
www.allitebooks.com

http://www.allitebooks.org

Node Cookbook
Second Edition

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node.js, with coverage
of Express 4 and Socket.IO frameworks and the
new Streams API

David Mark Clements

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Node Cookbook
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Second edition: April 2014

Production Reference: 1180414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-043-8

www.packtpub.com

Cover Image by Alvaro Dalloz (alvaroff@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Mark Clements

Reviewers
Vijay Annadi

Johannes Boyne

Aravind V.S

Commissioning Editor
Grant Mizen

Acquisition Editors
Antony Lowe

Sam Wood

Content Development Editor
Amey Varangaonkar

Technical Editors
Pratik More

Humera Shaikh

Ritika Singh

Copy Editors
Alisha Aranha

Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Jonathan Todd

Indexer
Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Mark Clements is a JavaScript and Node specialist residing in Northern Ireland.
From a very early age he was fascinated with programming and computers. He first learned
BASIC on one of the many Atari's he had accumulated by the age of 9. David learned
JavaScript at age 12, moving into Linux administration and PHP as a teenager.

Now (as a twenty something), he assists multinationals and startups alike with JavaScript
solutions and training. Node has become a prominent member of his toolkit due to its
versatility, vast ecosystem, and the cognitive ease that comes with full-stack JavaScript.

When he's not tinkering with computers, he's spending time with the love of his life,
Maxine, and her Husky-Spitz cross, Jessi.

Many thanks to the Node community who have caused Node to grow as it
has, and the Node Google Group, which has been an immense source of
information and inspiration. I cannot conclude without acknowledging Jesus,
who makes my life worthwhile and gives me answers to problems when I'm
not seeing the solution myself (Jms 1:5, 1 Cor 1:30).

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vijay Annadi is a freelance developer/architect with a passion for designing/developing
complex yet simple software. Since 1997, he has been developing software applications
using a wide array of languages and technologies, including Java, JavaScript, Python, Scala,
and many others, with focus on both desktop and web applications.

Johannes Boyne is a full-stack developer, technical consultant, and entrepreneur. He
co-founded Archkomm GmbH and is now working at Zweitag GmbH, a software engineering
consultancy. His work with Node.js began with Version 0.4 and since then he has supported
the Node.js community.

He started as a rich Internet application developer and did consulting work later on till he
joined Archkomm for the VIRTUAL TWINS® project as technical lead. He is interested in new
technologies such as NoSQL, high-performance and highly-scalable systems, as well as cloud
computing. Besides work, he loves sports, reading about new scientific research, watching
movies, and travelling.

He has also worked on books such as Rich Internet Applications mit Adobe Flex 3,
Simon Widjaja, Hanser Fachbuchverlag (2008) and Adobe Flex 4, Simon Widjaja, Hanser
Fachbuchverlag (July 1, 2010). He was also a technical reviewer of the book Node Security,
Dominic Barnes, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

Aravind V.S is an aspiring mind and a creative brain to look forward to in the field of
technology. He is a successful freelance software developer and web designer. His interest
in embedded systems and computers paved his way into a programming career at the age
of 15. He then developed an inventory management system for a local provision store and
it rocketed his programming career sky high. His compassion and curiosity for technological
advances and gadgets can be clearly seen on his blog http://aravindvs.com/blog/,
where he talks about the current tech trends and also provides tutorials. He can be found
outdoors focusing his camera or reading books during his leisure time.

I would like to take this opportunity to thank my friends and my parents for
their support in completing the review of this book, especially my best friend
Kavya Babu for her undying support and encouragement, without which I
wouldn't be what I am today. Special thanks to Ryan Dahl and his team for
NodeJS. Above all, I'd like to thank the Almighty for everything.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Making a Web Server	 7

Introduction	 7
Setting up a router	 7
Serving static files	 13
Caching content in memory for immediate delivery	 18
Optimizing performance with streaming	 22
Securing against filesystem hacking exploits	 28

Chapter 2: Exploring the HTTP Object	 35
Introduction	 35
Processing POST data	 35
Handling file uploads	 40
Using Node as an HTTP client	 47
Implementing download throttling	 52

Chapter 3: Working with Data Serialization	 59
Introduction	 59
Converting an object to JSON and back	 59
Converting an object to XML and back	 64
Browser-server transmission via AJAX	 70
Working with real data – fetching trending tweets	 79

Chapter 4: Interfacing with Databases	 89
Introduction	 89
Writing to a CSV file	 90
Connecting and sending SQL to a MySQL server	 94
Storing and retrieving data with MongoDB	 99
Storing data to CouchDB with Cradle	 107
Retrieving data from CouchDB with Cradle	 109

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Accessing the CouchDB changes stream with Cradle	 115
Storing and retrieving data with Redis	 118
Implementing PubSub with Redis	 121

Chapter 5: Employing Streams	 127
Introduction	 127
Consuming streams	 128
Playing with pipes	 134
Making stream interfaces	 137
Streaming across Node processes	 144

Chapter 6: Going Real Time	 153
Introduction	 153
Creating a WebSocket server	 154
Cross-browser real-time logic with Socket.IO	 162
Remote Procedure Calls with Socket.IO	 167
Creating a real-time widget	 171

Chapter 7: Accelerating Development with Express	 179
Introduction	 179
Generating Express scaffolding	 180
Managing server tier environments	 187
Implementing dynamic routing	 191
Templating in Express	 195
CSS preprocessors with Express	 201
Initializing and using a session	 211
Making an Express web app	 220

Chapter 8: Implementing Security, Encryption, and Authentication	 241
Introduction	 241
Implementing Basic Authentication	 242
Hashing passwords	 245
Implementing Digest Authentication	 250
Setting up an HTTPS web server	 257
Preventing cross-site request forgery	 260

Chapter 9: Integrating Network Paradigms	 269
Introduction	 269
Sending an e-mail	 270
Sending an SMS	 274
Communicating with TCP	 280
Creating an SMTP server	 285
Implementing a virtual hosting paradigm	 291

iii

Table of Contents

Chapter 10: Writing Your Own Node Modules	 299
Introduction	 299
Creating a test-driven module specification	 300
Writing a functional module mock-up	 305
Refactoring with prototypical inheritance	 310
Extending a module's API	 317
Deploying a module to npm	 326

Chapter 11: Taking It Live	 331
Introduction	 331
Deploying an app to a server environment	 331
Automatic crash recovery	 337
Continuous deployment	 341
Hosting with a Platform as a Service provider	 348

Index	 353

Preface
The principles of asynchronous event-driven programming are perfect for today's Web, where
efficient, high-concurrency applications are essential for good user experience and a company's
bottom line.

The use of Node for tooling and server-side logic with a browser-based client-side UI leads to
a full-stack unilingual experience—everything is JavaScript. This saves developers, architects,
project leads, and entire teams the cognitive energy of context-switching between languages,
and yields rapid, fluid development cycles.

With a thriving community and success stories from major organizations (such as Groupon,
PayPal, and Yahoo), Node.js is relevant to enthusiasts, start-ups, and enterprises alike.

Node Cookbook Second Edition shows you how to transfer your JavaScript skills to server-side
programming. With simple examples and supporting code, this book takes you through various
server-side scenarios, often saving you time, effort, and trouble by demonstrating best practices
and showing you how to avoid security mistakes.

The second edition comes with an additional chapter (Chapter 5, Employing Streams) and
has been updated for the latest version of Node along with the most recent versions of the
modules and frameworks discussed. In particular, the very latest versions of the popular
Express and Socket.IO frameworks have extensive coverage.

Beginning with making your own web server, the practical recipes in this cookbook are designed
to smoothly help you progress to make full web applications, command-line applications, and
Node modules. Node Cookbook Second Edition takes you through interfacing with various
database backends, such as MySQL, MongoDB, and Redis, working with web sockets, and
interfacing with network protocols, such as SMTP. Additionally, there are recipes on handling
streams of data, security implementations, writing your own Node modules, and different ways
to take your apps live.

Preface

2

What this book covers
Chapter 1, Making a Web Server, covers how to serve dynamic and static content, cache files
in memory, stream large files straight from disk over HTTP, and secure your web server.

Chapter 2, Exploring the HTTP Object, explains the process of receiving and processing
POST requests and file uploads using Node as an HTTP client. It also discusses how to
throttle downloads.

Chapter 3, Working with Data Serialization, explains how to convert data from your apps into
XML and JSON formats when sending to the browser or third-party APIs.

Chapter 4, Interfacing with Databases, covers how to implement persistent data stores with
Redis, CouchDB, MongoDB, MySQL, or plain CSV files.

Chapter 5, Employing Streams, is included in the second edition. From streaming
fundamentals to creating custom stream abstractions, this chapter introduces a powerful API
that can boost the speed and memory efficiency of processing large amounts of data.

Chapter 6, Going Real Time, helps you to make real-time web apps with modern browser
WebSocket technology, and gracefully degrade to long polling and other methods with Socket.IO.

Chapter 7, Accelerating Development with Express, explains how to leverage the Express
framework to achieve rapid web development. It also covers the use of template languages
and CSS engines, such as LESS and Stylus.

Chapter 8, Implementing Security, Encryption, and Authentication, explains how to set up an
SSL-secured web server, use the crypto module to create strong password hashes, and protect
your users from cross-site request forgery attacks.

Chapter 9, Integrating Network Paradigms, discusses how to send e-mails and create your
own e-mail server, send SMS text messages, implement virtual hosting, and do fun and
interesting things with raw TCP.

Chapter 10, Writing Your Own Node Modules, explains how to create a test suite, write a
solution, refactor, improve and extend, and then deploy your own Node module.

Chapter 11, Taking it Live, discusses how to deploy your web apps to a live server, ensure your
apps stay live with crash recovery techniques, implement a continuous deployment workflow,
or alternatively, simply use a Platform as a Service Provider.

Preface

3

What you need for this book
The following is a list of the software that is required to run the examples in this book:

ff Windows, Mac OS X, or Linux
ff Node 0.10.x or higher

The content and code will continue to be relevant for Node's 1.x.x releases.

Who this book is for
If you have some knowledge of JavaScript and want to build fast, efficient, scalable client-
server solutions, then Node Cookbook Second Edition is for you. Experienced users of Node will
improve their skills, and even if you have not worked with Node before, these practical recipes
will make it easy to get started.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can load a module into
our app using Node's built-in require function."

A block of code is set as follows:

var http = require('http');
http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end('Woohoo!');
}).listen(8080);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var http = require('http');
var path = require('path');
http.createServer(function (request, response) {
 var lookup=path.basename(decodeURI(request.url));

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The console will say foo
doesn't exist, because it doesn't."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Making a Web Server

In this chapter, we will cover the following topics:

ff Setting up a router

ff Serving static files

ff Caching content in memory for immediate delivery

ff Optimizing performance with streaming

ff Securing against filesystem hacking exploits

Introduction
One of the great qualities of Node is its simplicity. Unlike PHP or ASP, there is no separation
between the web server and code, nor do we have to customize large configuration files to
get the behavior we want. With Node, we can create the web server, customize it, and deliver
content. All this can be done at the code level. This chapter demonstrates how to create a web
server with Node and feed content through it, while implementing security and performance
enhancements to cater for various situations.

If we don't have Node installed yet, we can head to http://nodejs.
org and hit the INSTALL button appearing on the homepage. This will
download the relevant file to install Node on our operating system.

Setting up a router
In order to deliver web content, we need to make a Uniform Resource Identifier (URI) available.
This recipe walks us through the creation of an HTTP server that exposes routes to the user.

www.allitebooks.com

http://www.allitebooks.org

Making a Web Server

8

Getting ready
First let's create our server file. If our main purpose is to expose server functionality, it's a
general practice to call the server.js file (because the npm start command runs the node
server.js command by default). We could put this new server.js file in a new folder.

It's also a good idea to install and use supervisor. We use npm (the module downloading
and publishing command-line application that ships with Node) to install. On the command-line
utility, we write the following command:

sudo npm -g install supervisor

Essentially, sudo allows administrative privileges for Linux and Mac OS X
systems. If we are using Node on Windows, we can drop the sudo part in
any of our commands.

The supervisor module will conveniently autorestart our server when we save our changes.
To kick things off, we can start our server.js file with the supervisor module by
executing the following command:

supervisor server.js

For more on possible arguments and the configuration of supervisor,
check out https://github.com/isaacs/node-supervisor.

How to do it...
In order to create the server, we need the HTTP module. So let's load it and use the
http.createServer method as follows:

var http = require('http');
http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end('Woohoo!');
}).listen(8080);

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com/support
http://www.packpub.com/support

Chapter 1

9

Now, if we save our file and access localhost:8080 on a web browser or using curl, our
browser (or curl) will exclaim Woohoo! But the same will occur at localhost:8080/foo.
Indeed, any path will render the same behavior. So let's build in some routing. We can use
the path module to extract the basename variable of the path (the final part of the path)
and reverse any URI encoding from the client with decodeURI as follows:

var http = require('http');
var path = require('path');
http.createServer(function (request, response) {
 var lookup=path.basename(decodeURI(request.url));

We now need a way to define our routes. One option is to use an array of objects as follows:

var pages = [
 {route: '', output: 'Woohoo!'},
 {route: 'about', output: 'A simple routing with Node example'},
 {route: 'another page', output: function() {return 'Here\'s
 '+this.route;}},
];

Our pages array should be placed above the http.createServer call.

Within our server, we need to loop through our array and see if the lookup variable matches
any of our routes. If it does, we can supply the output. We'll also implement some 404
error-related handling as follows:

http.createServer(function (request, response) {
 var lookup=path.basename(decodeURI(request.url));
 pages.forEach(function(page) {
 if (page.route === lookup) {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(typeof page.output === 'function'
 ? page.output() : page.output);
 }
 });
 if (!response.finished) {
 response.writeHead(404);
 response.end('Page Not Found!');
 }
}).listen(8080);

How it works...
The callback function we provide to http.createServer gives us all the functionality
we need to interact with our server through the request and response objects. We use
request to obtain the requested URL and then we acquire its basename with path. We also
use decodeURI, without which another page route would fail as our code would try to match
another%20page against our pages array and return false.

Making a Web Server

10

Once we have our basename, we can match it in any way we want. We could send it in a
database query to retrieve content, use regular expressions to effectuate partial matches,
or we could match it to a filename and load its contents.

We could have used a switch statement to handle routing, but our pages array has several
advantages—it's easier to read, easier to extend, and can be seamlessly converted to JSON.
We loop through our pages array using forEach.

Node is built on Google's V8 engine, which provides us with a number of ECMAScript 5
(ES5) features. These features can't be used in all browsers as they're not yet universally
implemented, but using them in Node is no problem! The forEach function is an ES5
implementation; the ES3 way is to use the less convenient for loop.

While looping through each object, we check its route property. If we get a match, we write the
200 OK status and content-type headers, and then we end the response with the object's
output property.

The response.end method allows us to pass a parameter to it, which it writes just
before finishing the response. In response.end, we have used a ternary operator (?:) to
conditionally call page.output as a function or simply pass it as a string. Notice that the
another page route contains a function instead of a string. The function has access to
its parent object through the this variable, and allows for greater flexibility in assembling
the output we want to provide. In the event that there is no match in our forEach loop,
response.end would never be called and therefore the client would continue to wait for a
response until it times out. To avoid this, we check the response.finished property and
if it's false, we write a 404 header and end the response.

The response.finished flag is affected by the forEach callback, yet it's not nested within
the callback. Callback functions are mostly used for asynchronous operations, so on the
surface this looks like a potential race condition; however, the forEach loop does not
operate asynchronously; it blocks until all loops are complete.

There's more...
There are many ways to extend and alter this example. There are also some great non-core
modules available that do the leg work for us.

Simple multilevel routing
Our routing so far only deals with a single level path. A multilevel path (for example, /
about/node) will simply return a 404 error message. We can alter our object to reflect a
subdirectory-like structure, remove path, and use request.url for our routes instead of
path.basename as follows:

var http=require('http');
var pages = [
 {route: '/', output: 'Woohoo!'},

Chapter 1

11

 {route: '/about/this', output: 'Multilevel routing with Node'},
 {route: '/about/node', output: 'Evented I/O for V8 JavaScript.'},
 {route: '/another page', output: function () {return 'Here\'s '
 + this.route; }}
];
http.createServer(function (request, response) {
 var lookup = decodeURI(request.url);

When serving static files, request.url must be cleaned prior to fetching
a given file. Check out the Securing against filesystem hacking exploits
recipe in this chapter.

Multilevel routing could be taken further; we could build and then traverse a more complex
object as follows:

{route: 'about', childRoutes: [
 {route: 'node', output: 'Evented I/O for V8 Javascript'},
 {route: 'this', output: 'Complex Multilevel Example'}
]}

After the third or fourth level, this object would become a leviathan to look at. We could
alternatively create a helper function to define our routes that essentially pieces our object
together for us. Alternatively, we could use one of the excellent noncore routing modules
provided by the open source Node community. Excellent solutions already exist that provide
helper methods to handle the increasing complexity of scalable multilevel routing. (See the
Routing modules section and Chapter 7, Accelerating Development with Express).

Parsing the querystring module
Two other useful core modules are url and querystring. The url.parse method allows
two parameters: first the URL string (in our case, this will be request.url) and second a
Boolean parameter named parseQueryString. If the url.parse method is set to true, it
lazy loads the querystring module (saving us the need to require it) to parse the query into
an object. This makes it easy for us to interact with the query portion of a URL as shown in the
following code:

var http = require('http');
var url = require('url');
var pages = [
 {id: '1', route: '', output: 'Woohoo!'},
 {id: '2', route: 'about', output: 'A simple routing with Node
 example'},
 {id: '3', route: 'another page', output: function () {
 return 'Here\'s ' + this.route; }
 },
];

Making a Web Server

12

http.createServer(function (request, response) {
 var id = url.parse(decodeURI(request.url), true).query.id;
 if (id) {
 pages.forEach(function (page) {
 if (page.id === id) {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(typeof page.output === 'function'
 ? page.output() : page.output);
 }
 });
 }
 if (!response.finished) {
 response.writeHead(404);
 response.end('Page Not Found');
 }
}).listen(8080);

With the added id properties, we can access our object data by, for instance,
localhost:8080?id=2.

The routing modules
There's an up-to-date list of various routing modules for Node at https://github.com/
joyent/node/wiki/modules#wiki-web-frameworks-routers. These community-made
routers cater to various scenarios. It's important to research the activity and maturity of a module
before taking it into a production environment.

NodeZoo (http://nodezoo.com) is an excellent tool to research the
state of a NODE module.

In Chapter 7, Accelerating Development with Express, we will go into greater detail on using
the built-in Express/Connect router for more comprehensive routing solutions.

See also
ff The Serving static files and Securing against filesystem hacking exploits recipes

ff The Implementing dynamic routing recipe discussed in Chapter 7, Accelerating
Development with Express

Chapter 1

13

Serving static files
If we have information stored on disk that we want to serve as web content, we can use the fs
(filesystem) module to load our content and pass it through the http.createServer callback.
This is a basic conceptual starting point to serve static files; as we will learn in the following
recipes, there are much more efficient solutions.

Getting ready
We'll need some files to serve. Let's create a directory named content, containing the
following three files:

ff index.html

ff styles.css

ff script.js

Add the following code to the HTML file index.html:

<html>
 <head>
 <title>Yay Node!</title>
 <link rel=stylesheet href=styles.css type=text/css>
 <script src=script.js type=text/javascript></script>
 </head>
 <body>
 Yay!
 </body>
</html>

Add the following code to the script.js JavaScript file:

window.onload = function() { alert('Yay Node!'); };

And finally, add the following code to the CSS file style.css:

#yay {font-size:5em;background:blue;color:yellow;padding:0.5em}

How to do it...
As in the previous recipe, we'll be using the core modules http and path. We'll also need
to access the filesystem, so we'll require fs as well. With the help of the following code, let's
create the server and use the path module to check if a file exists:

var http = require('http');
var path = require('path');

Making a Web Server

14

var fs = require('fs');
http.createServer(function (request, response) {
 var lookup = path.basename(decodeURI(request.url)) ||
 'index.html';
 var f = 'content/' + lookup;
 fs.exists(f, function (exists) {
 console.log(exists ? lookup + " is there"
 : lookup + " doesn't exist");
 });
}).listen(8080);

If we haven't already done it, then we can initialize our server.js file by running the
following command:

supervisor server.js

Try loading localhost:8080/foo. The console will say foo doesn't exist, because it
doesn't. The localhost:8080/script.js URL will tell us that script.js is there,
because it is. Before we can serve a file, we are supposed to let the client know the
content-type header, which we can determine from the file extension. So let's make
a quick map using an object as follows:

var mimeTypes = {
 '.js' : 'text/javascript',
 '.html': 'text/html',
 '.css' : 'text/css'
};

We could extend our mimeTypes map later to support more types.

Modern browsers may be able to interpret certain mime types (like text/javascript),
without the server sending a content-type header, but older browsers or less common
mime types will rely upon the correct content-type header being sent from the server.

Remember to place mimeTypes outside of the server callback, since we don't want to
initialize the same object on every client request. If the requested file exists, we can convert
our file extension into a content-type header by feeding path.extname into mimeTypes
and then pass our retrieved content-type to response.writeHead. If the requested file
doesn't exist, we'll write out a 404 error and end the response as follows:

//requires variables, mimeType object...
http.createServer(function (request, response) {

 var lookup = path.basename(decodeURI(request.url)) ||
 'index.html';
 var f = 'content/' + lookup;
 fs.exists(f, function (exists) {
 if (exists) {

Chapter 1

15

 fs.readFile(f, function (err, data) {
 if (err) {response.writeHead(500); response.end('Server
 Error!'); return; }
 var headers = {'Content-type': mimeTypes[path.extname
 (lookup)]};
 response.writeHead(200, headers);
 response.end(data);
 });
 return;
 }
 response.writeHead(404); //no such file found!
 response.end();
 });
}).listen(8080);

At the moment, there is still no content sent to the client. We have to get this content from our
file, so we wrap the response handling in an fs.readFile method callback as follows:

//http.createServer, inside fs.exists:
if (exists) {
 fs.readFile(f, function(err, data) {
 var headers={'Content-type': mimeTypes[path.extname(lookup)]};
 response.writeHead(200, headers);
 response.end(data);
 });
 return;
}

Before we finish, let's apply some error handling to our fs.readFile callback as follows:

//requires variables, mimeType object...
//http.createServer, path exists, inside if(exists):
 fs.readFile(f, function(err, data) {
 if (err) {response.writeHead(500); response.end('Server
 Error!'); return; }
 var headers = {'Content-type': mimeTypes[path.extname
 (lookup)]};
 response.writeHead(200, headers);
 response.end(data);
 });
return;
}

Making a Web Server

16

Notice that return stays outside of the fs.readFile callback. We are
returning from the fs.exists callback to prevent further code execution
(for example, sending the 404 error). Placing a return statement in an if
statement is similar to using an else branch. However, the pattern of the
return statement inside the if loop is encouraged instead of if else, as it
eliminates a level of nesting. Nesting can be particularly prevalent in Node due
to performing a lot of asynchronous tasks, which tend to use callback functions.

So, now we can navigate to localhost:8080, which will serve our index.html file. The
index.html file makes calls to our script.js and styles.css files, which our server
also delivers with appropriate mime types. We can see the result in the following screenshot:

This recipe serves to illustrate the fundamentals of serving static files. Remember, this is not
an efficient solution! In a real world situation, we don't want to make an I/O call every time a
request hits the server; this is very costly especially with larger files. In the following recipes,
we'll learn better ways of serving static files.

How it works...
Our script creates a server and declares a variable called lookup. We assign a value to
lookup using the double pipe || (OR) operator. This defines a default route if path.
basename is empty. Then we pass lookup to a new variable that we named f in order
to prepend our content directory to the intended filename. Next, we run f through the
fs.exists method and check the exist parameter in our callback to see if the file is
there. If the file does exist, we read it asynchronously using fs.readFile. If there is a
problem accessing the file, we write a 500 server error, end the response, and return from
the fs.readFile callback. We can test the error-handling functionality by removing read
permissions from index.html as follows:

Chapter 1

17

chmod -r index.html

Doing so will cause the server to throw the 500 server error status code. To set things right
again, run the following command:

chmod +r index.html

chmod is a Unix-type system-specific command. If we are using Windows,
there's no need to set file permissions in this case.

As long as we can access the file, we grab the content-type header using our handy
mimeTypes mapping object, write the headers, end the response with data loaded from the
file, and finally return from the function. If the requested file does not exist, we bypass all this
logic, write a 404 error message, and end the response.

There's more...
The favicon icon file is something to watch out for. We will explore the file in this section.

The favicon gotcha
When using a browser to test our server, sometimes an unexpected server hit can be
observed. This is the browser requesting the default favicon.ico icon file that servers can
provide. Apart from the initial confusion of seeing additional hits, this is usually not a problem.
If the favicon request does begin to interfere, we can handle it as follows:

if (request.url === '/favicon.ico') {
 console.log('Not found: ' + f);
 response.end();
 return;
}

If we wanted to be more polite to the client, we could also inform it of a 404 error by using
response.writeHead(404) before issuing response.end.

See also
ff The Caching content in memory for immediate delivery recipe

ff The Optimizing performance with streaming recipe

ff The Securing against filesystem hacking exploits recipe

www.allitebooks.com

http://www.allitebooks.org

Making a Web Server

18

Caching content in memory for immediate
delivery

Directly accessing storage on each client request is not ideal. For this task, we will explore how
to enhance server efficiency by accessing the disk only on the first request, caching the data
from file for that first request, and serving all further requests out of the process memory.

Getting ready
We are going to improve upon the code from the previous task, so we'll be working with
server.js and in the content directory, with index.html, styles.css, and script.js.

How to do it...
Let's begin by looking at our following script from the previous recipe Serving static files:

var http = require('http');
var path = require('path');
var fs = require('fs');

var mimeTypes = {
 '.js' : 'text/javascript',
 '.html': 'text/html',
 '.css' : 'text/css'
};

http.createServer(function (request, response) {
 var lookup = path.basename(decodeURI(request.url)) ||
 'index.html';
 var f = 'content/'+lookup;
 fs.exists(f, function (exists) {
 if (exists) {
 fs.readFile(f, function(err,data) {
 if (err) {
 response.writeHead(500); response.end('Server Error!');
 return;
 }
 var headers = {'Content-type': mimeTypes[path.extname
 (lookup)]};
 response.writeHead(200, headers);
 response.end(data);
 });
 return;
 }
 response.writeHead(404); //no such file found!

Chapter 1

19

 response.end('Page Not Found');
 });
}

We need to modify this code to only read the file once, load its contents into memory, and
respond to all requests for that file from memory afterwards. To keep things simple and preserve
maintainability, we'll extract our cache handling and content delivery into a separate function.
So above http.createServer, and below mimeTypes, we'll add the following:

var cache = {};
function cacheAndDeliver(f, cb) {
 if (!cache[f]) {
 fs.readFile(f, function(err, data) {
 if (!err) {
 cache[f] = {content: data} ;
 }
 cb(err, data);
 });
 return;
 }
 console.log('loading ' + f + ' from cache');
 cb(null, cache[f].content);
}
//http.createServer

A new cache object and a new function called cacheAndDeliver have been added to store
our files in memory. Our function takes the same parameters as fs.readFile so we can
replace fs.readFile in the http.createServer callback while leaving the rest of the
code intact as follows:

//...inside http.createServer:

fs.exists(f, function (exists) {
 if (exists) {
 cacheAndDeliver(f, function(err, data) {
 if (err) {
 response.writeHead(500);
 response.end('Server Error!');
 return; }
 var headers = {'Content-type': mimeTypes[path.extname(f)]};
 response.writeHead(200, headers);
 response.end(data);
 });
return;
 }
//rest of path exists code (404 handling)...

Making a Web Server

20

When we execute our server.js file and access localhost:8080 twice, consecutively, the
second request causes the console to display the following output:

loading content/index.html from cache
loading content/styles.css from cache
loading content/script.js from cache

How it works...
We defined a function called cacheAndDeliver, which like fs.readFile, takes a filename
and callback as parameters. This is great because we can pass the exact same callback of
fs.readFile to cacheAndDeliver, padding the server out with caching logic without
adding any extra complexity visually to the inside of the http.createServer callback.

As it stands, the worth of abstracting our caching logic into an external function is arguable,
but the more we build on the server's caching abilities, the more feasible and useful this
abstraction becomes. Our cacheAndDeliver function checks to see if the requested
content is already cached. If not, we call fs.readFile and load the data from disk.

Once we have this data, we may as well hold onto it, so it's placed into the cache
object referenced by its file path (the f variable). The next time anyone requests the file,
cacheAndDeliver will see that we have the file stored in the cache object and will issue
an alternative callback containing the cached data. Notice that we fill the cache[f] property
with another new object containing a content property. This makes it easier to extend the
caching functionality in the future as we would just have to place extra properties into our
cache[f] object and supply logic that interfaces with these properties accordingly.

There's more...
If we were to modify the files we are serving, the changes wouldn't be reflected until we restart
the server. We can do something about that.

Reflecting content changes
To detect whether a requested file has changed since we last cached it, we must know when
the file was cached and when it was last modified. To record when the file was last cached,
let's extend the cache[f] object as follows:

cache[f] = {content: data,timestamp: Date.now() //store a Unix
 time stamp
};

Chapter 1

21

That was easy! Now let's find out when the file was updated last. The fs.stat method
returns an object as the second parameter of its callback. This object contains the same
useful information as the command-line GNU (GNU's Not Unix!) coreutils stat. The fs.stat
function supplies three time-related properties: last accessed (atime), last modified (mtime),
and last changed (ctime). The difference between mtime and ctime is that ctime will
reflect any alterations to the file, whereas mtime will only reflect alterations to the content of
the file. Consequently, if we changed the permissions of a file, ctime would be updated but
mtime would stay the same. We want to pay attention to permission changes as they happen
so let's use the ctime property as shown in the following code:

//requires and mimeType object....
var cache = {};
function cacheAndDeliver(f, cb) {
 fs.stat(f, function (err, stats) {
 if (err) { return console.log('Oh no!, Eror', err); }
 var lastChanged = Date.parse(stats.ctime),
 isUpdated = (cache[f]) && lastChanged > cache[f].timestamp;
 if (!cache[f] || isUpdated) {
 fs.readFile(f, function (err, data) {
 console.log('loading ' + f + ' from file');
 //rest of cacheAndDeliver
 }); //end of fs.stat
}

If we're using Node on Windows, we may have to substitute ctime with
mtime, since ctime supports at least Version 0.10.12.

The contents of cacheAndDeliver have been wrapped in an fs.stat callback, two
variables have been added, and the if(!cache[f]) statement has been modified. We
parse the ctime property of the second parameter dubbed stats using Date.parse to
convert it to milliseconds since midnight, January 1st, 1970 (the Unix epoch) and assign it to
our lastChanged variable. Then we check whether the requested file's last changed time is
greater than when we cached the file (provided the file is indeed cached) and assign the result
to our isUpdated variable. After that, its merely a case of adding the isUpdated Boolean to
the conditional if(!cache[f]) statement via the || (or) operator. If the file is newer than
our cached version (or if it isn't yet cached), we load the file from disk into the cache object.

See also
ff The Optimizing performance with streaming recipe

ff The Browser-server transmission via AJAX recipe in Chapter 3, Working with
Data Serialization

ff Chapter 4, Interfacing with Databases

Making a Web Server

22

Optimizing performance with streaming
Caching content certainly improves upon reading a file from disk for every request. However,
with fs.readFile, we are reading the whole file into memory before sending it out in a
response object. For better performance, we can stream a file from disk and pipe it directly
to the response object, sending data straight to the network socket a piece at a time.

Getting ready
We are building on our code from the last example, so let's get server.js, index.html,
styles.css, and script.js ready.

How to do it...
We will be using fs.createReadStream to initialize a stream, which can be piped to the
response object.

If streaming and piping are new concepts, don't worry! We'll be covering
streams in depth in Chapter 5, Employing Streams.

In this case, implementing fs.createReadStream within our cacheAndDeliver function
isn't ideal because the event listeners of fs.createReadStream will need to interface
with the request and response objects, which for the sake of simplicity would preferably
be dealt with in the http.createServer callback. For brevity's sake, we will discard our
cacheAndDeliver function and implement basic caching within the server callback as
follows:

//...snip... requires, mime types, createServer, lookup and f
 vars...

fs.exists(f, function (exists) {
 if (exists) {
 var headers = {'Content-type': mimeTypes[path.extname(f)]};
 if (cache[f]) {
 response.writeHead(200, headers);
 response.end(cache[f].content);
 return;
 } //...snip... rest of server code...

Later on, we will fill cache[f].content while we are interfacing with the readStream
object. The following code shows how we use fs.createReadStream:

var s = fs.createReadStream(f);

Chapter 1

23

The preceding code will return a readStream object that streams the file, which is pointed at
by variable f. The readStream object emits events that we need to listen to. We can listen
with addEventListener or use the shorthand on method as follows:

var s = fs.createReadStream(f).on('open', function () {
 //do stuff when the readStream opens
});

Because createReadStream returns the readStream object, we can latch our event
listener straight onto it using method chaining with dot notation. Each stream is only going
to open once; we don't need to keep listening to it. Therefore, we can use the once method
instead of on to automatically stop listening after the first event occurrence as follows:

var s = fs.createReadStream(f).once('open', function () {
 //do stuff when the readStream opens
});

Before we fill out the open event callback, let's implement some error handling as follows:

var s = fs.createReadStream(f).once('open', function () {
 //do stuff when the readStream opens
}).once('error', function (e) {
 console.log(e);
 response.writeHead(500);
 response.end('Server Error!');
});

The key to this whole endeavor is the stream.pipe method. This is what enables us to
take our file straight from disk and stream it directly to the network socket via our response
object as follows:

var s = fs.createReadStream(f).once('open', function () {
 response.writeHead(200, headers);
 this.pipe(response);
}).once('error', function (e) {
 console.log(e);
 response.writeHead(500);
 response.end('Server Error!');
});

But what about ending the response? Conveniently, stream.pipe detects when the stream
has ended and calls response.end for us. There's one other event we need to listen to, for
caching purposes. Within our fs.exists callback, underneath the createReadStream
code block, we write the following code:

fs.stat(f, function(err, stats) {
 var bufferOffset = 0;
 cache[f] = {content: new Buffer(stats.size)};

Making a Web Server

24

 s.on('data', function (chunk) {
 chunk.copy(cache[f].content, bufferOffset);
 bufferOffset += chunk.length;
 });
}); //end of createReadStream

We've used the data event to capture the buffer as it's being streamed, and copied it into
a buffer that we supplied to cache[f].content, using fs.stat to obtain the file size for
the file's cache buffer.

For this case, we're using the classic mode data event instead of the
readable event coupled with stream.read() (see http://nodejs.
org/api/stream.html#stream_readable_read_size_1)
because it best suits our aim, which is to grab data from the stream as soon
as possible. In Chapter 5, Employing Streams, we'll learn how to use the
stream.read method.

How it works...
Instead of the client waiting for the server to load the entire file from disk prior to sending it to
the client, we use a stream to load the file in small ordered pieces and promptly send them to
the client. With larger files, this is especially useful as there is minimal delay between the file
being requested and the client starting to receive the file.

We did this by using fs.createReadStream to start streaming our file from disk. The
fs.createReadStream method creates a readStream object, which inherits from the
EventEmitter class.

The EventEmitter class accomplishes the evented part of the Node Cookbook Second
Edition tagline: Evented I/O for V8 JavaScript. Due to this, we'll be using listeners instead
of callbacks to control the flow of stream logic.

We then added an open event listener using the once method since we want to stop listening
to the open event once it is triggered. We respond to the open event by writing the headers
and using the stream.pipe method to shuffle the incoming data straight to the client. If the
client becomes overwhelmed with processing, stream.pipe applies backpressure, which
means that the incoming stream is paused until the backlog of data is handled (we'll find out
more about this in Chapter 5, Employing Streams).

While the response is being piped to the client, the content cache is simultaneously being
filled. To achieve this, we had to create an instance of the Buffer class for our cache[f].
content property.

http://nodejs.org/api/stream.html#stream_readable_read_size_1

Chapter 1

25

A Buffer class must be supplied with a size (or array or string), which in our case is the
size of the file. To get the size, we used the asynchronous fs.stat method and captured
the size property in the callback. The data event returns a Buffer variable as its only
callback parameter.

The default value of bufferSize for a stream is 64 KB; any file whose size is less than the
value of the bufferSize property will only trigger one data event because the whole file will
fit into the first chunk of data. But for files that are greater than the value of the bufferSize
property, we have to fill our cache[f].content property one piece at a time.

Changing the default readStream buffer size
We can change the buffer size of our readStream object by passing an
options object with a bufferSize property as the second parameter of
fs.createReadStream.
For instance, to double the buffer, you could use fs.createReadStream
(f,{bufferSize: 128 * 1024});.

We cannot simply concatenate each chunk with cache[f].content because this will
coerce binary data into string format, which, though no longer in binary format, will later be
interpreted as binary. Instead, we have to copy all the little binary buffer chunks into our
binary cache[f].content buffer.

We created a bufferOffset variable to assist us with this. Each time we add another chunk
to our cache[f].content buffer, we update our new bufferOffset property by adding
the length of the chunk buffer to it. When we call the Buffer.copy method on the chunk
buffer, we pass bufferOffset as the second parameter, so our cache[f].content buffer
is filled correctly.

Moreover, operating with the Buffer class renders performance enhancements with larger
files because it bypasses the V8 garbage-collection methods, which tend to fragment a large
amount of data, thus slowing down Node's ability to process them.

There's more...
While streaming has solved the problem of waiting for files to be loaded into memory before
delivering them, we are nevertheless still loading files into memory via our cache object. With
larger files or a large number of files, this could have potential ramifications.

Protecting against process memory overruns
Streaming allows for intelligent and minimal use of memory for processing large memory
items. But even with well-written code, some apps may require significant memory.

Making a Web Server

26

There is a limited amount of heap memory. By default, V8's memory is set to 1400 MB on
64-bit systems and 700 MB on 32-bit systems. This can be altered by running node with
--max-old-space-size=N, where N is the amount of megabytes (the actual maximum
amount that it can be set to depends upon the OS, whether we're running on a 32-bit or 64-bit
architecture—a 32-bit may peak out around 2 GB and of course the amount of physical
RAM available).

The --max-old-space-size method doesn't apply to buffers, since
it applies to the v8 heap (memory allocated for JavaScript objects and
primitives) and buffers are allocated outside of the v8 heap.

If we absolutely had to be memory intensive, we could run our server on a large cloud
platform, divide up the logic, and start new instances of node using the child_process
class, or better still the higher level cluster module.

There are other more advanced ways to increase the usable memory,
including editing and recompiling the v8 code base. The http://blog.
caustik.com/2012/04/11/escape-the-1-4gb-v8-heap-
limit-in-node-js link has some tips along these lines.

In this case, high memory usage isn't necessarily required and we can optimize our code to
significantly reduce the potential for memory overruns. There is less benefit to caching larger
files because the slight speed improvement relative to the total download time is negligible,
while the cost of caching them is quite significant in ratio to our available process memory.
We can also improve cache efficiency by implementing an expiration time on cache objects,
which can then be used to clean the cache, consequently removing files in low demand and
prioritizing high demand files for faster delivery. Let's rearrange our cache object slightly
as follows:

var cache = {
 store: {},
 maxSize : 26214400, //(bytes) 25mb
}

For a clearer mental model, we're making a distinction between the cache object as a
functioning entity and the cache object as a store (which is a part of the broader cache
entity). Our first goal is to only cache files under a certain size; we've defined cache.maxSize
for this purpose. All we have to do now is insert an if condition within the fs.stat callback
as follows:

fs.stat(f, function (err, stats) {
 if (stats.size<cache.maxSize) {
 var bufferOffset = 0;
 cache.store[f] = {content: new Buffer(stats.size),
 timestamp: Date.now() };

http://blog.caustik.com/2012/04/11/escape-the-1-4gb-v8-heaplimit-in-node-js

Chapter 1

27

 s.on('data', function (data) {
 data.copy(cache.store[f].content, bufferOffset);
 bufferOffset += data.length;
 });
 }
});

Notice that we also slipped in a new timestamp property into our cache.store[f]
method. This is for our second goal—cleaning the cache. Let's extend cache as follows:

var cache = {
 store: {},
 maxSize: 26214400, //(bytes) 25mb
 maxAge: 5400 * 1000, //(ms) 1 and a half hours
 clean: function(now) {
 var that = this;
 Object.keys(this.store).forEach(function (file) {
 if (now > that.store[file].timestamp + that.maxAge) {
 delete that.store[file];
 }
 });
 }
};

So in addition to maxSize, we've created a maxAge property and added a clean method. We
call cache.clean at the bottom of the server with the help of the following code:

//all of our code prior
 cache.clean(Date.now());
}).listen(8080); //end of the http.createServer

The cache.clean method loops through the cache.store function and checks to see
if it has exceeded its specified lifetime. If it has, we remove it from the store. One further
improvement and then we're done. The cache.clean method is called on each request. This
means the cache.store function is going to be looped through on every server hit, which is
neither necessary nor efficient. It would be better if we clean the cache, say, every two hours or
so. We'll add two more properties to cache—cleanAfter to specify the time between cache
cleans, and cleanedAt to determine how long it has been since the cache was last cleaned,
as follows:

var cache = {
 store: {},
 maxSize: 26214400, //(bytes) 25mb
 maxAge : 5400 * 1000, //(ms) 1 and a half hours
 cleanAfter: 7200 * 1000,//(ms) two hours
 cleanedAt: 0, //to be set dynamically

Making a Web Server

28

 clean: function (now) {
 if (now - this.cleanAfter>this.cleanedAt) {
 this.cleanedAt = now;
 that = this;
 Object.keys(this.store).forEach(function (file) {
 if (now > that.store[file].timestamp + that.maxAge) {
 delete that.store[file];
 }
 });
 }
 }
};

So we wrap our cache.clean method in an if statement, which will allow a loop through
cache.store only if it has been longer than two hours (or whatever cleanAfter is set to)
since the last clean.

See also
ff The Handling file uploads recipe discussed in Chapter 2, Exploring the HTTP Object

ff Chapter 2, Exploring the HTTP Object

ff The Securing against filesystem hacking exploits recipe

ff Chapter 5, Employing Streams

Securing against filesystem hacking exploits
For a Node app to be insecure, there must be something an attacker can interact with for
exploitation purposes. Due to Node's minimalist approach, the onus is on the programmer
to ensure that their implementation doesn't expose security flaws. This recipe will help identify
some security risk anti-patterns that could occur when working with the filesystem.

Getting ready
We'll be working with the same content directory as we did in the previous recipes. But
we'll start a new insecure_server.js file (there's a clue in the name!) from scratch to
demonstrate mistaken techniques.

Chapter 1

29

How to do it...
Our previous static file recipes tend to use path.basename to acquire a route, but this ignores
intermediate paths. If we accessed localhost:8080/foo/bar/styles.css, our code
would take styles.css as the basename property and deliver content/styles.css to us.
How about we make a subdirectory in our content folder? Call it subcontent and move our
script.js and styles.css files into it. We'd have to alter our script and link tags in index.
html as follows:

<link rel=stylesheet type=text/css href=subcontent/styles.css>
<script src=subcontent/script.js type=text/javascript></script>

We can use the url module to grab the entire pathname property. So let's include the url
module in our new insecure_server.js file, create our HTTP server, and use pathname
to get the whole requested path as follows:

var http = require('http');
var url = require('url');
var fs = require('fs');

http.createServer(function (request, response) {
 var lookup = url.parse(decodeURI(request.url)).pathname;
 lookup = (lookup === "/") ? '/index.html' : lookup;
 var f = 'content' + lookup;
 console.log(f);
 fs.readFile(f, function (err, data) {
 response.end(data);
 });
}).listen(8080);

If we navigate to localhost:8080, everything works great! We've gone multilevel, hooray!
For demonstration purposes, a few things have been stripped out from the previous recipes
(such as fs.exists); but even with them, this code presents the same security hazards if
we type the following:

curl localhost:8080/../insecure_server.js

Now we have our server's code. An attacker could also access /etc/passwd with a few
attempts at guessing its relative path as follows:

curl localhost:8080/../../../../../../../etc/passwd

If we're using Windows, we can download and install curl from
http://curl.haxx.se/download.html.

Making a Web Server

30

In order to test these attacks, we have to use curl or another equivalent because modern
browsers will filter these sort of requests. As a solution, what if we added a unique suffix to each
file we wanted to serve and made it mandatory for the suffix to exist before the server coughs
it up? That way, an attacker could request /etc/passwd or our insecure_server.js file
because they wouldn't have the unique suffix. To try this, let's copy the content folder and call
it content-pseudosafe, and rename our files to index.html-serve, script.js-serve,
and styles.css-serve. Let's create a new server file and name it pseudosafe_server.
js. Now all we have to do is make the -serve suffix mandatory as follows:

//requires section ...snip...
http.createServer(function (request, response) {
 var lookup = url.parse(decodeURI(request.url)).pathname;
 lookup = (lookup === "/") ? '/index.html-serve'
 : lookup + '-serve';
 var f = 'content-pseudosafe' + lookup;
//...snip... rest of the server code...

For feedback purposes, we'll also include some 404 handling with the help of fs.exists
as follows:

//requires, create server etc
fs.exists(f, function (exists) {
 if (!exists) {
 response.writeHead(404);
 response.end('Page Not Found!');
 return;
 }
//read file etc

So, let's start our pseudosafe_server.js file and try out the same exploit by executing the
following command:

curl -i localhost:8080/../insecure_server.js

We've used the -i argument so that curl will output the headers. The result? A 404, because
the file it's actually looking for is ../insecure_server.js-serve, which doesn't exist. So
what's wrong with this method? Well it's inconvenient and prone to error. But more importantly,
an attacker can still work around it! Try this by typing the following:

curl localhost:8080/../insecure_server.js%00/index.html

And voilà! There's our server code again. The solution to our problem is path.normalize,
which cleans up our pathname before it gets to fs.readFile as shown in the following code:

http.createServer(function (request, response) {
 var lookup = url.parse(decodeURI(request.url)).pathname;
 lookup = path.normalize(lookup);
 lookup = (lookup === "/") ? '/index.html' : lookup;
 var f = 'content' + lookup
}

Chapter 1

31

Prior recipes haven't used path.normalize and yet they're still
relatively safe. The path.basename method gives us the last part of the
path, thus removing any preceding double dot paths (../) that would take
an attacker higher up the directory hierarchy than should be allowed.

How it works...
Here we have two filesystem exploitation techniques: the relative directory traversal and
poison null byte attacks. These attacks can take different forms, such as in a POST request
or from an external file. They can have different effects—if we were writing to files instead of
reading them, an attacker could potentially start making changes to our server. The key to
security in all cases is to validate and clean any data that comes from the user. In insecure_
server.js, we pass whatever the user requests to our fs.readFile method. This is
foolish because it allows an attacker to take advantage of the relative path functionality in
our operating system by using ../, thus gaining access to areas that should be off limits. By
adding the -serve suffix, we didn't solve the problem, we put a plaster on it, which can be
circumvented by the poison null byte.

The key to this attack is the %00 value, which is a URL hex code for the null byte. In this case,
the null byte blinds Node to the ../insecure_server.js portion, but when the same null
byte is sent through to our fs.readFile method, it has to interface with the kernel. But the
kernel gets blinded to the index.html part. So our code sees index.html but the read
operation sees ../insecure_server.js. This is known as null byte poisoning. To protect
ourselves, we could use a regex statement to remove the ../ parts of the path. We could
also check for the null byte and spit out a 400 Bad Request statement. But we don't have
to, because path.normalize filters out the null byte and relative parts for us.

There's more...
Let's further delve into how we can protect our servers when it comes to serving static files.

Whitelisting
If security was an extreme priority, we could adopt a strict whitelisting approach. In this
approach, we would create a manual route for each file we are willing to deliver. Anything
not on our whitelist would return a 404 error. We can place a whitelist array above http.
createServer as follows:

var whitelist = [
 '/index.html',
 '/subcontent/styles.css',
 '/subcontent/script.js'
];

Making a Web Server

32

And inside our http.createServer callback, we'll put an if statement to check if the
requested path is in the whitelist array, as follows:

if (whitelist.indexOf(lookup) === -1) {
 response.writeHead(404);
 response.end('Page Not Found!');
 return;
}

And that's it! We can test this by placing a file non-whitelisted.html in our content
directory and then executing the following command:

curl -i localhost:8080/non-whitelisted.html

This will return a 404 error because non-whitelisted.html isn't on the whitelist.

Node static
The module's wiki page (https://github.com/joyent/node/wiki/modules#wiki-
web-frameworks-static) has a list of static file server modules available for different
purposes. It's a good idea to ensure that a project is mature and active before relying upon
it to serve your content. The node-static module is a well-developed module with built-in
caching. It's also compliant with the RFC2616 HTTP standards specification, which defines
how files should be delivered over HTTP. The node-static module implements all the
essentials discussed in this chapter and more.

For the next example, we'll need the node-static module. You could install it by executing
the following command:

npm install node-static

The following piece of code is slightly adapted from the node-static module's GitHub page
at https://github.com/cloudhead/node-static:

var static = require('node-static');
var fileServer = new static.Server('./content');
require('http').createServer(function (request, response) {
 request.addListener('end', function () {
 fileServer.serve(request, response);
 });
}).listen(8080);

The preceding code will interface with the node-static module to handle server-side and
client-side caching, use streams to deliver content, and filter out relative requests and null
bytes, among other things.

Chapter 1

33

See also
ff The Preventing cross-site request forgery recipe discussed in Chapter 8,

Implementing Security, Encryption, and Authentication

ff The Setting up an HTTPS web server recipe in Chapter 8, Implementing Security,
Encryption, and Authentication

ff The Hashing passwords recipe discussed in Chapter 8, Implementing Security,
Encryption, and Authentication

ff The Deploying an app to a server environment recipe discussed in Chapter 11,
Taking It Live

2
Exploring the
HTTP Object

In this chapter, we will cover:

ff Processing POST data

ff Handling file uploads

ff Using Node as an HTTP client

ff Implementing download throttling

Introduction
In the previous chapter, we used the http module to create a web server. Now, we're going to
look into some associated use cases beyond simply pushing content from the server to client.
The first three recipes will explore how to receive data via client-initiated HTTP POST (and PUT)
requests and in the final recipe, we'll demonstrate how to throttle a stream of outbound data.

Processing POST data
If we want to be able to receive POST data, we have to instruct our server how to accept
and handle a POST request. In PHP, we could access our POST values seamlessly with $_
POST['fieldname'], because it would block until an array value was filled. Contrariwise,
Node provides low-level interaction with the flow of HTTP data, allowing us to interface with
the incoming message body as a stream, leaving it entirely up to the developer to turn that
stream into usable data

Exploring the HTTP Object

36

Getting ready
Let's create a server.js file ready for our code, and an HTML file called form.html, that
contains the following:

<form method=post>
 <input type=text name=userinput1>

 <input type=text name=userinput2>

 <input type=submit>
</form>

For our purposes, we'll place form.html in the same folder as server.js. Though this is
not generally a recommended practice, we should usually place our public code in a separate
folder from our server code.

How to do it...
We'll provision our server for both GET and POST requests. Let's start with GET by requiring
the http module and loading form.html to serve through createServer, as follows:

var http = require('http');
var form = require('fs').readFileSync('form.html');
http.createServer(function (request, response) {
 if (request.method === "GET") {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(form);
 }
}).listen(8080);

We are synchronously loading form.html at initialization time instead of accessing the disk
on each request. If we navigate to localhost:8080, we'll be presented with a form. But if
we fill out our form, nothing happens because we need to handle POST requests, as follows:

if (request.method === "POST") {
 var postData = '';
 request.on('data', function (chunk) {
 postData += chunk;
 }).on('end', function() {
 console.log('User Posted:\n' + postData);
 response.end('You Posted:\n' + postData);
 });
}

Chapter 2

37

Once the form is completed and submitted, the browser and console will output the raw query
string sent from the client. Converting our postData variable into an object provides an easy
way to interact with and manipulate the submitted information. The querystring module
has a parse method, which transforms query strings into objects, and since form submission
arrives in query string format, we can use it to objectify our data as follows:

var http = require('http');
var querystring = require('querystring');
var util = require('util');
var form = require('fs').readFileSync('form.html');

http.createServer(function (request, response) {
 if (request.method === "POST") {
 var postData = '';
 request.on('data', function (chunk) {
 postData += chunk;
 }).on('end', function () {
 var postDataObject = querystring.parse(postData);
 console.log('User Posted:\n', postData);
 response.end('You Posted:\n' + util.inspect(postDataObject));
 });
 }
 if (request.method === "GET") {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(form);
 }
}).listen(8080);

Notice the util module—we require it to use its inspect method for a simple way to output
our postDataObject to the browser.

Finally, we're going to protect our server from memory overload exploits.

Protecting a POST server
V8 (and therefore Node) has virtual memory limitations based upon the
processor architecture and operating system constraints. If we don't restrict
the amount of data our POST server accepts, we could leave ourselves open
for a type of denial-of-service attack. Without protection, an extremely large
POST request could cause our server to slow down significantly or even crash.

To achieve this, we'll set a variable for the maximum acceptable data size and check it against
the growing length of our postData variable as follows:

var http = require('http');
var querystring = require('querystring');

www.allitebooks.com

http://www.allitebooks.org

Exploring the HTTP Object

38

var util = require('util');
var form = require('fs').readFileSync('form.html');
var maxData = 2 * 1024 * 1024; //2mb
http.createServer(function (request, response) {
 if (request.method === "POST") {
 var postData = '';
 request.on('data', function (chunk) {
 postData += chunk;
 if (postData.length > maxData) {
 postData = '';
 this.destroy();
 response.writeHead(413); // Request Entity Too Large
 response.end('Too large');
 }
 }).on('end', function () {
 if (!postData) { response.end(); return; } // prevents empty
 post
 // requests from
 // crashing the server
 var postDataObject = querystring.parse(postData);
 console.log('User Posted:\n', postData);
 response.end('You Posted:\n' + util.inspect
 (postDataObject));
 });
//rest of our code....

How it works...
Once we know that a POST request has been made for our server (by checking request.
method), we aggregate our incoming data into our postData variable via the data event
listener on the request object. However, if we find that the submitted data exceeds our
maxData limit, we clear our postData variable and pause the incoming stream, preventing
any further data arriving from the client (using stream.destroy instead of stream.pause
seems to interfere with our response mechanism. Once a stream has been paused for a
while, it is automatically removed from memory by V8's garbage collector).

We then send a 413 Request Entity Too Large HTTP header. In the end event
listener, as long as postData hasn't been cleared for exceeding maxData (or wasn't blank
in the first place), we use querystring.parse to turn our POST message body into an
object. From this point on, we can perform any number of interesting activities, such as
manipulate, analyze, and pass it to a database. However, for the example, we simply output
postDataObject to the browser and postData to the console.

Chapter 2

39

In Chapter 5, Employing Streams, we'll look into ways to constrain the actual stream input to a
maximum size and abort if that size is exceeded by using the post-Node 0.8 extra stream API's.

There's more...
If we want our code to look a little more elegant and we're not so concerned about handling
POST data as a stream, we can employ a user land (non-core) module to get a little sugar on
our syntax.

Accessing POST data with connect and body-parser
Connect is an excellent middleware framework for Node, providing a method framework that
assimilates a higher level of abstraction for common server tasks. The body-parser module is
actually part of the Express web framework (which was inspired by, and originally built on top
of Connect). We will be discussing Express in detail in Chapter 7, Accelerating Development
with Express.

By chaining body-parser to a normal callback function, we suddenly have access to the
POST data via request.body (when data is sent by the POST request, it is held in the
message body). The request.body object turns out to be exactly the same object as
the postDataObject we generated in our recipe.

First, let's make sure we have Connect and body-parser installed by executing the following
commands:

npm install connect

npm install body-parser

We can require connect in place of http, since it provides us with createServer
capabilities. To access the createServer method, we can use connect.createServer,
or the shorthand version, which is simply connect. Connect allows us to combine multiple
pieces of middleware together, by passing them as parameters to the createServer
method. The following code shows how to implement similar behavior to what is as seen in
the recipe, using Connect:

var connect = require('connect');
var bodyParser = require('body-parser');
var util = require('util');
var form = require('fs').readFileSync('form.html');
connect(connect.limit('2mb'), bodyParser(),function (request,
 response) {
 if (request.method === "POST") {
 console.log('User Posted:\n', request.body);
 response.end('You Posted:\n' + util.inspect(request.body));
 }
 if (request.method === "GET") {

Exploring the HTTP Object

40

 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(form);
 }
}).listen(8080);

Notice that we are no longer using the http module directly. We pass connect.limit as our
first parameter to achieve the same maxData restriction implemented in the main example.

Next, we pass in the bodyParser method, allowing connect to retrieve our POST data for
us, objectifying the data into request.body. Finally, there's our callback function, with all
the former POST functionality stripped out except the code to echo our data object (which is
now request.body) to the console and browser. This is where we deviate slightly from our
original recipe.

In the recipe, we return the raw postData variable to the console, but, here we return
the request.body object. To output raw data with Connect would either take pointless
deconstruction of our object to reassemble the raw query string or an extension of the
bodyParser function. This is the trade off with using third-party modules; we can only
easily interact with information the module author expects us to interact with.

Let's look under the hood for a moment. If we fire up an instance of node without any
arguments, we can access Read-Eval-Print-Loop (REPL), which is the Node command-line
environment. In REPL, we can write the following:

console.log(require('body-parser').toString());

If we look at the output, we'll see its connect.bodyParser function code and should be
able to easily identify the similarities between the connect.bodyParser code and our
main recipe's code.

See also
ff The Handling file uploads recipe

ff The Browser-server transmission via AJAX recipe discussed in Chapter 3, Working
with Data Serialization

ff The Initializing and using a session recipe discussed in Chapter 7, Accelerating
Development with Express

Handling file uploads
We cannot process an uploaded file in the same way we process other POST data. When a file
input is submitted in a form, the browser processes the file into a multipart message.

Chapter 2

41

Multipart was originally developed as an e-mail format allowing multiple pieces of mixed
content to be combined into one message. If we attempted to receive the upload as a stream
and write it to a file, we would have a file filled with multipart data instead of the file or files
themselves. We need a multipart parser, the writing of which is more than a recipe can cover.
So, we'll be using the well-known and battle-tested formidable module to convert our
upload data into files.

Getting ready
Let's create a new uploads directory to store the uploaded files and get ready to make
modifications to our server.js file from the previous recipe.

If the owner of the Node process (for example, the user of the system that
runs the node executable) isn't also the creator (and therefore owner) of
the uploads directory, then on some systems (such as Linux and Mac
OS X) we'd also have to run chown and/or chmod, and chgrp.

We'll also need to install formidable by executing the following command:

npm install formidable@1.x.x

Notice how we can control the version we install from npm by using an
at (@) symbol, and specifying a version range using the character x as
a wildcard to specify the latest subversion number. In this case, we're
installing formidable major Version 1, the latest minor version, and the
latest patch number.

We run the preceding command in the folder that contains the uploads directory.

Finally, we'll make some changes to our form.html file from the last recipe, as follows:

<form method=POST enctype=multipart/form-data>
 <input type=file name=userfile1>

 <input type=file name=userfile2>

 <input type=submit>
</form>

We included an enctype attribute of multipart/form-data to signify to the browser that
the form will contain upload data and we've replaced the text inputs with file inputs.

Exploring the HTTP Object

42

How to do it...
Let's see what happens when we use our modified form to upload a file to the server from the
last recipe. Let's upload form.html itself as our file, as shown in the following screenshot:

Our POST server simply logs the raw HTTP message body to the console, which in this case
is multipart data. We had two file inputs on the form. Though we only uploaded one file, the
second input is still included in the multipart request. Each file is separated by a predefined
boundary that is set in a secondary attribute of the content-type HTTP headers. We'll need
to use formidable to parse this data, extracting each file contained therein. We'll do this
with the help of the following code:

var http = require('http');
var formidable = require('formidable');
var form = require('fs').readFileSync('form.html');

http.createServer(function (request, response) {
 if (request.method === "POST") {
 var incoming = new formidable.IncomingForm();
 incoming.uploadDir = 'uploads';

Chapter 2

43

 incoming.on('file', function (field, file) {
 if (!file.size) { return; }
 response.write(file.name + ' received\n');
 }).on('end', function () {
 response.end('All files received');
 });
 incoming.parse(request);
 }
 if (request.method === "GET") {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(form);
 }
}).listen(8080);

Our POST server has now become an upload server.

How it works...
We create a new instance of the formidable IncomingForm class and tell it where to
upload files. In order to provide feedback to the user, we can listen to our incoming instance.
The IncomingForm class emits its own higher level events, so rather than listening to the
request object for events and processing data as it comes, we wait for formidable to
parse the files out of the multipart message and then notify us through its custom file event.

The file event callback provides us with two parameters: field and file. We don't use
the field parameter in our recipe; each field parameter holds the name of the file input
element in our HTML done. The file parameter is an object that contains information about
the uploaded file. We use this to filter out empty files (usually caused by empty input fields)
and grab the filename, which we show to users as confirmation. When formidable has
finished parsing the multipart message, it sends an end event in which we end the response.

There's more...
We can POST more than simple form fields and values from a browser. Let's take a look at
transferring files from the browser to server.

Using formidable to accept all POST data
Formidable doesn't just handle uploaded files, it will also process general POST data. All we
have to do is add a listener for the field event to process forms that contain both files and
user data, as follows:

incoming.on('file', function (field, file) {
 response.write(file.name + ' received\n');
}).on('field', function (field, value) {

Exploring the HTTP Object

44

 response.write(field + ' : ' + value + '\n');
}).on('end', function () {
 response.end('All files received');
});

There's no need to manually implement field data size limits as formidable takes care of this
for us, although we can change the defaults with incoming.maxFieldsSize, which allows us
to limit the total byte count for the sum of all fields. This limit doesn't apply to file uploads.

Preserving filenames with formidable
When formidable places our files in the uploads directory, it assigns them a name that
consists of a randomly generated hexadecimal number. This prevents files of the same name
from being overwritten. However, what if we want to know which files are which and still retain
the unique filename advantage? We can alter the way formidable names each file during its
fileBegin event with the help of the following code:

if (request.method === "POST") {
 var incoming = new formidable.IncomingForm();
 incoming.uploadDir = 'uploads';
 incoming.on('fileBegin', function (field, file) {
 if (file.name){
 file.path += "-" + file.name;
 } //...rest of the code
 }).on('file', function (field, file) {
//...rest of the code

We've appended the original filename onto the end of the random filename assigned by
formidable, separating them with a dash. Now we can easily identify our files, though for
many scenarios this may not be necessary as we would likely be outputting file information
to a database and cross-referencing it to randomly generated names.

Uploading files via PUT
It's also possible to upload files via an HTTP PUT request. While we can only send one file
per request, we don't need to do any parsing on the server side since the file will simply
stream directly to our server, which means less server-side processing overhead. It would
be magnificent if we could achieve this by changing our form's method attribute from POST
to PUT, but alas, no. However, thanks to the up and coming XMLHttpRequest Level 2
(xhr2) request, we can now transfer binary data via JavaScript in some browsers
(see http://caniuse.com). We grab a file pointer using a change event listener
on the input file element, and then we open a PUT request and send the file. The
following is for use in our form.html file, which we'll save as put_upload_form.html:

<form id=frm>
 <input type=file id=userfile name=userfile>

 <input type=submit>

Chapter 2

45

</form>
<script>
(function () {
 var userfile = document.getElementById('userfile'),
 frm = document.getElementById('frm'),
 file;
 userfile.addEventListener('change', function () {
 file = this.files[0];
 });
 frm.addEventListener('submit', function (e) {
 e.preventDefault();
 if (file) {
 var xhr = new XMLHttpRequest();
 xhr.file = file;
 xhr.open('put', window.location, true);
 xhr.setRequestHeader("x-uploadedfilename", file.fileName ||
 file.name);
 xhr.send(file);
 file = '';
 frm.reset();
 }
 });
}());
</script>

The id attribute is added to the form and the file input. method and
enctype attributes have been removed. We're using just one file element
because we can only send one file per request, although the example could
be extended to asynchronously stream multiple files to our server at once.

