: currentFriends } }
]
 }).toArray(function(err, result) {
 var foundFriends = [];
 for(var i=0; i<result.length; i++) {
 foundFriends.push({
 id: result[i]._id,
 firstName: result[i].firstName,
 lastName: result[i].lastName
 });
 };
 response({
 friends: foundFriends
 }, res);
 });
}

Chapter 6

[99]

The users in our system have their names split into two variables—firstName
and lastName. We cannot be sure as to which one the user may be referring to
when they type in the search form's field. So, we will search in the database of both
properties. We will also use a regular expression to make sure that our search is not
case-sensitive.

The MongoDB database provides a syntax to perform complex queries. In our case,
we want to fetch the following:

• The users whose first or last names match the criteria sent by the client side.
• The users who are different from the already added friends of the

current user.
• The users who are different from the current user. We don't want to offer the

friendship of the user with their own profile.

The $nin variable means value not in the provided array. We will exclude the e-mail
address of the current user. A little detail that is worth a mention is that MongoDB
stores the IDs of the users in a 12-byte BSON type. They are not in plain text. So, we
need to use a ObjectID function before sending the query. The method is accessible
via the same mongodb module—var ObjectId = require('mongodb').ObjectID.

When the database driver returns the records that fulfill our criteria, we filter the
information and respond with a proper JSON file. We will not send the entire
profiles of the users, because we are not going to use all the data. The names
and IDs are enough.

Adding that new route to the API will make friend searching work. Now, let's add
logic that attaches profiles to the current user.

Marking users as friends
If we check the HTML template of our new page, we will see that every rendered
user has a button that dispatches an add event. Let's handle this in our controller
and run a function in our model, which is similar to the process of finding friends:

this.on('add', function(e, id) {
 this.set('loading', true);
 model.add(id, function(err, res) {
 self.set('foundFriends', null);
 if(err) {
 self.set('message', 'Operation failed.');
 } else if(res.success === 'OK') {

Adding Friendship Capabilities

[100]

 self.set('message', 'Operation successful.');
 }
 self.set('loading', false);
 });
});

We use the same technique with the loading flag. The model's method that we will
cover in the following code accepts the id value of the user and reports if the linking
is successful. We need to clear the foundFriends array. Otherwise, the current user
may click on the same profile twice. The other option is to remove only the clicked
item, but this involves more code.

The addition in models/Friends.js is as follows:

add: function(id, callback) {
 ajax.request({
 url: this.get('url') + '/add',
 method: 'POST',
 data: {
 id: id
 },
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
}

The only difference between the add and find methods is that in the first one, we
sent searchFor and in the second one, we sent the id parameter. The error handling
and result responding is the same. Of course, the endpoints are also tweaked.

We show profiles, the user clicks on some of them, and our model fires a POST
request to the backend. It is time to implement the API route that marks users as
friends. To do this, we will update the current user's profile by adding a new array
called friends, which contains references to friends' profiles:

.add('api/friends/add', function(req, res) {
 if(req.session && req.session.user) {
 if(req.method === 'POST') {

Chapter 6

[101]

 var friendId;
 var updateUserData = function(db, friendId) {
 var collection = db.collection('users');
 collection.update(
 { email: req.session.user.email },
 { $push: { friends: friendId } },
 done
);
 };
 var done = function(err, result) {
 if(err) {
 error('Error updating the data.', res);
 } else {
 response({
 success: 'OK'
 }, res);
 }
 };
 processPOSTRequest(req, function(data) {
 getDatabaseConnection(function(db) {
 updateUserData(db, data.id);
 });
 });
 } else {
 error('This method accepts only POST requests.', res);
 }
 } else {
 error('You must be logged in to use this method.', res);
 }
})

The preceding method is again protected. We require an authenticated user and
a POST request to be made. After fetching the ID of the friend, we use the $push
operator to create (if it doesn't exist) and fill the friends array. The only job of the
done function is to send a response to the browser.

Our next step in this chapter is to show the added friends on the Profile page of
the user.

Adding Friendship Capabilities

[102]

Displaying the linked users on the
Profile page
Again, we'll start by updating our templates. In the previous chapter, we created
frontend/tpl/profile.html. It contains a form that we use for profile updates.
Let's add the following code after it:

{{#if friends.length > 0}}
 <div class="hero">
 <h1>Friends</h1>
 </div>
 <div class="friends-list">
 {{#each friends:index}}
 <div class="friend-list-item">
 <h2>{{friends[index].firstName}}
{{friends[index].lastName}}</h2>
 </div>
 {{/each}}
 </div>
{{/if}}

If the Ractive component has a friends property, then we will render a list of users.
The page will display the name of the users and it will look like the next screenshot:

Chapter 6

[103]

The controller that renders the page should also be updated. We should use the same
models/Friends model that was developed in the previous sections. This is why we
need to add var Friends = require('../models/Friends'); at the top. Three
other lines of code will make the fetching of records work. We will add them in the
onrender handler of the controller as follows:

// controllers/Profile.js
onrender: function() {

 ...

 var friends = new Friends();
 friends.fetch(function(err, result) {
 self.set('friends', result.friends); });
}

Another small addition that we have to make in the controller is defining a default
value of the friends variable, which is as follows:

 data: {
 friends: []
 },
 onrender: function() {
 ...
 }

This time, we are not going to update the model. We will use the default fetch
method that sends a GET request to the /api/friends endpoint. The only addition
that needs to be made is in the backend/API.js file. We need a route that finds the
friends of the current user and returns them:

.add('api/friends', function(req, res) {
 if(req.session && req.session.user) {
 getCurrentUser(function(user) {
 if(!user.friends || user.friends.length === 0) {
 return response({ friends: [] }, res);
 }
 user.friends.forEach(function(value, index, arr) {
 arr[index] = ObjectId(value);
 });
 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 collection.find({

Adding Friendship Capabilities

[104]

 _id: { $in: user.friends }
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 arr[index].id = value.id;
 delete arr[index].password;
 delete arr[index].email;
 delete arr[index]._id;
 });
 response({
 friends: result
 }, res);
 });
 });
 }, req, res);
 } else {
 error('You must be logged in to use this method.', res);
 }
})

This is the second place that we used the getCurrentUser helper function.
We do not have the profiles of the users. So, we need to make one additional request
to the MongoDB server. The $in operator helps us in this case. Again, we need to
convert the IDs to the proper format before sending them along with the query. In
the end, before responding to the browser, we delete sensitive information, such as
the ID, password, and e-mail. The frontend receives a nice array with all the friends
of the currently logged in user.

Summary
In this chapter, we made the creating of links between users possible. We reinforced
our knowledge about frontend controllers and models. We extended the project's
API with a couple of new methods and performed some complex database queries.

In the next chapter, we will learn how to upload content with Node.js. Like other
popular social networks, the posted information will be shown as a feed to the users.

[105]

Posting Content
Chapter 6, Adding Friendship Capabilities, was about adding friendship capabilities.
The ability to connect with other users in a social network is important. However,
it is even more important to provide an interface to generate content. In this
chapter, we will implement the logic behind content creation. We will cover
the following topics:

• Posting and storing text
• Showing the user's feed
• Posting files

Posting and storing text
As in the previous chapters, we have a feature that requires changes in both the
frontend and backend parts of our application. We will need an HTML form that
accepts the user's text, a new model that handles the communication with the
backend, and of course, changes in the API. Let's start by updating our home page.

Adding a form to post text messages
We have a home page that displays a simple title. Let's use it and add a <textarea>
tag to send content to the API. Later in this chapter, we will use the same page to
display the user's feed. Let's replace the lonely <h1> tag with the following markup:

{{#if posting === true}}
 <form enctype="multipart/form-data" method="post">
 <h3>What is on your mind?</h3>
 {{#if error && error != ''}}
 <div class="error">{{{error}}}</div>
 {{/if}}

Posting Content

[106]

 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>
 {{/if}}
 <label for="text">Text</label>
 <textarea value="{{text}}"></textarea>
 <input type="file" name="file" />
 <input type="button" value="Post" on-click="post" />
 </form>
{{else}}
 <h1>Node.js by example</h1>
{{/if}}

We still have the heading there, but it is displayed only if the posting variable is
equal to false. In the next section, where we will update the controller of the home
page, we will use posting to protect the content's form. In some cases, we do not
want to make <textarea> visible.

Note that we have two blocks to show messages. The first one will be visible if there
is an error during the posting and the second one when everything goes well. The
rest of the form is the needed user interface—the text area, input file field, and a
button. The button dispatches a post event that we will catch in the controller.

Introducing the content's model
We will definitely need a model to manage communication with the API. Let's create
a new models/Content.js file and place the following code there:

var ajax = require('../lib/Ajax');
var Base = require('./Base');

module.exports = Base.extend({
 data: {
 url: '/api/content'
 },
 create: function(content, callback) {
 var self = this;
 ajax.request({
 url: this.get('url'),
 method: 'POST',
 data: {

Chapter 7

[107]

 text: content.text
 },
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
 }
});

The module extends the same models/Base.js class, which is similar to the other
models in our system. The lib/Ajax.js module is needed because we are going
to make HTTP requests. We should be familiar with the rest of the code. A POST
request to /api/content is made by sending text that is passed as an argument to
the create function.

The module will be updated when we reach the file posting. To create records that
are based only on text, this is enough.

Updating the controller of the home page
Now that we have a proper model and form, we are ready to tweak the controller of
the home page. As mentioned earlier, the posting variable controls the visibility of
the form. Its value will be set to true by default, and if the user is not logged in, we
will change it to false. Every Ractive.js component may have a data property. It
represents the initial state of all the internal variables:

// controllers/Home.js
module.exports = Ractive.extend({
 template: require('../../tpl/home'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 data: {
 posting: true
 }
});

Posting Content

[108]

Now, let's add some logic to the onrender handler. This is the entry point to our
component. We will start by checking whether the current user is logged in:

onrender: function() {
 if(userModel.isLogged()) {
 // ...
 } else {
 this.set('posting', false);
 }
}

From Chapter 5, Managing Users, we know that userModel is a global object that we
can use to check the state of the current user. As mentioned earlier, if we have an
unauthorized visitor, we have to set posting to false.

The next logical step is to process the content from the form and submit a request to
the API. We will use the newly created ContentModel class, as follows:

var ContentModel = require('../models/Content');
var model = new ContentModel();
var self = this;
this.on('post', function() {
 model.create({
 text: this.get('text')
 }, function(error, result) {
 self.set('text', '');
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 self.set('success', 'The post is saved successfully.
What
 about adding another one?');
 }
 });
});

Once the user presses the button in the form, our component dispatches a post
event. We will then catch the event and call the create method of the model. It is
important to give a proper response to the user, so we clear the text field with self.
set('text', '') and use the local error and success variables to indicate the
status of the request.

Chapter 7

[109]

Storing content in the database
So far, we have an HTML form that submits an HTTP request to the API. In this
section, we will update our API so that we can store text content in the database.
The endpoint of our model is /api/content. We will add a new route and protect
it by allowing access to only authorized users:

// backend/API.js
.add('api/content', function(req, res) {
 var user;
 if(req.session && req.session.user) {
 user = req.session.user;
 } else {
 error('You must be logged in in order to use this method.', res);
 }
})

We will create a user local variable that contains the visitor's session data.
Every post that goes to the database should have an owner. So, it is good to
have a shortcut to the user's profile.

The same /api/content directory will be used to fetch the posts too. Again, we
will use the req.method property to find out what kind of request is coming. If it is
GET, we need to fetch the posts from the database and send them to the browser. If it
is POST, we have to create a new entry. Here is the code that sends the user's text to
the database:

switch(req.method) {
 case 'POST':
 processPOSTRequest(req, function(data) {
 if(!data.text || data.text === '') {
 error('Please add some text.', res);
 } else {
 getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('content');
 data.userId = user._id.toString();
 data.userName = user.firstName + ' ' + user.lastName;
 data.date = new Date();
 collection.insert(data, function(err, docs) {
 response({

Posting Content

[110]

 success: 'OK'
 }, res);
 });
 }, req, res);
 });
 }
 });
 break;
};

The data sent by the browser is coming as POST variables. Again, we need the help of
processPOSTRequest to access it. If there is no .text or it is empty, the API returns
an error. If everything is okay and the text message is available, we proceed with
the establishing of the database connection. We also fetch the entire profile of the
current user. The posts in our social network will be saved along with the following
additional properties:

• userId: This represents the creator of the record. We will use this property
during the feed generation.

• userName: We do not want to call getCurrentUser for every single post that
we display. So, the name of the owner is directly stored along with the text.
It is worth mentioning that in some cases, such calls are needed. For example,
the calls will be needed while changing the name of the user.

• date: We should know the date of the creation of data. It is useful for the
sorting or filtering of data.

In the end, we call collection.insert, which effectively stores the entry in
the database.

In the next section, we will see how to retrieve created content and display it to
the user.

Showing the user's feed
Now, every user is able to store messages in our database. Let's continue by showing
the records in the browser. We will start by adding logic to the API that fetches the
posts. It will be interesting because you should get the messages sent by not only a
specific user, but also to his/her friends. We used the POST method to create content.
The following lines will process the GET requests.

Chapter 7

[111]

First, we will get the IDs of the user's friends in the following way:

case 'GET':
 getCurrentUser(function(user) {
 if(!user.friends) {
 user.friends = [];
 }
 // ...
break;

In the previous chapter, we implemented friendship capabilities and kept the IDs of
the user's friends directly in the profile of the user. The friends array is exactly what
we need because the posts in our social network are linked to the users' profiles by
their IDs.

The next step is to establish a connection to the database and query only those
records that match the specific IDs, as follows:

case 'GET':
 getCurrentUser(function(user) {
 if(!user.friends) {
 user.friends = [];
 }
 getDatabaseConnection(function(db) {
 var collection = db.collection('content');
 collection.find({
 $query: {
 userId: { $in: [user._id.toString()].concat(user.friends) }
 },
 $orderby: {
 date: -1
 }
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 arr[index].id = ObjectId(value.id);
 delete arr[index].userId;
 });
 response({
 posts: result
 }, res);
 });
 });
 }, req, res);
break;

Posting Content

[112]

We are going to read the records from the content collection. The find method
accepts an object that has the $query and $orderby properties. In the first one, we
will put our criteria. In this particular case, we want to get all the records' IDs that
are a part of the friends array. In order to create such a query, we need the $in
operator. It accepts an array. Along with the posts of the user's friends, we need to
show the posts of the user. So, we will create an array with an item—the ID of the
current user—and concatenate it with friends, as follows:

[user._id.toString()].concat(user.friends)

After a successful query, the userId property is deleted because it is not needed.
In the content collection, we keep the text of the message and the name of the
owner. In the end, the records are sent attached to the posts property.

