
1

www.allitebooks.com

http://www.allitebooks.org

MongoDB Cookbook
Second Edition

Over 80 comprehensive recipes that will help you master
the art of using and administering MongoDB 3

Cyrus Dasadia

Amol Nayak

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

MongoDB Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Second Edition: January 2016

Production reference: 1060116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-998-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Cyrus Dasadia

Amol Nayak

Reviewers
Christopher Dambamuromo

Laurence Putra Franslay

Jason Nichols

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Shaon Basu

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Cyrus Dasadia always liked tinkering with open source projects since 1996. He has been
working as a Linux system administrator and part-time programmer for over a decade. He
works at InMobi, where he loves designing tools and platforms. His love for MongoDB started
in 2013, when he was amazed by its ease of use and stability. Since then, almost all of his
projects are written with MongoDB as the primary backend. Cyrus is also the creator of an
open source alert management system called CitoEngine. He likes spending his spare time
trying to reverse engineer software, playing computer games, or increasing his silliness
quotient by watching reruns of Monty Python.

To my wife, Nilu, provider of unconditional love and support; recipient of
bad jokes.

www.allitebooks.com

http://www.allitebooks.org

Amol Nayak is a MongoDB certified developer and has been working as a developer for
over 8 years. He is currently employed with a leading financial data provider, working on
cutting-edge technologies. He has used MongoDB as a database for various systems at his
current and previous workplaces to support enormous data volumes. He is an open source
enthusiast and supports it by contributing to open source frameworks and promoting them.
He has made contributions to the Spring Integration project, and his contributions are the
adapters for JPA, XQuery, MongoDB, Push notifications to mobile devices, and Amazon Web
Services (AWS). He has also made some contributions to the Spring Data MongoDB project.
Apart from technology, he is passionate about motor sports and is a race official at Buddh
International Circuit, India, for various motor sports events. Earlier, he was the author of
Instant MongoDB, Packt Publishing.

I would like to thank everyone at Packt Publishing who has been involved
with this book. It started when Luke Presland from Packt Publishing
approached me to author a book on Mongo. I was skeptical to take up the
opportunity due to other commitments and tight deadlines, but if it wasn't
for my mom, friends, and office colleagues who convinced me to take up the
opportunity, I would not have written this book. The chapters and content
covered was a lot, and I had a tough time keeping up with the timelines. A
special thanks to Priyanka, Rebecca, Mary, and Joel with whom I interacted
the most; they were very flexible to my changes in delivery timelines. A big
thanks to Douglas Duncan and other reviewers of the book for reviewing
the book closely and helping improve the quality of the content drastically.
Finally, I would like to thank the other staff at Packt Publishing who were
involved in the book's publishing process but haven't interacted with me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Christopher Dambamuromo is a MongoDB evangelist who is an active contributor
to StackOverflow on the MongoDB tag. Chris frequently engages the open source
community and foster adoption of MongoDB. He helps engineering teams build scalable
and performant applications in MongoDB. He also assesses the health, scalability, and
capacity of distributed systems and advises engineering teams on the schema design,
architecture, and deployment planning. He is a passionate and proficient C#/BI developer
with more than 10 years of experience producing code to a consistently high standard. Chris
has constantly been honing his skills in the technical aspects of software and business
intelligence engineering (JavaScript, Node.js, HTML5, CSS3, Python, R, Java, ASP.NET MVC,
C# Microsoft BI stack—MS SQL server, SSIS, SSRS, SSAS, SharePoint, and PowerPivot), data
modeling, systems architecture, as well as business applications for BI solutions. He has an
MSc degree in intelligent computer systems from the University of Glamorgan (UK), an MSc
degree in mathematics and computing for finance from Swansea University, UK, and a BSc
degree with honours in applied mathematics from the National University of Science and
Technology, Zimbabwe. Chris is very fond of anything closely or remotely related to data and
mathematics, and as long as it can be represented as a string of ones and zeros and then
analyzed and visualized, you've got his attention! His GitHub handle is http://github.
com/chrisdamba and can be found on StackOverflow as http://stackoverflow.com/
users/122005/chridam.

Laurence Putra Franslay is a software engineer working in Singapore and runs the
Singapore MongoDB user group. In his free time, he hacks away on random stuff and picks
up new technologies. His key interests lie in security and distributed systems. For more
information, view his profile at http://geeksphere.net/.

www.allitebooks.com

http://github.com/chrisdamba
http://github.com/chrisdamba
http://stackoverflow.com/users/122005/chridam
http://stackoverflow.com/users/122005/chridam
http://geeksphere.net/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Installing and Starting the Server	 1

Introduction	 2
Installing single node MongoDB	 2
Starting a single node instance using command-line options	 3
Single node installation of MongoDB with options from the config file	 6
Connecting to a single node in the Mongo shell with JavaScript	 7
Connecting to a single node using a Java client	 10
Connecting to a single node using a Python client	 15
Starting multiple instances as part of a replica set	 17
Connecting to the replica set in the shell to query and insert data	 22
Connecting to the replica set to query and insert data from a Java client	 24
Connecting to the replica set to query and insert data using a Python client	 28
Starting a simple sharded environment of two shards	 30
Connecting to a shard in the shell and performing operations	 35

Chapter 2: Command-line Operations and Indexes	 39
Introduction	 39
Creating test data	 39
Performing simple querying, projections, and pagination from Mongo shell	 41
Updating and deleting data from the shell	 43
Creating index and viewing plans of queries	 45
Creating a background and foreground index in the shell	 51
Creating and understanding sparse indexes	 55
Expiring documents after a fixed interval using the TTL index	 58
Expiring documents at a given time using the TTL index	 61

Chapter 3: Programming Language Drivers	 63
Introduction	 63
Executing query and insert operations with PyMongo	 64