Our script attaches a change listener to the file input element. When the user selects a
file, we are able to capture a pointer to the file. As the form is submitted, we prevent default
behavior, check whether a file is selected, initialize an xhr object, open a PUT request to our
server, and set a custom header (which we'll be calling X-UPLOADEDFILENAME), so we can
grab the filename later and send the file to our server. Our server code looks like the following:

var http = require('http');
var fs = require('fs');
var form = fs.readFileSync('put_upload.html');
http.createServer(function (request, response) {
 if (request.method === "PUT") {
 var fileData = new Buffer(+request.headers['content-length']);
 var bufferOffset = 0;
 request.on('data', function(chunk) {

Exploring the HTTP Object

46

 chunk.copy(fileData, bufferOffset);
 bufferOffset += chunk.length;
 }).on('end', function() {
 var rand = (Math.random()*Math.random())
 .toString(16).replace('.','');
 var to = 'uploads/' + rand + "-" +
 request.headers['x-uploadedfilename'];

 fs.writeFile(to, fileData, function(err) {
 if (err) { throw err; }
 console.log('Saved file to ' + to);
 response.end();
 });
 });
 }
 if (request.method === "GET") {
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.end(form);
 }
}).listen(8080);

Our PUT server follows a similar pattern to the simple POST server in the Processing POST
data recipe; we listen to the data event and piece the chunks together. However, rather than
a string concatenating our data, we must pass our chunks into a buffer because a buffer can
handle any data type including binary, whereas a String object will always coerce non-string
data into string format—this changes the underlying binary, resulting in corrupted files. Once
the end event is triggered, we generate a random filename similar to the naming convention
of formidable and write the file to our uploads folder.

This uploading via PUT demonstration will not work in older browsers, so an alternative
fallback should be provided in a production environment. Browsers that will support this
method are IE10 and above, Firefox, Chrome, Safari, iOS 5+ Safari, and Android browsers.
However, due to browser vendors' differing implementations of the same functionality, the
example may need some tweaking for cross-browser compatibility.

See also
ff The Sending e-mail recipe discussed in Chapter 9, Integrating Network Paradigms

ff The Using Node as an HTTP client recipe

ff Chapter 5, Employing Streams

Chapter 2

47

Using Node as an HTTP client
The HTTP object doesn't just provide server capabilities, it also affords us with client
functionality. We might want to use this functionality for a myriad of purposes: HTTP-based
API's (such as a REST-based interface), website scraping for statistical processing or in the
absence of an API, or the first step in automated UI testing. In this task, we're going to use
http.get with process to fetch external web pages dynamically via the command line.

Getting ready
We are not creating a server. So in the name of convention, we should use a different name
for our new file. Let's call it fetch.js.

How to do it...
The http.request method allows us to make requests of any kind (for example, GET, POST,
DELETE, OPTION, and so on), but for GET requests, we can use the shorthand http.get
method as shown in the following code:

var http = require('http');
var urlOpts = {host: 'www.nodejs.org', path: '/', port: '80'};
http.get(urlOpts, function (response) {
 response.on('data', function (chunk) {
 console.log(chunk.toString());
 });
});

Essentially, we're done! Try to run the following command:

node fetch.js

Our console will output the HTML of nodejs.org. However, let's pad it out a bit with some
interactivity and error handling, as follows:

var http = require('http');
var url = require('url');
var urlOpts = {host: 'www.nodejs.org', path: '/', port: '80'};
if (process.argv[2]) {
 if (!process.argv[2].match('http://')) {
 process.argv[2] = 'http://' + process.argv[2];
 }
 urlOpts = url.parse(process.argv[2]);
}
http.get(urlOpts, function (response) {
 response.on('data', function (chunk) {

Exploring the HTTP Object

48

 console.log(chunk.toString());
 });
}).on('error', function (e) {
 console.log('error:' + e.message);
});

Now we can use our script with the help of the following command:

node fetch.js www.google.com

How it works...
The http.get method takes an object that defines the criteria of our desired request. We
defined a variable called urlOpts for this purpose and set our host to www.nodejs.org. We
use the process.argv property to check whether a web address has been specified via the
command line.

Just like the console object, the process object is a global variable that is always available
within Node's runtime environment. The process.argv[2] argument is the third command-
line argument, with node and fetch.js being allocated to [0] and [1], respectively.

If process.argv[2] exists (that is, if an address has been specified), we append http://;
if it isn't there (url.parse requires it), then replace the object in our default urlOpts with
the output from url.parse. An object is returned by url.parse happily with the same
properties that http.get requires.

As a client, we are interacting with the server's response to us, rather than the client's request
from us. So inside the http.get callback, we listen for the data event on response instead
of (as with our server examples) request. As the response data stream arrives, we output
the chunks to the console.

For terser APIs built on top of the HTTP request, check out the third-party
module's request (https://npmjs.org/package/request) and
superagent (https://npmjs.org/package/superagent).

There's more...
Let's explore some of the possibilities of the http.get method's underlying http.request
method.

Sending POST requests
We'll need to fire up our server.js app from the Processing POST data recipe to receive our
POST requests. Let's create the following new file and call it post.js, which we'll use to send
POST requests to our POST server:

Chapter 2

49

var http = require('http');
var urlOpts = {host: 'localhost', path: '/', port: '8080', method:
 'POST'};
var request = http.request(urlOpts, function (response) {
 response.on('data', function (chunk) {
 console.log(chunk.toString());
 });
}).on('error', function (e) {
 console.log('error:' + e.stack);
});
process.argv.forEach(function (postItem, index) {
 if (index > 1) { request.write(postItem + '\n'); }
});
request.end();

As we're using the more general http.request method, we've had to define our HTTP verb in
the urlOpts variable. Our urlOpts variable also specifies the server as localhost:8080
(we must ensure that our POST server is running in order for this code to work).

As seen before, we set up an event listener in our callback for data on the response object.
The http.request method returns a clientRequest object, which we load into a variable
called request. This is a newly declared variable, which holds the returned clientRequest
object from our http.request method.

After our event listeners, we loop through the command-line arguments using the forEach
method of Ecmascript 5 (which is safe to use in Node, but not yet in browsers). On running
this script, node and post.js would be the zero and first arguments, so we check that
our array index is greater than 1 before sending any arguments as POST data. We use
request.write to send data, similar to how we would use response.write if we were
building a server. Even though it uses a callback, forEach is not asynchronous (it blocks
until completion). So only after every element is processed, our POST data is written and our
request ended. The following command shows how we use it:

node post.js foo=bar&x=y&anotherfield=anothervalue

Multipart file upload as a client
We'll use our upload server from the Handling file uploads recipe to receive the files from
our uploading client. To achieve this, we have to deal with the multipart data format. To
inform a server of the client's intentions of sending multipart data, we set the Content-Type
header to multipart/form-data with an additional attribute called boundary, which is a
custom-named delimiter that separates in the multipart data, as follows:

var http = require('http');
var fs = require('fs');
var urlOpts = { host: 'localhost', path: '/', port: '8080',
 method: 'POST'};

Exploring the HTTP Object

50

var boundary = Date.now();
urlOpts.headers = {
 'Content-Type': 'multipart/form-data; boundary="' +boundary+ '"'
};

We've used the fs module here too as we'll require that later to load our files.

We've set our boundary parameter to the current Unix time (milliseconds since midnight,
January 1, 1970). We won't need boundary again in this format, so let's update it with the
required multipart double dash (--) prefix and set up our http.request call, as follows:

boundary = "--" + boundary;
var request = http.request(urlOpts, function (response) {
 response.on('data', function (chunk) {
 console.log(chunk.toString());
 });
}).on('error', function (e) {
 console.log('error:' + e.stack);
});

We want to be able to stream multipart data to the server, which may be compiled from
multiple files. If we streamed these files simultaneously, attempting to compile them together
into the multipart format, the data would likely be mashed together from different file streams
in an unpredictable order, becoming impossible to parse. So we need a way to preserve the
data order.

We could build it all in one go and send it to the server afterwards. A more efficient (and
Node-like) solution is to build the multipart message by progressively assembling each file
into the multipart format as the file is streamed in, while instantly streaming the multipart
data as it's being built.

To achieve this, we can use a recursively self-invoking function, calling each iteration from
within the end event callback to ensure each stream is captured separately and in order,
as follows:

(function multipartAssembler(files) {
 var f = files.shift(), fSize = fs.statSync(f).size;
 fs.createReadStream(f).on('end', function () {
 if (files.length) {
 multipartAssembler(files);
 return; //early finish
 }
 //any code placed here wont execute until no files are left
 //due to early return from function.
 });
}(process.argv.splice(2, process.argv.length)));

Chapter 2

51

This is also a self-calling function because we've changed it from a declaration to an expression
by wrapping parentheses around it. Then we've called it by appending parentheses, also passing
in the command-line arguments, which specify what files to upload. We'll see this by executing
the following command:

node upload.js file1 file2 fileN

We use splice on the process.argv array to remove the first two arguments (which would
be node and upload.js). The result is passed into our multipartAssembler function as
our files parameter.

Inside our function, we immediately shift the first file off the files array and load it into variable
f, which is passed into createReadStream. Once it's finished reading, we pass any remaining
files back through our multipartAssembler function and repeat the process until the array is
empty. Now, let's flesh our self-iterating function out with multipart goodness, as follows:

(function multipartAssembler(files) {
 var f = files.shift(), fSize = fs.statSync(f).size,
 progress = 0;
 fs.createReadStream(f)
 .once('open', function () {
 request.write(boundary + '\r\n' +
 'Content-Disposition: ' +
 'form-data; name="userfile"; filename="' + f + '"\r\n' +
 'Content-Type: application/octet-stream\r\n' +
 'Content-Transfer-Encoding: binary\r\n\r\n');
 }).on('data', function(chunk) {
 request.write(chunk);
 progress += chunk.length;
 console.log(f + ': ' + Math.round((progress / fSize) *
 10000)/100 + '%');
 }).on('end', function () {
 if (files.length) {
 multipartAssembler(files);
 return; //early finish
 }
 request.end('\r\n' + boundary + '--\r\n\r\n\r\n');
 });
}(process.argv.splice(2, process.argv.length)));

We specify a part with the predefined boundary initially set in the content-type header.
Each part has to begin with a header; we latch on to the open event to send this header out.

Exploring the HTTP Object

52

The Content-Disposition header has three parts. In this scenario, the first part will always
be form-data. The remaining two parts define the name of the field (for instance the name
attribute of a file input), and the original filename. The Content-Type header can be set to
whatever mime is relevant. However, by setting all files to application/octet-stream and
Content-Transfer-Encoding to binary, we can safely treat all files the same way if all
we're doing is saving to disk without any interim processing. We finish each multipart header
with a double CRLF (\r\n\r\n) at the end of our request.write method.

Also, notice we've also assigned a new progress variable at the top of the
multipartAssembler function. We use this to determine the relative percent of the
upload by dividing the chunks received so far (progress) by the total file size (fSize). This
calculation is performed in our data event callback, where we also stream each chunk to
the server.

In our end event, if there are no more files to process, we end the request with the final
multipart boundary, which is the same as other boundary partitions except it has leading
and trailing slashes.

See also
ff The Working with real data: fetching trending tweets recipe discussed in Chapter 3,

Working with Data Serialization

Implementing download throttling
Node provides pause and resume methods for incoming streams but not for outbound
streams. Essentially, this means we can easily throttle upload speeds in Node, but download
throttling requires a more creative solution.

Getting ready
We'll need a new server.js file along with a big enough file to serve. With the dd command-
line program, we can generate a file for testing purposes, as follows:

dd if=/dev/zero of=50meg count=50 bs=1048576

The preceding command will create a 50 MB file named 50meg, which we'll be serving.

For a similar Windows tool that can be used to generate a large file, check
out http://www.bertel.de/software/rdfc/index-en.html.

Chapter 2

53

How to do it...
To keep things as simple as possible, our download server will serve just one file, but we'll
implement it in a way that allows us to easily plug in some router code to serve multiple files.
First, we will require our modules and set up an options object for file and speed settings,
as follows:

var http = require('http');
var fs = require('fs');

var options = {}
options.file = '50meg';
options.fileSize = fs.statSync(options.file).size;
options.kbps = 32;

If we were serving multiple files, our options object would be largely
redundant; however, we're using it here to emulate the concept of a
user-determined file choice. In a multifile situation, we would instead
be loading file specifics based upon the requested URL.
To see how this recipe can be configured to serve and throttle more than
one file, check out the routing recipes in Chapter 1, Making a Web Server.

The http module is for the server and the fs module is used to create a readStream
method and grab the size of our file.

We're going to be restricting how much data is sent out at once, but first we need to get the
data in. So let's create our server and initialize a readStream method as follows:

http.createServer(function(request, response) {
 var download = Object.create(options);
 download.chunks = new Buffer(download.fileSize);
 download.bufferOffset = 0;

 response.writeHeader(200, {'Content-Length': options.fileSize});

 fs.createReadStream(options.file)
 .on('data', function(chunk) {
 chunk.copy(download.chunks, download.bufferOffset);
 download.bufferOffset += chunk.length;
 })
 .once('open', function() {
 //this is where the throttling will happen
 });
}).listen(8080);

Exploring the HTTP Object

54

We've created our server and specified a new object called download, which inherits from our
options object. We add two properties to our request-bound download object: a chunks
property that collects the file chunks inside the readStream data event listener and a
bufferOffset property that will be used to keep track of the number of bytes loaded
from disk.

All we have to do now is the actual throttling. To achieve this, we simply apportion out the
specified number of kilobytes from our buffer every second, thus achieving the specified
kilobytes per second. We'll make a function for this, which will be placed outside of
http.createServer and we'll call our function throttle, as follows:

function throttle(download, cb) {
 var chunkOutSize = download.kbps * 1024, timer = 0;

 (function loop(bytesSent) {
 var remainingOffset;
 if (!download.aborted) {
 setTimeout(function () {
 var bytesOut = bytesSent + chunkOutSize;
 if (download.bufferOffset>bytesOut) {
 timer = 1000;
 cb(download.chunks.slice(bytesSent,bytesOut));
 loop(bytesOut);
 return;
 }

 if (bytesOut>= download.chunks.length) {
 remainingOffset = download.chunks.length - bytesSent;
 cb(download.chunks.slice(remainingOffset,bytesSent));
 return;
 }

 loop(bytesSent); //continue to loop, wait for enough data
 },timer);
 }
 }(0));

 return function () { //return function to handle abort scenario
 download.aborted = true;
 };

}

Chapter 2

55

The throttle function interacts with the download object created on each server request
to measure out each chunk according to our predetermined options.kbps speed. For
the second parameter (cb), the throttle function accepts a functional callback. The cb
parameter in turn takes one parameter, which is the chunk of data the throttle function
has determined to send. Our throttle function returns a convenience function that can
be used to end the loop on abort, avoiding infinite looping.

We initialize download throttling by calling our throttle function in the server callback when
the readStream method opens, as follows:

//...previous code
 fs.createReadStream(options.file)
 .on('data', function (chunk) {
 chunk.copy(download.chunks,download.bufferOffset);
 download.bufferOffset += chunk.length;
 })
 .once('open', function () {
 var handleAbort = throttle(download, function (send) {
 response.write(send);
 });

 request.on('close', function () {
 handleAbort();
 });
 });

}).listen(8080);

How it works...
The key to this recipe is our throttle function; let's walk through it. To achieve the specified
speed, we send a chunk of data of a certain size every second. The size is determined by
the desired number of kilobytes per second. So if download.kbps is 32, we'll send 32 KB
chunks every second.

Buffers work in bytes, so we set a new variable called chunkOutSize and multiply download.
kbps by 1,024 to realize the appropriate chunk size in bytes. Next, we set a timer variable,
which is passed into setTimeout. It is first set to 0 on two accounts. For one, it eliminates
an unnecessary initial 1,000 millisecond overhead, allowing our server the opportunity to
immediately send the first chunk of data, if available. Secondly, if the download.chunks
buffer is not full enough to accommodate the demand of chunkOutSize, the embedded loop
function recurses without changing timer. This causes the CPU to cycle in real time until the
buffer loads enough data to deliver a whole chunk (a process, which should take less than
a second).

Exploring the HTTP Object

56

Once we have enough data for the first chunk, timer is set to 1000 because from here on
out, we want to push a chunk every second.

The loop function is the gut of our throttling engine; it's a recursive function that calls itself
with one parameter—bytesSent. The bytesSent parameter allows us to keep track of
how much data has been sent so far and we use it to determine which bytes to slice out of
our download.chunks buffer using Buffer.slice. The Buffer.slice variable takes
two parameters: start and end. These two parameters are fulfilled with bytesSent
and bytesOut, respectively. The bytesOut variable is also used against download.
bufferOffset to ensure we have enough data loaded for a whole chunk to be sent out.

If there is enough data, we proceed to set the timer variable to 1000 to initiate our chunk
per second policy, and then pass the result of download.chunks.slice into cb, which
becomes our send parameter.

Back inside our server, our send parameter is passed to response.write within our
throttle callback so each chunk is streamed to the client. Once we've passed our sliced
chunk to cb, we call loop(bytesOut) for a new iteration (thus bytesOut transforms into
bytesSent). We then return from the function to prevent any further execution.

The third and final place where bytesOut appears is in the second conditional statement
of the setTimeout callback, where we use it against download.chunks.length. This is
important to handle the last chunk of data. We don't want to loop again after the final chunk
has been sent, and if the options.kbps callback doesn't divide exactly into the total file
size, the final bytesOut variable would be larger than the size of the buffer, which if passed
into the slice method unchecked would cause an Object Out of Bounds (OOB) error.

So, if bytesOut equals or is greater than the memory allocated to the download.chunks
buffer (that is, the size of our file), we slice the remaining bytes from our download.chunks
buffer and return from the function without calling loop, effectively terminating recursion.

To prevent infinite looping when the connection is closed unexpectedly (for instance on
connection failure or client abort), throttle returns another function, which is caught in the
handleAbort variable and called in the close event of response. The function simply
adds a property to the download object to say that the download has been aborted. This is
checked on each recursion of the loop function. As long as download.aborted isn't true,
it continues to iterate; otherwise the looping stops short.

There are (configurable) limits on operating systems that define how
many files can be opened at once. We would probably want to implement
caching in a production download server to optimize file system access.
For file limits on Unix systems, see http://stackoverflow.com/
questions/34588/how-do-i-change-the-number-of-open-
files-limit-in-linux.

http://stackoverflow.com/questions/34588/how-do-i-change-the-number-of-openfiles-limit-in-linux

Chapter 2

57

There's more...
What about resuming downloads?

Enabling a resume request from broken downloads
If a connection breaks or a user accidentally aborts a download, the client may initiate a
resume request by sending a Range HTTP header to the server. A Range header would look
something like the following:

Range: bytes=512-1024

When a server agrees to handle a Range header, it sends a 206 Partial Content
status and adds a Content-Range header in the response. Where the entire file is 1 MB,
a Content-Range reply to the above Range header might look like the following:

Content-Range: bytes 512-1024/1024

Notice that there is no equal sign (=) after bytes in a Content-Range header. We can pass
an object into the second parameter of fs.createReadStream, which specifies where to
start and end reading. Since we are simply handling a resume request, we only need to set
the start property as follows:

//requires, options object, throttle function, etc...
download.readStreamOptions = {};
download.headers = {'Content-Length': download.fileSize};
download.statusCode = 200;
if (request.headers.range) {
 download.start = request.headers
 .range.replace('bytes=','').split('-')[0];
 download.readStreamOptions = {start: +download.start};
 download.headers['Content-Range'] = "bytes " + download.start +
 "-" + download.fileSize + "/" + download.fileSize;
 download.statusCode = 206; //partial content
}
response.writeHeader(download.statusCode, download.headers);
fs.createReadStream(download.file, download.readStreamOptions)
//...rest of the code....

By adding some properties to download and using them to conditionally respond to a Range
header, we can now handle resume requests.

Exploring the HTTP Object

58

See also
ff The Setting up a router recipe discussed in Chapter 1, Making a Web Server

ff The Caching content in memory for immediate delivery recipe discussed in
Chapter 1, Making a Web Server

ff The Communicating via TCP recipe discussed in Chapter 9, Integrating
Networking Paradigms

3
Working with

Data Serialization

In this chapter, we will cover the following topics:

ff Converting an object to JSON and back

ff Converting an object to XML and back

ff Browser-server transmission via AJAX

ff Working with real data – fetching trending tweets

Introduction
The ability to serialize data is fundamental to cross-application and cross-network
communication. If we want to give third parties safe access to raw data, we can use
serialization to send it in a format that the requester will understand. In this chapter, we'll be
working with two well-known standards, JSON and XML, using JavaScript to parse data from
and massage data into these formats.

Converting an object to JSON and back
JavaScript Object Notation (JSON) is very closely related to JavaScript objects because it's
a subset of JavaScript. This task will demonstrate how to use the building blocks of JSON
conversion: JSON.parse and JSON.stringify.

Working with Data Serialization

60

Getting ready
We'll need to create two new files called profiles.js, which will hold the data we'll be
converting into JSON and back.js, which will be our main file for this recipe.

How to do it…
Let's create the object that we'll later be converting to JSON, in profiles.js as follows:

module.exports = {
 ryan: {
 name: "Ryan Dahl",
 irc: "ryah",
 twitter: "ryah",
 github: "ry",
 location: "San Francisco, USA",
 description: "Creator of node.js"
 },
 isaac: {
 name: "Isaac Schlueter",
 irc: "isaacs",
 twitter: "izs",
 github: "isaacs",
 location: "San Francisco, USA",
 description: "Former project gatekeeper, CTO npm, Inc."
 },
 timothy: {
 name: "Timothy J Fontaine",
 irc: "tjfontaine",
 twitter: "tjfontaine",
 github: "tjfontaine",
 location: "Alameda, USA",
 description: "Project gatekeeper"
 },
 tj: {
 name: "TJ Holowaychuk",
 irc: "tjholowaychuk",
 twitter: "tjholowaychuk",
 github: "visionmedia",
 location: "Victoria, BC, Canada",
 description: "Author of express, jade and many other modules"
 },
 felix: {
 name: "Felix Geisendorfer",

Chapter 3

61

 irc: "felixge",
 twitter: "felixge",
 github: "felixge",
 location: "Berlin, Germany",
 description: "Author of formidable, active core developer"
 }
};

This object contains profile information on some of the leading members of the Node
Community (though it's entirely non-exhaustive and doesn't even contain the entire core
development team). One thing to note here is the use of module.exports. We'll be seeing
more of this in Chapter 10, Writing Your Own Node Modules. We're using module.exports
to modularize our profiles object here in a bid to keep our code uncluttered. We can load
any expression into module.exports, save it as a separate file (which in our case we'll call
profiles.js), and use require in our main file to dynamically load it at initialization,
as follows:

var profiles = require('./profiles'); // note .js suffix is optional

Nice and tidy. To convert our profiles object into a JSON representation, we use JSON.
stringify, which will return a string composed of JSON data. We're going to fundamentally
alter our object (which is now a string) using the following statement:

replace.profiles = JSON.stringify(profiles).replace(/name/g,
 'fullname');

Here we have called replace, using a regular expression with the g (global) option, to change
every occurrence of name in our JSON string to fullname.

But wait! There appears to be some kind of mistake. Felix's last name is missing an umlaut!
Let's correct it by converting our JSON data back into an object, and correct his name by
altering the value of the redesignated fullname property, as follows:

profiles = JSON.parse(profiles);
profiles.felix.fullname = "Felix Geisendörfer";
console.log(profiles.felix);

When we run our application, console.log will output the following:

{ fullname: 'Felix Geisendörfer',
 irc: 'felixge',
 twitter: 'felixge',
 github: 'felixge',
 location: 'Berlin, Germany',
 description: 'Author of formidable, active core developer' }

The first key is now fullname, and Geisendörfer is spelled correctly.

Working with Data Serialization

62

How it works…
First, we have an everyday JavaScript object that we serialize into a JSON representation. We
also call the String.replace method on our JSON string, changing every occurrence of
name into fullname.

Using replace in this way and context isn't an advisable practice since any occurrences of
name are replaced. There could very easily have been other places in the string where the
name may have existed, which would be replaced unintentionally. We used replace here to
affirm that profiles have become a JSON string, as we couldn't use replace on an object.

Then we convert our modified JSON string back into an object, using JSON.parse. To test
that our keys were indeed transformed from name to fullname, and to affirm that we are
again working with an object, we correct the felix profile via profiles.felix.fullname,
and then log profiles.felix to the console.

There's more…
JSON is a highly versatile and flexible tool for cross-platform communication. Let's look at a
more advanced application of the standard.

Constructing JSONP responses
JSON with Padding (JSONP) is a cross-domain policy workaround that allows developers to
interface with resources on other domains.

For more information on JSONP, see http://www.json-p.org/.

JSONP responses involve defining a callback function on the client side that handles JSON
via its first parameter, and then passing the name of this callback as a query argument in the
src attribute of a script element, which points to a web service on another domain. The
web service then returns the JSON data, wrapped in a function named according to the query
argument set by the client side. It's possibly easier to illustrate this in code, as follows:

<html>
<head>
<script>
 var who = 'ryan';
 function cb(o) {
 alert(o.name + ' : ' + o.description);
 }
 var s = document.createElement('script');
 s.src = 'http://localhost:8080/?callback=cb&who=' + who;
 document.getElementsByTagName("head")[0].appendChild(s);

Chapter 3

63

</script>
</head>
</html>

We can name this file jsonp.html. It will work fine when opened as a local file (for example,
over the file:// protocol) or via a server.

We define a function called cb, which takes an object as its parameter, and then we output
the name and description properties. Prior to this, we set a variable called who that will be
passed to the server to grab specific data for us. We then dynamically inject a new script
element, setting src to a figurative third-party domain (which for easy demonstration is
localhost) and adding callback and who query arguments. The value of callback
matches the name of our cb function. Our server uses this parameter to wrap JSON in
a function invocation.

Let's create our server with the help of the following code. We'll call the following file as file
jsonp_server.js:

var http = require('http');
var url = require('url');
var profiles = require('./profiles');

http.createServer(function (request, response) {
 var urlObj = url.parse(request.url, true),
 cb = urlObj.query.callback, who = urlObj.query.who,
 profile;

 if (cb && who) {
 profile = cb + "(" + JSON.stringify(profiles[who]) + ")";
 response.end(profile);
 }

}).listen(8080);

We create a server, extract the callback and who query parameters, and write a response
containing a function call passing our JSON data in as its parameter. This script is loaded by
our client, where the cb function is called and JSON is received into the function as an object
(because it looks like one).

Security and JSONP
Since JSONP uses script injection, any script could be inserted into our page. Therefore, it's
highly recommended that this method only be used with trusted sources. An untrusted source
could run evil code on the page.

Working with Data Serialization

64

A safer alternative to JSONP is Cross-Origin Resource Sharing (CORS),
which is implemented in all modern browsers. The http://enable-
cors.org link explains in detail and the corsify module (https://
npmjs.org/package/corsify) makes for seamless integration.
The CORS (https://npmjs.org/package/cors) middleware is
also helpful for enabling CORS in Express. We'll be learning more about
Express in Chapter 7, Accelerating Development with Express.

See also
ff The Browser-server transmission via AJAX recipe

ff The Working with real data – fetching trending tweets recipe

Converting an object to XML and back
Since JSON is a string-based representation of a JavaScript object, converting between the
two is straightforward. However, XML is less convenient to work with. Nevertheless, there
may be times we have to work with it, for instance, if an API works only in XML or if we were
contracted with a project that specifies XML support.

There are various non-core XML parsers available. One such parser is the non-core module
xml2js. The premise of xml2js is that working with objects in JavaScript is more suitable
than working with XML. The xml2js module provides a basis for us to interact with XML by
converting it to a JavaScript object.

In this task, we're going to write a function that uses our profiles object featured in the
previous recipe to create a valid XML string, which we'll then push through xml2js, thus
converting it back into an object.

Getting ready
Before we start, let's create our file xml and back.js, making sure we have our separately
modularized profiles.js file in the same directory. We should also install xml2js by
executing the following command:

npm install xml2js

How to do it…
To begin with, we'll need to require our profiles object along with xml2js, as follows:

var profiles = require('./profiles');
var xml2js = require('xml2js');

Chapter 3

65

Just as XML has a tree-like structure, objects can have objects nested within them. We need
a function that can loop through our object and all subobjects, converting all properties
into parent XML nodes, and all non-object values into text XML nodes. Fortunately, xml2js
provides this with its builder constructor, as shown in the following code:

var builder = new xml2js.Builder({rootName:'profiles'});
profiles = builder.buildObject(profiles);

Let's replace all occurrences of name with fullname as we did in our Converting an object to
JSON and back recipe, with the help of the following code:

profiles = profiles.replace(/name/g, 'fullname');
console.log(profiles); // <-- show me the XML!

Now, with the help of the following code, we'll turn profiles back into an object, correct Felix
Geisendörfer's name using the renamed fullname property, and then log Felix into console
to show it has worked:

xml2js.parseString(profiles, {
 explicitArray: false,
 explicitRoot: false
}, function (err, obj) {
 profiles = obj;
 profiles.felix.fullname = "Felix Geisendörfer";
 console.log(profiles);
});

The xml2js.parseString function takes the XML object (which at this point is held in the
profiles variable) and assembles it into an object, which is passed through as the obj
parameter in its callback.

How it works…
A JavaScript object is a key-value store, whereas XML is a resource-centric markup language.
In XML, keys and values could be represented in two ways: either as a parent node and a
child node or as attributes on an XML node. We converted our keys and values to parent and
child nodes, mainly because a single XML node is filled with lots of attributes, while valid XML
seems to violate the spirit of XML.

We achieved our conversion using the builder constructor supplied by xml2js, passing in
an options object to the constructor containing a rootName property set to the profiles
string. This prepares our builder instance to output XML in the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<profiles>
 <!-- buildObject Output Here -->
</profiles>

Working with Data Serialization

66

If rootName is unspecified, <root> is the default, first parent node.

Once we have our builder instance, we go ahead and overwrite the profiles variable
(which contained the profiles object exported from profiles.js) with the result of
builder.buildObject (which means build XML from an object, as opposed to building
an object) invoked with the original profiles object. At this point, the profiles variable
contains an XML string representing the profile data.

We call replace on our profiles string, swapping all the name occurrences with
fullname, and then log out the profiles XML.

To turn our XML object back to a JavaScript object, we use the xml2js object's
parseString method. This method takes three arguments: a string of XML (which at this
point in our code is represented by the profiles variable), an options object (which is
optional), and a callback function as the third parameter.

To recreate our original object, we set the explicitArray option to false—this prevents
the parseString method from creating an array to represent the child nodes of a parent
element when there's only one child node. We also set explicitRoot to false—this stops
the returned object from placing the objectified XML within a property named after the root
node (profiles in our case), and instead just returns the main content in the form of
an object.

The callback function is in the form sometimes described as a continuable, that is, a Node
style callback where the error object is the first argument and the return value is the second.
We call the second parameter obj, which is the object representation of the converted XML.

The xml2js module depends on the sax-js module. Simple API for XML
(SAX) is an alternative data model to the Document Object Model (DOM)—see
http://en.wikipedia.org/wiki/Simple_API_for_XML for more
information. Instead of seeing the data as a tree all at once, the data is parsed
sequentially in an event-driven way (or, if we like, as a stream). Anything event
driven in JavaScript and therefore the Node is asynchronous, so this is why
parseString must use a callback to return the fully parsed object.

We reassign the profiles variable again, this time to obj (if we hadn't set explicitRoot
to false in the options object, we'd be assigning profiles to obj.profiles), and
now we're back to where we started (except that all our name properties are now called
fullname). So we update the fullname property of the felix object, ensuring that he
has his rightful umlaut.

There's more…
Let's take a look at how we can drive the creation of more intricate XML by using naming
conventions on our JavaScript objects, and also discover a technique that when applied to
our recipe (and beyond) can increase clarity and maintainability.

Chapter 3

67

Generating XML attributes and text nodes
If we're looking to drive more advanced XML output via an object, we can employ some
property naming conventions used by xml2js to influence the XML output to present certain
values as attributes or text nodes. Let's alter the following profiles.js file, saving it as
profiles_enhanced.js:

module.exports = {
 ryan : {
 name: "Ryan Dahl",
 irc: "ryah",
 twitter: "ryah",
 github:["ry","joyent"],
 location:{$: {city: 'San Francisco', country: 'USA'}},
 description: "Creator of node.js"
 },
 isaac : {
 name: "Isaac Schlueter",
 irc: "isaacs",
 twitter: "izs",
 github: "isaacs",
 location: {$: {city: 'San Francisco', country: 'USA'}},
 description: "Author of npm, core contributor"
 },
 timothy: {
 name: "Timothy J Fontaine",
 irc: "tjfontaine",
 twitter: "tjfontaine",
 github: "tjfontaine",
 location: {$: {city: 'San Francisco', country: 'USA'}},
 description: "Project gatekeeper"
 },
 tj : {
 name: "TJ Holowaychuk",
 irc: "tjholowaychuk",
 twitter: "tjholowaychuk",
 github: "visionmedia",
 location:{$: {city: 'Victoria',country: 'Canada'}, region: {_
:'British Columbia',$:{type:'province'}}},
 description: "Author of express, jade and other popular modules"
 },
 felix : {
 name: "Felix Geisendorfer",
 irc: "felixge",
 twitter: "felixge",

Working with Data Serialization

68

 github: "felixge",
 location:{$: {city: 'Berlin', country: 'Germany'}},
 description: "Author of formidable, active core developer"
 }
};

When parsing an XML string, xml2js uses the dollar sign ($) to indicate attributes and the
underscore (_) sign to represent text nodes (unless otherwise specified in the options). This
convention goes two ways: the builder method understands that objects stored under
a dollar property are intended as attribute key values, and a string value of an underscore
property is meant to be a text node.

Let's copy xml and back.js to attributes and text.js respectively, making the
following changes:

var profiles = require('./profiles_enhanced');
var xml2js = require('xml2js');

var builder = new xml2js.Builder({rootName:'profiles'});
profiles = builder.buildObject(profiles);

console.log(profiles); // <-- show me the XML

We changed the first line to require profiles_enhanced, rather than just profiles, and
removed replacement of name with fullname and the conversion back with parseString
(although all that would still work perfectly fine).

Upon running attributes_and_text.js, the XML output will contain attributes for
everyone's location, and an additional text node for TJ Holowaychuks. For instance,
TJ's portion of XML would look like the following code:

 <tj>
 <name>TJ Holowaychuk</name>
 <irc>tjholowaychuk</irc>
 <twitter>tjholowaychuk</twitter>
 <github>visionmedia</github>
 <location city="Victoria" country="Canada">
 <region type="province">British Columbia</region>
 </location>
 <description>Author of express, jade and other popular
 modules</description>
 </tj>

Chapter 3

69

Partial application
While partial application has little to do with XML, it's always good to know the ways with
which we can make our code cleaner.

If we needed to use parseString multiple times, we'd have to continually be passing the
same options object in. We could break the options object out into its own variable and
pass it by reference but this demands a level of duplication, which we can avoid with partial
application, as shown in the following code:

var xml2js = require('xml2js');
var builder = new xml2js.Builder({rootName:'profiles'});
var profiles = {
 normal: builder.buildObject(require('./profiles')),
 enhanced: builder.buildObject(require('./profiles_enhanced'))
};

function apply(options, fn) {
 return function (xml, cb) {
 return fn(xml, options, cb);
 }
}

var parseString = apply({
 explicitArray: false,
 explicitRoot: false
}, xml2js.parseString);

parseString(profiles.normal, console.log);
parseString(profiles.enhanced, console.log);

In the adaptation of the main recipe (which we can call partial_app.js), we've loaded
both, the original profiles object and also profiles_enhanced (from the previous
Generating XML attributes and text nodes subsection in the There's more section), and
immediately converted them to XML, storing them in an all-encompassing profiles object
declared on the third line.

We create a function called apply, which returns a function that calls the second argument
(fn) of apply with the returned function's two arguments (xml and cb) as the first and third
arguments to fn and the outer apply function's first argument (options) as the middle
argument of fn. Essentially, the apply function allows us to capture our options object
and then map that captured object into the final call of xml2js.parseString.

We set up our new parseString variable and assign the result of our apply call to it,
passing in our desired default options, and xml2js.parseString as the fn argument.

Working with Data Serialization

70

We now have a customized parseString function that we can use to convert our two sets
of XML back into objects, without having to supply any options. In this case, we also simply
supply console.log as the callback function (attempting to do this in most browsers
will fail as an illegal invocation. In such a case we would need to pass console.log.
bind(console), but a simple console.log works fine in Node).

See also
ff The Converting an object to JSON and back recipe

ff The Browser-server transmission via AJAX recipe

ff The Working with real data – fetching trending tweets recipe

Browser-server transmission via AJAX
We can enhance the user's experience by loading new content directly onto the page via AJAX,
rather than loading a new page for each content request.

In this recipe, we're going to transfer our serialized data to the browser as the user requests
it and then interact with our client-side data. We'll implement a profile viewer in the browser,
which retrieves a selected profile in either JSON or XML, outputting the key values or parent-
child nodes for that profile.

Getting ready
We're going to continue to work with our profiles.js object module (from the first two
recipes of this chapter), so let's copy that into a new folder. For XML delivery, we'll be using
xml2js from the Converting an object to XML and back recipe. If we're starting in a new
folder, we'll need to install it with the help of the following command:

npm install xml2js

We'll also create two new files: server.js and index.html.

How to do it…
Let's start with our index.html file. We'll quickly implement a rough layout for our profile
viewer consisting of a form with two select elements: a div for outputting formatted object
data and a textarea element for presenting the raw serialized data:

<!doctype html>
<html>
 <head>
 <script src=http://ajax.googleapis.com/ajax/libs/jquery

Chapter 3

71

 /2.1.0/jquery.min.js>
 </script>
 <style>
 #frm, #raw {display:block; float:left; width:210px}
 #raw {height:150px; width:310px; margin-left:0.5em}
 </style>
 </head>
 <body>
 <form id=frm>
 Profile: <select id=profiles>
 <option></option>
 </select>>

 Format:<select id=formats>
 <option value=json> JSON </option>
 <option value=xml> XML </option>
 </select>
>

 <div id=output></div>
 </form>
 <textarea id=raw></textarea>
 </body>
</html>

Notice that we've included jQuery to obtain cross-browser benefits, particularly in the area
of AJAX requests. We'll be utilizing jQuery in our client-side script shortly, but first let's make
our server.

For our modules, we'll need http, path, and fs along with our custom profiles object
and the third-party xml2js modules. For our code to work, we'll need to have index.html
hosted within our server in order to prevent cross-origin policy errors, as follows:

var http = require('http');
var fs = require('fs');
var path = require('path');
var profiles = require('./profiles');
var xml2js = require('xml2js');

var index = fs.readFileSync('index.html');
var routes,
 mimes = {xml: "application/xml", json: "application/json"};

Working with Data Serialization

72

We've also defined routes and mimes variables so we can answer requests for specific
data from the client along with the correct Content-Type header. We'll create the following
two routes; one will deliver a list of profile names and the other will indicate a request for a
particular profile:

routes = {
 'profiles': function (format) {
 return output(Object.keys(profiles), format);
 },
 '/profile': function (format, basename) {
 return output(profiles[basename], format, basename);
 }
};

Our output function, which we just referred to in routes, should be placed above the
routes object and looks like the following code:

function output(content, format, rootNode) {
 if (!format || format === 'json') {
 return JSON.stringify(content);
 }
 if (format === 'xml') {
 return (new xml2js.Builder({
 rootName: rootNode
 })).buildObject(content);
 }
}

To finish our server, we simply call http.createServer and interact with our routes object
inside the callback, outputting index.html where no routes are found, as shown in the
following code:

http.createServer(function (request, response) {
 var dirname = path.dirname(request.url),
 extname = path.extname(request.url),
 basename = path.basename(request.url, extname);

 extname = extname.replace('.', ''); //remove period

 response.setHeader("Content-Type", mimes[extname] ||
 'text/html');

 if (routes.hasOwnProperty(dirname)) {
 response.end(routes[dirname](extname, basename));
 return;
 }

Chapter 3

73

 if (routes.hasOwnProperty(basename)) {
 response.end(routes[basename](extname));
 return;
 }

 response.end(index);

}).listen(8080);

Finally, we need to write our client-side code to interface with our server over AJAX, which is to
be placed in script tags just underneath our textarea, but above the closing </body> tag
(to ensure the HTML elements have loaded before script execution) of our index.html file,
as shown in the following code:

<script>
$.get('http://localhost:8080/profiles',
 function (profile_names) {
 $.each(profile_names, function (i, pname) {
 $('#profiles').append('<option>' + pname + '</option>');
 });
 }, 'json');
$('#formats, #profiles').change(function () {
 var format = $('#formats').val();
 $.get('http://localhost:8080/profile/' + $('#profiles').val() +
 '.' + format,
 function (profile, stat, jqXHR) {
 var cT = jqXHR.getResponseHeader('Content-Type');
 $('#raw').val(profile);
 $('#output').html('');
 if (cT === 'application/json') {
 $.each($.parseJSON(profile), function (k, v) {
 $('#output').append('' + k + ' : ' + v + '
');
 });
 return;
 }

 if (cT === 'application/xml') {
 profile = jqXHR.responseXML.firstChild.childNodes;
 $.each(profile,
 function (k, v) {
 if (v && v.nodeType === 1) {
 $('#output').append('' + v.tagName + ' : ' +
 v.textContent + '
');
 }

Working with Data Serialization

74

 });

 }
 }, 'text');

});
</script>

How it works…
Let's begin with the server. Inside our http.createServer callback, we set the appropriate
header and check to see if the routes object has the specified directory name (or sub-route
since we're not actually dealing with a filesystem here). If the subroute exists in the routes
object, we call the method stored at that namespace passing in basename and extname
(we use extname to determine the desired format). In cases where there is no directory
name match, we check for an existing property matching basename. If there is one, we call
it and pass in the extension (if any). If both tests turn out to be false, we simply output the
contents of our index.html file.

Our two routes are profiles and /profile; the latter has a preceding slash, which
corresponds to the way path.dirname returns the directory name portion of a path. Our
/profile route also accepts a subroute named after the desired profile and format. For
instance, http://localhost:8080/profile/ryan.json will return Ryan's profile in
the JSON format (if no extension is given, we default to the JSON format).

Both the profiles and /profile methods utilize our custom output function which, using
the format parameter (originally extname in the http.createServer callback), generates
either JSON (using JSON.stringify) or XML (with xml2js) from the content passed to it.
The output function also takes a conditional third parameter (rootNode), which is passed
into the builder constructor to define the rootName parameter of the XML generated by
the buildObject method call.

On the client side, the first thing we do is call the jQuery $.get method for http://
localhost:8080/profiles. This causes the server to call the profiles method on the
route object. This in turn calls our output function with an array of top-level properties from our
profiles.js object. Since we didn't specify an extension in $.get, the output function will
default to the JSON format and deliver the result of JSON.stringify into response.end.

Back on the client side, our third argument in the first $.get call is json—this ensures
$.get interprets the incoming data as JSON, converting it to an object. The object is passed
in as the first parameter of the $.get function callback (second parameter of $.get),
which we named profile_names. We use jQuery's $.each function to loop through the
profile_names, populating the first select element (#profiles) by applying jQuery's
append method to the element, and adding each profile name inside the <option> element
as we loop through $.each.

Chapter 3

75

Next, we apply a listener to our two select elements (change) whose callback assembles
a URL dependent upon the user's selection, passing this URL into another AJAX request
using $.get.

This time on the server side, the /profile route method is invoked, passing in the
corresponding profile from our profiles object to output. This property will contain
an object holding the profile information of the requested individual.

In our second $.get call, we set the third argument to text. This will force jQuery not to
automatically interpret incoming data as JSON or XML. This gives us more control and makes
it easier to output the raw data into textarea. Inside the $.get callback, we use the jqXHR
parameter to determine the Content-Type to see if we have JSON or XML. We loop through
the returned data according to its type (either Object or XMLObject) and append it to our
#output div element.

There's more…
We can also convert our objects to JSON and XML in the browser and send them over to our
server, where we can interact with them as objects again.

Sending serialized data from the client to the server
Let's extend our example to add new profiles to our profiles object on the server using our
browser interface.

Starting with index.html (which we'll copy to add_profile_index.html—we'll also copy
server.js to add_profile_server.js), let's append a form called #add and style it. The
following is the form:

<form id=add>
 <div><label>profile name</label><input name="profileName"></div>
 <div><label>name</label><input name="name"></div>
 <div><label>irc</label><input name="irc"></div>
 <div><label>twitter</label><input name="twitter"></div>
 <div><label>github</label><input name="github"></div>
 <div><label>location</label><input name="location"></div>
 <div><label>description</label><input name="description"></div>
 <div><button>Add</button></div>
</form>

And the following are some additional styles:

<style>
 #frm, #raw {display:block; float:left; width:210px}
 #raw {height:150px; width:310px; margin-left:0.5em}
 #add {display:block; float:left; margin-left:1.5em}
 #add div {display:table-row}

Working with Data Serialization

76

 #add label {float:left; width:5.5em}
 div button {float:right}
</style>

We're going to use xml2js in the browser as well. In order to do so, we can convert the
module into a client-side library using browserify, as shown in the following command:

sudo npm -g install browserify #only linux systems will need sudo

browserify node_modules/xml2js -s xml2js -o xml2js.js

The -s option tells browserify to create a standalone file, which exports the xml2js
module to the global xml2js variable (unless we were to use an AMD or CommonJS module
loading framework, which is definitely a best practice rather than polluting global scope as
we are). The -o flag tells browserify to write the resulting generated client code to a file
called xml2js.js.

Now, we need to expose our client-side code through the server, so we'll read it in the same
way as index.html in the main recipe, and then expose a route to it via our routes object,
as follows:

var index = fs.readFileSync('add_profile_index.html');
var clientXml2js = fs.readFileSync('./xml2js.js');
var routes,
 mimes = {
 js: "application/javascript",
 json: "application/json",
 xml: "application/xml"
 };
routes = {
 'profiles': function (format) {
 return output(Object.keys(profiles), format);
 },
 '/profile': function (format, basename) {
 return output(profiles[basename], format, basename);
 },
 'xml2js' : function(ext) {
 if (ext === 'js') { return clientXml2js; }
 }
};

We also updated our mimes object ready to deliver application/javascript Content-
Type and altered the index variable to use our new add_profile_index.html file. Back
in our client-side code, we fetch our xml2js client-side library by including another <script>
tag in the head section, as follows:

<script src=xml2js.js></script>

Chapter 3

77

We'll wrap our initial $.get call to the server (which fetches all the profile names for the
select element) in a function called load. This allows us to dynamically reload the profile
names once a profile has been added, as follows:

function load(done) {
$.get('http://localhost:8080/profiles',
 function (profile_names) {
 $.each(profile_names, function (i, pname) {
 $('#profiles').append('<option>' + pname + '</option>');
 });
 done && done();
 }, 'json');
}
load();

We added a done callback to load, but didn't call it in the initial load invocation; we will be
using it shortly, however.

Next, we define a handler for the #add form, as shown in the following code:

$('#add').submit(function(e) {
 var output, obj = {}, format = $('#formats').val(), profileName;
 e.preventDefault();
 $.each($(this).serializeArray(), function(i, nameValPair) {
 obj[nameValPair.name] = nameValPair.value; //form an object
 });

 profileName = obj.profileName; delete obj.profileName;
 obj = {_: obj}; obj[profileName] = obj._; delete obj._;

 output = (format === 'json') ? JSON.stringify(obj) :
 (new xml2js.Builder({rootName: profileName}))
 .buildObject(obj);

 $.ajax({ type: 'POST', url: '/', data: output,
 contentType: 'application/' + format, dataType: 'text',
 success: function(response) {
 $('#raw').val(response);
 $('#profiles').html('<option></option>');
 load(function () {
 $('#profiles').val(profileName);
 });
 }
 });
});

www.allitebooks.com

http://www.allitebooks.org

Working with Data Serialization

78

Our handler builds an object from the form input using jQuery's serializeArray method,
and then converts that array to an object resembling our own data structure, with the addition
of a profileName field. We capture obj.profileName into a profileName variable, and
then remove it from the object. Then, we overwrite the obj variable with an object containing
our built object stored under a placeholder property (_). We then point obj[profileName]
to our built object referenced via the underscore (_) property, removing the temporary
placeholder. What we end up with is an object that matches the format of the objects on our
profiles object. Then, depending on the selected format, we convert obj into JSON or XML,
and save it to the output variable. Once we have our output string, we use jQuery.ajax
to send serialized data to our server. Once the POST request is complete, we call the load
function to reload our data, and use the load callback parameter (done) function to select
our newly added item once it has been reloaded from the server.

On our server, we'll write the following code to handle the POST request:

function updateProfiles(profile, type, cb) {
 var name = Object.keys(profile).pop();
 profiles[name] = profile[name];
 cb(output(profiles[name], type, name));
}

function addProfile(request, cb) {
 var pD = ''; //post data
 request
 .on('data', function (chunk) { pD += chunk; })
 .on('end',function() {
 var contentType = request.headers['content-type'];

 if (contentType === 'application/json') {
 updateProfiles(JSON.parse(pD), 'json', cb);
 }

 if (contentType === 'application/xml') {
 xml2js.parseString(pD, {
 explicitRoot: false,
 explicitArray: false
 }, function(err, obj) {
 updateProfiles(obj, 'xml', cb);
 });
 }

 });
}

Chapter 3

79

As in the first recipe of Chapter 2, Exploring the HTTP Object, while handling POST data,
addProfile compiles all the incoming data together. In the end event, we convert the
serialized data to an object using a method appropriate to its type. We take this object
and add it to our profiles object in the updateProfiles function using the single
root property as the key to add or update our profiles object with.

To return data to the client, the updateProfiles function invokes the callback (cb) parameter
(which comes via addProfile), passing in our custom output function, which will return the
serialized data according to the specified format (which is determined by using replace on the
Content-Type header).

We invoke the addProfile function in our server as follows:

http.createServer(function (request, response) {
//initial server variables...
 if (request.method === 'POST') {
 addProfile(request, function(output) {
 response.end(output);
 });
 return;
 }
//..rest of the server code (GET handling..)

Within our addProfile callback function, we simply end the response with the data returned
from the output function, accessing this data via the output parameter as defined in the
addProfile callback. The new profiles are only saved in operational memory, so they will be
lost on server restarts. If we were to store this data on disc, we would ideally want to save it in
a database, which we'll talk about in Chapter 4, Interfacing with Databases.

See also
ff The Setting up a router recipe in Chapter 1, Making a Web Server

ff The Processing POST data recipe in Chapter 2, Exploring the HTTP Object

ff The Converting an object to JSON and back recipe

ff The Converting an object to XML and back recipe

Working with real data – fetching trending
tweets

Many online entities format their response data as JSON and XML in their Application
Programmer Interfaces (APIs) to expose pertinent information to third-party developers
who can subsequently integrate this data into their applications.

Working with Data Serialization

80

One such online entity is Twitter. In this recipe, we are going to make a command-line
application that makes two requests to Twitter's REST service. The first will retrieve the most
popular current topics on Twitter and the second will return the most recent tweets regarding
the hottest topic on Twitter.

Getting ready
Let's create a file and name it twitter_trends.js. We'll also use the following third-party
colors module to make our output more beautiful:

npm install colors

We'll need to go through some steps to satisfy the authorization requirements of the Twitter
API. First, let's go to http://dev.twitter.com/apps, and log in with our Twitter account if
need be (or sign up for a Twitter account first). Once logged in, we can press the Create a new
application button on the top-right corner.

We'll fill out the name field with ncbtt (if the name is already taken, we can add a number
or our own name to it), and the description as Node Cookbook Twitter Trends. For the
website, we can simply put http://nodecookbook.com—we won't be needing a site for our
implementation but it's a required field.

Once created, we'll see a screen containing OAuth settings. For this recipe, we only need the
Consumer key and the Consumer secret fields from this screen.

To make most API calls, the headers of our HTTP requests made to the Twitter API must
contain an Authorization field; for our main recipe, we'll need to exchange our consumer
key and secret for a "bearer" access token.

Let's write the following quick script (which we'll call twitter_auth.js) to grab the access
token and save it to a settings file (which we'll name auth.json):

var https = require('https');
var output = require('fs').createWriteStream('auth.json');
var consumer = {
 key: '<our consumer key>',
 secret: '<our consumer secret>'
};

var request = https.request({
 method: 'POST',
 host: 'api.twitter.com',
 path: '/oauth2/token',
 headers: {
 'User-Agent': 'Node Cookbook: Twitter Trends',
 Authorization: 'Basic ' + Buffer((encodeURIComponent(consumer.key)
+ ':' + encodeURIComponent(consumer.secret))).toString('base64'),

Chapter 3

81

 'Content-type': 'application/x-www-form-urlencoded;charset=UTF-8',
 'Content-length': 29
 }
});

request.end('grant_type=client_credentials');

request.on('response', function (res) {
 if (res.statusCode !== 200) {
 return console.log('Error, status:' + res.statusCode);
 }

 res.pipe(output);
});

Now if we run our script, it will create auth.json, ready for us to fetch trending tweets.

How to do it…
We'll need the https module (any calls to authenticated API's have to be conducted over SSL)
in order to make requests, and the colors module to get some color in our console output;
the code is as follows:

var https = require('https');
var colors = require('colors');
var headers = {
 'User-Agent': 'Node Cookbook: Twitter Trends',
 Authorization: 'Bearer ' + require('./auth.json').access_token
};

Notice how we've also defined a headers object, in which the Authorization property
contains the access token from the auth.json file we generated in the Getting ready section.

We're going to make a GET request inside another GET request. Between these requests, we'll
process JSON data to either pass into the subsequent request or output to the console. In the
spirit of Don't Repeat Yourself (DRY), and to demonstrate how to avoid spaghetti code, we'll
abstract our GET requests and JSON handling into a function named makeCall; the code is
as follows:

function makeCall(urlOpts, cb) {
 http.get(urlOpts, function (response) { //call the twitter api
 trendingTopics.jsonHandler(response, cb);
 }).on('error', function (e) {
 console.log("Connection Error: " + e.message);
 });
}

Working with Data Serialization

82

Notice the mysterious appearance of trendingTopics and its jsonHandler method;
trendingTopics is an object that provides all the settings and methods for our Twitter
interactions and jsonHandler is a method on the trendingTopics object that receives
the response stream and converts JSON to an object.

We need to set up options for our calls to the trends and tweet APIs, along with some
Twitter interaction-related functionality. So on top of our makeCall function, we'll create the
trendingTopics object as follows:

var trendingTopics = module.exports = {
 trends: {
 urlOpts: {
 host: 'api.twitter.com',
 path: '/1.1/trends/place.json?id=1', //1 gives global trends,
 headers: headers
 }
 },
 tweets: {
 maxResults: 3,
 resultsType: 'recent', //choice of mixed, popular or recent
 urlOpts: {
 host: 'api.twitter.com',
 headers: headers,
 }
 },
 jsonHandler: function (response, cb) {
 var json = '';
 response.setEncoding('utf8');
 if (response.statusCode === 200) {
 response.on('data', function (chunk) {
 json += chunk;
 }).on('end', function () {
 cb(JSON.parse(json));
 });
 } else {
 throw ("Server Returned error: " + response.statusCode);
 }
 },
 tweetPath: function (q) {
 var p = '/1.1/search/tweets.json?q=' + q + '&count=' +
 this.tweets.maxResults + '&include_entities=true&result_type=' +
 this.tweets.resultsType;

 this.tweets.urlOpts.path = p;
 }
};

Chapter 3

83

While creating the trendingTopics variable, we also turn the object into a module by
simultaneously loading it into module.exports. We can see how to use this in the There's
more… section of this recipe.

Within our trendingTopics object, we have the trends and tweets objects and two
methods: jsonHandler and tweetPath.

Next up, we'll actually make use of our makeCall function but before we do that, we need to
add a line to prevent the makeCall function from being invoked if the script isn't being run at
the top level (that is, being run directly with the node command):

if (module.parent) {return;}

Finally, let's invoke our makeCall function to request the top global trends from the Twitter
trends API, convert the returned JSON to an object, and use this object to ascertain the path
to request tweets on the highest trending topic for using another embedded makeCall
invocation. This is shown in the following code:

makeCall(trendingTopics.trends.urlOpts, function (trendsArr) {
 trendingTopics.tweetPath(trendsArr[0].trends[0].query)
 makeCall(trendingTopics.tweets.urlOpts, function (tweetsObj) {
 tweetsObj.statuses.forEach(function (tweet) {
 var name = tweet.user.screen_name, text = tweet.text;
 console.log("\n" + name.yellow.bold + ': ' + text);
 });
 });
});

How it works…
Let's pick apart the trendingTopics object. The trends and tweets objects provide
settings relevant to the Twitter API. For trends, this is simply a URL options (urlOpts) object
that is to be passed on to https.get. Within the tweets object, we have the URL object along
with some other properties pertaining to options we can set within our REST call to the Twitter
search API. Both the urlOpts objects hold a reference to our headers object, which contains
the User-Agent and Authorization properties that are essential HTTP headers for a
successful Twitter API request.

Before any actual action can take place, we place a check for module.parent and return
from the module early if it's set, thus preventing any execution of code after that point. This,
along with exporting our trendingTopics object, allows twitter_trends.js to operate
in two capacities: primarily as a command-line app that supplies the currently trending tweets
and also as a module that may be required as part of another script without any unwanted
side effects (for instance, outputting tweets to the console when we simply want to access
the trendingTopics functionality).

Working with Data Serialization

84

Our jsonHandler method on the trendingTopics object takes response and cb
(callback) as parameters. The trendingTopics.jsonHandler uses the response
object from the http.get call to capture the incoming data stream into a variable (json).
When the stream ends, as detected by the end event listener on response, cb is invoked
with an object, which is parsed from the received JSON as its argument. The callback from
trendingTopics.jsonHandler finds its way up into the makeCall callback.

The makeCall function abstractly combines the GET request and JSON handling, and
provides a callback with a single parameter, which is the data returned by Twitter as parsed
JSON (in this case, it is an array of objects).

In the outer makeCall invocation, we call the parameter trendsArr, because Twitter
returns its JSON data in an array wrapper. We use trendsArr to locate the query fragment
representation of Twitter's top trend and pass it to the final method of our trendingTopics
object: trendingTopics.tweetPath. This method takes a query fragment (q) as its
single parameter. It then uses this parameter along with the options in trendingTopics.
tweets to build the final Search API path. It injects this path into the urlOpts object of
trendingTopics.tweets, which is then passed through to the inner makeCall invocation.

In the inner makeCall invocation, we name the parameter tweetsArr. This is an array of
objects containing the tweet data as returned from the Twitter Search API in response to a
query searching for the top trend discovered via the former (outer) call to the Trend API. We
loop through the array using the veritable forEach (ES5) looping function, handling each
element passed through the loop as a tweet.

The objects contained in the tweetsArr array contain a lot of data, such as the time
information and amount of retweets. However, we're just interested in the content of the
tweet, and who it is tweeted by. So, we log the user.screen_name and text properties
of each tweet to the console, as shown in the following screenshot:

Chapter 3

85

This is also where the colors module comes in handy, since within console.log, we have
name.yellow.bold. The colors are not properties on the object returned by Twitter, but
rather some trickery performed by the colors module to provide an easy interface for
styling console text.

There's more…
Let's look at working with an XML-based service.

Cross referencing Google Hot Trends with Twitter tweets
Notice that trending tweets tend to have rather fad-like influences generated from within the
Twitter community. Google Hot Trends is another source of trending information. It provides
hourly updates of the highest trending searches.

We can extend our example to access and process the Google Hot Trends XML atom feed, and
then integrate the top result into our Twitter Search API request. To do this, let's create a new
file named google_trends.twitter.js. It's nice to work with XML data as a JavaScript
object, so we'll require the non-core xml2js file that is featured in the Converting an
object to XML and back recipe in this chapter, along with https, colors, and our own
trendingTopics module from the main recipe. The code is as follows:

var https = require('https');
var xml2js = require('xml2js');
var colors = require('colors'); //for prettifying output
var trendingTopics = require('./twitter_trends');

Now, we'll extend our trendingTopics object by inheriting from it using the EcmaScript 5
Object.create method:

var hotTrends = Object.create(trendingTopics, {
 trends: {value: {urlOpts: {
 host: 'www.google.com',
 path: '/trends/hottrends/atom/hourly',
 headers: {'User-Agent': 'Node Cookbook: Twitter Trends'}
 }
}}});

hotTrends.xmlHandler = function (response, cb) {
 var hotTrendsfeed = '';
 response.on('data', function (chunk) {
 hotTrendsfeed += chunk;
 }).on('end', function () {
 xml2js.parseString(hotTrendsfeed, function (err, obj) {
 if (err) { throw (err.message); }
 xml2js.parseString(obj.feed.entry[0].content[0]._,

Working with Data Serialization

86

 function (err, obj) {
 if (err) { throw (err.message); }
 if (err) { throw (err.message); }
 var query = obj.ol.li[0].span[0].a[0]._;
 cb(encodeURIComponent(query));
 });
 });
 });
};

We declared a variable named hotTrends, and used Object.create to initialize an instance
of trendingTopics, resubstantiating the trends property via the property declarations
object (the second parameter of Object.create). This means that instead of trends being
an inherited property, it now belongs to hotTrends, and we haven't overwritten the trends
property in trendingTopics while adding it to our new hotTrends object.

We then add a new method: hotTrends.xmlHandler. This combines all the incoming
chunks into the hotTrendsfeed variable. Once the stream has ended, it invokes xml2js.
parseString and passes the XML contained in hotTrendsfeed to it. In the callback of the
first parseString method, we invoke xml2js.parseString again. Why? Because we have
to parse two sets of XML, or rather one set of XML and one set of adequately formed HTML.
(If we head to http://www.google.com/trends/hottrends/atom/hourly, it will be
rendered as HTML. If we view the source, we'll then see an XML document with embedded
HTML content.)

The Google Hot Trends XML feed delivers the Hot Trends as HTML inside its content XML node.

The HTML is wrapped within a CDATA section, so it isn't parsed by xml2js the first time
around. Ergo, we create a new Parser and then parse the HTML via the obj.feed.
entry[0].content[0]._ reference.

Finally, the hotTrends.xmlHandler method completes execution in the second embedded
xml2js callback, where it executes its own callback parameter (cb) with a query fragment
generated from the top list item element in HTML.

Now, all we have to do is make the following adjustments to makeCall:

function makeCall(urlOpts, handler, cb) {
 http.get(urlOpts, function (response) { //make twitter api call
 handler(response, cb);
 }).on('error', function (e) {
 console.log("Connection Error: " + e.message);
 });
}

makeCall(hotTopics.trends.urlOpts, hotTopics.xmlHandler,
 function (query) {

Chapter 3

87

 hotTopics.tweetPath(query);
 makeCall(hotTopics.tweets.urlOpts, hotTopics.jsonHandler,
 function (tweetsObj) {
 tweetsObj.statuses.forEach(function (tweet) {
 var name = tweet.user.screen_name, text = tweet.text;
 console.log("\n" + name.yellow.bold + ': ' + text);
 });
 });
 });

As we are now dealing with both JSON and XML, we slipped in another parameter to our
makeCall function declaration: handler. The handler parameter allows us to specify
whether to use the inherited jsonHander method or our supplemented xmlHandler method.

When we invoke the outer makeCall, we pass in hotTrends.xmlHandler, naming the
parameter query. This is done because we directly pass in the query fragment generated
by xmlHandler, instead of the array returned from Twitter. This is passed directly into the
tweetPath method, which consequently updates the path property of the hotTrends.
tweets.urlOpts object.

We pass hotTrends.tweets.urlOpts into the second makeCall, this time setting the
handler parameter to hotTrends.jsonHandler.

The second makeCall callback behaves exactly the same as in the main recipe. It outputs the
tweets to the console. This time, however, it outputs the tweets based on Google Hot Trends.