With the additions made in the preceding code, our backend returns the posts made
by the current user and their friends. All we have to do is update the controller of
our home page and use the API's method. Right after the code listening for the post
event, we add the following code:

var getPosts = function() {
 model.fetch(function(err, result) {
 if(!err) {
 self.set('posts', result.posts);
 }
 });
};
getPosts();

The calling of the fetch method triggers the GET request to the API at the
model's endpoint—/api/content. The process is wrapped in a function because
the same action will happen when a new post is created. As we already know,
if model.create succeeds, a callback is fired. We will add getPosts() there
so that the user sees his/her newest post in the feed:

// frontend/js/controllers/Home.js
model.create(formData, function(error, result) {
 self.set('text', '');
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);

Chapter 7

[113]

 self.set('success', 'The post is saved
 successfully.
What about adding another one?');
 getPosts();
 }
});

What the getPosts function produces as a result are lists of objects stored in a local
variable called posts. The same variable is accessible in the Ractive.js template.
We need to loop through the items in the array and display the information on the
screen, as follows:

// frontend/tpl/home.html
<header>
 <navigation></navigation>
</header>
<div class="hero">
 {{#if posting === true}}
 <form enctype="multipart/form-data" method="post">
 ...
 </form>
 {{#each posts:index}}
 <div class="content-item">
 <h2>{{posts[index].userName}}</h2>
 {{posts[index].text}}
 </div>
 {{/each}}
 {{else}}
 <h1>Node.js by example</h1>
 {{/if}}
</div>
<appfooter />

Just after the form, we use the each operator to show the author and the text of
the post.

At this point, the users in our network will be able to create and browse messages in
the form of text blocks. In the next section, we will extend the functionalities that we
have written so far and make the uploading of images along with the text possible.

Posting Content

[114]

Posting files
We are building a single-page application. One of the characteristics of such
applications is that all the operations happen without a page reload. Uploading
files without changing the page was always tricky. In the past, we used solutions
that involved hidden iframes or small Flash applications. Thankfully, when HTML5
arrived, it introduced the FormData interface.

The popular Ajax is possible because of the XMLHttpRequest object. Back in 2005,
Jesse James Garrett coined the term "Ajax", and we started using it to make HTTP
requests within JavaScript. It became easy to perform the GET or POST requests in the
following way:

var http = new XMLHttpRequest();
var url = "/api/content";
var params = "text=message&author=name";
http.open("POST", url, true);

http.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");
http.setRequestHeader("Content-length", params.length);
http.setRequestHeader("Connection", "close");

http.onreadystatechange = function() {
 if(http.readyState == 4 && http.status === 200) {
 alert(http.responseText);
 }
}

http.send(params);

The preceding code generates a proper POST requests and even sets the right
headers. The problem is that the parameters are represented as a string. The forming
of such strings requires additional effort. It is also difficult to send files. It can be
quite challenging.

The FormData interface solves this problem. We create an object that is a set of
key/value pairs representing form fields and their values. Then, we pass this object
to the send method of the XMLHTTPRequest class:

var formData = new FormData();
var fileInput = document.querySelector('input[type="file"]');
var url = '/api/content';

Chapter 7

[115]

formData.append("username", "John Black");
formData.append("id", 123456);
formData.append("userfile", fileInput.files[0]);

var request = new XMLHttpRequest();
request.open("POST", url);
request.send(formData);

All we have to do is use the append method and specify the input DOM element
with the file type. The rest is done by the browser.

To provide the ability to upload files, we need to add the UI element for file selection.
Here is how the form in home.html template looks:

<form enctype="multipart/form-data" method="post">
 <h3>What is on your mind?</h3>
 {{#if error && error != ''}}
 <div class="error">{{error}}</div>
 {{/if}}
 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>
 {{/if}}
 <label for="text">Text</label>
 <textarea value="{{text}}"></textarea>
 <input type="file" name="file" />
 <input type="button" value="Post" on-click="post" />
</form>

The same code but with a new input element with type equal to file. So far,
the implementation in our controller that sends the POST requests doesn't use the
FormData interface. Let's change this and update the controllers/Home.js file:

this.on('post', function() {
 var files = this.find('input[type="file"]').files;
 var formData = new FormData();
 if(files.length > 0) {
 var file = files[0];
 if(file.type.match('image.*')) {
 formData.append('files', file, file.name);
 }
 }

Posting Content

[116]

 formData.append('text', this.get('text'));
 model.create(formData, function(error, result) {
 self.set('text', '');
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 self.set('success', 'The post is saved
 successfully.
What about adding another one?');
 getPosts();
 }
 });
});

The code is changed. So, the code creates a new FormData object and uses the append
method for collecting the information needed for the new post. We make sure that
the files selected by the user are appended. By default, the HTML input provides
a selection of only one file. However, we can add the multiple attribute and the
browser will allow us to choose more than one file. It is worth mentioning that we
filter the selected files and only use the images.

After the latest changes, the create method of our model accepts the FormData
object and not a plain JavaScript object. So, we have to update the model, too:

// models/Content.js
create: function(formData, callback) {
 var self = this;
 ajax.request({
 url: this.get('url'),
 method: 'POST',
 formData: formData,
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
}

Chapter 7

[117]

The data property is replaced with the formData one. Now we know that the
frontend sends the selected files to the API. However, we do not have the code that
handles the multipart/form-data type of the POST data. The processing of files sent
through the POST request is not that simple, and processPOSTRequest will not do
the job in this case.

Node.js has a big community, and there are thousands of modules available. The
formidable module is what we are going to use. It has a fairly simple API and
it handles requests containing files. What happens during the file upload is that
formidable saves the file in a specific location on the server's hard disk. Then,
we receive the path to the resource. Finally, we have to decide what to do with it.

In the backend/API.js file, the application flow is split into the GET and POST
requests. We are going to update a major part of the POST case. The following lines
contain the formidable initialization:

case 'POST':
 var formidable = require('formidable');
 var uploadDir = __dirname + '/../static/uploads/';
 var form = new formidable.IncomingForm();
 form.multiples = true;
 form.parse(req, function(err, data, files) {
 // ...
 });
break;

As we mentioned before, the module saves the uploaded files in a temporary folder
on the hard drive. The uploadDir variable contains a more appropriate place for the
users' images. The callback passed to the parse function of formidable receives the
normal text fields in the data argument and uploads the images in files.

In order to avoid the long chain of nested JavaScript callbacks, we will extract
some logic into the function definitions. For example, the moving of files from the
temporary to the static folder can be performed in the following way:

var processFiles = function(userId, callback) {
 if(files.files) {
 var fileName = userId + '_' + files.files.name;
 var filePath = uploadDir + fileName;
 fs.rename(files.files.path, filePath, function() {
 callback(fileName);
 });

Posting Content

[118]

 } else {
 callback();
 }
};

We don't want to mix the files of different users. So, we will use the ID of the user
and create his/her own folder. There are a few other issues that we may have to take
care of. For example, we can create subfolders for every file so that we can prevent
the overwriting of the resources that are already uploaded. However, to keep the
code as simple as possible, we will stop here.

Here is the complete code that saves the post to the database:

case 'POST':
 var uploadDir = __dirname + '/../static/uploads/';
 var formidable = require('formidable');
 var form = new formidable.IncomingForm();
 form.multiples = true;
 form.parse(req, function(err, data, files) {
 if(!data.text || data.text === '') {
 error('Please add some text.', res);
 } else {
 var processFiles = function(userId, callback) {
 if(files.files) {
 var fileName = userId + '_' + files.files.name;
 var filePath = uploadDir + fileName;
 fs.rename(files.files.path, filePath, function(err) {
 if(err) throw err;
 callback(fileName);
 });
 } else {
 callback();
 }
 };
 var done = function() {
 response({
 success: 'OK'
 }, res);
 }

Chapter 7

[119]

 getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('content');
 data.userId = user._id.toString();
 data.userName = user.firstName + ' ' + user.lastName;
 data.date = new Date();
 processFiles(user._id, function(file) {
 if(file) {
 data.file = file;
 }
 collection.insert(data, done);
 });
 }, req, res);
 });
 }
 });
break;

We still need a connection to the database and the fetching of the current user's
profile. The difference here is that we attach a new file property to the object
stored in MongoDB.

In the end, we have to update the template of the home page so that it shows the
uploaded file:

{{#each posts:index}}
 <div class="content-item">
 <h2>{{posts[index].userName}}</h2>
 {{posts[index].text}}
 {{#if posts[index].file}}

 {{/if}}
 </div>
{{/each}}

Now, the each loop checks whether there is a file that comes with the text of the post.
If yes, it displays an img tag that shows the image. With this last addition, the users
of our social network will be able to create content that consists of text and pictures.

Posting Content

[120]

Summary
In this chapter, we did something that is very important for our application.
We implemented content creation and delivery by extending our backend
API. A couple of changes were made to the frontend too.

In the next chapter, we will continue adding new features. We will make the
creating of branded pages and events possible.

[121]

Creating Pages and Events
Chapter 7, Posting Content, covered the posting of content. We gave an interface to
user to send text and images to our database. Later, these resources were shown as
a message feed on the home page. In this chapter, we will learn how to create pages
and events that are attached to these pages. Here is the plan that we are going
to follow:

• Refactoring the API
• Adding a form to create pages
• Creating a record in the database
• Showing the currently added pages
• Showing a specific page
• Posting a comment to a page
• Showing comments
• Managing events attached to a particular page

Refactoring the API
If you check the files that you ended up with in the previous chapter, you will see
that the backend/API.js file is quite big. It will get more and more difficult to work
with. We are going to refactor this part of our system.

We have a bunch of helper methods that are used all over the route handlers.
Functions such as response, error, and getDatabaseConnection may be placed in
an external module. We will create a new api folder under the backend directory.
The newly created helpers.js file will host all these utility functions:

// backend/api/helpers.js
var MongoClient = require('mongodb').MongoClient;

Creating Pages and Events

[122]

var querystring = require('querystring');
var database;

var response = function(result, res) { ... };
var error = function(message, res) { ... };
var getDatabaseConnection = function(callback) { ... };
var processPOSTRequest = function(req, callback) { ... };
var validEmail = function(value) { ... };
var getCurrentUser = function(callback, req, res) { ... };

module.exports = {
 response: response,
 error: error,
 getDatabaseConnection: getDatabaseConnection,
 processPOSTRequest: processPOSTRequest,
 validEmail: validEmail,
 getCurrentUser: getCurrentUser
};

We will skip the implementation of the functions so that we don't bloat the
chapter with the code that we already saw. We also copied a few variables
used by the methods.

The next step of our refactoring is the extraction of all the route handlers into their
own methods. So far, the file is structured as follows:

var Router = require('../frontend/js/lib/router')();
Router
.add('api/version', function(req, res) { ... })
.add('api/user/login', function(req, res) { ... })

The whole structure is a bunch of route definitions and their respective handlers.
We often have a switch statement that checks the type of the request. In practice,
every function (req, res) can be represented by an independent module. Again, we
are not going to paste the content of all the created files, but we will talk about the
final result. After the refactoring, we will have the following structure:

Chapter 8

[123]

The number of lines in API.js decreased significantly. Now, we have just the route's
definition and its handlers:

var Router = require('../frontend/js/lib/router')();
Router
.add('api/version', require('./api/version'))
.add('api/user/login', require('./api/user-login'))
.add('api/user/logout', require('./api/user-logout'))
.add('api/user', require('./api/user'))
.add('api/friends/find', require('./api/friends-find'))
.add('api/friends/add', require('./api/friends-add'))
.add('api/friends', require('./api/friends'))
.add('api/content', require('./api/content'))
.add('api/pages/:id', require('./api/pages'))
.add('api/pages', require('./api/pages'))
.add(require('./api/default'));
module.exports = function(req, res) {
 Router.check(req.url, [req, res]);
}

Creating Pages and Events

[124]

The functions that the new files export are still the same. The only thing that
you should consider is the helper functions. You have to provide them in all the
new modules. For example, the friends.js file contains the following:

var ObjectId = require('mongodb').ObjectID;
var helpers = require('./helpers');
var response = helpers.response;
var error = helpers.error;
var getDatabaseConnection = helpers.getDatabaseConnection;
var getCurrentUser = helpers.getCurrentUser;

module.exports = function(req, res) {
 ...
}

Check out the files that came with this chapter for the complete source code.

Adding a form to create pages
Every user in our social network should be able to browse and create pages. This is a
completely new functionality. So, we will need a new route and controller.

1. Let's start by updating frontend/js/app.js, as follows:
.add('pages', function() {
 if(userModel.isLogged()) {
 var p = new Pages();
 showPage(p);
 } else {
 Router.navigate('login');
 }
})
.add(function() {
 Router.navigate('home');
})

2. Just above the default handler, we will register a route that creates an
instance of a new controller called Pages. We will make sure that the visitor
is logged in before seeing the page. In the same file, at the top, we will add
var Pages = require('./controllers/Pages');.

Chapter 8

[125]

3. Let's dive into the controllers/Page.js file and see how you can bootstrap
the controller:
module.exports = Ractive.extend({
 template: require('../../tpl/pages'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 data: { },
 onrender: function() { }
});

4. The onrender function is still empty, but we will fill it in the next few
sections. The template that stands behind this page is located in frontend/
tpl/pages.html:

<header>
 <navigation></navigation>
</header>
<div class="hero">
 <form enctype="multipart/form-data" method="post">
 <h3>Add a new page</h3>
 {{#if error && error != ''}}
 <div class="error">{{error}}</div>
 {{/if}}
 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>
 {{/if}}
 <label>Title</label>
 <textarea value="{{title}}"></textarea>
 <label>Description</label>
 <textarea value="{{description}}"></textarea>
 <input type="button" value="Create" on-click="create" />
 </form>
</div>
<appfooter />

The code looks similar to the one used in the previous chapter when we created the
UI to add content. We have placeholders for successful and error messages. There are
two variables, title and description, and a button dispatching the create event.

Creating Pages and Events

[126]

Creating a record in the database
Let's continue and handle the situation where the user presses the Create button.
After the user performs this action, we have to get the content of the text areas and
submit a request to the backend. So, we need a new model. Let's call it Pages.js and
save it under the models directory:

// frontend/js/models/Pages.js
var ajax = require('../lib/Ajax');
var Base = require('./Base');
module.exports = Base.extend({
 data: {
 url: '/api/pages'
 },
 create: function(formData, callback) {
 var self = this;
 ajax.request({
 url: this.get('url'),
 method: 'POST',
 formData: formData,
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
 }
});

We already talked about the FormData interface in the previous chapter. The API
endpoint that we are going to use is /api/pages. This is the URL where we will
send a POST request.