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Executing update and delete operations using PyMongo	 69
Implementing aggregation in Mongo using PyMongo	 76
Executing MapReduce in Mongo using PyMongo	 77
Executing query and insert operations using a Java client	 80
Executing update and delete operations using a Java client	 83
Implementing aggregation in Mongo using a Java client	 88
Executing MapReduce in Mongo using a Java client	 90

Chapter 4: Administration	 93
Introduction	 94
Renaming a collection	 94
Viewing collection stats	 96
Viewing database stats	 99
Manually padding a document	 102
The mongostat and mongotop utilities	 105
Getting current executing operations and killing them	 110
Using profiler to profile operations	 116
Setting up users in Mongo	 120
Interprocess security in Mongo	 125
Modifying collection behavior using the collMod command	 127
Setting up MongoDB as a windows service	 128
Replica set configurations	 130
Stepping down as primary from the replica set	 137
Exploring the local database of a replica set	 138
Understanding and analyzing oplogs	 140
Building tagged replica sets	 144
Configuring the default shard for non-sharded collections	 149
Manual split and migration of chunks	 152
Domain-driven sharding using tags	 154
Exploring the config database in a sharded setup	 156

Chapter 5: Advanced Operations	 159
Introduction	 159
Atomic find and modify operations	 160
Implementing atomic counters in Mongo	 162
Implementing server-side scripts	 164
Creating and tailing a capped collection cursors in MongoDB	 166
Converting a normal collection to a capped collection	 169
Storing binary data in Mongo	 171
Storing large data in Mongo using GridFS	 172
Storing data to GridFS from Java client	 176
Storing data to GridFS from Python client	 180

iii

Table of Contents

Implementing triggers in Mongo using oplog	 183
Flat plane 2D geospatial queries in Mongo using geospatial indexes	 187
Spherical indexes and GeoJSON compliant data in Mongo	 191
Implementing full text search in Mongo	 196
Integrating MongoDB for full text search with Elasticsearch	 201

Chapter 6: Monitoring and Backups	 209
Introduction	 209
Signing up for MMS and setting up an MMS monitoring agent	 210
Managing users and groups in MMS console	 214
Monitoring instances and setting up alerts on MMS	 217
Setting up monitoring alerts in MMS	 227
Back up and restore data in Mongo using out-of-the-box tools	 229
Configuring MMS Backup service	 232
Managing backups in MMS Backup service	 239

Chapter 7: Deploying MongoDB on the Cloud	 247
Introduction	 247
Setting up and managing the MongoLab account	 248
Setting up a sandbox MongoDB instance on MongoLab	 250
Performing operations on MongoDB from MongoLab GUI	 254
Setting up MongoDB on Amazon EC2 manually	 258
Setting up MongoDB using the Docker containers	 264

Chapter 8: Integration with Hadoop	 269
Introduction	 269
Executing our first sample MapReduce job using the
mongo-hadoop connector	 270
Writing our first Hadoop MapReduce job	 277
Running MapReduce jobs on Hadoop using streaming	 280
Running a MapReduce job on Amazon EMR	 284

Chapter 9: Open Source and Proprietary Tools	 293
Introduction	 293
Developing using spring-data-mongodb	 294
Accessing MongoDB using JPA	 306
Accessing MongoDB over REST	 309
Installing a GUI-based client, MongoVUE, for MongoDB	 314

Appendix: Concepts for Reference	 327
Write concern and its significance	 327
Read preference for querying	 336

Index	 341

v

Preface
MongoDB is a document-oriented, leading NoSQL database, which offers linear scalability,
thus making it a good contender for high-volume, high-performance systems across all the
business domains. It has an edge over the majority of NoSQL solutions for its ease of use,
high performance, and rich features.

This book provides detailed recipes that describe how to use the different features
of MongoDB. The recipes cover topics ranging from setting up MongoDB, knowing its
programming language API, and monitoring and administration, to some advanced topics
such as cloud deployment, integration with Hadoop, and some open source and proprietary
tools for MongoDB. The recipe format presents the information in a concise, actionable form;
this lets you refer to the recipe to address and know the details of just the use case in hand
without going through the entire book.

What this book covers
Chapter 1, Installing and Starting the Server, is all about starting MongoDB. It will demonstrate
how to start the server in the standalone mode, as a replica set, and as a shard, with the
provided start up options from the command line or configuration file.

Chapter 2, Command-line Operations and Indexes, has simple recipes to perform CRUD
operations in the Mongo shell and create various types of indexes in the shell.

Chapter 3, Programming Language Drivers, discusses about programming language APIs.
Though Mongo supports a vast array of languages, we will look at how to use the drivers
to connect to the MongoDB server from Java and Python programs only. This chapter also
explores the MongoDB wire protocol used for communication between the server and
programming language clients.

Chapter 4, Administration, contains many recipes for administration or your MongoDB
deployment. This chapter covers a lot of frequently used administrative tasks such as viewing
the stats of the collections and database, viewing and killing long-running operations and
other replica sets, and sharding-related administration.

Preface

vi

Chapter 5, Advanced Operations, is an extension of Chapter 2, Command-line Operations
and Indexes. We will look at some of the slightly advanced features such as implementing
server-side scripts, geospatial search, GridFS, full text search, and how to integrate MongoDB
with an external full text search engine.

Chapter 6, Monitoring and Backups, tells you all about administration and some basic
monitoring. However, MongoDB provides a state-of-the-art monitoring and real-time backup
service, MongoDB Monitoring Service (MMS). In this chapter, we will look at some recipes
around monitoring and backup using MMS.

Chapter 7, Deploying MongoDB on the Cloud, covers recipes that use MongoDB service
providers for cloud deployment. We will set up our own MongoDB server on the AWS cloud as
well as run MongoDB in Docker containers.

Chapter 8, Integration with Hadoop, covers recipes to integrate MongoDB with Hadoop to use
the Hadoop MapReduce API in order to run MapReduce jobs on the data residing in MongoDB
data files and write the results to them. We will also see how to use AWS EMR to run our
MapReduce jobs on the cloud using Amazon's Hadoop cluster, EMR, with the mongo-hadoop
connector.