See also
ff The Using Node as an HTTP client recipe in Chapter 2, Exploring the HTTP Object

ff The Converting an object to JSON and back recipe

ff The Converting an object to XML and back recipe

4
Interfacing with

Databases

In this chapter, we will cover:

ff Writing to a CSV file

ff Connecting and sending SQL to a MySQL server

ff Storing and retrieving data with MongoDB

ff Storing data to CouchDB with Cradle

ff Retrieving data from CouchDB with Cradle

ff Accessing the CouchDB changes stream with Cradle

ff Storing and retrieving data with Redis

ff Implementing PubSub with Redis

Introduction
As the complexity of our code and the demands of our objectives increase, we soon realize
the need for a place to store our data.

We then have to ask the question: what is the best way to store our data? The answer depends
on the type of data we are working with, as different challenges require different solutions.

If we're doing something very simple, we can save our data as a flat CSV file, which has the
added benefit of enabling users to view the CSV file in a spreadsheet application.

If we are working with data that has clearly relational qualities, for instance, accounting data,
whereby there are clear, distinct relationships between the two sides of a transaction, then
we can choose a relational database, such as the popular MySQL.

Interfacing with Databases

90

In many cases, relational databases became a de facto standard for nearly all data scenarios.
This led to the necessity of imposing relationships on otherwise loosely-related data (such as
website content) in an attempt to squeeze it into our relational mental model.

In recent times, though, there has been a movement away from relational databases
towards NoSQL, a non-relational paradigm; the driving force being the fact that we tailor our
technology to best suit our data, rather than trying to fit our data according to our technology.

In this chapter, we will look at various data storage technologies with examples of their usage
in Node.

Writing to a CSV file
A flat file structure is one of the most elementary database models. The columns can either
be of a fixed length or used with delimiters. The Comma Separated Values (CSV) convention
conforms to the idea of delimited flat file structure databases. While it's called CSV, the term
CSV is also applied as a broad blanket term to any basic delimited structure that consists of
one record per line (for example, tab-separated values).

We can follow a brittle approach to construct CSV structures simply by using a multidimensional
array and the join method, as follows:

var data = [['a','b','c','d','e','f','g'],
 ['h','i','j','k','l','m','n']];
var csv = data.join("\r\n"); /* renders:
a,b,c,d,e,f,g,h,i,j,k,l,m,n */

However, the limitations of this technique quickly become apparent. What if one of our fields
contains a comma? Now one field becomes two, thus corrupting our data. Furthermore, we
are limited to just using commas as delimiters.

In this recipe, we will use the third-party ya-csv module to store data in the CSV format.

Getting ready
Let's create a file named write_to_csv.js; we'll also need to retrieve the csv module.

npm install csv

How to do it…
We require the csv module, create our data array and simply use the language chaining API
provided by the csv module to generate CSV content from the array. We then save the data
array to the ./data.csv path.

var csv = require('csv')(),

Chapter 4

91

 data = [
 ['a','b','c,"','d','e','f','g'],
 ['h','i','j','k','l','m','n']
];

csv.from.array(data).to.path('./data.csv');

Let's take a look at the file we saved to data.csv:

a,b,"c,""",d,e,f,g

h,i,j,k,l,m,n

Notice that we include a cheeky comma and quote mark in the third item of our first array. The
csv module handles this seamlessly by wrapping this item in quote marks, and escaping the
internal quote with another quote mark. When opened in the likes of LibreOffice Calc or MS
Excel, this parses perfectly.

How it works…
The difficulty with writing to and reading from CSV files is the edge cases, such as commas
or quotes embedded in text. The csv module handles these edge cases for us.

The csv module makes writing to CSV files especially easy with its language chaining syntax.
For instance, when we use the to.path chain combo, the csv module creates writeStream
under the hood. When using the from.array method, it processes the array accordingly and
streams it onto the internal writeStream, which points to our path.

Working with CSV files necessarily depends on using a basic data structure in our code.
Multidimensional objects will have to be massaged into an array or string format before being
processed by the csv module, since CSV, as a structure, has no concept of properties or
multilevel structures.

There's more…
Could we easily create this functionality ourselves? Without a doubt. However, csv provides
an aesthetically pleasing and simple API for us to seamlessly customize the elements of our
CSV files and implements the more involved CSV parsing functionality.

Customizing the CSV elements
If we save our recipe file as write_to_custom_csv.js and pass an options object to
csv.to.options, we can alter the way our CSV files are constructed as follows:

var csv = require('csv')(),
 data = [

Interfacing with Databases

92

 ['a','b','c','d','e','f','g'],
 ['h','i','j','k','l','m','n']
];

csv.to.options({
 delimiter: '~',
 quote: '|',
 quoted: true
});
csv.from.array(data).to.path('./custom_data.csv');

After running our new code, let's take a look at custom_data.csv:

|a|~|b|~|c|~|d|~|e|~|f|~|g|

|h|~|i|~|j|~|k|~|l|~|m|~|n|

Setting quoted to true enforces quote wrapping around all our values, regardless of whether
the values contain a delimiter.

Reading a CSV file
We can also use the csv module to read from a CSV file; its built-in parser converts each CSV
record back to an array. Let's make read_from_csv.js:

var csv = require('csv')();

csv.from.path('./data.csv').to.array(function(data){
 console.log(data);
});

If we want it to parse alternative delimiters and quotes, we simply pass these through the
options method of the from property:

csv.from.options({
 delimiter: '~',
 quote: '|',
 quoted: true
});

Manipulating the CSV data stream
The csv module interacts with the CSV files as streams. This can reduce operational memory,
as streams allow us to process small chunks of information when they are loaded, instead of
buffering the entire file into memory first. We can manipulate these streams all the way through
using the following transform method:

var csv = require('csv')();
process.stdin.resume();

Chapter 4

93

csv.to.options({quoted: true});

csv.from.stream(process.stdin).transform(function (row) {
 return row.map(Function.call, ''.toUpperCase)
}).to.stream(process.stdout);

The transform function receives each row of CSV as an array. We call map on the array to
return a new array of uppercase values; this happens as the input stream is being processed.

On a side note, the arguments passed to row.map exploit the fact that the
second parameter of map sets the context (the this object) of the mapping
function, which in this case is Function.call. So, for each value, we're
essentially executing the equivalent of Function.call.call(String.
prototype.toUpperCase, value, ix), where value is each item
of an array as passed in by map, and ix is the index. There are two calls
because we're calling the call method. So, this translates to value.
toUpperCase(ix). The ix value is disregarded since toUpperCase
doesn't take a parameter, and so we're left with the same result as
value.toUpperCase().

We'll call streaming_csv.js, so now we can do something like the following:

cat data.csv | node streaming_csv.js

If we're using Windows, we can use the following:

type data.csv | node streaming_csv.js

The data.csv file will be piped as a stream into streaming_csv.js, which will read it from
process.stdin, run the transform function, and pipe the stream to process.stdout.
We could pass any other stream in place of process.stdin and process.stdout, such
as a file stream, or the response parameter in createHttpServer.

See also
ff The Connecting and sending SQL to a MySQL server recipe

ff The Storing data to CouchDB with Cradle recipe

ff The Storing and retrieving data with Redis recipe

ff Chapter 5, Employing Streams

Interfacing with Databases

94

Connecting and sending SQL to a MySQL
server

Structured Query Language has been a standard since 1986, and it's the prevailing language
for relational databases. MySQL is the most popular SQL relational database server around,
often appearing in the prevalent Linux Apache MySQL PHP (LAMP) stack.

If a relational database was conceptually relevant to our goals in a new project, or we were
migrating a MySQL-backed project from another framework to Node, the third-party mysql
module would be particularly useful.

In this task, we will discover how to connect to a MySQL server with Node and execute SQL
queries across the wire.

Getting ready
Let's grab mysql, which is a pure JavaScript (as opposed to C++ bound) MySQL client module:

npm install mysql@2.x

We'll need a MySQLserverto connect to. By default, the mysql client module connects
to localhost, so we'll have MySQL running locally

Including @2.x after mysql ensures that we install the most up-to-
date minor version of the second major version of the mysql module;
mysql@2.x has a different API than Version 1 (which is covered in
the first edition of this book.

On Linux and Mac OS X, we can see if MySQL is already installed with the following command:

whereis mysql

We can see if it is running using the following command:

mysqladmin ping

If it is installed but not running, we can use the following command:

sudo service mysql start

If MySQL isn't installed, we can use the relevant package manager for our system (homebrew,
apt-get/synaptic, yum, and so on), or if we're using Node on Windows, we can head to
http://dev.mysql.com/downloads/mysql and download the installer.

Once we're ready to go, let's create a file and name it mysql.js.

Chapter 4

95

How to do it…
First, we require the third-party mysql driver. We then create a connection to the server using
the following code:

var mysql = require('mysql');
var connection = mysql.createConnection({
 user: 'root',
 password: 'OURPASSWORD' ,
//debug: true
});

We need a database to connect to. Let's keep things interesting and make a quotes
database. We can do that by passing SQL to the query method as follows:

connection.query('CREATE DATABASE quotes');
connection.changeUser({database: 'quotes'});

We've also called the changeUser method to connect to the database, although we could
achieve the same with connection.query ('USE quotes').

The changeUser method can also be used to connect as a different
user; simply change the user password and current charset.

Now, we'll create a table with the same name:

connection.query('CREATE TABLE quotes.quotes (' +
 'id INT NOT NULL AUTO_INCREMENT, ' +
 'author VARCHAR(128) NOT NULL, ' +
 'quote TEXT NOT NULL, PRIMARY KEY (id)' +
 ')');

If we were to run our code more than once, we'd notice that an unhandled error is thrown
and the program fails. This is due to the mysql driver emitting an error event in reflection of
a MySQL server error. It's throwing an unhandled error because the quotes database (and
table) cannot be created as they already exist.

We want our code to be versatile enough to create a database if necessary, but not throw
an error if it's not there. To do this, we're going to catch any errors emitted by our client
instance, filtering out the database/table errors that exist:

var ignore = [mysql.ERROR_DB_CREATE_EXISTS,
 mysql.ERROR_TABLE_EXISTS_ERROR];

connection.on('error', function (err) {
 if (ignore.indexOf(err.number) > -1) { return; }
 throw err;
});

Interfacing with Databases

96

We'll place our error catcher just before the connection.query method invocation. Finally,
at the end of our code, we'll insert our first quote into the table and send a COM_QUIT packet
(using connection.end) to the MySQL server. This will only close the connection once all
the queued SQL code has been executed.

connection.query('INSERT INTO quotes.quotes (' +
 'author, quote) ' +
 'VALUES ("Bjarne Stroustrup", "Proof by analogy is fraud.");');

connection.end();

We can verify its success by running the following on the command line:

mysql -u root –password=OURPW -D quotes -e "select * from quotes;"

If we run our script more than once, the quote will be added several times.

How it works…
The createConnection method establishes a connection to the server and returns a
connection instance for us to interact with. We can pass in an options object that may
contain an assortment of various properties. Other than user and password, the default
options are fine for our purposes. If we uncomment debug, we can see the raw data being
sent to and from the server.

Check out the mysql module's GitHub page for a list of all the possible
options at https://github.com/felixge/node-mysql.

The connection.query call sends SQL to our database, which is then executed by the MySQL
server. With it, we create a database named quotes (using CREATE and DATABASE) and also a
TABLE named quotes. We then insert our first record (using INSERT) into our database.

The connection.query invocation queues each piece of SQL passed to it, executing
statements asynchronously alongside our other code, but sequentially within the SQL
statement queue. When we call connection.end, the connection closing task is added to
the end of the queue. If we want to disregard the statement queue and immediately end the
connection, we can use connection.destroy.

Our ignore array holds two numbers, 1007 and 1050—we grab these numbers from the
mysql object, which holds the MySQL error codes. We should ignore the MySQL errors that
occur when a table or database already exists, otherwise, we can only run mysql.js once. It
would crash after the first run, as the database and table would already exist. Ignoring these
codes means that we can implicitly set up our database and have just one file rather than a
setup app and a separate app to insert code.

Chapter 4

97

In the error event listener, we check whether err.number is within our ignore array. If it
is, we simply return early, thus ignoring the error and gracefully continuing with the execution.
If the error is of some other nature, we fall through to the usual behavior of throwing the error.

There's more…
We don't just send data to MySQL, we retrieve it. Furthermore, SQL queries are often generated
from user input, but this can be open to exploitation if precautions aren't taken.

Using and cleaning user input
As with the other languages that build SQL statements with string concatenation, we must
prevent the possibilities of SQL injection attacks to keep our server safe. Essentially, we must
clean (that is, escape) any user input to eradicate the potential for unwanted SQL manipulation.

We'll copy mysql.js and rename it as insert_quotes.js. To implement the concept of user
input in a simple way, we'll pull the arguments from the command line, but the principles and
methods of data cleaning extend to any input method (for example, via a query string
on request).

Our basic API will look like this:

node insert_quotes.js "Author Name" "Quote Text Here"

Quotation marks are essential to divide the command-line arguments, but for the sake of
brevity, we won't be implementing any validation checks.

Command-line parsing module – optimist
For more advanced command-line functionality, check out the excellent
optimist module, available at https://www.github.com/
substack/node-optimist.

To receive an author and quote, we'll load the two quotes arguments into a new
params object:

var params = {author: process.argv[2], quote: process.argv[3]};

Our first argument is at index 2 in the process.argv array because 0 and 1 hold node
and quotes.js.

Now, let's slightly modify our INSERT statement:

if (params.author && params.quote) {
 connection.query('INSERT INTO quotes.quotes (' +
 'author, quote) ' +
 'VALUES (?, ?);', [params.author, params.quote]);

https://www.github.com/substack/node-optimist

Interfacing with Databases

98

}
connection.end();

We've placed this just before our final connection.end call in the main recipe. The mysql
module can seamlessly clean user input for us. We simply use the question mark (?) as a
placeholder and then pass our values (in order) as an array to the second parameter
of connection.query.

Receiving results from the MySQL server
Let's extend insert_quotes.js further by outputting all the quotes for an author,
irrespective of whether a quote is provided. We'll save insert_quotes.js simply as
quotes.js.

Underneath our INSERT query, but on top of the final client.end call, we'll add the
following code:

if (params.author) {
 connection.query('SELECT * FROM quotes WHERE ' +
 'author LIKE ' + connection.escape(params.author))
 .on('result', function (rec) {
 console.log('%s: %s \n', rec.author, rec.quote);
 });
}
connection.end();

On this occasion, we've used an alternative approach to clean user input with connection.
escape. This has exactly the same effect as the former, but only escapes a single input.
Generally, if there's more than one variable, the former method would be preferred.

The results of a SELECT statement can be accessed either by passing a callback function or
by listening for the row event. A row event listener allows us to interact with a MySQL server
data stream one row at a time.

We can safely call connection.end without placing it in the end event of our SELECT query
because connection.end only terminates a connection when all the queries are done.

See also
ff The Storing and retrieving data with MongoDB recipe

ff The Storing and retrieving data with Redis recipe

Chapter 4

99

Storing and retrieving data with MongoDB
MongoDB is a NoSQL database offering that maintains a philosophy of performance over
features. It's designed for speed and scalability. Instead of working relationally, it implements
a document-based model that has no need for schemas (column definitions). The document
model works well for scenarios where the relationships between data are flexible and where
minimal potential data loss is an acceptable cost for speed enhancements (a blog, for instance).

While it is in the NoSQL family, MongoDB attempts to sit between two worlds, providing a
syntax reminiscent of SQL but operating nonrelationally.

In this task, we'll implement the same quotes database as in the previous recipe, using
MongoDB instead of MySQL.

Getting ready
We want to run a MongoDB server locally. It can be downloaded from http://www.mongodb.
org/downloads.

Let's start the MongoDB service, mongod, in the default debug mode:

mongod --dbpath [a folder for the database]

This allows us to observe the activities of mongod as it interacts with our code. If we want to
start it as a persistent background service, we can use the following line:

mongod --fork --logpath [p] --logappend –dbpath [p]

Here, [p] is our desired path.

More information on starting and correctly stopping mongodb can
be found at http://www.mongodb.org/display/DOCS/
Starting+and+Stopping+Mongo.

To interact with MongoDB from Node, we'll need to install the mongodb native binding's
driver module:

npm install mongodb

We'll also create a new folder for our MongoDB-based project, with a new quotes.js file.

How to do it…
We require the mongodb driver, and grab the MongoClient instance, which we'll use to
connect to our MongoDB server:

http://www.mongodb.org/display/DOCS/Starting+and+Stopping+Mongo

Interfacing with Databases

100

var client = require('mongodb').MongoClient,
 params = {author: process.argv[2], quote: process.argv[3]};

Notice that we've also inserted our params object to read user input from the command line.

Now, we connect to our quotes database and load (or create, if necessary) our quotes
collection (a table would be the closest similar concept in SQL):

client.connect('mongodb://localhost:27017/quotes', function (err, db)
{
 if (err) { throw err; }
 var collection = db.collection('quotes');
 db.close();
});

The closest similar concept to a collection in a relational database paradigm (such as SQL)
would be a table

The port number (27017) is the default port assigned to mongod
instances. This can be modified when we start a mongod service
by passing a --port flag.

Next, we'll insert a new document (in SQL terms, this would be a record) according to the user-
defined author and quote. We'll also output any quotes by the specified author to the console
as follows:

client.connect('mongodb://localhost:27017/quotes', function (err, db)
{
 if (err) { throw err; }

 var collection = db.collection('quotes');

 if (params.author && params.quote) {
 collection.insert({
 author: params.author,
 quote: params.quote}, function (err) {
 if (err) { throw err; }
 });
 }

 if (params.author) {

 collection.find({
 author: params.author
 }).each(function (err, doc) {
 if (err) { throw err; }

Chapter 4

101

 if (doc) {
 console.log('%s: %s \n', doc.author, doc.quote);
 return;
 }
 db.close();
 });

 return;
 }

 db.close();

});

We can see our MongoDB-backed quotes application in action in the following screenshot:

How it works…
When we call client.connect, we pass in a URI with the mongodb:// protocol as the first
parameter. The mongodb module will parse this string and attempt to connect to the specified
database. MongoDB will intelligently create this database if it doesn't exist, so unlike MySQL,
we don't have to plaster over awkward errors.

Once the connection is made, our callback function is executed where we can interact with
the database via the db parameter.

Interfacing with Databases

102

We start off by grabbing our quotes collection using db.collection. A collection is similar
to a SQL table which holds all our database fields. However, rather than the field values
being grouped by columns, a collection contains multiple documents (such as records)
where each field holds both the field name and its value (the documents are very much
like JavaScript objects).

If both quote and author are defined, we invoke the insert method of our collection,
passing in an object as our document.

Finally, we use find, which is comparable to the SELECT SQL command, passing in an object
that specifies the author field and its desired value. The mongodb driver provides a convenience
method (each) that can be chained to the find method. The each method executes the
callback passed to it for each document as and when it's found. The last loop of each passes
in doc as null, which conveniently signals that MongoDB has returned all the records.

So, as long as doc is truthy, we pass the author and quote properties of every doc
found. Once doc is null, we allow the interpreter to discover the last part of the callback,
db.close, by not returning early from it.

The second and final db.close call situated at the end of the client.connect callback
is invoked only when there are no arguments defined via the command line.

There's more…
Let's check out some other useful MongoDB features.

Indexing and aggregation
Indexing causes MongoDB to create a list of values from a chosen field. Indexed fields
accelerate query speeds because a smaller set of data can be used to cross-reference and
pull from a larger set. We can apply an index to the author field and see performance benefits,
especially as our data grows. Additionally, MongoDB has various commands that allow us to
aggregate our data. We can group, count, and return distinct values.

For more advanced needs or larger sets of data, the map/reduce
functions can aggregate. CouchDB also uses map/reduce to generate
views (stored queries); see the Retrieving data from CouchDB with
Cradle recipe.

Let's create and output a list of authors found in our database and save our code to a file
named authors.js:

var client = require('mongodb').MongoClient;

client.connect('mongodb://localhost:27018/quotes', function (err, db)
{

Chapter 4

103

 if (err) { throw err; }

 var collection = db.collection('quotes');

 collection.ensureIndex('author', {safe: true}, function (err) {
 if (err) { throw err; }
 collection.distinct('author', function (err, result) {
 if (err) { throw err; }
 console.log(result.join('\n'));
 db.close();
 });
 });

});

As usual, we opened up a connection to our quotes database, grabbing our quotes
collection. Using ensureIndex creates an index only if one doesn't already exist. We pass in
safe:true so that MongoDB returns any errors and our callback works as expected. Inside
the callback, we invoke the distinct method on our collection, passing in author. The
result parameter in our callback function is an array which we join (using join) to a string
using new lines and output to the console.

Updating modifiers, sort, and limit
We can make it possible for a hypothetical user to indicate if they were inspired by a quote
(such as a Like button) and then use the sort and limit commands to output the top ten
most inspiring quotes.

In reality, this would be implemented with some kind of user interface (for example, in a
browser), but we'll again emulate user interactions using the command line; let's create a new
file named quotes_votes.js.

First, in order to vote for a quote, we'll need to reference it. This can be done using the unique
_id property. So, in quotes_votes.js, let's write the following code:

var mongodb = require('mongodb'),
 client = mongodb.MongoClient,
 params = {id: process.argv[2]};

client.connect('mongodb://localhost:27018/quotes', function (err, db)
{
 if (err) { throw err; }
 var collection = db.collection('quotes');

//vote handling to go here

 collection.find().each(function (err, doc) {

Interfacing with Databases

104

 if (err) { throw err; }
 if (doc) { console.log(doc._id, doc.quote); return; }
 db.close();
 });

});

Now, when we run quotes_votes.js with node, we'll see a list of IDs and quotes. To vote
for a quote, we'll simply copy an ID and use it as our command-line parameter. So, let's do
our vote handling as shown in the following code:

 if (params.id) {
 collection.update({_id : mongodb.ObjectID(params.id)},
 {$inc: {votes: 1}}, {safe: true},
 function (err) {
 if (err) { throw err; }
 console.log('1 vote added to %s by %s', params.id);
 collection.find().sort({votes: -
 1}).limit(10).each(function (err, doc) {
 if (err) { throw err; }
 if (doc) {
 var votes = (doc.votes) || 0;
 console.log(doc.author, doc.quote, votes);
 return;
 }
 db.close();
 });
 });

 return;
 }

MongoDB IDs must be encoded as a Binary JSON (BSON) ObjectID. Otherwise, the update
command will look for params.id as a string, failing to find it. So, we convert params.id
into an ObjectID using mongodb.ObjectID(params.id).

The $inc property is a MongoDB modifier that performs the incrementing action inside the
MongoDB server, essentially allowing us to outsource the calculation. To use it, we pass a
document (object) alongside it containing the key to increment and the amount to increase
it by. So, we pass votes and 1.

The $inc modifier will create the votes field if it doesn't exist and increment it by one (we can
also decrement using minus figures). Next, we specify the options to be passed to MongoDB.
We've set safe to true, which tells MongoDB to check whether the command was successful
and send any errors if it wasn't. For the callback to work correctly, safe:true must be passed;
otherwise, the errors are not caught and the callback occurs immediately.

Chapter 4

105

Upserting
Another useful option we can set is upsert:true. This is a really
convenient MongoDB feature that either updates a record or inserts it if it
doesn't exist.

Inside the update callback, we run a chain of find.sort.limit.each methods. A
call to find, without any parameters, returns every document in a collection. The sort
callback requires an object whose properties match the keys in our collection. The value of
each property can either be -1 or +1, which indicates the ascending and descending order,
respectively. The limit callback takes integer representing the maximum amount of records,
and each loops through all our records. Inside the each callback, we output every author,
quote, and votes of doc, closing the connection when no docs are left.

MongoDB without MongoDB
If our requirements are simple and we're working on an app that won't be met with high
demand, or we're prototyping an app and we don't want to depend on a separate MongoDB
process, then we can try the third-party Node Embedded Database module (NeDB).

The nedb module provides a subset of the MongoDB API but it doesn't use MongoDB at all.
Instead, all of the data management occurs within Node itself, and this data can simply be
saved to a file.

Let's reimplement our main recipe with NeDB; first, we'll need to install it:

npm install nedb

Next, we'll save quotes.js as quotes_nedb.js and begin to adapt our code base. We'll
then alter our variable declarations at the top of our code:

var NeDB = require('nedb'),
 collection = new NeDB('./quotes.db'),
 params = {author: process.argv[2], quote: process.argv[3]};

We use require to grab nedb in our NeDB variable, create a new instance of it, and pass
in a path, ./quotes.db, for our data to be stored. Our NeDB instance is loaded into the
collection variable because an NeDB variable provides a subset of the API afforded by
MongoDB collections.

Now let's load the database and supply the logic to insert and list quotes:

collection.loadDatabase(function (err) {
 if (err) { throw err; }

 if (params.author && params.quote) {
 collection.insert({author: params.author, quote:
 params.quote},

Interfacing with Databases

106

 function (err) { if (err) { throw err; } }) ;
 }
 if (params.author) {
 collection.find({author: params.author}, function (err, docs) {
 if (err) { throw err; }
 docs.forEach(function(doc) {
 if (doc) { console.log('%s: %s \n', doc.author,
 doc.quote);}
 })
 });
 }

});

And that's it! Notice that we didn't need to explicitly close a database as in the main recipe.
Since our database logic is completely inside the Node process, our database "connection"
will exit with the process.

We have to manually loop through the provided docs array in our collection.find
callback, instead of using the chained .each method as in our main recipe. The mongodb
module provides the .each method as a convenience; it's not strictly part of the MongoDB
API—nedb doesn't have the same level of convenience.

The fact that NeDB is a subset may mean we have to jump through certain hoops that we
wouldn't need when using MongoDB, but this is the trade off for using a familiar API without
any dependence on an external process.

Migrating from NeDB to MongoDB
In cases where we need to scale and start using MongoDB instead of
NeDB, a tool is available to take an NeDB-generated file and populate a
MongoDB database. See https://github.com/louischatriot/
nedb-to-mongodb for more details.

See also
ff The Connecting and sending SQL to a MySQL server recipe

ff The Storing data to CouchDB with Cradle recipe

https://github.com/louischatriot/nedb-to-mongodb

Chapter 4

107

Storing data to CouchDB with Cradle
In order to achieve stellar performance speeds, MongoDB has a relaxed view towards Atomicity
Consistency Isolation Durability (ACID) compliance. However, this means there is a (slight)
chance that data can become corrupt (especially if there was a power cut in the middle of an
operation). CouchDB, on the other hand, is ACID compliant to the extent that when replicated
and synchronized, data eventually becomes consistent. Therefore, while slower than MongoDB,
it has the added reliability advantage.

CouchDB is entirely administrated via HTTP REST calls, so we could do all of our work with
CouchDB using http.request. Nevertheless, we can use Cradle to interact with CouchDB
in an easy, high-level way, along with the added speed enhancement of automated caching.

In this recipe, we'll use Cradle to store the famous quotes to CouchDB.

Getting ready
We'll need to install and run CouchDB. For this, head on over to http://wiki.apache.
org/couchdb/Installation for instructions on how to install it for your particular
operating system.

After installation, we can check if CouchDB is running by accessing the Futon administration,
pointing our browser to http://localhost:5984/_utils.

To interact with CouchDB from Node, we'll need the cradle module.

npm install cradle

And we will create a new folder with a new quotes.js file in it.

How to do it…
First, we require cradle and load our quotes database, creating it if necessary. We'll also
define an error-handling function and our params object for easy command-line interaction:

var cradle = require('cradle');
var db = new(cradle.Connection)().database('quotes');
var params = {author: process.argv[2], quote: process.argv[3]};
function errorHandler(err) {
 if (err) { console.log(err); process.exit(); }
//checkAndSave function here

Before we can write to our database, we need to know whether it exists:

db.exists(function (err, exists) {
 errorHandler(err);

http://wiki.apache.org/couchdb/Installation

Interfacing with Databases

108

 if (!exists) { db.create(checkAndSave); return; }
 checkAndSave();
});

Notice that we pass in checkAndSave as the callback of db.create. The following function
is placed above the db.exists invocation:

function checkAndSave(err) {
 errorHandler(err);

 if (params.author && params.quote) {
 db.save({author: params.author, quote: params.quote},
errorHandler);

 }

}

The err parameter that we handle in checkAndSave will have to be passed in from
db.create.

How it works…
CouchDB is administrated via HTTP requests, but Cradle provides an interface to
make these requests. When we invoke db.exists, Cradle sends a HEAD request to
http://localhost:5984/quotes and checks whether the reply status is 404 Not
Found or 200 OK. On Unix-like systems (Mac OS X and Linux), we can perform the same
check with the curl and grep shell commands as follows:

curl -Is http://localhost:5984/quotes | grep -c "200 OK"

This would output 1 if the database exists and 0 if it does not. If our database doesn't exist,
we call the db.create method of Cradle, which sends an HTTP PUT request to the CouchDB
server. Using curl, this would be as follows:

curl -X PUT http://localhost:5984/quote

We pass in our checkAndSave function as the callback of db.create, or we call it from
the callback of db.exists if the database exists. This is essential. We cannot save data to
a database that doesn't exist, and we have to wait for the HTTP response before we know
whether it exists (or whether it has been created). The checkAndSave function looks for
command-line arguments, and then saves the data accordingly.

For instance, let's run the following command line:

node quotes.js "Albert Einstein" "Never lose a holy curiosity."

Chapter 4

109

The checkAndSave function will realize that there are two parameters, passing these as
author and quote to db.save. Cradle would then post the following, with Content-Type
set to application/json:

{"author": "Albert Einstein", "quote": "Never lose a holy curiosity"}

On top of this, Cradle adds a caching layer, which in our example is of little use since the
caching data is lost whenever our application exits. However, in a server implementation,
caching can prove to be very useful for answering similar requests quickly and efficiently.

There's more…
Couch stands for Cluster Of Unreliable Commodity Hardware. Let's take a brief look at the
clustering side of CouchDB.

Scaling CouchDB with BigCouch
Scaling is about making your application responsive to an anticipated demand, but
different projects have different characteristics. Therefore, each scaling venture requires
an individualized approach.

If a web service was heavily built around database interaction, scaling the database layer
would be a priority when responding to the changes in service demand. Scaling CouchDB
(or anything else) can be a very in-depth procedure, necessarily so for specialized projects.

However, the open source BigCouch project has the ability to scale CouchDB in a transparent
and generic fashion. With BigCouch, we can scale CouchDB across servers, but interact
with it as if it was on one server. BigCouch can be found at https://www.github.com/
cloudant/bigcouch.

See also
ff The Retrieving data from CouchDB with Cradle recipe

ff The Storing and retrieving data with MongoDB recipe

ff The Storing and retrieving data with Redis recipe

Retrieving data from CouchDB with Cradle
CouchDB doesn't use the same query paradigm that MySQL and MongoDB subscribe to.
Instead, it uses a precreated view to retrieve the desired data.

In this example, we'll use Cradle to obtain an array of quotes according to the specified author,
outputting our quotes to the console.

https://www.github.com/cloudant/bigcouch

Interfacing with Databases

110

Getting ready
As in the previous recipe, Storing data to CouchDB with Cradle, we'll need CouchDB installed
on our system along with cradle. We can also take the quotes.js file from that recipe and
place it in a new directory.

How to do it…
We're working on the quotes.js file from the previous recipe where we called checkAndSave
if our database existed or we called it from the callback of db.create if it didn't exist. Let's
modify checkAndSave slightly as shown in the following code:

function checkAndSave(err) {
 errorHandler(err);
 if (params.author && params.quote) {
 db.save({author: params.author, quote: params.quote},
outputQuotes);
 return;
 }

 outputQuotes();
}

We've added a new function invocation, outputQuotes, to the end of checkAndSave
and also as the callback of db.save. The outputQuotes call is going to access a special
CouchDB _design document called a view.

Before we look at outputQuotes, let's look at another new function we'll be creating; let's
name it createQuotesView. It should be placed just under errorHandler but on top of
the rest of the code, as follows:

function createQuotesView(err) {
 errorHandler(err);
 db.save('_design/quotes', {
 views: { byAuthor: { map: 'function (doc) { emit(doc.author, doc)
}'}}
 }, outputQuotes);

}

The createQuotesView function also calls the outputQuotes function from the db.save
callback parameter. This outputQuotes function is now called from three places: the db.save
callback of checkAndSave, the end of checkAndSave, and in the db.save callback of
createQuotesView.

Let's take a look at outputQuotes:

function outputQuotes(err) {

Chapter 4

111

 errorHandler(err);

 if (params.author) {
 db.view('quotes/byAuthor', {key: params.author},
 function (err, rowsArray) {
 if (err && err.error === "not_found") {
 createQuotesView();
 return;
 }
 errorHandler(err);

 rowsArray.forEach(function (doc) {
 console.log('%s: %s \n', doc.author, doc.quote); return;
 });
 });
 }
}

The outputQuotes function is placed before checkAndSave but after createQuotesView.

How it works…
The key to querying a CouchDB database is views. There are two types of views: permanent
and temporary. In createQuotesView, we define a permanent view using db.save, setting
the document ID to _design/quotes. We then define a views field containing an object
named byAuthor, which holds a key named map whose value is a string-formatted function.

Temporary views will be stored with an ID of quotes/_temp_view. However, these should
only be used for testing. They're very expensive computationally and shouldn't be used
for production.

The mapping function is string formatted because it's passed to CouchDB via an HTTP
request. CouchDB map functions are not executed with Node; they run within the CouchDB
server. A map function defines the query we wish to run on the database through the
CouchDB server's emit function. The first argument of emit specifies which field to query
(in our case, doc.author), and the second argument specifies what to output as a result
of the query (we want the whole doc object). If we want to search for Albert Einstein, we will
make a GET request to http://localhost:5984/quotes/_design/quotes/_view/
byAuthor?key="Albert Einstein".

Cradle provides a shorthand method for this request, db.view, which appears in our
outputQuotes function. The db.view function allows us to simply pass in quotes/
byAuthor with a second object containing the key parameter (that is, our query),
essentially filling in the special underscore routes for us.

Interfacing with Databases

112

The db.view function parses the incoming JSON and provides it via the second parameter
of its callback, which we named rowsArray. We loop through the array using forEach and
finish off by outputting author and quote to the console, as in the previous recipes.

However, before we loop through the array, we need to check whether our view actually exists
or not. Views only need to be generated once. After this, they are stored in the CouchDB
database. Therefore, we don't want to create a view every time we run our application. So,
when we call db.view, we look to check whether a not_found error occurs in the db.view
callback. If our view isn't found, we call createQuotesView.

In broader terms, the process goes something like this:

Does the

database exist?
No

Create the

database

Yes

close connection,

exit script

outputQuotes:

Do we have

an author?
checkAndSave:

Do we have both

author and quote

from command line?

outputQuotes:

log all quotes

belonging to

author

createQuotesView

Is there a

byAuthor

View?

checkAndSave:

store author

and quote to

database

No

Yes

No

Yes

Yes

No

There's more…
CouchDB is easy to get to grips with right out of the box. However, there are certain security
considerations we must be attuned to before deploying a CouchDB-backed app to the Web.

Creating an admin user
CouchDB requires no initial authorization settings, which is fine for development. However,
as soon as we expose CouchDB to the outside world, anyone on the Internet has permission
to edit our entire database: data designs, configuration, users, and so on.

So, before deployment, we want to set a username and password. We can achieve this with
the _config API:

curl -X PUT http://localhost:5984/_config/admins/dave -d '"cookit"'

Chapter 4

113

We have created the admin user dave and set the password to cookit. Now the right to certain
calls will be denied without authentication, including the creation or deletion of databases,
modification of design documents (for example, for views), or access to the _config API.

For instance, if we wanted to view all the admin users, we would use this command:

curl http://localhost:5984/_config/admins

CouchDB will reply with the following message:

{"error":"unauthorized", "reason":"You are not a server admin."}

Let's include the following authentication information:

curl http://dave:cookit@localhost:5984/_config/admins

We will get our only admin user along with a hash of his password:

{"dave":"-hashed-
42e68653895a4c0a5c67baa3cfb9035d01057b0d,44c62ca1bfd4872b773543872d78
e950"}

Using this method to remotely administer a CouchDB database is not without its security
flaws. It forces us to send passwords as plaintext over nonsecure HTTP. Ideally, we need to
host CouchDB behind an HTTPS proxy, so the password becomes encrypted as it's sent.
See the recipe Setting up an HTTPS server discussed in Chapter 8, Implementing Security,
Encryption, and Authentication.

If CouchDB is behind HTTPS, cradle can connect to it as follows:

var db = new (cradle.Connection)({secure:true,
 auth: { username: 'dave',
 password: 'cookit' }})
 .database('quotes');

We pass an options object when we create our connection. The secure property tells
cradle that we are using SSL, and auth contains a subobject with login details.

Alternatively, we create a Node app to authenticate a local CouchDB instance (so that no
password is sent to an external HTTP address) and act as a layer between external requests
and CouchDB.

Locking all modifying operations to an admin user
Even if an admin user is set, unauthenticated users still have permission to modify existing
databases. If we were only writing to the CouchDB server side (but reading from either server
or client), we could lock all the write operations for nonadmin users with a validation function.

Interfacing with Databases

114

A validation function is written in JavaScript and runs on the CouchDB server (like the map
function). Once a validation function is defined, it's executed against all the user input for the
database it is applied to. Three objects appear as parameters in the function: the new document
(newDoc), the stored document (savedDoc), and the user context (userCtx) that holds the
authenticated user information.

Within a validation function, we can examine and qualify these objects, calling CouchDB's
throw function to reject the operation requests that fail to meet our requirements.

Let's make a new file named database_lockdown.js and begin by connecting to
our database:

var cradle = require('cradle');
var db = new (cradle.Connection)({auth:
 { username: 'dave',
 password: 'cookit' }})
 .database('quotes');

We pass in an options object to the new cradle connection. It contains the authentication
information that will now be necessary to create a validation function if we have set a new
admin user according to the previous subsection, Creating an admin user.

Let's create our validation function and save it as a _design document:

var admin_lock = function (newDoc, savedDoc, userCtx) {
 if (userCtx.roles.indexOf('_admin') === -1) {
 throw({unauthorized : 'Only for admin users'});
 }
}
 db.save('_design/_auth', {
 views: {},
 validate_doc_update: admin_lock.toString()
 });

Let's execute the following command:

node database_lockdown.js

All the write-related operations will now require authorization.

Like views, we store validation functions within a document that has a _design/ prefixed ID.
The other part of the ID can be anything but we named it _auth, which reflects conventional
practice when a validation function serves this type of purpose. The field name, though, must
be named validate_doc_update.

By default, Cradle assumes that any _design document passed to db.save is a view. In
order to prevent Cradle from wrapping our validate_update_doc field into a view, we
specify an empty object to the views property.

Chapter 4

115

The validate_update_doc field must be passed a string-formatted function, so we define
our function under the admin_lock variable and call toString on it as it's passed into
db.save.

The admin_lock variable is never intended for execution by Node. It's an aesthetic approach
to constructing our function before passing it to CouchDB.

When an operation occurs on the database, our admin_lock function (which becomes
CouchDB's validate_update_doc function) asks CouchDB to check whether the user
requesting the operation has the _admin user role. If not, it tells CouchDB to throw an
unauthorized error, thus denying access.

Exposing the CouchDB HTTP interface to remote connections
By default, CouchDB binds to 127.0.0.1. This ensures that only local connections can be
made to the database ensuring safety prior to security enforcements. Once we have CouchDB
set up behind HTTPS with at least one admin user set, we can bind CouchDB to 0.0.0.0,
which makes the REST interface accessible via any IP address. This means that remote users
can access our CouchDB HTTP interface via our server's public IP address, or more likely via
our server's domain name. We can set the bind address with _config as follows:

curl -X PUT https://u:p@localhost:5984/_config/httpd/bind_address -d
'"0.0.0.0"'

Here, u and p are the admin username and password, respectively.

See also
ff The Storing data to CouchDB with Cradle recipe

ff The Storing and retrieving data with MongoDB recipe

ff The Setting up an HTTPS web server recipe discussed in Chapter 8, Implementing
Security, Encryption, and Authentication

Accessing the CouchDB changes stream
with Cradle

One of CouchDB's most noteworthy features is the _changes API. With it, we can view all the
alterations to a database via HTTP.

For instance, to see all the changes made to our quotes database, we can make a GET
request to http://localhost:5984/quotes/_changes. Even better, if we want to hook
up to a live stream, we need to add the query parameter ?feed=continuous.

Cradle provides an attractive interface to the _changes API, which we'll explore in this recipe.

Interfacing with Databases

116

Getting ready
We'll need a functioning CouchDB database and a way to write to it. We can use the quotes.
js example used in Storing data to CouchDB with Cradle, so let's copy that into a new
directory and then create a file alongside it named quotes_stream.js.

If we followed the Creating an admin user and Locking all modifying operations to an admin
user sections of the previous recipe's There's more… section, we will need to modify the
second line of quotes.js in order to continue to insert quotes in our database:

var db = new (cradle.Connection)({ auth: { username: 'dave',
 password: 'cookit' }})
 .database('quotes');

Here, dave and cookit are the example username and password, respectively.

How to do it…
We require cradle and make a connection to our quotes database. Our stream is intended
for use with a pre-existing database, so we won't be checking for database existence.

var cradle = require('cradle');
var db = new (cradle.Connection)().database('quotes');

Next, we call the changes method of cradle and listen to its response event, in turn
listening to the passed in response emitter's data event:

db.changes().on('response', function (response) {

 response.on('data', function (change) {
 var changeIsObj = {}.toString.call(change) === '[object Object]';
 if (change.deleted !changeIsObj) { return; }
 db.get(change.id, function (err, doc) {
 if (!doc) {return;}
 if (doc.author && doc.quote) {
 console.log('%s: %s \n', doc.author, doc.quote);
 }
 });
 });

});

To test our changes stream implementation, we'll open two terminals. In one, we'll run the
following command:

node quotes_stream.js

Chapter 4

117

In the other terminal window, we can add some quotes using quotes.js:

node quotes.js "Yogi Berra" "I never said most of the things I said"

node quotes.js "Woody Allen" "I'd call him a sadistic hippophilic
necrophile, but that would be beating a dead horse"

node quotes.js "Oliver Wendell Holmes" "Man's mind, once stretched by
a new idea, never regains its original dimensions"

As each new quote is added to the left-hand terminal, it appears to the right.

The quotes_stream.js file was opened up before any new quotes were added and
immediately displayed the Albert Einstein quote, which was added in the Storing data
to CouchDB with Cradle recipe. After this, the new quotes appeared in the stream as they
were added.

How it works…
The changes method can be passed a callback, which simply returns all the changes
up to the present and then exits. If we do not pass a callback to changes, it adds the
?feed=continuous parameter to the HTTP CouchDB REST call and returns EventEmitter.
CouchDB then returns a streamed HTTP response to Cradle, which is sent through as
the response parameter of the response event. The response parameter is also
EventEmitter, and we listen for changes via the data event.

Interfacing with Databases

118

On each data event, the callback handles the change parameter. Two data events are fired for
each change: one is a JSON string and the other is a JavaScript object containing the equivalent
JSON data. We check whether the change parameter's type is an object (changeIsObj) before
proceeding. The change object holds metadata for our database entries. It has a sequence
number (change.seq), a revision number (change.changes[0].rev), sometimes a deleted
property (changes.deleted), and always has an id property.

If the deleted property is found, we need to return early as db.get can't fetch a deleted
record. Otherwise, we pass change.id into db.get, which provides access to a document ID.
The doc is passed into the callback of db.get. We only want to output the changes regarding
our quotes, so we check for the author and quote fields and log them to the console.

See also
ff The Storing data to CouchDB with Cradle recipe

ff The Retrieving data from CouchDB with Cradle recipe

ff The Implementing PubSub with Redis recipe

Storing and retrieving data with Redis
Redis is a nontraditional database, dubbed a data structure server, which functions in
operational memory with blazingly fast performance.

Redis is excellent for certain tasks, as long as the data model is fairly simple and isn't so large
that it swamps your server RAM. Good examples of where Redis shines are in site analytics,
server-side session cookies, and providing a list of logged-in users in real time.

In the spirit of our theme, we will reimplement our quotes database with Redis.

Getting ready
We'll be using the redis module:

npm install redis

We also need to install the Redis server, which can be downloaded from http://www.redis.
io/download along with the installation instructions.

Let's also create a new directory with a new quotes.js file.

Chapter 4

119

How to do it…
We'll create the redis module, establish a connection, and listen for the ready event emitted
by the client, without forgetting to load the command-line arguments into the params object.

var redis = require('redis'),
 client = redis.createClient(),
 params = {author: process.argv[2], quote: process.argv[3]};

Next, we'll check for author and quote via the command line. If they're defined, we'll insert
these as a hash (an object structure) into Redis:

if (params.author && params.quote) {
 var randKey = "Quotes:" + (Math.random() * Math.random())
 .toString(16).replace('.', '');

 client.hmset(randKey, {"author": params.author,
 "quote": params.quote});

 client.sadd('Author:' + params.author, randKey);
}

Not only did we add our data to Redis, we also constructed a basic index on the fly, enabling
us to search for quotes by the author in our next piece of code.

We check for the existence of the first command-line argument, the author, and then output
quotes by that author:

 if (params.author) {
 client.smembers('Author:' + params.author, function (err, keys) {
 keys.forEach(function (key) {
 client.hgetall(key, function (err, hash) {
 console.log('%s: %s \n', hash.author, hash.quote);
 });
 });
 client.quit();
 });
 return;
 }
 client.quit();

How it works…
If both author and quote are specified via the command line, we go ahead and
generate a random key prefixed with Quote:. So, each key will look something like
Quote:08d780a57b035f. It's a common convention to prefix the Redis keys with
names delimited by a colon, as this helps us to identify keys when debugging.

Interfacing with Databases

120

We pass our key into client.hmset, a wrapper for the Redis HMSET command, which allows
us to create multiple hashes. Unlike the raw HMSET command, client.hmset also accepts
a JavaScript object (not just an array) to create multiple key assignments. With the standard
Redis command-line client, redis-cli, we will use the following command:

HMSET author "Steve Jobs" quote "Stay hungry, stay foolish."

We could hold on to this format by passing in an array containing the keys next to the values,
but in this author's opinion, an object is nicer on the eyes in this case.

Every time we store a new quote with client.hmset, we add the randKey for that quote
to the relevant author set via the second parameter of client.sadd. The client.sadd
method allows us to add a member to a Redis set (a set is like an array of strings). The key
for our SADD command is based on the intended author. So, in the preceding Steve Jobs
quote, the key to pass into client.sadd would be Author:Steve Jobs.

Next, if an author is specified, we perform the SMEMBERS command using client.smembers.
This returns all the values we stored to a specific author's set, being the keys for all the quotes
related to that author.

We loop through these keys using forEach, passing every key into client.hgetall. Redis
HGETALL returns a hash (object) that we passed into client.hmset earlier. Each author
and quote is then logged to the console, and client.quit gracefully exits our script once
all the Redis commands have been executed.

A final client.quit callback is also included for when no command-line arguments are
specified. This ensures that our app ends the process correctly.

There's more…
Redis is a speed freak's dream, but we can still make optimizations.

Speeding up the Node Redis module
By default, the redis module uses a pure JavaScript parser. However, the Redis project
provides a Node hiredis module—a C bindings module, which binds to the official Redis
client, Hiredis. Hiredis is faster (being written in C) than the JavaScript parser.

The redis module will interface with the hiredis module if it is installed. Therefore,
we can achieve performance benefits simply by installing hiredis:

npm install hiredis

Overcoming network latency by pipelining commands
Redis can receive multiple commands at once. The redis module has a multi method,
which sends collated commands en masse. If the latency (time taken for data to travel) was
20ms per command, for 10 combined commands, we save 180ms (10 * 20 - 20 = 180).

Chapter 4

121

If we copy quotes.js to quotes_multi.js, we can alter it accordingly:

//top variables,

 if (params.author && params.quote) {
 var randKey = "Quote:" + (Math.random() * Math.random())
 .toString(16).replace('.', '');

 client.multi()
 .hmset(randKey, {"author": params.author,
 "quote": params.quote})
 .sadd('Author:' + params.author, randKey)
 .exec(function (err, replies) {
 if (err) { throw err; };
 if (replies[0] == "OK") { console.log('Added...\n'); }
 });
 }

//if params.author, client.smembers, client.quit

We can see our original Redis commands highlighted, only they have been chained with
client.multi. Once all the commands have been added to client.multi, we
invoke its exec method. Finally, we use the callback of exec to verify that our data
was successfully added.

We didn't provision SMEMBERS for pipelining. It must be called after the quote has been
added, or else the new quote won't be displayed. If SMEMBERS was combined with HMSET
and SADD, it would be executed asynchronously alongside them. There's no guarantee that
the new quote will be available to SMEMBERS. In fact, it's unlikely since SMEMBERS is more
complex than SADD, so it takes longer to process.

See also
ff The Connecting and sending SQL to a MySQL server recipe

ff The Implementing PubSub with Redis recipe

Implementing PubSub with Redis
Redis exposes a Publish-Subscribe messaging pattern (not so dissimilar to the CouchDB
changes stream), which can be used to listen to specific data change events. Data from
these events could be passed between processes to, for instance, instantly update a web app
with fresh new data.

Interfacing with Databases

122

With PubSub, we publish a message to a specific channel; this channel can then be picked up
by any amount of subscribers. The publishing mechanism doesn't care who's listening or how
many are listening; it chats away regardless.

In this recipe, we will create a publishing process and a subscribing process. For the publishing
process, we'll extend our quotes.js file from the previous recipe, Storing and retrieving data
with Redis, and we'll write the code to a new file for the subscription mechanism.

Getting ready
Let's create a new directory; copy quotes.js from the previous recipe and rename it to
quotes_publish.js. We will also create a file named quotes_subscribe.js. We'll need
to ensure that Redis is running. If it isn't installed and running globally, we can navigate to the
directory where Redis was unpacked and run ./redis-server from the src folder.

How to do it…
In quotes_publish.js, we add one extra line of code inside our first conditional statement,
just after our client.sadd call:

 if (params.author && params.quote) {
 var randKey = "Quote:" + (Math.random() * Math.random())
 .toString(16).
replace('.', '');
 client.hmset(randKey, {"author": params.author,
 "quote": params.quote});

 client.sadd('Author:' + params.author, randKey);

 client.publish(params.author, params.quote);

 }

This means that every time we add an author and quote, we publish the quote to a channel
named after the author. We subscribe to channels using quotes_subscribe.js, so let's
code it.

First, it must require the redis module and create a client:

var redis = require('redis');
var client = redis.createClient();

Chapter 4

123

We're going to provide the option to subscribe to multiple channels, again using the command
line as our elementary input method. To achieve this, we'll loop through process.argv:

process.argv.slice(2).forEach(function (authorChannel, i) {

 client.subscribe(authorChannel, function () {
 console.log('Subscribing to ' + authorChannel + ' channel');
 });

});

Now that we are subscribing to channels, we need to listen to messages:

client.on('message', function (channel, msg) {
 console.log("\n%s: %s", channel, msg);
});

We can test our PubSub functionality by first running quotes_subscribe.js along with
some specified authors:

node quotes_subscribe.js "Sun Tzu" "Steve Jobs" "Ronald Reagan"

Then, we open a new terminal and run several authors and quotes through quotes_
publish.js:

node quotes_publish.js "Ronald Reagan" "One picture is worth 1,000
denials."

node quotes_publish.js "Sun Tzu" "Know thy self, know thy enemy. A
thousand battles, a thousand victories."

node quotes_publish.js "David Clements" "Redis is a speed freak's
dream"

node quotes_publish.js "Steve Jobs" "Design is not just what it
looks like and feels like. Design is how it works."

Interfacing with Databases

124

Let's see it in action:

Only the channels we subscribed to appear on the quotes_subscribe.js terminal.

How it works…
We access the Redis PUBLISH command in quotes_publish.js using client.publish,
setting the channel name as the author name.

In quotes_subscribe.js, we loop through any arguments given via the command line
(applying forEach to process.argv.slice(2)). The process.argv.slice(2) line
removes the first two elements of the process.argv array, which would hold the command
(node) and path to our script. Each relevant argument is passed to client.subscribe,
telling Redis we wish to subscribe (using SUBSCRIBE) to that channel.

When a message arrives over a channel that has been subscribed to, the client will emit a
message event. We listen for this event and pass the incoming channel and msg (which will
be author and quote accordingly) to console.log.

Chapter 4

125

There's more…
Finally, we'll take a look at Redis security.

Redis authentication
We can set the authentication for Redis with the redis.conf file, found in the directory
we installed Redis to. To set a password in redis.conf, we simply add (or uncomment)
requirepass and ourpassword.

Then, we make sure that our Redis server points to the configuration file. If we are running it
from the src directory, we will initiate with the following command:

./redis-server ../redis.conf

If we want to set a password quickly, we can use the command that follows:

echo "requirepass ourpassword" | ./redis-server -

We can set a password from within Node with the CONFIG SET Redis command:

client.config('SET', 'requirepass', 'ourpassword');

To authenticate a Redis server within Node, we can use the redis module's auth method
before any other calls (that is, prior to client.ready):

client.auth('ourpassword');

The password has to be sent before any other commands. The redis module's auth function
takes care of things such as reconnections by pushing the password into the redis module's
internal operations. Essentially, we can call auth at the top of our code and never concern
ourselves with the authentication for that script again.

Securing Redis from external connections
If there was no need for any external connections to Redis, we could bind it to 127.0.0.1,
inhibiting all the external traffic.

We can achieve this with a configuration file, such as redis.conf, and add the following (or
uncomment):

bind 127.0.0.1

Then, if running the connection from the src folder, initialize our Redis server with the
command that follows:

./redis-server ../redis.conf

Alternatively, we could do it as follows:

echo "bind 127.0.0.1" | ./redis-server -

Interfacing with Databases

126

The Redis server can be initialized in Node with the redis module's config method:

client.config('set', 'bind', '127.0.0.1');

If we installed Redis via a package manager, it may already be configured
to block external connections.

See also
ff The Accessing the CouchDB changes stream with Cradle recipe

ff The Storing and retrieving data with Redis recipe

5
Employing Streams

In this chapter, we will cover the following topics:

ff Consuming streams

ff Playing with pipes

ff Making stream interfaces

ff Streaming across Node processes

Introduction
To quote Dominic Tarr, the Streams API is Node's "best and most misunderstood idea".
Throughout this book, recipes often touch on the Streams API. Streams are fundamental
to the Node platform and are utilized in many of the core modules.

A stream is basically an object with some formalized methods and functionality, which is
geared towards receiving, sending, and processing data in small pieces called chunks. The
type of stream, that is, whether it's readable, writable, or both, determines these methods
and functionality. This is known as a duplex stream.

There are many advantages of streams over the more traditional buffering method, whereby
all data is read into memory prior to processing. Primarily, we use less memory this way—once
a chunk is processed and sent somewhere else, to a client for instance, and we no longer
need that data, we can simply discard it. This allows the data to be garbage collected.

In addition, we can deliver this first chunk (and the subsequent chunks) of processed data
to the end point (a browser, for instance), which renders a faster time-to-screen interval as
opposed to processing everything at once and then pushing it to the client.

Employing Streams

128

The streaming pattern is distinctively recognizable—it's geared towards interoperability (piping
streams together) and often leads to cleaner code. We don't even need to use loops to
process the data since we're processing it as it comes through.

In this chapter, we're going to zoom in on streams to see how we can apply them to various
situations, which will demonstrate just how powerful and useful a pattern they can be.

Since we've been using Streams throughout this book, it is assumed that
you have some (minimal) familiarity with Streams. It may be worth scanning
the Node documentation on Streams (http://nodejs.org/api/
stream.html) before embarking upon the recipes that we're going
to discuss.

Consuming streams
As of Node v0.10.x, every readable stream has a read method that can be used to access
data that's loaded into our read stream. Prior to Node v0.10.x, chunks of data were captured
by listening to a data event; we can still do this when it is suitable (see the There's More…
section) but this depends on the use case; therefore using the read method instead can
be cleaner.

In this recipe, we're going to receive a stream from the Couch database that backs the npm
registry and simply log out everything we get.

Getting ready
All we need to do is create a file named npm_stream_receiver.js.

How to do it…
We're going use the response object returned from an http.get call as our readable
stream and set up some initial variables, so we'll require the http module as shown in the
following code:

var http = require('http'),
 feed =
 'http://isaacs.iriscouch.com/registry/_changes?feed=continuous',
 ready = false;

We'll pass the feed variable to http.get.

The ready variable is being used to introduce some jeopardy. To make things interesting,
we're going to give our program the ability to choose whether it wants to obey (a Skynet fetus,
if you will).

Chapter 5

129

So, let's declare a decide function as shown in the following code:

function decide(cb) {
 console.log('deciding');
 setTimeout(function () {
 if (Date.now()%2) { return console.log('rejected'); }
 ready = true;
 cb();
 }, 2000));
}

What we're emulating here is a sense of conditional logic that takes time to compute. A real-
world equivalent could be some form of validation or waiting on a user confirmation (or both).

Now, let's get the npm registry feed and output the stream to the console (that is, when or if
the program is good and ready), as shown in the following code:

http.get(feed, function (res) {

 res.on('readable', function log() {

 if (!ready) { return decide(log); }

 console.log(res.read()+'');

 });

});

How it works…
In our http.get callback, we listened to the readable event. This lets us know that the res
stream can be read from. We named the callback passed to the readable event listener log.
This is because we need to recall the readable callback (in its own context) arbitrarily, as the
readable event will (by design) fire before the decide function.

In the readable callback, the first thing we check is whether ready is falsey. If it is, we let the
user know that the program is deciding. We then call the decide function and pass the log
function to it for its supplied callback (cb) parameter, and then immediately return from the
function before it can begin reading.

The decide function waits two seconds, then checks whether the current time (in milliseconds)
is odd or even (our primitive decision process) by using the modulus operator (%). This means
we divide the current time by two and return the integer remainder (which when divided by two
can only be 0 or 1). The conditional statement would then coerce our 0 to false and 1 to true.
Hence, in the event of an odd number (where we would have a remainder of 1), the program
declines to obey by returning early from the setTimeout callback and also notifying us of
its rejection.

Employing Streams

130

If the current time happens to be an even number, we set ready to true and call cb, which
happens to be the log function and is, of course, our readable callback. Essentially, we will
refire the first callback but without going through the event system.

This time the log function recognized that ready is true, so it goes straight to logging out
the result of res.read.

When we call read without any arguments, all the data currently contained in the buffer is
returned and the buffer is flushed.

If more data is loaded into the buffer, another readable event is fired and we again read and
output everything the buffer has.

We concatenate an empty string with the res.read call in order to force a toString
operation; this converts it from a buffer to a string, so we can read it as text in the console.

There's more…
Not only can we control how much data we read from a stream, but there's also more than
one way to access a stream's readable data.

Using read's size argument
Let's save npm_stream_receiver.js to npm_stream_receiver_with_size_arg.js
and navigate to the following line:

console.log(res.read()+'');

The preceding line needs to be changed to the following:

console.log(res.read(20)+'');

So now we're going to read 20 bytes at a time. Let's run this file and see what happens.

Providing the program proceeds as far as the GET request, we'll see the first 20 bytes of the
request and the program will exit.

This is because no more readable events will be fired as there's still data in the streams
buffer (it has to be emptied to fire a readable event again), and since nothing else is
happening, the program exits.

The read method will return null whenever the buffer is empty. So, we need to continuously
read from the stream until its buffer is empty. Once this occurs, a new readable event can
happen when more data arrives.

Chapter 5

131

So, let's modify our code accordingly:

http.get(feed, function (res) {

 res.on('readable', function log() {
 var chunk;

 if (!ready) { return decide(log); }

 while((chunk = res.read(20)) !== null) {
 console.log(chunk+'');
 }

 });

});

Whenever an assignment is made in JavaScript, the result of the expression assigned to the
variable is returned. This allows us to both assign the result of the res.read call to the chunk
variable and check to see whether that result is not null within the while conditional section.

As long as res.read isn't returning null, we will continue to read 20 bytes at a time, and log
those bytes out (after stringifying them using the string concatenation shorthand).

Assignments within conditionals sometimes break house style rules or our own sense of taste.
Another way to read and log the bytes out is with a recursive function that's moderated using
setImmediate (to avoid maximum stack violations).

The following is an alternative to the preceding code snippet:

http.get(feed, function (res) {

 res.on('readable', function log() {

 if (!ready) { return decide(log); }

 (function output() {
 var chunk = res.read(20);
 if (chunk === null) {return;}
 console.log(chunk+'');
 setImmediate(output);
 }());

 });

});

Employing Streams

132

This time, we will use a named self-invoking function expression. We will check whether each
chunk is null; if it is, we return early thus breaking the recursion. If it isn't null, we log out
the chunk variable and then call output using setImmediate, which is the fastest way to
execute the code on the next tick (next tick means the next time around the event loop). If we
were to call output directly, that is, in the current tick, we would exceed call stack limitations
and receive a RangeError.

The advantage of using this method is that it's slightly more conventional and is more likely to
pass linters such as JSHint or ESLint and conform to code style guides. The disadvantages are
that it's a few extra lines of code and may therefore be less performant. Performance would
take a hit because we're creating an inner function on each readable event, iteratively calling
functions instead of using a simple loop, and separating each recursion into its own tick.

Another method would be to combine the two approaches, where the output function
returns a Boolean that represents the null check on res.read and instead of self-recursion
is iterated inside a blockless while statement, as seen in the following code:

function output(res) {
 var chunk = res.read(20);
 if (chunk === null) {return false;}
 console.log(chunk+'');
 return true;
}

http.get(feed, function (res) {

 res.on('readable', function log() {

 if (!ready) { return decide(log); }

 while(output(res));

 });

});

This way, we only define the function once, and there's no assignment inside the while
conditional section. On the other hand, using blockless while statements may also be a code
style taboo. Also, we're still calling a function instead of the more simple assignment plus
null check, and this adds even more code (well, one line more but we had to refactor too).

Consuming via the data event
Prior to Node v0.10.x, the data event was the only way to access data from a read stream. While
the read method is pull oriented, this paradigm is push oriented—it begins to emit data events
straightaway, so there's no chance to do any preprocessing before you request the data.

Chapter 5

133

Let's copy our npm_stream_receiver.js file to npm_stream_receiver_data_events.
js and get down to converting our recipe.

We can pause our stream using the pause method to stop it from emitting data events before
we're ready. Then, we can pass the stream's resume method to the decide function as the
callback argument. After this, it's simply a case of listening to the data event and logging to
the console.

Let's alter the http.get section of our code with the following code:

http.get(feed, function (res) {
 res.pause();

 if (!ready) {
 //notice the early return is also removed
 decide(res.resume.bind(res));
 }

 res.on('data', function (data) {
 console.log(data+'');
 });

});

When we pass in the callback to the decide function call, we use bind to bind the res object
to the res.resume method. If we don't, the cb function is called in isolation; for example, it is
not called as a method on the res object, so its context changes and thus an error occurs. This
is similar to, though more terse than supplying the decide callback argument in the form of an
anonymous function, which in turn calls res.resume.

In either case, that is, whether we use bind or an anonymous function, the call to resume
causes the data events to start emitting because we don't return early from the !ready
conditional, which allows the data listener to be set up.

Choosing between the read method or the data event can be largely determined by the
best fit for our use case. Using the pause and resume methods seems less contained when
compared with the read method.

Since our particular case is so simple, it's actually possible to simplify the code further.

Let's modify http.get again:

http.get(feed, function (res) {

 decide(function () {
 res.on('data', function (data) {
 console.log(data+'');

Employing Streams

134

 });
 });

});

Now, we have no need for pause and resume nor for the ready Boolean. We only start
listening to events once the decide function is complete. However, for most cases, this
could be over simplification.

There are some potentially confounding factors we need to bear in mind. Firstly, what if (without
our knowledge) another piece of code started listening to the events on our stream? Secondly,
this method only suits a strictly synchronous and simple logic path; for instance, what if we
wanted to execute several operations in parallel before reading from the stream? In more
complex cases, read may be the better candidate.