Now that we have the form displayed and the model ready for backend
communication, we can continue with the code in our controller.
The onrender handler is the right place to listen to the create event:

onrender: function() {
 var model = new PagesModel();
 var self = this;
 this.on('create', function() {
 var formData = new FormData();
 formData.append('title', this.get('title'));

Chapter 8

[127]

 formData.append('description', this.get('description'));
 model.create(formData, function(error, result) {
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('title', '');
 self.set('description', '');
 self.set('error', false);
 self.set('success', 'The page was created successfully.
 }
 });
 });
}

The initialization of the model is at the top. After fetching the data filled by the user,
we will call the create method of the model and handle the response afterwards.
If something goes wrong, our application displays an error message.

The last step in this section is updating the API so that we can keep the data in our
database. There is still no route that matches /api/pages. So, let's add one:

// backend/API.js
.add('api/pages', require('./api/pages'))
.add(require('./api/default'));

We refactored the API so that the code that will process the requests goes to the
new /backend/api/pages.js file. In the first few lines, there are shortcuts to our
helper methods:

var ObjectId = require('mongodb').ObjectID;
var helpers = require('./helpers');
var response = helpers.response;
var error = helpers.error;
var getDatabaseConnection = helpers.getDatabaseConnection;
var getCurrentUser = helpers.getCurrentUser;

Here is the code that creates a new record in a new pages collection. It may
look a little long, but a major part of the same is already covered in Chapter 7,
Posting Content:

module.exports = function(req, res) {
 var user;
 if(req.session && req.session.user) {
 user = req.session.user;
 } else {
 error('You must be logged in in order to use this
method.', res);

Creating Pages and Events

[128]

 return;
 }
 switch(req.method) {
 case 'GET': break;
 case 'POST':
 var formidable = require('formidable');
 var form = new formidable.IncomingForm();
 form.parse(req, function(err, formData, files) {
 var data = {
 title: formData.title,
 description: formData.description
 };
 if(!data.title || data.title === '') {
 error('Please add some title.', res);
 } else if(!data.description || data.description === '') {
 error('Please add some description.', res);
 } else {
 var done = function() {
 response({
 success: 'OK'
 }, res);
 }
 getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('pages');
 data.userId = user._id.toString();
 data.userName = user.firstName + ' ' + user.lastName;
 data.date = new Date();
 collection.insert(data, done);
 }, req, res);
 });
 }
 });
 break;
 };
}

The creating and browsing of pages is a feature reserved only for the logged in users.
The first few lines of the exported function check whether the current visitor has
a valid session. The frontend sends a POST request without a file, but we will still
require the formidable module because it has a nice programming interface and
is easy to use. Every page should have a title and a description, and we will check
whether they exist. If everything is okay, we will create a new record in the database
by using the well-known getDatabaseConnection function.

Chapter 8

[129]

Showing the currently added pages
It is nice that we started keeping the created pages in the database. However, it
will also be great to show the pages to the users so that they can visit them and add
comments. In order to do that, we have to modify our API so that it returns the page
information. If you look at the preceding code, you will see that there is a GET case
that was left empty. The following codes gets all the pages, sorts them by date, and
sends them to the browser:

case 'GET':
 getDatabaseConnection(function(db) {
 var collection = db.collection('pages');
 collection.find({
 $query: { },
 $orderby: {
 date: -1
 }
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 arr[index].id = value._id;
 delete arr[index].userId;
 });
 response({
 pages: result
 }, res);
 });
 });
break;

Before sending the JSON object to the frontend, we will delete the ID of the creator.
The name of the user is already there and it is a good practice to keep these IDs only
in the backend.

After a quick restart, the Node.js server returns the created pages when we visit
/api/pages. Let's move forward and update the controllers/Pages.js file in the
client side of our app. In the onrender handler, we will append the following code:

var getPages = function() {
 model.fetch(function(err, result) {
 if(!err) {
 self.set('pages', result.pages);
 } else {
 self.set('error', err.error);
 }
 });
};
getPages();

Creating Pages and Events

[130]

We will wrap the newly added logic in a function because we have to go through the
same things when a new page is created. The model does most of the job. We will
simply assign an array of objects to a pages variable. This variable is used in
the template of the component—frontend/tpl/pages.html—as follows:

{{#each pages:index}}
 <div class="content-item">
 <h2>{{pages[index].title}}</h2>
 <p><small>Created by {{pages[index].userName}}</small></p>
 <p>{{pages[index].description}}</p>
 <p>Visit the
 page</p>
 </div>
{{/each}}

In the next section, you will learn how to show only a particular page. The link that
we added in this code forwards the user to a new address. This link is a URL that
contains the information for only one page.

Showing a specific page
Again, to show a specific page, we need to update our API. We have the code that
returns all the pages, but there is no solution if you want to return only one of the
pages. We will use the ID of the page for sure. So, here is a new route that can be
added to backend/API.js:

.add('api/pages/:id', require('./api/pages'))

.add('api/pages', require('./api/pages'))

You should keep in mind that the order of the routes is important. The one that
contains the ID of the page should be above the one that shows the list of the pages.
Otherwise, the application will proceed with listing a new URL all the time, but
we will keep the same handler. If there are any dynamic parts in the address, our
router sends an additional parameter to the function. So in backend/api/pages.js,
we will change module.exports = function(req, res) to module.exports =
function(req, res, params). In the same file, we will fetch all the pages from the
database. In this case, we want the code to be modified so that the function returns
only one record that matches the ID that was passed in the URL. So far, our MongoDB
query looks like this:

collection.find({
 $query: { },
 $orderby: {
 date: -1
 }
}

Chapter 8

[131]

In practice, we have no criteria. Now, let's change the preceding code to
the following:

var query;
if(params && params.id) {
 query = { _id: ObjectId(params.id) };
} else {
 query = {};
}
collection.find({
 $query: query,
 $orderby: {
 date: -1
 }
}

By defining a query variable, we make the response of this API method conditional.
It depends on the existence of the ID in the URL. If there is any such ID, it still
returns an array of objects, but there is only one item inside.

In the frontend, we can use the same approach, or in other words, the same
controller that covers both the cases—showing all the pages and showing only one
page. We register a new route handler that forwards the user to the same Pages
controller, as follows:

// frontend/js/app.js
.add('pages/:id', function(params) {
 if(userModel.isLogged()) {
 var p = new Pages({
 data: {
 pageId: params.id
 }
 });
 showPage(p);
 } else {
 Router.navigate('login');
 }
})

Creating Pages and Events

[132]

This time, we passed the configuration during the initialization of the controller.
The setting of values in the data property creates variables that are later available
inside the component and its template. In our case, pageId will be accessible via
this.get('pageId'). If the variable does not exist, then we are in the mode that
shows all the pages. The following lines display the title and the description of a
single page:

// controllers/Page.js
onrender: function() {
 var model = new PagesModel();
 var self = this;

 var pageId = this.get('pageId');
 if(pageId) {
 model.getPage(pageId, function(err, result) {
 if(!err && result.pages.length > 0) {
 var page = result.pages[0];
 self.set('pageTitle', page.title);
 self.set('pageDescription', page.description);
 } else {
 self.set('pageTitle', 'Missing page.');
 }
 });
 return;
 }

 …

The model that we used so far performs the POST and GET requests, but we can't
use them in this case. They are reserved for other functionalities. We need another
method that accepts the ID of the page. This is why we will add a new getPage
function:

// models/Pages.js
getPage: function(pageId, callback) {
 var self = this;
 ajax.request({
 url: this.get('url') + '/' + pageId,
 method: 'GET',
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
}

Chapter 8

[133]

We do not have any data to send. We have only a different endpoint URL. The ID
of the page is appended at the end of the /api/pages string. This section started
with changes in the backend so that we know that the API returns an array of one
element. The rest is setting pageTitle and pageDescription.

In the template, we use the same pattern. You can check whether pageId exists and
this will be enough to find out whether we have to show one or many pages:

{{#if pageId}}
 <div class="hero">
 <h1>{{pageTitle}}</h1>
 <p>{{pageDescription}}</p>
 </div>
 <hr />
{{else}}
 <div class="hero">
 <form enctype="multipart/form-data" method="post">
 ...
 </form>
 </div>
 {{#each pages:index}}
 ...
 {{/each}}
{{/if}}

After changing frontend/tpl/pages.html, we have a unique URL for every page.
However, a page displayed with a static title and description is not very interesting
for the users. Let's add a comments section.

Posting a comment to a page
Before reaching the part where we send and process an HTTP request, we have to
provide a user interface to create a comment. We will add a form just below the title
and description of the page in frontend/tpl/pages.html:

<form enctype="multipart/form-data" method="post">
 <h3>Add a comment for this page</h3>
 {{#if error && error != ''}}
 <div class="error">{{error}}</div>
 {{/if}}
 {{#if success && success != ''}}
 <div class="success">{{{success}}}</div>

Creating Pages and Events

[134]

 {{/if}}
 <label for="text">Text</label>
 <textarea value="{{text}}"></textarea>
 <input type="button" value="Post" on-click="add-comment" />
</form>

The event that is dispatched after clicking on the button is add-comment. The Pages
controller should handle it and fire a request to the backend.

If you stop and think a bit about how the comments look, you will notice that they
are similar to the regular user posts that are visible in the user's feed. So, instead of
creating a new collection or storing complex data structures in the pages collection,
we will save our comments as regular posts. For the code on the client side, this
means one more use case of the ContentModel class:

// controllers/Pages.js
this.on('add-comment', function() {
 var contentModel = new ContentModel();
 var formData = new FormData();
 formData.append('text', this.get('text'));
 formData.append('pageId', pageId);
 contentModel.create(formData, function(error, result) {
 self.set('text', '');
 if(error) {
 self.set('error', error.error);
 } else {
 self.set('error', false);
 self.set('success', 'The post is saved successfully.');
 }
 });
});

The usage of the model is the same except for one thing—we send an additional
pageId variable. We need something to distinguish the posts made in the home page
and those made as comments. The API will still not save pageId. So, we have to
make a little update in backend/api/content.js, as follows:

form.parse(req, function(err, formData, files) {
 var data = {
 text: formData.text
 };
 if(formData.pageId) {
 data.pageId = formData.pageId;
 }
 …

Chapter 8

[135]

When the user is making a comment, the record in the database will contain the
pageId property. This is enough to keep the comments away from the home page.
Also, from another point of view, it is enough to display only the comments for a
particular page.

Showing the comments
We should update the API method that returns the pages as objects. Along with
the title and description, we have to present a new comments property. Let's open
backend/api/pages.js and create a function to fetch comments:

var getComments = function(pageId, callback) {
 var collection = db.collection('content');
 collection.find({
 $query: {
 pageId: pageId
 },
 $orderby: {
 date: -1
 }
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 delete arr[index].userId;
 delete arr[index]._id;
 });
 callback(result);
 });
}

The key moment in the preceding method is the forming of the MongoDB query.
This is the place where we filter the posts and fetch only those that are made for the
page that matches the passed ID. The following is the updated code corresponding
to the GET request:

getDatabaseConnection(function(db) {
 var query;
 if(params && params.id) {
 query = { _id: ObjectId(params.id) };
 } else {
 query = {};
 }
 var collection = db.collection('pages');
 var getComments = function(pageId, callback) { ... }
 collection.find({

Creating Pages and Events

[136]

 $query: query,
 $orderby: {
 date: -1
 }
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 arr[index].id = value._id;
 delete arr[index]._id;
 delete arr[index].userId;
 });
 if(params.id && result.length > 0) {
 getComments(params.id, function(comments) {
 result[0].comments = comments;
 response({
 pages: result
 }, res);
 });
 } else {
 response({
 pages: result
 }, res);
 }
 });
});

There are two types of responses. The first one is used when we have an ID added
to the URL or, in other words, when we show information about a page. In this case,
we have to also fetch the comments. In the other case, we do not need the comments
because we will be displaying only the list. Checking whether params.id exists is
enough to decide which type of response to send.

Once the backend starts returning the comments, we will write the code that shows
them in the browser. In frontend/js/controllers/Pages.js, we will set the title
and description of the page. We can directly pass the comments array to the template
and loop over the post, as follows:

var showPage = function() {
 model.getPage(pageId, function(err, result) {
 if(!err && result.pages.length > 0) {
 var page = result.pages[0];
 self.set('pageTitle', page.title);
 self.set('pageDescription', page.description);
 self.set('comments', page.comments);
 } else {
 self.set('pageTitle', 'Missing page.');
 }
 });
}
showPage();

Chapter 8

[137]

We wrapped the calling of model.getPage in a function so that we can fire it again
once a new comment is added.

Here is a small update in the template needed to display the posts below the form:

{{#each comments:index}}
 <div class="content-item">
 <h2>{{comments[index].userName}}</h2>
 <p>{{comments[index].text}}</p>
 </div>
{{/each}}

Managing events attached to a particular
page
The last feature that we will add in this chapter is the events attached to some of the
created pages. So far, we have comments that are actually normal posts kept in the
content collection. We will extend the implementation and create another type of
post. These posts will still have a pageId property so that they are different from the
feed's posts. However, we will introduce an eventDate variable.

In the frontend, we need a new URL. We should keep the same pattern that contains
the ID of the page. This is important because we want to display the events in the
right place and we don't want to mix them with the list of the pages. Here is the new
route registration:

// frontend/js/app.js
.add('pages/:id/:events', function(params) {
 if(userModel.isLogged()) {
 var p = new Pages({
 data: {
 pageId: params.id,
 showEvents: true
 }
 });
 showPage(p);
 } else {
 Router.navigate('login');
 }
})

Creating Pages and Events

[138]

The template of the Pages controller should surely be changed. We need to support
two views. The first one shows a form and comments, and the second one shows
a form and a list of events. The showEvents variable will tell us which variant
to render:

// frontend/tpl/pages.html
{{#if showEvents}}
 <form enctype="multipart/form-data" method="post">
 View
 comments
 <h3>Add new event</h3>
 ...
 </form>
 {{#each events:index}} … {{/each}}
{{else}}
 <form enctype="multipart/form-data" method="post">
 View
 events
 <h3>Add a comment for this page</h3>
 ...
 </form>
 {{#each comments:index}} … {{/each}}
{{/if}}

In order to switch between the views, we added two additional links. While we are
checking the comments, we will see View events, and when we jump to the events,
we will see View comments.

