

Node.js	Essentials

Table	of	Contents

Node.js	Essentials

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started

Setting	up

Hello	require

Hello	npm

Summary

2.	Simple	HTTP

Introducing	routing

Summary

3.	Authentication

Basic	authentication

Bearer	tokens

OAuth

Summary

4.	Debugging

Logging

Error	handling

Summary

5.	Configuration

JSON	files

Environmental	variables

Arguments

Summary

6.	Level	DB	and	NoSQL

Level	DB

MongoDB

Summary

7.	Socket.IO

Rooms

Authentication

Summary

8.	Creating	and	Deploying	Packages

Creating	npm	packages

Summary

9.	Unit	Testing

Installing	mocha

Chai

Stubbing	methods

Summary

10.	Using	More	Than	JavaScript

CoffeeScript

Code	blocks	and	functions

The	existential	operator

Objects	and	arrays

Classes

Summary

Index

Node.js	Essentials

Node.js	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1301015

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-492-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Fabian	Cook

Reviewers

Shoubhik	Bose

Glenn	Geenen

Commissioning	Editor

Edward	Gordan

Acquisition	Editor

Divya	Poojari

Content	Development	Editor

Athira	Laji

Technical	Editor

Naveenkumar	Jain

Copy	Editor

Sneha	Singh

Project	Coordinator

Harshal	Ved

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Fabian	Cook	is	an	experienced	JavaScript	developer	who	lives	in	Hawkes	Bay,	New
Zealand.	He	began	working	with	Java	and	C#	very	early	in	his	life,	which	lead	to	using
Node.js	in	an	open	source	context.	He	is	now	currently	working	for	a	New	Zealand	ISP,
known	as	NOW	NZ	where	they	are	utilizing	the	full	power	of	Node.js,	Docker	and
CoreOS.

About	the	Reviewer
Glenn	Geenen	is	a	Node.js	developer	with	a	background	in	game	and	mobile
development.	He	has	mostly	worked	as	an	iOS	consultant	before	becoming	a	Node.js
consultant	for	his	company,	GeenenTijd.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Node.js	is	simply	a	tool	that	lets	you	use	JavaScript	on	the	server	side.	However,	it
actually	does	much	more	than	that	–	by	extending	JavaScript,	it	allows	for	a	much	more
integrated	and	efficient	approach	to	development.	It	comes	as	no	surprise	that	it’s	a
fundamental	tool	for	full-stack	JavaScript	developers.	Whether	you	work	on	the	backend
or	frontend,	you	adopt	a	much	more	collaborative	and	agile	way	of	working	using	Node.js,
so	that	you	and	your	team	can	focus	on	delivering	a	quality	end	product.	This	will	ensure
that	you’re	ready	to	take	on	any	new	challenge	that	gets	thrown	at	you.

This	book	will	be	fast	paced	and	cover	dependency	management,	running	your	own	HTTP
server,	real	time	communication,	and	everything	in	between	that	is	needed	to	get	up	and
running	with	Node.js.

What	this	book	covers
Chapter	1,	Getting	Started,	covers	the	setup	of	Node.js.	You	will	also	cover	how	to	utilize
and	manage	dependencies.

Chapter	2,	Simple	HTTP,	covers	how	to	run	a	simple	HTTP	server	and	helps	you
understand	routing	and	utilization	of	middleware.

Chapter	3,	Authentication,	covers	the	utilization	of	middleware	and	JSON	Web	Token	to
authenticate	users.

Chapter	4,	Debugging,	covers	the	integration	of	post-mortem	techniques	in	your
development	tasks	and	how	to	debug	your	Node.js	programs.

Chapter	5,	Configuration,	covers	the	configuration	and	maintenance	of	your	software
using	centralized	configuration	options,	arguments,	and	environmental	variables.

Chapter	6,	LevelDB	and	NoSQL,	covers	the	introduction	of	NoSQL	databases,	such	as
LevelDB	and	MongoDB.	It	also	covers	the	use	of	the	simple	key/value	store	and	a	more
complete	document	database.

Chapter	7,	Socket.IO,	explores	the	real-time	communication	between	clients,	servers,	and
back	again	and	also	how	it	authenticates	and	notifies	the	users.

Chapter	8,	Creating	and	Deploying	Packages,	focuses	on	sharing	the	modules	and
contributing	to	the	eco-system

Chapter	9,	Unit	Testing,	tests	your	code	using	Mocha,	Sinon,	and	Chance	and	also	covers
how	to	use	mocks	with	functions	and	generate	random	values	to	test	your	code

Chapter	10,	Using	More	Than	JavaScript,	explains	the	usage	of	CoffeeScript	with	Node.js
to	expand	language	capabilities.

What	you	need	for	this	book
You	will	need	a	computer	that	runs	Unix	(Macintosh),	Linux	or	Windows,	along	with
your	preferred	Integrated	Development	Environment.	If	you	don’t	have	an	IDE	then	you
have	a	few	options,	such	as:

Atom:	https://atom.io/
Sublime:	http://www.sublimetext.com/
Cloud	9:	https://c9.io/

https://atom.io/
http://www.sublimetext.com/
https://c9.io/

Who	this	book	is	for
The	book	will	be	helpful	to	anybody	who	wants	to	have	knowledge	of	Node.js	(what
Node.js	is	about,	how	to	use	it,	where	it’s	useful	and	when	to	use	it).	Familiarity	with
server-side	and	Node.js	is	a	prerequisite.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

<script	type='application/javascript'	src='script_a.js'></script>

<script	type='application/javascript'	src='script_b.js'></script>

Any	command-line	input	or	output	is	written	as	follows:

[~]$	npm	install	-g	n

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“If	the	user	hasn’t	passed
both	the	username	and	password	the	server	will	return	500	Bad	Request“.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started
Every	Web	developer	must	have	come	across	it	every	once	in	a	while,	even	if	they	just
dabble	in	simple	Web	pages.	Whenever	you	want	to	make	your	Web	page	a	little	more
interactive,	you	grab	your	trustworthy	friends,	such	as	JavaScript	and	jQuery,	and	hack
together	something	new.	You	might	have	developed	some	exciting	frontend	applications
using	AngularJS	or	Backbone	and	want	to	learn	more	about	what	else	you	can	do	with
JavaScript.

While	testing	your	website	on	multiple	browsers	you	must	have	come	across	Google
Chrome	at	some	point	and	you	might	have	noticed	that	it	is	a	great	platform	for	JavaScript
applications.

Google	Chrome	and	Node.js	have	something	very	big	in	common:	they	both	work	on
Google’s	high-performance	V8	JavaScript	engine,	this	gives	us	the	same	engine	in	the
browser	that	we	will	be	using	in	the	backend,	pretty	cool,	right?

Setting	up
In	order	to	get	started	and	use	Node.js,	we	need	to	download	and	install	Node.js.	The	best
way	to	install	it	will	be	to	head	over	to	https://nodejs.org/	and	download	the	installer.

At	the	time	of	writing,	the	current	version	of	Node.js	is	4.2.1.

To	ensure	consistency,	we	are	going	to	use	a	npm	package	to	install	the	correct	version	of
Node.JS	and,	for	this,	we	are	going	to	use	the	n	package	described	at
https://www.npmjs.com/package/n.

Currently,	this	package	has	support	only	for	*nix	machines.	For	Windows.	see	nvm-
windows	or	download	the	binary	for	4.2.1	from	https://nodejs.org/dist/v4.2.1/.

Once	you	have	Node.js	installed,	open	a	terminal	and	run:

[~]$	npm	install	-g	n

The	–g	argument	will	install	the	package	globally	so	we	can	use	the	package	anywhere.

Linux	users	may	need	to	run	commands	that	install	global	packages	as	sudo.

Using	the	recently	install	package,	run:

[~]$	n

This	will	display	a	screen	with	the	following	packages:

		node/0.10.38

		node/0.11.16

		node/0.12.0

		node/0.12.7

		node/4.2.1

If	node/4.2.1	isn’t	marked	we	can	simply	run	the	following	packages;	this	will	ensure
that	node/4.2.1	gets	installed:

[~]$	sudo	n	4.2.1

To	ensure	that	the	node	is	good-to-go,	lets	create	and	run	a	simple	hello	world	example:

[~/src/examples/example-1]$	touch	example.js

[~/src/examples/example-1]$	echo	"console.log(\"Hello	world\")"	>	

example.js

[~/src/examples/example-1]$	node	example.js

Hello	World

Cool,	it	works;	now	let’s	get	down	to	business.

https://nodejs.org/
https://www.npmjs.com/package/n
https://nodejs.org/dist/v4.2.1/

Hello	require
In	the	preceding	example,	we	just	logged	a	simple	message,	nothing	interesting,	so	let’s
dive	a	bit	deeper	in	this	section.

When	using	multiple	scripts	in	the	browser,	we	usually	just	include	another	script	tag	such
as:

<script	type='application/javascript'	src='script_a.js'></script>

<script	type='application/javascript'	src='script_b.js'></script>

Both	these	scripts	share	the	same	global	scope,	this	usually	leads	to	some	unusual	conflicts
when	people	want	to	give	variables	the	same	name.

//script_a.js

function	run()	{

				console.log("I'm	running	from	script_a.js!");

}

$(run);

//script_b.js

function	run()	{

				console.log("I'm	running	from	script_b.js!");

}

$(run);

This	can	lead	to	confusion,	and	when	many	files	are	minified	and	crammed	together	it
causes	a	problem;	script_a	declares	a	global	variable,	which	is	then	declared	again	in
script_b	and,	on	running	the	code,	we	see	the	following	on	the	console:

>	I'm	running	from	script_b.js!

>	I'm	running	from	script_b.js!

The	most	common	method	to	get	around	this	and	to	limit	the	pollution	of	the	global	scope
is	to	wrap	our	files	with	an	anonymous	function,	as	shown:

//script_a.js

(function($,	undefined)	{

				function	run()	{

								console.log("I'm	running	from	script_a.js!");

				}

				$(run);

})(jQuery);

//script_b.js

(function($,	undefined)	{

				function	run()	{

								console.log("I'm	running	from	script_b.js!");

				}

				$(run);

})(jQuery);

Now	when	we	run	this,	it	works	as	expected:

>	I'm	running	from	script_a.js!

>	I'm	running	from	script_b.js!

This	is	good	for	code	that	isn’t	depended	upon	externally,	but	what	do	we	do	for	the	code
that	is?	We	just	export	it,	right?

Something	similar	to	the	following	code	will	do:

(function(undefined)	{

				function	Logger(){		

				}

				Logger.prototype.log	=	function(message	/*...*/){

								console.log.apply(console,	arguments);

				}

				this.Logger	=	Logger;	

})()

Now,	when	we	run	this	script,	we	can	access	Logger	from	the	global	scope:

var	logger	=	new	Logger();

logger.log("This",	"is",	"pretty",	"cool")

>	This	is	pretty	cool

So	now	we	can	share	our	libraries	and	everything	is	good;	But	what	if	someone	else
already	has	a	library	that	exposes	the	same	Logger	class.

What	does	node	do	to	solve	this	issue?	Hello	require!

Node.js	has	a	simple	way	to	bring	in	scripts	and	modules	from	external	sources,
comparable	to	require	in	PHP.

Lets	create	a	few	files	in	this	structure:

/example-2

				/util

								index.js

								logger.js

				main.js

/*	util/index.js	*/

var	logger	=	new	Logger()

var	util	=	{

				logger:	logger

};

/*	util/logger.js	*/

function	Logger(){

}

Logger.prototype.log	=	function(message	/*...*/){

				console.log.apply(console,	arguments);

};

/*	main.js	*/

util.logger.log("This	is	pretty	cool");

We	can	see	that	main.js.	is	dependent	on	util/index.js,	which	is	in	turn	dependent	on
util/logger.js.

This	should	just	work	right?	Maybe	not.	Let’s	run	the	command:

[~/src/examples/example-2]$	node	main.js

ReferenceError:	logger	is	not	defined

				at	Object.<anonymous>	(/Users/fabian/examples/example-2/main.js:1:63)

				/*	Removed	for	simplicity	*/

				at	Node.js:814:3

So	why	is	this?	Shouldn’t	they	be	sharing	the	same	global	scope?	Well,	in	Node.js	the
story	is	a	bit	different.	Remember	those	anonymous	functions	that	we	were	wrapping	our
files	in	earlier?	Node.js	wraps	our	scripts	in	them	automatically	and	this	is	where	require
fits	in.

Lets	fix	our	files,	as	shown:

/*	util/index.js	*/

Logger	=	require("./logger")

/*	main.js	*/

util	=	require("./util");		

If	you	notice,	I	didn’t	use	index.js	when	requiring	util/index.js;	the	reason	for	this	is
that	when	you	a	require	a	folder	rather	than	a	file	you	can	specify	an	index	file	that	can
represent	that	folder’s	code.	This	can	be	handy	for	something	such	as	a	model	folder
where	you	expose	all	your	models	in	one	require	rather	than	having	a	separate	require	for
each	model.

So	now,	we	have	required	our	files.	But	what	do	we	get	back?

[~/src/examples/example-2]$	node

>	var	util	=	require("./util");

>	console.log(util);

{}	

Still,	there	is	no	logger.	We	have	missed	an	important	step;	we	haven’t	told	Node.js	what
we	want	to	expose	in	our	files.

To	expose	something	in	Node.js,	we	use	an	object	called	module.exports.	There	is	a
shorthand	reference	to	it	that	is	just	exports.	When	our	file	is	wrapped	in	an	anonymous
function,	both	module	and	exports	are	passed	as	a	parameter,	as	shown	in	the	following
example:

function	Module()	{

				this.exports	=	{	};

}

function	require(file)	{

				//

				returns	module.exports;

}	

var	module	=	new	Module();

var	exports	=	module.exports;

(function(exports,	require,	module)	{

				exports	=	"Value	a"

				module.exports	=	"Value	b"

})(exports,	require,	module);

console.log(module.exports);

//	Value	b

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	example	shows	that	exports	is	initially	just	a	reference	to	module.exports.	This
means	that,	if	you	use	exports	=	{	},	the	value	you	set	it	as	won’t	be	accessible	outside
the	function’s	scope.	However,	when	you	add	properties	to	an	exports	object,	you	are
actually	adding	properties	to	the	module.exports	object	as	they	are	both	the	same	value.
Assigning	a	value	to	module.exports	will	export	that	value	because	it	is	accessible
outside	the	function’s	scope	through	the	module.

With	this	knowledge,	we	can	finally	run	our	script	in	the	following	manner:

/*	util/index.js	*/

Logger	=	require("./logger.js");

exports.logger	=	new	Logger();

/*	util/logger.js	*/

function	Logger(){

}	

Logger.prototype.log	=	(message	/*...*/)	{

				console.log.apply(console,	arguments);

};

module.exports	=	Logger;

/*	main.js	*/

util	=	require("./utils");

util.logger.log("This	is	pretty	cool");

Running	main.js:

[~/src/examples/example-2]$	node	main.js

This	is	pretty	cool

Require	can	also	be	used	to	include	modules	in	our	code.	When	requiring	modules,	we
don’t	need	to	use	a	file	path,	we	just	need	the	name	of	the	node	module	that	we	want.

Node.js	includes	many	prebuilt	core	modules,	one	of	which	is	the	util	module.	You	can
find	details	on	the	util	module	at	https://nodejs.org/api/util.html.

Let’s	see	the	util	module	command:

[~]$	node

>	var	util	=	require("util")

http://www.packtpub.com
http://www.packtpub.com/support
https://nodejs.org/api/util.html

>	util.log('This	is	pretty	cool	as	well')

01	Jan	00:00:00	-	This	is	pretty	cool	as	well	

Hello	npm
Along	with	internal	modules	there	is	also	an	entire	ecosystem	of	packages;	the	most
common	package	manager	for	Node.js	is	npm.	At	the	time	of	writing,	there	are	a	total	of
192,875	packages	available.

We	can	use	npm	to	access	packages	that	do	many	things	for	us,	from	routing	HTTP
requests	to	building	our	projects.	You	can	also	browse	the	packages	available	at
https://www.npmjs.com/.

Using	a	package	manager	you	can	bring	in	other	modules,	which	is	great	as	you	can	spend
more	time	working	on	your	business	logic	rather	than	reinventing	the	wheel.

Let’s	download	the	following	package	to	make	our	log	messages	colorful:

[~/src/examples/example-3]$	npm	install	chalk

Now,	to	use	it,	create	a	file	and	require	it:

[~/src/examples/example-3]$	touch	index.js

/*	index.js	*/

var	chalk	=	require("chalk");

console.log("I	am	just	normal	text")

console.log(chalk.blue("I	am	blue	text!"))

On	running	this	code,	you	will	see	the	first	message	in	a	default	color	and	the	second
message	in	blue.	Let’s	look	at	the	command:.

[~/src/examples/example-3]$	node	index.js

I	am	just	normal	text

I	am	blue	text!

Having	the	ability	to	download	existing	packages	comes	in	handy	when	you	require
something	that	someone	else	has	already	implemented.	As	we	said	earlier,	there	are	many
packages	out	there	to	choose	from.

We	need	to	keep	track	of	these	dependencies	and	there	is	a	simple	solution	to	that:
package.json.

Using	package.json	we	can	define	things,	such	as	the	name	of	our	project,	what	the	main
script	is,	how	to	run	tests,	our	dependencies,	and	so	on.	You	can	find	a	full	list	of
properties	at	https://docs.npmjs.com/files/package.json.

npm	provides	a	handy	command	to	create	these	files	and	it	will	ask	you	the	relevant
questions	needed	to	create	your	package.json	file:

[~/src/examples/example-3]$	npm	init

The	preceding	utility	will	walk	you	through	the	creation	of	a	package.json	file.