See also
ff The Playing with pipes recipe

ff The Making stream interfaces recipe

ff The Streaming across Node processes recipe

Playing with pipes
A pipe is used to connect streams together. DOS and Unix-like shells use the vertical bar (|)
to pipe the output of one program to another; we can chain several pipes together to process
and massage data in number of ways. Likewise, the Streams API affords us the pipe method
to channel data through multiple streams. Every readable stream has a pipe method that
expects a writable stream (the destination) as its first parameter.

As in the Consuming streams recipe, we're going to receive a stream from the Couch
database, which backs the npm registry, and display it in the terminal; only this time we'll be
using pipes instead of the read method.

Getting ready
Let's create a file named npm_stream_piper.js.

How to do it…
Let's set up some initial variables as shown in the following code:

var http = require('http'),
 feed =
'http://isaacs.iriscouch.com/registry/_changes?feed=continuous';

Chapter 5

135

Implement the decide function (as in the Consuming streams recipe) with the following code:

function decide(cb) {
 console.log('deciding');
 setTimeout(function () {
 if (Date.now()%2) { return console.log('rejected'); }
 cb();
 }, 2000);
}

And finally, let's modify the http.get callback:

http.get(feed, function (res) {

 decide(function () {
 res.pipe(process.stdout)
 });

});

Okay, so this code is smaller than the code required in the Consuming streams recipe.

Let's make it smaller by turning our decide call into a one liner.

We'll change http.get accordingly:

http.get(feed, function (res) {

 decide(res.pipe.bind(res, process.stdout));

});

We're done! The pipe method is highly terse and extremely powerful.

How it works…
We call pipe once the decide function is complete, that is, from inside its callback
argument. From there on, the pipe method does all of the hard work for us. Everything read
from the res stream is written to the process.stdout stream. STDOUT is the standard
output stream of the terminal we use to run our Node script. However, under the hood, it's
more sophisticated than just reading and writing.

The pipe method also takes care of asserting backpressure. Whenever a stream we're reading
from is shunting data to us faster than we can handle, we have to be able to slow it down or stop
it, and pipe does this for us.

Employing Streams

136

There's more…
Let's take a peek at a higher functioning piping example and also see how a slight refactor
can help us prepare for a more complex code landscape.

Chaining and filtering streams
The npm registry's Couch stream is composed of JSON data. What if we could pipe this data to
a stream that was able to extract the properties from the JSON? This is perfectly feasible but it
would be a rather large and complex implementation. Fortunately, there's a third-party module
available to do just this: JSONStream.

We need to install it using the following command:

npm install JSONStream

Also, let's copy npm_stream_piper.js to npm_stream_piping_filter.js. We'll slip in
require at the top of the code:

var http = require('http'),
 JSONStream = require('JSONStream'),
 feed =
'http://isaacs.iriscouch.com/registry/_changes?feed=continuous';

Then, we finish by altering the http.get callback as shown in the following code:

http.get(feed, function (res) {

 decide(function () {
 res.pipe(JSONStream.parse('id')).pipe(process.stdout);
 });
});

We've gone back to using an anonymous function instead of bind because when we start to
chain multiple pipes, the one liner becomes inadequate.

All we've done here is slip an extra pipe between res and pipe(process.stdout).

The JSONStream.parse function generates a write stream using the supplied argument
(which is basically a property filter); in this case, we're asking for id properties. When we run
our code through Node, instead of outputting all the JSON data, only the module id values
are logged.

Preparing for greater complexity
In the There's more… section of the Consuming streams recipe, the end of the Consuming via
the data event subsection discusses the difference between interacting with the stream inside
the decide callback (as we do in our current recipe) and setting up stream interactions outside
of the decide callback as well as controlling the stream flow using pause and resume.

Chapter 5

137

Controlling the stream flow with pause and resume allows greater flexibility and helps to
decouple stream interaction from any preprocessing it may be dependent on. Further, it keeps
us interacting with the stream itself instead of slipping into a procedural style that can easily
lead to duplicative and messy code.

So, let's refactor the http.get callback slightly:

http.get(feed, function (res) {

 res.pause();

 decide(res.resume.bind(res));

 res.pipe(process.stdout)

});

See also
ff The Consuming streams recipe

ff The Making stream interfaces recipe

ff The Streaming across Node processes recipe

Making stream interfaces
The Consuming streams and Playing with pipes recipes show us how to initiate and interact
with various stream interfaces, such as the fs module's read and write streams, the http
module's response object's write stream, and third-party modules, such as JSONStream
(refer to the There's More… section of Playing with pipes).

In this recipe, we're going to make our own basic read and write stream interfaces.

Getting ready
Let's create and open a file, which we'll name basic_streams.js.

How to do it…
Node's stream module contains some base constructors to create streams. So, let's require
the stream module and instantiate a readable stream as well as a writable stream:

var stream = require('stream');
var writable = new stream.Writable();

www.allitebooks.com

http://www.allitebooks.org

Employing Streams

138

var readable = new stream.Readable();
var store = [];

We've also created an empty array named store. We'll be writing to store via the writable
stream and reading from it with the readable stream.

To create streams that we intend to reuse, simply instantiating the base constructor is not the
best pattern; we're only using it here for the sake of simplicity. Check out the There's More…
section to see how we can refactor in order to create the reusable stream code.

Custom streams call special functions whenever data is being written to them or the data
is requested for reading. These functions are essentially callbacks in the form of object
methods. While creating a stream interface, it's up to us to supply these special callback
methods in order to customize how the stream works.

Writable streams expect the special _write method, so let's define that with the following
code:

writable._write = function (chunk, encoding, callback) {
 store.push(chunk);
 callback();
}

Likewise, readable streams will call the special _read method when a stream user tries to
read from them, so let's put it in place:

readable._read = function (size, encoding) {
 this.push(store.pop() || null);
}

Finally, we'll write some data to the writable stream and read it back from the readable
stream:

writable.write('fee');
writable.write('fi');
writable.write('fo');
writable.write('fum');

readable.on('data', function (data) {
 console.log(data+'')
});

Now if we run our code, the terminal should show the following output:

Chapter 5

139

How it works…
The Readable and Writable constructors provided by the stream module supply all the
functionality we need to create a full-featured stream interface, with proper internal handling
of typical streaming challenges such as a read stream being unable to keep up with a write
stream and a coverage of edge cases that can arise from using streams.

We use these constructors to instantiate our readable and writable streams and then
supply the _read and _write methods to them, respectively.

In our writable._write method, we customize the stream by pushing each chunk
(as passed into the first parameter of the _write method) written to the stream into the
store array. Then, since we've nothing else to do in our _write method, we call the third
parameter that we named callback, which tells the writable stream interface that the
chunk has been handled.

Using a callback parameter to signify we're done leaves scope for us to perform asynchronous
operations within the _write method; for instance, writing to a file or across a TCP socket.

Each chunk that comes in through the _write function is a Buffer object (a special type
supplied by the Node platform to store data at a binary level). When instantiating any kind of
stream, an encoding parameter can be set; for instance, the parameter could request that the
stream delivers UTF8-formatted strings instead of buffers. This encoding setting is passed in as
the second parameter of the special _write method. In this particular use case, we're ignoring
the second encoding parameter, choosing to deliver only Buffer chunks to the store.

The special _read method takes two parameters, which we've named size and encoding.
The encoding parameter is much the same as write streams, except that instead of converting
the data to a particular code that it's written in, the read stream will convert the data as it's
being read out.

Employing Streams

140

Again, we ignored the encoding argument for our purposes. We also ignored the size
parameter. The public read method (the one called by the user of a stream interface, not the
private _read method as specified by an interface creator) accepts a size parameter. This is
an advisory argument that requests that each delivered chunk is a minimum of the specified
size. The size parameter as received by our custom _read method reflects what the readable
stream is requesting internally, which may or may not be the size specified by the user—it
depends upon the internal implementation's assessment of what's best for performance. In
many cases, the size passed onto our custom _read method will be the highWaterMark
setting, the data a stream can contain at any given time, which defaults to 16384 (16 KB
in bytes).

Since we're popping very small amounts of data from an array, the size parameter is
meaningless to us.

Streams have been described as "arrays in time", and like an array, the Readable stream has
a push method. Instead of pushing data onto an array, however, it pushes data out through
the stream interface.

We call our readable stream instance's push method from within the _read method to send
data out through the stream.

Every time the public read method is called, at some point in its logic, it calls our _read
method. Our _read method calls the push method and supplies some data to it. Once all the
data has been exhausted, we must pass null into the push method to signal that the stream
has ended.

We get our data by popping items off of the store array; once the store array is empty, the
pop method will return undefined. We use an OR check (||) to return null in that case,
thus signaling that the stream has ended.

We can get away with a simple OR check in this case because our store
contains buffer objects that will always be truthy values. If instead, we
had an array that contained falsey values (such as 0, null, and false),
we will need to be more sophisticated in our approach; for instance,
checking the array's length property and returning null if it was 0,
else popping from the array as usual.

Once we've customized our read and write streams, we can use them. We call writable.
write four times, passing in fee, fi, and fo, and fum.

This causes the writable stream to look to the special _write method for guidance on how
to process the supplied data, passing in each of our original strings a buffer in the form of
the chunk parameter. We push the buffer (using push) to our store array, and invoke the
callback function to allow the write stream to accept the next write call. At the end of
the four write calls, our store array contains the first line of the bad giants mantra.

Chapter 5

141

Instead of calling the read method directly on the readable stream, we trigger the stream
flowing mode by attaching a data event listener to it. Internally, this essentially iteratively
invokes the read method until it returns null, at which point it would call the end event
listener callback (if we had supplied it). Inside our data event listener's callback, we receive
each chunk through the data parameter and convert the buffer to a string (via an empty
string concatenation) as we pass it to console.log.

There's more…
So far, our custom read and write streams are very basic. Let's look at some ways to flush
them out, starting with making our own constructors that inherit from the base stream
classes and finishing by creating a duplex transform stream.

Making reusable streams
So, the main recipe's stream is elementary in its approach. We want to be able to design
a stream interface that can be used and reused for many purposes—as is the philosophy
behind streams.

So, let's create three files: stream_to_array.js, stream_from_array.js, and
fee_fi_fo_fum.js.

The stream_to_array.js file will provide our write stream constructor, as shown in
the following code:

var stream = require('stream');
var util = require('util');

function StreamToArray(store) {
 stream.Writable.call(this);
 this.store = store || [];
}

util.inherits(StreamToArray, stream.Writable);

StreamToArray.prototype._write = function (chunk, encoding, callback)
{
 this.store.push(chunk);
 callback();
}

module.exports = StreamToArray;

Employing Streams

142

The stream_from_array.js file is very similar to the stream_to_array.js file, except
that instead of inheriting from stream.Writable we inherit from stream.Readable, and
instead of implementing the _write method, we implement the _read method; this is
shown in the following code:

var stream = require('stream');
var util = require('util');

function StreamFromArray(store) {
 stream.Readable.call(this);
 this.store = store || [];
}

util.inherits(StreamFromArray, stream.Readable);

StreamFromArray.prototype._read = function (size, encoding) {
 this.push(this.store.pop() || null);
}

module.exports = StreamFromArray;

In both cases, our Stream constructors are assigned to module.exports.

See Chapter 10, Writing Your Own Node Modules, for more information
on using module.exports and require.

This allows us to require our constructors into fee_fi_fo_fum.js, as shown in the following
block of code:

var StreamToArray = require('./stream_to_array.js'),
 StreamFromArray = require('./stream_from_array.js'),
 store = [],
 writable = new StreamToArray(store),
 readable = new StreamFromArray(store);

writable.write('fee');
writable.write('fi');
writable.write('fo');
writable.write('fum');

readable.on('data', function (data) {
 console.log(data+'')
});

Chapter 5

143

Both constructors work the same way—they take a store parameter, which is then loaded onto
the instance via the contextual this object in the constructor and later used within the relevant
special private method (_read or _write). Each constructor also invokes JavaScript's call
method on its relevant stream constructor; for example, stream.Readable.call(this).

Passing our custom constructor's this object into the call invocation replaces the normal
context of stream.Readable (or stream.Writable in the StreamToArray case) with the
instance being created via our custom constructor .This causes the constructors to decorate
our custom instance with all the properties, methods, and associated logic that would be
made available on an object returned from calling the base constructors with new, as in
our main recipe.

We also use the core util module's inherit method, which hooks up our custom
constructor's prototype chain with the relevant streams base constructor prototype; for
example, StreamFromArray has access to all of the prototype methods on the stream.
Readable constructor.

Finally, in fee_fi_fo_fum.js, we require the StreamToArray and StreamFromArray
constructors, create a store array, instantiate a new instance of each custom constructor
passing in our store array, and then call the write methods and listen to the data event
as in the main recipe.

Transform streams
Streaming to and from an array has a fairly limited application, particularly when wanting to
handle the amount of data that streams are designed to work with.

When we instantiate a stream, it has its own internal buffer, so there's really no need to store
to an array; not even for processing the data that comes through a write stream.

A stream doesn't have to exclusively be a read stream or a write stream, it can be both. This is
known as a duplex stream. With the power of piping, we can hook up multiple streams together,
and the intermittent streams can interact with and convert the data as it's being passed through.

A stream that processes and alters data as it's being passed through is called a transform
stream, and Node's stream module provides a base constructor so that creating fully
functioning transform streams is easy.

Let's create a transform stream that uppercases (we'll name the file uppercase_transform_
stream.js) all content that passes through it, and we'll pipe the process.stdin core stream
to it, and in turn pipe from our transform stream to the process.stdout stream:

var stream = require('stream');
var transformable = new stream.Transform();

transformable._transform = function (chunk, encoding, callback) {
 transformable.push(chunk.toString().toUpperCase());
 callback();
}

Employing Streams

144

transformable.write('fee');
transformable.write('fi');
transformable.write('fo');
transformable.write('fum');

process.stdin.pipe(transformable).pipe(process.stdout);

When we run our code, we'll initially see FEEFIFOFUM. If we begin typing, we will generate
a stream of data from process.stdin to transformable. Every time we press return
(process.stdin and process.stdout streams are newline delimited streams), we'll
see the data we entered is now in uppercase because our transformable stream will have
processed our stream and piped it onto the process.stdout stream.

The Transform instance expects a _transform method to be set instead of the _read
and _write method. Both read and write functionality is defined in this special method.
When we call transformable.push, we are implementing the read interface, and the
callback invocation lets the writable side of the transform stream know that we've
finished processing the data written to it.

In the case of the _transform method, we can actually combine both read and
write operations into the callback invocation by supplying the argument passed to
transformable.push as the second parameter, as shown in the following code:

transformable._transform = function (chunk, encoding, callback) {
 callback(null, chunk.toString().toUpperCase());
}

The first parameter of callback indicates that there has been an error in processing chunk;
in our case, we pass null to specify that no error has occurred.

See also
ff The Consuming streams recipe

ff The Playing with pipes recipe

ff The Streaming across Node processes recipe

Streaming across Node processes
Streams are about facilitating efficient, low memory data transfer, and processing; not just
to and from the filesystem, but also to other processes and across network sockets.

In this recipe, we're going to write some simple command-line stream apps, then mix and
match them with the common stream processing apps written in other languages.

Chapter 5

145

Getting ready
Let's create two files: text_stream.js and uppercaser.js. Both of these need to be
executable files as we're going to run them directly as command-line apps:

touch text_stream.js && chmod +x text_stream.js

touch uppercaser.js && chmod + x uppercaser.js

How to do it…
Let's start by making a readable stream that randomly pushes lowercase alphabetical letters
to its reader and pipes the stream to process.stdout. In text_stream.js, we will write:

#!/usr/bin/env node

var stream = require('stream');
var util = require('util');
var textStream;

function TextStream() {
 stream.Readable.call(this);
}

util.inherits(TextStream, stream.Readable);

TextStream.prototype._read = function (size, encoding) {
 var letter = String.fromCharCode(Math.random() * (123 - 97) + 97);
 this.push(letter === 'z' ? 'z\n' : letter);
}

textStream = new TextStream();

textStream.pipe(process.stdout);

Note the shebang (the line at the top starting with #!) at the top of our code, on the very
first line. This tells Unix-like systems, for example, OS X and Linux, to parse and execute this
file with Node when we run the file directly from the command line. DOS systems will simply
ignore this line.

We use the same shebang technique in our next piece of code uppercaser.js, which will
be a transform stream that performs a toUpperCase conversion on any content read into it,
then pipe standard in (process.stdin) through our transform stream, which in turn we pipe
back to standard out (process.stdout):

#!/usr/bin/env node

var stream = require('stream');

Employing Streams

146

var util = require('util');
var uppercaser;

function Uppercaser() {
 stream.Transform.call(this);
}

util.inherits(Uppercaser, stream.Transform);

Uppercaser.prototype._transform = function (chunk, encoding, callback)
{
 callback(null, chunk.toString().toUpperCase());
}

uppercaser = new Uppercaser();

process.stdin.pipe(uppercaser).pipe(process.stdout);

Excellent, now let's play!

We can use sed (the stream text editor) to, for instance, wrap every instance of the letters "d",
"a", "v", and "e" in parenthesis:

./text_stream.js | sed 's/[d|a|v|e]/(&)/g'

We can use grep for every instance of the letter "a":

./text_stream.js | grep a

We can uppercase anything we like using the following commands:

echo "foo" | ./uppercaser.js

curl http://nodejs.org | ./uppercaser.js

./text_stream.js | ./uppercaser.js

How it works…
Making each of our files executable and including a shebang pointing to Node allows us to
create powerful command-line apps in pure JavaScript. The shebang actually points to /usr/
bin/env and passes node as an argument. This allows the host system to have the node
binary installed anywhere, and the system will still locate Node, as long as the system has
env installed in /usr/bin, of course).

Chapter 5

147

In text_stream.js, we implement a read stream that inherits from the stream.Readable
interface. We define a _read method that loads a random character from a to z into the
letter variable. We obtain the character using JavaScript's native String.prototype.
fromCharCode method, which takes an ASCII code and converts it to a character; for
instance, String.fromCharCode(97) would be the letter a. We get our ASCII code using
Math.random and apply a calculation to its result to obtain a (pseudo) random number
between 97 (the letter "a") and 122 (the letter "z"). We want text_stream.js to be
compatible with other stream processing apps, such as sed and grep, which tend to operate
on newline-delimited streams—that is, they process a line at a time rather than a character at
a time (the tr utility would be an exception to this as it processes one character at a time). So,
we introduce newlines to our text stream by checking whether the letter is a "z". If it is, we pair it
with a newline (\n) and push it to our stream instead of the "z" on its own.

We then create an instance of TextStream (named textStream) and pipe it to process.
stdout (using pipe). As soon as we call pipe on our instance, it triggers a read loop on the
stream that writes straight to process.stdout. Since our stream pushes on every call it
never finishes, so it will continuously stream out random characters to standard out.

In a similar fashion, uppercaser.js inherits from a stream interface; this time it is stream.
Transform. The _transform method simply pushes an uppercase version of its input
onto the output stream by passing the content in uppercase as the second parameter of the
callback function. Then, we create an instance of Uppercaser, (named uppercaser) and
using pipes, place it between standard in and standard out so that anything coming into the
uppercaser.js process runs through our uppercaser instance straight onto standard out.

By streaming from and to process.stdin and process.stdout as our ultimate start and
end points, we completely decouple our mini apps from their input and output and delegate the
management of this to the command line. Coupling this delegation with choosing a nonbinary
format for our data (or as streams extraordinaire James Halliday puts it, "Text, the universal
interface!") gives us a powerful, flexible paradigm that allows us to mix and match different
apps to process our data using the command-line pipe (|) to line up our processing stack.

There's more…
Let's work on a more advanced transform stream and see how to stream across a network.

Processing stream chunk buffers efficiently
Let's put together a STDOUT/STDIN transform stream that looks for a sequence of uppercase
letters, and when it finds them, it will color the letters in red.

The string that we'll be looking for is DAVE, so let's name the file daver.js. You could, if so
desired, use your own name for this example:

touch daver.js && chmod +x daver.js

Employing Streams

148

We'll be using the third-party module buffertools to process our chunks, so let's install this:

npm install buffertools

Working on buffers directly is more efficient than converting them to strings. For one thing, we
avoid the overhead of the conversion to strings, and the inevitable conversion back to a buffer
once we send our processed chunk back out through the readable side of the transform stream.
Further, Node's JavaScript land Buffer constructor is simply the tip of the iceberg. It's backed by
C++ code designed for working with binary data. The buffertools module operates on the
buffer using C++, keeping traversals through the C++ to JavaScript membrane minimal.

We'll put the following code into the daver.js file:

#!/usr/bin/env node

var stream = require('stream');
var util = require('util');
var buffertools = require('buffertools');

var daver, overspill = new Buffer(0),
 redStart = new Buffer([27, 91, 51, 49, 109]),
 redStop = new Buffer([27, 91, 51, 57, 109]);

function Daver() {
 stream.Transform.call(this);
}

util.inherits(Daver, stream.Transform);

Daver.prototype._transform = function (chunk, encoding, callback){
 chunk = buffertools.concat(overspill, chunk);
 overspill = chunk.slice(chunk.length - 4, chunk.length-1);
 callback(null, colorMatches(chunk));
}

function colorMatches(chunk) {
 var ix = chunk.indexOf('DAVE');
 if (~ix) {
 chunk = buffertools.concat(
 chunk.slice(0 ,ix),
 redStart,
 chunk.slice(ix, ix+4),
 redStop,
 colorMatches(chunk.slice(ix+5, chunk.length-4))
);

Chapter 5

149

 }

 return chunk;
}

daver = new Daver();

process.stdin.pipe(daver).pipe(process.stdout);

We require the stream, util, and the third-party buffertools modules. We also create
three buffers: an empty buffer named overspill (we'll be using this as a sort of overlap
between chunks), redStart, and redStop. These two variables (redStart and redStop)
are buffers that contain the necessary bytes, which when printed as characters to a terminal
provide the necessary terminal instructions to color a piece of text red. As strings, redStart
would be '\u001b[31m' and redStop would be '\u001b[39m'. We create them here as
buffers because we'll splice them in with chunk buffers whenever we have a pattern match.

As in our main recipe's uppercaser.js, we go on to create a reusable transform stream,
calling our stream constructor Daver. Then, we implement the special _transform method.

In _transform, we use the buffertools.concat function to concatenate the overspill
buffer with the current chunk. The first call to _transform will simply concatenate an empty
buffer. Then, we redefine overspill, taking a slice of the last three bytes from the current
chunk. The next time _transform is called, those three bytes will be concatenated to the
beginning of the new chunk. This overlap allows us to match DAVE across two chunks, where,
for instance, one chunk might end with DA and the other starts with VE.

Then, we invoke the callback, passing in the second argument as colorMatches(chunk).
We defined the colorMatches function underneath our _transform method.

Buffer.prototype.slice is a a method provided natively
by Node's Buffer constructor; however, the next method called
(Buffer.prototype.indexOf) in the line var ix = chunk.
indexOf('DAVE') is not provided as standard. The buffertools
module augments Buffer.prototype with this (and other)
methods. Refer to https://github.com/bnoordhuis/node-
buffertools for more details.

The colorMatches function checks to see whether our current chunk contains the bytes
associated with DAVE, loading any potential index of the chunk into the ix variable. If there
is a match, we use buffertools.concat with ix to isolate our match and wrap it with the
redStart and redStop buffers. The last argument to buffertools.concat is another call
to colorMatches, this time supplying any remaining bytes after our DAVE match as the chunk
argument. This recursive call to colorMatches enables us to elegantly match every occurrence
of DAVE in our current chunk. Finally, we return the processed chunk that is fed through the
callback invocation in _transform and subsequently piped onto process.stdout.

https://github.com/bnoordhuis/nodebuffertools

Employing Streams

150

Now, let's use it. We can pipe the output of text_stream.js through uppercaser.js to
daver.js:

./text_stream.js | ./uppercaser.js | ./daver.js

It might be a while before we see a DAVE colored in red. If we want to even the odds a bit, we
can remove the new lines and all the letters that aren't D, A, V, or E:

./text_stream.js | ./uppercaser.js | sed 's/[B-C,F-U,W-Z]//g' | tr -d
'\n' | ./daver.js

Streaming over TCP
Streams are a well-fitting construct for communicating across networks. We can use the net
module (which utilizes streams) to chain our stream processes over a network socket.

Let's create a file. We'll name it tcp_pipe_out.js. We need it to be executable like the
other files in this recipe:

touch tcp_pipe_out.js && chmod +x tcp_pipe_out.js

Now, we'll write our TCP pipe as follows:

#!/usr/bin/env node

var net = require('net'),
 port = 1337;

net.createServer(function (c) {
 process.stdin.pipe(c);
 c.pipe(process.stdout);
}).listen(port);

So, we can start streaming through our pipe using the following command:

./text_stream.js | ./tcp_pipe_out.js

Then, we can open a new terminal and listen to the socket that we're streaming over:

nc 127.0.0.1 1337

We use netcat here to connect to our local loop (the internal network that exists on our own
computer), and to the port specified in tcp_pipe_out.js. Of course, we could replace
127.0.0.1 with the IP address of our computer, (an example can be 192.168.1.3)
and connect from another computer on our local network. Provided our router is correctly
configured, we could access the stream across the Internet through our external IP address
(an example can be 109.158.224.190).

Once connected, we should see the text stream from our main recipe coming through.

Chapter 5

151

Let's create another file named tcp_pipe_in.js and make it executable:

touch tcp_pipe_in.js && chmod +x tcp_pipe_in.js

We'll write the following code into our new file:

#!/usr/bin/env node

var net = require('net'),
 port = 1337,
 address = '127.0.0.1';

net.connect(port, address, function () {
 process.stdin.pipe(this);
 this.pipe(process.stdout);
});

Our tcp_pipe_in.js file can now replace netcat.

In the first terminal, we again start our text stream and pipe it through TCP:

./text_stream.js | ./tcp_pipe_out.js

Then, in another terminal, we pipe it using the following command:

./tcp_pipe_in.js

We can pipe our TCP in-stream to other processes as follows:

./tcp_pipe_in.js | ./uppercaser.js

See also
ff The Playing with pipes recipe

ff The Consuming streams recipe

ff The Making stream interfaces recipe

6
Going Real Time

In this chapter, we will cover the following topics:

ff Creating a WebSocket server

ff Cross-browser real-time logic with Socket.IO

ff Remote Procedure Calls with Socket.IO

ff Creating a real-time widget

Introduction
HTTP was not made for the kind of real-time web applications that many developers are
creating today. As a result, all sorts of workarounds have been discovered to mimic the
idea of bi-directional, uninterrupted communication between servers and clients.

WebSockets don't mimic this behavior; they provide it. WebSockets work by stripping down
an HTTP connection so it becomes a persistent TCP-like exchange, thus removing all the
overhead and restrictions that HTTP introduces.

The HTTP connection is stripped (or rather upgraded) when both the browser and server
support WebSockets. The browser discovers this by communicating with the server via
GET headers, and only newer browsers (IE10+, Google Chrome 14, Safari 5, and Firefox 6)
support WebSockets.

WebSockets is a new protocol. JavaScript combined with the Node platform is often versatile
and low-level enough to implement protocols from scratch, or failing that, C/C++ modules can
be written to handle a more obscure or revolutionary logic. Thankfully, there's no need to write
our own protocol implementation; the open source community has already provided it for us.

In this chapter, we will be using some third-party modules to explore some of the potential of
the powerful combination of Node and WebSockets.

Going Real Time

154

Creating a WebSocket server
For this task, we will use the third-party ws module to create a pure WebSocket server that will
receive and respond to WebSocket requests from the browser.

Getting ready
We'll create a new folder for our project that will hold two files: server.js and client.
html. The client.html file will provide a basic user interface and connect to the
WebSocket server while server.js supplies the server-side WebSocket functionality and
serves up the client.html file in response to browser requests. We also need to install the
ws module. Once we've changed the directory in our new folder on the command line, we can
run the following code:

npm install ws

For more information on the ws module, refer to
https://www.github.com/einaros/ws.

How to do it...
Let's use require with the ws module and create our WebSocket server (we'll call this wss):

var WSServer = require('ws').Server,
 wss = new WSServer({port:8080});

Now that we have our WebSocket server (wss) instance, we can listen to its connection
event which will supply us with a socket element for every incoming connection, as shown in
the following code:

wss.on('connection', function (socket) { });

We can interact with the socket element inside our connection callback by listening and
responding to message and close events:

wss.on('connection', function (socket) {

 socket.on('message', function (msg) {
 console.log('Recieved: ', msg, '\n',
 'From IP: ', socket.upgradeReq.connection.remoteAddress);

 if (msg === 'Hello') { socket.send('Websockets!'); }
 });

Chapter 6

155

 socket.on('close', function (code, desc) {
 console.log('Disconnect: ' + code + ' - ' + desc);
 });
});

Now, for the client, we'll place the following HTML structure into the client.html file:

<html>
<head>
</head>
<body>
<input id=msg><button id=send>Send</button>
<div id=output></div>

<script>
//client side JavaScript will go here
</script>

</body>
</html>

The content of our script tags should look as follows:

<script>
(function () {
 var ws = new WebSocket("ws://localhost:8080"),
 output = document.getElementById('output'),
 send = document.getElementById('send');

 function logStr(eventStr, msg) {
 return '<div>' + eventStr + ': ' + msg + '</div>';
 }

 send.addEventListener('click', function () {
 var msg = document.getElementById('msg').value;
 ws.send(msg);
 output.innerHTML += logStr('Sent', msg);
 });

 ws.onmessage = function (e) {
 output.innerHTML += logStr('Recieved', e.data);
 };

 ws.onclose = function (e) {
 output.innerHTML += logStr('Disconnected', e.code + '-' +
 e.type);

Going Real Time

156

 };

 ws.onerror = function (e) {
 output.innerHTML += logStr('Error', e.data);
 };

}());

</script>

If we initialize our server with node server.js, we'd need to open the client.html file in
our (WebSocket-compliant) browser, type Hello in the textbox, and click on the Send button.
The terminal console will then give the following output:

Recieved "Hello"

From IP 127.0.0.1

Our browser will show that Hello was sent and WebSockets! was received, as shown in the
following screenshot:

We can use our textbox to send any string we like to our server, but only Hello will gain
a response.

How it works...
In server.js, when we require the ws module's Server method, we load a constructor
function into the WSServer variable (which is why we capitalized the first letter). We
initialize WSServer using the new keyword and pass in an object that contains a port
property set to 8080.

Chapter 6

157

WebSocket servers start out as HTTP servers, then the browser connects to the HTTP server
and asks to upgrade; at this point, the WebSocket logic takes over. When we pass in the options
object with port:8080, the WSServer constructor creates an HTTP server that listens on port
8080 and accepts WebSocket upgrade requests. We could alternatively supply our own HTTP
server to the server property instead of providing the port property.

As soon as the client.html file is loaded in the browser and the inline script is executed,
the WebSocket upgrade request is made to our server.

When the server receives this WebSocket upgrade request, wss emits a connection event
that supplies socket as the first parameter of the connection callback. The socket
parameter is an instance of EventEmitter; we use its message and close events.

For each message that is received from the client, socket emits a message event. This is
where we log the received data and the client IP address to console and check whether the
incoming message is Hello. If it is, we use the socket.send method to respond to the client
with WebSockets!.

Finally, we listen for the close event to inform console that the connection has
been terminated.

There's more...
WebSockets have so much potential for efficient low latency real-time web apps. Let's take a
look at a WebSocket client outside of the browser and then further see how browser APIs can
be wrapped in one of Node's fundamental paradigms: streams.

Creating a Node-based WebSocket client
The ws module also allows us to create a WebSocket client outside of the browser environment.
We may wish to interface Node with a preexisting WebSocket server, which is primarily for
browser clients. If not, we are better off creating a simple TCP server; refer to Chapter 9,
Integrating Network Paradigms.

So let's implement the same functionality in the client.html file using Node. We'll create
a new file in the same directory, calling it client.js as shown in the following code snippet:

var WebSocket = require('ws'),
 ws = new WebSocket("ws://localhost:8080");

process.stdin.resume();
process.stdin.setEncoding('utf8');

process.stdin.on('data', function (msg) {
 msg = msg.trim();
 ws.send(msg, console.log.bind(null, 'Sent:', msg));
});

Going Real Time

158

ws.on('message', function (msg) {
 console.log('Recieved:', msg);
});

ws.on('close', function (code, desc) {
 console.log('Disconnected', code + '-' + desc);
});

ws.on('error', function (e) {
 console.log('Error:', e.code);
});

So we run node server.js in one terminal and node client.js in another; anything we
enter into the STDIN of the client.js terminal will be sent to our server.js terminal. If
we type Hello and press Enter, client.js will show the following output:

Sent: Hello

Received: WebSockets!

WebSocket streams
The websocket-stream module wraps a streaming interface around the WebSocket interface,
both in the browser and Node (by wrapping the ws module's API). This allows us to handle
WebSockets as streams both on the client and server, resulting in a familiar interface that
can be piped into and through other streams.

Streams are discussed extensively in Chapter 5, Employing Streams.

We'll need to install Browserify to package websocket-stream for browser use:

sudo npm -g install browserify

Browserify is a tool that wraps some boilerplate around Node
modules to supply an API in keeping with Node idioms. That is, it
allows you to use require with modules in the browser. Refer to
browserify.org for more information.

The preceding code will install Browserify as a system-wide executable, which we'll use shortly
to package a Node module in a client-side JavaScript library.

We'll also need to install a few dependencies using the following command:

npm install ws request JSONStream websocket-stream

http://browserify.org

Chapter 6

159

Once websocket-stream is installed, we can package it for browser use:

browserify -r websocket-stream -o websocket-stream.js

The -r flag allows us to specify modules we wish to have in the browser; the -o flag specifies
the output file.

We're going to grab npm's registry document to get the last sequential ID. Then, we'll subtract
50 from the ID so that some historical changes will immediately begin to appear when we
start piping the changes feed from npm through the JSONStream module into our WebSocket
stream. We're going to handle the incoming stream with the WebSocket stream in the browser
and output the streamed module IDs onto the UI element on our page, as shown in the
following diagram:

request
(long lived)

npm db registry

npm changes

feed

request

changes
stream

JSONStream('id')
WebSocket

Stream

since
WebSocket

Stream
UI Output
Element

Browser

Now that we're all set, let's write the server code; we'll name this file stream_server.js:

var request = require('request'),
 JSONStream = require('JSONStream'),
 WSServer = require('ws').Server,
 stream = require('websocket-stream'),

 wss = new WSServer({port: 8080}),

 registry = 'http://skimdb.npmjs.com/registry',
 changes = '/_changes?heartbeat=20000&feed=continuous&since=';

wss.on('connection', function(socket) {

 request({url: registry, json:true}, function (err, res, doc) {
 if (err) { return console.log(err); }

Going Real Time

160

 var since = doc.committed_update_seq - 50,
 idStream = JSONStream.parse('id');

 request(registry + changes + since)
 .pipe(idStream)
 .pipe(stream(socket));

 socket.on('close', function () { idStream.destroy(); });

 });

});

First, we use require with our modules and set up a WebSocket server such as wss (just
like our main recipe). We also set up two other variables named registry and changes.

The npm command-line app interfaces with a CouchDB store; here, registry is the address
of the store and changes is the path to the _changes document along with some parameters
that induce a constantly updating feed. We will be streaming the changes feed to the client.

CouchDB (and the changes feed) is discussed at length in Chapter 4,
Interfacing with Databases.

The last parameter in the changes query string (since) does not have a value. This is
because we have to ask the CouchDB store for the latest sequence number before we
can determine a sensible point to begin streaming changes from.

With CouchDB 1.3.0, it is possible to supply since=now to simply
stream from the last change; however, even though the npm CouchDB
store is Version 1.3.0r2, it still doesn't seem to support the now value (at
the time of writing this). Additionally, getting the latest sequence number
allows you to load the same number of recent changes by setting since
to a reasonable subtraction from the latest sequence number.

Whenever our server receives a WebSocket connection, it first makes a request to the registry
URL. To do this, we use the request module, which we've chosen primarily because it provides
a stream interface that can be piped through to the websocket-stream interface—we do the
piping once a sequence number has been determined.

The request module provides some convenient syntactic sugar on top
of Node's core HTTP module's client interfaces (of note is the returning of
stream objects). Refer to https://github.com/mikeal/request for
more information.

Chapter 6

161

The options object passed to request has url and json properties. We set json to true to
ensure that the third parameter of the callback that is passed to request (the doc argument,
which could also be accessed under res.body) has been run through JSON.parse so that it
is ready for us to access as an object.

In our request callback, we use doc.committed_update_seq to grab the latest sequence
ID in the npm CouchDB store, subtract 50 from it, and save it to a variable (since).

Having determined a recent starting point, we make the second request and this time to the
actual changes feed. We pipe the changes feed to a through-stream (a stream that's both
readable and writable) that is generated using JSONStream.

This JSONStream.parse('id') call takes a stream of JSON, and emits only the values
of properties named id. We're looking for id properties because the changes feed is a line-
separated stream of JSON objects that contains seq, id, and changes properties. The id
property in the context of npm is the name of a module that is currently being created or
updated via npm.

The JSONStream module parses a stream of JSON (string) data and emits
JavaScript objects while it's being streamed and parsed. Visit https://
github.com/dominictarr/JSONStream for more information.

The id attributes emitted from JSONStream through the stream parser are piped
into stream(socket). When we call stream, which is the variable we loaded the
websocket-stream module into, and pass it the connections socket, we wrap the
WebSocket connection in a stream interface. This allows other streams to pipe directly
to a WebSocket client.

So let's quickly create our browser client too; we'll call this file stream_client.html:

<textarea id='cs' cols=50 rows=20></textarea>
<script src=websocket-stream.js></script>
<script>
 (function () {
 var websocket = require('websocket-stream'),
 ws = websocket('ws://localhost:8080'),
 cs = document.getElementById('cs');

 ws.on('data', function (module) {
 cs.value += module + ' was created/updated\n';
 cs.scrollTop = cs.scrollHeight;
 });
 ws.on('end', function () {
 cs.value = 'disconnected';
 });
 }())
</script>

Going Real Time

162

So we have a textarea element with an id of cs (for changes stream); this provides us with
a basic view into the stream data.

We're also loading websocket-stream.js, which we generated earlier using browserify.
Then, in our inline code, we use require for the websocket-stream module (just like in
Node—thanks to Browserify) and set up a WebSocket stream (ws) pointed to our server. Then,
we get a handle for our textarea element (the cs variable).

Remember, ws is a stream, and we're piping it from the server. We listen for its data event to
capture each of the module names being piped to us from the server. We add this module
name to the textarea element with some supplementary text, and set the scrollTop
attribute of textarea to make sure we'll always be able to see the latest information in
textarea by keeping the scroll position at the bottom of the text area.

In the end event, we simply set the value of the textarea element to 'disconnected'.

If we fire up our stream_server.js script and load the stream_client.html file in our
browser. After a short pause, we should have a live feed of npm changes.

Depending on the time of the day, there can be long gaps between updates.
If we want to trigger a change event, we could always publish/update our
own module; see Chapter 10, Writing Your Own Modules, for details.

See also
ff The Cross-browser real-time logic with Socket.IO recipe

ff Chapter 5, Employing Streams

ff The Serving static files recipe discussed in Chapter 1, Making a Web Server

Cross-browser real-time logic with Socket.IO
Older browsers don't support WebSockets. In order to provide a similar experience in these
browsers, we have to use techniques such as long polling, using the Flash plugin sockets,
or proprietary browser-specific options such as ActiveX in Internet Explorer.

Naturally, this is a mine field, requiring hours of browser testing and in some cases highly
specific knowledge of proprietary protocols (for example, IE's Active X htmlfile object).

Socket.IO (via the engine.io module) provides a WebSocket-like API to the server and client
to create the best-case real-time experience across a wide variety of browsers, including old
(IE 5.5+) and mobile (iOS Safari and Android) browsers.

Chapter 6

163

The engine.io module has been logically extracted and refactored out from
Socket.IO Version 0.9. The engine.io module is different in its approach;
it uses enhancement instead of degradation. In the original socket.io,
connections would fallback to the best available method (degradation).
This could take a long time (up to 20 seconds), so the engine.io module
addresses this by starting with the lowest common denominator (long polling)
and upgrading to better methods (such as WebSockets) if they are available
(enhancement). Generally, we wouldn't use the engine.io module directly
because in almost every case, we'd want the connection management facilities
afforded by Socket.IO. For more information, refer to https://github.
com/LearnBoost/engine.io.

In this recipe, we will reimplement the previous task for a highly compatible WebSocket-type
application.

From version 1.0, the socket.io module is a simple layer on top of
engine.io that provides advanced real-time logic such as connection
discovery, allowing auto reconnects, custom events, and namespacing. In
the next recipe, we'll look into using Socket.IO as an extensive framework
for real-time apps. For more information, refer to https://github.
com/LearnBoost/socket.io and http://socket.io.

Getting ready
We'll create a new folder with the new client.html and server.js files. We'll also install
the engine.io module using the following command:

npm install socket.io

How to do it...
Like the websocket module, socket.io can be attached to an HTTP server (though it isn't
a necessity with socket.io). Let's create the HTTP server and load the client.html file. In
the server.js file, we write the following code:

var http = require('http');
var clientHtml = require('fs').readFileSync('client.html');

var plainHttpServer = http.createServer(function (request,
 response) {
 response.writeHead(200, {'Content-type' : 'text/html'});
 response.end(clientHtml);
 }).listen(8080);

https://github.com/LearnBoost/engine.io
https://github.com/LearnBoost/socket.io and http://socket.io

Going Real Time

164

Now for the socket.io part (still in server.js), we use the following code:

var io = require('socket.io').listen(plainHttpServer);

io.sockets.on('connection', function (socket) {
 socket.on('message', function (msg) {
 if (msg === 'Hello') {
 socket.send('socket.io!');
 }
 });
});

Now that the server is set up, let's create our client.html file:

<html>
<head>
</head>
<body>
<input id=msg><button id=send>Send</button>
<div id=output></div>

<script src="/socket.io/socket.io.js"></script>
<script>
(function () {
 var socket = io.connect('ws://localhost:8080'),
 output = document.getElementById('output'),
 send = document.getElementById('send');

 function logStr(eventStr, msg) {
 return '<div>' + eventStr + ': ' + msg + '</div>';
 }
 socket.on('connect', function () {
 send.addEventListener('click', function () {
 var msg = document.getElementById('msg').value;
 socket.send(msg);
 output.innerHTML += logStr('Sent', msg);
 });

 socket.on('message', function (msg) {
 output.innerHTML += logStr('Recieved', msg);
 });

 });

}());

Chapter 6

165

</script>
</body>
</html>

The final product is essentially the same as in the previous recipe, except that it will also work
seamlessly in older browsers that aren't compatible with WebSocket. We type Hello, click on
the Send button, and the server displays socket.io!.

How it works...
Instead of passing the HTTP server in an options object, we simply pass it to a listen method.

Next, we listen for the connection event on io.sockets that provides us with a socket to
the client (much like request.accept that generates our WebSocket connection in the
previous recipe).

Inside connection, we listen for the message event on the socket, checking that the
incoming msg is Hello. If it is, we respond with socket.io!.

When socket.io is initialized, it begins to serve the client-side code over HTTP. So in
our client.html file, we load the socket.io.js client script from /socket.io/
socket.io.js.

The client-side socket.io.js provides a global io object. By calling its connect method
with our server's address, we acquire the relevant socket.

We send our Hello msg to the server and use the #output div element to provide the UI
with feedback indicating that we're done.

When the server receives the message Hello, it replies to socket.io!, which triggers our
message event callback on the client side.

Now we have the msg parameter (different to our msg Hello variable) that contains the
message from the server, so we output it to our #output div element.

There's more...
Let's explore some additional functionality of socket.io.

Custom events
The socket.io module allows us to define our own events, other than message, connect,
and disconnect. We listen to custom events in the same fashion (using on) but initiate
them using the emit method.

Let's use emit for a custom event from the server to the client and then have the client
respond by emitting another custom event back to the server.

Going Real Time

166

We can use the same code as in our recipe; the only parts we'll change are the contents of the
connection event listener callback in server.js (which we'll copy as custom_events_
server.js) and the connect event handler in the client.html file (which we'll copy as
custom_events_client.html).

So, for our server code, we will use the following snippet:

//require http, load client.html, create plainHttpServer
//require and initialize socket.io, set origin rules

io.sockets.on('connection', function (socket) {
 socket.emit('hello', 'socket.io!');
 socket.on('hollaback', function (from) {
 console.log('Received a hollaback from ' + from);
 });
});

Our server emits a hello event that will display socket.io! to the newly connected client and
listens out for a hollaback event from the client.

So we modify the JavaScript in the custom_events_client.html file accordingly as shown
in the following code:

//html structure, #output div, script[src=/socket.io/socket.io.js] tag
socket.on('connect', function () {
 socket.on('hello', function (msg) {
 output.innerHTML += '<div>Hello ' + msg + '</div>';
 socket.emit('hollaback', 'the client');
 });
});

When we receive a hello event, we log in to our #output div element (which will say
Hello socket.io!) and use emit with a hollaback event to the server, supplying a string
(the client) as the second argument of emit. This will come through as the from
parameter in the server's hollaback listener callback function.

See also
ff The Creating a WebSocket server recipe discussed

ff The Remote Procedure Calls with Socket.IO recipe

ff The Creating a real-time widget recipe

Chapter 6

167

Remote Procedure Calls with Socket.IO
With socket.io, we can execute a callback function over WebSockets (or a relevant
alternative). The function is defined client side, yet called server side (and vice versa). This
can be a very powerful way to share processing resources and functionalities between clients
and servers—it's called Remote Procedure Calls (RPC).

In this recipe, we'll create a way for the server to call a client-side function that squares
a number, and for the client to call a server-side function that sends a Base64 encoded
(http://en.wikipedia.org/wiki/Base64) sentence back to the client.

Getting ready
We simply need to create a new folder with the new client.html and server.js files.

How to do it...
On our server, as before, we load our http module and the client.html file, create our
HTTP server, and attach socket.io. Refer to the following code:

var http = require('http');
var clientHtml = require('fs').readFileSync('client.html');

var plainHttpServer = http.createServer(function (request,
 response) {
 response.writeHead(200, {'Content-type' : 'text/html'});
 response.end(clientHtml);
 }).listen(8080);

var io = require('socket.io').listen(plainHttpServer);

Next, in our connection event handler, we listen for the custom event give me a number
from the client, and use emit with a custom event give me a sentence from the server,
as shown in the following code:

io.sockets.on('connection', function (socket) {

 socket.on('give me a number', function (cb) {
 cb(4);
 });

 socket.emit('give me a sentence', function (sentence) {
 socket.send(Buffer(sentence).toString('base64'));
 });

});

Going Real Time

168

In our client.html file, we write the following code:

<html>
<head> </head>
<body>
<div id=output></div>
<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost:8080'),
 output = document.getElementById('output');

 function square(num) {
 output.innerHTML = "<div>" + num + " x " + num + " is "
 + (num * num) + "</div>";
 }

 socket.on('connect', function () {
 socket.emit('give me a number', square);

 socket.on('give me a sentence', function (cb) {
 cb('Ok, here is a sentence.');
 });

 socket.on('message', function (msg) {
 output.innerHTML += '<div>Recieved: ' + msg + '</div>';
 });
 });

</script>
</body>
</html>

How it works...
Immediately upon connection, both the server and client emit a custom socket.io event
to each other.

For custom socket.io events, see the There's more... section of the
previous recipe, Cross-browser real-time logic with Socket.IO.

For both the client and server, when we pass a function as the second parameter of emit,
socket.io creates a special parameter (cb) in the corresponding event listener's callback.
The cb parameter is not, in this case, the actual function (if it was, it would simply run in
the context from which it was called), but an internal socket.io function that passes the
arguments back to the emit method on the other side of the wire. The emit method then
passes these arguments into its callback, thus executing the function in a local context.

Chapter 6

169

We know that functions run in their own context. If the server-side give me a sentence
callback was executed on the client, it would fail because there is no Buffer object in
browsers. If the give me a number callback is executed on the server, it would fail since
there is no Document Object Model (DOM) in Node (that is, there is no HTML, hence no
document object and no document.getElementById method).

There's more...
Let's take a look at an alternative to Socket.IO.

Remote Procedure Calls with SockJS
SockJS is a slimmer multitransport real-time framework with a client-side API that more
closely resembles the standards-based WebSocket API. It has less features, but it may be
better in cases where prototyping was performed with normal WebSockets and additional
features aren't required.

It has a disadvantage compared to Socket.IO Version 1.0 and above in that it still (at the time
of writing) uses the fallback approach (trying WebSockets first then degrading to other transport)
instead of the upgrade approach (starting with the most supported transport
(long polling) and enhancing the connection to WebSockets).

Let's reimplement our recipe with SockJS. First things first, we need to install the sockjs
module using the following command:

npm install sockjs

For our client side, we can simply take the code written from the first recipe in this chapter,
Creating a WebSocket server, and change two lines in it. The first is the script reference.
SockJS recommends linking to cdn so we change our script loading code to the following
line:

<script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>

Then, refer to the following line:

 var ws = new WebSocket("ws://localhost:8080"),

Change it to its SockJS version:

 var ws = new SockJS("http://localhost:8080/sock"),

Let's save this code as sockjs_client.html. This is very similar to creating a new
WebSocket with a few differences. So we have a SockJS constructor instead of a WebSocket
constructor, we're using the http:// protocol instead of ws://, and we have to point to a route
(in this case, /sock). We point to a route because a SockJS server is primarily an HTTP server.
We can't serve our client-side HTML and provide a SockJS connection from the same URL. With
pure WebSockets, however, the two separate protocols are equivalent to two separate roots.

Going Real Time

170

The rest of our client code can stay the same because SockJS supplies the same API as
WebSockets. Now, let's write the code for our server by taking our Socket.IO server from the
Cross-browser real-time logic with Socket.IO recipe and make some minor changes to it, as
shown in the following code:

var http = require('http');
var clientHtml = require('fs').readFileSync('sockjs_client.html');

var plainHttpServer = http.createServer(function (req, res) {
 res.writeHead(200, {'Content-type' : 'text/html'});
 res.end(clientHtml);
 }).listen(8080);

var sockServer = require('sockjs').listen(plainHttpServer,
 {prefix: '/sock'});

sockServer.on('connection', function (socket) {
 socket.on('data', function (msg) {
 if (msg === 'Hello') {
 socket.write('SockJS!');
 }
 });
});

First, we make sure we load the sockjs_client.html file instead of client.html. We
change the io variable to sockServer for semantic purposes, and when we use listen,
we pass in an extra options object with a prefix property set to /sock (because SockJS
needs to host its client from a separate route).

On the socket, we listen for data events instead of message events (socket.io message
events simply mirror data events; listening to a data event would work in socket.io
as well). Instead of socket.send (another socket.io abstraction), we use socket.
write. We'll save this as sockjs_server.js. Now if we start our server and navigate
to http://localhost:8080, type Hello, and click on the Send button, we'll get a
Hello SockJS! response.

See also
ff The Cross-browser real-time logic with Socket.IO recipe

ff The Creating a real-time widget recipe

ff The Browser-server transmission via AJAX recipe discussed in Chapter 3,
Working with Data Serialization

Chapter 6

171

Creating a real-time widget
The configuration options and well thought out methods of socket.io make for a highly
versatile library. Let's explore the dexterity of socket.io by creating a real-time widget that
can be placed on any website and instantly interfacing it with a remote Socket.IO server. We're
doing this to begin providing a constantly updated total of all users currently on the site. We'll
name it the live online counter (loc for short).

Our widget is for public consumption and should require only basic knowledge, so we want
a very simple interface. Loading our widget through a script tag and then initializing
the widget with a prefabricated init method would be ideal (this allows us to predefine
properties before initialization if necessary).

Getting ready
We'll need to create a new folder with some new files: widget_server.js, widget_
client.js, server.js, and index.html.

How to do it...
Let's create the index.html file to define the kind of interface we want as follows:

<html>
<head>
<style>
#_loc {color:blue;} /* widget customization */
</style>
</head>
<body>
<h1> My Web Page </h1>
<script src=http://localhost:8081></script>
<script> locWidget.init(); </script>
</body>
</html>

The localhost:8081 domain is where we'll be serving a concatenated script of both the
client-side socket.io code and our own widget code.

By default, Socket.IO hosts its client-side library over HTTP while
simultaneously providing a WebSocket server at the same address, in this
case localhost:8081. See the There's more… section for tips on how to
configure this behavior.

Going Real Time

172

Let's create our widget code, saving it as widget_client.js:

;(function() {
 window.locWidget = {
 style : 'position:absolute;bottom:0;right:0;font-size:3em',
 init : function () {
 var socket = io.connect('http://localhost:8081'),
 style = this.style;
 socket.on('connect', function () {
 var head = document.head,
 body = document.body,
 loc = document.getElementById('_lo_count');
 if (!loc) {
 head.innerHTML += '<style>#_loc{' + style + '}</style>';

 loc = document.createElement('div');
 loc.id = '_loc';
 loc.innerHTML = '';
 body.appendChild(loc);

 }

 socket.on('total', function (total) {
 loc.innerHTML = total;
 });
 });
 }
 }
}());

We need to test our widget from multiple domains. We'll just implement a quick HTTP server
(server.js) to serve index.html so we can access it by http://127.0.0.1:8080 and
http://localhost:8080, as shown in the following code:

var http = require('http');
var fs = require('fs');
var clientHtml = fs.readFileSync('index.html');

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-type' : 'text/html'});
 response.end(clientHtml);
}).listen(8080);

Chapter 6

173

Finally, for the server for our widget, we write the following code in the widget_server.js file:

var io = require('socket.io')(),
 totals = {},
 clientScript = Buffer.concat([
 require('socket.io/node_modules/socket.io-client').source,
 require('fs').readFileSync('widget_client.js')
]);

io.static(false);

io.attach(require('http').createServer(function(req, res){
 res.setHeader('Content-Type', 'text/javascript; charset=utf-8');
 res.write(sioclient.source);
 res.write(widgetScript);
 res.end();
}).listen(8081));

io.on('connection', function (socket) {
 var origin = socket.request.socket.domain || 'local';

 totals[origin] = totals[origin] || 0;
 totals[origin] += 1;

 socket.join(origin);

 io.sockets.to(origin).emit('total', totals[origin]);

 socket.on('disconnect', function () {
 totals[origin] -= 1;
 io.sockets.to(origin).emit('total', totals[origin]);
 });
});

To test it, we need two terminals; in the first one, we execute the following command:

node widget_server.js

In the other terminal, we execute the following command:

node server.js

We point our browser to http://localhost:8080 by opening a new tab or window and
navigating to http://localhost:8080. Again, we will see the counter rise by one. If we
close either window, it will drop by one. We can also navigate to http://127.0.0.1:8080
to emulate a separate origin. The counter at this address is independent from the counter at
http://localhost:8080.

Going Real Time

174

How it works...
The widget_server.js file is the powerhouse of this recipe. We start by using require
with socket.io and calling it (note the empty parentheses following require); this
becomes our io instance. Under this is our totals object; we'll be using this later to store
the total number of connected clients for each domain.

Next, we create our clientScript variable; it contains both the socket.io client code
and our widget_client.js code. We'll be serving this to all HTTP requests. Both scripts are
stored as buffers, not strings. We could simply concatenate them with the plus (+) operator;
however, this would force a string conversion first, so we use Buffer.concat instead.
Anything that is passed to res.write or res.end is converted to a Buffer before being
sent across the wire. Using the Buffer.concat method means our data stays in buffer
format the whole way through instead of being a buffer, then a string then a buffer again.

When we require socket.io at the top of widget_server.js, we call it to create an
io instance. Usually, at this point, we would pass in an HTTP server instance or else a port
number, and optionally pass in an options object.

To keep our top variables tidy, however, we use some configuration methods available on the
io instance after all our requires. The io.static(false) call prevents socket.io from
providing its client-side code (because we're providing our own concatenated script file that
contains both the socket.io client-side code and our widget code).

Then we use the io.attach call to hook up our socket.io server with an HTTP server. All
requests that use the http:// protocol will be handled by the server we pass to io.attach,
and all ws:// protocols will be handled by socket.io (whether or not the browser supports
the ws:// protocol).

We're only using the http module once, so we require it within the io.attach call; we use
it's createServer method to serve all requests with our clientScript variable.

Now, the stage is set for the actual socket action. We wait for a connection by listening for
the connection event on io.sockets. Inside the event handler, we use a few as yet
undiscussed socket.io qualities.

WebSocket is formed when a client initiates a handshake request over HTTP and the server
responds affirmatively. We can access the original request object with socket.request.
The request object itself has a socket (this is the underlying HTTP socket, not our socket.io
socket; we can access this via socket.request.socket. The socket contains the domain
a client request came from. We load socket.request.socket.domain into our origin
object unless it's null or undefined, in which case we say the origin is 'local'.

We extract (and simplify) the origin object because it allows us to distinguish between
websites that use a widget, enabling site-specific counts.

Chapter 6

175

To keep count, we use our totals object and add a property for every new origin object
with an initial value of 0. On each connection, we add 1 to totals[origin] while listening
to our socket; for the disconnect event, we subtract 1 from totals[origin].

If these values were exclusively for server use, our solution would be complete. However, we
need a way to communicate the total connections to the client, but on a site by site basis.

Socket.IO has had a handy new feature since Socket.IO version 0.7 that allows us to group
sockets into rooms by using the socket.join method. We cause each socket to join a room
named after its origin, then we use the io.sockets.to(origin).emit method to instruct
socket.io to only emit to sockets that belongs to the originating sites room.

In both the io.sockets connection and socket disconnect events, we emit our
specific totals to corresponding sockets to update each client with the total number of
connections to the site the user is on.

The widget_client.js file simply creates a div element called #_loc and updates it
with any new totals it receives from widget_server.js.

There's more...
Let's look at how our app could be made more scalable, as well as looking at another use
for WebSockets.

Preparing for scalability
If we were to serve thousands of websites, we would need scalable memory storage, and Redis
would be a perfect fit. It operates in memory but also allows us to scale across multiple servers.

We'll need Redis installed along with the Redis module. For more
information, refer to Chapter 4, Interfacing with Databases.

We'll alter our totals variable so it contains a Redis client instead of a JavaScript object:

var io = require('socket.io')(),
 totals = require('redis').createClient(),
 //other variables

Now, we modify our connection event handler as shown in the following code:

io.sockets.on('connection', function (socket) {
 var origin = (socket.handshake.xdomain)
 ? url.parse(socket.handshake.headers.origin).hostname
 : 'local';
 socket.join(origin);

Going Real Time

176

 totals.incr(origin, function (err, total) {
 io.sockets.to(origin).emit('total', total);
 });

 socket.on('disconnect', function () {
 totals.decr(origin, function (err, total) {
 io.sockets.to(origin).emit('total', total);
 });
 });
});

Instead of adding 1 to totals[origin], we use the Redis INCR command to increment a
Redis key named after origin. Redis automatically creates the key if it doesn't exist. When
a client disconnects, we do the reverse and readjust totals using DECR.

WebSockets as a development tool
When developing a website, we often change something small in our editor, upload our file (if
necessary), refresh the browser, and wait to see the results. What if the browser would refresh
automatically whenever we saved any file relevant to our site?

We can achieve this with the fs.watch method and WebSockets. The fs.watch method
monitors a directory, executing a callback whenever a change to any files in the folder occurs
(but it doesn't monitor subfolders).

The fs.watch method is dependent on the operating system. To date,
fs.watch has also been historically buggy (mostly under Mac OS X).
Therefore, until further advancements, fs.watch is suited purely to
development environments rather than production (you can monitor
how fs.watch is doing by viewing the open and closed issues at
https://github.com/joyent/node/search?q=fs.watch&ref=
cmdform&state=open&type=Issues).

Our development tool could be used alongside any framework, from PHP to static files. For a
general server, let's take the Serving static files recipe from Chapter 1, Making a Web Server,
to test our tool. We'll copy the files (including the content folder) from that recipe into a new
folder, which we can name watcher.

For the server counterpart of our tool, we'll configure watcher.js:

var io = require('socket.io')(),
 fs = require('fs'),
 totals = {},
 watcher = function () {
 var socket = io.connect('ws://localhost:8081');
 socket.on('update', function () {

https://github.com/joyent/node/search?q=fs.watch&ref=cmdform&state=open&type=Issues

Chapter 6

177

 location.reload();
 });
 },
 clientScript = Buffer.concat([
 require('socket.io/node_modules/socket.io-client').source,
 Buffer(';(' + watcher + '());')
]);

io.static(false);

io.attach(require('http').createServer(function(req, res){
 res.setHeader('Content-Type', 'text/javascript; charset=utf-8');
 res.end(clientScript);
}).listen(8081));

fs.watch('content', function (e, f) {
 if (f[0] !== '.') {
 io.sockets.emit('update');
 }
});

Most of this code is familiar. We make a socket.io server (on a different port to avoid
clashing), generate a concatenated socket.io.js plus client-side watcher code file, and
deliver it via our attached server. Since this is a quick tool for our own development uses, our
client-side code is written as a normal JavaScript function (our watcher variable), converted
to a string while wrapping it in self-calling function code, and then changed to Buffer so it's
compatible with Buffer.concat.

The last piece of code calls the fs.watch method where the callback receives the event
name (e) and the filename (f).

We check that the filename isn't a hidden dotfile. During a save event, some filesystems
or editors will change the hidden files in the directory, thus triggering multiple callbacks
and sending several messages at high speed, which can cause issues for the browser.

To use it, we simply place it as a script within every page that is served (probably using
server-side templating). However, for demonstration purposes, we simply place the following
code into content/index.html:

<script src=http://localhost:8081/socket.io/watcher.js></script>

Once we fire up server.js and watcher.js, we can point our browser to http://
localhost:8080 and see the familiar excited Yay! from Chapter 1, Making a Web Server. Any
changes we make and save (either to index.html, styles.css, script.js, or the addition
of new files) will be almost instantly reflected in the browser. The first change we can make is to
get rid of the alert box in the script.js file so that the changes can be seen fluidly.

Going Real Time

178

See also
ff The Creating a WebSocket server recipe

ff The Cross-browser real-time logic with Socket.IO recipe

ff The Storing and retrieving data with Redis recipe discussed in Chapter 4,
Interfacing with Databases

7
Accelerating

Development with
Express

In this chapter, we will cover the following topics:

ff Generating Express scaffolding

ff Managing server tier environments

ff Implementing dynamic routing

ff Templating in Express

ff CSS preprocessors with Express

ff Initializing and using a session

ff Making an Express web app

Introduction
As excellent as Node's HTTP module is, Express repackages and streamlines its functionality
to provide us with a fluid interface that makes for almost frictionless rapid web development.

In this chapter, we will progress from generating a vanilla Express project base to a full-fledged
Express web-application foundation with MongoDB providing backend data support.

Accelerating Development with Express

180

Generating Express scaffolding
Express works both as a Node module and as a command-line executable. The
express-generator module (part of the Express project) provides an easy way
to generate a project skeleton using its command-line tool (express).

Getting ready
We need to install express-generator using the -g flag (install globally) in order to run the
subsequently installed express executable from any directory:

sudo npm -g install express-generator

We use sudo to ensure that we have appropriate permission to install globally. This doesn't
apply with Windows or Mac OS X, so it should be run without sudo.

How to do it...
First, we decide upon the name of our app. Let's call it nca (Node Cookbook App) and simply
run the following command:

express nca

The preceding command will generate all of our project files under a new directory called nca.
Before we can run our app, we must ensure that all dependencies are installed. We can find app
dependencies at nca/package.json. The package.json file contains the following code:

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.0.0",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "jade": "~1.3.0"
 }
}

Chapter 7

181

For portability, it's important to have relevant modules installed within the project folder. To
achieve this, we simply use the command line to change directory (cd) into the nca directory
and then type the following command:

npm install

This will create a new node_modules directory in our project folder, holding all dependencies.

How it works...
When we run the express executable, it creates a folder structure that's suited to Express
development. In the project root, we have the app.js and package.json files.

The package.json file is a convention established by the CommonJS group (a JavaScript
standards community) and has become the established method to describe modules and
applications in Node.

The npm install command parses the dependencies from package.json, installing
them locally in the node_modules folder.