Chapter 9, Open Source and Proprietary Tools, is about using frameworks and products
built around MongoDB to improve a developer's productivity or about simplifying some of the
day-to-day jobs using Mongo. Unless explicitly mentioned, the products/frameworks that we
will be looking at in this chapter are open source.

Appendix, Concepts for Reference, gives you a bit of additional information on the write
concern and read preference for reference.

What you need for this book
The version of MongoDB used to try out the recipes is 3.0.2. The recipes are good for version
2.6.x as well. In case of some special feature specific to version 2.6.x, it would be explicitly
mentioned in the recipe. Unless explicitly mentioned, all commands should be executed on
Ubuntu Linux.

The samples where Java programming was involved were tested and run on Java Version 1.7,
and Python code was run using Python v2.7 (compatible with Python 3). For MongoDB drivers,
you can choose to use the latest available version.

These are pretty common types of software, and their minimum versions are used across
different recipes. All the recipes in this book will mention the required software to complete
it and their respective versions. Some recipes need to be tested on a Windows system, while
some on Linux.

Preface

vii

Who this book is for
This book is designed for administrators and developers who are interested in knowing
MongoDB and using it as a high-performance and scalable data storage. It is also for those
who know the basics of MongoDB and would like to expand their knowledge. The audience of
this book is expected to have at least some basic knowledge of MongoDB.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create
the /data/mongo/db directory (or any of your choice)."

A block of code is set as follows:

 import com.mongodb.DB;
 import com.mongodb.DBCollection;
 import com.mongodb.DBObject;
 import com.mongodb.MongoClient;

Any command-line input or output is written as follows:

$ sudo apt-get install default-jdk

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "As we want to start a free
micro instance, check the Free tier only checkbox on the left".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1

1
Installing and Starting

the Server

In this chapter, we will cover the following recipes:

ff Installing single node MongoDB

ff Starting a single node instance using the command-line options

ff Installing single node MongoDB with options from the config file

ff Connecting to a single node in the Mongo shell with JavaScript

ff Connecting to a single node from a Java client

ff Connecting to a single node from a Python client

ff Starting multiple instances as part of a replica set

ff Connecting to the replica set in the shell to query and insert data

ff Connecting to the replica set to query and insert data from a Java client

ff Connecting to the replica set to query and insert data using a Python client

ff Starting a simple sharded environment of two shards

ff Connecting to a shard in the shell and performing operations

www.allitebooks.com

http://www.allitebooks.org

Installing and Starting the Server

2

Introduction
In this chapter, we will look at starting up the MongoDB server. Though it is a cakewalk to
start the server with default settings for development purposes, there are numerous options
available to fine-tune the start up behavior. We will start the server as a single node and then
introduce various configuration options. We will conclude this chapter by setting up a simple
replica set and running a sharded cluster. So, let's get started with installing and setting up
the MongoDB server in the easiest way possible for simple development purposes.

Installing single node MongoDB
In this recipe, we will look at installing MongoDB in the standalone mode. This is the simplest
and quickest way to start a MongoDB server, but it is seldom used for production use cases.
However, this is the most common way to start the server for development purposes. In this
recipe, we will start the server without looking at a lot of other startup options.

Getting ready
Well, assuming that we have downloaded the MongoDB binaries from the download site,
extracted it, and have the resulting bin directory in the operating system's path variable.
(This is not mandatory, but it really becomes convenient after doing so.) The binaries can
be downloaded from http://www.mongodb.org/downloads after selecting your host
operating system.

How to do it…
1.	 Create the directory, /data/mongo/db (or any of your choice). This will be our

database directory, and it needs to have permission to write to it by the mongod
(the mongo server process) process.

2.	 We will start the server from the console with the data directory, /data/mongo/db,
as follows:
> mongod --dbpath /data/mongo/db

How it works…
If you see the following line on the console, you have successfully started the server:

[initandlisten] waiting for connections on port 27017

http://www.mongodb.org/downloads

Chapter 1

3

Starting a server can't get easier than this. Despite the simplicity in starting the server, there
are a lot of configuration options that can be used to tune the behavior of the server on
startup. Most of the default options are sensible and need not be changed. With the default
values, the server should be listening to port 27017 for new connections, and the logs will be
printed out to the standard output.

See also
There are times where we would like to configure some options on server startup. In the
Installing single node MongoDB recipe, we will use some more start up options.

Starting a single node instance using
command-line options

In this recipe, we will see how to start a standalone single node server with some command-
line options. We will see an example where we want to do the following:

ff Start the server listening to port 27000

ff Logs should be written to /logs/mongo.log

ff The database directory is /data/mongo/db

As the server has been started for development purposes, we don't want to preallocate full-
size database files. (We will soon see what this means.)

Getting ready
If you have already seen and executed the Installing single node MongoDB recipe, you need
not do anything different. If all these prerequisites are met, we are good for this recipe.

How to do it…
1.	 The /data/mongo/db directory for the database and /logs/ for the logs should be

created and present on your filesystem with appropriate permissions to write to it.

2.	 Execute the following command:
> mongod --port 27000 --dbpath /data/mongo/db –logpath /logs/
mongo.log --smallfiles

Installing and Starting the Server

4

How it works…
Ok, this wasn't too difficult and is similar to the previous recipe, but we have some additional
command-line options this time around. MongoDB actually supports quite a few options at
startup, and we will see a list of the most common and important ones in my opinion:

Option Description

--help or -h This is used to print the information of various start up options
available.

--config or -f This specifies the location of the configuration file that contains all
the configuration options. We will see more on this option in a later
recipe. It is just a convenient way of specifying the configurations in a
file rather than on the command prompt; especially when the number
of options specified is more. Using a separate configuration file shared
across different MongoDB instances will also ensure that all the
instances are running with identical configurations.