It	only	covers	the	most	common	items	and	tries	to	guess	valid	defaults.

Run	the	npm	help	json	command	for	definitive	documentation	on	these	fields	and	to
know	what	they	do	exactly.

https://www.npmjs.com/
https://docs.npmjs.com/files/package.json

Afterwards,	use	npm	and	install	<pkg>	--save	to	install	a	package	and	save	it	as	a
dependency	in	the	package.json	file.

Press	^C	to	quit	at	any	time:

name:	(example-3)

version:	(1.0.0)	

description:	

entry	point:	(main.js)

test	command:	

git	repository:	

keywords:

license:	(ISC)	

About	to	write	to	/examples/example-3/package.json:

{

		"name":	"example-3",

		"version":	"1.0.0",

		"description":	"",

		"main":	"main.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"....",

		"license":	"ISC"

}

Is	this	ok?	(yes)	

The	utility	will	provide	you	with	default	values,	so	it	is	easier	to	just	skip	through	them
using	the	Enter	key.

Now	when	installing	our	package	we	can	use	the	--save	option	to	save	chalk	as	a
dependency,	as	shown:

[~/src/examples/example-3]$	npm	install	--save	chalk

We	can	see	chalk	has	been	added:

[~/examples/example-3]$	cat	package.json

{

		"name":	"example-3",

		"version":	"1.0.0",

		"description":	"",

		"main":	"main.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"...",

		"license":	"ISC",

		"dependencies":	{

				"chalk":	"^1.0.0"

		}

}

We	can	add	these	dependencies	manually	by	modifying	package.json;	this	is	the	most
common	method	to	save	dependencies	on	installation.

You	can	read	more	about	the	package	file	at:	https://docs.npmjs.com/files/package.json.

If	you	are	creating	a	server	or	an	application	rather	than	a	module,	you	most	likely	want	to
find	a	way	to	start	your	process	without	having	to	give	a	path	to	your	main	file	all	the
time;	this	is	where	the	script	object	in	your	package.json	file	comes	into	play.

To	set	your	start	up	script,	you	just	need	to	set	the	start	property	in	the	scripts	object,	as
shown:

"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",

				"start":	"node	server.js"

}

Now,	all	we	need	to	do	is	run	npm	start	and	then	npm	will	run	the	start	script	we	have
already	specified.

We	can	define	more	scripts,	for	example	if	we	want	a	start	script	for	the	development
environment	we	can	also	define	a	development	property;	with	non-standard	script	names
however,	instead	of	just	using	npm	<script>,	we	need	to	use	npm	run	<script>.	For
example,	if	we	want	to	run	our	new	development	script	we	will	have	to	use	npm	run
development.

npm	has	scripts	that	are	triggered	at	different	times.	We	can	define	a	postinstall	script
that	runs	after	we	run	npm	install;	we	can	use	this	if	we	want	to	trigger	a	package
manager	to	install	the	modules	(for	example,	bower)

You	can	read	more	about	the	scripts	object	here:	https://docs.npmjs.com/misc/scripts.

You	need	to	define	a	package	if	you	are	working	in	a	team	of	developers	where	the	project
is	to	be	installed	on	different	machines.	If	you	are	using	a	source	control	tool	such	as	git,	it
is	recommended	that	you	add	the	node_modules	directory	into	your	ignore	file,	as	shown:

[~/examples/example-3]$	echo	"node_modules"	>	.gitignore

[~/examples/example-3]$	cat	.gitignore

node_modules

https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/misc/scripts

Summary
That	was	quick,	wasn’t	it?	We	have	covered	the	fundamentals	of	Node.js,	which	we	need
to	continue	on	our	journey.

We	have	covered	how	easy	it	is	to	expose	and	protect	public	and	private	code	compared	to
regular	JavaScript	code	in	the	browser,	where	the	global	scope	can	get	very	polluted.

We	also	know	how	to	include	packages	and	code	from	external	sources	and	how	to	ensure
that	the	packages	included	are	consistent.

As	you	can	see	there	is	a	huge	ecosystem	of	packages	in	one	of	the	many	package
managers,	such	as	npm,	just	waiting	for	us	to	use	and	consume.

In	the	next	chapter,	we	will	focus	on	creating	a	simple	server	to	route,	authenticate,	and
consume	requests.

Chapter	2.	Simple	HTTP
Now	that	we	have	understood	the	basics,	we	can	move	on	to	something	a	bit	more	useful.
In	this	chapter,	we	will	look	at	creating	an	HTTP	server	and	routing	requests.	While
working	with	Node.js	you	will	come	across	HTTP	very	often,	as	server	side	scripting	is
one	of	the	common	uses	of	Node.js.

Node.js	comes	with	a	built	in	HTTP	server;	all	you	need	to	do	is	require	the	included	http
package	and	create	a	server.	You	can	read	more	about	the	package	at
https://nodejs.org/api/http.html.

var	Http	=	require('http');

				

var	server	=	Http.createServer();

This	will	create	your	very	own	HTTP	server	that	is	ready	to	roll.	In	this	state,	though,	it
won’t	be	listening	for	any	requests.	We	can	start	listening	on	any	port	or	socket	we	wish,
as	long	as	it	is	available,	as	shown:

var	Http	=	require('http');

				

var	server	=	Http.createServer();

server.listen(8080,	function()	{

				console.log('Listening	on	port	8080');	

});

Let’s	save	the	preceding	code	to	server.js	and	run	it:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

By	navigating	to	http://localhost:8080/	on	your	browser	you	will	see	that	the	request
has	been	accepted	but	the	server	isn’t	responding;	this	is	because	we	haven’t	handled	the
requests	yet,	we	are	just	listening	for	them.

When	we	create	the	server	we	can	pass	a	callback	that	will	be	called	each	time	there	is	a
request.	The	parameters	passed	will	be:	request,	response.

function	requestHandler(request,	response)	{

}

var	server	=	Http.createServer(requestHandler);

Now	each	time	we	get	a	request	we	can	do	something:

var	count	=	0;

function	requestHandler(request,	response)	{

				var	message;

				count	+=	1;

				response.writeHead(201,	{

								'Content-Type':	'text/plain'

				});

								

				message	=	'Visitor	count:	'	+	count;

				console.log(message);

https://nodejs.org/api/http.html

				response.end(message);

}

Let’s	run	the	script	and	request	the	page	from	the	browser;	you	should	see	Visitor
count:	1	returned	to	the	browser:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

Visitor	count:	1

Visitor	count:	2

Something	weird	has	happened	though:	an	extra	request	gets	generated.	Who	is	visitor	2?

The	http.IncomingMessage	(the	parameter	request)	exposes	a	few	properties	that	can	be
used	to	figure	this	out.	The	property	we	are	most	interested	in	right	now	is	url.	We	are
expecting	just	/	to	be	requested,	so	let’s	add	this	to	our	message:

message	=	'Visitor	count:	'	+	count	+	',	path:	'	+	request.url;

Now	you	can	run	the	code	and	see	what’s	going	on.	You	will	notice	that	/favicon.ico	has
been	requested	as	well.	If	you	are	not	able	to	see	this	then	you	must	be	wondering	what	I
have	been	going	on	about	or	if	your	browser	has	been	to	http://localhost:8080	recently
and	has	a	cached	icon	already.	If	this	is	the	case,	then	you	can	request	the	icon	manually,
for	example	from	http://localhost:8080/favicon.ico:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

Visitor	count:	1,	path:	/

Visitor	count:	2,	path:	/favicon.ico

We	can	also	see	that	if	we	request	any	other	page	we	will	get	the	correct	path,	as	shown:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

Visitor	count:	1,	path:	/

Visitor	count:	2,	path:	/favicon.ico

Visitor	count:	3,	path:	/test

Visitor	count:	4,	path:	/favicon.ico

Visitor	count:	5,	path:	/foo

Visitor	count:	6,	path:	/favicon.ico

Visitor	count:	7,	path:	/bar

Visitor	count:	8,	path:	/favicon.ico

Visitor	count:	9,	path:	/foo/bar/baz/qux/norf

Visitor	count:	10,	path:	/favicon.ico

This	isn’t	the	desired	outcome	though,	for	everything	but	a	few	routes	we	want	to	return
404:	Not	Found.

Introducing	routing
Routing	is	essential	for	almost	all	Node.js	servers.	First,	we	will	implement	our	own
simple	version	and	then	move	on	to	the	more	complex	rounting.

We	can	implement	our	own	simple	router	using	a	switch	statement,	such	as:

function	requestHandler(request,	response)	{

				var	message,

								status	=	200;

				count	+=	1;

				switch(request.url)	{

								case	'/count':

												message	=	count.toString();

												break;

								case	'/hello':

												message	=	'World';

												break;

								default:	

												status	=	404;

												message	=	'Not	Found';

												break;

				}

				response.writeHead(201,	{

								'Content-Type':	'text/plain'

				});

				console.log(request.url,	status,	message);

				response.end(message);	

}

Let’s	run	the	following	example:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

/foo	404	Not	Found

/bar	404	Not	Found

/world	404	Not	Found

/count	200	4

/hello	200	World

/count	200	6

You	can	see	the	count	increasing	with	each	request;	however,	it	isn’t	returned	each	time.	If
we	haven’t	defined	a	case	specifically	for	that	route,	we	return	404:	Not	Found.

For	services	that	implement	a	RESTful	interface,	we	want	to	be	able	to	route	requests
based	on	the	HTTP	method	as	well.	The	request	object	exposes	this	using	the	method
property.

Adding	this	to	the	log	we	can	see	this:

console.log(request.method,	request.url,	status,	message);

Run	the	example	and	execute	your	requests,	you	can	use	a	REST	client	to	invoke	a	POST
request:

[~/examples/example-4]$	node	server.js

Listening	on	port	8080

GET	/count	200	1

POST	/count	200	2

PUT	/count	200	3

DELETE	/count	200	4

We	can	implement	a	router	to	route	based	on	a	method,	but	there	are	packages	that	do	this
for	us	already	out	there.	For	now	we	will	use	a	simple	package	called	router:

[~/examples/example-5]$	npm	install	router

Now,	we	can	do	some	more	complex	routing	of	our	requests:

Let’s	create	a	simple	RESTful	interface.

First,	we	need	to	create	the	server,	as	shown:

/*	server.js	*/

var	Http	=	require('http'),

				Router	=	require('router'),	

				server,

				router;	

router	=	new	Router();

server	=	Http.createServer(function(request,	response)	{

				router(request,	response,	function(error)	{

								if(!error)	{

												response.writeHead(404);

								}	else	{

												//Handle	errors

												console.log(error.message,	error.stack);

												response.writeHead(400);

								}							

								response.end('\n');

				});

});

				

server.listen(8080,	function()	{

				console.log('Listening	on	port	8080');

});

Running	the	server	should	show	that	the	server	is	listening.

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

We	want	to	define	a	simple	interface	to	read,	save,	and	delete	messages.	We	might	want	to
read	individual	messages	as	well	as	a	list	of	messages;	this	essentially	defines	a	set	of
RESTful	endpoints.

REST	stands	for	Representational	State	Transfer;	it	is	a	very	simple	and	common	style

used	by	many	HTTP	programming	interfaces.

The	endpoints	we	want	to	define	are:

HTTP	Method Endpoint Used	to

POST /message Create	message

GET /message/:id Read	message

DELETE /message/:id Delete	message

GET /message Read	multiple	messages

For	each	HTTP	method,	the	router	has	a	method	to	use	for	mapping	a	route.	This	interface
is	in	the	form	of:

router.<HTTP	method>(<path>,	[...	<handler>])

We	can	define	multiple	handlers	for	each	route,	but	we	will	come	back	to	that	in	a
moment.

We	will	go	through	each	route,	create	an	implementation,	and	append	the	code	to	the	end
of	server.js.

We	want	to	store	our	messages	somewhere,	and	in	the	real	world	we	will	store	them	in	a
database;	however,	for	simplicity	we	will	use	an	array	with	a	simple	counter,	as	shown:

var	counter	=	0,

				messages	=	{	};

Our	first	route	will	be	used	to	create	messages:

function	createMessage(request,	response)	{

				var	id	=	counter	+=	1;

				console.log('Create	message',	id);

				response.writeHead(201,	{

								'Content-Type':	'text/plain'

				});

				response.end('Message	'	+	id);

}

router.post('/message',	createMessage);

We	can	ensure	that	this	route	works	by	running	the	server	and	doing	a	POST	request	to
http://localhost:8000/message.

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Create	message	1

Create	message	2

Create	message	3

We	can	also	confirm	that	the	counter	is	incrementing,	as	the	id	increases	each	time	we
make	a	request.	We	will	do	this	to	keep	a	track	of	the	count	of	messages	and	to	give	a
unique	id	to	each	message.

Now	that	this	is	working,	we	need	to	be	able	to	read	the	message	text	and	to	do	this	we
need	to	be	able	to	read	the	request	body	that	was	sent	by	the	client.	This	is	where	multiple
handlers	come	into	play.	We	could	tackle	this	in	two	different	ways,	if	we	were	reading	the
body	in	only	one	route	or	if	we	were	doing	some	other	action	specific	to	a	route,	for
instance	authorization,	we	will	add	an	additional	handler	to	the	route,	such	as:

router.post('/message',	parseBody,	createMessage)	

The	other	way	we	could	do	it	is	by	adding	a	handler	for	all	methods	and	routes;	this	will
be	executed	first	before	the	route	handlers,	these	are	commonly	referred	to	as	middleware.
You	can	think	of	handlers	as	being	a	chain	of	functions	where	each	one	is	calling	the	next,
once	it	is	finished	with	its	tasks.	With	this	in	mind	you	should	note	that	the	order	in	which
you	add	a	handler,	both	middleware	and	route,	will	dictate	the	order	of	operations.	This
means	that,	if	we	are	registering	a	handler	that	is	executed	for	all	methods,	we	must	do	this
first.

The	router	exposes	a	function	to	add	the	following	handlers:

router.use(function(request,	response,	next)	{

				console.log('middleware	executed');

				//	Null	as	there	were	no	errors

				//	If	there	was	an	error	then	we	could	call	`next(error);`

				next(null);

});

You	can	add	this	code	just	above	your	implementation	of	createMessage:

Once	you	have	done	that,	run	the	server	and	make	the	following	request:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

middleware	executed

Create	message	1

You	can	see	that	the	middleware	gets	executed	before	the	route	handler.

Now	that	we	know	how	middleware	works,	we	can	use	them	as	follows:

[~/examples/example-5]$	npm	install	body-parser

Replace	our	custom	middleware	with:

var	BodyParser	=	require('body-parser');

router.use(BodyParser.text());

At	this	stage,	we	just	want	to	read	all	requests	as	plain	text.

Now	we	can	retrieve	the	message	in	createMessage:

function	createMessage(request,	response)	{

				var	id	=	counter	+=	1,

								message	=	request.body;

								

				console.log('Create	message',	id,	message);

				messages[id]	=	message;

				response.writeHead(201,	{

								'Content-Type':	'text/plain',

								'Location':	'/message/'	+	id	

				});

				response.end(message);

}

Run	server.js	and	POST	a	couple	of	messages	to	http://localhost:8080/message;	you
will	see	something	similar	to	these	messages:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Create	message	1	Hello	foo

Create	message	2	Hello	bar

If	you	notice,	you	will	see	that	a	header	returns	with	a	new	location	of	the	message	and	its
id,	If	we	request	http://localhost:8080/message/1,	the	content	from	the	first	message
should	be	returned.

However,	there	is	something	different	with	this	route;	it	has	a	key	that	is	generated	each
time	a	message	is	created.	We	don’t	want	to	set	up	a	new	route	for	each	new	message	as	it
will	be	highly	inefficient.	Instead,	we	create	a	route	that	matches	a	pattern,	such	as
/message/:id.	This	is	a	common	way	to	define	a	dynamic	route	in	Node.js.

The	id	part	of	the	route	is	called	a	parameter.	We	can	define	as	many	of	these	as	we	want
in	our	route	and	refer	them	using	the	request;	for	example	we	can	have	a	route	similar	to
/user/:id/profile/:attribute.

With	this	in	mind	we	can	create	our	readMessage	handler,	as	shown:

function	readMessage(request,	response)	{

				var	id	=	request.params.id,

								message	=	messages[id];

				console.log('Read	message',	id,	message);

				

				response.writeHead(200,	{

								'Content-Type':	'text/plain'

				});

				response.end(message);

}

router.get('/message/:id',	readMessage);

Now	let’s	save	the	preceding	code	in	the	server.js	file	and	run	the	server:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Create	message	1	Hello	foo

Read	message	1	Hello	foo

Create	message	2	Hello	bar

Read	message	2	Hello	bar

Read	message	1	Hello	foo

We	can	see	it’s	working	by	sending	a	few	requests	to	the	server.