The controllers/Pages.js file needs a solid update, too. Most importantly, we
need to add a handler of the add-event event that comes from the template. It is
fired when the user presses the button in the new event form. It looks like this:

this.on('add-event', function() {
 var contentModel = new ContentModel();
 var formData = new FormData();
 formData.append('text', this.get('text'));
 formData.append('eventDate', this.get('date'));
 formData.append('pageId', pageId);
 contentModel.create(formData, function(error, result) {
 ...
 });
});

Chapter 8

[139]

It is similar to adding a comment, but for the additional eventDate property. It
should also be set as a property of the object that goes to the content collection:

// backend/api/content.js
if(formData.pageId) {
 data.pageId = formData.pageId;
}
if(formData.eventDate) {
 data.eventDate = formData.eventDate;
}

Another change in the same frontend controller is with regard to showing the list of
events (posts) in the template. When we get the title and description of the page, we
know that we will receive a comments property. The backend will be updated in a
minute, but we will assume that we will also have an events property. So, we will
simply send the array to the template:

self.set('events', page.events);

In the backend, we have already fetched the records from the content collection
that belongs to the current page. The problem is that the records are now a mixture
of comments and events. The getComments function that we added in the previous
section can be changed to getPageItems, and the implementation of it basically
looks like this:

var getPageItems = function(pageId, callback) {
 var collection = db.collection('content');
 collection.find({
 $query: {
 pageId: pageId
 },
 $orderby: {
 date: -1
 }
 }).toArray(function(err, result) {
 var comments = [];
 var events = [];
 result.forEach(function(value, index, arr) {
 delete value.userId;
 delete value._id;
 if(value.eventDate) {
 events.push(value);
 } else {
 comments.push(value);
 }

Creating Pages and Events

[140]

 });
 events.sort(function(a, b) {
 return a.eventDate > b.eventDate;
 });
 callback(comments, events);
 });
}

We formed the two different events and comments arrays. Based on the existence of
eventDate, we will fill them with records. Just before executing the callback, we will
sort the events by date, showing the earlier event first. The last thing that we will do
is use getPageItem:

getPageItems(params.id, function(comments, events) {
 result[0].comments = comments;
 result[0].events = events;
 …
}

Summary
In this chapter, we extended our social network. Every customer is now able to
create their own pages and leave comments there or create events related to the
page. A bunch of new components were added to our architecture. We successfully
reused the code from the previous chapters, which is good if we want to keep our
codebase small.

In Chapter 9, Tagging, Sharing, and Liking, we will discuss the tagging, liking, and
sharing of posts.

[141]

Tagging, Sharing, and Liking
Chapter 8, Creating Pages and Events, was about creating pages and attaching events
to them. We also made the posting of comments possible. In this part of the book, we
will add three new features. Almost every social network contains some way to like
a post. It is a nice way to rank the posts that you are interested in. Sharing is another
popular process that comprises of posting an already existing post. Sometimes, we
want to refer a post to some of our friends. In these cases, we tag people. These three
functionalities will be implemented in this chapter. Here are the sections that will
guide us through the development process:

• Selecting friends and sending their IDs to the backend
• Storing the tagged users and displaying them in the user's feed
• Sharing a post
• Liking posts and counting the number of likes
• Showing the number of likes

Selecting friends and sending their IDs to
the backend
We will start with the tagging of not only random users but also the friends of the
current user. The functionality that we want to build will be placed on the home
page. The form that creates a new post will contain a list of checkboxes. The very
first step will be to fetch the friends from the API. In Chapter 6, Adding Friendship
Capabilities, we already did that. We have a models/Friends.js file that queries the
Node.js server and returns a list of users. So, let's use it. At the top of controllers/
Home.js, we will add the following:

var Friends = require('../models/Friends');

Tagging, Sharing, and Liking

[142]

Later, in the onrender handler, we will use the required module. The result of the
API will be set as a value to a local friends variable in the following way:

var friends = new Friends();
friends.fetch(function(err, result) {
 if (err) { throw err; }
 self.set('friends', result.friends);
});

The controller has the user's friends in its data structure, and we may update the
template. We will make a loop through the records and display a checkbox for every
user in the following way:

// frontend/tpl/home.html
{{#if friends.length > 0}}
<p>Tag friends:
{{#each friends:index}}
 <label>
 <input type="checkbox" name="{{taggedFriends}}"
 value="{{friends[index].id}}" />
 {{friends[index].firstName}}
 {{friends[index].lastName}}
 </label>
{{/each}}
</p>
{{/if}}

The Ractive.js framework nicely handles groups of checkboxes. In our case, the
JavaScript component will receive a variable called taggedFriends. It will be an
array of the selected users or an empty array if the user does not tick anything. The
expected output is a list of the user's friends in the form of checkboxes and labels.

Once Gulp compiles the new version of the template and we hit the refresh button of
the browser, we will see our friends on the screen. We will select some of them, fill
the content of the post, and press the Post button. The application sends a request to
the API but without the tagged friends. One more change is needed to fix that. In the
controllers/Home.js file, we have to use the value of the taggedFriends variable,
as follows:

formData.append('text', this.get('text'));
formData.append('taggedFriends', JSON.stringify(this.
get('taggedFriends')));
model.create(formData, function(error, result) {
 ...
});

Chapter 9

[143]

The FormData API accepts only Blob, file, or string values. We cannot send an array
of strings. So, we will serialize taggedFriends to a string using JSON.stringify.
In the next section, we will use JSON.parse to convert the string to an object. The
JSON interface is available in both the browser and Node.js environments.

Storing the tagged users and displaying
them in the user's feed
Along with the text and files, we now send a list of user IDs—users that should
be tagged in the post. As mentioned before, they come to the server in the form
of a string. We need to use JSON.parse to convert them into a regular array. The
following lines are part of the backend/api/content.js module:

var form = new formidable.IncomingForm();
form.multiples = true;
form.parse(req, function(err, formData, files) {
 var data = {
 text: formData.text
 };
 if(formData.pageId) {
 data.pageId = formData.pageId;
 }
 if(formData.eventDate) {
 data.eventDate = formData.eventDate;
 }
 if(formData.taggedFriends) {
 data.taggedFriends = JSON.parse(formData.taggedFriends);
 }
 ...

The content.js module is the place where formidable provides the data sent by
the frontend. At the end of this code snippet, we reconstructed the array from the
previously serialized string.

We can easily go with only that change and store the data object. Indeed, in the
client side, we will receive the post containing the taggedFriends property.
However, we are interested in showing the names of the friends and not their IDs.
If the frontend controller has IDs and needs names, then it should perform another
HTTP request to the API. This will probably lead to a large number of API queries,
especially if we have many messages displayed. To prevent such a situation, we will
fetch the names of the tagged people during the fetching of the post in the backend.
This approach has its own disadvantages, but it is still better compared to the variant
mentioned earlier.

Tagging, Sharing, and Liking

[144]

Let's create a function that wraps the needed logic and use it before saving the
information in the database:

// backend/api/content.js
var getFriendsProfiles = function(db, ids, callback) {
 if(ids && ids.length > 0) {
 var collection = db.collection('users');
 ids.forEach(function(value, index, arr) {
 arr[index] = ObjectId(value);
 });
 collection.find({
 _id: { $in: ids }
 }).toArray(function(err, friends) {
 var result = [];
 friends.forEach(function(friend) {
 result.push(friend.firstName + ' ' + friend.lastName);
 });
 callback(result);
 });
 } else {
 callback([]);
 }
}

We prepared the IDs of the users for the MongoDB query. In this case, the $in
operator is needed because we want to fetch the records of the IDs that match any
of the items in the ids array. When the MongoDB driver returns the data, we create
another array that contains the names of the friends. GetFriendsProfiles will be
used in the next few pages, where we will update the posts' feed fetching.

The actual storing of the data is still the same. The only difference is that the data
object now contains the taggedFriends property:

getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('content');
 data.userId = user._id.toString();
 data.userName = user.firstName + ' ' + user.lastName;
 data.date = new Date();
 processFiles(user._id, function(file) {
 if(file) {
 data.file = file;
 }
 collection.insert(data, done);
 });
 }, req, res);
});

Chapter 9

[145]

If we create a new post and check the record in the database, we will see something
like this:

{
 "text": "What a nice day. Isn't it?",
 "taggedFriends": [
 "54b235be6fd75df10c278b63",
 "5499ded286c27ff13a36b253"
],
 "userId": "5499ded286c27ff13a36b253",
 "userName": "Krasimir Tsonev",
 "date": ISODate("2015-02-08T20:54:18.137Z")
}

Now, let's update the fetching of the database records. We have the IDs of our
friends, but we need their names. So, in the same content.js file, we will place
the following code:

var numberOfPosts = result.length;
var friendsFetched = function() {
 numberOfPosts -= 1;
 if(numberOfPosts === 0) {
 response({
 posts: result
 }, res);
 }
}
result.forEach(function(value, index, arr) {
 arr[index].id = ObjectId(value._id);
 arr[index].ownPost = user._id.toString() ===
 ObjectId(arr[index].userId).toString();
 arr[index].numberOfLikes = arr[index].likes ?
 arr[index].likes.length : 0;
 delete arr[index].userId;
 delete arr[index]._id;
 getFriendsProfiles(db, arr[index].taggedFriends,
 function(friends) {
 arr[index].taggedFriends = friends;
 friendsFetched();
 });
});

Tagging, Sharing, and Liking

[146]

We have the items from the database in the results array. The looping through the
posts is still the same but doesn't send the response after the forEach call. For every
post in the list, we need to send a request to the MongoDB database and get the name
of the friends. So, we will initialize the numberOfPosts variable, and every time the
request for the friend's name is finished, we will decrease the value. Once it gets to 0,
we know that the last post is processed. After this, we will send the response to
the browser.

Here is a small update of the frontend/tpl/home.html file that will make the
taggedFriends array visible:

{{#each posts:index}}
 <div class="content-item">
 <h2>{{posts[index].userName}}</h2>
 {{posts[index].text}}
 {{#if posts[index].taggedFriends.length > 0}}
 <p>
 <small>
 Tagged: {{posts[index].taggedFriends.join(', ')}}
 </small>
 </p>
 {{/if}}
 {{#if posts[index].file}}

 {{/if}}
 </div>
{{/each}}

Along with the owner, the text, and the picture (if any), we check whether there
are any tagged people. If there are any tagged people, then we join all the elements
of the taggedFriends array with the given separator. The result looks like the
following screenshot:

Chapter 9

[147]

Sharing a post
The sharing function of our application will give an option to the current user
to republish an already created post. We should make sure that the user does
not share his/her own records. So, let's start from there. The API returns the posts
and knows who created them. It also knows which user is making the request.
The following code creates a new property called ownPost:

// backend/api/content.js
getCurrentUser(function(user) {
 ...
 getDatabaseConnection(function(db) {
 var collection = db.collection('content');
 collection.find({
 ...
 }).toArray(function(err, result) {
 result.forEach(function(value, index, arr) {
 arr[index].id = ObjectId(value._id);
 arr[index].ownPost = user._id.toString() ===
 ObjectId(arr[index].userId).toString();
 delete arr[index].userId;
 delete arr[index]._id;
 });
 response({ posts: result }, res);
 });
 });
}, req, res);

This is the logic that prepares the posts and sends them to the browser. The
getCurrentUser property returns the user that is currently making the requests.
The user._id variable is exactly what we need. This ID is actually assigned to the
userId property for every post. So, we will simply compare them and determine
whether the sharing is allowed or not. If the ownPost variable is equal to true,
then the user should not be able to share the post.

In the previous section, we added a new markup to display the tagged friends.
The space below them seems like a good place to place a Share button:

{{#if posts[index].taggedFriends.length > 0}}
 <p>
 <small>
 Tagged: {{posts[index].taggedFriends.join(', ')}}
 </small>
 </p>
{{/if}}

Tagging, Sharing, and Liking

[148]

{{#if !posts[index].ownPost}}
<p><input type="button" value="Share"
on-click="share:{{posts[index].id}}" /></p>
{{/if}}

Here, the new ownPost property comes into use. If the post is not made by the
current user, then we will show the button that dispatches the share event. Ractive.js
gives us an opportunity to send data along with the event. In our case, this is the ID
of the post.

The controller of the home page should listen to this event. A quick update of
controllers/Home.js adds the listener, as follows:

this.on('share', function(e, id) {
 var formData = new FormData();
 formData.append('postId', id);
 model.sharePost(formData, getPosts);
});

The model object is an instance of the ContentModel class. The sharing is a
new feature. So, we need to send queries to a different API endpoint. The new
sharePost method looks like this:

// frontend/js/models/Content.js
sharePost: function(formData, callback) {
 var self = this;
 ajax.request({
 url: this.get('url') + '/share',
 method: 'POST',
 formData: formData,
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
}

We used some code that is similar to the preceding one many times in the previous
chapter. It sends a POST request to the backend at a specific URL. Here, the URL is
/api/content/share. It is also important to mention that formData contains the
ID of the post that we want to share.

Chapter 9

[149]

Let's continue and make the necessary changes in the API. We already defined
the URL that will host this functionality—/api/content/share. A new route in
backend/API.js is needed, which is as follows:

.add('api/content/share', require('./api/content-share'))

The next step involves the creation of the content-share controller. Like every other
controller, we will start with requiring the helpers. We will skip this part and jump
directly to the processing of the POST request:

// backend/api/content-share.js
case 'POST':
 var formidable = require('formidable');
 var form = new formidable.IncomingForm();
 form.parse(req, function(err, formData, files) {
 if(!formData.postId) {
 error('Please provide ID of a post.', res);
 } else {
 var done = function() {
 response({
 success: 'OK'
 }, res);
 };
 // ...
 }
 });
break;

The preceding method expects a postId variable. If there is no such variable, then
we will respond with an error. The rest of the code again involves the usage of the
formidable module and the defining of a done function to send a response for a
successful operation. Here is the more interesting part:

getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('content');
 collection
 .find({ _id: ObjectId(formData.postId) })
 .toArray(function(err, result) {
 if(result.length === 0) {
 error('There is no post with that ID.', res);
 } else {
 var post = result[0];
 delete post._id;
 post.via = post.userName;

Tagging, Sharing, and Liking

[150]

 post.userId = user ._id.toString();
 post.userName = user.firstName + ' ' + user.lastName;
 post.date = new Date();
 post.taggedFriends = [];
 collection.insert(post, done);
 }
 });
 }, req, res);

After finding the post that should be shared, we will prepare an object that will be
saved as a new record. We need to perform a few operations on the original post:

var post = result[0];
delete post._id;
post.via = post.userName;
post.userId = user ._id.toString();
post.userName = user.firstName + ' ' + user.lastName;
post.date = new Date();
post.taggedFriends = [];
collection.insert(post, done);

We surely do not need the _id property. MongoDB will create a new one. The third
line defines a via property. We will talk about this in a minute, but in short, it is
used to display the original author of the post. The lines after via set the owner of
the new record. The date is also changed, and since this is a new post, we clear the
taggedFriends array.