--verbose or -v This makes the logs more verbose; we can put more v's to make the
output even more verbose, for example, -vvvvv.

--quiet This gives a quieter output; this is the opposite of verbose or the -v
option. It will keep the logs less chatty and clean.

--port This option is used if you are looking to start the server listening to
some port other than the default 27017. We would be frequently using
this option whenever we are looking to start multiple mongo servers on
the same machine, for example, --port 27018 will start the server
listening to port 27018 for new connections.

--logpath This provides a path to a log file where the logs will be written. The
value defaults to STDOUT. For example, --logpath /logs/
server.out will use /logs/server.out as the log file for the
server. Remember that the value provided should be a file and not a
directory where the logs will be written.

--logappend This option appends to the existing log file, if any. The default behavior
is to rename the existing log file and then create a new file for the
logs of the currently started mongo instance. Suppose that we have
used the name of the log file as server.out, and on startup, the
file exists, then by default this file will be renamed as server.
out.<timestamp>, where <timestamp> is the current time.
The time is GMT as against the local time. Let's assume that the
current date is October 28th, 2013 and time is 12:02:15, then the file
generated will have the following value as the timestamp: 2013-10-
28T12-02-15.

Chapter 1

5

Option Description
--dbpath This provides you with the directory where a new database will be

created or an existing database is present. The value defaults to /
data/db. We will start the server using /data /mongo/db as the
database directory. Note that the value should be a directory rather
than the name of the file.

--smallfiles This is used frequently for development purposes when we plan to
start more than one mongo instance on our local machine. Mongo, on
startup, creates a database file of size 64 MB (on 64-bit machines).
This preallocation happens for performance reasons, and the file is
created with zeros written to it to fill out space on the disk. Adding
this option on startup creates a preallocated file of 16 MB only (again,
on a 64-bit machine). This option also reduces the maximum size of
the database and journal files. Avoid using this option for production
deployments. Additionally, the file sizes double to a maximum of 2
GB by default. If the --smallfile option is chosen, it goes up to a
maximum of 512 MB.

--replSet This option is used to start the server as a member of the replica
set. The value of this arg is the name of the replica set, for example,
--replSet repl1. You will learn more on this option in a later recipe
where we will start a simple mongo replica set.

--configsvr This option is used to start the server as a configuration server. The
role of the configuration server will be made clearer when we set up a
simple sharded environment in a later recipe in this chapter.

--shardsvr This informs the started mongod process that this server is being
started as a shard server. By giving this option, the server also listens
to port 27018 instead of the default 27017. We will know more on this
option when we start a simple sharded server.

--oplogSize Oplog is the backbone of replication. It is a capped collection where
the data being written to the primary instances is stored in order to
be replicated to the secondary instances. This collection resides in a
database named local. On initialization of the replica set, the disk
space for oplog is preallocated, and the database file (for the local
database) is filled with zeros as placeholders. The default value is 5% of
the disk space, which should be good enough for most of the cases.

The size of oplog is crucial because capped collections are of a fixed
size and they discard the oldest documents in them on exceeding their
size, thereby making space for new documents. Having a very small
oplog size can result in data being discarded before being replicated
to secondary nodes. A large oplog size can result in unnecessary disk
space utilization and large duration for the replica set initialization.

For development purposes, when we start multiple server processes
on the same host, we might want to keep the oplog size to a minimum
value, quickly initiate the replica set, and use minimum disk space.

Installing and Starting the Server

6

Option Description
--storageEngine Starting with MongoDB 3.0, a new storage engine called Wired Tiger

was introduced. The previous (default) storage engine is now called
mmapv1. To start MongoDB with Wired Tiger instead of mmapv1, use
the wiredTiger value with this option.

--dirctoryperdb By default, MongoDB's database files are stored in a common directory
(as provided in --dbpath). This option allows you to store each
database in its own subdirectory in the aforementioned data directory.
Having such granular control allows you to have separate disks for each
database.

There's more…
For an exhaustive list of options that are available, use the --help or -h option. This list of
options is not exhaustive, and we will see some more coming up in later recipes as and when
we need them. In the next recipe, we will see how to use a configuration file instead of the
command-line arguments.

See also
ff Single node installation of MongoDB with options from config file for using

configuration files to provide start up options

ff Starting multiple instances as part of a replica set to start a replica set

ff Starting a simple sharded environment of two shards to set up a sharded environment

Single node installation of MongoDB with
options from the config file

As we can see, providing options from the command line does the work, but it starts getting
awkward as soon as the number of options that we provide increase. We have a nice and
clean alternative to provide the start up options from a configuration file rather than as
command-line arguments.

Getting ready
If you have already executed the Installing single node MongoDB recipe, you need not do
anything different as all the prerequisites of this recipe are the same.

Chapter 1

7

How to do it…
The /data/mongo/db directory for the database and /logs/ for the logs should be created
and present on your filesystem with the appropriate permissions to write to it and perform the
following steps:

1.	 Create a configuration file that can have any arbitrary name. In our case, let's say that
we create this in /conf/mongo.conf. We then edit the file and add the following
lines to it:
port = 27000
dbpath = /data/mongo/db
logpath = /logs/mongo.log
smallfiles = true

2.	 Start the mongo server using the following command:
> mongod --config /config/mongo.conf

How it works…
All the command-line options that we discussed in the previous recipe, Starting a single node
instance using command-line options, hold true. We are just providing them in a configuration
file instead. If you have not visited the previous recipe, I would recommend you to do so as
that is where we discussed some of the common command-line options. The properties are
specified as <property name> = <value>. For all the properties that don't have values,
for example, the smallfiles option, the value given is a Boolean value, true. If we need to
have a verbose output, we would add v=true (or multiple v's to make it more verbose) to our
configuration file. If you already know what the command-line option is, then it is pretty easy to
guess what the value of the property is in the file. It is almost the same as the command-line
option with just the hyphen removed.