Deleting	messages	is	almost	the	same	as	reading	them;	but	we	don’t	return	anything	and
null	out	the	original	message	value:

function	deleteMessage(request,	response)	{

				var	id	=	request.params.id;

				console.log('Delete	message',	id);

				messages[id]	=	undefined;

				response.writeHead(204,	{	});

				response.end('');

}

router.delete('/message/:id',	deleteMessage)

First,	run	the	server,	then	create,	read,	and	delete	a	message,	as	shown:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Delete	message	1

Create	message	1	Hello

Read	message	1	Hello

Delete	message	1

Read	message	1	undefined

That	looks	good;	however,	we	have	run	into	a	problem.	We	shouldn’t	be	able	to	read	a
message	again	after	deleting	it;	we	will	return	404	in	both	the	read	and	delete	handlers	if
we	can’t	find	a	message.	We	can	do	this	by	adding	the	following	code	to	our	read	and
delete	handlers:

				var	id	=	request.params.id,

								message	=	messages[id];

				

				if(typeof	message	!==	'string')	{

								console.log('Message	not	found',	id);

								response.writeHead(404);

								response.end('\n');

								return;

				}	

Now	let’s	save	the	preceding	code	in	the	server.js	file	and	run	the	server:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Message	not	found	1

Create	message	1	Hello

Read	message	1	Hello

Lastly,	we	want	to	be	able	to	read	all	messages	and	return	a	list	of	all	message	values:

function	readMessages(request,	response)	{

				var	id,

								message,

								messageList	=	[],

								messageString;

				for(id	in	messages)	{

								if(!messages.hasOwnProperty(id))	{

												continue;

								}

								message	=	messages[id];

								//	Handle	deleted	messages

								if(typeof	message	!==	'string')	{

												continue;

								}

								messageList.push(message);

				}

				

				console.log('Read	messages',	JSON.stringify(

								messageList,	

								null,	

								'		'	

));

				

				messageString	=	messageList.join('\n');

					

				response.writeHead(200,	{

								'Content-Type':	'text/plain'

				});

				response.end(messageString);

}

router.get('/message',	readMessages);

Now	let’s	save	the	preceding	code	in	the	server.js	file	and	run	the	server:

[~/examples/example-5]$	node	server.js

Listening	on	port	8080

Create	message	1	Hello	1

Create	message	2	Hello	2

Create	message	3	Hello	3

Create	message	4	Hello	4

Create	message	5	Hello	5

Read	messages	[

		"Hello	1",

		"Hello	2",

		"Hello	3",

		"Hello	4",

		"Hello	5"

]

Awesome;	now	we	have	a	full	RESTful	interface	to	read	and	write	messages.	But,	we
don’t	want	everyone	to	be	able	to	read	our	messages;	they	should	be	secure	and	we	also
want	to	know	who	is	creating	the	messages,	we	will	cover	this	in	the	next	chapter.

Summary
Now	we	have	everything	we	need	to	make	some	pretty	cool	services.	We	can	now	create
an	HTTP	from	scratch,	route	our	requests,	and	create	a	RESTful	interface.

This	will	help	you	with	the	creation	of	complete	Node.JS	services.	In	the	next	chapter,	we
will	cover	authentication.

Chapter	3.	Authentication
We	can	now	create	RESTful	APIs,	but	we	don’t	want	everyone	to	access	everything	we
expose.	We	want	the	routes	to	be	secure	and	to	be	able	to	track	who	is	doing	what.

Passport	is	a	great	module	and	another	middleware	that	helps	us	authenticate	requests.

Passport	exposes	a	simple	API	for	providers	to	expand	on	and	create	strategies	to
authenticate	users.	At	the	time	of	writing,	there	are	307	officially	supported	strategies;
however,	there	is	no	reason	why	you	can’t	write	your	own	strategy	and	publish	it	for
others	to	use.

Basic	authentication
The	simplest	strategy	for	passport	is	the	local	strategy	that	accepts	a	username	and
password.

We	will	introduce	the	express	framework	for	these	examples	and,	now	that	you	know	the
basics	of	how	it	all	works	underneath,	we	can	put	it	all	together.

You	can	install	express,	body-parser,	passport,	and	passport-local.	Express	is	a
batteries-included	Web	framework	for	Node.js,	and	includes	routing	and	the	ability	to	use
middleware:

[~/examples/example-19]$	npm	install	express	body-parser	passport	passport-

local

For	now,	we	can	store	our	users	in	a	simple	object	to	reference	later,	as	shown:

var	users	=	{

				foo:	{

								username:	'foo',

								password:	'bar',

								id:	1

				},

				bar:	{

								username:	'bar',

								password:	'foo',

								id:	2

				}

}

Once	we	have	a	few	users,	we	need	to	set	up	passport.	When	we	create	an	instance	of	the
local	strategy,	we	need	to	provide	a	verify	callback	where	we	check	the	username	and
password,	while	returning	a	user:

var	Passport	=	require('passport'),

				LocalStrategy	=	require('passport-local').Strategy;

var	localStrategy	=	new	LocalStrategy({

				usernameField:	'username',

				passwordField:	'password'

		},

		function(username,	password,	done)	{

				user	=	users[username];

				if	(user	==	null)	{

								return	done(null,	false,	{	message:	'Invalid	user'	});

				}

				

				if	(user.password	!==	password)	{

								return	done(null,	false,	{	message:	'Invalid	password'	});				

				}

				done(null,	user);

		}

)

The	verify	callback	in	this	case	is	expecting	done	to	be	called	with	a	user.	It	also	allows
us	to	provide	information	if	the	user	was	invalid	or	the	password	was	wrong.

Now,	that	we	have	a	strategy	we	can	pass	this	to	passport,	which	allows	us	to	reference	it
later	and	use	it	to	authenticate	our	requests,	as	follows:

Passport.use('local',	localStrategy);

You	can	use	multiple	strategies	per	application	and	reference	each	one	by	the	name	you
passed,	in	this	case	'local'.

Now,	let’s	create	our	server,	as	shown	here:

var	Express	=	require('express');

var	app	=	Express();

We	will	have	to	use	the	body-parser	middleware.	This	will	ensure	that,	when	we	post	to
our	login	route,	we	can	read	our	body;	we	also	need	to	initialize	passport:

var	BodyParser	=	require('body-parser');

app.use(BodyParser.urlencoded({	extended:	false	}));

app.use(BodyParser.json());

app.use(Passport.initialize());

To	login	to	our	application,	we	need	to	create	a	post	route	that	uses	authentication	as	one
of	the	handlers.	The	code	for	this	is	as	follows:

app.post(

				'/login',

				Passport.authenticate('local',	{	session:	false	}),

				function	(request,	response)	{

								

				}

);

Now,	when	we	send	a	POST	request	to	/login	the	server	will	authenticate	our	requests.

Once	authenticated,	the	user	property	will	be	populated	on	the	request	object,	as	follows:

app.post(

				'/login',

				Passport.authenticate('local',	{	session:	false	}),

				function	(request,	response)	{

								response.send('User	Id	'	+	request.user.id);

				}

);

Lastly,	we	need	to	listen	for	requests,	as	with	all	the	other	servers:

app.listen(8080,	function()	{

				console.log('Listening	on	port	8080');

});

Lets	run	the	example:

[~/examples/example-19]$	node	server.js

Listening	on	port	8080

Now,	we	can	authenticate	users	when	we	send	a	POST	request	at	our	server.	If	the	user
hasn’t	passed	both	the	username	and	password	the	server	will	return	400	Bad	Request.

Tip
If	you	aren’t	familiar	with	curl	you	could	use	a	tool,	such	as	Advanced	REST	Client:

https://chromerestclient.appspot.com/

In	the	following	examples	I	will	be	using	the	command	line	interface	curl.

We	can	execute	a	login	request	by	executing	a	POST	to	/login	command:

[~]$	curl	-X	POST	http://localhost:8080/login	-v

<	HTTP/1.1	400	Bad	Request

If	the	user	provides	the	wrong	details	then	401	Unauthorized	will	be	returned:

[~]$	curl	-X	POST	http://localhost:8080/login	\

								-H	'Content-Type:	application/json'	\

								-d	'{"username":"foo","password":"foo"}'	\

								-v

<	HTTP/1.1	401	Unauthorized

If	we	provide	the	correct	details	then	we	can	see	our	handler	was	called	and	the	correct
data	was	returned:

[~]$	curl	-X	POST	http://localhost:8080/login	\

								-H	'Content-Type:	application/json'	\

								-d	'{"username":"foo","password":"bar"}'

User	Id	1

[~]$	curl	-X	POST	http://localhost:8080/login	\

								-H	'Content-Type:	application/json'	\

								-d	'{"username":"bar","password":"foo"}'

User	Id	2

https://chromerestclient.appspot.com/

Bearer	tokens
Now	that	we	have	an	authenticated	user,	we	can	generate	a	token	that	can	be	used	with	the
rest	of	our	requests	rather	than	passing	our	username	and	password	everywhere.	This	is
commonly	known	as	a	Bearer	token	and,	conveniently,	there	is	a	passport	strategy	for	this.

For	our	tokens,	we	will	use	something	called	a	JSON	Web	Token	(JWT).	JWT	allows	us
to	encode	tokens	from	JSON	objects	and	then	decode	them	and	verify	them.	The	data
stored	in	them	is	open	and	simple	to	read,	so	passwords	shouldn’t	be	stored	in	them;
however,	it	makes	verifying	a	user	very	simple.	We	can	also	provide	these	tokens	with
expiry	dates,	which	helps	limit	the	severity	of	tokens	being	exposed.

You	can	read	more	about	JWT	at	http://jwt.io/.

We	can	install	JWT	using	the	following	command:

[~/examples/example-19]$	npm	install	jsonwebtoken

Once	a	user	is	authenticated,	we	can	safely	provide	them	with	a	token	to	use	in	future
requests:

var	JSONWebToken	=	require('jsonwebtoken'),

				Crypto	=	require('crypto');

var	generateToken	=	function	(request,	response)	{

				

				//	The	payload	just	contains	the	id	of	the	user

				//	and	their	username,	we	can	verify	whether	the	claim

				//	is	correct	using	JSONWebToken.verify					

				var	payload	=	{

								id:	user.id,

								username:	user.username

				};

				//	Generate	a	random	string

				//	Usually	this	would	be	an	app	wide	constant

				//	But	can	be	done	both	ways

				var	secret	=	Crypto.randomBytes(128)

																							.toString('base64');

				//	Create	the	token	with	a	payload	and	secret

				var	token	=	JSONWebToken.sign(payload,	secret);

				

				//	The	user	is	still	referencing	the	same	object

				//	in	users,	so	no	need	to	set	it	again

				//	If	we	were	using	a	database,	we	would	save

				//	it	here

				request.user.secret	=	secret

				return	token;

}

var	generateTokenHandler	=	function	(request,	response)	{

				var	user	=	request.user;				

				//	Generate	our	token

				var	token	=	generateToken(user);

http://jwt.io/

				//	Return	the	user	a	token	to	use

				response.send(token);

};

app.post(

				'/login',

				Passport.authenticate('local',	{	session:	false	}),

				generateTokenHandler

);

Now,	when	the	user	logs	in	they	will	be	presented	with	a	token	to	use	that	we	can	verify.

Lets	run	our	Node.js	server:

[~/examples/example-19]$	node	server.js

Listening	on	port	8080

When	we	login	now	we	receive	a	token:

[~]$	curl	-X	POST	http://localhost:8080/login	\

												-H	'Content-Type:	application/json'	\

												-d	'{"username":"foo","password":"bar"}'

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZC

I6MSwidXNlcm5hbWUiOiJmb28iLCJpYXQiOjE0MzcyO

TQ3OTV9.iOZO7oCIceZl6YvZqVP9WZLRx-XVvJFMF1p

pPCEsGGs

We	can	enter	this	into	the	debugger	at	http://jwt.io/	and	see	the	contents,	as	shown:

{

		"id":	1,

		"username":	"foo",

		"iat":	1437294795

}

If	we	had	the	secret	we	could	verify	that	the	token	is	correct.	The	signature	changes	every
time	we	request	a	token:

[~]$	curl	-X	POST	http://localhost:8080/login	\

																-H	'Content-Type:	application/json'	\

																-d	'{"username":"foo","password":"bar"}'

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZC

I6MSwidXNlcm5hbWUiOiJmb28iLCJpYXQiOjE0MzcyO

TQ5OTl9.n1eRQVOM9qORTIMUpslH-ycTNEYdLDKa9lU

pmhf44s0

We	can	authenticate	a	user	using	passport-bearer;	it	is	set	up	very	similar	to	passport-
local.	However,	rather	than	accepting	a	username	and	password	from	the	body,	we	accept
a	bearer	token;	this	can	be	passed	using	the	query	string,	body,	or	the	Authorization
header:

First	we	must	install	passport-http-bearer:

[~/examples/example-19]$	npm	install	passport-http-bearer

The	let’s	create	our	verifier.	There	are	two	steps:	the	first	is	ensuring	the	decoded
information	matches	our	user,	this	will	be	where	we	usually	retrieve	our	user;	then’	once

http://jwt.io/

we	have	a	user	and	it’s	valid,	we	can	check	whether	the	token	is	valid	based	on	the	user’s
secret:

var	BearerStrategy	=	require('passport-http-bearer').Strategy;

var	verifyToken	=	function(token,	done)	{

				var	payload	=	JSONWebToken.decode(token);

				var	user	=	users[payload.username];

				//	If	we	can't	find	a	user,	or	the	information

				//	doesn't	match	then	return	false

				if	(user	==	null	||

									user.id	!==	payload.id	||

									user.username	!==	payload.username)	{

								return	done(null,	false);

				}

				//	Ensure	the	token	is	valid	now	we	have	a	user

				JSONWebToken.verify(token,	user.secret,	function	(error,	decoded)	{

								if	(error	||	decoded	==	null)	{

												return	done(error,	false);

								}

								return	done(null,	user);

				});

}			

var	bearerStrategy	=	new	BearerStrategy(

				verifyToken

)

We	can	register	this	strategy	as	the	bearer	so	we	can	use	it	later:

Passport.use('bearer',	bearerStrategy);

We	can	create	a	simple	route	where	we	retrieve	user	details	for	an	authenticated	user:

app.get(

				'/userinfo',

				Passport.authenticate('bearer',	{	session:	false	}),

				function	(request,	response)	{

								var	user	=	request.user;

								response.send({

												id:	user.id,

												username:	user.username

								});

				}

);

Let’s	run	the	Node.js	server:

[~/examples/example-19]$	node	server.js

Listening	on	port	8080

Once	we	receive	a	token:

[~]$	curl	-X	POST	http://localhost:8080/login	\

								-H	'Content-Type:	application/json'	\

								-d	'{"username":"foo","password":"bar"}'

We	can	use	the	result	in	our	requests:

[~]$	curl	-X	GET	http://localhost:8080/userinfo	\

								-H	'Authorization:	Bearer	<token>'

{"id":1,"username":"foo"}

OAuth
OAuth	provides	many	advantages;	for	instance,	it	does	not	need	to	deal	with	the	actual
identification	of	users.	We	can	let	users	login	using	services	they	trust,	such	as	Google,
Facebook,	or	Auth0.

For	the	following	examples,	I	will	be	using	Auth0.	They	provide	a	free	account	for	you	to
get	up-and-running:	https://auth0.com/.

You	will	need	to	sign	up	and	create	an	api	(choose	AngularJS	+	Node.js),	then	go	to
Settings	and	take	down	the	domain,	client	id,	and	client	secret.	You	will	need	these	to	set
up	OAuth.

We	can	authenticate	using	OAuth	using	passport-oauth2:

[~/examples/example-19]$	npm	install	--save	passport-oauth2

As	with	our	bearer	tokens,	we	want	to	validate	what	the	server	returns,	which	will	be	a
user	object	that	has	an	id.	We	will	match	this	with	a	user	that	is	in	our	data	or	create	a	new
user:

var	validateOAuth	=	function	(accessToken,	refreshToken,	profile,	done)	{

								

				var	keys	=	Object.keys(users),	user	=	null;

				

				for(var	iKey	=	0;	iKey	<	keys.length;	i	+=	1)	{

								user	=	users[key];

								if	(user.thirdPartyId	!==	profile.user_id)	{	continue;	}

								return	done(null,	user);

				}

				

				users[profile.name]	=	user	=	{

								username:	profile.name,

								id:	keys.length,

								thirdPartyId:	profile.user_id

				}

				done(null,	user);

};

Once	we	have	a	function	to	validate	our	users	we	can	put	together	the	options	for	our
OAuth	strategy:

var	oAuthOptions	=	{

				authorizationURL:	'https://<domain>.auth0.com/authorize',

				tokenURL:	'https://<domain>.auth0.com/oauth/token',

				clientID:	'<client	id>',

				clientSecret:	'<client	secret>',

				callbackURL:	"http://localhost:8080/oauth/callback"

}

Then	we	create	our	strategy,	as	follows:

var	OAuth2Strategy	=	require('passport-oauth2').Strategy;

https://auth0.com/

oAuthStrategy	=	new	OAuth2Strategy(oAuthOptions,	validateOAuth);

Before	we	use	our	strategy	we	need	to	duck	type	the	strategies	userProfile	method	with
our	own,	this	is	so	we	can	request	the	user	object	to	use	in	validateOAuth:

var	parseUserProfile	=	function	(done,	error,	body)	{

				if	(error)	{

								return	done(new	Error('Failed	to	fetch	user	profile'))

				}

				

				var	json;

				try	{

								json	=	JSON.parse(body);

				}	catch	(error)	{

								return	done(error);

				}

				done(null,	json);

}

var	getUserProfile	=	function(accessToken,	done)	{

				oAuthStrategy._oauth2.get(

								"https://<domain>.auth0.com/userinfo",

								accessToken,

								parseUserProfile.bind(null,	done)

)

}

oAuthStrategy.userProfile	=	getUserProfile

We	can	register	this	strategy	as	oauth	so	we	can	use	it	later:

Passport.use('oauth',	oAuthStrategy);

We	need	to	create	two	routes	to	handle	our	OAuth	authentication:	one	route	to	start	the
flow	and	the	other	for	the	identification	server	to	return	to:

app.get('/oauth',	Passport.authenticate('oauth',	{	session:	false	}));

We	can	use	our	generateTokenHandler	here,	as	our	request	will	have	a	user	on	it.

app.get('/oauth/callback',

		Passport.authenticate('oauth',	{	session:	false	}),

		generateTokenHandler

);

We	can	now	start	our	server	and	request	http://localhost:8080/oauth;	the	server	will
redirect	you	to	Auth0.	Once	logged	in,	you	will	receive	a	token	that	you	can	use	with
/userinfo.