The shared post is now in the database and it is displayed in the users' feeds. Let's
use the via property and show the original creator of the post in the following way:

// frontend/tpl/home.html
{{#each posts:index}}
<div class="content-item">
 <h2>{{posts[index].userName}}</h2>
 <p>{{posts[index].text}}</p>
 {{#if posts[index].via}}
 <small>via {{posts[index].via}}</small>
 {{/if}}
 …

Chapter 9

[151]

We will check whether the variable is available and if it is, then we will add a small
text below the text of the post. The result will look like this:

Liking posts and counting the number
of likes
The users of our social network should be able to see a Like button. By clicking
on it, they will send a request to the API and our task is to count these clicks. Of
course, only one click per user is allowed. As in the previous section, we will start
by updating the user interface. Let's add another button next to the Share one in
the following way:

// frontend/tpl/home.html
<input type="button" value="Like"
on-click="like:{{posts[index].id}}" />
{{#if !posts[index].ownPost}}
<input type="button" value="Share"
on-click="share:{{posts[index].id}}" />
{{/if}}

The new button dispatches a like event, and we will again pass the ID of the post.
It is actually similar to the share event. Also, the liking action will use the same type
of communication with the backend. So, it makes sense to refactor our code and
use only one function for both the features. In the previous section, we added the
sharePost method to the models/Content.js file. Let's change it to usePost in
the following way:

usePost: function(url, formData, callback) {
 var self = this;
 ajax.request({
 url: this.get('url') + '/' + url,
 method: 'POST',

Tagging, Sharing, and Liking

[152]

 formData: formData,
 json: true
 })
 .done(function(result) {
 callback(null, result);
 })
 .fail(function(xhr) {
 callback(JSON.parse(xhr.responseText));
 });
}

Because the only one thing that differs is the URL, we define it as a parameter.
The formData interface still contains the ID of the post. Here is the updated code
of our controller:

// controllers/Home.js
this.on('share', function(e, id) {
 var formData = new FormData();
 formData.append('postId', id);
 model.usePost('share', formData, getPosts);
});
this.on('like', function(e, id) {
 var formData = new FormData();
 formData.append('postId', id);
 model.usePost('like', formData, getPosts);
});

We skipped the definition of one more method and made the implementation of the
model a bit more flexible. We may need to add a new operation and the last tweak
will come in handy.

According to the changes in the API, we followed the same workflow. A new route
responding to /api/content/like is needed, which can be created as follows:

// backend/API.js
add('api/content/like', require('./api/content-like'))

The content-like controller still does not exist. We will create a new backend/api/
content-like.js file that will host the logic related to the liking. The usual things
like protecting the method from unauthorized users and fetching the POST data with
formidable are present. This time, we are not going to use the insert method of the
collection. Instead, we will use update. We will construct a slightly more complex
MongoDB query and update a new property called likes.

Chapter 9

[153]

The update method accepts four parameters. The first one is the criteria. The records
that match our criteria will be updated. The second one contains instructions with
regards to what we want to update. The third parameter contains additional options
and the last one is a callback that is invoked once the operation ends. Here is how
our query looks:

getDatabaseConnection(function(db) {
 getCurrentUser(function(user) {
 var collection = db.collection('content');
 var userName = user.firstName + ' ' + user.lastName;
 collection.update(
 {
 $and: [
 { _id: ObjectId(formData.postId) },
 { "likes.user": { $nin: [userName] } }
]
 },
 {
 $push: {
 likes: { user: userName }
 }
 },
 {w:1},
 function(err) {
 done();
 }
);
 }, req, res);
});

The code is indeed a bit long but it does its job. Let's go through it line by line. The
first parameter, our criteria, makes sure that we are going to update the right post.
Because we use the $and operator, the second object in the array should also be valid.
You may notice that a few lines below $and, the $push operator adds a new object to
an array called likes. Every object has a name property containing the name of the
user that hits the Like button. So, in our "likes.user": { $nin: [userName] }
criteria, it means that the record will be updated only if userName is not in some of
the elements of the likes array. This might look a little complex, but it is really
a powerful combination of operators. Without this, we would probably end up
making several queries to the database.

The {w: 1} option always changes its value if a callback is passed.

Tagging, Sharing, and Liking

[154]

Once the record is updated, we will simply call the done method and send a
response to the user.

With the changes in the API, we successfully finished this feature. Here is how a
post looks in the browser now:

Showing the number of likes
We keep the likes in an array. It is easy to count the elements there and find out
how many times a post is liked. We will make two small changes that will make
this possible. The first one is in the API, which is the place where we prepare the
post objects:

// backend/api/content.js
result.forEach(function(value, index, arr) {
 arr[index].id = ObjectId(value._id);
 arr[index].ownPost = user._id.toString() ===
 ObjectId(arr[index].userId).toString();
 arr[index].numberOfLikes = arr[index].likes ?
 arr[index].likes.length : 0;
 delete arr[index].userId;
 delete arr[index]._id;
});

Chapter 9

[155]

A new numberOfLikes property is attached. The records did not have a likes
property in the beginning. So, we have to check whether it exists before we use it.
If we have numberOfLikes variable, we can update the label of the Like button in
the frontend to the following code:

<input type="button" value="Like ({{posts[index].numberOfLikes}})"
 on-click="like:{{posts[index].id}}" />

Once created, every post has zero likes. So, the label of the button is Like (0), but
after the first click, it changes to Like (1). The following screenshot demonstrates
how this looks in practice:

Summary
This chapter was about some of the most used features in social networks
nowadays—tagging, sharing, and liking. We updated both sides of our
application and validated our knowledge from the previous chapters.

The next chapter will be about real-time communication. We will build a chat
window for our users, and they will be able to send real-time messages to others.

[157]

Adding Real-time Chat
In the previous two chapters, we extended our social network by adding new
features to create pages and share posts. In this chapter, we will discuss real-time
communication between users in the system. The technology that we are going to
use is called WebSockets. The plan for this part of the book is as follows:

• Getting to know WebSockets
• Bringing Socket.IO to the project
• Preparing the UI of the chat area
• Exchanging messages between the client and the server
• Sending messages to the user's friends only
• Customizing the output of the chat

Getting to know WebSockets
WebSockets is a technology that opens a two-way (bidirectional) interactive
channel between the server and the browser. By using this type of communication,
we are able to exchange messages without the need of an initial request. Both sides
simply dispatch events to each other. The other benefits of WebSockets are lower
bandwidth requirement and latency.

There are a couple of ways to transfer data from the server to the client and vice
versa. Let's check the most popular ones and see why WebSockets is considered
the best option for real-time web apps:

• Classic HTTP communication: The client requests a resource from the
server. The server figures out what the response should be and sends it.
In the context of real-time applications, this is not very practical because
we have to manually ask for more data.

Adding Real-time Chat

[158]

• Ajax polling: It is similar to the classical HTTP request except for the fact that
we have the code that constantly sends requests to the server, for instance, in
an interval of half a second. This is not really a good idea because our server
will receive a huge amount of requests.

• Ajax long-polling: We again have a client that performs HTTP requests, but
this time, the server delays the result and does not respond immediately. It
waits till there is new information available and then answers the request.

• HTML5 Server-sent Events (EventSource): In this type of communication,
we have a channel from the server to the client and the server automatically
sends data to the browser. This technique is used mostly when we need a
one-directional data flow.

• WebSockets: As mentioned before, if we use WebSockets, we have a
two-way (bidirectional) data flow. Both sides, the client and the server,
can send messages without asking the other side.

Server-sent Events may work in some cases, but for real-time chat, we definitely
need WebSockets because we want users to be able to send messages to each other.
The solution to this that we will implement looks like the following screenshot:

Every user will connect to the server and start sending messages. Our backend will
be in charge of distributing the messages to the rest of the users.

Working with the raw WebSockets API may be not so easy. In the next section,
we will introduce a really helpful Node.js module to deal with WebSockets.

Chapter 10

[159]

Bringing Socket.IO to the project
Socket.IO (http://socket.io/) is a real-time engine built on the top of WebSockets
technology. It is a layer that makes web development easy and straightforward. Like
every new thing nowadays, WebSockets comes with its own problems. Not every
browser supports this technology. We may have problems with the protocol and
missing events such as heartbeats, timeouts, or disconnection support. Thankfully,
Socket.IO fixes these issues. It even provides fallbacks for the browsers that do not
support WebSockets and goes with techniques such as long-polling.

Before making changes in our backend, we need to install the module. The engine
is distributed in the same way as every other Node.js module; it is available via the
package manager. So, we have to add Socket.IO to the package.json file in the
following way:

{
 "name": "nodejs-by-example",
 "version": "0.0.2",
 "description": "Node.js by example",
 "scripts": {
 "start": "node server.js"
 },
 "dependencies": {
 "socket.io": "1.3.3"
 ...
 ...
 }
}

After that change, we will run npm install and get the node_modules/socket.io
folder populated. Having installed the module, we can start updating our social
network. Let's add a Chat.js file to the backend directory containing the
following code:

module.exports = function(app) {
 var io = require('socket.io')(app);
 io.on('connection', function (socket) {
 socket.emit('news', { hello: 'world' });
 socket.on('my other event', function (data) {
 console.log(data);
 });
 });
}

http://socket.io/

Adding Real-time Chat

[160]

The new module exports a function that accepts the HTTP server. In server.js,
we can initialize it by using http.createServer, as follows:

var app = http.createServer(checkSession).listen(port, '127.0.0.1');
console.log("Listening on 127.0.0.1:" + port);

var Chat = require('./backend/Chat');
Chat(app);

Socket.IO is entirely built on the concept of event firing and listening. The io variable
represents our communication hub. Every time a new user connects to our server, we
get a connection event, and the handler that is invoked receives a socket object that
we will use to process messages from and to the browser.

In the preceding example, we sent (emit) an event with the news name containing
some simple data. After this, we started listening to the other event that would come
from the client.

Now, even if we restart the server, we are not going to receive any socket connections.
This is because we did not change the frontend code. In order to make Socket.IO work
on the client side, we need to include the /socket.io/socket.io.js file in our pages.
The layout of our application is stored in backend/tpl/page.html, and after the
modification, it looks like this:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Node.js by example</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta name="description" content="Node.js by examples">
 <meta name="author" content="Packt">
 <link rel="stylesheet" href="/static/css/styles.css">
</head>
<body>
 <div class="container"></div>
 <script src="/socket.io/socket.io.js"></script>
 <script src="/static/js/ractive.js"></script>
 <script src="/static/js/app.js"></script>
</body>
</html>

The socket.io.js file does not exist in our codebase. It is a part of the Socket.IO
module. The engine automatically registers a route to it and takes care that it serves
the file.

Chapter 10

[161]

The final step in the testing of our WebSockets implementation is the connecting
to the server. For the sake of simplicity, let's add a few lines of code to the
frontend/js/app.js file:

window.onload = function() {

 ...

 var socket = io('http://localhost:9000');
 socket.on('news', function (data) {
 console.log(data);
 socket.emit('my other event', { my: 'data' });
 });

};

We will put our code in the onload handler because we want to make sure that
all the external JavaScript files are fully loaded. Then, we will initialize a connection
to http://localhost:9000, which is the same host and port that the Node.js
server runs on. The rest of the code does only one thing—it listens for a news
event and responds with the other event message. If we run the server and load
http://localhost:9000 in a browser, we will get the following result in
the terminal:

We got { my: 'data' } as an output because we have console.log(data) in the
backend/Chat.js file.

Preparing the UI of the chat area
Because real-time chat is an important part of our social network, we will create a
separate page for it. As we did in the previous chapters, we will start with a new
link in the main navigation, as follows:

<nav>

 <a on-click="goto:home">Home
 {{#if !isLogged }}
 <a on-click="goto:register">Register
 <a on-click="goto:login">Login
 {{else}}
 <li class="right"><a on-click="goto:logout">Logout
 <li class="right"><a

Adding Real-time Chat

[162]

 on-click="goto:profile">Profile
 <li class="right"><a on-click="goto:find-friends">Find
 friends
 <li class="right"><a on-click="goto:pages">Pages
 <li class="right"><a on-click="goto:chat">Chat
 {{/if}}

</nav>

The latest link in the list will forward the user to the http://localhost:9000/chat
URL where he/she will see the interface of the chat.

Let's handle the /chat route by tweaking the frontend/js/app.js file. Let's make
another addition to our router, as follows:

Router
...
...
.add('chat', function() {
 if(userModel.isLogged()) {
 var p = new Chat();
 showPage(p);
 } else {
 Router.navigate('login');
 }
})
.add(function() {
 Router.navigate('home');
})
.listen()
.check();

In the same file, we will require the frontend/js/controllers/Chat.js module.
It will contain the chat logic in the client side. We will start with something
simple—a basic Ractive.js component, which can be implemented as follows:

// frontend/js/controllers/Chat.js
module.exports = Ractive.extend({
 template: require('../../tpl/chat'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 data: {
 output: ''
 },
 onrender: function() {

 }
});

Chapter 10

[163]

Like every other controller in our application, Chat.js has an associated template
that contains an empty <div> element to display chat messages, a text field, and a
button to send data to the server:

// front/tpl/chat.html
<header>
 <navigation></navigation>
</header>
<div class="hero">
 <h1>Chat</h1>
</div>
<form>
 <div class="chat-output">{{output}}</div>
 <input type="text" value="{{text}}" />
 Send
</form>
<appfooter />

It is worth a mentioning that if you want to update the content of the chat-
output element, you need to change the value of the output variable. The button
also dispatches a send event, and we will catch this in the next section. After the
compilation of the assets, if you go to the chat's URL, you will see the following screen:

Adding Real-time Chat

[164]

Exchanging messages between the client
and the server
We are ready to write some working Socket.IO code. So far, we placed code snippets
that only proved that the socket connection works. For example, the code that was
added to frontend/js/app.js should be moved to frontend/js/controllers/
Chat.js, which is the controller responsible for the chat page. Because it acts as a
base for this real-time feature, we will start from there. Let's add a couple of local
variables to the component, as follows:

data: {
 messages: ['Loading. Please wait.'],
 output: '',
 socketConnected: false
}

These variables have default values, and they are available in the component's
template. The first one, messages, will keep all the messages that come from the
users in the chat, including the current user. The output variable is used to populate
the message container on the screen. The last one, socketConnected, controls the
visibility of the text field and the button. If it is set to false, the controls will be
hidden. Before initializing the connection with the server or getting disconnected for
some reason, it is better to hide the chat input text field until the connection with the
server is initialized. Otherwise, we may get disconnected for some reason. Here is
how the updated template looks:

// frontend/tpl/chat.html
<header>
 <navigation></navigation>
</header>
<div class="hero">
 <h1>Chat</h1>
</div>
<form>
 <div class="chat-output"
 data-component="output">{{{output}}}</div>
 {{#if socketConnected}}
 <input type="text" value="{{text}}" />
 Send
 {{/if}}
</form>
<appfooter />

Chapter 10

[165]

The difference is the {{if}} operator that wraps the field and the button. At the end
of the chapter, we will colorize the messages, and we will be required to pass HTML
tags. We will use {{{output}}} instead of {{output}} so that the framework
displays them correctly (by turning off autoescaping).