Connecting to a single node in the Mongo
shell with JavaScript

This recipe is about starting the mongo shell and connecting to a MongoDB server. Here we
also demonstrate how to load JavaScript code in the shell. Though this is not always required,
it is handy when we have a large block of JavaScript code with variables and functions with
some business logic in them that is required to be executed from the shell frequently and we
want these functions to be available in the shell always.

Installing and Starting the Server

8

Getting ready
Although it is possible to run the mongo shell without connecting to the MongoDB server
using mongo --nodb, we would rarely need to do so. To start a server on the localhost
without much of a hassle, take a look at the first recipe, Installing single node MongoDB,
and start the server.

How to do it…
1.	 First, we create a simple JavaScript file and call it hello.js. Type the following body

in the hello.js file:
function sayHello(name) {
 print('Hello ' + name + ', how are you?')
}

2.	 Save this file at the location, /mongo/scripts/hello.js. (This can be saved at
any other location too.)

3.	 On the command prompt, execute the following:
> mongo --shell /mongo/scripts/hello.js

4.	 On executing this, we should see the following printed to our console:
MongoDB shell version: 3.0.2

connecting to: test

>

5.	 Test the database that the shell is connected to by typing the following command:
> db

This should print out test to the console.

6.	 Now, type the following command in the shell:
> sayHello('Fred')

7.	 You should get the following response:
Hello Fred, how are you?

Note: This book was written with MongoDB version 3.0.2. There is a
good chance that you may be using a later version and hence see a
different version number in the mongo shell.

Chapter 1

9

How it works…
The JavaScript function that we executed here is of no practical use and is just used to
demonstrate how a function can be preloaded on the startup of the shell. There could be
multiple functions in the .js file containing valid JavaScript code—possibly some complex
business logic.

On executing the mongo command without any arguments, we connect to the MongoDB
server running on localhost and listen for new connections on the default port 27017.
Generally speaking, the format of the command is as follows:

mongo <options> <db address> <.js files>

In cases where there are no arguments passed to the mongo executable, it is equivalent to
the passing of the db address as localhost:27017/test.

Let's look at some example values of the db address command-line option and its
interpretation:

ff mydb: This will connect to the server running on localhost and listen for a connection
on port 27017. The database connected will be mydb.

ff mongo.server.host/mydb: This will connect to the server running on mongo.
server.host and the default port 27017. The database connected will be mydb.

ff mongo.server.host:27000/mydb: This will connect to the server running on
mongo.server.host and the port 27000. The database connected will be mydb.

ff mongo.server.host:27000: This will connect to the server running on mongo.
server.host and the port 27000. The database connected will be the default
database test.

Now, there are quite a few options available on the mongo client too. We will see a few of
them in the following table:

Option Description
--help or -h This shows help regarding the usage of various command-line options.
--shell When the .js files are given as arguments, these scripts get executed and

the mongo client will exit. Providing this option ensures that the shell remains
running after the JavaScript files execute. All the functions and variables
defined in these .js files are available in the shell on startup. As in the
preceding case, the sayHello function defined in the JavaScript file is
available in the shell for invocation.

--port The specifies the port of the mongo server where the client needs to connect.
--host This specifies the hostname of the mongo server where the client needs

to connect. If the db address is provided with the hostname, port, and
database, then both the --host and --port options need not be specified.

Installing and Starting the Server

10

Option Description
--username
or -u

This is relevant when security is enabled for mongo. It is used to provide the
username of the user to be logged in.

--password
or -p

This option is relevant when security is enabled for mongo. It is used to
provide the password of the user to be logged in.

Connecting to a single node using a Java
client

This recipe is about setting up the Java client for MongoDB. You will repeatedly refer to this
recipe while working on others, so read it very carefully.

Getting ready
The following are the prerequisites for this recipe:

ff Java SDK 1.6 or above is recommended.

ff Use the latest version of Maven available. Version 3.3.3 was the latest at the time of
writing this book.

ff MongoDB Java driver version 3.0.1 was the latest at the time of writing this book.

ff Connectivity to the Internet to access the online maven repository or a local
repository. Alternatively, you may choose an appropriate local repository accessible to
you from your computer.

ff The Mongo server is up and running on localhost and port 27017. Take a look at the
first recipe, Installing single node MongoDB, and start the server.

How to do it…
1.	 Install the latest version of JDK from https://www.java.com/en/download/

if you don't already have it on your machine. We will not be going through the steps
to install JDK in this recipe, but before moving on with the next step, JDK should be
present.

2.	 Maven needs to be downloaded from http://maven.apache.org/download.
cgi. We should see something similar to the following image on the download page.
Choose the binaries in a .tar.gz or .zip format and download it. This recipe is
executed on a machine running on the Windows platform and thus these steps are
for installation on Windows.

https://www.java.com/en/download/
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Chapter 1

11

3.	 Once the archive has been downloaded, we need to extract it and put the absolute
path of the bin folder in the extracted archive in the operating system's path
variable. Maven also needs the path of JDK to be set as the JAVA_HOME environment
variable. Remember to set the root of your JDK as the value of this variable.