If	you	were	using	sessions,	you	could	save	the	user	to	the	session	and	redirect	them	back
to	your	front	page	(or	the	default	page	set	for	a	logged	in	user).	For	a	single-page	app,
when	using	something	like	Angular,	you	may	want	to	redirect	the	user	with	a	token	in	the
URL	for	the	client	framework	to	grab	onto	and	save.

Summary
We	can	now	authenticate	users;	this	is	great	as	we	can	now	figure	out	who	the	people	are
and	then	limit	the	users	to	certain	resources.

In	the	next	chapter	we	will	cover	debugging,	we	may	need	to	use	it	if	our	users	aren’t
being	authenticated.

Chapter	4.	Debugging
At	some	point	in	your	journey	with	Node.js,	it	is	inevitable	that	you	will	have	to	debug
some	nasty	bugs.	So,	let’s	expect	them	beforehand	and	plan	for	that	day.

Logging
There	are	a	few	methods	that	we	can	use	to	debug	our	software;	the	first	one	we	are	going
to	look	at	is	logging.	The	simplest	way	to	log	a	message	is	to	use	console.	In	most	of	the
previous	examples	console	has	been	used	to	portray	what	is	going	on	without	needing	to
see	the	entire	HTTP	request	and	response,	thus	making	things	a	lot	more	readable	and
simple.

An	example	of	this	is:

var	Http	=	require('http');

Http.createServer(function(request,	response)	{

				console.log(

								'Received	request',	

								request.method,

								request.url	

)

				

				console.log('Returning	200');

				

				response.writeHead(200,	{	'Content-Type':	'text/plain'	});

				response.end('Hello	World\n');

}).listen(8000);

console.log('Server	running	on	port	8000');

Running	this	example	will	log	requests	and	responses	on	the	console:

[~/examples/example-6]$	node	server.js

Server	running	on	port	8000

Received	request	GET	/

Returning	200

Received	request	GET	/favicon.ico

Returning	200

Received	request	GET	/test

Returning	200

Received	request	GET	/favicon.ico

Returning	200

If	we	are	using	a	framework	that	accepts	middleware,	such	as	express,	we	could	use	a
simple	npm	package	called	morgan;	you	can	find	the	package	at
https://www.npmjs.com/package/morgan:

[~/examples/example-7]$	npm	install	morgan

[~/examples/example-7]$	npm	install	router

We	can	use	it	by	using	require	to	bring	it	into	our	code	and	adding	it	as	middleware:

var	Morgan	=	require('morgan'),

				Router	=	require('router'),

				Http	=	require('http');

https://www.npmjs.com/package/morgan

router	=	new	Router();

router.use(Morgan('tiny'));	

/*	Simple	server	*/

Http.createServer(function(request,	response)	{

				router(request,	response,	function(error)	{

								if(!error)	{

												response.writeHead(404);		

								}	else	{

												//Handle	errors

												console.log(error.message,	error.stack);

												response.writeHead(400);

								}

								response.end('\n');

				

				});

}).listen(8000);

console.log('Server	running	on	port	8000');

function	getInfo	(request,	response)	{

				var	info	=	process.versions;

				info	=	JSON.stringify(info);

				response.writeHead(200,	{	'Content-Type':	'application/json'	});

				response.end(info);

}

router.get('/info',	getInfo);

When	the	server	is	running,	we	can	see	each	request	and	response	without	having	to	add
logging	to	each	handler:

[~/examples/example-7]$	node	server.js

Server	running	on	port	8000

GET	/test	404	-	-	4.492	ms

GET	/favicon.ico	404	-	-	2.281	ms

GET	/info	200	-	-	1.120	ms

GET	/info	200	-	-	1.120	ms

GET	/test	404	-	-	0.199	ms

GET	/info	200	-	-	0.494	ms

GET	/test	404	-	-	0.162	ms

This	kind	of	logging	is	a	simple	way	to	see	what	is	being	used	on	the	server	and	how	long
each	request	is	taking.	Here,	you	can	see	that	the	first	requests	took	the	longest	and	then
they	got	a	lot	faster.	The	difference	is	only	of	3	ms;	if	the	time	was	larger,	it	could	have
been	a	big	problem.

We	can	increase	the	information	that’s	logged	by	changing	the	format	we	pass	to	morgan,
as	shown:

router.use(Morgan('combined'));

By	running	the	server	you	will	see	more	information,	such	as	the	remote	user,	date	and
time	of	the	request,	amount	of	content	that	was	returned,	and	the	client	they	are	using.

[~/examples/example-7]$	node	server.js	

Server	running	on	port	8000

::1	-	-	[07/Jun/2015:11:09:03	+0000]	"GET	/info	HTTP/1.1"	200	-	"-"	"--

REMOVED---"

Timing	is	definitely	an	important	factor	as	it	can	be	helpful	when	sifting	through	the
mountains	of	logs	that	you	will	obtain.	Some	bugs	can	be	like	a	ticking	time-bomb	waiting
to	explode	at	3	AM	on	a	Saturday	night.	All	these	logs	mean	nothing	to	us	if	the	process
has	died	and	the	logs	have	disappeared.	There	is	another	popular	and	useful	package
called	bunyan,	which	wraps	many	logging	methods	into	one.

Bunyan	brings	to	the	table	the	advantage	of	writeable	streams	to	write	logs,	whether	it	is	a
file	on	disk	or	stdout.	This	allows	us	to	persist	our	logs	for	postmortem	debugging.	You
can	find	more	details	about	bunyan	at	https://www.npmjs.com/package/bunyan.

Now,	let’s	install	the	package.	We	want	it	installed	both	locally	and	globally	so	that	we	can
also	use	it	as	a	command	line	tool:

	[~/examples/example-8]$	npm	install	–g	bunyan

	[~/examples/example-8]$	npm	install	bunyan	

Now,	lets	do	some	logging:

var	Bunyan	=	require('bunyan'),

				logger;

logger	=	Bunyan.createLogger({

				name:	'example-8'

});

logger.info('Hello	logging');

Running	our	example:

[~/examples/example-8]$	node	index.js

{"name":"example-

8","hostname":"macbook.local","pid":2483,"level":30,"msg":"Hello	

logging","time":"2015-06-07T11:35:13.973Z","v":0}

This	doesn’t	look	very	pretty,	does	it?	Bunyan	uses	a	simple	structured	JSON	string	to
save	messages;	this	makes	it	easy	to	parse,	extend,	and	read.	Bunyan	comes	with	a	CLI
utility	to	make	everything	nice	and	pretty.

If	we	run	the	example	with	the	utility,	then	we	will	see	that	the	output	is	nicely	formatted:

[~/examples/example-8]$	node	index.js	|	bunyan

[2015-06-07T11:38:59.698Z]		INFO:	example-8/2494	on	macbook.local:	Hello	

logging

If	we	add	a	few	more	levels,	you	will	see	on	your	console	that	each	is	colored	differently
to	help	us	identify	them:

var	Bunyan	=	require('bunyan'),

				logger;

logger	=	Bunyan.createLogger({

				name:	'example-8'

});

https://www.npmjs.com/package/bunyan

logger.trace('Trace');

logger.debug('Debug');

logger.info('Info');

logger.warn('Warn');

logger.error('Error');

logger.fatal('Fatal');

logger.fatal('We	got	a	fatal,	lets	exit');

process.exit(1);

Let’s	run	the	example:

[~/examples/example-8]$	node	index.js	|	bunyan

[2015-06-07T11:39:55.801Z]		INFO:	example-8/2512	on	macbook.local:	Info

[2015-06-07T11:39:55.811Z]		WARN:	example-8/2512	on	macbook.local:	Warn

[2015-06-07T11:39:55.814Z]	ERROR:	example-8/2512	on	macbook.local:	Error

[2015-06-07T11:39:55.814Z]	FATAL:	example-8/2512	on	macbook.local:	Fatal

[2015-06-07T11:39:55.814Z]	FATAL:	example-8/2512	on	macbook.local:	We	got	a	

fatal,	lets	exit

If	you	notice,	trace	and	debug	weren’t	outputted	on	the	console.	This	is	because	they	are
used	to	follow	the	flow	of	the	program	rather	than	the	key	information	and	are	usually
very	noisy.

We	can	change	the	level	of	logs	we	want	to	see	by	passing	this	as	an	option	when	we
create	the	logger:

logger	=	Bunyan.createLogger({

				name:	'example-8',

				level:	Bunyan.TRACE	

});

Now,	when	we	run	the	example:

[~/examples/example-8]$	node	index.js	|	bunyan

[2015-06-07T11:55:40.175Z]	TRACE:	example-8/2621	on	macbook.local:	Trace

[2015-06-07T11:55:40.177Z]	DEBUG:	example-8/2621	on	macbook.local:	Debug

[2015-06-07T11:55:40.178Z]		INFO:	example-8/2621	on	macbook.local:	Info

[2015-06-07T11:55:40.178Z]		WARN:	example-8/2621	on	macbook.local:	Warn

[2015-06-07T11:55:40.178Z]	ERROR:	example-8/2621	on	macbook.local:	Error

[2015-06-07T11:55:40.178Z]	FATAL:	example-8/2621	on	macbook.local:	Fatal

[2015-06-07T11:55:40.178Z]	FATAL:	example-8/2621	on	macbook.local:	We	got	a	

fatal,	lets	exit

We	usually	don’t	want	to	see	logs	that	are	lower	than	the	info	level,	as	any	information
that	is	useful	for	post-mortem	debugging	should	have	been	logged	using	the	info	or	higher.

Bunyan’s	api	is	good	for	the	function	of	logging	errors	and	objects.	It	saves	the	correct
structures	in	its	JSON	output,	which	is	ready	for	display:

try	{

				ref.go();

}	catch	(error)	{

				logger.error(error);

}

Let’s	run	the	example:

[~/examples/example-9]$	node	index.js	|	bunyan

[2015-06-07T12:00:38.700Z]	ERROR:	example-9/2635	on	macbook.local:	ref	is	

not	defined

				ReferenceError:	ref	is	not	defined

								at	Object.<anonymous>	(~/examples/example-8/index.js:9:2)

								at	Module._compile	(module.js:460:26)

								at	Object.Module._extensions..js	(module.js:478:10)

								at	Module.load	(module.js:355:32)

								at	Function.Module._load	(module.js:310:12)

								at	Function.Module.runMain	(module.js:501:10)

								at	startup	(node.js:129:16)

								at	node.js:814:3

If	we	look	at	the	example	and	pretty-print	it,	we	will	see	that	they	save	it	as	an	error:

[~/examples/example-9]$	npm	install	-g	prettyjson

[~/examples/example-9]$	node	index.js	|	prettyjson

name:					example-9

hostname:	macbook.local

pid:						2650

level:				50

err:	

		message:	ref	is	not	defined

		name:				ReferenceError

		stack:	

				"""

						ReferenceError:	ref	is	not	defined

										at	Object.<anonymous>	(~/examples/example-8/index.js:9:2)

										at	Module._compile	(module.js:460:26)

										at	Object.Module._extensions..js	(module.js:478:10)

										at	Module.load	(module.js:355:32)

										at	Function.Module._load	(module.js:310:12)

										at	Function.Module.runMain	(module.js:501:10)

										at	startup	(node.js:129:16)

										at	node.js:814:3

				"""

msg:						ref	is	not	defined

time:					2015-06-07T12:02:33.875Z

v:								0

This	is	useful	because,	if	you	just	log	an	error,	you	will	either	get	an	empty	object	if	you
used	JSON.stringify	or	just	the	message	if	you	used	toString:

try	{

				ref.go();

}	catch	(error)	{

				console.log(JSON.stringify(error));

				console.log(error);

				console.log({

								message:	error.message

								name:	error.name

								stack:	error.stack

				});

}

Let’s	run	the	example:

[~/examples/example-10]$	node	index.js

{}

[ReferenceError:	ref	is	not	defined]

{	message:	'ref	is	not	defined',

		name:	'ReferenceError',

		stack:	'--REMOVED--'	}

It	is	to	lot	simpler	and	cleaner	to	use	logger.error(error)	than	logger.error({
message:	error.message	/*,	...	*/	});.

As	mentioned	earlier,	bunyan	uses	the	concept	of	streams,	which	means	that	we	can	write
to	a	file,	stdout,	or	any	other	service	we	wish	to	extend	to.

To	write	to	a	file,	all	we	need	to	do	is	add	it	to	the	options	passed	to	bunyan	at	setup:

var	Bunyan	=	require('bunyan'),

				logger;

logger	=	Bunyan.createLogger({

				name:	'example-11',

				streams:	[

								{

												level:	Bunyan.INFO,

												path:	'./log.log'			

								}

]

});

logger.info(process.versions);

logger.info('Application	started');

By	running	the	example,	you	won’t	see	any	logs	being	outputted	to	the	console	but	they
will	be	written	to	file	instead:

	[~/examples/example-11]$	node	index.js

If	you	list	what’s	in	the	directory	you	will	see	a	new	file	has	been	created:

[~/examples/example-11]$	ls		

index.js					log.log						node_modules

If	you	read	what’s	in	the	file	you	will	see	that	the	logs	have	already	been	written:

[~/examples/example-11]$	cat	log.log

{"name":"example-

11","hostname":"macbook.local","pid":3614,"level":30,"http_parser":"2.3","n

ode":"0.12.2","v8":"3.28.73","uv":"1.4.2-

node1","zlib":"1.2.8","modules":"14","openssl":"1.0.1m","msg":"","time":"20

15-06-07T12:29:46.606Z","v":0}

{"name":"example-

11","hostname":"macbook.local","pid":3614,"level":30,"msg":"Application	

started","time":"2015-06-07T12:29:46.608Z","v":0}

We	can	run	this	through	bunyan	in	order	to	print	it	out	nicely:

[~/examples/example-11]$	cat	log.log	|	bunyan

[~/examples/example-11]$	cat	log.log	|	bunyan

[2015-06-07T12:29:46.606Z]		INFO:	example-11/3614	on	macbook.local:		

(http_parser=2.3,	node=0.12.2,	v8=3.28.73,	uv=1.4.2-node1,	zlib=1.2.8,	

modules=14,	openssl=1.0.1m)

[2015-06-07T12:29:46.608Z]		INFO:	example-11/3614	on	macbook.local:	

Application	started

Now	that	we	can	log	to	a	file,	we	also	want	to	be	able	to	see	the	messages	as	they	are
displayed.	If	we	were	just	logging	to	a	file,	we	could	use:

[~/examples/example-11]$	tail	-f	log.log	|	bunyan

This	will	log	to	stdout	as	the	file	it	is	being	written	to;	alternatively	we	could	just	add
another	stream	to	bunyan:

logger	=	Bunyan.createLogger({

				name:	'example-11',

				streams:	[

								{

												level:	Bunyan.INFO,

												path:	'./log.log'			

								},

								{

												level:	Bunyan.INFO,

												stream:	process.stdout

								}

]

});

Running	the	example	will	display	the	logs	to	the	console:

[~/examples/example-11]$	node	index.js	|	bunyan

	[2015-06-07T12:37:19.857Z]	INFO:	example-11/3695	on	macbook.local:	

(http_parser=2.3,	node=0.12.2,	v8=3.28.73,	uv=1.4.2-node1,	zlib=1.2.8,	

modules=14,	openssl=1.0.1m)	[2015-06-07T12:37:19.860Z]	INFO:	example-

11/3695	on	macbook.local:	Application	started

We	can	also	see	the	logs	have	been	appended	to	the	file:

[~/examples/example-11]$	cat	log.log	|	bunyan

	[2015-06-07T12:29:46.606Z]		INFO:	example-11/3614	on	macbook.local:		

(http_parser=2.3,	node=0.12.2,	v8=3.28.73,	uv=1.4.2-node1,	zlib=1.2.8,	

modules=14,	openssl=1.0.1m)

[2015-06-07T12:29:46.608Z]		INFO:	example-11/3614	on	macbook.local:	

Application	started

[2015-06-07T12:37:19.857Z]		INFO:	example-11/3695	on	macbook.local:		

(http_parser=2.3,	node=0.12.2,	v8=3.28.73,	uv=1.4.2-node1,	zlib=1.2.8,	

modules=14,	openssl=1.0.1m)

[2015-06-07T12:37:19.860Z]		INFO:	example-11/3695	on	macbook.local:	

Application	started

Great,	now	we	have	the	logging	down,	what	shall	we	do	with	it?

Well,	it	helps	to	know	where	our	errors	are	occurring	and	it	starts	to	get	really	messy	when
you	have	lots	of	anonymous	functions	around	the	place.	If	you	noticed	in	the	examples
that	cover	an	HTTP	server,	the	majority	of	the	functions	were	named.	This	is	very	helpful
in	tracking	down	errors	when	callbacks	are	involved.