This is significant because it ensures stability. Node's require function looks for the
node_modules folder in the current working directory before searching for the parent
directories. If we upgrade any module in a parent directory, our project will continue to use
the same version it was built upon. Installing modules locally allows us to distribute our
project along with its dependencies.

The app.js files contain the boilerplate for the web app; we'll look at this in closer detail in
the following recipes. The express executable adds four subdirectories to the project folder:
public, routes, views, and bin.

In the package.json file, the scripts object contains a start property that points
to ./bin/www. The www file initializes our app, listening (by default) on port 3000. We start
our express app with the following command:

npm start

The ./bin/www file contains a hashbang in the form: #!/usr/bin/env
node.
This allows www to also be executed independently. Alternately, we
could start our app by running ./bin/www directly. However, preferred
convention is to use npm start; in this case, we have no reliance on the
actual location or name of the initialization script.

The public folder is the default folder that app.js passes to the express.static
method. All of our static files go here. It contains images, javascripts, and stylesheets
folders, each for their own self-evident purpose.

Accelerating Development with Express

182

The routes folder holds the users.js and index.js files and both are required by
app.js. To define our routes, we push them onto Node's exports object (which we'll learn
in detail in Chapter 10, Writing Your Own Node Modules). Compartmentalizing route logic into
separate files in the routes directory helps to avoid clutter in app.js, dividing the server
code from the route code. This way, we can focus purely on our server or on our routes.

Finally, views hold template files that can really help with development acceleration. We'll
find out how to work with the views in the Templating in Express recipe.

There's more...
Let's take a few moments to go deeper into our generated project.

Picking apart app.js
Let's take a look at our generated app.js file:

var express = require('express');
var http = require('http');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

var app = express();

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.use(favicon());
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);
app.use('/users', users);

/// catch 404 and forwarding to error handler

Chapter 7

183

app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// error handlers

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

The app.js file can be divided into five sections: dependencies, app configuration, route
setting, error handling, and export.

In the top section (dependencies), express, http, path, static-favicon, morgan,
cookie-parser, and body-parser modules are required, along with the two routes files,
user and index.js. The express module is a function that supplies an app instance when
called (this instance is stored in the app variable). The http module is required because to
initialize an Express server, the Express app must be attached to an HTTP server. The path
module is used twice for its join method—this for cross-operating system compatibility
(for instance, in Windows, we would want a backslash, but in Linux and OS X, we would want a
forward slash). The four modules required after path are Express middleware modules, which
are later passed to app.use in the configuration section. The two routes files export methods
that are later used in the routing section of app.js (for example, app.get).

The configuration section consists of the app.set (to configure settings) and app.use
(to include middleware) calls.

Accelerating Development with Express

184

Middleware
Middleware is a term brought into vogue in the Node community principally
by the Connect and Express frameworks. In this context, middleware are
simply functions (or in the case of bodyParser, submethods) that are
called in sequence upon each request and are passed the request
and response objects. Middleware can have various purposes, such as
modifying the request object for easier access (such as parsing POST
data into an object), answering certain requests (such as a favicon request),
or simply observing incoming requests (such as a logger).

In the configuration section, the default view directory (views) and engine (jade) are set, and
the app is told to use the static-favicon (favicon), morgan (logger), body-parser
(bodyParser), cookie-parser (cookieParser), and express.static middleware.

The static-favicon middleware simply provides a valid (memory cached) favicon to
requests that hit the /favicon.ico route. Placing this middleware first in the chain
(and caching it in the memory) means that the favicon request is answered as quickly as
possible. We can pass in a path to a custom favicon (favicon('/my/favicon.ico'))
to override the default Express favicon image.

The morgan module is Connect's logging middleware. It's set to output development-level
logging, even for production. This approach ensures new users know what's available to them,
and after gaining experience, they can set the logging levels appropriately.

Connect was a precursor to Express. The Express framework was originally
built on top of Connect; nevertheless, Version 4 is independent of
Connect, but still compatible with its middleware (as exemplified by the
use of Connect's logger middleware, morgan). For more information on
Connect, visit http://www.senchalabs.org/connect.

The body-parser middleware made a brief appearance in Chapter 2, Exploring the HTTP
Object, in the There's more... section of the first recipe, used alongside Connect.

Middleware is generally constructed as is shown in the following code:

function (req, res, next) {
 //do stuff
 next();
}

The next parameter is a sort of a callback mechanism that loads any ensuing middleware. So
the positioning of the routes in relation to other middleware is important. For instance, we want
to be able to parse cookies before registering routes, but we can only catch 404 errors after it's
known that no routes have been matched.

Chapter 7

185

Alternatively, next can be called as a method of req: req.next().
For more information on middleware, visit http://www.expressjs.
com/guide.html#middleware.

So underneath the route section is the error-handling section; the first error handler is for 404
errors. As discussed, the positioning of this middleware is important; it will only be reached in
two scenarios. The first and target scenario is if none of the routes match the requested. The
second scenario is if a matched route doesn't use res.render and calls next.

The 404 handler generates a Not Found error, sets the response status code to 404, and
calls next, passing the generated err object into it. If the app happens to be in a development
environment, the development error handler will render the error to the browser with a stack
trace, and no further middleware will be executed because the handler doesn't call next.

If we're in a production environment, development logic will be skipped and the production
error handler responds accordingly. In the next recipe, we'll be taking a closer look at Express'
use of environments. Additionally, any time we call next and pass it an error object (that
is, one created with the native JavaScript Error constructor), it will be passed through and
handled by whichever error handler is relevant (either production or development).

The final section of app.js assigns our app to module.exports, which allows the ./bin/
www script to load and then initialize our app.

The initialization process
Let's take a look at the ./bin/www file:

#!/usr/bin/env node
var debug = require('debug')('my-application');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

The hashbang at the top allows the www file to be executed directly. The best convention,
however, would be to use npm start to spin up our app.

The debug module is used internally across Express and is responsible for the terminal debug
output of a running Express app. The debug module is a function, calling it with a string as
its argument returns a composed function that will return any output passed to it, prefixed by
the original string passed to the debug module (in this case, 'my-application'). Our app
is required on the line below debug. The port is then set on it using either an environmental
variable (PORT) or defaulting to 3000.

http://www.expressjs.com/guide.html#middleware

Accelerating Development with Express

186

Finally, listen is called on the app. Once the app has begun listening, the debug function is
called to output this fact along with the port.

Looking into routes/index.js
In app.js, routes/index.js is loaded with require:

 var routes = require('./routes/index');

Note that the .js extension isn't specified, but if a valid module is passed to require
without its extension, Node will load it just fine. Let's take a look at the following code:

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res) {
 res.render('index', { title: 'Express' });
});
module.exports = router;

The express.Router() returns a new router instance (no need to call new on this
pseudo-constructor). The router instance is essentially a limited version of the object
returned from calling express (as saved to the app variable in our app.js file). It has a
subset of router-specific functionality available on app, notably the use and verb methods
(get, put, post, and del). We'll learn more about this in later recipes.

Pushing router onto the exports object makes any defined route available in app.js as
routes, which is passed to app.use as follows:

app.use('/', routes);

The second argument of router.get (the callback function) should look familiar. It follows
the pattern of an http.createServer callback but is specific to the route. The request
(req) and response (res) parameters are enhanced by Express. We'll look into these in the
coming recipes. The function itself simply calls the res.render method, which loads a
template from views/index.jade, passing title as a variable, which then outputs the
generated content to the client.

See also
ff The Managing server tier environments recipe

ff The Implementing dynamic routing recipe

ff The Templating in Express recipe

Chapter 7

187

Managing server tier environments
An application can go through multiple stages throughout its life cycle—two of the most common
stages would be development and production. Specific configurations can be set up to host the
app in its various stages. These configured habitats are known as server tiers or environments.

Development and production codes have different requirements. For instance, during
development we will most likely want a detailed error output to the client, for debugging
purposes. In production, we protect ourselves from opportunistic exploitation by revealing as
little internal information as possible.

Express has an env setting that determines its value from an operating system environment
variable, NODE_ENV, falling back to the value of 'development' if NODE_ENV isn't set. This
allows us to define different settings for different environments within our app.

Getting ready
We'll need our project folder (nca) from the previous recipe.

How to do it...
Let's take a look at the default use of app.get('env') in the generated app.js file:

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

The app.get method as used here supplies different functionality
compared to router.get. The app.get method in this context
is a simple getter; it's the counterpart to app.set. Its functionality
is determined by the arguments passed to it. However, if app.get
is passed a route and a function, it will behave in the same way as
router.get. That is, Express will answer all GET requests to a route
with the supplied function.

When the tier is set to development, middleware is inserted into the middleware stack via
app.use. Route logic will only get as far as this piece of middleware in the event of an error.

Accelerating Development with Express

188

In the last recipe, we saw that the generated app.js file includes a logger with the logging
level set to 'dev', which causes the logger to supply colored output to the terminal. In a
production environment, it would be better to log to a file.

To achieve this, we'll have to perform some minor refactoring as shown in the following code:

//…snip…
var app = express(),
 dev = app.get('env') === 'development';

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.use(favicon());
app.use(logger(dev ? 'dev' : {
 stream: require('fs').createWriteStream('log')
}));

//..snip (rest of the configuration section) …snip…

/// error handlers

// development error handler
// will print stacktrace
if (dev) {
 app.use(function(err, req, res, next) {
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}
//…snip…

To use an environment, we set the special NODE_ENV variable on the command line as we are
executing node:

NODE_ENV=production node app.js

On Windows, we use the following command:

set NODE_ENV=production

node app.js

The development environment is default, so there's no need to use NODE_ENV to set it.

Chapter 7

189

Of course, we could set NODE_ENV to anything other than development
and our alterations would work, since we're only checking if the
environment is not development.

How it works...
Under the hood, app.get will be using process.env.NODE_ENV to determine the
NODE_ENV variable, checking for a match against any defined environments. If NODE_ENV
isn't set, app.get falls back to the development environment.

When we set up a dev variable, we're only interested in checking whether we're dealing with
a development environment or something else, so it simply resolves to a Boolean based on
whether app.get('env') returns 'development'.

So we use our dev Boolean to start a ternary expression (shorthand conditional). If dev is
true, we supply the string 'dev' (the default logging behavior). If dev is false, we supply
an object to logger. The object contains a stream property that supplies a writeStream
to a file called log. So in any environment other than development, the server will pass all log
information to the logfile.

Finally, since we've already determined whether we're in a development environment,
there's no need to check app.get('env') again. So we replace the conditional check
if ('development' == app.get('env')) with if (dev).

There's more...
Let's look into some of the ways we can manage our environments.

Setting other environments
We could have other phases in our work flow that would benefit from specific settings.
For instance, we may have a staging phase where we emulate as much of the production
environment as possible on the development machine for the purpose of testing.

For example, if our production server requires us to run the process on a specific port (say port
80), which we cannot access on our development server (if we do not have root privileges, for
instance), we could add a staging environment and set a port variable that is only set to 80
in a production environment.

See Chapter 11, Taking It Live, for information on how to safely run
Node on port 80.

Accelerating Development with Express

190

Let's modify the top part of the configuration section as shown in the following code:

var app = express(),
env = app.get('env'),
dev = env === 'development'
prd = env === 'production';

process.env.PORT = process.env.PORT || (prd ? 80 : 3000);

We defer to the PORT operating system environment variable if it is set, enabling this
functionality to be overridden if required. If PORT isn't set and it's a production environment,
then we set process.env.PORT to 80 or fallback to port 3000. When starting the app, ./
bin/www uses process.env.PORT to determine the port. The ./bin/www file requires our
app.js code, thus allowing app.js to modify the PORT environment variable if required.

So if we set NODE_ENV to anything other than development or production (for example,
we could set it to staging), the app would be hosting on port 3000 but it would be logging
the logfile instead of the console.

We could initialize our staging server with the following code:

NODE_ENV=staging npm start

For Windows, use the following commands:

set NODE_ENV=staging

npm start

This would not be a safe way to run a server, but for testing purposes on Mac OS X or Linux
systems, we can try out the production environment using the following command:

sudo NODE_ENV=production npm start

On Windows, we simply use the following commands:

set NODE_ENV=production

npm start

When attempting to run the server with NODE_ENV set to production,
if we see an EADDRINUSE or an EACCESS error, it's likely that a service
is already running on port 80. We would need to stop this service in to test
our code. For instance, if Apache is running on our system, it's probably
hosting through port 80. We can stop Apache with sudo apachectl
-k stop (or net stop apache2.2 on Windows).

Chapter 7

191

Changing NODE_ENV permanently
If we are in a staging process, we may not wish to type NODE_ENV=staging every time we
load our app. The same applies to production. While the server would be started a lot less, we
would have to remember to set NODE_ENV when restarting.

We can make things easier on Unix-type systems (Linux or Max OS X) with the export shell
command as follows:

export NODE_ENV=staging

This command only sets NODE_ENV while our terminal is open. To make it permanent, we add
this line to our home directory's rc file. The rc file is named depending upon the shell. For
bash, it's located at ~/.bashrc (where ~ is the home folder). Other shells, such as sh and
ksh, would have rc files located at ~/.shrc, ~/.kshrc and so on.

To permanently set NODE_ENV, we can use the following command:

echo -e "export NODE_ENV=staging\n" >> ~/.bashrc

Here staging is our desired environment and bash is our shell.

In Windows, we use set and setx:

set NODE_ENV=staging

setx NODE_ENV=staging

The set command takes immediate effect, but is lost once the command prompt is closed.
The setx command persists the setting, but not until we open a new command prompt, so
we use both.

See also
ff The Generating Express scaffolding recipe

ff The Deploying to a server environment recipe discussed in Chapter 11, Taking It Live

ff The Making an Express web app recipe

ff The Initializing and using a session recipe

Implementing dynamic routing
In the very first recipe of this cookbook, Setting up a router, we explored various ways to set
up routing in Node. Express provides a far superior and very powerful routing interface, which
we'll explore in this recipe.

Accelerating Development with Express

192

Getting ready
In this recipe, we'll work with our nca folder.

How to do it...
Let's say we want to add a page for a fictional character named "Mr Page." We'll name the
route page, so in the routes section of app.js, we add the following code:

app.get('/page', function (req, res) {
 res.send('Hello I am Mr Page');
});

We can also define flexible routes and grab the requested route using req.params as shown
in the following code:

app.get('/:page', function (req, res) {
 res.send('Welcome to the ' + req.params.page + ' page');
});

It's maybe okay to shove our callbacks directly into app.get while prototyping ideas, but in
the interest of a clutter-free app.js let's take our callbacks and load them from routes/
index.js as follows:

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res) {
 res.render('index', { title: 'Express' });
});

router.get('/page', function (req, res) {
 res.send('Hello I am Mr Page');
});

router.get('/:page', function (req, res) {
 res.send('Welcome to the ' + req.params.page + ' page');
});

module.exports = router;

How it works...
We create the /page route using router.get. Then we outline how we wish to respond to
that route in the callback of router.get. In our example, we use res.send (an enhanced
res.write) to output simple text. This is our inflexible dynamic route.

Chapter 7

193

Express also provides flexible route capabilities using placeholders. In the main recipe,
we defined a :page placeholder. When the placeholder is filled in by a request (for
example, /anyPageYouLike), the fulfillment of the placeholder is added to req.params
according to its name. So in this case, req.params.page would hold /anyPageYouLike.

When a user loads localhost:3000/page, they see Hello I am Mr Page. When they
access localhost:3000/absolutelyAnythingElse, they get the Welcome to the
absolutelyAnythingElse page.

Essentially, the router is a piece of middleware, and every route we add to it decorates the
middleware with extra functionality. The entire composed piece of route middleware is then
integrated into the app by exporting it from the routes/index.js file, loading it into app.
js, and finally passing it into app.use.

There's more...
What other things can we do with Express routes?

Route validation
We can restrict flexible routes to specific character ranges using pieces of Regular Expression
syntax shown as follows (in routes/index.js):

router.get('/:page([a-zA-Z]+)', routes.anypage);

We pass a character match, [a-zA-Z] along with a plus (+). This will match the characters
one or more times. As a result, we limit our :page parameter to letters only.

Therefore, http://localhost:3000/moo will give the Welcome to the moo page, whereas
http://localhost:3000/moo1 will return a 404 error.

Optional routes
We can also define optional routes using the question mark (?), so in routes/index.js,
we use the following code:

router.get('/:page/:admin?', function (req, res) {
 var admin = req.params.admin
 if (admin) {
 if (['add','delete'].indexOf(admin) !== -1) {
 res.send('So you want to ' + req.params.admin + ' ' + req.
params.page + '?');
 return;
 }
 res.send(404);
 }
});

Accelerating Development with Express

194

We check for the existence of the :admin placeholder. If a route fulfills it, we verify that it is
allowed (either add or delete) and send a tailored response. If the route is not allowed,
we send a 404 error.

While the query wildcard (?) can be appropriate for lots of similar routes, if we only had our
add and delete routes and there was no possibility of adding more routes later, we could
implement this functionality in a much cleaner way.

In routes/index.js, we could change the route expression to the following code:

router.get('/:page/:admin((add|delete))', function (req, res) {
 res.send('So you want to ' + req.params.admin + ' ' +
 req.params.page + '?');
});

So this would do exactly the same thing. A more specific route expression allows for a cleaner
(though less powerful) handler function.

Asterisks wildcards
We can use asterisk (*) as a wildcard for general matching requirements. For instance, let's
add the following route:

router.get('/:page/*', function (req, res) {

 var child = req.params[0],
 parent = child ? ' of the ' + req.params.page + ' page' : '';

 res.send('Welcome to the ' +
 (child || req.params.page) + ' page' + parent);

});

Now, if we access localhost:3000/foo/bar, we get the Welcome to the bar page of the
foo page, but if we just access localhost:3000/foo, we see the Welcome to the foo page.

We could also get a little wild and apply this to Mr Page's route as follows (function masked
with the snip comment for brevity):

router.get('/*page*', /*…snip…*/);

Now any route containing the word page will get a message from Mr Page.

See also
ff The Setting up a router recipe discussed in Chapter 1, Making a Web Server

ff The Making an Express web app recipe

ff The Templating in Express recipe

Chapter 7

195

Templating in Express
A fundamental part of the Express framework is its use of views. A view is simply a file
that holds template code. Express helps us to separate our code into operationally distinct
concerns. We have server code in app.js, route-specific functionality in routes/index.
js, and then we have our output-generating logic in the views folder. A template language
provides the basis for defining dynamic logic-driven content, and the template (or view) engine
converts our logic into the final HTML, which is served to the user. In this recipe, we'll use
Express' default view engine, Jade, to process and present some data.

In the There's more... section, we'll find out how to change the view engine.
A list of supported template engines can be found at https://www.
github.com/visionmedia/express/wiki. Comparisons of various
template engines can be found at http://paularmstrong.github.
com/node-templates/.

Getting ready
For our data, we'll use the profiles.js object created in the first recipe of Chapter 3,
Working with Data Serialization. We'll need to copy it into the root of our nca folder.

How to do it...
Let's keep it simple and strip any routes we've added to routes/index.js. We just want our
top-level route.

Since Jade is set as the default view engine, we don't need to work with app.js in this recipe.

In routes/index.js, we'll strip all routes except for index as shown in the following code:

router.get('/', function(req, res) {
 res.render('index', { title: 'Express' });
});

The res.render method loads the Jade template in views/index.jade. We're going
to use index.jade as a view for our profiles.js object data, so we need to make it
available to our index view.

We do this by passing it through the options object of res.render:

var express = require('express');
var router = express.Router();
var profiles = require('../profiles');

 router.get('/', function(req, res) {

https://www.github.com/visionmedia/express/wiki
http://paularmstrong.github.com/node-templates/

Accelerating Development with Express

196

 res.render('index', { title: 'Profiles',
 profiles: profiles });
});
module.exports = router;

Note that we also changed the title property to 'Profiles'.

All we do now is edit views/index.jade. The generated index.jade file contains the
following code:

extends layout

block content
 h1= title
 p Welcome to #{title}

We're going to add a table to the page that outputs the details of each person in the
profiles.js object:

extends layout

block content

 h1= title
 p Welcome to #{title}

 table#profiles
 tr
 th Name
 th Irc
 th Twitter
 th Github
 th Location
 th Description
 each profile, id in profiles
 tr(id=id)
 each val in profile
 td #{val}

Off-side coding
Jade is an off-side (indentation-based) language. Indentation dictates
scope, so in all the Jade (and Stylus) recipes ensuring the indentation
is correct in our code is of paramount importance.

Chapter 7

197

To test, we start our app using the following command:

npm start

Then navigate to http://localhost:3000 to see something like the following output:

How it works...
The res.render method pulls the index.jade view from the views folder, even though
the first parameter is simply index. Express knows that our intended Jade file is inside the
views directory because app.js contains the following code:

 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');

The second parameter is an object holding two properties: title and profiles. These
object properties become local variables within the Jade view. We output the variables either
by return value buffering with a preceding equals (=) sign, or by using Jade's interpolation,
wrapping it like #{title}.

Jade is a lean-templating language. It uses bracket-stripped markup tags and has an
indentation-based syntax with an alternative block expansion option (where we use the colon
instead of an indentation to signify nesting). It also has a minimal syntax set to define the id
and class attributes using the hash (#) and dot (.), respectively.

For instance, refer to the following Jade:

table#profiles
 th Name

The preceding code would create the following HTML:

<table id=profiles><th>Name</th></table>

Accelerating Development with Express

198

To learn more about the Jade language, check out its GitHub
page: https://www.github.com/visionmedia/jade.

Jade also processes iteration logic. We used two Jade iterators each to pull the values from
our profiles object as follows:

 each profile, id in profiles
 tr(id=id)
 each val in profile
 td #{val}

This code traverses the profiles object, loading each ID (ryan, isaac, timothy, and so
on) into a new id variable and each object containing profile information into a profile
object variable.

Underneath our first each statement, we indent tr(id=id). Unlike JavaScript, indentation
in Jade is part of the logic, so getting it right is essential.

This tells Jade that for each profile we want to output a <tr> tag with the id attribute set
to the ID of the profile. In this case, we don't use the hash (#) shorthand to set the id
attribute since we need Jade to evaluate our id variable. The tr#id syntax would generate
<tr id=id> for each profile, whereas tr(id=id) generates <tr id=ryan> or isaac, or
timothy, and so forth.

Underneath tr we indent again, indicating that whatever comes next should be nested within
the <tr> tags. Again, we use each to traverse the values of each sub-object , indenting
beneath with a td that holds each value of the profile.

There's more...
Let's take a look at some of the other templating capabilities and features Express has
to offer.

Using other template engines
Express supports various alternative template engines, and unsupported engines can be
adapted to Express without excessive hassle.

The express executable will only generate Jade or EJS-based project scaffolding. To generate
EJS, we simply pass ejs to the -t flag:

express -t ejs nca

Instead of generating an Express project with EJS as the default view engine, let's convert our
existing project (we'll start by copying it to nca_ejs).

Chapter 7

199

First, remove jade and install ejs as shown in the following commands:

npm uninstall jade --save

npm install ejs@~0.8.5 --save

The --save flag causes npm to remove the jade dependency and add the ejs dependency
in package.json as shown in the following code:

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.0.0-rc2",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "ejs": "~0.8.5"
 }
}

Finally, we change our view engine as follows:

 app.set('views', __dirname + '/views');
 app.set('view engine', 'ejs');

This technique will work for any Express-supported template engine. There's no need to
require the EJS module; Express takes care of that behind the scenes.

EJS templates
Since we've set up nca_ejs, we may as well go ahead and rewrite our index view in
embedded JavaScript.

In nca_ejs/views, we add a new file, index.ejs, and add the following code:

<h1> <%= title %></h1>
<p> Welcome to <%= title %></p>

<table>
<tr><th>Name</th><th>Irc</th><th>Twitter</th>
<th>Github</th><th>Location</th><th>Description</th></tr>

<% Object.keys(profiles).forEach(function (id) {%>

Accelerating Development with Express

200

 <tr>
 <% Object.keys(profiles[id]).forEach(function (val) { %>
 <td><%= profiles[id][val]; %></td>
 <% }); %>

 </tr>
<% }); %>
</table>

The <% and %> tags denote embedded JavaScript. If JavaScript happens to wrap any HTML
code, the HTML is processed as if it's part of the JavaScript. For instance, in our forEach
callbacks, we have <tr> and <td>; these are included as output from each loop.

When the opening tag is accompanied by the equals sign (<%=), it evaluates any given
JavaScript variable and pulls it into the generated output. For example, in our first <h1>,
we output the title variable.

Since the error handlers in app.js attempt to render an error template, we'll also need to
provide an error.ejs view; the following will suffice:

<h1><%= message %></h1>
<h2><%= error.status %></h2>
<pre><%= error.stack %></pre>

Now if we start our app (npm start) and go to localhost:3000, we'll see the same
profiles table as in our main recipe.

Literal JavaScript in Jade
Jade can also process plain JavaScript. Let's use that to our advantage to output our table
headers in a more concise, DRY fashion:

- var headers = ['Name', 'Irc', 'Twitter', 'Github', 'Location',
 'Description'];
table#profiles
 tr
 each header in headers
 th= header
 each profile, id in profiles
 tr(id=id)
 each val in profile
 td #{val}

A dash (–) at the beginning of a line informs Jade that we're using plain JavaScript. Here we
simply create a new array called headers and then use Jade's each iterator to output our
headers, using the equals (=) sign to evaluate the header variable.

Chapter 7

201

We could alternatively create our array in Jade as follows:

headers = ['Name', 'Irc', 'Twitter', 'Github', 'Location',
 'Description'];

Jade then compiles this to the embedded JavaScript in the preceding example, including the
var declarative.

Jade includes
The include statement helps us to separate and reuse pieces of template code. Let's put
our profiles table into its own view. We'll call it profiles.jade.

To load profiles.jade into the index.jade file, we simply edit the index.jade file to
look as follows:

h1= title
p Welcome to #{title}
include profiles

Using layout.jade
Also included in a generated project is the layout.jade view. This is a special view that is
intertwined with Express logic. Any rendered views are packaged into a body variable, which
is then passed into layout.jade. So in our case, we tell res.render to assemble index.
jade. Express converts index.jade to HTML, and then internally renders the layout.jade
view, passing the generated HTML in a body variable. The layout.jade view allows us to
head and foot our views. To disable this feature for the entire app, we use app.set('view
options', {layout:false}). To prevent it from applying to a particular render, we simply
pass layout:false to the options object of res.render.

See also
ff The CSS preprocessors with Express recipe

ff The Making an Express web app recipe

ff The Generating Express scaffolding recipe

CSS preprocessors with Express
Once we have our HTML, we'll want to style it. We could of course use raw CSS, but Express
integrates nicely with some select CSS preprocessors.

Stylus is one such engine. It's written with Express in mind, and its syntax follows many of the
design principles found in Jade.

Accelerating Development with Express

202

In this recipe, we're going to put Stylus in the spotlight, learning how we can use it to apply styles
to our profiles table from the previous recipe.

Getting ready
We'll need our nca folder as it was left in the previous recipe.

How to do it...
First, we need to set up our app to use Stylus.

If we were starting a new project, we could use the express executable to generate a Stylus-
based Express project as follows:

express -c stylus ourNewAppName

This would generate a project where stylus is a dependency in package.json, with an
extra line in app.js in the configuration section:

 app.use(require('stylus').middleware(path.join(__dirname,
 'public')));

However, since we've already got a project on the hotplate, let's modify our existing app to
use Stylus.

In package.json, we use the following code:

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.0.0-rc2",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "jade": "~1.3.0",
 "stylus": "~0.42.3"
 }
}

Chapter 7

203

Then on the command line, run the following command:

npm install

Finally, in app.js, we insert the following code just above the express.static
middleware:

app.use(cookieParser());
app.use(require('stylus').middleware({
 src: __dirname + '/views',
 dest: __dirname + '/public'
}));
app.use(express.static(path.join(__dirname, 'public')));

We're going to put our Stylus files in views/stylesheets. So let's make that directory and
place a new file in it, which we'll call style.styl. Express will find this file, placing generated
CSS in the corresponding folder (stylesheets) of the public directory.

To start our Stylus file, we'll copy the current CSS from /stylesheets/style.css as follows:

body {
 padding: 50px;
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
}
a {
 color: #00b7ff;
}

Stylus is fully compatible with plain CSS, but for learning purposes let's convert it into the
minimal indentation-based format, shown as follows:

body
 padding 50px
 font 14px "Lucida Grande", Helvetica, Arial, sans-serif;
a
 color #00B7FF

Now, we'll style our #profiles table from the previous recipe.

We can apply consistent padding to our td and th tags as well as our #profile table,
utilizing Stylus' @extend directive as follows:

.pad
 padding 0.5em
#profiles
 @extend .pad
 th
 @extend .pad
 td
 @extend .pad

Accelerating Development with Express

204

As new CSS properties are introduced into browsers, they often come with vendor-specific
prefixes until the implementation is considered mature and stable. One such property is
border-radius; on Mozilla browsers it's -moz-border-radius, and on WebKit types
it's referenced as -webkit-border-radius.

Writing and maintaining this sort of CSS can be quite involved, so let's use a Stylus mixin
to make our lives easier:

borderIt(rad = 0, size = 1px, type = solid, col = #000)
 border size type col
 if rad
 -webkit-border-radius rad
 -moz-border-radius rad
 border-radius rad

Now, we'll apply our mixin to the #profiles table and all the td elements as shown in the
following code:

#profiles
 borderIt 20px 2px
 @extend .pad
 th
 @extend .pad
 td
 @extend .pad
 borderIt(col: #000 + 80%)

So our #profiles table now looks similar to the following screenshot:

Chapter 7

205

How it works...
As a module, stylus can operate independent of Express. However, it also has a convenient
middleware method that can be passed into app.use.

When the express executable generates a Stylus-powered project, only the src property is set,
which means Stylus pulls files with a .styl extension and converts them to .css files in the
same folder. When we set dest, we load our Stylus code from one place and save it in another.

Our src is views and dest is public, but even though we put our styles.styl in a
subdirectory of views, Stylus still finds it and places it in the corresponding subdirectory of
the dest folder.

The layout.jade file includes a link tag to /stylesheets/style.css. So when we
created style.styl in views/stylesheets, the generated CSS was written to public/
stylesheets. Since our static server directory is set to public, requests for /stylesheets/
style.css are served from public/stylesheets/style.css.

We used several Stylus features to create our style sheet.

The @extend directive is based on the concept of inheritance. We make a class and then use
@extend to apply all the qualities of that class to another element. Our use of @extend in
the recipe creates the following CSS:

.pad,
#profiles,
#profiles th,
#profiles td { padding: 0.5em;}

The larger our styles base becomes, the more the @extend directive tends to ease
maintenance and readability.

We make it easier to define a border, with rounded corners if desired, by using a mixin. Stylus
mixins allow us to define default values as we set the parameters. If we mixed in borderIt
with no arguments, it would generate a one pixel-wide, right-angled, solid black border
according to its defaults.

We first use borderIt on the #profiles table, passing in 20px and 2px. There's no need
to use parentheses—Stylus understands it's a mixin. The first parameter (20px) in our mixin is
named rad. Since rad has been specified the borderIt mixin goes ahead and outputs the
various vendor prefixes along with the desired radius. The second parameter overwrites our
border-width default.

We do need parentheses when we apply borderIt to the td elements, because we define
our options using kwarg (a keyword argument). All we want to do is set the color, so instead
of supplying all preceding parameters, we simply reference the desired parameter as a
property. The color we pass is #000 + 80%. This is not a valid CSS but Stylus understands it.

Accelerating Development with Express

206

There's more...
Let's explore some more Stylus features and find out how to use the alternative CSS engine,
LESS, as Express middleware.

Nested mixins and rest parameters
Let's take a look at reusing mixins in other mixins and Stylus' rest parameter syntax (essentially,
it is a single parameter that consumes any parameters that follow and compiles them into
an array).

We could soften the edges of our table further by rounding the relevant angles of the corner
<td> elements, such that they match the rounded nature of the outer border.

We need to be able to set a radius for an individual corner. Vendor implementations differ on
their approach to this. In Mozilla-based browsers, the corner is defined after the radius with no
dash; for example, refer to the following code:

-moz-border-radius-topleft: 9px

On the other hand, WebKit conforms to the specification (except the prefix) with the following
code:

-webkit-border-top-left-radius

Let's create another mixin dedicated to create the rounded corners CSS, irrespective of
corners being equal.

rndCorner(rad, sides...)
 if length(sides) is 2
 -moz-border-radius-{sides[0]}{sides[1]} rad
 -webkit-border-{sides[0]}-{sides[1]}-radius rad
 border-{sides[0]}-{sides[1]}-radius rad
 else
 -webkit-border-radius rad
 -moz-border-radius rad
 border-radius rad

The sides parameter is a rest parameter. It swallows up all the remaining arguments. We
need two sides for a corner, for example, top left. So we use a conditional statement to check
if the length of the remaining arguments is 2 (instead of is, we could have used ==).

If we have our sides, we integrate them into the various browser-specific CSS. Note that when
including variables in a property, we escape them with curly brackets ({}). If sides aren't
specified, we set the radius to all sides, as in this recipe.

Now, we can call this mixin from our borderIt mixin as follows:

borderIt(rad = 0, size = 1px, type = solid, col = #000)

Chapter 7

207

 border size type col
 if rad { rndCorner(rad) }

We didn't have to wrap the conditional statement with braces. This just allows us to keep our
if statement and mixin call on the same line. It's the equivalent to the following code:

borderIt(rad = 0, size = 1px, type = solid, col = #000)
 border size type col
 if rad
 rndCorner(rad)

Finally, we apply our single corners to the relevant td elements:

tdRad = 9px
#profiles
 borderIt 20px 2px
 @extend .cell
 th
 @extend .cell
 td
 @extend .cell
 borderIt(col: #000 + 80%)
 tr
 &:nth-child(2)
 td:first-child
 rndCorner tdRad top left
 td:last-child
 rndCorner tdRad top right
 &:last-child
 td:first-child
 rndCorner tdRad bottom left
 td:last-child
 rndCorner tdRad bottom right

Our first borderIt mixin now calls the rndCorner mixin inferentially because it sets a radius.
The second borderIt mixin won't call rndCorner, which is great because we want to call it
ourselves on specific elements.

We use the special ampersand (&) referencer to cite the parent tr element. We use CSS
:nth-child(2) to select the second row of our table. The first row consists of th elements.
The same applies for first-child and last-child, which we use to apply the appropriate
corners to our td elements.

While the :nth-child and :last-child pseudo selectors won't work in Internet Explorer 8
and below, and neither will border-radius. So this is one of the few cases we can use it and
still be cross-browser compatible, progressively enhancing it in more modern browsers.

Accelerating Development with Express

208

Playing with colors
Stylus does some amazing things with color. It has functions that allow us to lighten/darken,
(de)saturate, hue adjust, and even mix colors together.

Let's color our table in, writing the adjusting our Stylus code as follows:

#profiles
 borderIt 20px, 2px
 @extend .pad
 background: #000;
 color: #fff;
 th
 @extend .pad
 td
 @extend .pad
 background blue + 35%
 borderIt(col: @background)
 color pink - green - brown + gold – green
 color desaturate(@color + 100, 100)
 &:hover
 color @background + 180deg
 background desaturate(@background, 40)
 border-color @background

We can reference values of any properties already set for an element. We use the @
background property lookup variable consistently throughout this piece of code,
but in many cases it holds a different value.

To start off, we invert our #profile table, setting color to white and background to
black. We next apply color to our td elements, obtaining a lighter shade of blue by adding
35% to it. We match our td borders to their background colors with the @background
property lookup.

Then we just go wild with color mixing, eventually setting the text color of our td to a color not
far from the original pink. We then pass @color to desaturate while lightening it using the
plus (+) symbol. Next, we set the hover text color by adding 180 degrees to our @background
color, obtaining the complementary hue. We also desaturate our background and match
border-color (@background now matches the desaturated background, whereas when
we set the color on hover, it matched the pre-hover background color).

So now our table looks similar to the following screenshot:

Chapter 7

209

Using LESS
LESS may be suitable as a more familiar and verbose style sheet language compared to Stylus.

For more information on LESS, visit http://en.wikipedia.org/
wiki/LESS_(stylesheet_language) and http://lesscss.org.

We can use LESS with Express by replacing the following code:

app.use(require('stylus').middleware({
 src: __dirname + '/views',
 dest: __dirname + '/public'
 }));

To use LESS with Express, replace the preceding code with the following code:

app.use(require('less-middleware')({
 src: __dirname + '/views',
 dest: __dirname + '/public'
 }));

To ensure this works, change our package.json file as follows:

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "3.3.4",
 "jade": "*",

http://en.wikipedia.org/wiki/LESS_(stylesheet_language)

Accelerating Development with Express

210

 "less-middleware": "~0.2.0"
 }
}

And run the following command:

npm install

To test it, we'll rewrite our recipe in LESS.

Some Stylus features have no equivalent in LESS. Instead of using @extend to inherit our
pad class, we'll convert it into a mixin. There are no if conditions in LESS either, so we'll
declare the .borderIt mixin twice, the second time using the when statement:

body { padding: 50px;
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif; }

a { color: #00B7FF; }

 .pad() { padding: 0.5em; }

.borderIt (@rad:0, @size:1px, @type: solid, @col: #000) {
 border: @size @type @col;
}

.borderIt (@rad:0) when (@rad > 0) {
 -webkit-border-radius: @rad;
 -moz-border-radius: @rad;
 border-radius: @rad;
}

#profiles {
.borderIt(20px, 2px);
.pad();
th { .pad(); }
td { .pad();
 .borderIt(0,1px,solid,lighten(#000, 80%));
 }
}

We save this to views/styles.less. Express compiles it to public/styles.css and
once again our #profiles table has rounded corners.

Chapter 7

211

See also
ff The Templating in Express recipe

ff The Generating Express scaffolding recipe

Initializing and using a session
If we want to maintain the state between page requests, we use sessions. Express supplies
middleware that takes much of the complexity out of managing sessions. In this recipe, we're
going to use Express to make a session between a browser and server to facilitate a user
login process.

Getting ready
Let's create a fresh project:

express login

This will create a new Express skeleton named login.

Let's move into the login folder and run the following commands:

npm install express-session@1.x --save

npm install method-override @1.x --save

These are both pieces of Express middleware, which we'll use in our new login app.

How to do it...
We need to add some lines to app.js. First, where we require the dependencies, let's require
express-session and method-override:

var express = require('express');
var http = require('http');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
var session = require('express-session');

Accelerating Development with Express

212

Then we plug the method-override middleware just above cookieParser, and the
express-session middleware just below it, as shown in the following code:

app.use(methodOverride());
app.use(cookieParser());
app.use(session({secret:'koobkooC edoN'}));
app.use(express.static(path.join(__dirname, 'public')));

Now, let's modify routes/index.js as follows:

var express = require('express');
var router = express.Router();
var users = {'dave' : 'expressrocks'}; //fake user db

function index(req, res) {
 res.render('index', { title: 'Express',
 user: req.session.user});
}

router.route('/')
 .get(index)
 .post(function login(req, res) {
 var user = req.body.user;
 if (user) {
 Object.keys(users).forEach(function (name) {
 if (user.name === name && user.pwd === users[name]) {
 req.session.user = {
 name: user.name,
 pwd: user.pwd
 };
 }
 });
 }
 index(req, res);
 })
 .delete(function logout(req, res) {
 delete req.session.user;
 index(req, res);
 });

module.exports = router;

Finally, let's put a login form together in a file, which we'll call login.jade:

if user
 form(method='post', action='/')

Chapter 7

213

 input(name="_method", type="hidden", value="DELETE")
 p Hello #{user.name}!
 a(href='javascript:', onClick='forms[0].submit()') [logout]

else
 p Please log in
 form(method='post', action='/')
 fieldset
 legend Login
 p
 label(for="user[name]") Username:
 input(name="user[name]")
 p
 label(for="user[pwd]") Password:
 input(type="password", name="user[pwd]")

 input(type="submit")

_method
Note how our logout form uses a hidden input named _method. Setting
this value to DELETE overrides the POST method that the form is set to.
This is made possible by the method-override middleware inside the
configuration section within the app.js file.

We'll include this form within index.jade:

h1= title
p Welcome to #{title}

include login.jade

Now if we run our app and navigate to http://localhost:3000, we'll see a login form. We
enter the username dave and password expressrocks; we will now see a greeting with the
option to log out.

How it works...
To use sessions and work with DELETE requests, we have to include some additional
middleware. We do this by installing and requiring expression-session and
method-override.

We app.use the method-override (methodOveride) middleware just above
cookie-parser (cookieParser), and more importantly, underneath the body-parser
(bodyParser). The override works via a private hidden form variable (the _method hidden
input as defined in our login.jade file). So we need the form data to be parsed with
body-parser before method-override can know if such an override is expected.

Accelerating Development with Express

214

In similar fashion, the express-session (session) middleware is placed below the
cookie-parser (cookieParser) middleware because a browser session relies on cookie
data. When we pass a string to session, it becomes the seed for a hash that is used to
create signed cookies (which sessions depend on), so it needs to be unique and unknown
to outsiders.

The router allows us to attach multiple verbs to a predefined route, using router.route. We
set up a route to the / path and then attach get, post, and delete configurations to it using
a chaining API. That is, the call to router.route and subsequent verb methods will return
an object with those same methods available for us.

We refactor the index GET handler from an anonymous function expression to a named
function statement (index) and then reuse it in our POST and DELETE routes.

When we set up our routes, we assume that POST requests to the / path are login attempts,
and thus pass them first to the login route. We also assume that DELETE requests to / are
to be processed primarily by the logout route.

Our login route checks the posted login details (using req.body, which is supplied to us
by the body-parser middleware) against our placeholder users object. In a real-world
scenario, login would rather be validating against a database of users.

If everything checks out, we add a user object to the session and place the name and
password (pwd) into it.

When pushing user details to the session, we could have taken a shortcut and used the
following code:

req.session.user = req.body.user;

However, doing so could leave us open for an attacker to fill the req.session.user object
with anything they desire, in potentially large amounts. While any data being entered into
a session would be entered by a trusted user (one with login details), and although body-
parser has built-in safety limits for POST data, it is always better to err on the side of
conservatism over convenience.

Once the login POST handler is done, it calls index, passing the req and res objects along.

Other than being broken out as its own function statement, we make one small addition to the
index route, by adding a user property to the rendering options, and set this new property to
req.session.user.

Doing so enables login.jade to check the user variable. If it is set, login.jade shows a
greeting along with a small form containing a link that sends a POST request with a DELETE
override to the server, thus triggering the logout route via router.delete.

Chapter 7

215

The logout route simply deletes the user object from req.session and passes control
to the index.route (by calling the index function with req and res), which pushes a
non-existent req.session.user back to Jade via res.render.

When Jade finds that there is no user it displays the login form, which is of course also output
to a pre-login request.

There's more...
We can improve the way we interact with sessions.

Custom middleware for site-wide session management
This recipe is fine if we want to pass our login and logout requests to just one route. However,
as our routes and views increase, managing the complexities with sessions could become
burdensome. We can somewhat mitigate this by creating our own custom middleware for
session-handling purposes.

In routes/index.js, we can now simply have the following code:

var express = require('express');
var router = express.Router();

function index(req, res) {
 res.render('index', { title: 'Express' });
}

router.all('/', index);
router.all('/:page', index);

module.exports = router;

We're completely decoupling our session logic from the routes logic, so the login and logout
handlers have disappeared. We're sending all requests to the / path to our index function.
The all verb will catch any type of request, whether it's GET, PUT, POST, or DELETE, or if it
is a more exotic request such as PATCH or SUBSCRIBE, it will be served by our index handler.
We also have the :page route catching all HTTP methods as well. In a real-life scenario,
the :page route could be handled separately; however, we'll leave it to be handled by index
for brevity. Our index function has been slightly modified by removing the user property from
the options argument provided to res.render.

Now let's create a file and call it login.js, saving it in the root folder of our app (alongside
app.js). We'll put the following code into the login.js file:

var users = {'dave' : 'expressrocks'};

module.exports = function (req, res, next) {

Accelerating Development with Express

216

 var method = req.method.toLowerCase(), //cache the method
 user = req.body.user,
 logout = (method === 'delete'),
 login = (user && method === 'post');

 if (logout) { delete req.session.user; }

 if (login) {
 Object.keys(users).forEach(function (name) {
 if (user.name === name && user.pwd === users[name]) {
 req.session.user = {
 name: user.name,
 pwd: user.pwd
 };
 }
 });
 }

 if (!req.session.user) { return next(); }

 res.locals.user = req.session.user;
 next();
};

Now we simply include login.js as middleware in the configuration section of app.js,
between the session and express.static middleware:

app.use(session({secret:'koobkooC edoN'}));
app.use(require('./login'));
app.use(express.static(path.join(__dirname, 'public')));

Finally, we'll modify both forms that appear in login.jade, so we'll replace the
following code:

form(method='post', action='/')

We will replace the preceding code with the following code (in both places where
form appears):

form(method='post')

This makes the form POST (or DELETE in the override case) to whatever address it is
submitted from. This would be useful in a scenario where we wanted a site global login
(and logout) widget rather than a separate login page.

Now all the muscle work is performed by the login.js file. The exported function essentially
performs the same actions as our recipe but in a route-agnostic manner.

Chapter 7

217

At the top of our function, we determine the HTTP method currently hitting our server and find
out if the request body contains any user data (as would be the case in a login attempt). We
use the method and the existing user data to determine if a login or logout attempt is being
made, holding the Boolean result in the login and logout variables.

In the event of a DELETE HTTP request (a logout attempt as far as our server is concerned),
we simply remove the user data from the session.

If we've got a login on our hands (that is, if it's a POST request and the POST body contains
user data), we check our phony database; if there's a match, we load the matched user data
into the session.

If the session doesn't contain any logged-in user data, then we exit the function at this point
and call next to proceed to the following middleware.

Otherwise, the ultimate value of the user property is loaded directly into our view as a local
variable by setting res.locals.user to req.session.user at the end of our middleware
function. In the same way, we can pass variables to views via the res.render options object
within a route. So as in the main recipe, req.session.user is now available in login.
jade as user. Finally, we call the next function, which passes control to any subsequent
middleware. In our case the next piece of middleware is app.router.

Flash messages
For this example, we'll work on the previous extension to our recipe (the Custom middleware
for site-wide session management section).

The express-flash module provides a simple interface for session-based flash
messages. A flash message is held in a session object for one request and then disappears.
It's an easy way to generate one-time request associated information, such as an error
message.

First, we'll need to install express-flash using the following command:

npm install express-flash --save #adds the dep to package.json

Let's add our new dependency to app.js:

var express = require('express');
var http = require('http');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
var session = require('express-session');
var flash = require('express-flash');

Accelerating Development with Express

218

In the configuration section, we'll slot express-flash into our middleware stack between
the session middleware and our custom login middleware:

app.use(cookieParser());
app.use(session({secret:'koobkooC edoN'}));
app.use(flash());
app.use(require('./login'));
app.use(function (req, res, next) {
 res.locals.flash = req.flash();
 next();
});
app.use(express.static(path.join(__dirname, 'public')));

Now, let's modify our login.js file from the Custom middleware for site-wide session
management section. We're going to modify it to flash an error message for invalid login details.

We need to capture our flash message (if any) and pass it as a local variable to our Jade
views. The second highlighted piece of code is some custom middleware that does just that.

We could alter the code located at the bottom of our exported function inside the if
(login) statement block:

if (login) {
 var valid = Object.keys(users).some(function (name) {
 return (user.name === name && user.pwd === users[name]);
 });
 if (valid) {
 req.session.user = {
 name: req.body.user.name,
 pwd: req.body.user.pwd
 };
 } else {
 req.flash('error','Login details invalid!');
 }
}

This works fine, but we can do better. Let's tidy it up by extracting our validation code into a
separate function (placing it at the top of login.js):

function validate(user, cb) {
 var valid = Object.keys(users).some(function (name) {
 return (user.name === name && user.pwd === users[name]);
 });
 cb((!valid && {msg: 'Login details invalid!'}));

}

Chapter 7

219

Although everything happening in validate is synchronous, we've written it in an asynchronous
style (that is, passing values through a callback instead of returning values). This is because,
in reality, we wouldn't use an object to store user details. We would use a remote database,
which would have to be accessed asynchronously. In the next recipe, we'll store our user details
in a MongoDB database and asynchronously read it to validate login requests. The validate
function is structured with this in mind.

Now, we replace the login logic in the login.js file's exported function with the following code:

 if (login) {
 validate(user, function (err) {
 if (err) { req.flash('error', err.msg); return next(); }
 res.locals.user = req.session.user = user;
 next();
 });

 return;
 }

 if (!req.session.user) { return next(); }
 res.locals.user = req.session.user;

 next();
}; //closing bracket of module.exports

Our validate function essentially does the same thing as our first adjustment to the login
logic. However, it's tucked out of the way. Also, note the various strategic calls to next—when
exiting early from an error, adding a user session, or at the very end. Placing these next
calls within the callback context future-proofs our validation function for asynchronous
operations, which is important for database interactions.

We use the callback(err) style from the validate function to let our middleware know
whether the login was successful. The err object is simply an object containing the error
message (msg) and it's only passed if valid is not true.

If err is present, we call req.flash, which is a method added to the req object by the
express-flash middleware. It pushes an object called flash onto req.session. After
the request is fulfilled, the object is removed from req.session.

We need to make this object available to login.jade; this is why we have added some custom
middleware after the login middleware to pass req.flash() to req.locals.flash.

Finally, at the top of login.jade, we write the following code:

if flash.error
 hr
 b= flash.error
 hr

Accelerating Development with Express

220

If login details are incorrect, the user receives a bold error notification between horizontal lines.

See also
ff The Making an Express web app recipe

ff The Templating in Express recipe

ff The Implementing dynamic routing recipe

Making an Express web app
In this recipe, we're going to combine a lot of previous recipes and throw in a few extra
Express features (such as app mounting) to create the foundations of an Express-based
web app with integrated administration features.

Getting ready
Let's start fresh. From the command line, we execute the following command:

express profiler

The name of our new app will be Profiler; it will be the profile manager for members of the
Node community.

We need to edit package.json using the following code:

{
 "name": "Profiler",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.0.0-rc2",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "jade": "~1.3.0",
 "stylus": "~0.42.3",
 "express-flash": "0.0.2",
 "mongodb": "~1.3.23"
 }
}

Chapter 7

221

We've set the name to Profiler, adding stylus, mongodb, and express-flash modules.

So we get our dependencies by executing the following command:

npm install

We also need to ensure that MongoDB is installed. See the Storing and retrieving data with
MongoDB recipe of Chapter 4, Interfacing with Databases, for more details.

Mongo needs a folder to store our apps database in our app folder:

mkdir db

Then we can start MongoDB with the following command:

sudo mongod --dbpath db

At deployment stage, we can start MongoDB as a service using the
--fork flag.

We'll also push some data into MongoDB to get us started. Let's create a new folder in the
profiler directory and call it tools. Then we pull our profiles.js module from Chapter 1,
Making a Web Server, into it, creating a new file called prepopulate.js.

Inside the prepopulate.js file, we write the following code:

var client = require('mongodb').MongoClient,
 profiles = require('./profiles'),
 users = [{name : 'dave', pwd: 'expressrocks'},
 {name : 'MrPage', pwd: 'hellomynamesmrpage'}
],
 tx = 2; //expected amount of transactions

profiles = Object.keys(profiles).map(function (key) {
 return profiles[key];
}); //convert object to array of objects

function e(err) { if (!err) {return;} console.log(err); process.
exit(); }

function tidy(db) {tx--; return tx || db.close(); }

client.connect('mongodb://localhost:27017/profiler',
 function (err, db) {
 e(err);

 db.dropDatabase(function (err) {

Accelerating Development with Express

222

 e(err);

 db.collection('users').insert(users, function (err) {
 if (err) { return console.log(err); }
 console.log('Added users');
 tidy(db);
 });

 db.collection('profiles').insert(profiles,
 function (err, o) {
 e(err);
 console.log('Added profiles');
 tidy(db);
 });
 });
});

When executed, this gives us a database named profiler with a profiles and
users collection.

Finally, we'll use the entire login app of the previous recipe. However, we'll want it with the
site-wide session management and flash messages (in the code examples, this folder is called
login_flash_messages). So let's copy the login folder to our new profile directory as
profiler/login.

How to do it...
There's a lot going on in this recipe, so let's break it down into pieces.

Creating a database bridge
Let's begin with some backend coding. We'll create a new folder called models and create
a file inside it called profiles.js. This is going to be used to manage all of our interactions
with the MongoDB profiles collection. In the models/profiles.js file, we put the
following code:

var mongodb = require('mongodb'),
 client = mongodb.MongoClient,
 ObjectID = mongodb.ObjectID,
 profs;

client.connect('mongodb://localhost:27017/profiler', function (err,
db) {
 profs = db.collection('profiles');
 [pull, del, add].forEach(function (m) { exports[m.name] = m; })
});

function pull(page, cb) {

Chapter 7

223

 var p = {},
 //rowsPer = 10, //realistic rowsPer
 rowsPer = 2,
 skip, errs;
 page = page || 1;
 skip = (page - 1) * rowsPer;

 profs.find({}, {limit: rowsPer, skip: skip})
 .each(function (err, doc) {
 if (err) { errs = errs || []; errs.push(err); }
 if (doc) {
 p[doc._id] = doc;
 delete p[doc._id]._id;
 return;
 }
 cb(errs, p);
 });
}

function del(profile, cb) {
 profs.remove({_id: ObjectID(profile)}, cb);
}

function add(profile, cb) {
 profs.insert(profile.profile, cb);
}

exports.pull = exports.add = exports.del = function (_, cb) {
 cb(Error('Profiles Not Ready'))
}

We've defined three functions: pull, del, and add. When a connection to our database
has been established, these are loaded onto the exports object, replacing the placeholder
function (at the bottom) assigned to all the three namespaces. The placeholder simply sends
an error through the callback function, indicating that the data isn't ready (this is an unlikely
event but should be handled nonetheless). This error is then thrown in our index handler
in login/routes/index.js, and the error-handling logic at the end of login/app.js
captures the throw, rendering the appropriate output.

Each of our methods operate on the database asynchronously and executes a user callback
once data is returned or the operation is complete. We've set a low rows-per-page limit
(rowsPer) to allow us to test our pagination work (the dividing of content into pages) with
the few records we have.

Accelerating Development with Express

224

We must also modify login/login.js, which we created in the previous recipe, to hook up
our login app to the MongoDB user collection. The main module can remain untouched. We
only have to change the way we validate a user. Everything above module.exports changes
to the following code:

var client = require('mongodb').MongoClient,
 users;

client.connect('mongodb://localhost:27017/profiler',
 function (err, db) {
 users = db.collection('users');
 });

function validate(user, cb) {
 if (!users) {cb({msg: 'User data not ready'});}

 users.findOne({name: user.name, pwd: user.pwd},
 function (err, user) {
 if (err) { throw err; }
 if (!user) {
 cb({msg: 'Invalid login details!'});
 return;
 }
 cb();
 });
}

In this case, if our users data hasn't been loaded from the database, we return early with a
callback, sending an object as the error parameter with the msg property explaining that user
data isn't ready. This msg property would later be passed to the express-flash middleware
via req.flash and be output to the user.

Configuring app.js files
Now let's modify app.js (in project root).

The configuration section should look like the following code:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

app.use(favicon());
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());

Chapter 7

225

app.use(require('stylus').middleware({
 src: __dirname + '/views',
 dest: __dirname + '/public'
}));
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);
app.use('/admin', require('./login/app'));

We've included the Stylus engine above express.static and added an additional app.use
that actually mounts our login app at the /admin route (we copied login into our profiler
directory in the Getting ready section of this recipe). We also removed the /users route. We
can delete the users.js file from routes; do the same in login/app.js, and remove
login/routes/users.js.

Now we'll set up Stylus in login/app:

app.use(flash());
app.use(require('stylus').middleware({
 src: __dirname + '/views',
 dest: __dirname + '/public'
}));
app.use(require('./login'));
app.use(express.static(path.join(__dirname, 'public')));

The login app will pull in our profiles table from the profiler app. We've configured it to
use Stylus as we'll be applying extra admin-specific Stylus-generated CSS.

The login app is the gatekeeper of our administration section, within which we will be able to
add and remove profiles.

Now that our main and mounted apps are suitably prepared, we can move on to editing our
views, styles, and routes.

Modifying the profiler app
Let's start with the profiler apps' index.jade view:

h1= title
p Welcome to #{title}
p: a(href='admin/') [Admin Login]
include profiles

Since we're including profiles.jade, let's script it as follows:

- safeMix && safeMix(jade_mixins, 'add', 'del', 'adminScript')

table#profiles

Accelerating Development with Express

226

 tfoot

 - s = (page > 1) ? null : 'display:none'
 td
 a#bck(href="#{(+(page||1)-1)}", style=s) «
 a#fwd(href="#{(+(page||1)+1)}") »
 thead
 tr
 th Name
 th Irc
 th Twitter
 th Github
 th Location
 th Description
 if typeof user !== 'undefined'
 th Action

 tbody
 each profile, id in profiles
 tr(id=id)
 each row in profile
 td= row
 +del(id)

+add
+adminScript

Jade mixins are defined and can also be called using the mixin keyword.
For terseness and better distinction between a definition and invocation,
mixins can also be called by prefixing their name with a plus (+) symbol.

The profiles.jade file should be saved to the profiler/views directory. It is based on
our profiles table in the previous recipes. However, we've added code to support seamless
integration with the login app and some additional HTML structure for pagination.

At the top of profiles.jade, we've included a safety net called safeMix to ensure our
view doesn't choke if our administration-specific mixins aren't present. We'll define safeMix
shortly in routes/index.js. We will pre-check safeMix before calling it because we'll
reuse profiles.jade in the login subapp, where safeMix won't be defined by the
administration mixins.

We'll define our admin mixins when we come to editing the login apps views.

For pagination, we've added a tfoot element to hold the back and forward links with
a complementary thead to hold wrap the th elements.

Chapter 7

227

Let's create a new stylesheets directory under views and place a file in it called
style.styl.

In views/stylesheets/style.styl, we write the following code:

body
 padding 50px
 font 14px "Lucida Grande", Helvetica, Arial, sans-serif;
a
 color #00B7FF
rndCorner(rad, sides...)
 if length(sides) is 2
 -moz-border-radius-{sides[0]}{sides[1]} rad
 -webkit-border-{sides[0]}-{sides[1]}-radius rad
 border-{sides[0]}-{sides[1]}-radius rad
 else
 -webkit-border-radius rad
 -moz-border-radius rad
 border-radius rad

borderIt(rad = 0, size = 1px, type = solid, col = #000)
 border size type col
 if rad {rndCorner(rad)}

.pad
 padding 0.5em

tdRad = 9px

#profiles
 width 950px
 borderIt 20px, 2px
 @extend .pad
 background: #000;
 color: #fff;
 th
 @extend .pad
 tbody
 td
 @extend .pad
 background blue + 35%
 borderIt(col: @background)
 color pink - green - brown + gold – green
 color desaturate(@color + 100, 100)
 &:hover
 color @background + 180deg
 background desaturate(@background, 40)

Accelerating Development with Express

228

 border-color @background

 tr
 &:first-child
 td:first-child
 rndCorner tdRad top left
 td:last-child
 rndCorner tdRad top right
 &:last-child
 td:first-child
 rndCorner tdRad bottom left
 td:last-child
 rndCorner tdRad bottom right

 tfoot
 font-size 1.5em
 td
 a
 text-decoration none
 color #fff - 10%
 &:hover
 color #fff

This is the same Stylus sheet from the Playing with color section under There's more... in the
CSS preprocessors with Express recipe, but with some minor modifications.

Since we've placed our th elements under a thead, we can simply select our tbody tr
elements by :first-child instead of :nth-child(2). We also add some styling for the
new tfoot element.

Finally, we'll write the code for the routes/index.js file:

var express = require('express');
var router = express.Router();
var profiles = require('../models/profiles');

function safeMix(jade_mixins, mixins) {
 mixins = Array.prototype.slice.call(arguments, 1);
 mixins.forEach(function (mixin) {
 jade_mixins[mixin] = jade_mixins[mixin] || safeMix.noop;
 });
}
safeMix.noop = function () {}

router.get('/:pagenum([0-9]+)?', function (req, res) {

 profiles.pull(req.params.pagenum, function (err, profiles) {

Chapter 7

229

 if (err) { throw err; }

 res.render('index', { title: 'Profiler', profiles: profiles,
 page: req.params.pagenum, safeMix: safeMix});
 });

});

module.exports = router;

Our index route makes a call via our models/profiles.js module to MongoDB, passing it
the desired page number, and retrieves some profiles to display.

It also passes our safeMix function (defined prior to our route) through the local object
passed to res.render. If we don't include dummy mixins in the place of the admin mixins,
Node will throw an error. The safeMix function takes a jade_mixins object (which will be
available in the Jade view). Then, in the absence of a pre-existing method, safeMix assigns
a no-op function to properties on the jade_mixins object named after each subsequent
argument passed.

Internally, Jade mixins are compiled into JavaScript functions before they are executed within
our view templates. So we create dummy no-op (no operation) functions to prevent a server
error. Then when we log in, they are replaced with the administration mixins.

If we navigate to localhost:3000, we should now have a functioning profiler app.

Modifying the mounted login app
In login/views, we currently have index.jade, login.jade, error.jade, and
layout.jade. In login.jade, we want to add two include statements as follows:

if flash.error
 hr
 b= flash.error
 hr

if user
 form(method='post')
 input(name="_method", type="hidden", value="DELETE")
 p Hello #{user.name}!
 a(href='javascript:', onClick='forms[0].submit()') [logout]

 include admin
 include ../../views/profiles

else
 p Please log in
// rest of the login.jade...

Accelerating Development with Express

230

Rather than repeating code, we reuse our profiles.jade view from the main app using
a relative path. This means any changes we make to our frontend site are also made to our
administration section! The admin.jade file is going to contain Jade mixins (which are
conceptually similar to Stylus mixins). These mixins are conditionally included in profiles.
jade (see the previous Modifying the profiler app section).

The admin.jade file contains the following code:

mixin del(id)
 td
 a.del(href='/admin/del?id=#{id}&p=#{page}')
 ⨂

mixin add
 #ctrl
 a#add(href='#') ⊕

mixin adminScript
 include adminScript

include addfrm

We have two includes in admin.jade: one as part of a mixin and the other as a
straight include.

The contents of the addfrm.jade file should be as follows:

- fields = ['Name', 'Irc', 'Twitter', 'Github', 'Location',
'Description'];

form#addfrm(method='post', action='/admin/add')
 fieldset
 legend Add
 each field, i in fields
 div
 label= field
 input(name="profile[#{field.toLowerCase()}]")
 .btns
 button.cancel(type='button') Cancel
 input(type='submit', value='Add')

The adminScript.jade file should contain the following code:

script(src='http://ajax.googleapis.com/ajax/libs/jquery/1.9.2/jquery.
min.js')
script.
 document.getElementsByTagName('body')[0].id = 'js';

Chapter 7

231

 $('#add').click(function (e) {
 e.preventDefault();
 $('#profiles, #ctrl').fadeOut(function () {
 $('#addfrm').fadeIn();
 });
 });

 $('#addfrm .cancel').click(function () {
 $('#addfrm').fadeOut(function () {
 $('#profiles, #ctrl').fadeIn();
 });
 });

Admin is positioned above profiles in login.jade, so #addfrm will sit above the #profiles
table. However, our adminScript mixin hides the table, showing it when the Add button is
clicked on.

We create a stylesheets folder under login/views, creating the admin.styl file in it
and write the following code:

@import '../../../views/stylesheets/style.styl'

tbody
 td
 .del
 text-decoration none
 color blue + 35% + 180deg
 float right
 &:hover
 color red
#ctrl
 width 950px
 text-align center
 margin-top -2.5em
 a
 color white - 10%
 font-size 1.8em
 text-decoration none
 &:hover
 color @color + 111%

#js
 #addfrm
 display none
#addfrm

Accelerating Development with Express

232

 width 250px
 label
 display block
 float left
 width 100px
 font-weight bold
 .btns
 width @width
 text-align right

Now we'll also reuse the Stylus sheet from our main app. The @import declarative is handled
by Stylus on the server side (unless the extension is .css). As a result, our main app's
styles.styl sheet is combined with admin.styl and compiled as one CSS file in login/
public/stylesheets/admin.css.