4.	 All we need to do now is type mvn -version on the command prompt, and if we see
the output that begins with something as follows, we have successfully set up maven:
> mvn -version

5.	 At this stage, we have maven installed, and we are now ready to create our simple
project to write our first Mongo client in Java. We start by creating a project
folder. Let's say that we create a folder called Mongo Java. Then we create a folder
structure, src/main/java, in this project folder. The root of the project folder
then contains a file called pom.xml. Once this folder's creation is done, the folder
structure should look as follows:
 Mongo Java
 +--src
 | +main
 | +java
 |--pom.xml

6.	 We just have the project skeleton with us. We shall now add some content to the
pom.xml file. Not much is needed for this. The following content is all we need
in the pom.xml file:
<project>
 <modelVersion>4.0.0</modelVersion>
 <name>Mongo Java</name>
 <groupId>com.packtpub</groupId>
 <artifactId>mongo-cookbook-java</artifactId>
 <version>1.0</version> <packaging>jar</packaging>
 <dependencies>

www.allitebooks.com

http://www.allitebooks.org

Installing and Starting the Server

12

 <dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongo-java-driver</artifactId>
 <version>3.0.1</version>
 </dependency>
 </dependencies>
</project>

7.	 We finally write our Java client that will be used to connect to the Mongo server and
execute some very basic operations. The following is the Java class in the src/
main/java location in the com.packtpub.mongo.cookbook package, and the
name of the class is FirstMongoClient:
package com.packtpub.mongo.cookbook;

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;

import java.net.UnknownHostException;
import java.util.List;

/**
 * Simple Mongo Java client
 *
 */
public class FirstMongoClient {

 /**
 * Main method for the First Mongo Client. Here we shall be
connecting to a mongo
 * instance running on localhost and port 27017.
 *
 * @param args
 */
 public static final void main(String[] args)
throws UnknownHostException {
 MongoClient client = new MongoClient("localhost", 27017);
 DB testDB = client.getDB("test");
 System.out.println("Dropping person collection in test
database");
 DBCollection collection = testDB.getCollection("person");
 collection.drop();

Chapter 1

13

 System.out.println("Adding a person document in the person
collection of test database");
 DBObject person =
new BasicDBObject("name", "Fred").append("age", 30);
 collection.insert(person);
 System.out.println("Now finding a person using findOne");
 person = collection.findOne();
 if(person != null) {
 System.out.printf("Person found, name is %s and age is
%d\n", person.get("name"), person.get("age"));
 }
 List<String> databases = client.getDatabaseNames();
 System.out.println("Database names are");
 int i = 1;
 for(String database : databases) {
 System.out.println(i++ + ": " + database);
 }
 System.out.println("Closing client");
 client.close();
 }
}

8.	 It's now time to execute the preceding Java code. We will execute it using maven from
the shell. You should be in the same directory as pom.xml of the project:
mvn compile exec:java -Dexec.mainClass=com.packtpub.mongo.
cookbook.FirstMongoClient

How it works…
These were quite a lot of steps to follow. Let's look at some of them in more detail. Everything up
to step 6 is straightforward and doesn't need any explanation. Let's look at step 7 onwards.

The pom.xml file that we have here is pretty simple. We defined a dependency on
mongo's Java driver. It relies on the online repository, repo.maven.apache.org, to
resolve the artifacts. For a local repository, all we need to do is define the repositories and
pluginRepositories tags in pom.xml. For more information on maven, refer to the maven
documentation at http://maven.apache.org/guides/index.html.

For the Java class, the org.mongodb.MongoClient class is the backbone. We first
instantiate it using one of its overloaded constructors giving the server's host and port. In this
case, the hostname and port were not really needed as the values provided are the default
values anyway, and the no-argument constructor would have worked well too. The following
code snippet instantiates this client:

MongoClient client = new MongoClient("localhost", 27017);

http://maven.apache.org/guides/index.html

Installing and Starting the Server

14

The next step is to get the database, in this case, test using the getDB method. This is
returned as an object of the com.mongodb.DB type. Note that this database might not exist,
yet getDB will not throw any exception. Instead, the database will get created whenever we
add a new document to the collection in this database. Similarly, getCollection on the
DB object will return an object of the com.mongodb.DBCollection type representing the
collection in the database. This too might not exist in the database and will get created on
inserting the first document automatically.

The following two code snippets from our class show you how to get an instance of DB and
DBCollection:

DB testDB = client.getDB("test");
DBCollection collection = testDB.getCollection("person");

Before we insert a document, we will drop the collection so that even upon multiple executions
of the program, we will have just one document in the person collection. The collection is
dropped using the drop() method on the DBCollection object's instance. Next, we create
an instance of com.mongodb.DBObject. This is an object that represents the document to
be inserted into the collection. The concrete class used here is BasicDBObject, which is a
type of java.util.LinkedHashMap, where the key is String and the value is Object. The
value can be another DBObject too, in which case, it is a document nested within another
document. In our case, we have two keys, name and age, which are the field names in the
document to be inserted and the values are of the String and Integer types, respectively.
The append method of BasicDBObject adds a new key value pair to the BasicDBObject
instance and returns the same instance, which allows us to chain the append method calls
to add multiple key value pairs. This created DBObject is then inserted into the collection
using the insert method. This is how we instantiated DBObject for the person collection and
inserted it into the collection as follows:

DBObject person = new BasicDBObject("name", "Fred").append("age", 30);
collection.insert(person);

The findOne method on DBCollection is straightforward and returns one document from
the collection. This version of findOne doesn't accept DBObject (which otherwise acts
as a query executed before a document is selected and returned) as a parameter. This is
synonymous to doing db.person.findOne() from the shell.

Finally, we simply invoke getDatabaseNames to get a list of databases' names in the server.
At this point of time, we should at least be having test and the local database in the
returned result. Once all the operations are complete, we close the client. The MongoClient
class is thread-safe and generally one instance is used per application. To execute the
program, we use the maven's exec plugin. On executing step 9, we should see the following
lines toward the end in the console:

[INFO] [exec:java {execution: default-cli}]

--snip--

Chapter 1

15

Dropping person collection in test database

Adding a person document in the person collection of test database

Now finding a person using findOne

Person found, name is Fred and age is 30

Database names are

1: local

2: test

INFO: Closed connection [connectionId{localValue:2, serverValue:2}] to
localhost:27017 because the pool has been closed.

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 3 seconds

[INFO] Finished at: Tue May 12 07:33:00 UTC 2015

[INFO] Final Memory: 22M/53M

[INFO] --

Connecting to a single node using a Python
client

In this recipe, we will connect to a single MongoDB instance using the Python MongoDB
driver called PyMongo. With Python's simple syntax and versatility clubbed together with
MongoDB, many programmers find that this stack allows faster prototyping and reduced
development cycles.