Let’s	look	at	this	example:

try	{

				a	=	function(callback)	{

								return	function()	{

												callback();

								};

				};

				b	=	function(callback)	{

								return	function()	{

												callback();

								}

				};

				c	=	function(callback)	{

								return	function()	{

												throw	new	Error("I'm	just	messing	with	you");	

								};

				};

				a(b(c()))();

}	catch	(error)	{

				logger.error(error);

}

It	might	look	a	bit	messy	and	that’s	because	it	is.	Let’s	run	the	following	example:

[~/examples/example-12]$	node	index.js	|	bunyan

	[2015-06-07T12:51:11.665Z]	ERROR:	example-12/4158	on	macbook.local:	I'm	

just	messing	with	you

				Error:	I'm	just	messing	with	you

								at	/Users/fabian/examples/example-12/index.js:19:10

								at	/Users/fabian/examples/example-12/index.js:14:4

								at	/Users/fabian/examples/example-12/index.js:9:4

								at	Object.<anonymous>	(/Users/fabian/examples/example-

12/index.js:22:16)

								at	Module._compile	(module.js:460:26)

								at	Object.Module._extensions..js	(module.js:478:10)

								at	Module.load	(module.js:355:32)

								at	Function.Module._load	(module.js:310:12)

								at	Function.Module.runMain	(module.js:501:10)

								at	startup	(node.js:129:16)

You	can	see	that	there	are	no	function	names	in	our	code	and	also	there	is	no	naming	in	the
stack	trace	unlike	the	first	few	functions.	In	Node.js,	the	naming	of	functions	will	come
from	either	the	variable	name	or	the	actual	function	name.	For	example,	if	you	use
Cls.prototype.func	then	the	name	will	be	Cls.func	but	if	you	use	the	function	func
then	the	name	will	be	func.

You	can	see	that	there	is	a	slight	benefit	here	but	this	becomes	very	useful	once	you	start
using	patterns	involving	async	callbacks:

[~/examples/example-13]$	npm	install	q

Let’s	throw	an	error	in	a	callback:

var	Q	=	require('q');

Q()

.then(function()	{

				//	Promised	returned	from	another	function

				return	Q()

				.then(function()	{

								throw	new	Error('Hello	errors');	

				});

})

.fail(function(error)	{

				logger.error(error);

});

Running	our	example	gives	us:

[~/examples/example-13]$	node	index.js	|	bunyan

	[2015-06-07T13:03:57.047Z]	ERROR:	example-13/4598	on	macbook.local:	Hello	

errors

				Error:	Hello	errors

								at	/Users/fabian/examples/example-13/index.js:12:9

								at	_fulfilled	(/Users/fabian/examples/example-

13/node_modules/q/q.js:834:54)

This	is	where	it	starts	to	get	difficult	to	read;	assigning	simple	names	to	our	functions	can
help	us	find	where	the	error	is	coming	from:

return	Q()

				.then(function	resultFromOtherFunction()	{

								throw	new	Error('Hello	errors');	

				});

Running	the	example:

[~/examples/example-13]$	node	index.js	|	bunyan

	[2015-06-07T13:04:45.598Z]	ERROR:	example-13/4614	on	macbook.local:	Hello	

errors

				Error:	Hello	errors

								at	resultFromOtherFunction	(/Users/fabian/examples/example-

13/index.js:12:9)

								at	_fulfilled	(/Users/fabian/examples/example-

13/node_modules/q/q.js:834:54)

Error	handling
Another	aspect	of	debugging	is	handling	and	expecting	errors	beforehand.	There	are	three
ways	in	which	we	can	handle	our	errors:

a	simple	try/catch
catching	them	at	the	process	level
catching	errors	on	the	domain	level

A	try/catch	function	will	be	sufficient	if	we	expect	an	error	to	occur	and	we	will	be	able
to	continue	without	knowing	the	result	of	whatever	was	being	executed,	or	we	could
handle	and	return	the	error,	as	shown:

function	parseJSONAndUse(input)	{

				var	json	=	null;

				try	{

								json	=	JSON.parse(input);

				}	catch	(error)	{

								return	Q.reject(new	Error("Couldn't	parse	JSON"));

				}

				return	Q(use(json));

}

Another	simple	way	to	catch	errors	is	to	add	an	error	handler	to	your	process;	any	errors
that	are	caught	at	this	level	are	usually	fatal	and	should	be	treated	as	such.	An	exit	of	the
process	should	follow	and	you	should	be	using	a	package,	such	as	forever	or	pm2:

process.on('uncaughtException',	function	errorProcessHandler(error)	{

				logger.fatal(error);

				logger.fatal('Fatal	error	encountered,	exiting	now');

				process.exit(1);

});

You	should	always	exit	the	process	following	an	uncaught	error.	The	fact	that	it	is
uncaught	means	that	your	application	is	in	an	unknown	state	where	anything	can	happen.
For	example,	there	could	have	been	an	error	in	your	HTTP	router	and	no	more	requests
can	be	routed	to	the	correct	handlers.	You	can	read	more	about	this	at
https://nodejs.org/api/process.html#process_event_uncaughtexception.

A	better	way	to	handle	errors	on	a	global	level	is	using	domain.	With	domains	you	can
almost	sandbox	a	group	of	asynchronous	code	together.

Let’s	think	in	the	context	of	a	request	to	our	server.	We	make	a	request,	read	from	a
database,	make	calls	to	external	services,	write	back	to	a	database,	do	some	logging,	do
some	business	logic,	and	we	expect	perfect	data	coming	from	external	sources	all	around
the	code.	However,	in	the	real	world	it	isn’t	always	so	and	we	can’t	handle	every	error	that
could	possibly	occur;	moreover,	we	don’t	want	to	take	down	our	entire	server	just	because
of	one	error	for	a	very	specific	request.	That’s	where	we	need	domains.

Let’s	look	at	the	following	example:

var	Domain	=	require('domain'),

https://nodejs.org/api/process.html#process_event_uncaughtexception

				domain;

domain	=	Domain.create();

domain.on('error',	function(error)	{

				console.log('Domain	error',	error.message);

});

domain.run(function()	{

				//	Run	code	inside	domain

				console.log(process.domain	===	domain);

				throw	new	Error('Error	happened');	

});

Let’s	run	the	code:

[~/examples/example-14]$	node	index.js

true

Domain	error	Error	happened

There	is	a	problem	with	this	code;	however,	as	we	are	running	this	synchronously	we	are
still	putting	the	process	into	a	broken	state.	This	is	because	the	error	bubbled	up	to	the
node	itself	and	then	was	passed	to	the	active	domain.

When	we	are	creating	the	domain	in	an	asynchronous	callback,	we	can	be	sure	that	the
process	can	continue.	We	can	mimic	this	by	using	process.nextTick:

process.nextTick(function()	{

				domain.run(function()	{

								throw	new	Error('Error	happened');

				});

				console.log("I	won't	execute");

});	

process.nextTick(function()	{

				console.log('Next	tick	happend!');

});

console.log('I	happened	before	everything	else');

Running	the	example	should	display	the	correct	logs:

[~/examples/example-15]$	node	index.js

I	happened	before	everything	else

Domain	error	Error	happened

Next	tick	happend!

Summary
In	this	chapter	we	have	covered	a	few	post-mortem	debugging	methods	to	help	us	uncover
bugs	including	logging,	naming	practices,	and	sufficient	error	handling.

In	the	next	chapter,	we	will	cover	configuration	of	our	applications.

Chapter	5.	Configuration
As	our	applications	get	larger	and	larger,	we	start	to	lose	sight	of	what	is	configured	to	do
what;	we	may	also	get	into	a	situation	where	we	have	code	running	in	12	different	places,
each	needing	a	bit	of	code	that	has	to	be	changed	to	do	something	else,	for	example
connecting	to	a	different	database.	Then,	for	each	of	those	12	environments,	we	have	three
versions:	production,	staging,	and	development.	All	of	a	sudden,	it	gets	very	complicated.
This	is	why	we	need	to	be	able	to	configure	our	code	from	a	higher-level	so	that	we	don’t
break	anything	in	the	process.

JSON	files
There	are	a	few	ways	in	which	we	can	configure	our	application.	The	first	way	that	we
will	look	at	is	a	simple	JSON	file.

If	we	look	at	the	extensions	require	supports	by	default,	we	can	see	that	we	can	import
JSON	right	into	our	code,	as	shown:

[~/examples/example-16]$	node

>	require.extensions

{	'.js':	[Function],

'.json':	[Function],

'.node':	[Function:	dlopen]	}

Let’s	create	a	simple	server	with	a	configuration	file	rather	than	a	hardcoded	file:

First,	we	have	to	create	the	configuration	file:

{

				"host":	"localhost",

				"port":	8000

}

With	this,	we	can	now	create	our	server:

var	Config	=	require('./config.json'),

				Http	=	require('http');

Http.createServer(function(request,	response)	{

}).listen(Config.port,	Config.host,	function()	{

				console.log('Listening	on	port',	Config.port,	'and	host',	Config.host);

});

Now,	we	can	just	change	the	config	file	instead	of	changing	the	code	to	change	the	port
on	which	our	server	is	running.

But	our	config	file	is	a	bit	too	generic;	we	have	no	idea	as	to	what	is	a	host	or	a	port	and
what	they	are	related	to.

While	configuring,	the	keys	need	to	be	less	generic	so	that	we	know	what	they	are	being
used	for,	unless	the	context	is	given	directly	by	the	application.	For	example,	if	the
application	was	to	serve	purely	static	content	then	it	may	be	acceptable	to	have	more
generic	keys.

To	make	these	configuration	keys	less	generic,	we	can	wrap	them	all	in	a	server	object:

{

				"server":	{

								"host":	"localhost",

								"port":	8000

				}

}

So	now,	in	order	to	know	about	the	port	of	the	server	we	need	to	use	the	following	code:

Config.server.port

An	example	where	this	will	be	useful	could	be	for	a	server	that	connects	to	a	database,	as
they	can	accept	both	the	port	and	host	as	the	parameters:

{

				"server":	{

								"host":	"localhost",

								"port":	8000

				},

				"database":	{

								"host":	"db1.example.com",

								"port":	27017

				}

}

Environmental	variables
Another	way	in	which	we	can	configure	our	applications	is	through	the	use	of
environmental	variables.

These	can	be	defined	by	the	environment	you	are	running	your	application	in	or	in	the
command	that	you	are	using	to	start	your	process	with.

In	Node.js,	you	can	access	the	environmental	variables	using	process.env.	When	using
env,	you	don’t	want	to	be	polluting	this	space	too	much	and	so	it	is	a	good	idea	to	prefix
the	key	with	something	related	to	yourself—your	program	or	company.	For	example,
Config.server.host	becomes	process.env.NAME_SERVER_HOST;	the	reason	for	this	is
that	we	can	clearly	see	what	is	related	to	your	program	and	what	isn’t.

Using	environmental	variables	to	configure	our	server,	our	code	will	look	as	follows:

var	Http	=	require('http'),

				server_port,

				server_host;

server_port	=	parseInt(process.env.FOO_SERVER_PORT,	10);

server_host	=	process.env.FOO_SERVER_HOST;

Http.createServer(function(request,	response)	{

}).listen(server_port,	server_host,	function()	{

				console.log('Listening	on	port',	server_port,	'and	host',	server_host);

});

To	run	this	code	with	our	variables,	we	will	use:

[~/examples/example-17]$	FOO_SERVER_PORT=8001	\

FOO_SERVER_HOST=localhost	node	server.js

Listening	on	port	8001	and	host	localhost

You	probably	noticed	that	I	had	to	use	parseInt	for	FOO_SERVER_PORT;	this	is	because	all
variables	passed	in	this	manner	are	essentially	strings.	We	can	see	this	by	executing
typeof	process.env.FOO_ENV:

[~/examples/example-17]$	FOO_ENV=1234	node

>	typeof	process.env.FOO_ENV

'string'

>	typeof	parseInt(process.env.FOO_ENV,	10)

'number'

Although	this	kind	of	configuration	is	very	simple	to	create	and	consume,	it	may	not	be
the	best	method,	as	the	variables	are	hard	to	keep	track	of	if	there	are	a	lot	of	them	and
they	can	be	dropped	very	easily.

Arguments
Another	way	in	which	the	configuration	can	be	done	is	through	the	use	of	arguments	that
are	passed	to	Node.js	as	the	process	starts,	you	can	access	these	using	process.argv,	with
argv	standing	for	argument	vector.

The	array	that	process.argv	returns	will	always	have	a	node	at	index	0.	For	example,	if
you	run	node	server.js	then	process.argv	will	have	the	value	of	['node',
'/example/server.js'].

If	you	pass	an	argument	to	Node.js	then	it	will	be	added	to	the	end	of	process.argv.

If	you	run	node	server.js	--port=8001,	the	process.argv	will	contain	['node',
'/example/server.js',	'--port=8001'],	pretty	simple,	right?

Even	though	we	can	have	all	this	configuration,	we	should	always	remember	that
configuration	can	be	simply	excluded	and	we	will	still	want	our	application	to	run	when
this	happens.	Usually,	you	should	provide	default	hardcoded	values	as	a	backup	when	you
have	configuration	options.

Parameters	such	as	passwords	and	private	keys	should	never	have	a	default	value	but	links
and	options	that	are	usually	standard	should	be	given	defaults.	It	is	pretty	easy	to	give	a
default	value	in	Node.js,	all	you	need	to	do	is	use	the	OR	operator.

value	=	value	||	'default';

Essentially,	what	this	does	is	check	if	the	value	is	falsy;	if	it	is,	then	use	the	default	value.
You	need	to	watch	out	for	values	that	you	know	could	be	falsy,	booleans	and	numbers
definitely	fall	into	this	category.

In	these	cases	you	can	use	an	if	statement	checking	for	a	null	value,	as	shown:

if	(value	==	null)	value	=	1

Summary
That’s	all	for	configuration.	In	this	chapter	you	learned	about	the	three	methods	that	you
can	use	to	create	a	dynamic	application.	We	learned	that	we	should	name	our
configuration	keys	in	a	way	that	we	can	identify	what	the	values	are	changing	to	and	how
they	will	affect	our	application.	We	also	learned	about	how	we	can	pass	simple	arguments
to	our	application	using	environmental	variables	and	argv.

With	this	information,	we	can	move	forward	to	connecting	and	utilizing	databases	in	the
next	chapter.

Chapter	6.	Level	DB	and	NoSQL
In	this	chapter,	we	will	cover	two	variations	of	databases	that	can	be	used	with	Node.js;
one	provides	a	very	lightweight	and	simple	set	of	features,	while	the	other	gives	us	more
flexibility	and	a	general-purpose	set	of	features.	In	this	chapter,	we	are	going	to	cover
LevelDB	and	MongoDB

Level	DB
One	of	the	great	things	with	Node.js	is	that	we	use	the	same	language	for	both	the	front
and	back	end	and	the	same	goes	for	NoSQL	databases.	The	majority	of	them	support
JSON	right	off	the	mark;	this	is	great	for	anyone	using	Node.js	as	there	is	no	time	spent	in
making	a	relational	model,	turning	it	into	a	JSON-like	structure,	passing	it	to	the	browser,
doing	something	with	it,	and	reversing	the	process.

With	a	database	that	supports	JSON	natively,	you	can	get	right	down	to	business	and	play
ball.

Google	has	provided	us	with	a	simple	hook	into	a	NoSQL	database	that	can	be	installed
and	can	be	made	ready	to	use	with	just	one	command:

[~/examples/example-18]$	npm	install	level

You	will	see	that	this	will	install	both	LevelDOWN	and	LevelUP.

LevelDOWN	is	the	low-level	binding	to	LevelDB	and	LevelUP	is	the	simple	wrapper	around
this.

LevelDB	is	very	simple	in	terms	of	setup.	Once	it	is	installed,	we	just	create	an	instance	of
LevelUP	and	pass	it	where	we	want	our	database	to	be	stored:

var	LevelUP	=	require('level'),

				db	=	new	LevelUP('./example-db');

Now	we	have	a	fast	and	simple	way	to	store	data.

As	LevelDB	is	just	a	simple	key/value	store,	it	defaults	to	string	keys	and	string	values.
This	is	useful	if	that’s	all	the	information	you	wish	to	store.	You	can	also	use	it	as	a	simple
cache	store.	It	has	a	very	simple	API,	at	this	stage	we	are	only	going	to	focus	on	four
methods:	put,	get,	del,	and	createReadStream;	it’s	pretty	obvious	what	most	of	them	do:

Method Used	for Arguments

put inserting	pairs key,	value,	callback(error)

get fetching	pairs key,	callback(error,	value)

del deleting	pairs key,	callback(error)

createReadStream fetching	many	pairs 	

To	insert	data	once	we	have	created	our	database,	all	we	need	to	do	is:

db.put('key',	'value',	function(error)	{

				if	(error)	return	console.log('Error!',	error)

				db.get('key',	function(error,	value)	{

								if	(error)	return	console.log('Error!',	error)

								console.log("key	=",	value)

				});

});

If	we	run	the	code,	we	will	see	that	we	inserted	and	retrieved	our	value:

[~/examples/example-18]$	node	index.js

key	=	value

This	isn’t	our	simple	JSON	structure;	however,	it’s	just	a	string.	To	get	our	store	to	save
JSON,	all	we	need	to	do	is	to	pass	the	value	encoding	as	an	option	to	the	database,	as
shown:

var	LevelUP	=	require('level'),

				db	=	new	LevelUP('./example-db',	{

								valueEncoding:	'json'

				});

Now	we	can	store	JSON	data:

db.put('jsonKey',	{	inner:	'value'	},	function	(error)	{

				if	(error)	return	console.log('Error!',	error)

				db.get('jsonKey',	function(error,	value)	{

								if	(error)	return	console.log('Error!',	error)

								console.log("jsonKey	=",	value)

				});

});

However,	a	string	can	be	stored	as	JSON	and	we	can	still	pass	strings	as	a	value	and	also
retrieve	it	as	such.