To load our admin.css file, we must alter the login app's layout.jade view as shown in the
following code:

doctype 5
html
 head
 title= title
 link(rel='stylesheet',href='/admin/stylesheets/admin.css')
 body!= body

We've altered the link href attribute from /stylesheet/style.css to /admin/
stylesheets/admin.css, ensuring that CSS is loaded from the static server on
our subapps route.

Finally, we complete our admin routes in login/routes/index.js as follows:

var express = require('express');
var router = express.Router();
var profiles = require('../../models/profiles');

router.all('/:pagenum([0-9]+)?', function (req, res) {
 profiles.pull(req.params.pagenum, function (err, profiles) {
 if (err) { console.log(err); }
 res.render('index', { title: 'Profiler Admin', profiles: profiles,
page: req.params.pagenum });
 });
});

router.get('/del', function (req, res) {
 profiles.del(req.query.id, function (err) {
 if (err) { console.log(err); }

Chapter 7

233

 profiles.pull(req.query.p, function (err, profiles) {
 req.app.locals.profiles = profiles;
 res.redirect(req.header('Referrer') || '/');
 });
 });
});

router.post('/add', function (req, res) {
 profiles.add(req.body, function (err) {
 if (err) { console.log(err); }
 res.redirect(req.header('Referrer') || '/');
 });
});

module.exports = router;

Adding the optional :pagenum attribute to the get method route enables the navigation of
the profiles table as in the main app. Adding :pagenum to the post method route allows
users to log in from pages that they may have previously navigated to (for example, this allows
a login form to be served from http://localhost:/admin/2 if a user's session is expired).
Likewise, the del method route will allow us to log out from any valid page.

We've also added a /del and /add route to process admin tasks.

We should now be able to log in to http://localhost:3000/admin to delete and add
profiles as dave with the password expressrocks or as Mr.Page with the password
hellomynamesmrpage.

Login security
In the next chapter, we will learn how to hash our passwords and log in
over SSL.

How it works...
Our app contains a lot of pieces working together. So let's look at it from various angles.

Understanding app mounting
In this recipe, we have two apps working with the same database, sharing views and Stylus
sheets. We imported the login app to our new profiler folder and mounted it with app.use
setting /admin as its route.

Accelerating Development with Express

234

This works because Express apps are an assemblage of middleware. So when we mount the
login app, it simply integrates with our app as a middleware plugin. Middleware works on the
request and response objects. By passing the /admin route into app.use, we limit the login
app to work only with requests made under that route.

Data flow
Our app is supported by a MongoDB database that we set up with our prepopulate.js tool.
Data flows to and from the database as shown in the following diagram:

validate

pull

add/del

app.use
(middleware)

require
routeslogin/routes/index.js

app.js

MongoDB

Profiler Database

Profiles
Collection

Users
Collection

models/profiles.js

login/login.js

routes/index.js
pull

login/app.js

app.use
(mounted)

The profiles.js file in the models folder pulls and pushes data to the profiles collection,
providing an interface for the routes/index.js files in both master and subapps. Our
routes integrate within their respective app.js files and work to interact with models/
profiles.js to carry out the desired tasks.

The login.js file simply verifies the user's credentials, performing a search with user-
supplied input. The login.js file sits as a piece of middleware within login/app.js,
waiting to respond to POST requests that contain a username and password.

Route handling
In both apps, the index route provides a foundation for displaying and navigating the profiles
table. In both, we call profiles.pull, passing in req.params.pagenum. The pagenum
parameter is loaded onto req.params. It will never be anything but a number—thanks to our
restrictions placed on it, though it is optional; so it may not be present.

Our profiles.pull method takes two parameters: the page number and a callback. If the
page number isn't present, it sets the page to 1. We determine the rows to be extracted by
multiplying our internal rowsPer variable by page – 1 (we want to start at the beginning
with page 1; therefore, for the first page, we skip 0 rows). The result is passed through as
the skip modifier to MongoDB and rowsPer is passed as the limit property. The skip
modifier will pass over a predetermined number of rows before outputting and limit restricts
the amount to output; thus we achieve pagination. The profiles.pull callback is initiated
either with an error or with an object containing profiles.

Chapter 7

235

In both our index routes, we perform minimal error handling. Express tends to capture the
errors and output them to the browser for debugging purposes. The profiles object is
passed to res.render, where it is later utilized by the profiles.jade view.

In login/routes/index.js, two inflexible routes are defined: /add and /del. The
/del route is a GET route expecting two URL query attributes: id and p. The id parameter
is obtained through req.query.id and passed to profiles.del, which calls the
Mongoskin removeByID method, effectively deleting a profile from the collection.

As long as no error has occurred, we invoke profiles.pull with the p URL query attribute
(via req.query.p), updating the profiles object made available in our views by pointing
req.app.locals.profiles to our new profiles object that came through as the second
parameter of the profiles.pull callback. This ensures that changes to the database are
reflected to the user. Finally, we redirect the user back to where they came from.

The /add route works much in the same way, except as a POST request. If req.body is
returned as an object, we can simply insert this object straight into MongoDB (since it is
JSON-like).

Views
We use a lot of includes in our views, and sometimes between apps. The relationships are
shown in the following diagram:

Profiler App

Index profiles rows

login
(if user)

adminScript

addfrm

Login App

Index admin1

2

In our main app, the index view loads the profiles view, and profiles utilizes the rows
view in a partial statement.

In the login app, the index view includes the login view. The login view loads the
profiles view, and under the right conditions, it also includes the admin view (before
profiles) to provide the administration layer. The admin view includes the addfrm and
adminScript views. The mixins defined in admin become available to profiles.

Accelerating Development with Express

236

The profiles.jade view is very central to the entire web app: it outputs our data, delivers
the optional administration overlay, and provides navigational capabilities. Let's take a look
at the navigational portion:

table#profiles
 tfoot
 s = (page > 1) ? null : 'display:none'
 td
 a#bck(href="#{(+(page||1)-1)}", style=s) «
 a#fwd(href="#{(+(page||1)+1)}") »

The page variable is passed through from the index route and is determined from req.
params.pagenum. Jade doesn't allow variables to leak into global scope when var isn't
used, so our s variable can be declared without it. If we are on the first page, a link to the
previous page is unnecessary, so we add a style attribute containing display:none (if we
wanted to be neat, we could have a CSS class set display and add a class attribute instead).
By passing null, if the page is greater than one, we're telling Jade that we don't want to set
the style attribute at all. If page is undefined or 0, we bump it to 1, as a typical user's mind
will count starting from 1, not 0.

Mixins
The only place we use Jade mixins is in the login/views/admin.jade view, but they are
essential to the synergy between the admin section and the top-level site. Unless a user is
logged in and under the /admin route, the mixins are not present in profiles.jade. They
are only intended for privileged users.

We use mixins to supplement the profiles table with an administration layer. The only
part of admin.jade that isn't a mixin is the final include of addfrm.jade. As admin is
included before profiles, #addfrm sits above the profiles table.

The adminScript mixin is, as the name suggests, a script block that quickly applies an id
of js to the body tag. We use this in admin.styl to hide our #addfrm (the generated CSS
would be #js #addfrm {display:none}). This is quicker than directly hiding the element
with JavaScript and minimizes the undesirable flash of content effect that can occur when
hiding page elements on page load. Therefore, #addfrm is not initially visible. In the following
screenshot, we can see the visible mixins displayed on the #profiles table within the
admin section:

Chapter 7

237

Clicking on the Add button causes the #profiles table to fade out and #addfrm to fade in.
The del mixin takes an id argument, which it then uses to generate a link for each profile,
such as /del?id=4f3336f369cca0310e000003&p=1. The p variable is determined from
the page property passed in at the res.render time in the index route.

Locals
We use local variables throughout to pull data from our server through our views.

Also, in the login/app.js file, we insert some custom middleware that loads the result of
req.flash() into res.locals.flash. The contents of the flash local is dependent on the
request/response negotiation, so we use a response-based local.

If req.flash() has any content, it will have been set in our login.js middleware. This is
also where we set our user local, passing req.session.user to res.locals.user on
each request to ensure that our view stays up-to-date with user-session data.

Locals are also implicitly set in both the exports.index functions of routes/index.
js and login/routes/index.js files by passing an object as the second option of res.
render. In both cases, we set the title, profiles, and page locals so that our views
have the information they need from a functioning app.

Finally, we also utilize the local object to inject the safeMix function for use by profiles.
jade to protect it from throwing when attempting to use undefined mixins.

Accelerating Development with Express

238

Styles
Our Stylus files also share a degree of interconnectivity as shown in the following diagram:

views/stylesheets/style.styl

login/views/stylesheets/style.styl login/public/stylesheets/style.css

public/stylesheets/style.css

@Import
(Stylus)

User flow
All the aforementioned things work together to provide a website with an admin section.

A user can browse the profiles table, using the back and forward links, and they can link
to a particular page on the table.

A privileged user can navigate to /admin, enter their login details, and proceed to add and
delete records. The /add and /delete routes are protected by the middleware. Unless the
user is logged in, the only route that gets delivered to them is the login app's index route
asking for login details.

There's more...
Let's look at ways to monitor and analyze our web app.

Benchmarking
Benchmarking a Node website can be very satisfying, but there's always going to be room
for improvement.

Apache Bench (ab) comes bundled with Apache servers, and while Apache servers have no
part in NodeJS, their HTTP benchmarking utility is an excellent tool for stress testing our app's
ability to respond to a large amount of simultaneous requests.

We can use it to test the performance benefits or hindrances of any changes to our app. Let's
quickly throw 1,000 requests, 50 at a time, at both the site and the admin section as follows:

ab -n 1000 -c 50 http://localhost:3000/

ab -n 1000 -c 50 http://localhost:3000/admin

Chapter 7

239

Mileage will vary depending on system capabilities. However, since tests are run on the same
machine, conclusions can be drawn from differences between tests.

With our test on the two sections,the / route delivers at 120 requests per second,
whereas /admin serves at just under 160 requests per second. This makes sense
because the /admin page will only be serving a login form, whereas the / route is pulling
data from MongoDB, loading in sub-views via include and performing iteration logic
on the profiles object.

See also
ff The Implementing dynamic routing recipe

ff The Templating in Express recipe

ff The CSS preprocessors with Express recipe

ff The Initializing and using a session recipe

8
Implementing Security,

Encryption, and
Authentication

In this chapter, we will cover the following topics:

ff Implementing Basic Authentication

ff Hashing passwords

ff Implementing Digest Authentication

ff Setting up an HTTPS web server

ff Preventing cross-site request forgery

Introduction
When it comes to production web servers, security is paramount. The importance of security
correlates with that of the data or services we provide. But even for the smallest project, we
want to ensure our systems aren't vulnerable to attack.

Many web development frameworks provide built-in security, which is a two-sided coin. On one
side, we don't have to overly concern ourselves with the details (except for the basics, such
as cleaning user input before passing it into a SQL statement), but on the other, we implicitly
trust that the vendor has plugged all the holes.

If a largely used server-side scripting platform, such as PHP, is discovered to contain security
vulnerability, this can become public knowledge very quickly and every site running the
vulnerable version of that framework is open to attack.

Implementing Security, Encryption, and Authentication

242

With Node, server-side security is almost entirely on our shoulders. Therefore, all we need to
do is educate ourselves on the potential vulnerabilities and tighten the security of our systems
and alter our code accordingly.

For the most part, Node is minimalistic: if we don't specifically outline something it
doesn't happen. This leaves little room for exploitation of unknown parts of our or obscure
configuration settings because we coded and configured our system by hand.

Attacks take place from two angles: exploiting technical flaws and taking advantage of user
naivete. We can protect our systems by educating ourselves and conscientiously checking
and rechecking our code. We can also protect our users by educating them.

In this chapter, we will learn how to implement various types of user-authenticated logins,
how to secure these logins, and encrypt any transferred data, along with a technique to
prevent the authenticated users from falling victim to exploits of the browser's security model.

Implementing Basic Authentication
The Basic Authentication standard has been in place since the 1990s and can be the simplest
way to provide a user login. When used over HTTP, it is in no way secure since a plain text
password is sent over the connection from the browser to the server.

For information on Basic Authentication, visit
http://en.wikipedia.org/wiki/Basic_authentication.

However, when coupled with SSL (HTTPS), Basic Authentication can be a useful method if
we're not concerned about a custom-styled login form.

We will discuss SSL/TLS (HTTPS) in the Setting up an HTTPS
web server recipe of this chapter. For additional information,
visit http://en.wikipedia.org/wiki/SSL/TLS.

In this recipe, we'll learn how to initiate and process a Basic Access Authentication request
over plain HTTP. In the following recipes, we'll implement an HTTPS server and see an
advancement of Basic Authentication (Digest Authentication).

Getting ready
We just need to create a new server.js file in a new folder.

Chapter 8

243

How to do it...
Basic Authentication specifies a username, password, and realm, and it works over HTTP. So
we'll require the HTTP module and set up some variables as shown in the following code:

var http = require('http');

var username = 'dave',
 password = 'ILikeBrie_33',
 realm = 'Node Cookbook';

Now we'll set up our HTTP server as shown in the following code:

http.createServer(function (req, res) {
 var auth, login;

 if (!req.headers.authorization) {
 authenticate(res);
 return;
 }

 //extract base64 encoded username:password string from client
 auth = req.headers.authorization.replace(/^Basic /, '');
 //decode base64 to utf8
 auth = (new Buffer(auth, 'base64').toString('utf8'));

 login = auth.split(':'); //[0] is username [1] is password

 if (login[0] === username && login[1] === password) {
 res.end('Someone likes soft cheese!');
 return;
 }

 authenticate(res);

}).listen(8080);

Note that we make two calls to a function named authenticate. We need to create this
function, placing it above our createServer call:

function authenticate(res) {
 res.writeHead(401,
 {'WWW-Authenticate' : 'Basic realm="' + realm + '"'});
 res.end('Authorization required.');
}

Implementing Security, Encryption, and Authentication

244

When we navigate to localhost:8080 in our browser, we are asked to provide a username
and password for the Node Cookbook realm. If we provide the correct details, our passion
for "soft cheese" is revealed.

How it works...
Basic Authentication works via a series of headers sent between the server and browser. When
a browser hits the server, the WWW-Authenticate header is sent to the browser and the
browser responds by opening a dialog for the user to log in.

The browser's login dialog blocks any further content from being loaded in the browser, until
the user either cancels or attempts to log in. If the user clicks on the Cancel button, they see
the Authorization required message sent with res.end in the authenticate function.

However, if the user attempts to log in, the browser sends another request to the server. This
time it contains an Authorization header in response to the WWW-Authenticate header.
We check for its existence at the top of the createServer callback with req.headers.
authorization. If the header exists, we skip the call to authenticate and go on to verify
the user credentials. The Authorization header looks like the following syntax:

Authorization: Basic ZGF2ZTpJTGlrZUJyaWVfMzM=

The text following the Basic keyword in the preceding Authorization header syntax is
a Base64-encoded string that holds the username and password separated by a colon; the
decoded Base64 text is as follows:

dave:ILikeBrie_33

In our createServer callback, we decode the Base64 header by first stripping the Basic
portion from it, load it into a buffer that converts Base64 to binary, and then run toString
on the result converting it to a UTF-8 string.

Visit http://en.wikipedia.org/wiki/Base64 and
http://en.wikipedia.org/wiki/Comparison_of_Unicode_
encodings for information on Base64 and string encodings such as UTF-8.

Finally, we split the login details with a colon, and if the provided username and password
match our stored credentials, the user is granted access to the authorized content.

There's more...
Basic Authentication comes bundled with the Express framework as middleware.

http://en.wikipedia.org/wiki/Comparison_of_Unicode_encodings

Chapter 8

245

Basic Authentication with Express
Connect provides the basicAuth middleware, which implements this pattern for us. To
implement the same in Express, use the following code:

var express = require('express');
var connect = require('connect');

var username = 'dave',
 password = 'ILikeBrie_33',
 realm = 'Node Cookbook';

var app = express();

app.use(connect.basicAuth(function (user, pass) {
 return username === user && password === pass;
}, realm));

app.get('/:route?', function (req, res) {
 res.end('Someone likes soft cheese!');
});

app.listen(8080);

If we now head to http://localhost:8080, our Express server will behave in the same
way as it did in our main recipe.

See Chapter 7, Accelerating Development with Express, for information
on using Express to develop web solutions.

See also
ff The Setting up a router recipe in Chapter 1, Making a Web Server

ff The Implementing Digest Authentication recipe

ff The Setting up an HTTPS web server recipe

Hashing passwords
Effective encryption is a fundamental part of online security. Node provides the crypto module
that can be used to generate our own MD5 or SHA1 hashes for user passwords. Cryptographic
hashes such as MD5 and SHA1 are known as message digests. Once the input data has been
digested (encrypted), it cannot be put back into its original form (of course, if we know the
original password, we can regenerate the hash and compare it to our stored hash).

Implementing Security, Encryption, and Authentication

246

We can use hashes to encrypt a user's password before we store them. If our stored passwords
were ever stolen by an attacker, they cannot be used to log in because the attacker will not
have the actual plain text passwords. However, since a hash algorithm always produces
the same result, it could be possible for an attacker to crack a hash by matching it against
hashes generated from the password dictionary (see the There's more... section for ways to
mitigate this).

Visit http://en.wikipedia.org/wiki/Cryptographic_hash_
function for more information on hashes.

In this example, we will create a simple registration form and use the crypto module to
generate an MD5 hash of a password gained via user input.

As with Basic Authentication, our registration form should be posted over HTTPS; otherwise,
the password is sent as plain text.

Getting ready
In a new folder, let's create a new server.js file along with an HTML file for our registration
form. We'll call it regform.html.

We'll use the Express framework to provide the peripheral mechanisms (parsing POST
requests, serving regform.html, and so on), so Express should be installed. We'll also need
the body-parser middleware to process the POST request. Use the following commands to
install Express and body-parser middleware:

npm install express

npm install body-parser

We covered more about Express and how to install it in the previous chapter.

How to do it...
First, let's put together our registration form (regform.html) as shown in the following code:

<form method=post>
 User <input name=user>
 Pass <input type=password name=pass>
 <input type=submit>
</form>

For the server.js file, we'll require express and crypto. Then create our server as follows:

var express = require('express');
var crypto = require('crypto');

http://en.wikipedia.org/wiki/Cryptographic_hash_function

Chapter 8

247

 var bodyParser = require('body-parser');

var userStore = {},
 app = express();

app.listen(8080);

app.use(bodyParser());

The bodyParser keyword gives us the POST capabilities and our userStore object is used
to store registered user details. In production, we would use a database.

Now set up a GET route as shown in the following code:

app.get('/', function (req, res) {
 res.sendfile('regform.html');
});

This uses Express' sendfile method to stream our regform.html file.

Finally, our POST route will check for the existence of user and pass inputs, returning an error
message to the user if either or both are left blank or turning the user's specified password
into an MD5 hash. Refer to the following code:

app.post('/', function (req, res) {
 if (!req.body.user || !req.body.pass) {
 res.send('Username and password both required');
 return;
 }
 var hash = crypto
 .createHash("md5")
 .update(req.body.pass)
 .digest('hex');

 userStore[req.body.user] = hash;
 res.send('Thanks for registering ' + req.body.user);
 console.log(userStore);

});

When we use our form to register, the console will output the userStore object, containing
all registered usernames and password hashes.

Implementing Security, Encryption, and Authentication

248

How it works...
The password hashing portion of this recipe is as follows:

 var hash = crypto
 .createHash("md5")
 .update(req.body.pass)
 .digest('hex');

We've used the dot notation to chain some crypto methods together.

First, we create a vanilla MD5 hash with the createHash method (see the There's more...
section on how to create unique hashes). We could alternatively create a (stronger) SHA1
hash by passing sha1 as the argument. The same goes for any other encryption method
supported by Node's bundled openssl version. We can find out what hashes are supported
with the following command:

node -p "require('crypto').getHashes()"

The -p flag can be used with the node executable to evaluate and print
(to screen) whatever string is subsequently passed to it.

Then we call the update method to feed our user's password to the initial hash.

For a comparison of different hash functions, see http://ehash.
iaik.tugraz.at/wiki/The_Hash_Function_Zoo.
This site labels certain hash functions as broken, which means a
weakness point has been found and published. However, the effort
required to exploit such a weakness will often far exceed the value
of the data we are protecting.

Finally, we call the digest method, which returns a completed password hash. Without
any argument, digest returns the hash in the binary format. We pass hex (base 16
numerical representation format of binary data; see http://en.wikipedia.org/wiki/
Hexadecimal) to make it more readable on the console.

There's more...
The crypto module offers some more advanced hashing methods to create even
stronger passwords.

http://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo

Chapter 8

249

Making unique hashes with HMAC
HMAC, Hash-based Message Authentication Code, is a hash with a secret key (authentication
code).

To convert our recipe to use HMAC, we change our crypto portion with the following code:

 var hash = crypto
 .createHmac("md5",'SuperSecretKey')
 .update(req.body.pass)
 .digest('hex');

Using HMAC protects us from the use of rainbow tables (precomputed hashes from a large list
of probable passwords). The secret key mutates our hash, rendering a rainbow table impotent
(unless an attacker discovers our secret key, for instance, by somehow gaining root access to
our server's operating system, at which point rainbow tables wouldn't be necessary anyway).

Hardened hashing with PBKDF2
PBKDF2 is the second version of Password-Based Key Derivation Function, which is part of
the Password-Based Cryptographic standard.

A powerful quality of PBKDF2 is that it generates hashes of hashes, thousands of times over.
Iterating over the hash multiple times strengthens the encryption, exponentially increasing the
amount of possible outcomes resulting from an initial value to the extent that the hardware
required to generate or store all possible hashes becomes infeasible.

The pbkdf2 method requires four components: the desired password, a salt value, the
desired amount of iterations, and a specified length of the resulting hash.

A salt is similar in concept to the secret key in our HMAC in that it mixes in with our hash to
create a different hash. However, the purpose of a salt differs. A salt simply adds uniqueness
to the hash and it doesn't need to be protected as a secret. A strong approach is to make
each salt unique to the hash being generated, storing it alongside the hash. If each hash in a
database is generated from a different salt, an attacker is forced to generate a rainbow table
for each hash based on its salt rather than the entire database. With PBKDF2, thanks to our
salt, we have unique hashes of unique hashes, which further increases the complexity for a
potential attacker.

For a strong salt, we'll use the randomBytes method of crypto to generate 128 bytes of
random data, which we will then pass through the pbkdf2 method with the user-supplied
password 7,000 times, finally creating a hash 256 bytes in length.

To achieve this, let's modify our POST route from the recipe as shown in the following code:

app.post('/', function (req, res) {
 if (!req.body.user || !req.body.pass) {
 res.send('Username and password both required');
 return;

Implementing Security, Encryption, and Authentication

250

 }

 crypto.randomBytes(128, function (err, salt) {
 if (err) { throw err; }
 salt = new Buffer(salt).toString('hex');
 crypto.pbkdf2(req.body.pass, salt, 7000, 256,
 function (err, hash) {
 if (err) { throw err; }
 userStore[req.body.user] = {salt : salt,
 hash : (new Buffer(hash).toString('hex')) };
 res.send('Thanks for registering ' + req.body.user);
 console.log(userStore);
 });
 });
});

Once we have both our hash and salt values, we place them into our userStore object. To
implement a corresponding login, we would simply compute the hash in the same way using
that user's stored salt.

We chose to iterate 7,000 times. When PBKDF2 was standardized, the recommended
iteration count was 1,000. However, we need more iteration to account for technology
advancements and reductions in the cost of equipment.

See also
ff The Implementing Digest Authentication recipe

ff The Setting up an HTTPS web server recipe

ff The Generating Express scaffolding recipe in Chapter 7, Accelerating Development
with Express

Implementing Digest Authentication
Digest Authentication combines Basic Authentication with MD5 encryption, thus avoiding the
transmission of plain text passwords, making for a more secure login method over plain HTTP.

On its own, Digest Authentication is still insecure without an SSL/TLS-secured HTTPS
connection. Anything over plain HTTP is vulnerable to the man-in-the-middle attacks, where
an adversary can intercept requests and forge responses. An attacker could masquerade as
the server, replacing the expected digest response with a Basic Authentication response, thus
gaining the password in plain text.

Chapter 8

251

Nevertheless, in the absence of SSL/TLS, Digest Authentication at least provides some defense
in the area of plain text passwords requiring more advanced circumvention techniques.

So in this recipe, we will create a Digest Authentication server.

Getting ready
To begin with, we simply create a new folder with a new server.js file.

How to do it...
As in the Basic Authentication with Express recipe, we create an HTTP server. We'll also use
the crypto module to handle the MD5 hashing:

var http = require('http');
var crypto = require('crypto');

var username = 'dave',
 password = 'digestthis!',
 realm = "Node Cookbook",
 opaque;
function md5(msg) {
 return crypto.createHash('md5').update(msg).digest('hex');
}

opaque = md5(realm);

We've made an md5 function as a shorthand interface to the crypto hash methods. The
opaque variable is a necessary part of the Digest standard. It's simply an MD5 hash of
realm (as also used in Basic Authentication). The client returns the opaque value to the
server for an extra means of validating responses.

Now, we'll create two extra helper functions, one for authentication and one to parse the
Authorization header as follows:

function authenticate(res) {
 res.writeHead(401, {
 'WWW-Authenticate' : 'Digest realm="' + realm + '"'
 + ',qop="auth",nonce="' + Math.random() + '"'
 + ',opaque="' + opaque + '"'});

 res.end('Authorization required.');
}

function parseAuth(auth) {

Implementing Security, Encryption, and Authentication

252

 var authObj = {};
 auth.split(', ').forEach(function (pair) {
 pair = pair.split('=');
 authObj[pair[0]] = pair[1].replace(/"/g, '');
 });
 return authObj;
}

Finally, we implement the server as shown in the following code:

http.createServer(function (req, res) {
 var auth, user, digest = {};

 if (!req.headers.authorization) {
 authenticate(res);
 return;
 }
 auth = req.headers.authorization.replace(/^Digest /, '');
 auth = parseAuth(auth); //object containing digest headers from
client
 //don't waste resources generating MD5 if username is wrong
 if (auth.username !== username) { authenticate(res); return; }
 digest.ha1 = md5(auth.username + ':' + realm + ':' + password);
 digest.ha2 = md5(req.method + ':' + auth.uri);
 digest.response = md5([
 digest.ha1,
 auth.nonce, auth.nc, auth.cnonce, auth.qop,
 digest.ha2
].join(':'));

 if (auth.response !== digest.response) { authenticate(res); return;
}
 res.end('You made it!');

}).listen(8080);

Within the browser, this will look exactly the same as Basic Authentication, which is unfortunate
because a clear difference between digest and basic dialogs could alert the user about a
potential attack.

How it works...
When the server sends the WWW-Authenticate header to the browser, several attributes are
included, consisting of realm, qop, nonce, and opaque.

Chapter 8

253

The realm attribute is the same as Basic Authentication, and opaque is an MD5 hash of
the realm.

The qop attribute stands for Quality of Protection and is set to auth. The qop attribute can
also be set to auth-int or simply omitted. By setting it to auth, we cause the browser to
compute a more secure final MD5 hash. The auth-int attribute is still stronger, but browser
support for it is minimal.

The nonce attribute is a similar concept to a salt; it causes the final MD5 hash to be less
predictable from an attacker's perspective.

When the user submits their login details via the browser's authentication dialog, an
Authorization header is returned containing all of the attributes sent from the server,
plus the username, uri, nc, cnonce, and response attributes.

The username attribute is the user's specified alias, uri is the path being accessed (we
could use this to secure on a route-by-route basis), nc is a serial counter that is incremented
on each authentication attempt, cnonce is the browser's own generated nonce value, and
response is the final computed hash.

In order to confirm an authenticated user, our server must match the value of response. To
do so, it removes the Digest string (including the proceeding space) and then passes what
remains out of the Authorization header to the parseAuth function. The parseAuth
function converts all the attributes into a handy object and loads it back into our auth variable.

The first thing we do with auth is check if the username is correct. If we do not have a match,
we ask for authentication again. This could save our server from some unnecessary heavy
lifting with MD5 hashing.

The final computed MD5 hash is made from the combination of two previously encrypted MD5
hashes along with the server's nonce and qop values and the client's cnonce and nc values.

We called the first hash digest.ha1. It contains a colon (:) delimited string of the username,
realm, and password values. The digest.ha2 hash is the request method (GET) and the
uri attribute, again delimited by a colon.

The final digest.response property has to match auth.response, which is generated
by the browser, so the ordering and specific elements must be precise. To create our digest.
response property we combine digest.ha1, nonce, nc, cnonce, qop, and digest.
ha2, each separated by a colon. For easy reading, we put these values into an array running
JavaScript's join method on them to generate the final string, which is passed to our
md5 function.

If the given username and password are correct, and we've generated digest.response
correctly, it should match the browser's response header attribute (auth.response). If it
doesn't, the user will be presented with another authentication dialog. If it does, we reach
the final res.end. We made it!

Implementing Security, Encryption, and Authentication

254

There's more...
Let's tackle the logout problem.

Logging out of authenticated areas
There is little to no support in browsers for any official logging out method under Basic or
Digest Authentication, except for the closing of the entire browser.

However, we can force the browser to essentially lose its session by changing the realm
attribute in the WWW-Authenticate header.

In a multiuser situation, if we change our global realm variable, it will cause all users to log
out (if there was more than one). So if a user wishes to log out, we have to assign them a
unique realm that will cause only their session to quit.

To simulate multiple users, we'll remove our username and password variables, replacing
them with a users object as shown in the following code:

var users = {
 'dave' : {password : 'digestthis!'},
 'bob' : {password : 'MyNamesBob:-D'},
 },
 realm = "Node Cookbook",
 opaque;

Our subobjects (currently containing password) will potentially gain three extra properties:
uRealm, uOpaque, and forceLogOut.

Next, we'll modify our authenticate function as follows:

function authenticate(res, username) {
 var uRealm = realm, uOpaque = opaque;
 if (username) {
 uRealm = users[username].uRealm;
 uOpaque = users[username].uOpaque;
 }
 res.writeHead(401, {'WWW-Authenticate' :
 'Digest realm="' + uRealm + '"'
 + ',qop="auth",nonce="' + Math.random() + '"'
 + ',opaque="' + uOpaque + '"'});

 res.end('Authorization required.');
}

Chapter 8

255

We've added an optional username parameter to the authenticate function. If username
is present, we load the unique realm and corresponding opaque values for that user,
sending them in the header.

Inside our server callback, we replace the following code:

 //don't waste resources generating MD5 if username is wrong
 if (auth.username !== username) { authenticate(res); return; }

We replace the preceding code with the following code:

 //don't waste resources generating MD5 if username is wrong
 if (!users[auth.username]) { authenticate(res); return; }

 if (req.url === '/logout') {
 users[auth.username].uRealm = realm + ' [' + Math.random() + ']';
 users[auth.username].uOpaque = md5(users[auth.username].uRealm);
 users[auth.username].forceLogOut = true;
 res.writeHead(302, {'Location' : '/'});
 res.end();
 return;
 }

 if (users[auth.username].forceLogOut) {
 delete users[auth.username].forceLogOut;
 authenticate(res, auth.username);
 }

We check whether the specified username exists inside our users object, saving us from
further processing if it doesn't. Provided the user is valid, we check the route (we'll be
supplying a logout link to the user). If the /logout route has been hit, we set up a uRealm
property on the logged in user's object and a corresponding uOpaque property containing
an MD5 hash of uRealm. We also add a forceLogOut Boolean property, setting it to true.
Then we redirect the user away from the /logout to /.

The redirect triggers another request, on which the server detects the presence of our
forceLogOut property for the currently authenticated user. The forceLogOut property is
then removed from the users subobject to prevent it from getting in the way later. Lastly, we
pass control over to the authenticate function with the special username parameter.

Consequently, authenticate includes the user-linked uRealm and uOpaque values in
the WWW-Authenticate header, breaking the session. To finish off, we make a few more
simple adjustments.

Implementing Security, Encryption, and Authentication

256

The digest.ha1 hash requires the password and realm values, so it's updated as follows:

 digest.ha1 = md5(auth.username + ':'
 + (users[auth.username].uRealm || realm) + ':'
 + users[auth.username].password);

The password value is fed in via our new users object, and the realm value is chosen
based on whether our logged-in user has unique realm (a uRealm property) set.

We change the last segment of our server's code to the following:

if (auth.response !== digest.response) {
 users[auth.username].uRealm = realm + ' [' + Math.random() + ']';
 users[auth.username].uOpaque = md5(users[auth.username].uRealm);
 authenticate(res, (users[auth.username].uRealm && auth.username));
 return;
 }
 res.writeHead(200, {'Content-type':'text/html'});
 res.end('You made it!
 [logout] ');

Note the inclusion of a logout link, the final piece.

New uRealm and uOpaque attributes are generated if the hashes don't match. This prevents
an eternal loop between the browser and server. Without this, when we log in as a valid user
and then log out, we'd be presented with another login dialog. If we enter a non-existent user,
the new login attempt is rejected by the server as normal. However, the browser attempts to
be helpful and falls back to the old authentication details with our first logged-in user and
the original realm. But, when the server receives the old login details, it matches the user to
their unique realm, demanding authentication for uRealm, not realm. The browser sees the
uRealm value and matches our non-existent user back to it, attempting to authenticate that
user again, thus repeating the cycle.

By setting a new uRealm, we break the cycle because an extra realm is introduced, which the
browser has no record of, so it defers to the user by asking for input.

See also
ff The Implementing Basic Authentication recipe

ff The Cryptographic password hashing recipe

ff The Setting up an HTTPS web server recipe

Chapter 8

257

Setting up an HTTPS web server
In large part, SSL is the solution to many of the security vulnerabilities, such as network sniffing
and man-in-the-middle attacks, faced over HTTP. Thanks to the core https module. It's really
simple to set up.

Getting ready
The greater challenge could be in actually obtaining the necessary SSL/TLS certificate. In order
to acquire a certificate, we must generate an encrypted private key, and from that we generate
Certificate Signing Request (CSR). This is then passed to Certificate Authority (CA). CA is a
commercial entity specifically trusted by browser vendors—naturally this means we have to pay
for it. Alternatively, the CA may generate your private key and CSR on your behalf.

After a verification process, the CA will issue a public certificate enabling us to encrypt
our connections.

We can shortcut this process and authorize our own certificate (self-sign), naming ourselves
the CA. Unfortunately, if the CA isn't known to a browser, it will warn the user that our site isn't
to be trusted and that they may be under attack. This isn't so good for positive brand image.
So, while we may self-sign during development, we would most likely need a trusted
CA for production.

For development, we can quickly use the openssl executable (available by default on
Linux and Mac OS X; we can obtain a Windows version from http://www.openssl.org/
related/binaries.html) to generate necessary private key and public certificate:

openssl req -new -newkey rsa:1024 -nodes -subj '/O=Node Cookbook'
-keyout key.pem -out csr.pem

openssl x509 -req -in csr.pem -signkey key.pem -out cert.pem

Windows users would need to run the preceding command slightly
different. After installing, we have to right-click on the openssl.exe
file (typically located at C:\OpenSSL-Win32\bin) and select Run as
Administrator. Then we supply everything after openssl in the preceding
first command (for example, req -new…) into the resultant dialog,
repeating the exercise for the second dialog.

This executes openssl twice on the command line: once to generate basic private key and
CSR and again to self-sign private key, thus generating a certificate (cert.pem).

In a real production scenario, our -subj flag would hold more details and we would want to
acquire our cert.pem file from a legitimate CA. But this is fine for private, development,
and testing purposes.

http://www.openssl.org/related/binaries.html

Implementing Security, Encryption, and Authentication

258

Now that we have our key and certificate, we simply need to make our server, so we'll create
a new server.js file.

How to do it...
Within the server.js file we write the following code:

var https = require('https');
var fs = require('fs');

var opts = {key: fs.readFileSync('key.pem'),
 cert: fs.readFileSync('cert.pem')};

https.createServer(opts, function (req, res) {
 res.end('secured!');
}).listen(4443); //443 for prod

And that's it!

How it works...
The https module depends on the http and tls modules, which in turn rely on the net
and crypto modules. SSL/TLS is transport layer encryption, meaning that it works at a level
beneath HTTP, at the TCP level. The tls and net modules work together to provide an SSL/
TLS-encrypted TCP connection, with HTTPS layered on top.

When a client connects via HTTPS (in our case, at the address https://localhost:4443),
it attempts a TLS/SSL handshake with our server. The https module uses the tls module
to respond to the handshake in a series of fact-finding interchanges between the browser and
server. For example, what SSL/TLS version do you support? What encryption method do you
want to use? Can I have your public key?

At the end of this initial interchange, the client and server have an agreed shared secret. This
secret is used to encrypt and decrypt content sent between the two parties. This is where the
crypto module kicks in, providing all of the data encryption and decryption functionality.

For us, it's as simple as requiring the https module, providing our certificates, then using it
just like we would an http server.

There's more...
Let's see a few HTTPS use cases.

Chapter 8

259

HTTPS in Express
Enabling HTTPS in Express is just simple as shown in the following code:

var express = require('express'),
 fs = require('fs');

var opts = {key: fs.readFileSync('key.pem'),
 cert: fs.readFileSync('cert.pem')};

var app = express(opts),
 https = require('https');

https.createServer(opts, app).listen(4443);

app.get('/', function (req, res) {

 res.send('secured!');

});

Securing Basic Authentication with SSL/TLS
We can build anything into our https server that we could into an http server. To enable
HTTPS in our Basic Authentication with Express recipe, all we do is alter the following code:

https.createServer(function (req, res) {

The preceding code is altered to the following code:

var opts = {key: fs.readFileSync('key.pem'),
 cert: fs.readFileSync('cert.pem')};

https.createServer(opts, function (req, res) {

See also
ff The Cryptographic password hashing recipe

ff The Implementing Basic Authentication recipe

Implementing Security, Encryption, and Authentication

260

Preventing cross-site request forgery
There's a problem with every browser's security model that, as developers, we must be aware of.

When a user has logged in to a site, any requests made via the authenticated browser are
treated as legitimate—even if the links for these requests come from an e-mail or are performed
in another window. Once the browser has a session, all windows can access that session.
This means an attacker can manipulate users' actions on a site they are logged in to with a
specifically crafted link or with automatic AJAX calls requiring no user interaction except to
be on the page containing the malicious AJAX.

For instance, if a banking web app hasn't been properly CSRF secured, an attacker could
convince the user to visit another website while logged in to their online banking. This website
could then run a POST request to transfer money from the victim's account to the attacker's
account without the victim's consent or knowledge.

This is known as a Cross-Site Request Forgery (CSRF) attack. In this recipe, we'll implement
a secure HTML login system with CSRF protection.

Getting ready
We'll be securing our profiler web app from the Making an Express Web App recipe in Chapter 7,
Accelerating Development with Express.

We'll want to get a hold of our profiler app, with the profiler/app.js and profiler/
login/app.js files open and ready for editing.

To supply CSRF protection, we'll use the csrf middleware. Let's install that and add it to
package.json:

npm install csrf --save

Without SSL/TLS encryption, HTML-based logins are subject to at least the same
vulnerabilities as Basic Authorization. So for basic security, we'll add HTTPS to our app. So we
need our cert.pem and key.pem files from the previous recipe.

We'll also need to have MongoDB running with our stored user data from recipes in Chapter
7, Accelerating Development with Express, since our profiler app relies on it. We can start
MongoDB with the following command:

sudo mongod --dbpath db

If we use Windows, we can instead use the following command:

C:\mongodb\bin\mongod.exe --dbpath db

In the preceding command, c:\mongodb is where MongoDb has been installed.

Chapter 8

261

How to do it...
First, let's secure our entire app with SSL, the profiler/bin/www file should be altered
as follows:

#!/usr/bin/env node
var debug = require('debug')('my-application');
var app = require('../app');
var https = require('https');
var fs = require('fs');

app.set('port', process.env.PORT || 3000);

var server = https.createServer({
 key: fs.readFileSync('key.pem'),
 cert: fs.readFileSync('cert.pem')
}, app).listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

We've added the fs and https modules.

We use fs.readFileSync to load the contents of cert.pem and key.pem to populate the
key and cert properties of the createServer method's first argument (the options object).

The app function (as returned by calling express, exported from app.js) is fundamentally a
callback function that accepts request and response objects. Although, app can also take an
optional third parameter (next), it principally matches the signature of the callback function
for the https (and http) createServer method.

The app.listen method (as used in the original ./bin/www) is simply a convenience function
that passes app into http.createServer. In order to provide a secured HTTP, we must use
the https module and pass app in as the second argument of its createServer method, first
providing the private key and certificate via the first argument (the options object).

The createServer method also returns an object with a listen method, so we leave the rest
of the listening code as is.

Now, when we run npm start, we can (only) access our app at https://localhost:3000.
Now that we've implemented SSL for our Express app, let's move on to securing against
CSRF attacks.

The admin section of profiler is where a CSRF attack could take place, so let's open up
profiler/login/app.js and add the csrf middleware, which we installed in the
Getting ready section.

Implementing Security, Encryption, and Authentication

262

First, we add csrf to the dependencies in profiler/login/app.js as shown in the
following code:

var express = require('express');
var http = require('http');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
var session = require('express-session');
var flash = require('express-flash');
var csrf = require('csrf');

var routes = require('./routes/index');

var app = express();

Then we insert the express-csrf middleware by using the following code:

//…snip… prior configuration
app.use(cookieParser());
app.use(session({secret:'koobkooC edoN'}));
app.use(csrf());
app.use(flash());
//…snip… rest of configuration section

The csrf middleware is dependent on the bodyParser and session middleware, so it
must be placed below these.

Now, if we navigate to https://localhost:3000/admin and attempt to log in (dave,
expressrocks), we will receive a 403 Forbidden response, even though we use the
correct details.

That's because our login app is now looking for an additional POST parameter called _csrf in
all of our POST forms, which must match the _csrf value stored in the user's session object.

Our views need to know the value of _csrf so that it can be placed in our forms as a
hidden element.

One easy way to supply this is to load it onto the res.locals object within the middleware
we wrote to supply req.flash to our views:

app.use(function (req, res, next) {
 res.locals.flash = req.flash();
 res.locals._csrf = req.session._csrf;

Chapter 8

263

 next();
});

Next, we'll create a view called csrf.jade in the login/views folder as follows:

input(type="hidden", name="_csrf", value=_csrf)

Now, we include csrf.jade in each of our POST forms.

We will include csrf.jade in login.jade as follows:

//prior login jade code above
if user
 form(method='post')
 input(name="_method", type="hidden", value="DELETE")
 include csrf
 p Hello #{user.name}!
 a(href='javascript:', onClick='forms[0].submit()') [logout]

 include admin
 include ../../views/profiles

else
 p Please log in
 form(method="post")
 include csrf
 fieldset
 legend Login
//rest of login.jade

We will include csrf.jade in addfrm.jade as follows:

fields = ['Name', 'Irc', 'Twitter', 'Github', 'Location',
'Description'];
form#addfrm(method='post', action='/admin/add')
 include csrf
 fieldset
 legend Add
//rest of addfrm.jade

Updating and maintaining a site with many different POST forms could
pose as challenging. We would have to manually alter every single form.
See how we can autogenerate CSRF values for all forms in the There's
more... section.

Implementing Security, Encryption, and Authentication

264

Now we can log in, add profiles, and log out without a 403 Forbidden response.

However, our /del route is still susceptible to CSRF. The GET requests are not typically
supposed to trigger any changes on the server. They are intended simply to retrieve information.
However, like many other apps in the wild, the developers (that's us) were lazy when they built
this particular functionality and decided to coerce a GET request to do their bidding.

We could turn this into a POST request and then secure it with CSRF, but what about an app
that has hundreds of these deviant GET methods?

Let's find out how to protect our /del route.

In login/routes/index.js, add the following code:

exports.delprof = function (req, res) {
 if (req.query._csrf !== req.session._csrf) {
 res.send(403);
 return;
 };
 profiles.del(req.query.id, function (err) {
 if (err) { console.log(err); }
 profiles.pull(req.query.p, function (err, profiles) {
 req.app.helpers({profiles: profiles});
 res.redirect(req.header('Referrer') || '/');
 });
 });

}

Our changes make it so we can't delete profiles until we include _csrf in the query string,
and so in views/admin.jade:

mixin del(id)
 td
 a.del(href='/admin/del?id=#{id}&p=#{page}&_csrf=#{_csrf}')
 ⨂
//rest of admin.jade

How it works...
The csrf middleware generates a unique token that is held in the user's session. This token
must be included in any action request (logging in, logging out, adding, or deleting) as an
attribute named _csrf.

If the _csrf value in the request body (or query string for GET) doesn't match the _csrf
token stored in the session object, the server denies access to that route and therefore,
prevents the action from occurring.

Chapter 8

265

How does this prevent a CSRF attack? In a plain CSRF exploit, the attacker has no way of
knowing what the _csrf value is, so they are unable to forge the necessary POST request.

Our /del route protection is less secure. It exposes the _csrf value in the address, potentially
creating a very small, but nonetheless plausible, window of opportunity for an attacker to grab
the _csrf value. This is why it's best for us to stick with the POST/DELETE/PUT requests for all
action-related endeavors, leaving GET requests for simple retrieval.

Cross-site scripting (XSS) circumvention
This protection is rendered moot in the event of an accompanied XSS
exploit, whereby an attacker is able to implant their own JavaScript within
the site (for example, through exploiting an input vulnerability). JavaScript
can read any elements in the page it resides on and view non-HttpOnly
cookies with document.cookie.

There's more...
We'll take a look at a way to automatically generate CSRF tokens for login forms, but we
should also bear in mind that CSRF protection is only as good as our ability to code tightly.

Auto-securing the POST forms with the CSRF elements
Ensuring that all the POST forms in our app contain a hidden _csrf input element could be
an arduous task on a site of any significant scale.

We can interact directly with some Jade internals to automatically include these elements.

First, in login/app.js, just under where the view engine is set, we add the following line:

app.set('view engine', 'jade');
app.locals.compiler = require('./customJadeCompiler');

The Jade view engine relies on a special local variable called compile. We can overwrite this
local variable after setting Jade as our view engine to add some customizations to the way
Jade interprets our views.

Let's create customJadeCompiler.js, placing it in the login directory.

First, we'll require some modules and set up our new compiler class as follows:

var jade = require('jade');
var util = require('util');

//inherit from Jade's Compiler
var CompileWithCsrf = function (node, options) {
 jade.Compiler.call(this, node, options);
};

Implementing Security, Encryption, and Authentication

266

Next, we use util.inherits to inherit our new compiler's prototype from the Jade's
compiler as shown in the following code:

//inherit from the prototype
util.inherits(CompileWithCsrf, jade.Compiler);

Then we modify Jade's internal visitTag method (which we've inherited from jade.
Compiler) as shown in the following code:

CompileWithCsrf.prototype.visitTag = function (tag) {

 if (tag.name === 'form' && tag.getAttribute('method').match(/
post/i)) {

 var csrfInput = new jade.nodes.Tag('input')
 .setAttribute('type', '"hidden"')
 .setAttribute('name', '"csrf"')
 .setAttribute('value', '_csrf');

 tag.block.push(csrfInput);

 }
 jade.Compiler.prototype.visitTag.call(this, tag);
};

Finally, we load our new compiler into module.exports, so it's passed via require to the
compiler option of the view options setting in app.js:

module.exports = CompileWithCsrf;

We create a new class-type function, applying the call method to jade.Compiler. When we
pass the this object to the call method, we essentially inherit the main functionality of jade.
Compiler into our own CompileWithCsrf class-type function. It's a great way to reuse code.

However, jade.Compiler also has a modified prototype, which must be incorporated into
our CompileWithCsrf function in order to fully mimic jade.Compiler.

Using call and util.inherits allows us to clone the jade.Compiler object as
CompileWithCsrf, which means we can modify it without touching jade.Compiler
and then allow it to operate in place of jade.Compiler.

We modify the visitTag method, which processes each tag (for example, p, div, and so
on) in a Jade view. Then we look for the form tags with methods set to post, using a regular
expression since the method attribute may be in upper or lowercase, being wrapped in double
or single quotes.

Chapter 8

267

If we find form with POST formatting, we use the jade.Nodes constructor to create a
new input node (a Jade construct, in this case rolling as an HTML element), which we then
call setAttribute (an internal Jade method) on three times to set the type, name, and
value fields. Note name is set to '"_csrf"' but value contains '_csrf'. The inner
double quotes tell Jade we intend a string. Without them, it treats the second parameter
as a variable, which is exactly what we want in the case of value. The value attribute is,
therefore, rendered according to res.locals._csrf defined in app.js (which is likewise
taken from req.session._csrf as generated by the express.csrf middleware).

Now that our _csrf tokens are automatically included in every POST form, we can remove the
csrf.jade includes from the login.jade and addfrm.jade views.

Eliminating cross-site scripting (XSS) vulnerabilities
Cross-site scripting attacks are generally preventable. All we have to do is ensure any user
input is validated and encoded. The tricky part comes where we improperly or insufficiently
encode user input.

When we take user input, much of the time we'll be outputting it to the browser at a later
stage; this means we must embed it within our HTML.

XSS attacks are all about breaking context. For instance, imagine we had some Jade that
links to a user profile by their username:

a (href=username) !{username}

This code is exploitable in two ways. First, we used !{username} instead of #{username}
for the text portion of our anchor link element. In Jade, #{} interpolation escapes any HTML
in the given variable. So if an attacker was able to insert <script>alert('This is
where you get hacked!')</script> as their username, #{username} would render:

<script>alert('This is where you get hacked!')</script>

Whereas, !{username} would be unescaped (for example, HTML would not be replaced by
escape characters such as < in place of <). The attacking code could be changed from an
innocent (though jaunty) alert message, to successfully initiated forged requests, and our
CSRF protection would be futile since the attack is operating from the same page (JavaScript
has access to all data on the page, and the attacker has gained access to our page's
JavaScript via XSS).

Jade HTML escapes variables by default, which is a good thing. However, proper escaping
must be context aware, and simply converting HTML syntax into its corresponding entity
codes is not enough.

Implementing Security, Encryption, and Authentication

268

The other vulnerable area in our bad Jade code is the href attribute. Attributes are a different
context to simple nested HTML. Unquoted attributes are particularly susceptible to attack, for
instance, consider the following code:

some text

If we could set profile to profile onClick=javascript:alert('gotcha'),
our HTML would read as follows:

some text

Again, Jade partially protects us in this sense by automatically quoting variables inserted
to attributes. However, our vulnerable attribute is the href attribute, which is another sub
context of the URL variety. Since it isn't prefixed with anything, an attacker might input their
username as javascript:alert('oh oh!'), so the output of a (href=username)
!{username} would be as follows:

 javascript:alert('oh oh!')

The javascript: protocol allows us to execute JavaScript at the link level, allowing a CSRF
attack to be launched when an unsuspecting user clicks on a malicious link.

These simple examples are elementary. XSS attacks can be much
more complex and sophisticated. However, we can follow the Open Web
Application Security Projects 8 input sanitizing rules that provide extensive
protection against XSS:
https://www.owasp.org/index.php/XSS_(Cross_Site_
Scripting)_Prevention_Cheat_Sheet

Validator module
Once we understand how to clean user input, we could use regular
expressions to quickly apply specific validation and sanitization methods.
However, for a simpler life, we could also use the third-party validator
module, which can be installed with npm. Documentation is available
on the GitHub page: https://www.github.com/chriso/
node-validator.

See also
ff The Setting up an HTTPS web server recipe

ff The Initializing and using a session recipe in Chapter 7, Accelerating Development
with Express

ff The Making an Express web app recipe in Chapter 7, Accelerating Development
with Express

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.github.com/chriso/node-validator

9
Integrating

Network Paradigms

In this chapter, we will cover the following topics:

ff Sending an e-mail

ff Sending an SMS

ff Communicating with TCP

ff Creating an SMTP server

ff Implementing a virtual hosting paradigm

Introduction
Node's capabilities extend far beyond simply serving web pages. Node's core focus of
supporting various computing tasks and networking objectives with straightforward APIs
allows developers like us to unleash our creativity and innovate increasingly interconnected
solutions and ideas.

In this chapter, we'll be looking at some fundamental examples of such interconnectivity
with the knowledge that we can take these archetypes and grow and combine them into
larger applications.

Knowledge of how to implement network paradigms can help us exceed the normal
boundaries of a web app, providing advanced functionality to our users and implementing
more ways for individuals to connect with our services.

Integrating Network Paradigms

270

Sending an e-mail
On many platforms, the ability to send e-mail is a standard core feature, but Nodes' minimal
approach to core leaves the actual implementation of e-mail protocols up to third-party modules.

Thankfully, there are some excellent module creators in the Node community who have
already created modules for sending an e-mail. In this recipe, we'll be using the well-featured
third-party nodemailer module to send an imaginary newsletter to a list of recipients.

Getting ready
In order to send an e-mail, we'll need a functioning Simple Mail Transfer Protocol (SMTP)
server that we can connect to. In a later recipe, we'll be creating our own SMTP server, but
for now, we'll have to acquire some SMTP details to use our client with.

If we have an e-mail address, we will have access to an SMTP server. We can find out the
SMTP host address from our provider.

If required, we can obtain access to an SMTP server by signing up for a Gmail account (at mail.
google.com). Once we have an account, we can use smtp.gmail.com as the host, with our
Gmail address as the username.

We'll create a new folder with a new file called mailout.js to hold our code.

Finally, we'll need the nodemailer module on the command line inside our new folder. We
can install it with the following command:

npm install nodemailer

How to do it...
There are three main elements to use nodemailer. They are as follows:

ff Setting up the SMTP transport

ff Putting together the message object (which includes the transport)

ff Passing the object to the sendMail method

Let's add the nodemailer module and create the transport as shown in the following code:

var nodemailer = require('nodemailer');

var transport = nodemailer.createTransport('SMTP', {
 host: 'smtp.gmail.com',
 secureConnection: true,
 port: 465,
 auth: {

Chapter 9

271

 user: "ourGmailAddress@googlemail.com",
 pass: "ourPassword"
 }
});

We will need to fill in our own SMTP settings for the user and pass values.

We've used the secureConnection setting and set the port to 465, so we can use Gmail's
SSL/TLS-secured SMTP server.

Now we incorporate our configured transport into an object that we'll call msg, as follows:

var msg = {
 transport: transport,
 text: "Hello! This is your newsletter, :D",
 from: "Definitely Not Spammers <spamnot@ok.com>",
 subject: "Your Newsletter"
};

Notice that we haven't set a to property on the object. We're going to mail out to multiple
addresses, so to will be set dynamically. For testing purposes, we'll create an array of
mailinator e-mail addresses. Mailinator (http://www.mailinator.com) is a free
service that allows us to quickly create temporary e-mail addresses by sending an e-mail
to an invented address. We'll create the temporary e-mail addresses with the help of the
following code:

var maillist = [
 'Mr One <mailtest1@mailinator.com>',
 'Mr Two <mailtest2@mailinator.com>',
 'Mr Three <mailtest3@mailinator.com>',
 'Mr Four <mailtest4@mailinator.com>',
 'Mr Five <mailtest5@mailinator.com>'
];

Now, we simply loop through and send our newsletter to each address as follows:

maillist.forEach(function (to, i) {
 msg.to = to;
 nodemailer.sendMail(msg, function (err) {
 if (err) {
 console.log('Sending to ' + to + ' failed: ' + err);
 return;
 }

 console.log('Sent to ' + to);

 if (i === maillist.length - 1) { msg.transport.close(); }
 });
});

Integrating Network Paradigms

272

If we point our browser to http://mailtest1.mailinator.com (or mailtest2,
mailtest3, and so on), we should see our message in the temporary inbox of Mailinator.

How it works...
With Nodemailer's createTransport method, we can quickly configure our app with the
required SMTP settings, later including these settings in the msg object as used by the
sendMail method.

We don't set an initial to property because it's modified through each iteration of maillist.
forEach before being passed into the sendMail method.

The sendMail method is asynchronous, as most methods with callbacks are (forEach being
an exception). After each sendMail is called, forEach moves on and calls the next sendMail
method without waiting for the sendMail invocation to be completed. This means that the
forEach loop will finish before all the sendMail calls are finished. So, in order to know when
all the mails have been sent, we use the index parameter in the forEach callback (i).

Once i is equivalent to the size of our maillist array minus one (since array indexes start at
0), all e-mails have been dispatched, so we call transport.close.

Nodemailer opens multiple connections (a connection pool) for the SMTP server and reuses
those connections for all the e-mails being sent. This ensures fast and efficient e-mailing,
and removes the overhead of opening and closing connections for each e-mail sent. The
transport.close method shuts down the connection pool and thus allows our app to
finish execution.

There's more...
Nodemailer is a well-featured, highly-configurable mailing module, as we'll see.

Using sendmail as an alternative transport
Many hosting providers have a sendmail service that connects to a default SMTP server, the
details of which we need not know. Nodemailer will interface with sendmail if we simply alter
our transport object to the following code:

var transport = nodemailer.createTransport("Sendmail");

If sendmail isn't in our host server's environment PATH variable (to find out, simply type
sendmail from an SSH prompt), we can instead specify where sendmail is by using
the following code:

var transport = nodemailer.createTransport("Sendmail", "/to/
sendmail");

Chapter 9

273

In cases where the system's sendmail implementation requires Line
Feed (LF) line endings instead of Carriage Return Line Feed (CRLF) line
endings, the sendmail transport will fail.

Creating HTML e-mails
E-mails can contain HTML and gracefully degrade to plain text for basic user agents. To send
an HTML e-mail, we simply add the html property to our msg object, as follows:

var msg = {
//prior properties: transport
text: "Hello! This is your newsletter, :D",
html: "Hello!<p>This is your newsletter, :D</p>",
//following properties: from, subject
};

The plain text should be included along with the HTML, allowing a fallback for e-mail clients
with no HTML support.

If we don't want to write the text portion separately, we can have Nodemailer extract the
text from the HTML for us using the generateTextFromHtml property, as shown in the
following code:

var msg = {
 transport: transport,
 html: "Hello!<p>This is your newsletter, :D</p>",
 createTextFromHtml: true,
 from: "Definitely Not Spammers <spamnot@ok.com>",
 subject: "Your Newsletter"
};

Sending attachments
What if we wanted to tell a really bad joke using e-mail attachments?

We'll dynamically create a text file and load an image file from disk, both of which we'll attach
to an e-mail.

For the image, we'll be using deer.jpg (which can be found in the supporting code files).
This should go in the same folder as our mail out file (let's call it mailout_attachments.
js). We'll do this with the help of the following code:

var nodemailer = require('nodemailer');
var msg = {
 transport: nodemailer.createTransport('SMTP', {
 host: 'smtp.gmail.com',
 secureConnection: true,
 port: 465,

Integrating Network Paradigms

274

 auth: {
 user: "ourGmailAddress@googlemail.com",
 pass: "ourPassword"
 }
 }),
 text: "Answer in the attachment",
 from: "The Attacher attached@files.com",
 subject: "What do you call a deer with no eyes?",
 to: "anyemail@anyaddress.com",
 attachments: [
 {fileName: 'deer.txt', contents:'no eye deer.'},
 {fileName: 'deerWithEyes.jpg', filePath: 'deer.jpg'}
]
};

nodemailer.sendMail(msg, function (err) {
 if (err) {
 console.log('Sending to ' + msg.to + ' failed: ' + err);
 }
 console.log('Sent to ' + msg.to);
 msg.transport.close();
});

Of course, this is a proof of concept for attachments, and isn't the best use of e-mail.
Attachments are provided as an array of objects within the msg object. Each attachment
object must have a fileName property, which is the filename given to the attachment in
the e-mail. This doesn't have to match the name of the actual file loaded from disk.

The file contents can be written directly via the contents property using a string or a Buffer
object, or we can use filePath to stream a file from disk (we can also pass a stream directly
to a sourceStream property).

See also
ff The Sending an SMS recipe

ff The Creating an SMTP server recipe

Sending an SMS
Being able to send SMS text messages to our users is another way for us to connect with them.

It is possible to connect our computer to a GSM modem, interact with specialized libraries
(such as Asterisk, asterisk.org, combined with ngSMS, ozekisms.com), and interface
with the libraries and the telephony equipment to send SMS messages.

Chapter 9

275

There are easier ways though. Services like Twilio provide gateway SMS services, where we
contact them via an HTTP REST API and they handle the SMS sending for us.

For detailed information on REST architecture, see
http://en.wikipedia.org/wiki/REST.

In this recipe, we'll convert our newsletter mail out app into a blanket SMS service using the
twilio module.

Getting ready
This recipe requires a Twilio account (https://www.twilio.com/try-twilio). Once
signed up and logged in, we should take note of our Account SID, Auth Token, and Sandbox
phone number (we may have to select our country of residence to obtain the appropriate
Sandbox number).

We'll need some phone numbers to send texts to for testing purposes. In the Sandbox mode
(which is what we'll be using for development), any number we want to text or call must go
through a verification process. We do this by selecting the Numbers link from the Account
section and clicking on Verify a Number. Twilio will then call that number and expect a PIN
provided on screen to be entered for confirmation.

Let's create a new file, smsout.js, and install the twilio helper module as follows:

npm install twilio

How to do it...
First we require the twilio module and then we configure the settings as follows:

var twilio = require('twilio');
var settings = {
 sid : 'Ad054bz5be4se5dd211295c38446da2ffd',
 token: '3e0345293rhebt45r6erta89xc89v103',
 phonenumber: '+14155992671' //sandbox number
}

Twilio phone number
Before we can start interacting with the Twilio service, we have to specify
a registered Twilio phone number in order to create our phone. For
development purposes, we can simply use the Sandbox number, which can
be found from the Twilio dashboard (http://www.twilio.com/user/
account). In a production scenario, we would need to upgrade our account
and purchase a unique phone number from Twilio.

Integrating Network Paradigms

276

With our settings present and correct, we're ready to create a Twilio client as follows:

var client = require('twilio')(settings.sid, settings.token);

Now, we define a list of numbers to text (we'll have to provide our own), much like our
maillist array in the previous recipe. We will provide these numbers with the help of the
following code:

var smslist = [
 '+44770xxxxxx1',
 '+44770xxxxxx2',
 '+44770xxxxxx3',
 '+44770xxxxxx4',
 '+44770xxxxxx5'
];

Unless we have upgraded our account, any number on smslist must
be preverified with Twilio. This can be done through the Twilio numbers
account section (https://www.twilio.com/user/account/
phone-numbers/).

Then, we simply loop through smslist and use phone to send an SMS message to each
recipient as follows:

var msg = 'SMS Ahoy!';
smslist.forEach(function (to) {
 client.sendSms({to: to, body: msg, from: settings.phonenumber},
 function(err, res) { console.log(res.status); });
});

This should work fine, except that we won't know for sure whether our message has been
sent or not. The initial status of the response data will be queued; we have to check back with
Twilio again to confirm that the message was sent. We can pass res.sid to client.sms.
messages to query Twilio for an update on the response data, as follows:

 client.sendSms({to: to, body: msg, from: settings.phonenumber},
 client.sms.messages(res.sid).get(function (err, res) {
 //process res using it's status property.
 });
 });

If our SMS hasn't been sent on the first call, we need to wait and check it again. Let's make
some final improvements as shown in the following code:

var msg = 'SMS Ahoy!';
smslist.forEach(function (to) {
 client.sendSms({to: to,

Chapter 9

277

 body: msg,
 from: settings.phonenumber}, function (err, res) {
 if (err) { console.log(err); return; }

 (function checkStatus() {
 client.sms.messages(res.sid).get(function (err, res) {
 if (res.status === 'sent') {
 console.log('Sent to ' + res.to);
 } else {
 //if it's not a number (like 404), it's not an error
 //so we wait one second and retry
 if (isNaN(res.status)) {
 setTimeout(checkStatus, 1000, res);
 return;
 }
 //it seems to be a number, let's notify,
 //but carry on with other numbers
 console.log('API error: ', res.body);
 }
 });
 }());
 });
});

Now, the console will output each time a number has been confirmed as sent. When all
numbers have been messaged, the process exits.