Getting ready
The following are the prerequisites for this recipe:

ff Python 2.7.x (although the code is compatible with Python 3.x).

ff PyMongo 3.0.1: Python MongoDB driver.

ff Python package installer (pip).

ff The Mongo server is up and running on localhost and port 27017. Take a look at the
first recipe, Installing single node MongoDB, and start the server.

Installing and Starting the Server

16

How to do it…
1.	 Depending on your operating system, install the pip utility, say, on the Ubuntu/Debian

system. You can use the following command to install pip:
> apt-get install python-pip

2.	 Install the latest PyMongo driver using pip:
> pip install pymongo

3.	 Lastly, create a new file called my_client.py and type in the following code:
from __future__ import print_function
import pymongo

Connect to server
client = pymongo.MongoClient('localhost', 27017)

Select the database
testdb = client.test

Drop collection
print('Dropping collection person')
testdb.person.drop()

Add a person
print('Adding a person to collection person')
employee = dict(name='Fred', age=30)
testdb.person.insert(employee)

Fetch the first entry from collection
person = testdb.person.find_one()
if person:
 print('Name: %s, Age: %s' % (person['name'], person['age']))

Fetch list of all databases
print('DB\'s present on the system:')
for db in client.database_names():
 print(' %s' % db)

Close connection
print('Closing client connection')
client.close()

4.	 Run the script using the following command:
> python my_client.py

Chapter 1

17

How it works…
We start off by installing the Python MongoDB driver, pymongo, on the system with the help of
the pip package manager. In the given Python code, we begin by importing print_function
from the __future__ module to allow compatibility with Python 3.x. Next, we import
pymongo so that it can be used in the script.

We instantiate pymongo.MongoClient() with localhost and 27017 as the mongo server
host and port, respectively. In pymongo, we can directly refer to the database and its
collection by using the <client>.<database_name>.<collection_name> convention.

In our recipe, we used the client handler to select the database test simply by referring to
client.test. This returns a database object even if the database does not exist. As a part
of this recipe, we drop the collection by calling testdb.person.drop(), where testdb is
a reference to client.test and person is a collection that we wish to drop. For this recipe,
we are intentionally dropping the collection so that recurring runs will always yield one record
in the collection.

Next, we instantiate a dictionary called employee with a few values such as name and age.
We will now add this entry to our person collection using the insert_one() method.

As we now know that there is an entry in the person collection, we will fetch one document
using the find_one() method. This method returns the first document in the collection,
depending on the order of documents stored on the disk.

Following this, we also try to get the list of all the databases by calling the get_databases()
method to the client. This method returns a list of database names present on the server.
This method may come in handy when you are trying to assert the existence of a database
on the server.

Finally, we close the client connection using the close() method.

Starting multiple instances as part of a
replica set

In this recipe, we will look at starting multiple servers on the same host but as a cluster.
Starting a single mongo server is enough for development purposes or non-mission-critical
applications. For crucial production deployments, we need the availability to be high, where
if one server instance fails, another instance takes over and the data remains available to
query, insert, or update. Clustering is an advanced concept and we won't be doing justice by
covering this whole concept in one recipe. Here, we will be touching the surface and going into
more detail in other recipes in the administration section later in the book. In this recipe, we
will start multiple mongo server processes on the same machine for the purpose of testing. In
a production environment, they will be running on different machines (or virtual machines) in
the same or even different data centers.

Installing and Starting the Server

18

Let's see in brief what a replica set exactly is. As the name suggests, it is a set of servers that
are replicas of each other in terms of data. Looking at how they are kept in sync with each
other and other internals is something we will defer to some later recipes in the administration
section, but one thing to remember is that write operations will happen only on one node, which
is the primary one. All the querying also happens from the primary by default, though we may
permit read operations on secondary instances explicitly. An important fact to remember is
that replica sets are not meant to achieve scalability by distributing the read operations across
various nodes in a replica set. Its sole objective is to ensure high availability.

Getting ready
Though not a prerequisite, taking a look at the Starting a single node instance using
command-line options recipe will definitely make things easier just in case you are not
aware of various command-line options and their significance while starting a mongo server.
Additionally, the necessary binaries and setups as mentioned in the single server setup must
be done before we continue with this recipe. Let's sum up on what we need to do.

We will start three mongod processes (mongo server instances) on our localhost.

We will create three data directories, /data/n1, /data/n2, and /data/n3 for Node1,
Node2, and Node3, respectively. Similarly, we will redirect the logs to /logs/n1.log, /
logs/n2.log, and /logs/n3.log. The following image will give you an idea on how the
cluster would look:

Client 1 Client 2 Client 3

Primary
N1

/data/n1
/logs/n1.log

Port 27000

Slave
N2

Slave
N3

/data/n2
/logs/n2.log

Read only
Clients

Port 27001

/data/n3
/logs/n3.log

Port 27002

Configuration with N1 as primary & N2, N3 as slaves

Chapter 1

19

How to do it…
Let's take a look at the steps in detail:

1.	 Create the /data/n1, /data/n2, /data/n3, and /logs directories for the data and
logs of the three nodes respectively. On the Windows platform, you can choose the
c:\data\n1, c:\data\n2, c:\data\n3, and c:\logs\ directories or any other
directory of your choice for the data and logs respectively. Ensure that these directories
have appropriate write permissions for the mongo server to write the data and logs.

2.	 Start the three servers as follows. Users on the Windows platform need to skip the
--fork option as it is not supported:
$ mongod --replSet repSetTest --dbpath /data/n1 --logpath /logs/
n1.log --port 27000 --smallfiles --oplogSize 128 --fork

$ mongod --replSet repSetTest --dbpath /data/n2 --logpath /logs/
n2.log --port 27001 --smallfiles --oplogSize 128 --fork

$ mongod --replSet repSetTest --dbpath /data/n3 --logpath /logs/
n3.log --port 27002 --smallfiles --oplogSize 128 –fork

3.	 Start the mongo shell and connect to any of the mongo servers running. In this case,
we connect to the first one (listening to port 27000). Execute the following command:
$ mongo localhost:27000

4.	 Try to execute an insert operation from the mongo shell after connecting to it:
> db.person.insert({name:'Fred', age:35})

This operation should fail as the replica set has not been initialized yet. More
information can be found in the How it works… section.