Running	this	example	will	show	the	following:

[~/examples/example-18]$	node	index.js

key	=	value

jsonKey	=	{	inner:	'value'	}

Now,	we	have	the	simple	methods	down	and	we	can	now	move	on	to	createReadStream.

This	function	returns	an	object	that	can	be	compared	to	Node.js	built	in	ReadableStream.
For	each	key/value	pair	in	our	database,	it	will	emit	a	data	event;	it	also	emits	other
events,	such	as	error	and	end.	If	error	doesn’t	have	an	event	listener,	then	it	will
propagate,	thereby	killing	your	entire	process	(or	domain),	as	shown:

db.put('key1',	{	inner:	'value'	},	function(error)	{

				if	(error)	return	console.log('Error!',	error)

				

				var	stream	=	db.createReadStream();

				

				stream

				.on('data',	function(pair)	{

								console.log(pair.key,	"=",	pair.value);

				})

				.on('error',	function(error)	{

								console.log(error);

				})

				.on('end',	function()	{

								console.log('end');

				});

});

Running	this	example:

[~/examples/example-20]$	node	index.js

key1	=	{	inner:	'value'	}

end

If	we	put	more	data	in	the	database	we	will	have	multiple	data	events	emitted:

[~/examples/example-20]$	node	index.js

key1	=	{	inner:	'value'	}

key2	=	{	inner:	'value'	}

end

MongoDB
As	you	can	see,	databases	with	Node.js	can	be	very	simple.	If	we	want	something	a	bit
more	complete	we	can	use	another	NoSQL	database	called	MongoDB	–	another	very
popular	document-based	database.

For	this	set	of	examples,	you	can	either	use	a	hosted	database	using	a	provider	such	as
MongoLab	(they	provide	a	free	tier	for	development)	or	you	can	set	up	a	database	locally
following	the	instructions	at	http://docs.mongodb.org/manual/installation.

We	can	continue	once	you	have	a	database	to	connect	to.

MongoDB	has	several	modules	that	can	be	used	with	Node.js,	the	most	popular	one	is
Mongoose;	however,	we	will	be	using	the	core	MongoDB	module:

[~/examples/example-21]$	npm	install	mongodb

To	use	our	database,	we	first	need	to	connect	to	it.	We	need	to	provide	the	client	with	a
connection	string,	a	generic	URI	with	the	protocol	of	mongodb.

If	you	have	a	local	mongo	database	running	with	no	credentials	you	will	use:

mongodb://localhost:27017/database

The	default	port	is	27017,	so	you	don’t	need	to	specify	that;	however,	it	is	included	for
completeness.

If	you	are	using	MongoLab,	they	will	provide	you	with	a	connection	string;	it	should	be	in
the	format	of:

mongodb://<dbuser>:<dbpassword>@<ds>.mongolab.com:<port>/<db>

Connecting	to	our	database	is	actually	pretty	simple.	All	we	need	to	do	is	provide	the
driver	with	a	connection	string	and	we	get	back	a	database:

var	MongoDB	=	require('mongodb'),

				MongoClient	=	MongoDB.MongoClient;

connection	=	"mongodb://localhost:27017/database"

MongoClient.connect(connection,	function(error,	db)	{

				if(error)	return	console.log(error);

				console.log('We	have	a	connection!');

});

Each	set	of	data	in	MongoDB	is	stored	in	a	collection.	Once	we	have	a	database	we	can
fetch	a	collection	to	run	the	operations	on:

var	collection	=	db.collection('collection_name');

In	a	collection,	we	have	a	few	simple	methods	that	hold	lots	of	power,	giving	us	a	full
CRUD	“API”.

Each	document	in	MongoDB	has	an	id,	which	is	an	instance	of	ObjectId.	The	property

http://docs.mongodb.org/manual/installation

they	use	for	this	id	is	_id.

To	save	a	document	we	just	need	to	call	save,	it	accepts	an	object	or	an	array	of	objects.	A
single	object	in	a	collection	is	referred	to	as	a	document:

var	doc	=	{

				key:	'value_1'		

};

collection.save(doc,	{	w:	1	},	function()	{

				console.log('Document	saved')

});

If	we	call	the	save	function	with	a	document	that	has	an	ID	then	the	document	will	be
updated	rather	than	inserted:

var	ObjectId	=	MongoDB.ObjectId

//	This	document	already	exists	in	my	database

var	doc_id	=	{

				_id:	new	ObjectId("55b4b1ffa31f48c6fa33a62a"),

				key:	'value_2'

};

collection.save(doc_id,	{	w:	1	},	function()	{

				console.log('Document	with	ID	saved');

});

Now	that	we	have	documents	in	our	database,	we	can	query	for	them,	as	shown:

collection.find().toArray(function(error,	result)	{

				console.log(result.length	+	"	documents	in	our	database!")

});

If	no	callback	is	provided	to	find	then	it	will	return	a	cursor;	this	allows	us	to	use	methods
such	as	limit,	sort,	and	toArray.

You	can	pass	a	query	to	find	to	limit	what	is	returned.	In	order	to	find	an	object	by	its	ID
we	need	to	use	something,	such	as:

collection.find(

				{	_id:	new	ObjectId("55b4b1ffa31f48c6fa33a62a")	},

				function(error,	documents)	{

								console.log('Found	document',	documents[0]);

				}

);

We	can	also	filter	it	by	any	other	property	you	might	use:

collection.find(

				{	key:	'value'	},

				function(error,	documents)	{

								console.log('Found',	documents.length,	'documents');		

				}

);

If	you	have	used	SQL	before,	you	must	have	noticed	the	lack	of	operators,	such	as	OR,	AND,
or	NOT.	However,	you	don’t	need	to	worry	because	mongo	provides	many	equivalents.

You	can	see	a	complete	list	here:

http://docs.mongodb.org/manual/reference/operator/query/.

All	operators	are	prefixed	with	the	dollar	sign,	for	example	$and,	$or,	$gt,	and	$lt.

You	can	see	the	specific	syntax	to	use	these	by	looking	at	the	documentation.

To	use	an	$or	condition,	you	need	to	include	it	as	if	it	is	a	property:

collection.find(

				{

								$or:	[

												{	key:	'value'	},

												{	key:	'value_2'	}

]

				},

				function(error,	documents)	{

								console.log('Found',	documents.length,	'documents');		

				}

);

Using	a	database	such	as	MongoDB	gives	us	more	power	to	retrieve	our	data	and	create	a
more	feature	full	software.

http://docs.mongodb.org/manual/reference/operator/query/

Summary
Now	we	have	places	where	we	can	store	our	data.	On	one	end	we	have	a	simple	key/value
store	that	provides	us	with	a	super-convenient	way	to	store	data	and	on	the	other	end	we
have	a	feature	full	database	that	provides	us	with	a	full	set	of	query	operators.

Both	these	databases	will	help	us	in	the	next	chapters	as	we	move	closer	to	creating	our
full	stack	application.

In	the	next	chapter	we	will	cover	Socket.IO,	a	real-time	communication	framework	built
on	top	of	WebSockets.

Chapter	7.	Socket.IO
Simple	HTTP	is	great	for	things	that	don’t	need	real-time	data,	but	what	about	when	we
need	to	know	about	things	as	they	happen.	For	example,	if	we	were	creating	a	website	that
had	a	chat	interface	or	similar?

This	is	when	something	like	Web	sockets	come	into	play.	Web	sockets	are	usually	referred
to	as	WebSockets	and	are	full	duplex	or	two-way	low-latency	communication	channels.
They	are	generally	used	by	messaging	applications	and	games	where	messages	need	to	be
relayed	between	the	server	and	client.	There	is	a	really	handy	npm	module	called
socket.io,	which	can	add	Web	sockets	to	any	Node.js	application.

To	install	it	we	just	need	to	run:

[~/examples/example-27]	npm	install	socket.io

Socket.IO	can	be	set	up	very	simply	to	listen	for	connections.	First,	we	want	to	be	able	to
serve	out	a	static	html	page	to	run	client	side	code	with:

var	Http	=	require('http'),

				FS	=	require('fs');

var	server	=	Http.createServer(handler);

server.listen(8080);

function	handler(request,	response)	{

				var	index	=	FS.readFileSync('index.html');

				index	=	index.toString();

				

				response.writeHead(200,	{

								'Content-Type':	'text/html',

								'Content-Length':	Buffer.byteLength(index)

				});

				response.end(index);

}

Now,	lets	create	an	HTML	file	as	well,	named	index.html,	in	the	same	directory:

<html>

				<head>

								<title>WS	Example</title>

				</head>

				<body>

								<h2>WS	Example</h2>

								<p	id="output"></p>

								<!--	SocketIO	Client	library	-->

								<script	src="/socket.io/socket.io.js"></script>

								<script	type="application/javascript">

												/*	Our	client	side	code	will	go	here	*/

								</script>

				</body>

</html>

Let’s	run	our	example	and	ensure	that	we	get	our	page,	we	should	be	able	to	see	WS
Example	on	screen.	Now,	to	add	socket	support	to	our	application	we	just	need	to	require
socket.io	and	specify	what	http	server	to	listen	with	to	IOServer:

var	IOServer	=	require('socket.io');

var	io	=	new	IOServer(server);

Now,	whenever	there	is	a	new	socket	connection	over	8080	we	will	get	a	connection
event	on	io:

io.on('connection',	function(socket)	{

				console.log('New	Connection');

});

Lets	add	some	code	to	the	client.	Socket.IO	provides	us	with	a	client	library	and	they
expose	this	through	the	endpoint	/socket.io/socket.io.js.	This	is	included	in	the
preceding	index.html	file.

Tip
All	the	client	side	code	is	contained	within	the	second	script	tag	of	the	index.html	file.

To	create	a	connection	with	the	server	all	we	need	to	do	is	call	io.connect	and	pass	the
location.	This	will	return	a	socket	for	us	with	which	we	can	communicate	to	our	server.

We	are	using	the	client	provided	by	Socket.IO	here,	as	it	will	detect	whether	WebSockets
are	available,	and	if	possible	use	them.	Otherwise,	it	will	utilize	other	methods	such	as
polling,	which	makes	sure	that	it	works	everywhere	rather	than	just	on	evergreen
browsers:

var	socket	=	io.connect('http://localhost:8080');

We	will	use	a	p	element	to	log	messages	to	the	screen	with.	We	can	do	that	with	this	code,
then	all	we	need	to	do	is	call	logScreen:

var	output	=	document.getElementById('output');

function	logScreen(text)	{

				var	date	=	new	Date().toISOString();

				line	=	date	+	"	"	+	text	+	"
";

				output.innerHTML	=		line	+	output.innerHTML

}

Once	a	connection	is	made,	just	like	on	the	server	side	a	connection	event	is	emitted,	we
can	listen	to	this	using	on:

socket.on('connection',	function(){

				logScreen('Connection!');

});

Now,	we	can	run	our	server	once	we	navigate	to	http://localhost:8080.	You	should	be
able	to	see	Connection!	showing	up:

To	receive	a	message	on	server	side,	we	just	need	to	listen	for	the	message	event.	For	now,
we	will	just	echo	the	message	back:

socket.on('connection',	function(){

				socket.on('message',	function	(message)	{

								socket.send(message);

				});

});

On	the	client	side,	we	just	need	to	call	send	to	send	a	message	and	we	want	to	do	this
inside	our	connection	event.	The	api	on	each	side	is	very	similar	to	each	other,	as	you	can
see:

socket.send('Hello');

On	the	client	side,	we	also	want	to	listen	for	messages	and	log	them	to	the	screen:

socket.on('message',	logScreen);

Once	we	restart	the	server	and	refresh	our	page,	we	should	be	able	to	see	an	additional
Hello	message	appear	on	screen.

[~/examples/example-27]$	node	index.js

Hello

This	happens	because	the	server	can	now	send	the	client	packets	of	data.	It	also	means	that
we	can	update	the	client	at	any	time.	For	example,	every	second	we	can	send	an	update	to
the	client:

socket.on('connection',	function(){

				function	onTimeout()	{

								socket.send('Update');

				}

				setInterval(onTimeout,	1000);

});

Now,	when	we	restart	our	server	we	should	be	able	to	see	an	update	message	every
second.

You	might	have	noticed	that	you	didn’t	need	to	refresh	your	webpage	for	the	connection	to
be	opened	again.	This	is	because	socket.io	transparently	keeps	our	connections	“alive”

as	well	as	reconnecting	if	needed.	This	takes	all	the	pain	out	of	using	sockets,	as	we	have
none	of	these	troubles.

Rooms
Socket.IO	also	has	the	concept	of	rooms,	where	multiple	clients	can	be	grouped	into
different	rooms.	To	emulate	this,	all	you	will	need	to	do	is	navigate	to
http://localhost:8080	in	multiple	tabs.

Once	a	client	connects,	we	need	to	call	the	join	method	to	tell	the	socket	what	room	to	be
in.	If	we	wish	to	do	something	such	as	a	group	chat	with	specific	users	only,	we	need	have
a	room	identifier	in	a	database	or	create	one.	For	now	we	will	just	have	everyone	join	the
same	room:

socket.on('connection',	function(){

				console.log('New	Connection');

				var	room	=	'our	room';

				socket.join(room,	function(error)	{

								if	(error)	return	console.log(error);

								

								console.log('Joined	room!');

				});

});

For	every	tab	we	open,	we	should	see	a	message	that	we	have	joined	a	room:

[~/examples/example-27]$	node	index.js

New	Connection

Joined	room!

New	Connection

Joined	room!

New	Connection

Joined	room

With	this,	we	can	broadcast	a	message	to	the	entire	room.	Let’s	do	this	every	time
someone	joins.	Within	the	join	callback:

socket

				.to(room)

				.emit(

								'message',

								socket.id	+	'	joined	the	room!'

);

If	you	look	in	your	browser,	with	each	connection	the	other	clients	get	a	notification	that
someone	else	has	joined:

x3OwYOkOCSsa6Qt5AAAF	joined	the	room!

mlx-Cy1k3szq8W8tAAAE	joined	the	room!

Connection!

Connecting

This	is	great,	we	can	now	communicate	almost	directly	between	browsers!

If	we	want	to	leave	a	room,	all	we	need	to	do	is	call	leave,	we	will	broadcast	this	before
we	call	the	function:

socket

				.to(room)

				.emit(

								'message',

								socket.id	+	'	is	leaving	the	room'

);

socket.leave(room);

While	running	this,	you	will	not	see	any	messages	from	another	client	because	you	are
leaving	right	away:	however,	if	you	were	to	put	a	delay	on	this	you	might	see	another
client	come	and	go:

leave	=	function()	{

				socket

								.to(room)

								.emit(

												'message',

												socket.id	+	'	is	leaving	the	room'

);

				socket.leave(room);

};

setTimeout(leave,	2000);

Authentication
For	authentication,	we	can	use	the	same	method	that	we	used	with	our	HTTP	server	and
we	can	accept	a	JSON	Web	Token

In	these	examples,	for	simplicity	we	will	just	have	a	single	HTTP	route	to	login.	We	will
sign	a	JWT	that	we	will	later	authenticate	by	checking	the	signature

We	need	to	install	a	couple	of	extra	npm	modules	for	this;	we	will	include	chance	so	that
we	can	generate	some	random	data.

[~/examples/example-27]	npm	install	socketio-jwt	jsonwebtoken	chance

First,	we	are	going	to	need	a	route	to	login.	We	will	modify	our	handler	to	watch	for	the
url	/login:

if	(request.url	===	'/login')	{

				return	generateToken(response)

}

Our	new	function	generateToken	will	create	a	JSON	Web	Token	with	some	random	data
using	chance.	We	will	also	need	a	secret	for	our	tokens:

var	JWT	=	require('jsonwebtoken'),

				Chance	=	require('chance').Chance();

var	jwtSecret	=	'Our	secret';

function	generateToken(response)	{

				var	payload	=	{

								email:	Chance.email(),

								name:	Chance.first()	+	'	'	+	Chance.last()

				}

				var	token	=	JWT.sign(payload,	jwtSecret);

				response.writeHead(200,	{

								'Content-Type':	'text/plain',

								'Content-Length':	Buffer.byteLength(token)

				})

				response.end(token);

}

Now,	whenever	we	request	http://localhost:8080/login	we	will	receive	a	token	that
we	can	use:

[~]$	curl	-X	GET	http://localhost:8080/login

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJlbW

joiR2VuZSBGbGVtaW5nIiwiaWF0IjoxNDQxMjcyMjM0

e1Y

We	can	enter	this	into	the	debugger	at	http://jwt.io/	and	see	the	contents:

{

http://jwt.io/

		"email":	"jefoconeh@ewojid.io",

		"name":	"Gene	Fleming",

		"iat":	1441272234

}

Awesome,	we	have	a	token	and	a	random	user	being	generated	for	us.	Now,	we	can	use
this	to	authenticate	our	users.	Socket.IO	has	a	method	on	the	server	to	do	this	and	we	just
need	to	pass	a	handler	type	function	to	it.	This	is	where	socketio-jwt	comes	in,	we	pass
it	our	secret	and	it	will	ensure	it	is	a	real	token,	pretty	simple:

var	SocketIOJWT	=	require('socketio-jwt');

io.use(SocketIOJWT.authorize({

				secret:	jwtSecret,

				handshake:	true	}));

Now,	when	we	try	to	connect	to	our	server	from	the	client	it	will	never	emit	the	connect
event,	as	our	client	isn’t	authenticated.	This	is	exactly	what	we	want.