How it works...
We use the sendSms method of the client object to make an HTTP request to the Twilio API
via the twilio module, passing in an object containing the desired recipient, message, and
sender followed by a callback function.

Once the request is made, our callback is triggered with two parameters: a potential err
object and the initial res object.

We first check the err object. If there has been an error, we log it out and return the function.
If not, then our self-calling checkStatus function begins to process the res object.

The res.sid function is passed to client.sms.messages, which provides us with an
updated instance of our res object.

We are looking to see if Twilio has sent our text message yet. If it has, res.status will be sent.
If it's anything other than this, we want to wait for a short while and then ask Twilio for another
update on the status of our queued SMS message. That is, unless the returned status is a 404
error, in which case there has been an issue and we need to notify the user; we continue on to
process the next SMS message.

Integrating Network Paradigms

278

There's more...
The twilio module's versatility stretches beyond sending SMS messages. It can also
transparently handle Twilio callbacks for us through emitting events.

Making an automated phone call
For this next example to work, we would need to be running our app on a web-exposed server.

For this code to work, it must be hosted on a live public server. For more
information on hosting Node on live servers, see Chapter 11, Taking It Live.

To make a call, we start with the usual setup as follows:

var twilio = require('twilio');

var settings = {
 sid : 'Ad054bz5be4se5dd211295c38446da2ffd',
 token: '3e0345293rhebt45r6erta89xc89v103',
 url: 'http://nodecookbook.com',
 to: '+447xxxxxxxx1',
 phonenumber: '+14155992671' //sandbox number
};

var client = twilio(settings.sid, settings.token);

We've added two properties to our settings: a to property, which we'll pass to Twilio as a
desired number to call, and a url property, which we'll use to tell Twilio to ask for Twilio
Markup Language (TwiML) that will determine the contents of the phone call.

The twilio module has a TwimlResponse method that returns an object that allows us to
dynamically build TwiML using its say method, as follows:

var response = twilio.TwimlResponse();

//prepare the message
response.say('Meet us in the abandoned factory');
response.say('Come alone', {voice: 'woman'});

We also need to provide a server for Twilio to contact, as follows:

require('http').createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type':'text/xml' });
 res.end(response+'')
}).listen(80);

Chapter 9

279

For tips on live hosting with Node, see Chapter 11, Taking It Live.

Then, we make the following call:

client.makeCall({
 to: settings.to,
 url: settings.url,
 from: settings.phonenumber
});

If our account is not upgraded, whatever number we supply to
makeCall must be verified through the Twilio Numbers area in the
account section (https://www.twilio.com/user/account/
phone-numbers/).

To send a computerized text-to-speech message to the recipient, we instantiate a special
response object using the twilio module's TwimlResponse method and pass our
desired speech to the response object's say method.

The toString method is called on response (using shorthand string concatenation—
response+'') as it's passed to res.end resulting in an XML document being supplied to
Twilio with the following structure:

<?xml version="1.0" encoding="UTF-8" ?>
<Response>
 <Say>
 Meet us in the abandoned factory
 </Say>
 <Say voice="woman">
 Come alone
 </Say>
</Response>

When Twilio has downloaded this document, it parses it and converts it into computerized
speech, which is then played to the recipient of the phone call.

See also
ff The Sending an e-mail recipe

ff The Communicating with TCP recipe

ff Chapter 11, Taking It Live

Integrating Network Paradigms

280

Communicating with TCP
The Transmission Control Protocol (TCP) provides the backbone for HTTP communications.
With TCP, we can open up interfaces between processes running on separate server hosts
and remotely communicate between processes with less overhead and fewer complexities
than HTTP.

Node provides us with the net module to create TCP interfaces. When it comes to scaling,
reliability, load balancing, synchronization, or real-time social communications, TCP is a
fundamental element.

In this recipe, we're going to demonstrate the sort of foundation needed to communicate
between processes over a network by setting up two TCP servers that can talk to each other
as well as a remote TCP client that utilizes two-way communications.

Getting ready
We'll need two new files: server.js and client.js. Let's place them in a new folder.

How to do it...
First, let's create our first TCP server in server.js as follows:

var net = require('net');
net.createServer(function(socket) {
 socket.end('Hello, this is TCP\n');
 socket.on('data', function (d) {
 console.log(d+'');
 });
}).listen(8080);

We can use the nc (netcat) command-line program to test this out in another terminal as
follows:

echo "testing 1 2 3" | nc localhost 8080

If we're using Windows, we can download netcat from
http://www.joncraton.org/blog/netcat-for-windows.

The response should be Hello, this is TCP and the server.js console should output
testing 1 2 3.

Chapter 9

281

Still inside server.js, we're going to create another TCP server that opens a second port for
client.js that can send to and receive messages from our server. Before we do this though,
we'll make and use a PassThrough stream as a bridge between our two server.js TCP
servers, as follows:

var net = require('net'),
 PassThroughStream = require('stream').PassThrough,
 stream = new PassThroughStream();

net.createServer({allowHalfOpen: true}, function(socket) {
 socket.end('Hello, this is TCP\n');
 socket.pipe(stream, {end: false});
}).listen(8080);

net.createServer(function(socket) {
 stream.on('data', function (d) {
 d+='';
 socket.write(Date() + ' ' + d.toUpperCase());
 });
 socket.pipe(stream);
}).listen(8081);

We've replaced console.log in the data listener of socket with an emission from our
events object. We pick up on this emitted event in the next TCP server (on port 8081) and
write the current date and our uppercased data to the client.

All we have to do now is create our client.

Inside client.js, we write the following code:

var net = require('net');
var client = net.connect(8081, 'localhost', function () {
 process.stdin.resume();
 process.stdin.pipe(client);
}).on('data', function (data) {
 console.log(data + '');
}).on('end', function () {
 console.log('session ended');
});

When we run client.js, we can interact with it in two ways. First we can send a message
to our TCP server on port 8080 using netcat as we did previously. We will send this message
with the help of the following command:

echo "testing 1 2 3" | nc localhost 8080

Integrating Network Paradigms

282

Our client will output something like the following:

Tue Sep 10 2013 21:53:11 GMT+0100 (BST) TESTING 1 2 3

We can also type directly into our client and get a similar result.

To run across separate systems, we simply place server.js on a remote host and then
update the second parameter of net.connect from localhost to the name of our server,
for example:

var client = net.connect(8081, 'nodecookbook.com', function () {

How it works...
In server.js, we create two TCP servers using the net module. Our first server on port
8080 confirms that it is indeed a TCP server, and pipes to our stream object. This first server
is passed an options object as the first value with the option allowHalfOpen set to true.
This prevents any FIN packet from closing our server. A FIN packet is a special piece of data
sent over TCP to close a connection; it would be sent by netcat in the case of our recipe. We
also pass an options object as the second argument of pipe, containing an end property set
to false (this option is true by default). This stops the same FIN packet that would close our
server from forcing our stream session to end.

The stream object is a PassThrough stream, which simply outputs all input. We take
advantage of this in both of our TCP servers by using pipe to direct the flow of incoming data,
while leaving that data completely unmodified.

For more on streams, see Chapter 5, Employing Streams.

This allows us to listen to data events in our port 8081 TCP server. Any data picked up from
our event listener is uppercased, prepended with a date, and written to the socket object.

Our client.js file connects to our port 8081 TCP server and (in the callback function)
begins piping from the standard input to the server once a connection is established. This
allows us to send messages directly from the standard input to the TCP server (on port 8081),
which pipes them to our PassThrough stream, which in turn receives the data events and
sends messages back to our client. Our client.js file receives the messages by listening
to the data event on our client and simply outputs them using console.log. It lets us know
when the connection has closed by listening to the end event.

There's more...
Let's look at some ways we can further harness the power of TCP.

Chapter 9

283

Port forwarding
There can be various reasons to forward a port. As an example, if we wish SSH into our server
over a mobile connection, we may find that port 22 has been blocked. The same can be applied
to corporate firewalls (this could be because a blanket block is applied to all privileged ports
except the most common ones such as 80 and 443).

We can use the net module to forward TCP traffic from one port to another, essentially
circumventing a firewall. So, naturally this should be used only for legitimate cases and
with any necessary permission.

First, we'll require net and define ports to forward from and to, as follows:

var net = require('net');
var fromPort = process.argv[2] || 9000;
var toPort = process.argv[3] || 22;

So, we can either define ports via a command line or default to forwarding the arbitrary port
9000 to the SSH port.

Now, we create a TCP server that receives connections via fromPort, creating a TCP client
connection to toPort, passing all data between these connections as follows:

var fromPort = process.argv[2] || 9000;
var toPort = process.argv[3] || 22;
var net = require('net');

net.createServer(function (socket) {

 var client = net.connect(toPort);

 socket.pipe(client).pipe(socket);

}).listen(fromPort, function () {
 console.log('Forwarding ' + this.address().port + ' to ' +
 toPort);
});

We pass the pipe from the socket to the client and from the client to the server to receive and
push data between client (our bridge connection) and socket (the incoming connection).
We can chain the two pipes together because the return value of pipe is the writeable stream
passed into it. The client stream is both readable and writable, so as it's returned from the
first pipe, we call the second pipe on it (due to its readable interface) passing in the socket
stream (which is also both readable and writable).

If we now run our script on the remote server (with no arguments), we can log in to a secure
shell from our local computer using port 9000 like the following:

ssh -l username domain -p 9000

Integrating Network Paradigms

284

Using pcap to watch TCP traffic
With the third-party pcap module, we can also observe TCP packets as they travel in and
out of our system. This can be useful for analysis and optimization of expected behavior,
performance, and integrity.

In order to install the pcap module, enter the following command on the command line:

npm install pcap

The following is our code for this section:

var pcap = require('pcap');
//may need to put wlan0, eth0, etc. as 1st arg. of createSession
var pcapSession = pcap.createSession("","tcp");
var tcpTracker = new pcap.TCP_tracker();
tcpTracker.on('end', function (session) {
 console.log(session);
});

pcapSession.on('packet', function (packet) {
 tcpTracker.track_packet(pcap.decode.packet(packet));
});

If pcap fails to choose the correct device, there will be no output (or maybe
unrelated output). In this case, we need to know which device to sniff. If
we are connected wirelessly, it may well be wlan0 or wlan1, and if we are
wired, it could be eth0/eth1. We can find out by typing ifconfig (Linux,
Mac OS X) or ipconfig (Windows) on the command line to see which
device has an inet address matching the network part of our router's IP
address (for example, 192.168.1.xxx).

If we save the preceding code as tcp_stats.js, we can run it with the following command:

sudo node tcp_stats.js

The pcap module interfaces with privileged ports and therefore must be run as root (for
operating systems such as Linux and Mac OS X that enforce privileged ports).

If we navigate to any website and then refresh the page, the tcpTracker object's end event
triggers our callback listener where we output the session object.

To initialize tcpTracker, we create a pcap session and attach a listener for the packet
event where we pass each decoded packet into tcpTracker.

Chapter 9

285

Upon creating the pcap session, we pass an empty string followed by tcp to the
createSession method. The empty string causes pcap to automatically choose an interface
(if this doesn't work, we can specify the appropriate interface, for example, eth0, wlan1, or lo
if we want to analyze localhost TCP packets). The second parameter, tcp, instructs pcap to
only listen for TCP packets.

See also
ff The Creating an SMTP server recipe

ff Chapter 5, Employing Streams

ff The Implementing a virtual hosting paradigm recipe

Creating an SMTP server
We don't have to rely on a third-party SMTP server; we can create our own!

In this recipe, we'll create our own internal SMTP server (just like the first SMTP servers)
using the third-party simplesmtp module, which is an underlying library of the nodemailer
module from the first recipe of this chapter, Sending an e-mail. For information on converting
an internal SMTP server to an externally exposed MX record server, see the There's more...
section at the end of this recipe.

Getting ready
Let's create a file and call it server.js, then make a new folder called mailboxes
containing three subfolders: bob, bib, and susie. We'll also want to have our mailout.js
file from the first recipe in hand.

We'll also need the simplesmtp and nodemailer modules. We'll install them with the help
of the following command:

npm install simplesmtp nodemailer

How to do it...
First, we'll set up some initial variables as follows:

var simplesmtp = require('simplesmtp');
var fs = require('fs');
var path = require('path');
var users = [{user: 'node', pass: 'cookbook'}],
 mailboxDir = './mailboxes/',
 catchall = fs.createWriteStream(mailboxDir + 'caught', {flags :
 'a'});

Integrating Network Paradigms

286

Now, we initialize the SMTP server with authentication enabled, as follows:

var smtp = simplesmtp
 .createServer({requireAuthentication: true})
 .on('authorizeUser', function (envelope, user, pass, cb) {
 var authed;
 users.forEach(function (userObj) {
 if (userObj.user === user && userObj.pass === pass) {
 authed = true;
 }
 });
 cb(null, authed);
 });

Next, we'll react to some simplesmtp events in order to process incoming mail. Beginning
with the startData event, as follows:

smtp.on('startData', function (envelope) {
 var rcpt, saveTo;
 envelope.mailboxes = [];
 envelope.to.forEach(function (to) {
 path.exists(mailboxDir + to.split('@')[0], function (exists) {
 rcpt = to.split('@')[0];
 if (exists) {
 envelope.mailboxes.unshift(rcpt);
 saveTo = mailboxDir + rcpt + '/' + envelope.from
 + ' - ' + envelope.date;
 envelope[rcpt] = fs.createWriteStream(saveTo, {flags:
 'a'});
 return;
 }
 console.log(rcpt + ' has no mailbox, sending to caught
 file');
 envelope[rcpt] = catchall;
 });
 });
});

Then, the data and dataReady events will be as follows:

smtp.on('data', function (envelope, chunk) {
 envelope.mailboxes.forEach(function (rcpt) {
 envelope[rcpt].write(chunk);
 });
}).on('dataReady', function (envelope, cb) {
 envelope.mailboxes.forEach(function (rcpt) {

Chapter 9

287

 envelope[rcpt].end();
 });

 cb(null, Date.now());
});

For terser code, we chained these two events together with dot notation. Finally, we tell our
SMTP server what port to listen to on the following port:

smtp.listen(2525);

In production, it would be expedient to specify the port as 25 (or in more advanced cases,
465 or 587).

Now, let's test our server by converting our mailout.js file from the Sending an e-mail recipe.

First, we alter our createTransport invocation to reflect the values of our custom SMTP
server, as follows:

var transport = nodemailer.createTransport('SMTP', {
 host: 'localhost',
 secureConnection: false,
 port: 2525,
 auth: {
 user: "node",
 pass: "cookbook"
 }
});

Next, we modify the maillist array to reflect our mailboxes, as shown in the following code:

var maillist = [
 'Bob <bob@nodecookbook.com>, Bib <bib@nodecookbook.com>',
 'Miss Susie <susie@nodecookbook.com>',
 'Mr Nobody <nobody@nodecookbook.com>',
];

Bob and Bib are sent together. We also added an address that doesn't have a mailbox
(nobody@nodecookbook.com) in order to test our catch all functionality.

Now, if we run server.js in one terminal and mailout.js in another, the output from
mailout.js should be something like the following:

Sent to Miss Susie <susie@nodecookbook.com>

Sent to Mr Nobody <nobody@nodecookbook.com>

Sent to Bob <bob@nodecookbook.com>, Bib <bib@nodecookbook.com>

Integrating Network Paradigms

288

If we look in the mailboxes/bob directory, we'll see our e-mail from spamnot@ok.com,
the same for susie and bib.

The server.js file should have the following output:

nobody has no mailbox, sending to caught file

Therefore, upon analyzing the contents of mailboxes/caught, we'll see our e-mail in there
sent to Mr. Nobody.

How it works...
SMTP is based upon a series of plain text communications between an SMTP client and
server over a TCP connection. The simplesmtp module carries out these communications
for us, yielding a higher-level API for developer interactions.

When we call simplesmtp.createServer with requireAuthorization set to true, our
new server (simply called smtp) will emit an authorizeUser event and will not continue to
execute until we have invoked the fourth parameter, cb (the callback). The cb callback takes
two parameters. With the first, we can specify a reason why access is denied via an Error
object (we simply pass null). The second is a Boolean saying whether the user is authorized
or not (if not, and the Error parameter is null, a generic access denied error is sent to the
mail client).

We determine the second cb parameter by looping through our users array, finding out if the
username and password are correct (in reality, we may wish to use a database for this part).
If there is a match, our auth variable is set to true and passed to cb, otherwise it remains
false and the client is rejected.

If the client is authorized, smtp will emit several events for each envelope (an envelope is
an e-mail package containing all the recipients for that e-mail, body text, e-mail headers,
attachments, and so on).

In the startData event, we are provided with an envelope parameter where we use the
envelope.to property to check whether our recipients have a mailbox. SMTP allows more
than one recipient to be specified per e-mail, so envelope.to is always an array, even if it
contains only one recipient. Therefore, we use forEach to loop through envelope.to in
order to check mailboxes for each recipient stipulated.

We find out the intended recipient mailbox by splitting the address with the @ character,
loading it into our rcpt variable. We perform no verification on the domain portion of the
address, although simplesmtp automatically verifies that the domain is genuine before
emitting any of the events.

The rcpt variable gets added to our envelope.mailboxes array, which we added to the
envelope before looping through envelope.to. We use envelope.mailboxes in the later
data and dataReady events.

Chapter 9

289

Still inside the envelope.to forEach loop, we add one final property to envelope named
after the mailbox name (rcpt). If the mailbox exists, we create writeStream to saveTo (a
path with a filename determined from combining envelope.from with envelope.date).
We now have an endpoint to each recipient's mailbox ready to receive data. If the mailbox
doesn't exist for the recipient, we set envelope[rcpt] to catchall. The catchall
variable is the global variable we set at the top of our file. It's a writeStream object with the
a flag set so that the caught file accumulates orphaned e-mails. We create the catchall
writeStream method on initialization and then reuse the same writeStream function for
all e-mails addressed to non-existent mailboxes. This saves us from creating a writeStream
function for every badly addressed e-mail received, thus saving resources.

The data event is triggered for each chunk of the e-mail body received by the server,
giving us envelope and chunk. We save each chunk to its applicable file using
envelope[rcpt].write, determining the rcpt variable by looping through our
custom envelope.mailboxes array.

The dataReady event signifies that all data has been received and the data is ready
for processing. Since we've already stored it, we use this event to end the relevant
writeStream function for each rcpt in our mailboxes. The dataReady event also requires
a callback (cb). The first parameter can be an Error object, which allows for a final rejection
of an e-mail (for instance, if the content of the e-mail was analyzed and found to be spam).
The second parameter expects a queue ID to be sent to the mail client; in our case, we simply
give Date.now.

There's more...
Let's take a look at how to convert our SMTP server into a public mail exchange handler.

Receiving e-mails from external SMTP servers
By removing authorization settings and remotely hosting our SMTP server, listening on port
25, we can allow other mail servers to communicate with our SMTP server so e-mail can be
transferred from one network to another (for example, from a Gmail account to our hosted
SMTP server).

Let's save our file as mx_smtp.js and modify the following accordingly:

var simplesmtp = require('simplesmtp');
var fs = require('fs');
var path = require('path');
var mailboxDir = './mailboxes/',
 catchall = fs.createWriteStream(mailboxDir + 'caught', {flags :
 'a'});
var smtp = simplesmtp.createServer();

Integrating Network Paradigms

290

We've discarded the users variable and changed the smtp variable so the object with the
requireAuthentication property and the accompanying authorizeUser event are
removed. In order for an external mail program to forward to our SMTP server, it must be able
to connect. Since other mail programs don't possess authentication details, we have to open
our server to allow them to do so.

The startData data and dataReady events all remain the same. The final change to the
port is as follows:

smtp.listen(25);

In order for this to work, we must have a live server, which we have root access to (for
example, an Amazon EC2 micro instance) and a domain where we can alter the Mail
Exchange (MX) records.

So, for instance, say we're hosting our SMTP server at mysmtpserver.net and we want to
receive e-mails for bob@nodecookbook.com. We point the MX records of nodecookbook.
com to mysmtpserver.net with a priority of 10.

For an example of how to change DNS records with a registrar, see
http://support.godaddy.com/help/article/680. For more
info on MX records, take a look at http://en.wikipedia.org/
wiki/MX_record.

Once changes are made, they can take a while to propagate (up to 48 hours, though often
faster). We can use dig mx (Mac OS X and Linux) or nslookup set q=MX (Windows) on the
command line to determine if the update to our MX records has occurred.

We must have Node installed on our remote host, ensuring that port 25 is exposed and not
in use by any other programs. To check whether other programs are using port 25, log in with
SSH and type netstat -l. If you see *:smtp in the Active Internet Connections (only
servers) section, a program is already using the port and must be stopped (try ps -ef to look
for any suspects).

On the live server, we create our mailboxes folder containing bob, bib, and susie, copy
our mx_smtp.js file over, and install simplesmtp as follows:

npm install simplesmtp

Now, if everything is properly set up and our MX records are updated, we can execute our
mx_smtp.js file on the live server. Then, send a test e-mail to bob@nodecookbook.com
(or at whatever domain we possess, which we have altered the MX records for), wait a few
seconds, and then check the mailboxes/bob folder. The e-mail should have appeared.

http://en.wikipedia.org/wiki/MX_record

Chapter 9

291

See also
ff The Sending an e-mail recipe

ff The Deploying to a server environment recipe discussed in Chapter 11, Taking It Live

Implementing a virtual hosting paradigm
If we wish to host multiple sites on one server, we can do so with virtual hosting. Virtual hosting
is a way to uniquely handle multiple domain names according to their name. The technique is
surprisingly simple—we just look at the incoming Host header and respond accordingly. In this
task, we're going to implement simple name-based virtual hosting for static sites.

Getting ready
We'll create a folder called sites, with localhost-site and nodecookbook as
subdirectories. In localhost-site/index.html, we'll write the following:

 This is localhost

And in nodecookbook/index.html, we'll add the following code:

<h1>Welcome to the Node Cookbook Site!</h1>

For local testing, we'll want to configure our system with some extra host names so we can
point different domains to our server. To do this, we edit /etc/hosts on Linux and Max OS X,
or %SystemRoot%\system32\drivers\etc\hosts for Windows systems.

At the top of the file, it maps our local loopback IP 127.0.0.1 to localhost. Let's change
this line to the following:

127.0.0.1 localhost nodecookbook

Finally, we want to create two new files: mappings.js and server.js. The mappings.
js file will provide static file servers for each domain name, and server.js will provide the
virtual hosting logic.

We'll be using the node-static module to serve our sites; our virtual host will only serve
static websites. If we don't already have it, we can install it via npm as follows:

npm install node-static

Integrating Network Paradigms

292

How to do it...
Let's start with mappings.js, as follows:

var static = require('node-static');

function staticServe (dir) {
 return new (static.Server)('sites/' + dir)
}

exports.sites = {
 'nodecookbook' : staticServe('nodecookbook'),
 'localhost' : staticServe('localhost-site')
};

We've used the domains laid out in our system's hosts file. In a production scenario, domains
would be directed to us by DNS records.

Now, the following is the code for server.js:

var http = require('http');

var port = 8080,
 mappings = require('./mappings');

var server = http.createServer(function (req, res) {
 var domain = req.headers.host.replace(new RegExp(':' + port + '$'),
''),
 site = mappings.sites[domain] ||
 mappings.sites[mappings.aliases[domain]];

 if (site) { site.serve(req, res); return; }
 res.writeHead(404);
 res.end('Not Found\n');

}).listen(port);

Now when we navigate to http://localhost:8080 or http://localhost.
localdomain:8080, we get the content in sites/localhost-site/index.html,
whereas if we go to http://nodecookbook:8080, we get the big Node Cookbook
welcome message.

How it works...
Any time our server receives a request, we strip the port number (which wouldn't be necessary
with port 80 servers) to determine the domain.

Chapter 9

293

We then cross reference the domain with our mappings.sites object. If a site is found, we
call its serve method, which is inherited from the node-static library. In mappings.js,
each exports.sites property contains a node-static Server instance pointed at the
relevant site directory. We've used our custom staticServer function as a wrapper to keep
the code a little tidier.

To use the static Server instance, we call its serve method, passing through the req and
res objects, as in server.js, thusly:

 if (site) { site.serve(req, res); return; }

The site variable is an instance of static.Server pointing to the appropriate site folder
for the given domain name.

If server.js fails to find a site in mapping.js for the requested domain, we simply pass a
404 error back to the client.

There's more...
What about going beyond static hosting into dynamic hosting, or what if we want to use an
SSL/TLS certificate with our sites? You could achieve this with the help of this section.

Virtual hosting Express apps
Express/Connect comes with the vhost middleware, which allows us to implement dynamic
Express-based virtual hosting with ease.

Let's create a new folder (we could call it express_virtual_hosting) in which we'll install
Express with the following commands:

mkdir express_virtual_hosting

cd express_virtual_hosting && npm install express

We'll create a sites folder in our new directory so we can create two new Express apps
inside, like so:

mkdir sites && cd sites
express nodecookbook && express localhost-site
cd nodecookbook && npm install && cd ..
cd localhost-site && npm install && cd ..

We'd also need to modify two parts of each site's app.js file; first we slip module.exports
into the app variable instantiation as follows:

var app = module.exports = express();

This allows us to require our app later.

Integrating Network Paradigms

294

Then, we add an if module.parent conditional statement just before the call to listen,
using the following code:

if (module.parent) {return;}
http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

This stops apps that we have required (instead of run directly) from creating HTTP servers and
thus allows us to handle the front-facing server logic.

In our nodecookbook app, let's add the following to views/index.jade:

h1 Welcome to the Node Cookbook site!

And in the localhost-site app, we add the following code to views/index.jade:

b this is localhost

With our sites set up, we can modify mappings.js as follows:

function appServe (dir) {
 return require('./sites/' + dir + '/app.js')
}

exports.sites = {
 'nodecookbook' : appServe('nodecookbook'),
 'localhost' : appServe('localhost-site')
};

We've removed the node-static module since we're using Express instead. Our
staticServe convenience function has been modified as appServe, which simply loads
each Express app using require according to its mapping in exports.servers.

And we'll update server.js with the following:

var express = require('express'),
 mappings = require('./mappings'),
 app = express.createServer();

Object.keys(mappings.sites).forEach(function (domain) {
 app.use(express.vhost(domain, mappings.sites[domain]));
});

app.listen(8080);

We create a master app and then loop through mappings.sites, passing each subapp into
app.use with express.vhost. The vhost middleware takes two arguments. The first is the
domain. We get each domain from the mappings.sites keys. The second is an Express app.
We retrieve each Express app from the values in mappings.sites.

Chapter 9

295

We simply request the domain and the vhost middleware lines up the relevant domain with
the relevant app to deliver the correct site.

Server Name Indication (SNI)
Prior to Server Name Indication (SNI), name-based virtual hosting for sites served over
SSL/TLS was a complex administration issue (requiring every hostname to be stored in a
multidomain certificate).

This is because an encrypted connection is established based upon a certificate that specifies
a domain name before any HTTP headers are received by the server. Therefore, the server
cannot provide a certificate that is specific to one domain. As a result, the browser would
vividly warn the user that the connection may be unsafe since the domain name listed on the
certificate didn't match the domain being accessed. In order to avoid this scenario, a virtual
host would have to buy a certificate containing every domain hosted, and then reapply for a
new certificate every time a new domain was added or removed.

SNI forwards the requested domain to the server at the beginning of the SSL/TLS handshake,
allowing our server to choose the appropriate certificate for a domain and preventing the
browser from telling our users that they may be under attack.

The https.Server function (inheriting from tls.Server) has the addContext method,
which allows us to specify hostname and certificate credentials for multiple individual domains.

Let's enable TLS-compatible virtual hosting by making a few changes. First, in mappings.js,
we'll add another convenience function called secureShare, as follows:

function secureShare(domain) {
 var site = {
 content: staticServe(domain),
 cert: fs.readFileSync('sites/' + domain + '/certs/cert.pem'),
 key: fs.readFileSync('sites/' + domain + '/certs/key.pem')
 };
 return site;
} ;

Next, we'll alter the way we load the sites, calling secureShare instead of staticServe,
with the following code:

exports.sites = {
 'nodecookbook.com' : secureShare('nodecookbook.com'),
 'davidmarkclements.com' : secureShare('davidmarkclements.com')
};

Integrating Network Paradigms

296

For this example to work in a production scenario, we'll have to replace the sample domains with
the ones that we control and obtain genuine certificates signed by a trusted Certificate Authority.

We can test locally by following the instructions in the supporting code
files for this chapter (under secure_virtual_hosting/howto).

Let's change our sites folder structure to conform to alterations made in mappings.
js by renaming nodecookbook to nodecookbook.com and localhost-sitc to
davidmarkclements.com, changing the latter's index.html file to the following:

This is DavidMarkClements.com virtually AND secure

Each site folder also needs a certs folder containing our cert.pem and key.pem files.
These files must be certificates purchased specifically for the domain.

In server.js, we change the top of our script to the following:

var https = require('https');
var fs = require('fs');

Underneath our mappings variable, we create another variable called defaultContext:

mappings = require('./mappings'),
 defaultContext = {key: mappings.sites['nodecookbook.com'].key,
 cert: mappings.sites['nodecookbook.com'].cert}

The filesystem (fs) module is required to load our credentials. As we've replaced http with
https, we will alter our createServer call as follows:

var server = https.createServer(defaultContext, function (req,
 res) {

Simply adding s to http does the trick. Even though we'll be defining contexts on a per
domain basis, the https module requires a key and certificate (or alternatively a pfx file)
for it's createServer method—so we simply choose a certificate and key combination and
supply this method as the options object to https.createServer.

In mappings.js, our secureShare function returns an object containing three properties:
content, key, and cert, where content holds the static server. So, in server.js, we
update the following line:

 if (site) { site.serve(req, res); return; }

We will then change the preceding line to the following line:

 if (site) { site.content.serve(req, res); return; }

Chapter 9

297

As we're hosting on a live server, we expose it to the incoming web connections by binding to
0.0.0.0, thusly:

}).listen(port, '0.0.0.0');

We could also change the port variable to 443 to serve directly over the HTTPS port (we must
run the server as root to do this, which has security implications in a live environment; see
Chapter 11, Taking It Live, for how to do this safely).

And finally, we add the following to the bottom of server.js:

Object.keys(mappings.sites).forEach(function (hostname) {
 server.addContext(hostname, {key: mappings.sites[hostname].key,
 cert: mappings.sites[hostname].cert});
});

This loads the key and cert properties for each domain based on the settings laid out in
mappings.js.

Provided we have trusted CA-certified credentials for each specified domain and we're using
a modern browser, we can navigate to each site using HTTPS without a receiving a warning.

The caveat
There is a catch–SNI only works in modern browsers, although modern
browsers in this context exclude Internet Explorer 7/8 and Safari when
run on Windows XP, as well as Android Gingerbread (versions 2.x) and
Blackberry browsers. If we provide a default certificate via the options
object of https.createServer, the user will still be able to view the site
on older browsers, but they will receive the same warnings as if we weren't
using SNI (the older browsers don't indicate the hostname in SSL/TLS
negotiations, so our SNI handling never occurs). Depending on the intended
market, we may have to use alternative methods until these older browsers
are used in sufficiently low numbers in relation to our purposes.

See also
ff The Serving static files recipe discussed in Chapter 1, Making a Web Server

ff The Dynamic routing recipe discussed in Chapter 7, Accelerating Development
with Express

ff The Setting up an HTTPS web server recipe discussed in Chapter 8, Implementing
Security, Encryption, and Authentication

ff The Deploying to a server environment recipe discussed in Chapter 11, Taking It Live

10
Writing Your Own

Node Modules

In this chapter, we will cover the following topics:

ff Creating a test-driven module specification

ff Writing a functional module mock-up

ff Refactoring with prototypical inheritance

ff Extending a module's API

ff Deploying a module to npm

Introduction
A thriving module ecosystem has been one of the core goals of Node since its inception. The
framework leans heavily toward modularization. Even the core functionality (such as HTTP) is
made available through the module system.

It's almost as easy to create our own modules as it is to use core and third-party modules. All
we need to know are a few best practices and how the module system works.

A great module is the one that performs a specific function to a high standard, and great code
is the result of multiple development cycles. In this chapter, we're going to develop a module
from scratch, beginning with defining its Application Programming Interface (API) to creating
our module over a series of development cycle iterations. We'll finally deploy it to npm for
everyone's benefit.

Writing Your Own Node Modules

300

Creating a test-driven module specification
We're going to create our module by loosely following the test-driven development (TDD)
model (refer to http://en.wikipedia.org/wiki/Test-driven_development for
more information). JavaScript is asynchronous, so the code can be executed in multiple time
streams at once. This can sometimes make for a challenging mental puzzle.

A test suite is a particularly powerful tool when it comes to JavaScript development. It provides
a quality assurance process and inspires confidence in a module's user base when tests
are passing.

What's more, we can define our tests upfront as a way to map out the intended API before we
even begin development.

In this recipe, we'll be doing just that by creating a test suite for a module that extracts the
statistical information from MP3 files.

Getting ready
Let's create a new folder named mp3dat, with a file inside named index.js. Then, we will
create two subfolders: lib and test, both containing index.js.

We'll also need some MP3 files to test. For simplicity, our module will only support MPEG-1
layer 3 files with error protection turned off. Other types of MP3 files include MPEG-2 and
MPEG-2.5. MPEG-1 (no error protection) will be the most common type, but our module can
easily be extended later. We can retrieve an MPEG-1 layer 3 file from http://www.paul.
sladen.org/pronunciation/torvalds-says-linux.mp3. Let's place this file in our
new mp3dat/test folder and name it test.mp3.

The focus of this chapter is to create a fully functioning module; however,
prior knowledge of MP3 file structures is not required.

The details regarding MP3 files in this chapter can safely be scanned over, while the information
pertaining to module creation is of key importance. However, we can learn more about MP3 files
and their structure from http://en.wikipedia.org/wiki/MP3.

How to do it…
Let's open test/index.js and set up some variables as shown in the following code:

var assert = require('assert');
var mp3dat = require('../index.js');
var testFile = 'test/test.mp3';

http://www.paul.sladen.org/pronunciation/torvalds-says-linux.mp3

Chapter 10

301

The assert module is a core Node module used specifically for building test suites. The general
idea is we assert that something should be true (or false), and if the assertion is correct, the test
passes. The mp3dat variable requires our primary (currently blank) index.js file that will in
turn load the lib/index.js file, which holds the actual module code.

The testFile variable points to our test.mp3 file from the perspective of the root of
our module (the mp3dat folder). This is because we run our tests from the root of the
module directory.

Now, we'll decide our API and write the corresponding tests. Let's model our module after
the fs.stat method. We'll retrieve data about the MP3 file using an mp3dat.stat method,
which will take two arguments: a file path and a callback function to be invoked once the stats
have been gathered.

The mp3dat.stat callback will take two arguments. The first argument will be the error
object, which should be set to null if there is no error, and the second one will contain our
stats object.

The stats object will contain the duration, bitrate, filesize, timestamp, and
timesig properties. The duration property will, in turn, contain an object that holds
the hours, minutes, seconds, and milliseconds keys.

For example, our test.mp3 file should return something like the following code:

{ duration: { hours: 0, minutes: 0, seconds: 5, milliseconds: 186 },
 bitrate: 128000,
 filesize: 82969,
 timestamp: 5186,
 timesig: '00:00:05' }

Now that we've conceptualized our API, we can map it out to assertion tests as a means of
enforcing this API throughout the module's development.

Let's start with mp3dat and mp3dat.stat, as shown in the following code:

assert(mp3dat, 'mp3dat failed to load');
assert(mp3dat.stat, 'there should be a stat method');
assert(mp3dat.stat instanceof Function, 'stat should be a
Function');

To test the mp3dat.stat function, we actually have to call it and then perform further tests
within its callback, as shown in the following code:

mp3dat.stat(testFile, function (err, stats) {

 assert.ifError(err);

 //expected properties

Writing Your Own Node Modules

302

 assert(stats.duration, 'should be a truthy duration property');
 assert(stats.bitrate, 'should be a truthy bitrate property');
 assert(stats.filesize, 'should be a truthy filesize property');
 assert(stats.timestamp, 'should be a truthy timestamp
 property');
 assert(stats.timesig, 'should be a truthy timesig property');

Now that we've established the expected stats properties, we can go further and specify
what these properties should look like; still within the callback we write the following code:

 //expected types
 assert.equal(typeof stats.duration, 'object', 'duration should
 be an object type');
 assert(stats.duration instanceof Object, 'durations should be an
 instance of Object');
 assert(!isNaN(stats.bitrate), 'bitrate should be a number');
 assert(!isNaN(stats.filesize), 'filesize should be a number');
 assert(!isNaN(stats.timestamp), 'timestamp should be a number');

 assert(stats.timesig.match(/^\d+:\d+:\d+$/), 'timesig should be
 in HH:MM:SS format');

 //expected duration properties
 assert.notStrictEqual(stats.duration.hours, undefined, 'should
 be a duration.hours property');
 assert.notStrictEqual(stats.duration.minutes, undefined, 'should
 be a duration.minutes property');
 assert.notStrictEqual(stats.duration.seconds, undefined, 'should
 be a duration.seconds property');
 assert.notStrictEqual(stats.duration.milliseconds, undefined,
 'should be a duration.milliseconds property');

 //expected duration types
 assert(!isNaN(stats.duration.hours), 'duration.hours should be a
 number');
 assert(!isNaN(stats.duration.minutes), 'duration.minutes should
 be a number');
 assert(!isNaN(stats.duration.seconds), 'duration.seconds should
 be a number');
 assert(!isNaN(stats.duration.milliseconds),
 'duration.milliseconds should be a number');

 //expected duration properties constraints
 assert(stats.duration.minutes < 60, 'duration.minutes should be
 no greater than 59');
 assert(stats.duration.seconds < 60, 'duration.seconds should be
 no greater than 59');

Chapter 10

303

 assert(stats.duration.milliseconds < 1000, 'duration.seconds
 should be no greater than 999');

 console.log('All tests passed'); //if we've gotten this far we
 are done.
});

Now, let's run our test. From the mp3dat folder, we will use the following command:

node test

The preceding command should return the following text:

AssertionError: there should be a stat method

This result is exactly right as we haven't written the stat method yet.

Test frameworks
We're using a vanilla Node environment to create some very
straightforward tests. As implementations become more complex, it would
be worthwhile to consider using a test framework. Test frameworks provide
an enhanced execution environment for tests by supplying extra functions
in the global namespace that help us describe our tests. Along with these
functions, test frameworks can produce more helpful and well-formatted
result output.
Mocha (http://visionmedia.github.io/mocha) is an excellent
choice because it supports a variety of styles and offers a myriad of
reporting formats (from the cross-language Test Anything Protocol
(TAP) to a Nyan Cat command-line progress bar).

How it works…
When the tests are run, the assert module will throw AssertionError to let the developer
know that their code is not currently lining up with their predefined assertions regarding the
desired API.

In our unit test file (test/index.js), we mainly used the simple assert function (an alias
for assert.ok). The assert function requires that the first argument passed to it be truthy.
Otherwise, it throws AssertionError where the second argument is provided for the error
message (the opposite of assert.ok is assert.fail, which expects a falsey value).

Our test fails at the following line:

assert(mp3dat.stat, 'there should be a stat method');

This is because mp3dat.stat is undefined (a falsey value).

Writing Your Own Node Modules

304

The first argument of assert can be an expression. For instance, we use stats.duration.
minutes < 60 to set a constraint for the duration.minutes property, and use the match
method on timesig to verify a correct time pattern of HH:MM:SS.

We also use assert.equal and assert.notStrictEqual. The assert.equal function
is a test that applies equality with type coercion (for example, equivalent to ==) and assert.
strictEqual requires that the values and types match—assert.notEqual and assert.
notStrictEqual are the corresponding antipathies.

We use assert.notStrictEqual to ensure the existence of the duration object's
subproperties (hours, minutes, and so on).

There's more…
There are many testing frameworks that provide extra descriptive syntax, enhanced
functionality, asynchronous testing capabilities, and more. Let's sample one.

Unit tests with should.js
The third-party should module sits nicely on top of the core assert module, thus adding
some syntactic sugar to both in order to simplify and increase the descriptive powers of
our tests.

Let's install it using the following command:

npm install should

Now, we can rewrite our tests with should as shown in the following code:

var should = require('should');
var mp3dat = require('../index.js');
var testFile = 'test/test.mp3';

should.exist(mp3dat);
mp3dat.should.have.property('stat');
mp3dat.stat.should.be.a.Function;

mp3dat.stat(testFile, function (err, stats) {
 should.ifError(err);

 //expected properties
 stats.should.have.property('duration');
 stats.should.have.property('bitrate');
 stats.should.have.property('filesize');
 stats.should.have.property('timestamp');
 stats.should.have.property('timesig');

Chapter 10

305

 //expected types
 stats.duration.should.be.an.Object;
 stats.bitrate.should.be.a.Number;
 stats.filesize.should.be.a.Number;
 stats.timestamp.should.be.a.Number;

 stats.timesig.should.match(/^\d+:\d+:\d+$/);

 //expected duration properties
 stats.duration.should.have.keys('hours', 'minutes', 'seconds',
'milliseconds');

 //expected duration types and constraints
 stats.duration.hours.should.be.a.Number;
 stats.duration.minutes.should.be.below(60).and.be.a.Number;
 stats.duration.seconds.should.be.below(60).and.be.a.Number;
 stats.duration.milliseconds.should.be.below(1000).and.be.a.Number;

 console.log('All tests passed');

});

The should module allows us to write more concise and descriptive tests. Its syntax is natural
and self-explanatory. We can read up on various should methods at https://www.github.
com/visionmedia/should.js, which is its GitHub page.

Chai.js
Similar to the way Mocha supports various test framework approaches,
Chai provides multiple assertion styles, including the should syntax
among others. Refer to http://chaijs.com/ to learn more.

See also
ff The Writing a functional module mock-up recipe

ff The Extending the module's API recipe

ff The Deploying a module to npm recipe

Writing a functional module mock-up
Now that we have our tests written (see the previous recipe), we are ready to create our
module (incidentally, from here on, we'll be using the should version of our unit tests as
opposed to assert).

https://www.github.com/visionmedia/should.js

Writing Your Own Node Modules

306

In this recipe, we'll write our module in a simple functional style to demonstrate a proof of the
concept. In the next recipe, we'll refactor our code into a more common modular format, which
will be centered on reusability and extendibility.

Getting ready
Let's open our main index.js file and link it to the lib directory via module.exports:

module.exports = require('./lib');

This allows us to place the meat of our module code neatly inside the lib directory.

How to do it…
We'll open up lib/index.js and begin by requiring the fs module, which will be used to
read an MP3 file, and setting up a bitrates map that cross-references hex-represented
values to bitrate values as defined by the MPEG-1 specification:

var fs = require('fs');

//half-byte (4bit) hex values to interpreted bitrates (bps)
//only MPEG-1 bitrates supported
var bitrates = { 1:32000, 2:40000, 3:48000, 4:56000, 5:64000,
 6:80000, 7:96000, 8:112000, 9:128000, A:160000, B:192000,
 C:224000, D:256000, E:320000 };

Now, we'll define two functions: findBitRate to locate and translate the bitrate half-byte
and buildStats to crunch all the gathered information into our previously determined final
stats object, as shown in the following code:

function buildStats(bitrate, size, cb) {
 var magnitudes = ['hours', 'minutes', 'seconds',
 'milliseconds'],
 duration = {}, stats,
 hours = (size / (bitrate / 8) / 3600);

 (function timeProcessor(time, counter) {
 var timeArray = [], factor = (counter < 3) ? 60 : 1000 ;
 if (counter) {
 timeArray = (factor * +('0.' +
 time)).toString().split('.');
 }

 if (counter < magnitudes.length - 1) {
 duration[magnitudes[counter]] = timeArray[0] ||
 Math.floor(time);

Chapter 10

307

 duration[magnitudes[counter]] =
 +duration[magnitudes[counter]];
 counter += 1;
 timeProcessor(timeArray[1] ||
 time.toString().split('.')[1], counter);
 return;
 }
 //round off the final magnitude
 duration[magnitudes[counter]] =
 Math.round(timeArray.join('.'));
 }(hours, 0));

 stats = {
 duration: duration,
 bitrate: bitrate,
 filesize: size,
 timestamp: Math.round(hours * 3600000),
 timesig: ''
 };

 function pad(n){return n < 10 ? '0'+n : n}
 magnitudes.forEach(function (mag, i) {
 if (i < 3) {
 stats.timesig += pad(duration[mag]) + ((i < 2) ? ':' : '');
 }
 });

 cb(null, stats);
}

The buildStats function takes bitrate, size, and cb as arguments. It uses bitrate
and size to calculate the number of seconds in the track and then uses this information
to generate the stats object, which it passes through the cb function.

To get bitrate into buildStats, let's write the findBitRate function, as shown in the
following code:

function findBitRate(f, cb) {
 fs.createReadStream(f)
 .on('data', function (data) {
 var i;
 for (i = 0; i < data.length; i += 2) {
 if (data.readUInt16LE(i) === 64511) {
 this.pause();
 cb(null, bitrates[data.toString('hex', i + 2, i +
 3)[0]]);
 break;
 };

Writing Your Own Node Modules

308

 }
 }).on('end', function () {
 cb(new Error('could not find bitrate, is this definitely an
 MPEG-1 MP3?'));
 });
}

Finally, we expose a stat method that utilizes our functions to produce the stats object:

exports.stat = function (f, cb) {
 fs.stat(f, function (err, fstats) {
 findBitRate(f, function (err, bitrate) {
 if (err) { cb(err); return; }
 buildStats(bitrate, fstats.size, cb);
 });
 });
}

Now, let's run our should tests from the previous recipe, Creating a test-driven module
specification:

node test

It will generate the following output:

All tests passed

How it works…
The exports object is a central part of the Node platform. It's the other half of require.
When we require a module, any properties added to exports are exposed through require.
So, let us see what happens when we use the following line:

var mp3dat = require('mp3dat');

We can now access exports.stat through mp3dat.stat or even through
require('mp3dat').stat (assuming we have mp3dat installed as a module; refer to the
Deploying a module to npm recipe later in this chapter).

If we want to expose one function for the entire module, we use module.exports, as we did
in the index.js file that we set up in the Getting ready section of this recipe.

Our stat method first calls fs.stat with the user-supplied filename (f). We use the supplied
fstats object to retrieve the size of our file, which we pass to buildStats. This is after we
have called findBitRate to retrieve the MP3's bitrate value, which we also pass
to buildStats.

The buildStats callback is passed straight up and through to our stat method's callback;
the execution of the user callback originates within buildStats.

Chapter 10

309

The findBitRate function creates a readStream of the user-supplied file (f) and loops
through each emitted data chunk two bytes at a time, thus reducing the search time by half.
We can do this because we're looking for a two-byte sync word, which will always be at a position
divisible by two. In hex, the sync word is FFFB. As a 16-byte little-endian unsigned integer, it's
equivalent to 64511 (this is true only for MPEG-1 MP3 files without error protection).

The next four bits (half byte) that follow the MP3 sync word contain the bitrate value. So, we
pass this through the Buffer.toString method, requiring the hex output that we match
against our bitrates object map. In the case of our test.mp3 file, the half-byte hex value
is 9 and represents a bitrate of 128000 bits per second.

Once we find our bitrate, we execute the callback and invoke this.pause, which pauses the
stream and prevents the end event from being triggered. The end event will only occur when
a bitrate has not been discovered, in which case we send an error back through the callback.

The buildStats function receives bitrate and divides it by 8, thus giving us the bytes
per second (8 bits to a byte). Dividing the total number of bytes of the MP3 file by the bytes
per second renders the number of seconds. We then further divide it by 3,600 to get the
hours variable, which is then passed onto the embedded timeProcessor function. The
timeProcessor function simply loops through the magnitudes array (hours, minutes,
seconds, and milliseconds) until seconds has been accurately converted and
apportioned to each magnitude, which gives us our duration object. Again, we use the
calculated duration (in whichever form) to construct our timestamp and timesig properties.

Streams
Refer to Chapter 5, Employing Streams, for more in-depth recipes that
use streams.

There's more…
Examples of how to use a module can be a great resource for end users. Let's write an example
for our new module.

Writing a module use case example
We'll create an examples folder within the mp3dat folder and a file named basic.js
(for an example depicting basic usage), within which we will write the following code:

var mp3dat = require('../index.js');

mp3dat.stat('../test/test.mp3', function (err, stats) {
 console.log(stats);
});

Writing Your Own Node Modules

310

This should cause the console to output the following code:

{ duration: { hours: 0, minutes: 0, seconds: 5, milliseconds: 186
 },
 bitrate: 128000,
 filesize: 82969,
 timestamp: 5186,
 timesig: '00:00:05' }

See also
ff The Creating a test-driven module specification recipe

ff The Refactoring with prototypical inheritance recipe

ff The Deploying a module to npm recipe

ff Chapter 5, Employing Streams

Refactoring with prototypical inheritance
The functional mock-up created in the previous recipe, Writing a functional module mock-up,
can be useful for getting familiar with a concept and may be perfectly adequate for small,
simple modules with narrow scope.

However, the prototype pattern (among others), often used in Node's core modules, is commonly
used by module creators and is fundamental to native JavaScript methods and objects.

Prototypical inheritance is more memory efficient. Methods sitting on a prototype are not
instantiated until called; instead of being recreated on each invocation, they're reused.

On the other hand, it can be slightly slower than our previous recipe's procedural style
because the JavaScript engine has the added overhead of traversing prototype chains.
Nevertheless, it's (arguably) more appropriate to think of and implement modules as entities
in their own right, which a user can create instances of (for example, a prototype-oriented
approach). This makes the modules easier to programmatically extend through cloning and
prototype overrides. This leads to great flexibility being afforded to the end user while the core
integrity of the module's code stays intact.

In this recipe, we'll rewrite our code from the previous task according to the prototype pattern.

Getting ready
Let's start editing index.js in mp3dat/lib.

Chapter 10

311

How to do it…
To begin, we'll need to create a constructor function (a function called using new), which we'll
name Mp3dat:

var fs = require('fs');

function Mp3dat(f, size) {
 if (!(this instanceof Mp3dat)) {
 return new Mp3dat(f, size);
 }
 this.stats = {duration:{}};
}

We've also required the fs module as we did in the previous task.

Let's add some objects and methods to our constructor's prototype:

Mp3dat.prototype._bitrates = { 1 : 32000, 2 : 40000, 3 : 48000, 4 :
56000, 5 : 64000, 6 : 80000, 7 : 96000, 8 : 112000, 9 : 128000, A :
160000, B : 192000, C : 224000, D : 256000, E : 320000 };

Mp3dat.prototype._magnitudes = ['hours', 'minutes', 'seconds',
'milliseconds'];
Mp3dat.prototype._pad = function (n) { return n < 10 ? '0' + n : n; }

Mp3dat.prototype._timesig = function () {
 var ts = '', self = this;;
 self._magnitudes.forEach(function (mag, i) {
 if (i < 3) {
 ts += self._pad(self.stats.duration[mag]) + ((i < 2) ? ':' : '');
 }
 });
 return ts;
}

Three of our new Mp3dat properties (_magnitudes, _pad, and _timesig) were contained
in the buildStats function in some form. We've prefixed their names with the underscore
symbol (_) to signify that they are private. This is merely a convention; JavaScript doesn't
actually privatize them.

Now, we'll reincarnate the previous recipe's findBitRate function as shown in the
following code:

Mp3dat.prototype._findBitRate = function(cb) {
 var self = this;
 fs.createReadStream(self.f)

Writing Your Own Node Modules

312

 .on('data', function (data) {
 var i = 0;
 for (i; i < data.length; i += 2) {
 if (data.readUInt16LE(i) === 64511) {
 self.bitrate = self._bitrates[data.toString('hex', i +
 2,
 i + 3)[0]];
 this.pause();
 cb(null);
 break;
 };
 }
 }).on('end', function () {
 cb(new Error('could not find bitrate, is this definitely an
 MPEG-1 MP3?'));
 });
}

The only differences here are that we load the filename from the object (self.f) instead of
loading it via the first parameter, and we load bitrate onto the object instead of sending it
through the second parameter of cb.

Now to convert buildStats into the prototype pattern, we will write the following code:

Mp3dat.prototype._buildStats = function (cb) {
 var self = this,
 hours = (self.size / (self.bitrate / 8) / 3600);

 self._timeProcessor(hours, function (duration) {
 self.stats = {
 duration: duration,
 bitrate: self.bitrate,
 filesize: self.size,
 timestamp: Math.round(hours * 3600000),
 timesig: self._timesig(duration, self.magnitudes)
 };
 cb(null, self.stats);

 });
}

Our _buildStats prototype method is significantly smaller than its buildStats cousin
from the previous task. Not only have we pulled its internal magnitudes array, pad utility
function, and time signature functionality (wrapping it into its own _timesig method),
we've also outsourced the internal recursive timeProcessor function to a prototype
method equivalent. This is shown in the following code:

Chapter 10

313

Mp3dat.prototype._timeProcessor = function (time, counter, cb) {
 var self = this, timeArray = [], factor = (counter < 3) ? 60 :
 1000,
 magnitudes = self._magnitudes, duration = self.stats.duration;

 if (counter instanceof Function) {
 cb = counter;
 counter = 0;
 }

 if (counter) {
 timeArray = (factor * +('0.' + time)).toString().split('.');
 }
 if (counter < magnitudes.length - 1) {
 duration[magnitudes[counter]] = timeArray[0] ||
 Math.floor(time);
 duration[magnitudes[counter]] =
 +duration[magnitudes[counter]];
 counter += 1;
 self._timeProcessor.call(self, timeArray[1] ||
 time.toString().
 split('.')[1], counter, cb);
 return;
 }
 //round off the final magnitude (milliseconds)
 duration[magnitudes[counter]] =
 Math.round(timeArray.join('.'));
 cb(duration);
}

Finally, we will write the stat method (with no underscore prefix since it's intended for public
use) and export the Mp3dat object:

Mp3dat.prototype.stat = function (f, cb) {
 var self = this;
 fs.stat(f, function (err, fstats) {
 self.size = fstats.size;
 self.f = f;
 self._findBitRate(function (err, bitrate) {
 if (err) { cb(err); return; }
 self._buildStats(cb);
 });
 });
}

module.exports = Mp3dat();

Writing Your Own Node Modules

314

We can ensure all is present and correct by running the tests we built in the first recipe. On
the command line from the mp3dat folder, we use the following command:

node test

The preceding command should generate the following output:

All tests passed

How it works…
In the previous recipe, we had an exports.stat function that called the findBitRate
and buildStats functions to get the stats object. In our refactored module, we add the
stat method onto the prototype and export the entire Mp3dat constructor function via
module.exports.

We don't have to pass Mp3dat to module.exports using new. Our function generates the
new instance, when invoked directly, with the following code:

 if (!(this instanceof Mp3dat)) {
 return new Mp3dat();
 }

This is really a fail-safe strategy. It's more efficient (though marginally) to initialize the
constructor using new.

The stat method in our refactored code differs from the exports.stat function in the
previous task. Instead of passing the filename and size of the specified MP3 as parameters
to findBitRate and buildStats respectively, it assigns them to the parent object via
this (which is assigned to self so that we can retain a reference to the outer function's
context within the callback passed to findBitRate).

It then invokes the _findBitRate and _buildStats methods to ultimately generate the
stats object and pass it back to the user's callback.

After running mp3dat.stats on our test.mp3 file, our refactored mp3dat module object
will contain the following code:

{ stats:
 { duration: { hours: 0, minutes: 0, seconds: 5, milliseconds:
 186 },
 bitrate: 128000,
 filesize: 82969,
 timestamp: 5186,
 timesig: '00:00:05' },
 size: 82969,
 f: 'test/test.mp3',
 bitrate: 128000 }

Chapter 10

315

In the former recipe, however, the returned object would simply be as follows:

{ stat: [Function] }

The functional style reveals the API. Our refactored code allows the user to interact with the
information in multiple ways (through the stats and mp3dat objects). We can also extend
our module and populate mp3dat with other properties later on, outside of the stats object.

There's more…
We can structure our module to make it even easier to use.

Adding the stat function to the initialized mp3dat object
If we want to expose our stat function directly to the mp3dat object, thus allowing us to
view the API directly (for example, with console.log), we can add it by removing Mp3dat.
prototype.stat and altering Mp3dat as follows:

function Mp3dat() {
 var self = this;
 if (!(this instanceof Mp3dat)) {
 return new Mp3dat();
 }
 self.stat = function (f, cb) {
 fs.stat(f, function (err, fstats) {
 self.size = fstats.size;
 self.f = f;
 self._findBitRate(function (err, bitrate) {
 if (err) { cb(err); return; }
 self._buildStats(cb);
 });
 });
 }
 self.stats = {duration:{}};
}

Then, our final object contains the following code:

{ stat: [Function],
 stats:
 { duration: { hours: 0, minutes: 0, seconds: 5, milliseconds: 186
},
 bitrate: 128000,
 filesize: 82969,
 timestamp: 5186,
 timesig: '00:00:05' },

Writing Your Own Node Modules

316

 size: 82969,
 f: 'test/test.mp3',
 bitrate: 128000 }

Alternatively, if we're not concerned about pushing the stats object and other Mp3dat
properties to the module user, we can leave everything as it is, except we need to change
the following line:

module.exports = Mp3dat()

The preceding line needs to be changed to the following:

exports.stat = function (f, cb) {
 var m = Mp3dat();
 return Mp3dat.prototype.stat.call(m, f, cb);
}

This code uses the call method to apply the Mp3dat scope to the stat method, which
allows us to piggyback off of the stat method, and will return an object with the following:

{ stat: [Function] }

This is just as in the case of the first write of our module, except we still have the prototype
pattern in place. This second approach is ever so slightly more efficient.

Allowing multiple instances
Our module is a singleton as it returns the already initialized Mp3dat object. This means that
no matter how many times we require and assign it to variables, a module user will always
refer to the same object, even if Mp3dat is required in different submodules loaded by a
parent script.

This means that bad things will happen if we try to run two mp3dat.stat methods at the same
time. In a situation where our module is required multiple times, two variables containing the
same object could end up overwriting each other's properties, which results in unpredictable
(and frustrating) code. The most likely upshot is that readStreams will clash.

One way to overcome this is to alter the following line:

module.exports = Mp3dat()

The preceding line needs to be altered to the following:

module.exports = Mp3dat

Then, we will load two instances with the following code:

var Mp3dat = require('../index.js'),
 mp3dat = Mp3dat(),
 mp3dat2 = Mp3dat();

Chapter 10

317

If we want to provide both singleton and multiple instances, we have to add the following
spawnInstance method to our constructor's prototype:

Mp3dat.prototype.spawnInstance = function () {
 return Mp3dat();
}

module.exports = Mp3dat();

The preceding block then allows us to create multiple instances of Mp3dat with the
following code:

var mp3dat = require('../index.js'),

 mp3dat2 = mp3dat.spawnInstance();

Both mp3dat and mp3dat2 would be separate Mp3dat instances in this case, as shown in
the following code:

var mp3dat = require('../index.js'),
 mp3dat2 = require('../index.js');

In the preceding case, both mp3dat and mp3dat2 would be the same instance.

See also
ff The Writing a functional module mock-up recipe

ff The Extending the module's API recipe

ff The Deploying a module to npm recipe

Extending a module's API
There are many ways by which we can extend our module. For example, we could make it
support more MP3 formats, but this is merely leg work. All it takes is finding out the different
sync words and bitrates for different types of MP3 and then adding these at the relevant places.

For a more interesting venture, we could extend the API, creating more options for our
module users.

Since we use a stream to read our MP3 file, we can allow the user to pass in either a filename
or a stream of MP3 data, which offers both ease (with a simple filename) and flexibility (with
streams). This way, we could start a download stream, STDIN stream, or in fact, any stream
of MP3 data.

Writing Your Own Node Modules

318

Getting ready
We'll pick up our module from where we left it at the end of the Allowing for multiple instances
subsection in the There's more… section of the previous recipe.

How to do it…
First, we'll add some more tests for our new API. In tests/index.js, we'll pull out the
callback function from the mp3dat.stat call into the outer scope, and we'll name it cb:

function cb (err, stats) {
 should.ifError(err);

 //expected properties
 stats.should.have.property('duration');

 //...all the other unit tests here

 console.log('passed');

};

Now, we'll call stat along with a method that we're going to write and name it statStream:

mp3dat.statStream({stream: fs.createReadStream(testFile),
 size: fs.statSync(testFile).size}, cb);

mp3dat2.stat(testFile, cb);

Note that we're using two Mp3dat instances (mp3dat and mp3dat2). So, we can run the
stat and statStream tests side by side. Since we're creating readStream, we require fs
at the top of our [tests/index.js] file as follows:

var should = require('should');
var fs = require('fs');
var mp3dat = require('../index.js'),
 mp3dat2 = mp3dat.spawnInstance();

We'll also place a few top-level should tests for the statStream method as follows:

should.exist(mp3dat);
mp3dat.should.have.property('stat');
mp3dat.stat.should.be.a.Function;
mp3dat.should.have.property('statStream');
mp3dat.statStream.should.be.a.Function;

Now, to live up to our tests' expectations!

Chapter 10

319

Within lib/index.js, we add a new method to the prototype of Mp3dat. Instead of taking
a filename for the first parameter, it will accept an object (which we'll name opts) that must
contain the stream and size properties:

Mp3dat.prototype.statStream = function (opts, cb) {
 var self = this,
 errTxt = 'First arg must be options object with stream and size',
 validOpts = ({}).toString.call(opts) === '[object Object]'
 && opts.stream
 && opts.size
 && 'pause' in opts.stream
 && !isNaN(+opts.size);
 lib
 if (!validOpts) {
 cb(new Error(errTxt));
 return;
 }

 self.size = opts.size;
 self.f = opts.stream.path;

 self.stream = opts.stream;

 self._findBitRate(function (err, bitrate) {
 if (err) { cb(err); return; }
 self._buildStats(cb);
 });

}

Finally, just a few modifications to _findBitRate and we're done:

Mp3dat.prototype._findBitRate = function(cb) {
 var self = this,
 stream = self.stream || fs.createReadStream(self.f);
 stream.on('data', function (data) {
 var i = 0;
 for (i; i < data.length; i += 2) {
 if (data.readUInt16LE(i) === 64511) {
 self.bitrate = self._bitrates[data.toString('hex', i +
 2, i + 3)[0]];
 this.pause();
 cb(null);
 break;
 };
//rest of the _findBitRate function...

Writing Your Own Node Modules

320

We conditionally hook onto either a passed-in stream, or we create a stream from a
given filename.

Let's run our tests using the following command (from the mp3dat folder):

node tests

The following result should be obtained:

passed

passed

One output is for stat and the other is for statStream.

How it works…
We were already using a stream to retrieve our data. We simply expose this interface to the
user by modifying _findBitRate so that it either generates its own stream from a filename,
or if a stream is present in the parent constructor's properties (self.stream), it simply plugs
that stream into the process that was already in place.

We then make this functionality available to the module user by defining a new API method:
statStream. We conceptualize this first by making tests for it, and then defining it through
Mp3dat.prototype.

The statStream method is similar to the stat method (in fact, we can merge the two; refer
to the There's more… section for more details). Apart from checking the validity of the input,
it simply adds one more property to an Mp3dat instance: the stream property, which is
taken from opts.stream. For convenience, we cross-reference opts.stream.path with
self.f (this may or may not be available depending on the type of stream). This technique is
essentially redundant but may be useful for debugging purposes on the user's part.

At the top of statStream, we have the validOpts variable, which has a series of expressions
connected by the && conditionals. This is shorthand for a bunch of if statements. If any of
these expression tests fail, the opts object is not valid. One expression of interest is 'pause'
in opts.stream, which tests whether opts.stream is definitely a stream or inherited
from a stream (all streams have a pause method, and in checks for the property throughout
the entire prototype chain). Another noteworthy expression among the validOpts tests is
!isNaN(+opts.size), which checks whether opts.size is a valid number. The + operator
that precedes it converts the number to a Number type and !isNaN checks whether it is a
number using "not a number" (there is no isNumber in JavaScript, so we use !isNaN).