Let's go back to the frontend controller. We mentioned that the code placed in app.js
moves here. It was the actual connection to the socket server. We will extend it in the
following way:

var self = this;
var socket = io('http://localhost:9000');
socket.on('connect', function() {
 self.push('messages', 'Connected!');
 self.set('socketConnected', true);
 self.find('input[type="text"]').focus();
});
socket.on('disconnect', function() {
 self.set('socketConnected', false);
 self.push('messages', 'Disconnected!');
});
socket.on('server-talking', function(data) {
 self.push('messages', data.text);
});

After receiving the connect event, we will add the Connected! string to the
messages array. So, after receiving the Loading. Please wait. message, the user
will see a confirmation that informs him/her that the application has established a
successful socket connection. By setting socketConnected to true, we reveal the
input controls and give an option to the user to send chat messages. The last thing
in this handler is forcing the browser to focus on the input field, a nice little detail
that saves a mouse click of the user.

The socket object may dispatch another event—disconnect. There are two actions
that we can take in this situation—hiding the input controls and notifying the user
by showing the Disconnected! string in the browser.

The last event that we were listening to was server-talking. This is our own
event—a message that our backend code will dispatch. In the beginning, the data
object will contain only one text property, which will be the chat message. We
will simply append it to the rest of the elements of the messages array.

Adding Real-time Chat

[166]

The lines that we talked about earlier listen to the events that come from the
backend. Let's write some code that sends information from the client to the server:

var send = function() {
 socket.emit('client-talking', { text: self.get('text')});
 self.set('text', '');
}
this.on('send', send);

The send function is called when the user clicks the button. We use the same socket
object and its emit method to transfer the text to the server. We also clear the content
of the input field so that the user can start composing a new message. Pressing
the button every time is probably annoying. The following code triggers the send
function when the user presses the Enter key:

this.find('form').addEventListener('keypress', function(e) {
 if(e.keyCode === 13 && e.target.nodeName === 'INPUT') {
 e.preventDefault();
 send();
 }
});

The this.find method returns a valid DOM element. We attach the keypress
listener to the form element because the input variable is not always visible.
Thanks to events bubbling, we are able to catch the event in the upper element.
It is also worth a mention that in some browsers, a different code is required to
listen to DOM events.

The last thing that we have to take care of is the displaying of the content of the
messages array on the screen. If you check the code that we've written so far, you
will see that we did not update the output variable. Here is a new component
method that will handle this:

updateOutput: function() {
 this.set('output', this.get('messages').join('
'));
 var outputEl = this.find('[data-component="output"]');
 outputEl.scrollTop = outputEl.scrollHeight;
}

Instead of looping through all the elements of the array, we use the join method.
It joins all the elements of the array into a string separated by the given parameter.
In our case, we need a new line after every message. Once we start receiving more
data, we will need to scroll the <div> element down so that the user sees the latest
ones. The other two lines of the function position the scroller of the container at
the bottom.

Chapter 10

[167]

The updateOutput function should be called once a new message arrives.
The Ractive.js observing is perfect for such cases:

this.observe('messages', this.updateOutput);

Only one line is needed to wire the updating of a messages array to the
updateOutput method. After this addition, every push to the message array
will force the render of the chat-output element.

The code for the component is as follows:

module.exports = Ractive.extend({
 template: require('../../tpl/chat'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 data: {
 messages: ['Loading. Please wait.'],
 output: '',
 socketConnected: false
 },
 onrender: function() {

 var self = this;
 var socket = io('http://localhost:9000');
 socket.on('connect', function() {
 self.push('messages', 'Connected!');
 self.set('socketConnected', true);
 self.find('input[type="text"]').focus();
 });
 socket.on('disconnect', function() {
 self.set('socketConnected', false);
 self.push('messages', 'Disconnected!');
 });
 socket.on('server-talking', function(data) {
 self.push('messages', data.text);
 });

 var send = function() {
 socket.emit('client-talking', { text: self.get('text')});
 self.set('text', '');
 }

Adding Real-time Chat

[168]

 this.on('send', send);
 this.observe('messages', this.updateOutput);

 this.find('form').addEventListener('keypress', function(e) {
 if(e.keyCode === 13 && e.target.nodeName === 'INPUT') {
 e.preventDefault();
 send();
 }
 });

 },
 updateOutput: function() {
 this.set('output', this.get('messages').join('
'));
 var outputEl = this.find('[data-component="output"]');
 outputEl.scrollTop = outputEl.scrollHeight;
 }
});

The frontend is ready to send and receive messages through the socket. However,
the backend still contains the initial example code that we started with. A small
update of the Chat module will make it possible to send messages to the users:

// backend/Code.js
module.exports = function(app) {
 var io = require('socket.io')(app);
 io.on('connection', function (socket) {
 socket.on('client-talking', function (data) {
 io.sockets.emit('server-talking', { text: data.text });
 });
 });
}

We are still listening for the connection event. The socket object that we receive in
the handler represents the connection with the user. After this, we will start listening
to the client-talking event that is dispatched by the frontend when the user types
something in a field or presses the button or the Enter key. Once the data is received,
we broadcast it to all the users in the system. The io.sockets.emit variable sends a
message to all the clients who are currently using the server.

Chapter 10

[169]

Sending messages to the user's friends
only
The last change in our backend dispatches the received chat messages to all the
users in our social network. This is of course not really practical, because we may
exchange text with people who do not know each other. We have to change our
code accordingly so that we send messages only to the users in our friends list.

With Socket.IO, we do not have access to the request and response objects as we
do in the backend API by default. This will make the solving of the problem a
bit more interesting because we can't recognize the user sending the message.
Thankfully, Socket.IO gives us access to the active session. It is in a raw format. So,
we will need to parse it and extract the user's profile data. To do this, we will use the
cookie Node.js module. Let's add it to the package.json file in the following way:

"dependencies": {
 "cookie": "0.1.2",
 "socket.io": "1.3.3",
 ...
 ...
}

With another npm install in the terminal, we will be able to require the module.
In Chapter 8, Creating Pages and Events, we refactored our API and created the
backend/api/helpers.js file that contains utility functions. We will add another
file similar to getCurrentUser by using only the session object, as follows:

var getCurrentUserBySessionObj = function(callback, obj) {
 getDatabaseConnection(function(db) {
 var collection = db.collection('users');
 collection.find({
 email: obj.user.email
 }).toArray(function(err, result) {
 if(result.length === 0) {
 callback({ error: 'No user found.' });
 } else {
 callback(null, result[0]);
 }
 });
 });
};

Adding Real-time Chat

[170]

If we compare both methods, we will see that there are two differences. The first
difference is that we do not receive the usual request and response objects; we
receive only a callback and a session object. The second change is that the result
is always sent to the callback even if it is an error.

Armed with the getCurrentUserBySessionObj function, we can modify backend/
Chat.js so that it sends messages only to the friends of the current user. Let's
initialize the needed helpers first. We will add the following lines to the top of
the file:

var helpers = require('./api/helpers');
var getCurrentUserBySessionObj =
 helpers.getCurrentUserBySessionObj;
var cookie = require('cookie');

We already talked about the cookie module. The session data that is available
throughout the Socket.IO engine is reachable through socket.request.headers.
cookie. If we print the value in the console, we will get something like the
following screenshot:

The preceding output is a Base64-encoded string that we definitely cannot directly
use. Thankfully, Node.js has interfaces to easily decode such values. Here is a short
function that will extract the needed JSON object:

var decode = function(string) {
 var body = new Buffer(string, 'base64').toString('utf8');
 return JSON.parse(body);
};

We passed the string from the cookie and received the normal user object that we
will later use in getCurrentUserBySessionObj.

Chapter 10

[171]

So, we have mechanisms to find out who the current user is and who his/her friends
are. All we have to do is cache the available socket connections and associated users.
We will introduce a new global (for the module) users variable. It will act as a hash
map where the key will be the ID of the user and the value will contain the socket
and the friends. In order to broadcast messages to the right users, we can summarize
the logic in the following method:

var broadcastMessage = function(userId, message) {
 var user = users[userId];
 if(user && user.friends && user.friends.length > 0) {
 user.socket.emit('server-talking', { text: message });
 for(var i=0; i<user.friends.length; i++) {
 var friend = users[user.friends[i]];
 if(friend && friend.socket) {
 friend.socket.emit('server-talking', { text: message });
 }
 }
 }
};

This code provides a function that accepts the ID of a user and the text message. We
will first check whether a socket reference is cached. If it is, then we will make sure
that the user has friends. If this is valid too, then we will start dispatching messages.
The first emit item is to the user himself/herself so that he/she receives his/her own
message. The rest of the code loops over the friends and sends the text to all of them.

We, of course, have to update the code that accepts the socket connection. Here is the
new version of the same:

module.exports = function(app) {
 var io = require('socket.io')(app);
 io.on('connection', function (socket) {
 var sessionData = cookie.parse(socket.request.headers.cookie);
 sessionData = decode(sessionData['express:sess']);
 if(sessionData && sessionData.user) {
 getCurrentUserBySessionObj(function(err, user) {
 var userId = user._id.toString();
 users[userId] = {
 socket: socket,
 friends: user.friends
 };
 socket.on('client-talking', function (data) {
 broadcastMessage(userId, data.text);
 });
 socket.on('disconnect', function() {
 users[userId] = null;
 });

Adding Real-time Chat

[172]

 }, sessionData);
 }

 });
}

We will now fetch the cookie value and determine the current user. The socket
object and the user's friends are cached. Then, we will continue listening for the
client-talking event, but now, we will send messages via the broadcastMessage
function. A small but very important addition is made towards the end; we listen
for the disconnect event and remove the cached data. That is needed to prevent
sending data to the disconnected users.

Customizing the output of the chat
It is nice that we can send messages to the right people, but the chat is still a bit
confusing because every text message that appears on the screen is in the same color
and we don't know which of our friends sent it. In this section, we are going to make
two improvements—we will append the user's name to the front of the message and
colorize the text.

Let's start with the colors and add a new helper method to the backend/api/
helpers.js file:

var getRandomColor = function() {
 var letters = '0123456789ABCDEF'.split('');
 var color = '#';
 for(var i = 0; i < 6; i++) {
 color += letters[Math.floor(Math.random() * 16)];
 }
 return color;
}

The following function generates a valid RGB color that is ready for use in
CSS. The right moment for you to pick a color for the user is when you cache
the socket object, as follows:

...
var getRandomColor = helpers.getRandomColor;

module.exports = function(app) {
 var io = require('socket.io')(app);
 io.on('connection', function (socket) {
 var sessionData = cookie.parse(socket.request.headers.cookie);
 sessionData = decode(sessionData['express:sess']);
 if(sessionData && sessionData.user) {
 getCurrentUserBySessionObj(function(err, user) {

Chapter 10

[173]

 var userId = user._id.toString();
 users[userId] = {
 socket: socket,
 friends: user.friends,
 color: getRandomColor()
 };
 socket.on('client-talking', function (data) {
 broadcastMessage(user, data.text);
 });
 socket.on('disconnect', function() {
 users[userId] = null;
 });
 }, sessionData);
 }

 });
}

So, along with the socket object and friends, we store a randomly picked
color. There is another small update. We no longer pass the user's ID to the
broadcastMessage function. We send the whole object because we need to
fetch the first and last name of the user.

Here is the updated broadcastMessage helper:

var broadcastMessage = function(userProfile, message) {
 var user = users[userProfile._id.toString()];
 var userName = userProfile.firstName + ' ' +
 userProfile.lastName;
 if(user && user.friends && user.friends.length > 0) {
 user.socket.emit('server-talking', {
 text: message,
 user: userName,
 color: user.color
 });
 for(var i=0; i<user.friends.length; i++) {
 var friend = users[user.friends[i]];
 if(friend && friend.socket) {
 friend.socket.emit('server-talking', {
 text: message,
 user: userName,
 color: user.color
 });
 }
 }
 }
};

Adding Real-time Chat

[174]

Now, the data object that goes to the client contains two additional properties—the
name of the current user and his/her randomly picked color.

The backend does its job. All we have to do now is tweak the frontend controller so
that it uses the name and color, as follows:

// frontend/js/controllers/Chat.js
socket.on('server-talking', function(data) {
 var message = '';
 message += data.user + ': ' + data.text;
 message += '';
 self.push('messages', message);
});

Instead of sending only text, we wrap the message in a tag. It has a text color
applied. Also, the message starts with the name of the user.

The final result of our work looks like the following screenshot:

Chapter 10

[175]

Summary
Socket.IO is one of the most popular Node.js tools used to develop real-time
applications. In this chapter, we successfully used it to build an interactive chat.
The users in our network were able to not only post content that appeared in their
feeds but also exchange messages with other users in real time. The WebSockets
technology made this possible.

The next chapter is dedicated to testing. We will learn about a few popular
modules that will help us write tests.

[177]

Testing the User Interface
In Chapter 10, Adding Real-time Chat, we extended our social network by adding
a real-time chat function. We used WebSockets and Socket.IO in particular to
implement the communication between the users in our system. The last chapter of
this book is dedicated to user interface testing. We will explore two popular tools to
run headless browser testing. This chapter covers the following topics:

• Introducing the basic testing toolset
• Preparing our project to run tests
• Running our tests with PhantomJS
• Testing the user's registration
• Testing with DalekJS

Introducing the basic testing toolset
Before writing the tests, we will spend some time talking about the testing toolset.
We need some instruments to define and run our tests.