We	first	want	to	wrap	up	our	Socket.IO	code	(we	will	call	this	later);	we	also	want	to	give
it	a	parameter	of	token:

function	socketIO	(token)	{

				var	socket	=	io.connect('http://localhost:8080');

				var	output	=	document.getElementById('output');

				function	logScreen(text)	{

								var	date	=	new	Date().toISOString();

								line	=	date	+	"	"	+	text	+	"
";

								output.innerHTML	=		line	+	output.innerHTML

				}

				

				logScreen('Connecting');

				socket.on('connect',	function(){

								logScreen('Connection!');

								socket.send('Hello');

				});

				socket.on('message',	logScreen);

}

Next,	we	will	create	a	login	function,	this	will	request	the	login	URL	and	then	pass	the
response	to	the	socketIO	function,	as	shown:

function	login()	{

{

			var	request	=	new	XMLHttpRequest();

				request.onreadystatechange	=	function()	{

												if	(

												request.readyState	!==	4	||

												request.status	!==	200

)	return

											socketIO(request.responseText);

				}

				request.open("GET",	"/login",	true);

				request.send(null);

}

Then	we	want	to	call	the	login	function:

login();

We	can	pass	the	token	on	to	the	server	by	changing	the	connect	call	to	pass	a	query	string:

var	socket	=	io.connect('http://localhost:8080',	{

				query:	'token='	+	token

});

Now,	when	running	our	server	and	navigating	to	our	client	we	should	be	able	to	connect—
awesome!	Since	we	have	authenticated	we	can	also	respond	with	a	personalized	message
for	each	user,	inside	our	server-side	connection	event	handler	we	will	emit	a	message	to
the	client.

Our	socket	will	have	a	new	property	called	decoded_token;	using	this	we	will	be	able	to
view	the	contents	of	our	token:

var	payload	=	socket.decoded_token;

var	name	=	payload.name;

socket.emit('message',	'Hello	'	+	name	+	'!');

Once	we	join	our	room,	we	can	tell	the	rest	of	the	clients	who	have	also	joined:

socket

				.to(room)

				.emit(

								'message',

								name	+	'	joined	the	room!'

);

Summary
Socket.IO	brings	amazing	capabilities	to	our	applications.	We	can	now	instantly
communicate	with	others,	either	individually	or	by	broadcasting	in	a	room.	With	the
ability	to	identify	users,	we	can	record	messages	or	the	history	of	that	user,	ready	to	be
served	up	by	a	RESTful	API.

We	are	now	ready	to	build	real-time	applications!

Chapter	8.	Creating	and	Deploying
Packages
Now	that	we	have	all	of	the	pieces	that	are	needed	to	create	Node.js	applications	and
servers,	we	will	now	focus	more	on	sharing	our	modules	and	contributing	to	the	eco-
system.

All	the	packages	on	npm	have	been	uploaded,	maintained,	and	contributed	by	someone	in
the	community,	so	let’s	have	a	look	at	how	we	can	do	the	same	ourselves.

Creating	npm	packages
We	can	start	with	the	following	steps:

First	we	need	to	create	a	user:

[~]$	npm	add	user											

Username:	<username>

Password:

Email:	(this	IS	public)	<email>

Once	we	have	a	user	we	have	opened	the	gates	to	npm.

Now,	let’s	create	a	package:

[~/examples/example-22]$	npm	init

{

		"name":	"njs-e-example-package",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"",

		"license":	"ISC"

}

To	publish	this	package	all	we	need	to	do	is	run	npm	publish:

[~/examples/example-22]$	npm	publish

+	njs-e-example-package@1.0.0

You	can	see	that	we	have	published	our	package	successfully,	you	can	view	the	one	I
published	at:

https://www.npmjs.com/package/njs-e-example-package

You	will	have	to	name	your	package	something	else	in	order	to	publish	it;	otherwise,	we
will	have	a	conflict.

Now	we	can	run	the	following	command:

[~/examples/example-21]$	npm	install	njs-e-example-package

njs-e-example-package@1.0.0	node_modules/njs-e-example-package

Then	we	will	have	the	package!	Isn’t	that	pretty	cool?

If	we	try	to	publish	again,	we	will	get	an	error	because	version	1.0.2	is	already	published,
as	shown	in	the	following	screenshot:

https://www.npmjs.com/package/njs-e-example-package

To	increment	our	package	version,	all	we	need	to	do	is	execute:

[~/examples/example-22]$	npm	version	patch

v1.0.1

Now	we	can	publish	again:

[~/examples/example-22]$	npm	publish

+	njs-e-example-package@1.0.1

You	can	go	to	your	packages	page	on	npm	and	you	will	see	that	the	version	number	and
release	count	has	been	updated.

Versioning	in	Node.js	follows	the	semver	schema,	which	is	made	up	of	major,	minor,	and
patch	versions.	When	the	patch	version	is	incremented,	it	means	that	the	API	has	stayed
the	same	however	something	has	been	fixed	behind	the	scenes.	If	the	minor	version	has
been	incremented,	it	means	that	a	non-breaking	API	change	has	occurred,	such	as	a
method	has	been	added.	If	the	major	version	is	updated,	it	means	that	there	has	been	a
breaking	API	change;	for	example	a	method	has	been	deleted	or	a	method	signature	has
changed.

Sometimes,	there	are	things	in	your	project	that	you	don’t	want	to	be	pushed	out	for	other
people	to	have.	This	could	be	an	original	source,	some	certificates,	or	maybe	some	keys
for	development.	Just	like	when	using	git,	we	have	an	ignore	file	called	.npmignore.

By	default,	if	there	is	no	.npmignore	but	there	is	a	.gitignore,	npm	will	ignore	what	is
matched	by	the	.gitignore	file.	If	you	don’t	like	this	behavior	then	you	can	just	create	an
empty	.npmignore	file.

The	.npmignore	file	follows	the	same	rules	as	.gitignore,	which	are	as	follows:

Blank	lines	or	lines	starting	with	#	are	ignored
Standard	glob	patterns	work
You	can	end	patterns	with	a	forward	slash	/	to	specify	a	directory
You	can	negate	a	pattern	by	starting	it	with	an	exclamation	point	!

For	example,	if	we	had	a	directory	of	certificates	in	which	we	had	a	key:

[~/examples/example-22]$	mkdir	certificates

[~/examples/example-22]$	touch	certifticates/key.key

We	probably	don’t	want	this	to	be	published,	so	in	our	ignore	file	we	will	have:

certificates/

We	also	don’t	want	any	key	files	that	we	have	lying	around,	so	we	add	this	as	well:

*.key

Now,	let’s	publish:

[~/examples/example-22]$	npm	version	patch

v1.0.2

[~/examples/example-22]$	npm	publish

+	njs-e-example-package@1.0.2

Now,	let’s	install	our	package:

[~/examples/example-23]$	npm	install	njs-e-example-package@1.0.2

Now,	when	we	list	what’s	in	the	directory,	we	don’t	see	all	our	certificates	being	passed
around:

[~/examples/example-23]$	ls	node_modules/njs-e-example-package

package.json

This	is	great,	but	what	if	we	want	to	protect	our	entire	package	and	not	just	a	few
certificates?

All	we	need	to	do	is	set	private	to	true	in	our	package.json	file	and	it	will	prevent	npm
from	publishing	the	module	when	we	run	npm	publish:

Our	package.json	should	look	something	like:

{

		"name":	"example-23",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"",

		"license":	"UNLICENSED",

		"dependencies":	{

				"njs-e-example-package":	"^1.0.2"

		},

		"private":	true

}

Now,	when	we	run	npm	publish:

[~/examples/example-23]$	npm	publish

npm	ERR!	This	package	has	been	marked	as	private

Awesome,	that’s	exactly	what	we	wanted	to	see.

Summary
Looks	like	we	are	getting	closer	to	being	ready	with	all	things	about	Node.js.	We	know
now	how	to	set	up,	debug,	develop,	and	distribute	our	software.

In	the	next	chapter,	we	will	cover	one	more	concept	we	need	to	know	about:	unit	testing.

Chapter	9.	Unit	Testing
We	have	come	this	far	but	haven’t	done	any	testing!	That’s	not	very	good,	is	it?	Usually,	if
not	always,	testing	is	a	major	concern	in	software	development.	In	this	chapter,	we	will
cover	unit	testing	concepts	with	Node.

There	are	many	testing	frameworks	for	Node.js	and	in	this	chapter	we	will	be	covering
Mocha.

Installing	mocha
To	ensure	that	mocha	gets	installed	everywhere,	we	need	to	install	it	globally.	This	can	be
done	using	the	-g	flag	with	npm	install:

[~/examples/example-24]$	npm	install	-g	mocha

Now,	we	can	use	Mocha	through	the	terminal	console.

Typically,	we	will	contain	all	our	testing	code	in	a	test	sub-directory	within	the	project.
All	we	need	to	do	to	get	our	code	running	is	run	mocha,	assuming	we	have	written	some
tests	first.

As	with	many	(if	not	all)	unit	testing	frameworks,	Mocha	uses	assertions	to	ensure	that	a
test	runs	correctly.	If	an	error	is	thrown	and	is	not	handled	then	the	test	is	considered	to
have	failed.	What	assertion	libraries	do	is	throw	errors	when	an	unexpected	value	is
passed,	so	this	works	well.

Node.js	provides	a	simple	assertion	module,	let’s	have	a	look	at	the	following:

[~/examples/example-24]$	node

>	assert	=	require('assert')

>	expected	=	1

>	actual	=	1

>	assert.equal(actual,	expected)

>	actual	=	1

>	assert.equal(actual,	expected)

AssertionError:	2	==	1

As	we	can	see,	an	error	is	thrown	if	the	assertion	doesn’t	pass.	However,	the	error	message
provided	wasn’t	very	handy;	to	fix	this	we	can	pass	an	error	message	as	well:

>	assert.equal(actual,	expected,	'Expected	1')

AssertionError:	Expected	1

With	this	we	can	create	a	test.

Mocha	provides	many	ways	of	creating	tests,	these	are	called	interfaces	and	the	default	is
called	BDD.

You	can	view	all	interfaces	at	http://mochajs.org/#interfaces.

The	BDD	(Behavior	Driven	Development)	interface	can	be	compared	to	Gherkin	where
we	specify	a	feature	and	a	set	of	scenarios.	It	provides	methods	to	help	define	these	sets,
describe	or	context	is	used	to	define	a	feature,	and	the	it	or	specify	functions	are	used
to	define	a	scenario.

For	example,	if	we	were	to	have	a	function	that	joins	someone’s	first	and	last	name,	the
tests	might	look	something	like	the	following:

var	GetFullName	=	require('../lib/get-full-name'),

				assert	=	require('assert');

	

describe('Fetch	full	name',	function()	{

http://mochajs.org/#interfaces

				it('should	return	both	a	first	and	last	name',	function()	{

								var	result	=	GetFullName({	first:	'Node',	last:	'JS'	})

								assert.equal(result,	'Node	JS');

				})

})

We	can	also	add	a	few	more	tests	for	this;	for	example,	if	it	threw	an	error	in	case	of	no
object	being	passed:

it('should	throw	an	error	when	an	object	was	not	passed',	function()	{

				assert.throws(

								function()	{

												GetFullName(null);

								},

								/Object	expected/

)

})

You	can	explore	many	more	mocha-specific	features	at	http://mochajs.org/.

http://mochajs.org/

Chai
Along	with	the	many	testing	frameworks,	there	are	also	many	assertion	frameworks,	one
of	which	is	called	Chai.	Complete	documentation	can	be	found	at	http://chaijs.com/.

Instead	of	just	using	the	built-in	assertion	module	provided	by	Node.js,	we	may	want	to
use	a	module	such	as	Chai	to	extend	our	possibilities.

Chai	has	three	sets	of	interfaces,	should,	expect,	and	assert.	In	this	chapter,	we	will	be
covering	expect.

When	using	expect,	you	are	using	natural	language	to	describe	what	you	want;	for
example,	if	you	want	something	to	exist,	you	can	say,	expect(x).to.exist	rather	than
assert(!!x):

var	Expect	=	require('chai').expect

var	Assert	=	require('assert')

var	value	=	1

Expect(value).to.exist

assert(!!value)

Using	natural	language	makes	things	a	lot	clearer	for	people	reading	your	tests.

This	language	can	be	linked	together;	we	have	to,	be,	been,	is,	that,	which,	and,	has,
have,	with,	at,	of,	and	same,	which	can	help	us	to	build	sentences	like:

Expect(value).to.be.ok.and.to.equal(1)

However,	these	words	are	only	for	reliability	and	they	don’t	modify	the	result.	There	are	a
lot	of	other	words	that	can	be	used	to	assert	things,	such	as	not,	exists,	ok,	and	many
more.	You	can	view	them	all	at	http://chaijs.com/api/bdd/.

Some	examples	of	chai	in	use	are:

Expect(true).to.be.ok

Expect(false).to.not.be.ok

Expect(1).to.exists

Expect([]).to.be.empty

Expect('hi').to.equal('hi')

Expect(4).to.be.below(5)

Expect(5).to.be.above(4)

Expect(function()	{}).to.be.instanceOf(Function)

http://chaijs.com/
http://chaijs.com/api/bdd/

Stubbing	methods
If	it	looks	like	a	duck,	swims	like	a	duck,	and	quacks	like	a	duck,	then	it	probably	is	a
duck.

As	you	write	your	tests	you	want	to	be	only	be	testing	units	of	code.	Generally	this	will
be	a	method,	provide	it	some	input,	and	expect	an	output	of	some	kind,	or	if	it	is	a	void
function,	expect	nothing	to	be	returned.

With	this	in	mind,	you	have	to	think	of	your	application	as	being	in	a	sandboxed	state
where	it	can’t	talk	to	the	outside	world.	For	example,	it	might	not	be	able	to	talk	to	a
database	or	make	any	kind	of	external	request.	Having	this	assumption	is	great	if	you	are
going	to	(and	you	usually	should)	implement	continuous	integration	and	deployment.	It
also	means	that	there	are	no	external	requirements	for	the	machine	you	are	testing	on
except	for	Node.js	and	the	testing	framework,	which	could	just	be	a	part	of	your	package
anyway.

Unless	the	method	you	are	testing	is	rather	simple	and	doesn’t	have	any	external
dependencies,	you	will	probably	want	to	mock	the	methods	that	you	know	it	is	going	to
execute.	A	great	module	to	do	this	is	called	Sinon.js;	it	allows	you	to	create	stubs	and
spies	to	make	sure	that	the	correct	data	returns	from	other	methods	and	to	ensure	that
they	were	called	in	the	first	place.

sinon	provides	many	helpers,	as	mentioned	before	and	one	of	these	is	called	a	spy.	A	spy
is	used	mainly	to	just	wrap	a	function	to	see	what	its	input	and	output	was.	Once	a	spy	has
been	applied	to	a	function,	to	the	outside	world	it	behaves	exactly	the	same.

var	Sinon	=	require('sinon');

var	returnOriginal	=	function(value)	{

				return	value;

}

var	spy	=	Sinon.spy(returnOriginal);

result	=	spy(1);

console.log(result);	//	Logs	1

We	can	use	a	spy	to	check	if	a	function	was	called:

assert(spy.called)

Or	what	arguments	were	passed	for	each	call:

assert.equal(spy.args[0][0],	1)

If	we	provided	spy	with	an	object	and	a	method	to	replace	then	we	can	restore	the	original
once	we	are	finished.	We	will	usually	do	this	in	the	tear	down	of	our	test:

var	object	=	{

				spyOnMe:	function(value)	{

								return	value;

				}

}

Sinon.spy(object,	'spyOnMe')

var	result	=	object.spyOnMe(1)

assert(result.called)

assert.equal(result.args[0][0],	1)

object.spyOnMe.restore()

We	also	have	a	stub	function,	which	inherits	all	the	functionality	of	spy	but	instead	of
calling	the	original	function	it	completely	replaces	it.

This	is	so	we	can	define	the	behavior,	for	example,	what	it	returns:

var	stub	=	Sinon.stub().returns(42)

console.log(stub())	//	logs	42

We	can	also	define	a	return	value	for	a	set	of	arguments	passed:

var	stub	=	Sinon.stub()

stub.withArgs(1,	2,	3).returns(42)

stub.withArgs(3,	4,	5).returns(43)

console.log(stub(1,	2,	3))	//	logs	42

console.log(stub(3,	4,	5))	//	logs	43

Let’s	say	we	had	this	set	of	methods:

function	Users()	{

}

Users.prototype.getUser	=	function(id)	{

				return	Database.findUser(id);

}

Users.prototype.getNameForUser	=	function(id)	{

				var	user	=	this.getUser(id);

				return	user.name;

}

module.exports	=	Users

Now,	we	only	care	about	the	scenario	where	a	user	is	returned,	as	the	getUser	function
will	throw	an	error	if	it	can’t	find	it.	Knowing	this,	we	just	want	to	test	that	when	a	user	is
found	it	returns	their	name.

This	is	a	perfect	example	of	when	we	want	to	stub	a	method:

var	Sinon	=	require('sinon');

var	Users	=	require('../lib/users');

var	Assert	=	require('assert');

it('should	return	a	users	name',	function()	{

				

				var	name	=	'NodeJS';

				var	user	=	{	name:	name	};

				

				var	stub	=	Sinon.stub().returns(user);

				

				var	users	=	new	Users();

				users.getUser	=	stub;

				

				var	result	=	users.getNameForUser(1);

				

				assert.equal(result,	name,	'Name	not	returned');

});

Instead	of	replacing	the	function	we	can	also	pass	the	function	using	the	scope,	replacing
this	with	the	object	we	passed;	either	way	is	sufficient.

var	result	=	users.getNameForUser.call(

				{

								getUser:	stub

				},

				1

);

Summary
Everything	we	need	to	create	a	Node.js	application	is	now	at	our	fingertips.	Testing	is	just
one	of	those	things	that	are	essential	to	any	successful	software.	We	covered	using	mocha
as	a	testing	framework	and	chai	as	an	assertion	framework.