There's more…
Now, we have this new method. Let's write some more examples. We'll also see how we can
merge statStream and stat together and further enhance our module by causing it to
emit events.

Chapter 10

321

Creating the STDIN stream example
To demonstrate usage with other streams, we will write an example using the process.
stdin stream as follows:

//to use try :
// cat ../test/test.mp3 | node stdin_stream.js 82969
// the argument (82969) is the size in bytes of the mp3

if (!process.argv[2]) {
 process.stderr.write('\nNeed mp3 size in bytes\n\n');
 process.exit();
}

var mp3dat = require('../');
process.stdin.resume();
mp3dat.statStream({stream : process.stdin, size: process.argv[2]},
function (err, stats) {
 if (err) { console.log(err); }
 console.log(stats);
});

We've included comments in the preceding example to ensure our users understand how to
use it. All that we do here is receive the process.stdin stream and the file size and then
pass them to our statStream method.

Creating the PUT upload stream example
In the There's more… section of the Handling file uploads recipe of Chapter 2, Exploring the
HTTP Object, we created a PUT upload implementation.

We'll take the put_upload_form.html file from that recipe and create a new file named
HTTP_PUT_stream.js in our mp3dat/examples folder:

var mp3dat = require('../../mp3dat');
var http = require('http');
var fs = require('fs');
var form = fs.readFileSync('put_upload_form.html');
http.createServer(function (req, res) {
 if (req.method === "PUT") {
 mp3dat.statStream({stream: req, size:req.headers['content-
length']}, function (err, stats) {
 if (err) { console.log(err); return; }
 console.log(stats);
 });

 }

Writing Your Own Node Modules

322

 if (req.method === "GET") {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(form);
 }
}).listen(8080);

Here, we create a server that serves the put_upload_form.html file. The HTML file allows
us to specify a file to upload (which must be a valid MP3 file) and then sends it to the server.

In our server, we pass req (which is a stream) to the stream property and req.
headers['content-length'], which gives us the size of MP3 in bytes, as specified
by the browser via the Content-Length header.

We then finish by logging stats to the console (we can also extend this example by sending
stats back to the browser in the JSON form).

Merging stat and statStream
There's a lot of similar code between stat and statStream. With a bit of restructuring, we can
merge them into one method, which allows the user to pass either a string containing a filename
or an object containing the stream and size properties straight into the stat method.

First, we'd need to update our tests and examples. In test/index.js, we should remove
the following code:

mp3dat.should.have.property('statStream');
mp3dat.statStream.should.be.an.instanceof(Function);

Since we're merging statStream into stat, our two calls to stat and statStream should
now look like the following:

mp3dat.stat({stream: fs.createReadStream(testFile),
 size: fs.statSync(testFile).size}, cb);
mp3dat2.stat(testFile, cb);

The statStream line in examples/stdin_stream.js should become:

mp3dat.stat({stream : process.stdin, size: process.argv[2]}

In HTTP_PUT_stream.js, this line should be as follows:

mp3dat.stat({stream: req, size: req.headers['content-length']}

In lib/index.js, we trash the streamStat method by inserting a _compile method:

Mp3dat.prototype._compile = function (err, fstatsOpts, cb) {
 var self = this;
 self.size = fstatsOpts.size;
 self.stream = fstatsOpts.stream;

Chapter 10

323

 self._findBitRate(function (err, bitrate) {
 if (err) { cb(err); return; }
 self._buildStats(cb);
 });
}

Finally, we modify our Mp3dat.prototype.stat method as follows:

Mp3dat.prototype.stat = function (f, cb) {
 var self = this, isOptsObj = ({}).toString.call(f) === '[object
Object]';

 if (isOptsObj) {
 var opts = f, validOpts = opts.stream && opts.size
 && 'pause' in opts.stream && !isNaN(+opts.size);
 errTxt = 'First arg must be options object with stream and size'

 if (!validOpts) { cb(new Error(errTxt)); return; }

 self.f = opts.stream.path;
 self._compile(null, opts, cb);
 return;
 }

 self.f = f;
 fs.stat(f, function (err, fstats) {
 self._compile.call(self, err, fstats, cb);
 });
}

The code that actually generates the stats object has been placed into the _compile method.
If the first argument is an object, we assume it is a stream and stats takes on the role of the
former statStream method, calling _compile and returning from the function early. If not, we
assume a filename and invoke _compile within the fs.stat callback with JavaScript's call
method, ensuring our this/self variable carries through the _compile method.

Integrating the EventEmitter
Throughout this book, we have generally received data from modules via callback parameters
or through listening to events. We can extend our modules interface further, which allows
users to listen to events by causing Node's EventEmitter to adopt our Mp3dat constructor.

We need to require the events and util modules, then hook up Mp3dat with
EventEmitter by assigning the this object of Mp3dat to it, and then give it the super
powers of EventEmitter using util.inherits:

var fs = require('fs'),
 EventEmitter = require('events').EventEmitter,

Writing Your Own Node Modules

324

 util = require('util');

function Mp3dat() {
 if (!(this instanceof Mp3dat)) {
 return new Mp3dat();
 }
 EventEmitter.call(this);
 this.stats = {duration:{}};
}

util.inherits(Mp3dat, EventEmitter);

All we do now is go through the existing methods of Mp3dat and insert the emit events at
relevant places. We can emit bitrate (using emit) once it's found, as shown in the following
code:

Mp3dat.prototype._findBitRate = function(cb) {
//beginning of _findBitRate method
 for (i; i < data.length; i += 2) {
 if (data.readUInt16LE(i) === 64511) {
 self.bitrate = self._bitrates[data.toString('hex', i +
 2,
 i + 3)[0]];
 this.pause();
 self.emit('bitrate', self.bitrate);
 cb(null);
 break;
 };
 //rest of _findBitRate method

In the preceding code, we would invoke our callback with an error. We can also emit that error,
as shown in the following code:

//last part of _findBitRate method
 }).on('end', function () {
 var err = new Error('could not find bitrate, is this
 definetely an MPEG-1 MP3?');
 self.emit('error', err);
 cb(err);
 });

Then, there's the time signature, which is defined as follows:

Mp3dat.prototype._timesig = function () {
 //_timesig function code....
 self.emit('timesig', ts);
 return ts;
}

Chapter 10

325

And of course, the stats object is defined as follows:

Mp3dat.prototype._buildStats = function (cb) {
//_buildStats code
 self._timeProcessor(hours, function (duration) {
 //_timeProcessor code
 self.emit('stats', self.stats);
 if (cb) { cb(null, self.stats); }
 });
}

We've also added if (cb) to _buildStats since a callback may no longer be necessary
if the user opts to listen to events instead.

If a module user is dynamically generating the Mp3dat instances, they may wish to have a
way to hook into a spawned instance event:

Mp3dat.prototype.spawnInstance = function () {
 var m = Mp3dat();
 this.emit('spawn', m);
 return m;
}

Finally, to allow chaining, we can also return the Mp3dat instance from the stat function
from two places. First, from within the isOptsObj block as follows:

Mp3dat.prototype.stat = function (f, cb) {
//stat code
 if (isOptsObj) {
 //other code here
 self._compile(null, opts, cb);
 return self;
 }

Then, right at the end of the function, as shown in the following code:

 //prior stat code
 self.f = f;
 fs.stat(f, function (err, fstats) {
 self._compile.call(self, err, fstats, cb);
 });
 return self;
}

This is because we return early from the function depending on the detected input (filename
or stream), so we have to return self from two places.

Writing Your Own Node Modules

326

Now, we can write an example for our new user interface. Let's make a new file in mp3dat/
examples named event_emissions.js; look at the following code:

var mp3dat = require('../index');

mp3dat
 .stat('../test/test.mp3')
 .on('bitrate', function (bitrate) {
 console.log('Got bitrate:', bitrate);
 })
 .on('timesig', function (timesig) {
 console.log('Got timesig:', timesig);
 })
 .on('stats', function (stats) {
 console.log('Got stats:', stats);
 mp3dat.spawnInstance();
 })
 .on('error', function (err) {
 console.log('Error:', err);
 })
 .on('spawn', function (mp3dat2) {
 console.log('Second mp3dat', mp3dat2);
 });

See also
ff The Creating a test-driven module specification recipe

ff The Handling file uploads recipe in Chapter 2, Exploring the HTTP Object

ff The Deploying a module to npm recipe

ff Chapter 5, Employing Streams

Deploying a module to npm
npm is the official package manager for Node. When we deploy a module to npm, we are
uploading it to the official npm repository (which happens to be a CouchDB database).

Now that we've created a module, we can share it with the rest of the world using the same
integrated tool that we retrieve modules with; that is, npm.

Getting ready
Building on the final state of mp3dat from the previous recipe, Extending a module's API
(including all the changes we made in the There's More… section so that we can accept streams
or filenames via the same stat method and our module also emits events), we'll make sure this
canonical mp3dat is in a directory called mp3dat.

Chapter 10

327

Before we can deploy to npm, we need to make a package.json file; so, let's do that for our
module. In mp3dat, we'll create package.json and add some information (of course, we
can always customize to whatever details work for us):

{
 "author": "David Mark Clements <contact@davidmarkclements.com>
 (http://davidmarkclements.com)",
 "name": "mp3dat",
 "description": "A simple MP3 parser that returns stat infos in a
 similar style to fs.stat for MP3 files or streams. (MPEG-1
 compatible only)",
 "version": "0.0.2",
 "homepage": "http://nodecookbook.com/mp3dat",
 "repository": {
 "type": "git",
 "url": "git://github.com/davidmarkclements/mp3dat.git"
 },
 "license": "MIT",
 "main": "./lib/index.js",
 "scripts": {
 "test": "node test"
 },
 "engines": {
 "node": "~0.10..20"
 },
 "dependencies": {},
 "devDependencies": {}
}

We can, of course, insert our own name and the name of the package. Another method to
create a package.json file is use the npm init command, which asks a series of questions
via the command line and then generates the package.json file.

We can specify a repository in package.json. It's a good idea to use an online repository such
as GitHub to manage version control, share code, and allow others to work on your code. Refer
to http://help.github.com to get started.

The main property is important. It defines the entry point to our module, which in our
case is ./lib/index.js (although we could have specified ./index.js, which
loads ./lib/index.js). By defining scripts.test as node test, we can now
run npm test (or npm mp3dat test once mp3dat is installed via npm) to execute
our unit tests.

We'll be deploying our module to npm the way we left it in the previous recipe, where stat
and statStream were both merged into stat, and we have integrated our module with
the EventEmitter.

Writing Your Own Node Modules

328

Note that we've set the version as 0.0.2—the first version was deployed in
the first edition of Node Cookbook.

How to do it…
In order to deploy to npm, we must have a developer account. We will do this by executing the
following command:

npm adduser

Then, we fill in our desired username, password, and contact e-mail. That's it; we are
now registered!

Before we go ahead and publish our module, we need to test whether npm will install it on our
system without a hitch. Inside mp3dat, we use the following command:

sudo npm install -g

On Windows and Mac OS X, this command can (and should) be called with sudo.

Then, if we run node from the command line, we should be able to require mp3dat:

require('mp3dat')

This command executes without getting an error message. If it worked, we can go ahead and
publish our module! Within mp3dat, we use the following command:

npm publish

Now, if we go to a completely different folder (say our home folder) and type in the following,
npm should install our package from its repository:

npm uninstall mp3dat

npm install mp3dat

We can double-check whether the package is present with the following command:

npm search mp3dat

If this is taking too long, we can go to http://www.npmjs.org/ in our browser. Our module
will probably be on the home page (which contains the most recently published modules).
Otherwise, we can hit http://www.npmjs.org/search?q=mp3dat to head to
our module's npm registry page directly.

Chapter 10

329

How it works…
npm is a command-line script written in Node that provides some excellent tools for developing
and publishing modules. The tools really do what they say on the tin: adduser adds a user,
install installs, and publish publishes. It's really very elegant.

On the server side, the npm registry is backed by a CouchDB database that holds all the JSON-
like data for each package. There's even a CouchDB _changes field that we can hook into.
On the command line, we can use the following command:

curl
http://isaacs.couchone.com/registry/_changes?feed=continuous&include_
docs=true

Then, we can watch modules as they are added and modified in real time. If nothing happens,
we can always open another terminal and type in the following commands in it:

npm unpublish --force

npm publish

This will cause the CouchDB changes feed to update.

There's more…
npm has some really nice features; let's take a look at some of them.

npm link
The npm link command can be useful for module authors.

Throughout development, if we want to require mp3dat as a global module each time we
make changes, for example, as require('mp3dat'), we can update the global package
by running the following command:

sudo npm install . -g

However, npm link provides an easier solution when we run the following command:

sudo npm link

Within our mp3dat folder, a symlink is created from our global node_modules folder to our
working directory. This causes Node to treat mp3dat as an installed global module; however,
any changes that we make to our development copy will be reflected globally. When we are
done developing the module and want to freeze it on our system, we will simply unlink
as follows:

sudo npm unlink -g mp3dat

Writing Your Own Node Modules

330

.npmignore and npm versions
Our example files may be handy on GitHub, but we may decide whether there is any benefit
in publishing them to the npm repository. We can use an .npmignore file to keep certain
files out of published npm packages. Let's create .npmignore in the mp3dat folder and
put the following line in it:

examples/

Now, when we republish to the npm registry, our new package will be without the examples
folder. Before we can publish though, we either have to unpublish or change the version of
our package (or we could use the --force argument). Let's change the version and then
publish again:

npm version 0.0.3 --message "added .npmignore"

npm publish

Changing the version will also alter our package.json file to the new version number.

See also
ff The Writing a functional module mock-up recipe

ff The Refactoring with prototypical inheritance recipe

ff The Extending the module's API recipe

ff The Accessing CouchDB changes stream with Cradle recipe in Chapter 4,
Interfacing with Databases

11
Taking It Live

In this chapter, we will cover the following topics:

ff Deploying an app to a server environment

ff Automatic crash recovery

ff Continuous deployment

ff Hosting with a Platform as a Service provider

Introduction
Node is an excellent platform of choice to construct and provide online services. Whether it's
a simple, lean website, a highly versatile web app, or services that transcend beyond HTTP,
at some point we must deploy our creations.

This chapter focuses on what it takes to bring our Node apps live.

Deploying an app to a server environment
Virtual Private Servers (VPS), Dedicated Servers, or Infrastructure as a Service (IaaS), for
example, the likes of Amazon EC2 or Rackspace and owning our own server machines all have
one thing in common: they have total control over the server environment.

However, with great power comes great responsibility, and there are a few challenges we need
to be aware of. This recipe will demonstrate how to overcome these challenges as we safely
initialize a Node web app on port 80.

Taking It Live

332

Getting ready
We will, of course, need a remote server environment (or our own setup). It's important to
research the best package for our needs.

Dedicated Servers can be expensive. The hardware to software ratio is 1:1; we're literally
renting a machine.

VPS can be cheaper since they share the resources of a single machine (or cluster), so we're
only renting out the resources it takes to host an instance of an operating system. However,
if we begin to use resources beyond those assigned, we could hit penalties (downtime,
excessive charges) since excessive usage can affect other VPS users.

IaaS can be relatively cheap, particularly when upscaling is involved (when we need more
resources), though IaaS tends to contain a pay-as-you-go element to its pricing, which means
the costs aren't fixed and could require extra monitoring.

Our recipe assumes the usage of a Unix/Linux server with the sshd (SSH Service) running.

SSH stands for Secure Shell. Find out more about the SSH protocol
at http://en.wikipedia.org/wiki/Secure_Shell.

Furthermore, we should have a domain pointed at our server. In this recipe, we'll assume the
domain name as nodecookbook.com. Finally, we must have Node installed on our remote
server. If difficulties arise, we can use the instructions available at https://www.github.
com/joyent/node/wiki/Installation, or to install via a package manager, we can use
the instructions at https://www.github.com/joyent/node/wiki/Installing-Node.
js-via-package-manager.

We'll be deploying the login app from the second-to-last recipe of Chapter 7, Accelerating
Development with Express, so we need this to hand.

How to do it...
To ready our app for transfer to the remote server, we'll remove the node_modules folder
(we can rebuild it on the server), as follows:

rm -fr login/node_modules

Then we compress the login directory by executing the following command:

npm pack login

This will generate a compressed archive named after the app's name and version as given in
the package.json file, which will generate the filename application-name-0.0.1.tgz
for an untouched Express generated package.json file.

https://www.github.com/joyent/node/wiki/Installation
https://www.github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Chapter 11

333

On the command line in the same directory that we ran npm pack, let's rename the packed file
to login.tgz, as follows:

mv application-name-0.0.1.tgz login.tgz #Linux/Mac OS X

rename application-name-0.0.1.tgz login.tgz ::Windows.

Next, we upload login.tgz to our server. For example, we could use SFTP as follows:

sftp root@nodecookbook.com

Once logged in to the server via SFTP, we can issue the following commands:

cd /var/www

put login.tgz

It's not necessary to upload to the /var/www directory; it's just a natural place to put a website.

This assumes that we have logged in to our server via SFTP from the directory holding
login.tgz.

Next, we use the SSH service on the server as follows:

ssh -l root nodecookbook.com

If we're using a Windows desktop, we could use the SFTP and SSH
services into our server using putty. For more information about putty, see
http://www.chiark.greenend.org.uk/~sgtatham/putty/.

Once logged in to the remote server, we navigate to /var/www and decompress login.tar.
gz as follows:

tar -xvf login.tar.gz

As login.tar.gz decompresses, it recreates our login folder on the server.

To rebuild the node_modules folder, we enter the login folder and use npm to regenerate
the dependencies as follows:

cd login

npm -d install

Most servers have a shell-based editor, such as nano, vim, or emacs. We can use one of
these editors to change one line in app.js (or otherwise us the SFTP service over a modified
app.js), as follows:

app.listen(80, function () { process.setuid('www-data'); });

Taking It Live

334

We're now listening to the standard HTTP port, meaning we can access our app without
suffixing a port number to its web address. However, since we'll be starting the app as root
(necessary in order to bind to port 80), we will also pass a callback to the listen method,
which changes access privileges of the app from root to www-data.

In some cases, dependent upon file permissions, reading or writing to files from our app may
no longer work. We can fix this by changing ownership as follows:

chown -R www-data login

Finally, we can start our app with the help of the following command:

cd login

nohup node app.js &

We can ensure that our app is running as www-data with the help of the following command:

ps -ef | grep node

How it works...
We modified app.listen to bind to port 80 and added a callback function that resets the
user ID from root to www-data.

Adding a callback to listen isn't limited to Express; it works the same way with a plain
httpServer instance.

Running a web server as root is bad practice. If our app was compromised by an attacker,
they would have root access to our system via our app's privileged status.

To demote our app, we call process.setuid and pass in www-data.process.setuid.
This takes either the name of the user, or the user's UID. By passing in a name, we cause
process.setuid to block the event loop (essentially freezing operations) while it cross-
references the user string to its UID. This eliminates the potential sliver of time where the
app is bound to port 80 and also running as root. In essence, passing a string to process.
setuid instead of the underlying UID means nothing can happen until the app is no longer
working as root.

We call our process with nohup and follow up with an ampersand (&). This means we freely
end our SSH session without causing our app to terminate along with the session.

The ampersand turns our process into a background task, so we can do other things (like exit)
while it runs. nohup means ignore the Hang-Up Signal (HUP). HUP is sent to any running
processes initiated via SSH whenever the SSH session is terminated. Essentially, using nohup
allows our web app to outlive the SSH session.

Chapter 11

335

There's more...
There are other ways to start our app independent from our session, and to bind to port 80
without running the app as root. Plus, we can also run multiple apps and proxy them to port
80 with http-proxy.

Using screen instead of nohup
An alternative to using nohup to achieve independence from our SSH session is screen. We
would use it as follows:

screen -S myAppName

This will give us a virtual terminal, from which we can run the following commands:

cd login

node app.js

After this, we can leave the virtual terminal by pressing Ctrl + A followed by D. We would then
return to our initial terminal. The virtual terminal will continue to run after we have logged out
of SSH. We can also log back in to SSH at any time and run the following command:

screen -r myAppName

Here, we will be able to see any console output and stop (Ctrl + C) and start the app.

Using authbind for privileged ports
For this example, we should the SSH service on our server as a non-root user by running the
following command:

ssh -l dave nodecookbook.com

An alternative way to bind to port 80 is with authbind, which can be installed via our server's
package manager. For instance, if our package manager is apt-get, we could run the
following command:

sudo apt-get install authbind

The authbind utility works by preempting the operating system policies on port binding and
exploiting an environment variable called LD_PRELOAD upon execution. Therefore, it never
needs to be run with root privileges.

For more details on authbind, see http://en.wikipedia.org/
wiki/Authbind.

http://en.wikipedia.org/wiki/Authbind

Taking It Live

336

To get it working for us, we have to perform some simple configuration work as follows:

sudo touch /etc/authbind/byport 80

sudo chown dave /etc/authbind/byport 80

sudo chmod 500 /etc/authbind/byport 80

This tells authbind to allow the user, dave, to bind processes to port 80.

We no longer need to change the process UID, so we edit the penultimate line of app.js
to the following:

app.listen(80);

We should also change ownership of the login folder as follows:

chown -R dave login

Now, we can start our server without touching the root access at all, as follows:

nohup authbind node app.js &

The authbind utility can cause our app to work out of the box, with no modifications
necessary. However, it currently lacks IPv6 support so it's not yet future-proof.

Hosting multiple processes from port 80
What about serving multiple processes with the default HTTP port?

We can achieve this with the third-party http-proxy module. To install this module, we need
to run the following command:

npm install http-proxy

Let's say we have two apps: one (our login app) to be hosted at login.nodecookbook.
com and the other (the server.js file from the very first recipe of this book) at
nodecookbook.com. Both domains point to the same IP.

The server.js file will be listening to port 8080 and we'll modify login/app.js to listen
again to port 3000 as shown in the following code:

app.listen(3000, '127.0.0.1');

We also added a second argument defining what address to bind to (rather than any address).
This prevents our server from being accessed by the port.

Let's create a file in a new folder, call it proxy.js, and write the following:

require('http-proxy')
 .createServer({router : {
 'login.nodecookbook.com': 'localhost:3000',

Chapter 11

337

 'nodecookbook.com': 'localhost:8080'
 }}).listen(80, function () {
 process.setuid('www-data');
 });

The object passed to createServer contains a router property, which in turn is an object
instructing http-proxy to route incoming traffic on a particular domain to the correct
locally-hosted process according to its port.

We finish off by binding to port 80 and degrading from root to www-data.

To initialize our app, we must run the following commands:

nohup node login/bin/www &

nohup node server.js &

nohup node proxy.js &

Since we're binding our proxy server to port 80, these commands must be run as root. If we're
operating SSH with a non-root account, we simply prefix these three commands with sudo.

See also
ff The Automatic crash recovery recipe

ff The Continuous deployment recipe

ff The Hosting with a Platform as a Service provider recipe

Automatic crash recovery
When we create a site, the server and site logic is all tied up in one process, whereas with
other platforms, the server code is already in place. If our site code has bugs, the server is very
unlikely to crash, and thus, in many cases the site can stay active even if one part of it is broken.

With a Node-based website, a small bug can crash the entire process, and this bug may only
be triggered once in a blue moon.

As a hypothetical example, the bug could be related to character encoding on POST requests.
When someone like Felix Geisendörfer completes and submits a form, suddenly our entire
server crashes because it can't handle umlauts.

In this recipe, we'll look at using Upstart, an event-driven init service available for Linux
servers, which isn't based upon Node, but is nevertheless a very handy accomplice.

Taking It Live

338

Getting ready
We will need Upstart installed on our server. http://upstart.ubuntu.com contains
instructions on how to download and install it. If we're already using an Ubuntu or Fedora
remote server, then Upstart will already be integrated.

How to do it...
Let's make a new server that purposefully crashes when we access it via HTTP, as follows:

var http = require('http');
http.createServer(function (req, res) {
 res.end("Oh oh! Looks like I'm going to crash...");
 throw 'crash ahoy!';
}).listen(8080);

After the first page loads, the server will crash and the site goes offline.

Let's call this code server.js placing it on our remote server under /var/www/
crashingserver.

Now, we create our Upstart configuration file, saving it as /etc/init/crashingserver.
conf on our server, as follows:

start on started network-services

respawn
respawn limit 100 5

setuid www-data

exec /usr/bin/node /var/www/crashingserver/server.js >> \
 /var/log/crashingserver.log 2>&1

post-start exec echo "Server was (re)started on $(date)" | mail -s
 "Crashing Server (re)starting" dave@nodecookbook.com

Finally, we initialize our server as follows:

start crashingserver

When we access http://nodecookbook.com:8080 and refresh the page, our site is still
accessible. A quick look at /var/log/crashingserver.log reveals that the server did
indeed crash. We could also check our inbox to find the server restart notification.

Chapter 11

339

How it works...
The name of the Upstart service is taken from the particular Upstart configuration
filename. We initiate the /etc/init/crashingserver.conf Upstart service
with start crashingserver.

The first line of the configuration ensures our web server automatically recovers even when
the operating system on our remote server is restarted (for example, due to a power failure,
required reboot, and so on).

The respawn variable is declared twice; once to turn on respawning and then to set respawn
limit—a maximum of 100 restarts every 5 seconds. The limit must be set according to our
own scenario. If the website has low traffic, this number might be adjusted to, say, 10 restarts
in 8 seconds.

We want to stay alive if at all possible, but if an issue is persistent, we can take that as a red
flag that a bug is having a detrimental effect on user experience or system resources.

The next line initializes our server as the www-data user, and sends the output to /var/
log/crashingserver.log.

The final line sends out an e-mail just after our server has been started, or restarted. This is
so we can be notified that there are probably issues to address with our server.

There's more...
Let's implement another Upstart script that notifies us if the server crashes beyond its
respawn limit. We'll also look at another way to keep our server alive.

Detecting a respawn limit violation
If our server exceeds the respawn limit, it's likely there is a serious issue that should
be solved as soon as possible. We need to know about it immediately. To achieve this in
Upstart, we can create another Upstart configuration file that monitors the crashingserver
daemon, sending an e-mail if the respawn limit is transgressed. We will do this with the
help of the following code:

task

start on stopped crashingserver PROCESS=respawn

script
 if ["$JOB" != '']
 then echo "Server "$JOB" has crashed on $(date)" | mail -s \
 $JOB" site down!!" dave@nodecookbook.com
 fi
end script

Taking It Live

340

Let's save this under /etc/init/sitedownmon.conf.

Then we run the following commands:

start crashingserver

start sitedownmon

We define this Upstart process as a task (it only has one thing to do, after which it exits). We
don't want it to stay alive after our server has crashed.

The task is performed when the crashingserver daemon has stopped during a respawn
(for example, when the respawn limit has been broken).

Our script stanza (directive) contains a small bash script that checks for the existence of the
JOB environment variable (in our case, it would be set to crashingserver) and then sends
an e-mail accordingly. If we don't check its existence, a sitedownmon variable seems to
trigger false positives when it is first started and sends an e-mail with an empty JOB variable.

We could later extend this script to include more web servers, simply by adding one line to
sitedownmon.conf per server, as follows:

start on stopped anotherserver PROCESS=respawn

Staying up with forever
There is a simpler Node-based alternative to Upstart called forever. We need to run the
following command to install forever:

sudo npm -g install forever

First we simply initiate our server with forever as follows:

forever server.js

We then access our site. Some of the terminal output will contain the following, but we'll still
be able to access our site (although it will have been crashed and restarted):

warn: Forever detected script exited with code: 8

warn: Forever restarting script for 1 time

To deploy our site on a remote server, we log in to our server via SSH, install forever, and
run the following command:

forever start server.js

While this technique is certainly less complex, it's also less robust. Upstart provides core kernel
functionality and is therefore system critical. If Upstart fails, the kernel panics and the whole
operating system will restart.

Chapter 11

341

Nevertheless, forever is used widely in production on Nodejitsu's PaaS stack, and its
attractive simplicity may be viable for less mission-critical production environments.

See also
ff The Deploying an app to a server environment recipe

ff The Hosting with a Platform as a Service provider recipe

ff The Continuous deployment recipe

Continuous deployment
The more streamlined our processes, the more productive we can be. Continuous deployment
is about committing small ongoing improvements to a production server in a time saving,
efficient way.

Continuous deployment is especially relevant to team collaboration projects. Instead of working
on separate forks of the code and spending extra time, money, and effort on integration,
everyone works on the same code base so integration is seamless.

In this recipe, we'll create a deployment flow using Git as a version control tool. While this may
not be enough supportive to Node, it can certainly boost productivity for coding, deploying,
and managing Node projects.

If we're a little unfamiliar with Git, we can gain insight from GitHub's
help documentation available at http://help.github.com.

Getting ready
We'll need Git installed on both our server and desktop systems. Instructions for different
systems can be found at http://book.git-scm.com/2_installing_git.html.

If we're using Linux with the apt-get package manager, we can run the following command
to install Git:

sudo apt-get install git git-core

If we are installing Git for the first time, we'll have to set the personal information configuration
settings as follows:

git config --global user.name "Dave Clements"

git config --global user.email "dave@nodecookbook.com"

Taking It Live

342

We'll be using our login app, which we deployed to our server in the first recipe. So let's use
the SSH service on our server and enter the /var/www/login directory as follows:

ssh -l root nodecookbook.com -t "cd /var/www/login; bash"

Since we'll not be running our app as root, we'll keep things simple and change the listening
port in login/app.js to 8000 as follows:

app.listen(8000);

How to do it...
Once we've logged in to our server and installed Git (see the Getting ready section) in the
login folder, we run the following:

git init

git add *

git commit -m "initial commit"

Next, we create a bare repository (it has a record of all the changes but no actual working
files), which we'll be pushing changes to. This helps to keep things consistent.

We'll call the bare repository repo, because this is the repository we'll be pushing our changes
to and we'll create it within the login folder, as follows:

mkdir repo

echo repo > .gitignore

cd repo

git --bare init

Next, we hook up our bare repository repo to the login app repository, and push all the
commits to repo, as follows:

cd ..

git remote add repo ./repo

git push repo master

Now, we'll write a Git hook that instructs the login repository to pull any changes from the
bare repo repository, and then restarts our login app whenever repo is updated via a
remote Git push, as follows:

cd repo/hooks

touch post-update

chmod +x post-update

nano post-update

Chapter 11

343

With the file open in nano, we write the following code:

#!/bin/sh

cd /root/login
env -i git pull repo master

exec forever restart /root/login/app.js

Then we can save our hook by pressing Ctrl + O and afterwards exit using Ctrl + X.

If we ever make Git commits to the login repository, the two repositories could go out of
sync. To fix this, we create another hook for the login repository as follows:

#!/bin/sh
git push repo

We store this in login/.git/hooks/post-commit, ensuring it has been made executable
using chmod +x post-commit.

We'll be making commits to the repo repository remotely via the SSH protocol. Ideally, we
want to create a system user just for Git interactions. We will do this with the help of the
following code:

useradd git

passwd git #set a password

mkdir /home/git

chown git /home/git

We've also created home directories for the git user to make it easy for forever to store
logs and PID files. We'll need to make git the owner of the login app, allowing us to
manage it using Git through SSH, as follows:

cd /var/www

chown -R git login

Finally (for the server-side setup), we log in as the git user and start our app using forever,
as follows:

su git

forever start /var/www/login/app.js

Assuming our server is hosted at nodecookbook.com, we could now access the login app
at http://nodecookbook.com:8000.

Taking It Live

344

Back on our desktop, we clone the repo repository as follows:

git clone ssh://git@nodecookbook.com/var/www/login/repo

While the Git command-line app is available for Windows, those who use
Git with bash or those who prefer a GUI could benefit from Msysgit. Check
out http://msysgit.github.io for more information.

This will give us a repo directory containing all the generated files perfectly matching our
original login folder. We can then enter the repo folder and make a change to our code (say,
altering the port in app.js), as follows:

app.listen(9000);

Then, we commit the change and push to our server as follows:

git commit -a -m "changed port"

git push

On the server side, our app should have automatically restarted, resulting in our app now being
hosted from http://nodecookbook.com:9000 instead of http://nodecookbook.
com:8000.

How it works...
We created two Git repositories. The first is the login app itself. When we ran git init,
a .git directory was added to the login folder. The git add * command adds all of
the files in the folder and commit -m "initial commit" plants our additions into Git's
version control system. So, now our entire code base is recognized by Git.

The second is repo, which is created with the --bare flag. This is a sort of skeleton repository
providing all of the expected Git functionality, but lacking the actual files (it has no working tree).

While it may seem overly complex to use two repositories, it actually simplifies things greatly.
Since Git does not allow pushes to a branch that is currently checked in, we will have to create
a separate dummy branch so we can check out of the master and into the dummy branch.
This creates problems with the Git hooks and restarting our app. The hooks try to start the
app for the wrong branch. The branches can also quickly become out of sync, and the hooks
only add fuel to the fire.

As repo is within the login directory, we create a .gitignore file telling Git to disregard
this subdirectory. Even though login and repo are on the same server, we add repo as a
remote repository. This puts some necessary distance between the repositories and allows
us to later use our first Git hook to cause login to pull changes from repo. A Git push from
repo to login wouldn't cause login to update its working directory, whereas pulling from
repo into login does initiate a merge.

Chapter 11

345

After our remote add command, we perform an initial push from the master branch
(login) to repo; now they're singing off the same hymn sheet.

Then we create our hooks.

Git hooks are executable files, which reside in the repository's hook folder. There are a variety
of available hooks (already in the folder, but suffixed with .sample). We used two hooks—
post-update and post-commit. One executes after an update (for example, once changes
have been pulled and integrated into repo), and one after a commit.

The first hook, login/repo/hooks/post-update, essentially provides our continuous
deployment functionality. It changes its working directory from repo to login using cd, and
commands a git pull command. The git pull command is prefixed with env -i. This
prevents problems with certain Git functionality that would otherwise execute the Git commands
on behalf of repo no matter what directory we sent our hook script to. Git utilizes a $GIT_DIR
environment variable to lock us in to the repository that the hook is called from. The env -i
prefix deals with this by telling git pull to ignore (-i) all environment variables.

Having updated the working directory, our hook then goes on to call forever restart,
causing our app to reinitialize with the committed changes in place.

Our second hook is little more than a polyfill to ensure code base consistency in the event that
commits are made directly to the login repository. Making commits directly to the login
directory won't update the working tree, nor will it cause our app to restart, but the code
between login and repo will at least maintain synchronicity.

For the sake of damage limitation (if we were ever compromised), we create a specific account
for handling Git updates over SSH, giving it a home directory, taking ownership of the login
app, and executing the primary initialization of our app.

Once the server is configured, it's plain sailing. After cloning the repo repository to our local
development environment, we simply make a change, add and commit that change, and then
push to the server.

The server receives our push request, updates repo, initiates the post-update hook, which
makes login pull the changes from repo, after which the post-update hook uses forever
to restart app.js, and thus we have a continuous deployment workflow.

We can potentially have as many clones from as many locations as we like, so this method lends
itself well to geographically-independent team collaboration projects, both large and small.

Taking It Live

346

One project that could be really worth our attention is JS-Git
(https://github.com/creationix/js-git). The goal of this
project is to implement Git using pure JavaScript that's compatible both,
with Node and modern browsers. Once a certain level of maturity is
reached and JS-Git starts seeing action in the wild, implementing the
guts of this recipe could become as easy as installing and configuring
a Node module or two.

There's more...
We could avoid uploading modules by using npm install in the post-update hook. Also,
Git hooks don't have to be written in shell script, we can write them in Node!

Building module dependencies on update
Some Node modules are written in pure JavaScript; others have C or C++ bindings. Those with
C or C++ bindings have to be built from source—a task which is system specific. Unless our
live server environment is identical to our development environment, we shouldn't simply push
code build for one system onto another.

Furthermore, to save on transfer bandwidth and have faster synchronizations, we could have
our Git hooks install all modules (native bindings and JavaScript) and have Git ignore the
node_modules folder entirely.

So in our local repository, let's do the following:

echo node_modules >> .gitignore

Then, we'll change the post-update hook in our bare remote repository (login/repo/
hooks) to the following:

#!/bin/sh

cd /root/login

env -i git pull repo master && npm rebuild && npm install

exec forever restart /root/login/app.js

We've added && npm rebuild && npm install to the git pull line (using && to ensure
they benefit from the env -i command).

Now if we added a module to package.json, and did a git commit -a followed by git
push, our local repo would push package.json to the remote repo. This would trigger the
post-update hook to pull changes into the main login repository, and follow this up with
an npm rebuild command (to rebuild any C/C++ dependencies) and an npm install
command (to install any new modules).

Chapter 11

347

Writing a Node Git hook for integrated testing
Continuous deployment is an extension of continuous integration, which generally carries the
expectation that a thorough test suite is run against any code changes for quality assurance.

Our login app (being a basic demonstration site) doesn't have a test suite (for info on test
suites, see Chapter 10, Writing Your Own Node Modules), but we can still write a hook that
executes any tests that could be added to login in the future.

What's more, we can write it in Node, which has the added bonus of functioning cross
platform (on Windows, for example, although we'd have to change the hashbang) as follows:

#!/usr/bin/env node
var npm = require("npm");

npm.load(function (err) {
 if (err) { throw err; }

 npm.commands.test(function (err) {
 if (err) { process.exit(1); }
 });

});

We would place this code on the server under login/repo/hooks/pre-commit and make
it executable (chmod +x pre-commit).

The first line sets node as the script's interpreter directive (much like how #!/bin/sh sets
the sh shell for shell scripts). Now we're in Node country.

We use npm programmability to load the package.json file for our app, and then run the
test script (if any is specified).

We then add the following to our package.json file:

{
 "name": "application-name"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.5"
 , "jade": ">= 0.0.1"
 },
 "scripts": {
 "test": "node test"
 },
 "devDependencies": {"npm": "1.1.18"}
}

Taking It Live

348

Then run the following command:

npm -d install

Now, whenever we push to repo, any changes will only be committed if they pass the tests. As
long as we have a well-written test suite, this is a great way to maintain good code.

For our scripts.test property, we used node test (as in Chapter 10,
Writing Your Own Node Modules). However, there are more advanced test
frameworks available to us, such as Mocha (http://visionmedia.
github.com/mocha/).

This Node Git hook is adapted (with permission) from a gist by
Domenic Denicola, which can be found at https://gist.github.
com/2238951.

See also
ff The Deploying an app to a server environment recipe

ff The Automatic crash recovery recipe

ff The Creating a test-driven module API recipe discussed in Chapter 10, Writing Your
Own Node Modules

ff The Hosting with a Platform as a Service provider recipe

Hosting with a Platform as a Service
provider

A Platform as a Service (PaaS) for Node incorporates all of the concepts discussed in the
previous three chapters and boils deployment down to a very basic, yet powerful, set of
commands. When it comes to deployment, PaaS can make our lives very easy. With one simple
command, our app is deployed, and with another we can seamlessly update and reinitialize.

In this example, we'll learn how to deploy to Nodejitsu, one of the leading Node-hosting
platform providers.

Getting ready
First, we'll install jitsu, Nodejitsu's deployment and app management command-line app,
as follows:

https://gist.github.com/2238951

Chapter 11

349

sudo npm -g install jitsu

Before we proceed, we must sign up for an account as follows:

jitsu signup

The app will take us through the trivial signup process and create an account for us, which we
must confirm by e-mail.

Nodejitsu will provide a free 30 day trial, after which we have to sign up
for a plan (https://www.nodejitsu.com/pricing/), unless we
have an open source project, in which case we can apply for free hosting
(http://opensource.nodejitsu.com).

Once we've received our e-mail, we use the provided voucher, for instance:

jitsu users confirm dave 0b4c2692-395a-4a54-af55-7c6392e796a6

As in the first recipe, we'll use the login app from the Initializing and using a session recipe
of Chapter 7, Accelerating Development with Express.

How to do it...
First of all, we enter the login folder and make some modifications to package.json,
as follows:

 {
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "engines": {
 "node": "0.10.x"
 },
 "subdomain": "login",
 "dependencies": {
 "express": "~4.0.0-rc2",
 "static-favicon": "~1.0.0",
 "morgan": "~1.0.0",
 "cookie-parser": "~1.0.1",
 "body-parser": "~1.0.0",
 "debug": "~0.7.4",
 "jade": "~1.3.0",
 "express-session": "~1.0.2",

Taking It Live

350

 "method-override": "~1.0.0"
 }
 }

And now we deploy jitsu by running the following command:

Jitsu deploy

If we navigate to our specified subdomain at http://login.nodejitsu.com, or alternatively
http://login.jit.su, we will see our login app (if a subdomain isn't available, jitsu will
suggest alternatives).

How it works...
We made some modifications to package.json. The name of our app is the only alteration
that is necessarily made by directly editing package.json. The other additions could have
been made on our behalf by the jitsu executable. It is important to set the name of the app
because in jitsu, apps are managed by their name.

If we had not appended the subdomain and engines properties to package.json, jitsu
would have asked for the particulars. When we run jitsu, it gets deployed and regenerates
package.json on our behalf.

The subdomain property specifies the label prefix to nodejitsu.com, from where we host
our app (for example, login.nodejitsu.com). The engines property defines which versions
of Node our app is designed for. The start subproperty in scripts is also essential as it
informs Nodejitsu of the ignition script—the file that starts the app.

There's more...
Let's find out how to access our Nodejitsu app via a custom domain, and how to provision a
database backend through the jitsu executable.

Assigning custom domains to Nodejitsu apps
To prepare our app to serve through a custom domain, we make an amendment to package.
json as shown in the following code:

//bottom of package.json file..
 "subdomain": "login",
 "domains": ["login.nodecookbook.com"],
}

Then, we push our changes with jitsu as follows:

jitsu apps update ncb-login

Chapter 11

351

The app is now ready to receive traffic via http://login.nodecookbook.com, but before
traffic can reach it, we must match our domain's A records with those of Nodejitsu.

We can get the current list of Nodejitsu A records with dig (or a similar command-line app),
as follows:

dig nodejitsu.com

The process for changing A records depends upon our domain providers. We can generally
find it in the DNS area of our provider's control panel/administration area.

Provisioning a database with jitsu
In the last recipe of Chapter 7, Accelerating Development with Express, we built a MongoDB
backed Express app. Now we're going to take the profiler app live with Nodejitsu, making
use of the database provisioning capabilities of jitsu.

So, let's provision a Mongo database for the profiler database as follows:

jitsu databases create mongo profiler

jitsu will provision our database through a third-party database PaaS provider (in Mongo's
case, the PaaS provider is MongoHQ). The output provides us with the MongoDB URL for our
new database, which will look something like the following code:

data: Connection url:
 mongodb://nodejitsu_dave:6easrcf3vi0c4gkq48h3udo3@
 ds045998.mongolab.com:45998/nodejitsu_dave_nodejitsudb5369862890

So, we update the connection URL in profiler/tools/prepopulate.js as follows:

client.connect('mongodb://nodejitsu_dave:6easrcf3vi0c4gkq48h3udo3@
 ds045998.mongolab.com:45998/nodejitsu_dave_
 nodejitsudb5369862890',
 function (err, db) { // rest of our populating

We'll also need to remove or comment out the code related to dropDatabase in
prepopulate.js—this clears user settings on the remotely provisioned databases,
which we don't want to do, as follows:

//previous code
 //db.dropDatabase(function (err) {
 // e(err);

 db.collection('users').insert(users, function (err) {
 if (err) { return console.log(err); }
 console.log('Added users')
 tidy(db);
 });

Taking It Live

352

 db.collection('profiles').insert(profiles, function (err, o) {
 e(err);
 console.log('Added profiles')
 tidy(db);
 });

 //});
//rest of the code

Then, we run it from the profiler/tools folder as follows:

node prepopulate.js #might have to npm install first...

This fills our remote database with profiles and login data.

We update our database URI in two other places, profiler/models/profiles.js and
profiler/login/login.js. In both places, the third line is altered to run the following:

client.connect('mongodb://nodejitsu_dave:6easrcf3vi0c4gkq48h3udo3@
 ds045998.mongolab.com:45998/
 odejitsu_dave_nodejitsudb5369862890',
 function (err, db) { // rest of the code....

If we are using Nodejitsu's trial offering, we may only be able to run one app at a time. In this
case, we will need to run the following:

jitsu stop ncb-login

Then, finally, we can type the following:

jitsu deploy

jitsu will ask us for certain settings (subdomain, scripts.start, and engines). We can
just press Enter and stick to the defaults (unless of course profiler.nodejitsu.com is
already taken, in which case we should choose a different URL). jitsu will then deploy our
app; we should be able to access it at profiler.nodejitsu.com.

See also
ff The Deploying an app to a server environment recipe

ff The Automatic crash recovery recipe

ff The Continuous deployment recipe

Index
Symbols
$.get method 74
@background property 208
_compile method 322
--max-old-space-size method 26
.npmignore 330
_read method 139, 140
--save flag 199
_transform method 144, 147
<tr> tag 198
_write function 139
_write method 138, 144

A
Add button 231, 237
admin_lock variable 115
admin user

creating 112, 113
modifying operations, locking 113-115

aggregation 102, 103
AJAX

browser-server transmission via 70-79
API

about 79
extending 317-325

app
deploying, to server environment 331-337

app.get method 187
app.js file

configuring 224, 225
picking apart 182-185

app.listen method 261
apply function 69
app mounting 233

Asterisk
URL 274

asterisks wildcards
defining 194

Atomicity Consistency Isolation Durability
(ACID) 107

attachments
sending 273, 274

authbind
URL 335
used, for privileged ports 335, 336

authenticated areas
logging out 254-256

authenticate function 254
auth-int attribute 253
automated phone call

making 278, 279
automatic crash recovery 337-340

B
Base64 encoding

URL 167, 244
basename property 29
basename variable 9
Basic Authentication

implementing 242-245
securing, with SSL/TLS 259
URL 242
with Express 245

Benchmarking 238, 239
BigCouch

CouchDB, scaling with 109
URL 109

Binary JSON (BSON) 104
body-parser

about 39

354

POST data, accessing with 39, 40
bodyParser method 40
boundary parameter 50
broken downloads

resumes, enabling from 57
Browserify

about 158
installing 158
URL 158

browser-server transmission
via AJAX 70-79

Buffer.concat method 174
Buffer.copy method 25
bufferOffset property 54
bufferOffset variable 25
bufferSize property 25
Buffer.slice variable 56
buffertools.concat function 149
Buffer.toString method 309
Buffer variable 25
buildStats function 307-311
bytesOut variable 56
bytesSent parameter 56

C
CA 257
cacheAndDeliver function 20, 22
cache.clean method 27, 28
cache[f].content property 24, 25
cache.store[f] method 27
cache.store function 27
callback function 140
callback parameter 139
call method 93, 316
Cancel button 244
Can I use

URL 44
Carriage Return Line Feed (CRLF) 273
cb function 63, 133
cb parameter 55, 288
Certificate Authority. See CA
Certificate Signing Request (CSR) 257
Chai

URL 305
changeUser method 95
checkAndSave function 108

checkStatus function 277
chmod 17
chunk parameter 140
chunks property 54
chunk variable 131, 132
clean method 27
client

multipart data, uploading as 49-52
clientScript variable 174
colorMatches function 149
colors

playing with 208
Comma Separated Values. See CSV
connect

about 39, 184
POST data, accessing with 39, 40
URL 184

connection.query method 96
content caching

in memory, for immediate delivery 18-21
content changes

reflecting 20, 21
contents property 274
Continuous deployment 341-347
CORS

URL 64
CouchDB

data retrieval, with Cradle from 109-115
data, storing with Cradle 107-109
scaling, with BigCouch 109
URL 107

CouchDB changes stream
accessing, with Cradle 115-117

CouchDB HTTP interface
exposing, to remote connections 115

Cradle
used, for retrieving data 109-115
used, for storing data to CouchDB 107-109

Create a new application button 80
createConnection method 96
createHash method 248
createQuotesView function 110
createServer method 39, 174, 261
createTransport method 272
Cross-browser real-time logic

used, with Socket.IO 162-166
Cross-Origin Resource Sharing. See CORS

355

cross-site request forgery
preventing 260-268

Cross-Site Request Forgery (CSRF) 260
cross-site scripting attacks

eliminating 267
Cryptographic password hashing

about 246-250
URL 246

CSRF elements
POST forms, auto-securing with 265-267

CSS preprocessors
used, with Express 201-210

CSV 90
CSV file

writing to 90-93
ctime property 21
curl

URL 29
custom domains

assigning, to Nodejitsu apps 350
custom events 165, 166
custom middleware

for site-wide session management 215-217

D
data

retrieving from CouchDB, with Cradle 109-
115

retrieving, with MongoDB 99-106
retrieving, with Redis 118-121
storing to CouchDB, with Cradle 107-109
storing, with MongoDB 99-106
storing, with Redis 118-121

database
provisioning, with jitsu 351, 352

database bridge
creating 222-224

data event
consuming via 132-134

Data flows 234
db.create method 108
debug function 186
decide function 129-135
development tool

WebSockets, using as 176, 177

Digest Authentication
implementing 251-256

digest method 248
digest.response property 253
DNS records, changing

with registrar, URL 290
Document Object Model (DOM)

URL 66
download throttling

implementing 52-57
duplex stream 127
duration object 309
duration property 301
dynamic routing

implementing 191-194

E
EJS templates 199, 200
e-mail

receiving, from external
SMTP server 289, 290

sending 270-274
emit method 165
encoding parameter 139
enctype attribute 41
engine.io

about 163
URL 163

envelope parameter 288
envelope.to property 288
err object 185
EventEmitter

integrating 323-325
exist parameter 16
exports object 308
exports.stat function 314
Express

Basic Authentication, using with 245
CSS preprocessors, using with 201-210
HTTPS, enabling in 259

Express framework
templating in 195-201

Express scaffolding
generating 180-186
initialization process 185

356

Express web app
making 220- 238

external connections
Redis, securing from 125

external SMTP server
e-mail, receiving from 289, 290

F
favicon gotcha 17
feed variable 128
field parameter 43
file limits, Unix systems

URL 56
fileName property 274
filenames

preserving, with formidable 44
file parameter 43
files

uploading, via PUT 44-46
files parameter 51
file uploads

handling 40-46
findBitRate function 307-311
find method 102
flash messages 217-220
forceLogOut property 255
forEach method 49
forever

staying up with 340
formidable

filenames, preserving with 44
used, to accept POST data 43

from.array method 91
from parameter 166
fs.exists method 16
fs.readFile method 15, 31
fs.stat function 21
fs.stat method 21, 25, 301
fstats object 308
fs.watch method

about 176
URL 176

fullname property 61-66
functional module mock-up

writing 305-309

G
generateTextFromHtml property 273
GitHub

URL 341
git pull command 345
Google Hot Trends

cross referencing, with Twitter tweets 85-87
greater complexity

preparing for 136, 137

H
handleAbort variable 56
handler parameter 87
Hang-Up Signal (HUP) 334
hardened hashing

with PBKDF2 249, 250
Hash-based Message Authentication Code.

See HMAC
hash functions

URL 248
HMAC

unique hashes, making with 249
hotTrends.xmlHandler method 86
hours variable 309
href attribute 232, 268
HTML e-mails

creating 273
HTTP client

Node, using as 47-52
http.createServer method 8
http.get method 47
http.request method 47, 49
HTTPS

enabling, in Express 259
https.Server function 295
HTTPS web server

setting up 257, 258

I
id attribute 45
include statement 201
INCR command 176
indexing 102, 103
inherit method 143
initialization process 185

357

init method 171
insert method 102
inspect method 37
INSTALL button 7
integrated testing

Node Git hook, writing for 347
isUpdated variable 21
ix variable 149

J
Jade

about 196
include statement 201
literal JavaScript, using 200

JavaScript Object Notation. See JSON
jitsu

database, provisioning with 351, 352
JS-Git

URL 346
JSON

object, converting to 59-62
jsonHander method 87
jsonHandler method 82, 84
JSONP

about 62, 63
URL 62

JSONP responses
constructing 62, 63

JSONStream
URL 161

JSONStream.parse function 136
JSON with Padding. See JSONP

L
large file generation

URL 52
lastChanged variable 21
layout.jade

using 201
length property 140
LESS

URL 209
using 209, 210

limit
updating 103-105

Line Feed (LF) 273

Linux Apache MySQL PHP (LAMP) 94
listen method 165
literal JavaScript

used, in Jade 200
load function 78
locals 237
log function 130
loop function 55, 56

M
Mail Exchange. See MX records
Mailinator

URL 271
main property 327
makeCall function 82
mappings.sites object 293
md5 function 251
message event 165
middleware

URL 185
middleware method 205
mixin keyword 226
mixins 236, 237
Mocha

URL 303, 348
modifiers

updating 103-105
modifying operations

locking, to admin user 113-115
module

deploying, to npm 326-329
module dependencies

building, on update 346
module's request

URL 48
module's wiki page

URL 32
MongoDB

data, retrieving with 99-106
data, storing with 99-106
without MongoDB 105, 106

MongoDB server
URL 99

mounted login app
modifying 229-233

358

mp3dat object
stat function, adding to 315, 316

Mp3dat object 313
mp3dat.stat method 301
mp3dat variable 301
MP3 files

URL 300
MPEG-1 layer 3 file retrieval

URL 300
msg parameter 165
msg property 224
Msysgit

URL 344
multilevel routing 10, 11
multi method 120
multipartAssembler function 51, 52
multipart data

uploading, as client 49-52
multiple instances

allowing 316
multiple processes

hosting, from port 80 336, 337
MX records

URL 290
MySQL server

results, receiving from 98
SQL, connecting to 94-98
SQL, sending to 94-98

N
NeDB to MongoDB

URL 106
nested mixins parameter 206
nested mixins rest parameter 206, 207
netcat

URL 280
network latency

overcoming 120, 121
next parameter 184
ngSMS

URL 274
Node

used, as HTTP client 47-52
Node-based WebSocket client

creating 157, 158

NODE_ENV
changing 191

Node Git hook
writing, for integrated testing 347

Node installation
URL 332
via package manager, URL 332

Nodejitsu
URL 349

Nodejitsu apps
custom domains, assigning to 350

nodemailer
using 270

Node processes
streaming 144-150

Node Redis module
speeding up 120

Node Static 32
NodeZoo

URL 12
nonce attribute 253
no-op function 229
npm

module, deploying to 326-329
npm init command 327
npm install command 181
npm link command 329
npm rebuild command 346
npm version 330

O
object

converting, to JSON 59-62
converting, to XML 64-70

Object.create method 85
Object Out of Bounds (OOB) 56
once method 23
on method 23
optimist module

URL 97
optional routes

defining 193, 194
options method 92
other environments

setting 189, 190

359

other template engines
using 198, 199

output parameter 79

P
PaaS

hosting with 348-352
pagenum parameter 234
page variable 236
parseAuth function 253
parse method 37
parseString function 70
parseString method 66
parseString variable 69
partial application 69, 70
path.basename method 31
pathname property 29
PBKDF2

hardened hashing, using with 249, 250
pcap

used, to watch TCP traffic 284, 285
performance

optimizing, with streaming 22-28
pipe method 134, 135
pipes

playing with 134-137
Platform as a Service. See PaaS
pop method 140
port

forwarding 283
port 80

multiple processes, hosting from 336, 337
port property 157
POST data

accepting, formidable used 43
accessing, with body-parser 39, 40
accessing, with connect 39, 40
processing 35-40

postData variable 37
POST forms

auto-securing, with CSRF elements 265-267
POST method 213
POST requests

sending 48, 49
POST server

protecting 37

privileged ports
authbind, used for 335, 336

process.argv property 48
process memory overruns

protecting against 26-28
profile object 198
profiler app

modifying 225-229
profiles.pull method 234
profiles variable 66
prototypical inheritance

about 310
refactoring with 310-317

PUBLISH command 124
PubSub

implementing, with Redis 121-125
push method 140
PUT

files, uploading via 44-46
putty

URL 333
PUT upload stream example

creating 321

Q
qop attribute 253
query method 95
querystring module

parsing 11, 12

R
randomBytes method 249
rcpt variable 289
Read-Eval-Print-Loop (REPL) 40
read method 130-133
read's size argument

using 130-132
readStream method 53, 55
ready variable 128
realm variable 254
real-time widget

creating 171-177
Redis

data, retrieving with 118-121
data, storing with 118-121
securing, from external connections 125

360

Redis authentication 125
remote add command 345
remote connections

CouchDB HTTP interface, exposing to 115
Remote Procedure Calls. See RPC
request module

URL 160
require function 181
respawn limit violation

detecting 339, 340
respawn variable 339
response.end method 10
response.finished property 10
response parameter 117
res.render method 195, 197
res.resume method 133
res.sid function 277
REST architecture

URL 275
rest parameter 206, 207
result parameter 103
results

receiving, from MySQL server 98
resumes

enabling, from broken downloads 57
reusable streams

making 141, 142
rootName property 65
route

handling 234, 235
router

setting up 7-12
routes/index.js

loading 186
route validation 193
routing modules 12
routing modules, Node

URL 12
RPC

used, with Socket.IO 167-170
using, with SockJS 169, 170

S
safeMix function 229, 237
scalability

preparing for 175, 176

screen
using 335

scripts object 181
scripts.test property 348
secureShare function 296
security risk anti-patterns

identifying 28-32
Send button 156, 165
sendfile method 247
sendmail

used, as alternative transport 272, 273
sendMail method 272
sendSms method 277
serialized data

sending, from client to server 75-79
serve method 293
Server Name Indication. See SNI
server property 157
server tier environments

managing 187-191
session

initializing 211-220
using 211-220

set command 191
setx command 191
should.js

unit tests, using with 304, 305
should methods

URL 305
sides parameter 206
Simple API for XML (SAX) 66
Simple Mail Transfer Protocol (SMTP) 270
site-wide session management

custom middleware, used for 215-217
size parameter 140
size property 25
slice method 56
SMS

sending 274-279
SMTP server

creating 285-290
smtp variable 290
SNI 295-297
Socket.IO

Cross-browser real-time logic, using
with 162-166

RPC, using with 167-170

361

URL 163
socket.join method 175
socket parameter 157
socket.send method 157
SockJS

about 169
RPC, using with 169

sort
updating 103-105

spawnInstance method 317
SQL

connecting, to MySQL server 94-98
sending, to MySQL server 94-98

SSH protocol
URL 332

SSL/TLS
Basic Authentication, securing with 259
URL 242

start property 181
stat

and statStream, merging 322, 323
stat function

adding, to initialized mp3dat object 315, 316
static files

serving 13-17
stat method 308, 313, 314
stats object 301, 306, 325
statStream

and stat, merging 322, 323
statStream method 318, 320, 321
STDIN stream example

creating 321
store parameter 143
stream chunk buffers

processing 147-149
streaming

performance, optimizing with 22-28
stream interfaces

making 137-144
stream.pipe method 23, 24
stream property 320
streams

about 127
chaining 136
consuming 128- 134
filtering 136
URL 128

streamStat method 322
String.replace method 62
Styles 238
subdomain property

URL 350
superagent

URL 48
supervisor module

URL 8

T
TCP

communicating with 280-285
streaming over 150, 151

TCP traffic
watching, pcap used 284, 285

TDD
URL 300

template engines
URL 195

template engines, comparisons
URL 195

test-driven development. See TDD
test-driven module specification

creating 300-305
testFile variable 301
text nodes

generating 67, 68
this object 323
throttle function 55
timeProcessor function 309, 312
timestamp property 27
toString method 279
transform function 93
transform method 92
transform stream 143, 144
transport.close method 272
trending tweets

fetching 79- 87
trends property 86
tweetPath method 87
Twilio account

URL 275
Twilio dashboard

URL 275
Twilio Markup Language (TwiML) 278

362

Twilio numbers account section
URL 276

TwimlResponse method 278
Twitter tweets

Google Hot Trends, cross referencing
with 85-87

U
Uniform Resource Identifier (URI) 7
unique hashes

making, with HMAC 249
unit tests

used, with should.js 304, 305
updateProfiles function 79
Upstart

URL 338
uRealm property 255
uri attribute 253
urlOpts variable 49
url.parse method 11
user input

cleaning 97, 98
using 97, 98

username attribute 253
username parameter 255
user property 214, 215
users variable 290

V
validate function 219
validOpts variable 320
views 235, 236
virtual hosting

Express apps 293-295
implementing 291-297
SNI 295-297

Virtual Private Servers (VPS) 331
visitTag method 266

W
WebSockets

used, as development tool 176, 177
WebSocket server

creating 154-162
WebSocket stream 158-162
whitelisting 31
writable._write method 139
writeStream function 289
ws module

URL 154

X
XML

object, converting to 64-70
XML attributes

generating 67, 68

Thank you for buying

Node Cookbook Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting server-side
JavaScript web development stack

1.	 Learn about server-side JavaScript with Node.js
and Node modules.

2.	 Website development both with and without the
Connect/Express web application framework.

3.	 Developing both HTTP server and client
applications.

CoffeeScript Programming
with jQuery, Rails,
and Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn CoffeeScript programming with the three most
popular web technologies around

1.	 Learn CoffeeScript, a small and elegant language
that compiles to JavaScript and will make your life
as a web developer better.

2.	 Explore the syntax of the language and see how it
improves and enhances JavaScript.

3.	 Build three example applications in CoffeeScript
step by step.

Please check www.PacktPub.com for information on our titles

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web apps
using Node.js, Zombie.js and Mocha

1.	 Use automated tests to keep your web app rock
solid and bug-free while you code.

2.	 Use a headless browser to quickly test your web
application every time you make a small change
to it.

3.	 Use Mocha to describe and test the capabilities
of your web app.

Socket.IO Real-time Web
Application Development
ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-time web applications powered
by Socket.IO

1.	 Understand the usage of various socket.io features
such as rooms, namespaces, and sessions.

2.	 Secure the socket.io communication.

3.	 Deploy and scale your socket.io and Node.js
applications in production.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Making a Web Server
	Introduction
	Setting up a router
	Serving static files
	Caching content in memory for immediate delivery
	Optimizing performance with streaming
	Securing against filesystem hacking exploits

	Chapter 2: Exploring the
HTTP Object
	Introduction
	Processing POST data
	Handling file uploads
	Using Node as an HTTP client
	Implementing download throttling

	Chapter 3: Working with
Data Serialization
	Introduction
	Converting an object to JSON and back
	Converting an object to XML and back
	Browser-server transmission via AJAX
	Working with real data – fetching trending tweets

	Chapter 4: Interfacing with Databases
	Introduction
	Writing to a CSV file
	Connecting and sending SQL to a MySQL server
	Storing and retrieving data with MongoDB
	Storing data to CouchDB with Cradle
	Retrieving data from CouchDB with Cradle
	Accessing the CouchDB changes stream with Cradle
	Storing and retrieving data with Redis
	Implementing PubSub with Redis

	Chapter 5: Employing Streams
	Introduction
	Consuming streams
	Playing with pipes
	Making stream interfaces
	Streaming across Node processes

	Chapter 6: Going Real Time
	Introduction
	Creating a WebSocket server
	Cross-browser real-time logic with Socket.IO
	Remote Procedure Calls with Socket.IO
	Creating a real-time widget

	Chapter 7: Accelerating Development with Express
	Introduction
	Generating Express scaffolding
	Managing server tier environments
	Implementing dynamic routing
	Templating in Express
	CSS preprocessors with Express
	Initializing and using a session
	Making an Express web app

	Chapter 8: Implementing Security, Encryption, and Authentication
	Introduction
	Implementing Basic Authentication
	Hashing passwords
	Implementing Digest Authentication
	Setting up an HTTPS web server
	Preventing cross-site request forgery

	Chapter 9: Integrating
Network Paradigms
	Introduction
	Sending an e-mail
	Sending an SMS
	Communicating with TCP
	Creating an SMTP server
	Implementing a virtual hosting paradigm

	Chapter 10: Writing Your Own
Node Modules
	Introduction
	Creating a test-driven module specification
	Writing a functional module mock-up
	Refactoring with prototypical inheritance
	Extending a module's API
	Deploying a module to npm

	Chapter 11: Taking It Live
	Introduction
	Deploying an app to a server environment
	Automatic crash recovery
	Continuous deployment
	Hosting with a Platform as a Service provider

	Index