The testing framework
In the context of JavaScript, the testing framework is a set of functions that help you
organize the tests into logical groups. There are framework functions such as suite,
describe, test, or it that define the structure of our suite. Here is a short example:

describe('Testing database communication', function () {
 it('should connect to the database', function(done) {
 // the actual testing goes here
 });
 it('should execute a query', function(done) {
 // the actual testing goes here
 });
});

Testing the User Interface

[178]

We used the describe function to wrap the more detailed tests (it) into a group.
Organizing the group in such a way helps us keep focus and at the same time,
it is quite informative.

Some popular testing frameworks in the JavaScript community are QUnit, Jasmine,
and Mocha.

The assertion library
What we usually do while testing is run an assertion. We very often compare the
values of variables to check whether they match with what we expected when we
originally wrote the program's logic. Some testing frameworks come with their own
assertion library, some don't.

The following line shows a simple usage of such a library:

expect(10).to.be.a('number')

It is important to mention that the APIs are designed like this so that we understand
the context by reading the test.

Node.js even has its own built-in library called assert. Some of the other options are
Chai, Expect, and Should.js.

Runner
The runner is a tool that we use to execute the test in a specific context, which is
very often a specific browser, but it may also be a different operating system or
customized environment. We may or may not need a runner. In this particular
chapter, we will use DalekJS as the test runner.

Preparing our project to run tests
Now we know what tools we need to run our tests. The next step is to prepare our
project to place such tests. Normally during development, we test our application
by visiting the pages and interacting with them. We know the result of these actions
and we verify if everything is okay. We want to do the same thing with automated
tests. However, instead of us repeating the same steps again and again, there will be
a script.

In order to make these scripts work, we have to put them in the right context.
In other words, they should be executed in the context of our application.

Chapter 11

[179]

In the previous section, we mentioned Chai (an assertion library) and Mocha (a
testing framework). They play well together. So, we will add them to our list of
dependencies, as follows:

// package.json
…
"dependencies": {
 "chai": "2.0.0",
 "mocha": "2.1.0",
 ...
}
…

A quick run of npm install will set up the modules in the node_modules directory.
Chai and Mocha are distributed as Node.js modules, but we may use them in the
browser environment, too. The newly created folders in node_modules contain
compiled versions. For example, to run Mocha in the browser, we have to include
node_modules/mocha/mocha.js in our page.

Our social network is a single-page application. We have a main HTML template
that is served by the backend, which is located in backend/tpl/page.html. The
Node.js server reads this file and sends it to the browser. The rest is handled by the
JavaScript code. Here is how page.html looks:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Node.js by example</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta name="description" content="Node.js by example">
 <meta name="author" content="Packt">
 <link rel="stylesheet" href="/static/css/styles.css">
</head>
<body>
 <div class="container"></div>
 <script src="/socket.io/socket.io.js"></script>
 <script src="/static/js/ractive.js"></script>
 <script src="/static/js/app.js"></script>
</body>
</html>

Testing the User Interface

[180]

The file contains all the external resources needed to run the application. However,
now we need to add a few more tags; some of them are as follows:

• The /node_modules/mocha/mocha.css file contains styles for the proper
display of the results of the tests. This is a part of Mocha's reporters.

• The /node_modules/mocha/mocha.js file is the testing framework.
• The /node_modules/chai/chai.js file is the assertion library.
• The /tests/spec.js is a file that contains the actual test. It still does not

exist. We will create a tests directory and a spec.js file inside it.
• An empty div tag acts as a placeholder for the test results and a few lines of

JavaScript bootstrap the Mocha framework.

We can't add all these new elements in the current page.html file, because the
users of the system will see them. We will place them in another file and tweak the
backend so that it serves it under specific conditions. Let's create backend/tpl/
pageTest.html:

<!doctype html>
<html lang="en">
<head>
 ...
 <link rel="stylesheet" href="/static/css/styles.css">
 <link rel="stylesheet" href="/node_modules/mocha/mocha.css" />
</head>
<body>
 <div class="container"></div>
 <script src="/socket.io/socket.io.js"></script>
 <script src="/static/js/ractive.js"></script>
 <script src="/static/js/app.js"></script>

 <div id="mocha"></div>
 <script src="/node_modules/mocha/mocha.js"></script>
 <script src="/node_modules/chai/chai.js"></script>
 <script>
 mocha.ui('bdd');
 mocha.reporter('html');
 expect = chai.expect;
 </script>
 <script src="/tests/spec.js"></script>
 <script>
 if (window.mochaPhantomJS) {
 mochaPhantomJS.run();
 }

Chapter 11

[181]

 else {
 mocha.run();
 }
 </script>

</body>
</html>

Once mocha.js and chai.js are injected in the page, we will configure the
framework. Our user interface will follow behavior-driven development and the
reporter will be html. Mocha has several types of reporters, and since we wanted
to display the results in a browser, we used this one. We defined an expect global
object that played the role of an assertion tool.

The lines after that will come in handy in the next section where we will run our
test with PhantomJS. These lines will basically check whether there is a window.
mochaPhantomJS object, and if there is, it will be used instead of the default mocha.

So far, so good. We have instruments that will help us to run and write our test and a
page that contains the necessary code. The next step is to tweak the backend so that it
uses the new pageTest.html file:

// backend/Default.js
var fs = require('fs');
var url = require('url');

var html = fs.readFileSync(__dirname +
 '/tpl/page.html').toString('utf8');
var htmlWithTests = fs.readFileSync(__dirname +
 '/tpl/pageTest.html').toString('utf8');

module.exports = function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 var urlParts = url.parse(req.url, true);
 var parameters = urlParts.query;
 if(typeof parameters.test !== 'undefined') {
 res.end(htmlWithTests + '\n');
 } else {
 res.end(html + '\n');
 }
}

Testing the User Interface

[182]

The file that we have to change is Default.js. That's the handler of the Default.js
file's route in our application. The newly added htmlWithTests variable contains the
new HTML markup. We use the url module to find out the GET variables that come
from the client. If there is a test parameter, then we will load the page containing
the layout and the test. Otherwise, it is the original HTML.

After the last change, we can run the server and open http://localhost:9000/
register?test=1. However, we will get a bunch of error messages complaining
that there are some missing files. This happens because the server.js file does not
recognize URLs that start with node_modules or tests. The files that exist in these
directories are static resources. So, we can use the already defined Assets module,
as follows:

// server.js
…
Router
.add('static', Assets)
.add('node_modules', Assets)
.add('tests', Assets)
.add('api', API)
.add(Default);

Finally, there is a file left that we have to create—tests/spec.js:

describe("Testing", function () {
 it("Test case", function (done) {
 expect(1).to.be.equal(1);
 done();
 });
});

This code is the simplest structure of a test. We have a group and a test inside.
The key moment here is to run done() towards the end of the test.

Chapter 11

[183]

We know that this test passes. The result in the browser looks like the
following screenshot:

It is worth mentioning that the loaded page is still the same except for the elements
in the top-right corner and below the footer. These new tags are generated by the
Mocha framework. This is how the html reporter displays the results of our test.

Testing the User Interface

[184]

Running our test with PhantomJS
The result of the preceding sections is an automated test that runs in the browser.
However, this is very often not enough. We may need to integrate the testing in our
deployment processes, and using the browser is not always an option. Thankfully,
there is a type of browser called a headless browser. It is a functional browser
without a user interface. We still can visit a page, click links, or fill forms, but all of
these actions are controlled by code. This is perfect for us and for automated testing.

There are a couple of popular headless browsers. Selenium (https://github.
com/seleniumhq/selenium) is one of them. It is well documented and has a big
community. Another one is PhantomJS. It plays well with Node.js. So we are going
to use it.

We already have several components added to the test environment. To use
PhantomJS directly, some supplementary configuration is needed. In order to avoid
additional complexity, we will install the mocha-phantomjs module. Its purpose
is to simplify the usage of the headless browser, especially in a combination of the
Mocha framework. The following command will set mocha-phantomjs as a global
command in our terminal:

npm install mocha-phantomjs -g

Since version 3.4, the mocha-phantomjs module uses PhantomJS as a peer
dependency, which means that we do not have to install the browser manually.

After successful installation, we are ready to run our test. The command that we have
to type in our console is mocha-phantomjs http://localhost:9000\?test=1.
There are back slashes because otherwise, if this wasn't the case, the terminal may
not have interpreted the line correctly.

The result is shown in the following screenshot:

This is pretty much the same result that we got in the browser. The good thing is that
the process now happens in the terminal.

https://github.com/seleniumhq/selenium
https://github.com/seleniumhq/selenium

Chapter 11

[185]

Testing user registration
Let's use the setup built in the previous sections and write an actual test. Let's say
that we want to make sure that our registering page works. The following are the
two processes that we want to capture with our test:

• Filling the form with wrong data and making sure that the application shows
an error message

• Filling the form with correct data and seeing a successful message

We are going to use PhantomJS as our headless (virtual) browser. So, all we have to
do is load our registration page and simulate user interactions, such as typing in the
fields and pressing the buttons.

Simulating user interaction
There are a couple of issues that we are going to resolve. The first one is the actual
simulation of user actions. From a JavaScript point of view, these actions are
translated to events dispatched by some particular DOM elements. The following
helper method will become a part of the tests/spec.js file:

describe("Testing", function () {

 var trigger = function(element, event, eventGroup, keyCode) {
 var e = window.document.createEvent(eventGroup || 'MouseEvents');
 if(keyCode) {
 e.keyCode = e.which = keyCode;
 }
 e.initEvent(event, true, true);
 return element.dispatchEvent(e);
 }

 it("Registration", function (done) {
 // ... our test here
 });

});

The trigger function accepts an element, the name of an event, an event group,
and a key code. The first two arguments are mandatory. The third one has a default
value of MouseEvents and the last one is optional. We are going to use the method to
trigger the change and click events.

Testing the User Interface

[186]

Filling and submitting the registration form
Let's start by filling the input fields of our registration form. It is worth mentioning
that the code that we are going to write runs in a browser so that we have access to
document.querySelector, for example. The following lines type a string in the first
name field:

var firstName = document.querySelector('#first-name');
firstName.value = 'First name';
trigger(firstName, 'change');

Sending a string to the firstName element updates the user interface. However
Ractive.js, our client-side framework, does not know about this change. The
dispatching of the change event solves this problem.

We will use the same pattern to add values to the last name, e-mail, and
password fields:

var lastName = document.querySelector('#last-name');
lastName.value = 'Last name';
trigger(lastName, 'change');

var email = document.querySelector('#email');
email.value = 'wrong email';
trigger(email, 'change');

var password = document.querySelector('#password');
password.value = 'password';
trigger(password, 'change');

The value of the e-mail's input field is invalid. This is done on purpose. We want to
capture the case where the backend returns an error. To finish the operation, we have
to click on the register button:

trigger(document.querySelector('input[value="register"]'),
 'click');

Chapter 11

[187]

If we run the test now, we will see the following screenshot:

The test basically fails with a timeout. This is because we didn't call the done
function. However, even then, we do not have any assertions.

Now, things get interesting. The processes that occur in the browser are
asynchronous. This means that we cannot simply run our assertion after we click
the button. We should wait for a while. The usage of setTimeout is not acceptable
in these cases. The right approach here is to tweak the code of the application so
that it notifies the outside world that a particular job is done. In our case, this
is the submission of the registration form. To be more precise, we have to update
s/controllers/Register.js:

module.exports = Ractive.extend({
 template: require('../../tpl/register'),
 components: {
 navigation: require('../views/Navigation'),
 appfooter: require('../views/Footer')
 },
 onrender: function() {
 ...
 this.on('register', function() {
 userModel.create(function(error, result) {
 ...
 self.fire('form-submitted');
 });
 });
 }
});

Testing the User Interface

[188]

The addition is self.fire('form-submitted'). Once the model returns the
response and we process it, we dispatch an event. For the users who visit the site,
this line does nothing. However, for our test suite, this is a way to find out when the
backend responds and the user interface is updated. This is when we have to make
our assertions.

Tweaking the code's execution order
The dispatching of the event is nice, but it does not solve the problem entirely.
We need to reach the Register controller and subscribe to the form-submitted
message. In our test, we have access to the global scope (the window object). Let's use
it as a bridge and provide a shortcut to the currently used controller, as follows:

// frontend/js/app.js
var showPage = function(newPage) {
 if(currentPage) currentPage.teardown();
 currentPage = newPage;
 body.innerHTML = '';
 currentPage.render(body);
 currentPage.on('navigation.goto', function(e, route) {
 Router.navigate(route);
 });
 window.currentPage = currentPage;
 if(typeof window.onAppReady !== 'undefined') {
 window.onAppReady();
 }
}

In the app.js file, we switched the pages of our application. This is the perfect place
for our tweak because at this point, we know which controller is rendered.

One last thing that you should do before continuing with the actual test is to make
sure that your social network is fully initialized and there is a view that is being
rendered. This again needs access to the global window object. Our test will store a
function in the window.onAppReady property, and the application will run it when
PhantomJS opens the page. Note that attaching objects or variables to the global
scope is not considered a good practice. However, in order to make our test work,
we need such little tricks. We can always skip this while compiling a file for
production release.

In backend/tpl/pageTest.html, we have the following code:

<script src="/socket.io/socket.io.js"></script>
<script src="/static/js/ractive.js"></script>
<script src="/static/js/app.js"></script>

Chapter 11

[189]

<div id="mocha"></div>
<script src="/node_modules/mocha/mocha.js"></script>
<script src="/node_modules/chai/chai.js"></script>
<script>
 mocha.ui('bdd');
 mocha.reporter('html');
 expect = chai.expect;
</script>
<script src="/tests/spec.js"></script>
<script>
 if (window.mochaPhantomJS) { mochaPhantomJS.run(); }
 else { mocha.run(); }
</script>

If we continue using these lines, our test will fail because no UI is rendered when
our assertions are executed. Instead, we should use the new onAppReady property
to delay the calling of the run method in the following way:

<div id="mocha"></div>
<script src="/node_modules/mocha/mocha.js"></script>
<script src="/node_modules/chai/chai.js"></script>
<script>
 mocha.ui('bdd');
 mocha.reporter('html');
 expect = chai.expect;
</script>
<script src="/tests/spec.js"></script>
<script>
 window.onAppReady = function() {
 if (window.mochaPhantomJS) { mochaPhantomJS.run(); }
 else { mocha.run(); }
 }
</script>
<script src="/socket.io/socket.io.js"></script>
<script src="/static/js/ractive.js"></script>
<script src="/static/js/app.js"></script>

Thus, we included Mocha and Chai. We configured the testing framework, added
a function that will be executed when onAppReady is called, and then we ran the
actual application.