In	the	next	chapter,	we	will	cover	using	another	language	with	Node.js,	CoffeeScript!

Chapter	10.	Using	More	Than	JavaScript
Throughout	this	book	we	have	used	only	JavaScript.	Well,	it’s	called	Node.js	isn’t	it?

However,	that	doesn’t	mean	that	we	can’t	use	other	languages	with	it.	We	can	and	as	long
as	it	compiles	to	JavaScript	you	are	good	to	go.

There	is	a	big	list	of	common	languages	that	are	available	at:
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS.

If	you	are	missing	your	strongly	typed	language	or	just	want	a	slightly	different	syntax,
then	there	will	surely	be	one	option	out	there	for	you	somewhere.

A	couple	of	common	languages	include	CoffeeScript	and	TypeScript,	they	work	great
with	Node.js	as	they	both	compile	to	JavaScript.	In	this	chapter,	we	will	cover	the	usage	of
CoffeeScript.	TypeScript	is	similar	in	usage;	however,	the	syntax	follows	a	similar	path
to	C#	and	Java.

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS

CoffeeScript
It’s	very	simple	to	install	and	start	using	additional	languages.	Let’s	have	a	look	at
CoffeeScript:

We	need	to	install	CoffeeScript	globally,	so	that	we	can	use	a	command	similar	to	node:

[~]	npm	install	-g	coffee-script

Now	we	can	run	coffee:

[~]	coffee

>

The	syntax	is	very	similar	to	JavaScript:

[~]	coffee

>	1	+	1

2

>	console.log('Hello')

Hello

Instead	of	using	the	.js	extension,	we	use	.coffee.

First,	we	will	create	a	CoffeeScript	file:

/*	index.coffee	*/

console.log('Hello	CoffeeScript!')

Then	to	run	it,	all	we	need	to	do	is	use	the	coffee	command,	similar	to	the	node
command:

[~/examples/example-25]	coffee	index.coffee

Hello	CoffeScript!

To	compile	our	.coffee	files	into	.js,	we	can	use	-c.	Once	compiled,	we	can	run	them
directly	with	Node.js:

[~/examples/example-25]	coffee	-c	index.coffee

[~/examples/example-25]	node	index.js

Hello	CoffeeScript!

If	we	have	a	bunch	of	CoffeeScript	that	we	want	to	compile	to	JavaScript	all	at	once,	we
can	use	coffee	-c	-o	./lib	./src.	This	will	take	all	.coffee	files	from	./src,	compile
them	to	.js	and	then	output	them	to	./lib.

You	will	need	to	compile	all	your	files	for	other	users	to	use	our	CoffeeScript	code	along
side	their	JavaScript	code.	The	alternative	is	to	include	CoffeeScript	as	a	dependency	and
require	the	register	file	into	your	application,	as	shown:

/*	index.js	*/

require('coffee-script/register');

require('./other.coffee');

You	may	need	to	do	this	if	do	not	you	wish	to	compile	your	CoffeeScript,	or	if	you	are
using	a	tool	that	requires	a	JavaScript	file	such	as	Gulp	or	Grunt.

Tip
To	see	the	equivalents	between	JavaScript	and	CoffeeScript	you	can	use	the	site
http://js2.coffee/,	it	provides	a	simple	way	to	compare	the	two	on	the	fly.

CoffeeScript	is	basically	just	JavaScript;	however,	it	has	targeted	readability	and
simplicity.	With	simplicity	it	also	tries	to	limit	the	use	of	the	bad	parts	of	JavaScript	and
exposes	the	good	parts.

Using	CoffeeScript	is	usually	great	for	beginners,	(and	for	experts),	as	it	uses	English
language	rather	than	computer	language.	For	example,	instead	of	using	===	(triple	equals
)	to	check	if	two	values	equal,	we	can	just	use	the	English	word	is.	So,	x	===	y	becomes
x	is	y,	which	means	that	there	is	no	translating	required	when	reading.

Along	with	is,	there	are	other	keywords,	such	as	isnt,	not,	or,	and,	yes	and	no.

Using	these	keywords	instead	of	symbol	operators	gives	clarity	to	the	readers	and
programmers.	The	CoffeeScript	has	similar	formatting	to	Python	in	the	way	functions	and
code	blocks	are	declared;	the	indentation	indicates	when	the	block	ends	and	begins

http://js2.coffee/

Code	blocks	and	functions
In	JavaScript	you	will	usually	group	together	blocks	using	curly	braces,	as	shown	in	the
following	example:

if	(true)	

{

		console.log('It	was	true!')	

}

Where	as	in	CoffeeScript	you	will	leave	out	all	the	curly	braces,	in	fact	all	the	braces	are
left	out:

if	true	

		console.log('It	was	true!')

The	same	is	true	when	declaring	a	function,	notice	that	we	are	using	an	arrow	rather	than
the	keyword	function.	The	parameter	list	is	only	required	if	you	want	named	arguments:

func	=	->

		console.log('I	executed')

CoffeeScript	tries	to	assume	as	much	as	possible	while	still	giving	the	programmer	enough
control.

You	may	have	also	noticed	that	I	didn’t	use	the	var	keyword	when	declaring	a	function.
This	is	because	it	is	implicitly	declared,	as	you	can	see	by	compiling	the	above	code	to
JavaScript:

var	func;

func	=	function()

{

		return	console.log('I	executed');

};

You	can	see	in	this	compiled	code	that	the	last	statement	in	the	function	is	the	return	value,
this	means	that	we	don’t	need	to	declare	the	return	value	and	just	assume	that	the	last
value	is	returned.	This	makes	it	very	simple	to	create	one	line	functions,	such	as:

add	=	(a,	b)	->	a	+	b	

Unlike	JavaScript,	you	may	provide	default	arguments	for	a	function	and	this	can	be
compared	to	C#;	however,	it’s	not	limited	to	only	constants	as	it	essentially	executes	the
statement	within	the	function:

keys	=	{	}

func	=	(key,	date	=	new	Date)	->

		keys[key]	=	date

You	can	see	this	by	compiling	the	above	function	as:

var	func,	keys;

keys	=	{};

func	=	function(key,	date)	

{

		if	(date	==	null)

		{

				date	=	new	Date();

		}

		return	keys[key]	=	date;

};

Essentially,	all	CoffeeScript	does	is	check	if	the	value	is	null	or	undefined.

The	existential	operator
You	can	check	to	see	if	a	value	is	null	or	undefined	using	the	existential	operator,	which
checks	to	see	if	the	value	exists.	This	is	indicated	by	using	the	question	mark	symbol	after
a	variable;	the	statement	will	be	true	if	the	value	exists	and	otherwise	false.

To	use	this	in	an	expression:

date	=	null	

if	not	date?

		date	=	new	Date()

console.log(date)

You	can	use	this	as	a	shorthand	operator	as	well,	for	example:

date	?=	new	Date()

console.log(date)	

The	above	two	examples	of	code	will	behave	exactly	the	same	and	will	actually	compile
to	give	the	same	code:

var	date;

date	=	null;

if	(date	==	null)	

{

		date	=	new	Date();

}

You	may	also	use	the	existential	operator	to	ensure	a	value	exists	before	accessing	a
property	of	it.	For	example,	if	you	want	to	get	the	time	from	a	date,	or	-1	if	the	date
doesn’t	exist:

getTime	=	(date	=	null)	->	date?.getTime()	?	-1	

Giving	date	the	null	value	shows	that	we	don’t	mind	if	no	value	is	passed:

When	an	object	doesn’t	exist	and	the	operator	is	used	then	the	returned	value	is
undefined,	this	means	that	we	can	use	the	same	operator	again	to	return	a	default	value.

Objects	and	arrays
Along	with	all	the	assumptions	that	CoffeeScript	tries	to	make,	it	surely	does	try	to
remove	all	the	un-needed	syntax	plain	JavaScript	requires.	Another	instance	of	this	can	be
seen	while	defining	arrays	and	objects	in	which	the	use	of	a	new	line	declares	a	new	item.
For	example,	you	will	usually	define	an	array	as:

array	=	[

		1,

		2,

		3

]

This	still	works;	however,	with	CoffeeScript	you	can	leave	out	the	commas	separating
each	item:

array	=	[

		1

		2

		3

]

You	can	also	mix	the	two	styles	together:

array	=	[

		'a',	'b',	'c'

		1,	2,	3

		true,	false

]

You	can	do	the	same	with	objects,	such	as:

object	=	{

		foo:	1

		bar:	2

}

With	objects	you	can	even	leave	out	the	curly	braces	and	use	indentation	to	show	the
differences	in	the	object:

object	=	

		foo:	1

		bar:	2

		foobar:	

				another:	3

				key:	4

To	loop	an	array	in	CoffeeScript,	all	you	need	to	do	is	use	the	for…in	loop,	such	as:

for	value,	index	in	array

		console.log(value,	index)	

		continue	if	typeof	value	is	'string'

		console.log('Value	was	not	a	string')

If	you	do	not	wish	to	use	the	index	of	your	item,	you	simply	don’t	ask	for	it:

for	value	in	array

		console.log(value)

As	with	JavaScript	loops,	you	can	use	break	and	continue	to	control	the	flow.

To	loop	an	object	in	CoffeeScript	you	can	use	the	for…of	loop,	this	is	a	bit	different	from
the	for…of	loop	provided	by	JavaScript:

for	key,	value	of	object	

		console.log(key,	value)	

As	with	the	for…in	loop,	if	you	don’t	want	the	value,	exclude	it:

for	key	of	object	

		console.log(key)

For	both	types	of	loops,	the	naming	is	irrelevant:

for	key,	value	of	object	

				#	Note	that	this	will	let	dates	and	arrays	through	(etc)

				continue	unless	value	instanceof	Object	

				for	nestedKey,	nestedValue	of	value

						console.log(nestedKey,	nestedValue)

Classes
Unlike	JavaScript,	CoffeeScript	provides	a	natural	way	to	declare	classes	and	inheritance.

To	define	a	class	in	JavaScript,	you	need	to	declare	a	function	first:

function	User(username)	{

		this.username	=	username;

}

Then	you	will	declare	the	prototype	methods:

User.prototype.getUsername	=	function()	{

		return	this.username;

}

If	you	have	a	static	method,	you	can	define	this	on	the	function	rather	than	the
prototype:

User.createUser	=	function(username)	{

		return	new	User(username);

}

In	CoffeeScript	you	can	use	the	class	keyword	and	give	the	class	a	name.	You	can	then
declare	the	constructor,	static,	and	instance	(prototype)	methods:

class	User

		@createUser:	(username)	->

				return	new	User(username)

		constructor:	(username)	->

				this.username	=	username

		getUsername:	->

				return	this.username

Usually,	you	place	all	your	static	methods	above	your	constructor	so	that	they	stay
separate	from	your	instance	methods.	This	avoids	confusion,	you	may	have	noticed	that	I
declared	the	static	method	createUser	with	a	@	prefix,	this	is	how	you	define	a	static
method	in	CoffeeScript.	However,	you	can	also	use	the	traditional	JavaScript	method	of
User.createUser	=	->,	either	way	will	work	here.

The	code	that	is	run	when	the	instance	is	being	created	or	constructed	is	called	the
constructor.	This	is	the	same	terminology	that	is	used	in	many	other	languages	so	it	should
be	familiar.	A	constructor	is	essentially	a	function.

All	the	instance	methods	are	declared	similarly	to	properties	of	an	object.

With	classes	comes	another	symbol,	the	@	symbol.	When	used	on	an	instance,	you	can	use
it	to	refer	to	the	this	keyword.	For	example,	the	getUsername	method	can	be	written	as:

getUsername:	->

		return	@username

Or,	if	we	want	to	drop	the	return	statement	and	make	it	a	one	liner:

getUsername:	->	@username	

The	@	symbol	can	also	be	used	in	parameter	lists	to	declare	that	we	want	the	instance
property	to	be	set	as	the	passed	value.	For	example,	if	we	had	a	setUsername	method	we
can	either	do:

setUsername:	(username)	->

		@username	=	username

Or	we	can	do:

setUsername:	(@username)	->

Both	the	methods	will	compile	to	the	same	JavaScript	code.

Given	the	fact	that	we	can	use	the	@	symbol	in	our	parameter	list,	we	can	refactor	our
constructor	function	to:

constructor:	(@username)	->

Another	advantage	of	using	CoffeeScript	class	is	that	we	can	define	inheritance.	To	do	so,
all	we	need	to	do	is	use	the	extends	keyword,	this	is	similar	to	other	languages.

In	these	examples,	we	want	to	have	two	classes,	Person	and	Robot	that	extend	the	base
User	class.

For	our	person,	we	want	to	be	able	to	give	them	a	name	and	an	age	along	with	the
username	that	the	User	class	requires.

First,	we	need	to	declare	our	class:

class	Person	extends	User

Then	declare	our	constructor.	In	our	constructor,	we	will	call	the	super	function,	this
will	execute	the	constructor	of	the	parent	class	User	and	we	want	to	pass	the	username	to
it,	as	shown:

		constructor:	(username,	@name,	@age)	->

				super(username)

We	then	add	two	methods,	getName	and	getAge:

		getName:	->	@name

		getAge:	->	@age

Next,	we	will	do	the	same	for	Robot,	except	this	time	we	only	want	a	username	and
@usage:

class	Robot	extends	User

		constructor:	(username,	@usage)	–>

				super(username)

		getUsage:	->	@usage	

We	can	now	create	instances	of	our	classes	and	compare	them,	as	shown	here:

Summary
CoffeeScript	tries	to	make	good	assumptions	with	your	code.	This	helps	to	remove	some
problems	that	JavaScript	developers	come	across.	For	example,	the	difference	between	==
and	===.

You	can	learn	more	about	the	specific	syntax	of	CoffeeScript	at	http://coffeescript.org/.

In	this	chapter	we	have	covered	utilizing	another	language.	This	can	help	alleviate	the
struggles	with	JavaScript’s	style	or	syntax	for	beginners.	For	people	who	are	used	to	more
language	features,	this	is	a	big	advantage	as	it	helps	remove	the	pitfalls	that	people	usually
come	across.

http://coffeescript.org/

Index
A

arguments
about	/	Arguments

authentication
basic	authentication	/	Basic	authentication

B
BDD	(Behavior	Driven	Development)	/	Installing	mocha
Bearer	token

about	/	Bearer	tokens
bunyan

reference	/	Logging

C
chai

about	/	Chai
URL	/	Chai

CoffeeScript
about	/	CoffeeScript
installing	/	CoffeeScript
reference	/	CoffeeScript
code	blocks	/	Code	blocks	and	functions
functions	/	Code	blocks	and	functions
existential	operator,	using	/	The	existential	operator
objects	/	Objects	and	arrays
arrays	/	Objects	and	arrays
classes	/	Classes

configuration
JSON	files	/	JSON	files
environmental	variables	/	Environmental	variables
arguments	/	Arguments

E
environmental	variables

about	/	Environmental	variables
error	handling

about	/	Error	handling
existential	operator

about	/	The	existential	operator

H
Hello	require	example

about	/	Hello	require
HTTP	methods

POST	/	Introducing	routing
GET	/	Introducing	routing
DELETE	/	Introducing	routing

J
JSON	files

about	/	JSON	files
JSON	Web	Token	(JWT)

about	/	Bearer	tokens
URL	/	Bearer	tokens

L
Level	DB

about	/	Level	DB
logging

about	/	Logging

M
methods

stubbing	/	Stubbing	methods
mocha

installing	/	Installing	mocha
reference,	for	interfaces	/	Installing	mocha
URL	/	Installing	mocha

MongoDB
about	/	MongoDB

MongoLab
about	/	MongoDB

morgan
about	/	Logging
reference	/	Logging

N
Node.js

setting	up	/	Setting	up
URL	/	Setting	up

npm
about	/	Hello	npm
URL	/	Hello	npm
scripts	object	/	Hello	npm

npm	packages
creating	/	Creating	npm	packages

O
OAuth

about	/	OAuth
URL	/	OAuth

R
routing

about	/	Introducing	routing

S
Sinon.js	/	Stubbing	methods
Socket.IO

rooms	/	Rooms
authentication	/	Authentication

spy	/	Stubbing	methods
stub	function	/	Stubbing	methods

T
try/catch	function	/	Error	handling

	Node.js Essentials
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started
	Setting up
	Hello require
	Hello npm
	Summary
	2. Simple HTTP
	Introducing routing
	Summary
	3. Authentication
	Basic authentication
	Bearer tokens
	OAuth
	Summary
	4. Debugging
	Logging
	Error handling
	Summary
	5. Configuration
	JSON files
	Environmental variables
	Arguments
	Summary
	6. Level DB and NoSQL
	Level DB
	MongoDB
	Summary
	7. Socket.IO
	Rooms
	Authentication
	Summary
	8. Creating and Deploying Packages
	Creating npm packages
	Summary
	9. Unit Testing
	Installing mocha
	Chai
	Stubbing methods
	Summary
	10. Using More Than JavaScript
	CoffeeScript
	Code blocks and functions
	The existential operator
	Objects and arrays
	Classes
	Summary
	Index