Testing the User Interface

[190]

Listening to the form-submitted event
The very last code that we have to write is to subscribe for the form-submitted
event, which is dispatched by our controller when the form is submitted and the
result of the backend is processed. Our API should first respond with an error
because we set a wrong e-mail value (email.value = 'wrong email'). Here is
how we capture the error message:

var password = document.querySelector('#password');
password.value = 'password';
trigger(password, 'change');

window.currentPage.on('form-submitted', function() {
 var error = document.querySelector('.error');
 expect(!!error).to.be.equal(true);
 done();
});

trigger(document.querySelector('input[value="register"]'),
 'click');

The !!error item cast the error variable to a Boolean. We will check for the existence
of the error element. If it is there, then the test passes. The result in the console is
as follows:

We verified the error reporting. Let's close the cycle by making sure that the
successful message appears when all the fields are filled properly:

var submitted = 0;
window.currentPage.on('form-submitted', function() {
 if(submitted === 0) {
 submitted++;
 var error = document.querySelector('.error');
 expect(!!error).to.be.equal(true);
 var email = document.querySelector('#email');

Chapter 11

[191]

 var validEmail = 'test' + (new Date()).getTime() +
 '@test.com';
 email.value = validEmail;
 trigger(email, 'change');
 trigger(document.querySelector('input[value="register"]'),
 'click');
 } else {
 var success = document.querySelector('.success');
 expect(!!success).to.be.equal(true);
 done();
 }
});

The form-submitted event will be dispatched twice. So, we will use an additional
submitted variable to distinguish between both the calls. In the first case, we
will check for .error, while in the second one, we will check for .success. After
running the mocha-phantomjs command, we will get the same result as before, but
this time, we are sure that the entire registration process works. Note that we attach a
dynamically generated timestamp so that we get different e-mails every time.

Testing with DalekJS
DalekJS is an open source UI testing tool that is written entirely in JavaScript. It acts
as a test runner. It has its own API to perform user interface interactions. A very
interesting feature of DalekJS is that it works with different browsers. It is capable of
running tests in PhantomJS and popular browsers such as Chrome, Safari, Firefox,
and Internet Explorer. It uses a WebDriver JSON-Wire protocol to communicate
with these browsers and basically control what goes on in them.

Installing DalekJS
First, we need to install DalekJS's command-line tool. It is distributed as a Node.js
package. So, the following command will download the necessary files:

npm install dalek-cli -g

When the process finishes, we can run the dalek command in our terminal. The next
step is to add the dalekjs module in our dependencies. This is the package that
summons the tool's API. So, two more lines are needed in the package.json file:

{
 ...
 "dependencies": {
 "dalekjs": "0.0.9",

Testing the User Interface

[192]

 "dalek-browser-chrome": "0.0.11"
 ...
 }
}

We mentioned that DalekJS works with real browsers such as Chrome, Safari,
and Firefox. There are dedicated packages that deal with all of these browsers.
For example, if we want to test in the Chrome browser, we have to install dalek-
browser-chrome as the dependency.

Using the DalekJS API
DalekJS works in a similar way to the mocha-phantomjs module. We write our test
in a file and simply pass that file to a command in our terminal. Let's create a new file
called tests/dalekjs.spec.js and put the following code inside it:

module.exports = {
 'Testing registration': function (test) {
 test
 .open('http://localhost:9000/register')
 .setValue('#first-name', 'First name')
 .setValue('#last-name', 'Last name')
 .setValue('#email', 'wrong email')
 .setValue('#password', 'password')
 .click('input[value="register"]')
 .waitForElement('.error')
 .assert.text('.error').to.contain('Invalid or missing email')
 .setValue('#email', 'test' + (new Date()).getTime() +
 '@test.com')
 .click('input[value="register"]')
 .waitForElement('.success')
 .assert.text('.success').to.contain('Registration successful')
 .done();
 }
};

The tool requires that we export an object, the keys of which are our test cases.
We have only one case called Testing registration. We pass a function that
receives a test argument, which gives us access to the DalekJS API.

Chapter 11

[193]

The API of the module is designed in such a way that it is quite easy to understand
what is going on. We open a specific URL and set values to the input fields. Like in
the previous test, we will type in a wrong e-mail value and press the Submit button.
The .waitForElement method is handy here because the operation is asynchronous.
Once we detect the existence of the .error element, we will continue by writing the
correct e-mail value and submitting the form again.

To run the test, we have to type dalek ./tests/dalekjs.spec.js -b chrome in
the console. DalekJS will open a real Chrome window, which will execute the test
and report the following in the terminal:

With DalekJS, we did not have to tweak our application's code. There is no
additional assertion library or testing framework. All this is wrapped in a single
module that is easy to use and install.

From another point of view, DalekJS may not be useful to every project. For example,
it may not be useful when we need to interact with the code of the application or if
we need something that is not listed in the provided API.

Testing the User Interface

[194]

Summary
In this chapter, we saw how to test our user interface. We successfully solved a
couple of issues and used tools such as Mocha, Chai, and DalekJS. Testing our code
is important, but it is often not enough. Tests that simulate user interaction and
prove that our software works properly should exist.

[195]

Index
A
API

refactoring 121-124
API handler 52
application

entry point, constructing of 61, 62
layers 15-18

assertion library 178

B
Browserify

about 43
URL 43

brute-force-driven development 15
build system 18
built-in modules

about 10
child processes, managing 13
events, defining 11, 12
files, reading 11
files, writing 11
server, creating with HTTP module 10

C
child processes

managing 13
client-side JavaScript

Gulp, concatenating with 39, 40
modularity in browser,

with RequireJS 40-42

moving from Node.js to browser,
with Browserify 43-45

packing 39
code

base model class, updating 72, 73
extending 72
navigation, updating of pages 74
routing, updating of pages 74

code-over-configuration principle 22
comment

displaying 135, 136
posting, to page 133, 134

CommonJS 4
content

storing, in database 109, 110
controller

defining 62-64
controller, of home page

updating 107, 108
CSS preprocessors

about 37
Less 37
Sass 37

currently added pages
displaying 129, 130

current setup
evolving 51

D
DalekJS

installing 191
testing with 191

[196]

DalekJS API
using 192, 193

database
content, storing 109, 110
record, creating 126-128

database server
MongoDB, connecting to 71

date property 110
directory structure 52

E
emit function 12
entry point

constructing, of application 61, 62
event loop library

URL 2
events

managing, to particular page 137-140
working with 11, 12

execution order, code
tweaking 188, 189

F
feed, user

displaying 110-113
files

posting 114-119
reading 11
saving, with Node.js 33-36
writing 11

form
adding, for creating pages 124, 125
adding, to post text messages 105, 106
filling 186-188
submitting 186-188

form-submitted event
listening to 190

friends
fetching, from database 97-99
finding 91
model, writing 94-96

search page, adding 91-94
selecting 141, 142
users, making as 99-101

G
Grunt 19-22
Gulp

about 22-24, 39
concatenating with 39, 40

H
headless browser 184
HTML5 history API

reference link 58
HTML templates

defining, in script tags 45, 46
delivering 45
HTML, writing inside JavaScript 46, 47
loading externally 46
precompiling 47, 48

I
IDs, friends

sending, to backend 141, 142

J
Jasmine 178
JavaScript files

app.js 54
ractive.js 54

L
Less

about 37
URL 37

linked users
displaying, on Profile page 102-104

loading keyword 93

[197]

M
main server handlers

API handler 52
forming 52-54
page handler 53

message property 93
messages

exchanging, between client
and server 164-168

sending, to user's friends 169-172
Mocha 25, 178
model

creating 65-67
defining 106, 107

Model-View-Controller pattern
about 27-29
Controller 28
Model 27
View 28

module
creating 7
defining 4-6
updating 9, 10
using 4-9

MongoDB
connecting, to database server 71
installing 70
running 70
URL 69
working with 69

mustache
URL 59

N
Node.js

about 1
architecture 1, 2
event loop library 2
installing 3
server, running 3, 4
thread pool 2
URL 3
V8 2

Node Package Manager (NPM) 3
number of likes

counting 151-153
displaying 154, 155

O
output, chat

customizing 172-174

P
packages

distributing 7
managing 7
module, creating 7
module, updating 9, 10
module, using 8

page
comment, posting to 133, 134
creating, via adding form 124, 125

page handler 53
post

liking 151-153
sharing 147-150

processes
used, for capturing test 185

Profile page
linked users, displaying on 102-104

project
preparing, to run tests 178-183

Q
QUnit 178

R
Ractive.js

about 59-61
framework 142
URL 47, 63

React
URL 46

[198]

record
creating, in database 126-128

registration, user
testing 185

Representational State Transfer (REST) 30
RequireJS

about 40
URL 41

REST API 30-32
REST architecture

DELETE requests 30
GET requests 30
POST requests 30
PUT requests 30

router
implementing 54-58

runner 178

S
Sass

about 37
URL 37

Selenium
URL 184

Semantic Versioning 2.0.0
URL 9

server
creating, with HTTP module 10

Socket.IO
about 159
bringing, to project 159-161
URL 159

specific page
displaying 130-133

T
tag 141
tagged users

displaying, in user's feed 143-146
storing 143-146

task runner 18

tasks
default 23
js 23
watchers 23

TDD
about 24-27
benefits 24

test
running, with PhantomJS 184

Test-driven development. See TDD
testing framework 177, 178
testing toolset

about 177
assertion library 178
runner 178
testing framework 177, 178

text
content, storing in database 109, 110
form adding, to post text messages 105, 106
home page controller, updating 107, 108
model, defining 106, 107
posting 105
storing 105

thread pool
URL 2

U
UI

preparing, of chat area 162, 163
update method 153
user 30
user authentication, with sessions 81-86
userId property 110
user interaction

simulating 185
userName property 110
user profile

managing 86-89
user registration

about 75
backend API, updating 78-81
frontend, updating 75-78

[199]

V
V8

URL 2
views

managing 64, 65

W
WebSockets

about 157, 158
Ajax long-polling 158
Ajax polling 158
benefits 157, 158
defining 157, 158
HTML5 Server-sent

Events (EventSource) 158
HTTP communication 157
used, for real-time web apps 157

Thank you for buying
Node.js By Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Web Development with MongoDB
and Node.js
ISBN: 978-1-78398-730-6 Paperback: 294 pages

Build an interactive and full-featured web application
from scratch using Node.js and MongoDB

1. Configure your development environment to
use Node.js and MongoDB.

2. Explore the power of development using
JavaScript in the full stack of a web application.

3. A practical guide with clear instructions to
design and develop a complete web application
from start to finish.

Please check www.PacktPub.com for information on our titles

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web apps
using Node.js, Zombie.js and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code.

2. Use a headless browser to quickly test your web
application every time you make a small change
to it.

3. Use Mocha to describe and test the capabilities
of your web app.

Building Scalable Apps with
Redis and Node.js
ISBN: 978-1-78398-448-0 Paperback: 316 pages

Develop customized, scalable web apps through the
integration of powerful Node.js frameworks

1. Design a simple application and turn it into the
next Instagram.

2. Integrate utilities such as Redis, Socket.io, and
Backbone to create Node.js web applications.

3. Learn to develop a complete web application
right from the frontend to the backend in a
streamlined manner.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Node.js Fundamentals
	Understanding the Node.js architecture
	Installing Node.js
	Running Node.js server

	Defining and using modules
	Managing and distributing packages
	Creating a module
	Using modules
	Updating our module

	Introducing built-in modules
	Creating a server with the HTTP module
	Reading and writing to files
	Working with events
	Managing child processes

	Summary

	Chapter 2: Architecting the Project
	Introducing the basic layers of the application
	The task runner and building system
	Introducing Grunt

	Discovering Gulp
	Test-driven development
	The Model-View-Controller pattern
	Introducing the REST API concept
	Summary

	Chapter 3: Managing Assets
	Serving files with Node.js
	CSS preprocessing
	Packing client-side JavaScript
	Concatenating with Gulp
	Modularity in the browser with RequireJS
	Moving from Node.js to the browser with Browserify

	Delivering HTML templates
	Defining the templates in script tags
	Loading the template externally
	Writing HTML inside the JavaScript
	Precompiling templates

	Summary

	Chapter 4: Developing the Model-View-Controller Layers
	Evolving the current setup
	Directory structure
	Forming the main server handlers

	Implementing the router
	Introducing Ractive.js
	Constructing the entry point of the application
	Defining a controller
	Managing our views
	Creating a model
	Summary

	Chapter 5: Managing Users
	Working with the MongoDB database
	Installing MongoDB
	Running MongoDB
	Connecting to the database server

	Extending the code from the previous chapter
	Updating our base model class
	Updating page navigation and routing

	Registering a new user
	Updating the frontend
	Updating the backend API

	User authentication with sessions
	Managing a user's profile
	Summary

	Chapter 6: Adding Friendship Capabilities
	Finding friends
	Adding the search page
	Writing the model
	Fetching friends from the database

	Marking users as friends
	Displaying the linked users on the
Profile page
	Summary

	Chapter 7: Posting Content
	Posting and storing text
	Adding a form to post text messages
	Introducing the content's model
	Updating the controller of the home page
	Storing content in the database

	Showing the user's feed
	Posting files
	Summary

	Chapter 8: Creating Pages and Events
	Refactoring the API
	Adding a form to create pages
	Creating a record in the database
	Showing the currently added pages
	Showing a specific page
	Posting a comment to a page
	Showing the comments
	Managing events attached to a particular page
	Summary

	Chapter 9: Tagging, Sharing, and Liking
	Selecting friends and sending their IDs to the backend
	Storing the tagged users and displaying them in the user's feed
	Sharing a post

	Liking posts and counting the number
of likes
	Showing the number of likes
	Summary

	Chapter 10: Adding Real-time Chat
	Getting to know WebSockets
	Bringing Socket.IO to the project
	Preparing the UI of the chat area
	Exchanging messages between the client and the server
	Sending messages to the user's friends only
	Customizing the output of the chat
	Summary

	Chapter 11: Testing the User Interface
	Introducing the basic testing toolset
	The testing framework
	The assertion library
	Runner

	Preparing our project to run tests
	Running our test with PhantomJS
	Testing user registration
	Simulating user interaction
	Filling and submitting the registration form
	Tweaking the code's execution order
	Listening to the form-submitted event

	Testing with DalekJS
	Installing DalekJS
	Using the DalekJS API

	Summary

	Index