5.	 The next step is to start configuring the replica set. We start by preparing a JSON
configuration in the shell as follows:
cfg = {
 '_id':'repSetTest',
 'members':[
 {'_id':0, 'host': 'localhost:27000'},
 {'_id':1, 'host': 'localhost:27001'},
 {'_id':2, 'host': 'localhost:27002'}
]
}

6.	 The last step is to initiate the replica set with the preceding configuration as follows:
> rs.initiate(cfg)

7.	 Execute rs.status() after a few seconds on the shell to see the status. In a
few seconds, one of them should become a primary and the remaining two should
become secondary.

Installing and Starting the Server

20

How it works…
We described the common options in the Installing single node MongoDB recipe with the
command-line options recipe before and all these command-line options are described in detail.

As we are starting three independent mongod services, we have three dedicated database
paths on the filesystem. Similarly, we have three separate log file locations for each of the
processes. We then start three mongod processes with the database and log file path
specified. As this setup is for test purposes and is started on the same machine, we use the
--smallfiles and --oplogSize options. As these processes are running on the same host,
we also choose the ports explicitly to avoid port conflicts. The ports that we chose here were
27000, 27001, and 27002. When we start the servers on different hosts, we may or may not
choose a separate port. We can very well choose to use the default one whenever possible.

The --fork option demands some explanation. By choosing this option, we start the server
as a background process from our operating system's shell and get the control back in the
shell where we can then start more such mongod processes or perform other operations.
In the absence of the --fork option, we cannot start more than one process per shell and
would need to start three mongod processes in three separate shells.

If we take a look at the logs generated in the log directory, we should see the following lines
in it:

[rsStart] replSet can't get local.system.replset config from self or any
seed (EMPTYCONFIG)

[rsStart] replSet info you may need to run replSetInitiate --
rs.initiate() in the shell -- if that is not already done

Though we started three mongod processes with the --replSet option, we still haven't
configured them to work with each other as a replica set. This command-line option is just
used to tell the server on startup that this process will be running as a part of a replica set.
The name of the replica set is the same as the value of this option passed on the command
prompt. This also explains why the insert operation executed on one of the nodes failed before
the replica set was initialized. In mongo replica sets, there can be only one primary node
where all the inserting and querying happens. In the image shown, the N1 node is shown as
the primary and listens to port 27000 for client connections. All the other nodes are slave/
secondary instances, which sync themselves up with the primary and hence querying too is
disabled on them by default. It is only when the primary goes down that one of the secondary
takes over and becomes a primary node. However, it is possible to query the secondary for
data as we have shown in the image; we will see how to query from a secondary instance in
the next recipe.

Chapter 1

21

Well, all that is left now is to configure the replica set by grouping the three processes that we
started. This is done by first defining a JSON object as follows:

cfg = {
 '_id':'repSetTest',
 'members':[
 {'_id':0, 'host': 'localhost:27000'},
 {'_id':1, 'host': 'localhost:27001'},
 {'_id':2, 'host': 'localhost:27002'}
]
}

There are two fields, _id and members, for the unique ID of the replica set and an array of
the hostnames and port numbers of the mongod server processes as part of this replica
set, respectively. Using localhost to refer to the host is not a very good idea and is usually
discouraged; however, in this case, as we started all the processes on the same machine, we
are ok with it. It is preferred that you refer to the hosts by their hostnames even if they are
running on localhost. Note that you cannot mix referring to the instances using localhost and
hostnames both in the same configuration. It is either the hostname or localhost. To configure
the replica set, we then connect to any one of the three running mongod processes; in this
case, we connect to the first one and then execute the following from the shell:

> rs.initiate(cfg)

The _id field in the cfg object passed has a value that is the same as the value we gave to
the --replSet option on the command prompt when we started the server processes. Not
giving the same value would throw the following error:

{

 "ok" : 0,

 "errmsg" : "couldn't initiate : set name does not match the set
name host Amol-PC:27000 expects"

}

If all goes well and the initiate call is successful, we should see something similar to the
following JSON response on the shell:

{"ok" : 1}

In a few seconds, you should see a different prompt for the shell that we executed this
command from. It should now become a primary or secondary. The following is an example
of the shell connected to a primary member of the replica set:

repSetTest:PRIMARY>

Executing rs.status() should give us some stats on the replica set's status, which we
will explore in depth in a recipe later in the book in the administration section. For now, the
stateStr field is important and contains the PRIMARY, SECONDARY, and other texts.

Installing and Starting the Server

22

There's more…
Look at the Connecting to the replica set in the shell to query and insert data recipe to perform
more operations from the shell after connecting to a replica set. Replication isn't as simple as
we saw here. See the administration section for more advanced recipes on replication.

See also
If you are looking to convert a standalone instance to a replica set, then the instance
with the data needs to become a primary first, and then empty secondary instances will be
added to which the data will be synchronized. Refer to the following URL on how to perform
this operation:

http://docs.mongodb.org/manual/tutorial/convert-standalone-to-
replica-set/

Connecting to the replica set in the shell to
query and insert data

In the previous recipe, we started a replica set of three mongod processes. In this recipe,
we will work with this setup by connecting to it using the mongo client application, perform
queries, insert data, and take a look at some of the interesting aspects of a replica set from
a client's perspective.

Getting ready
The prerequisite for this recipe is that the replica set should be set up and running. Refer to
the previous recipe, Starting multiple instances as part of a replica set, for details on how to
start the replica set.

How to do it…
1.	 We will start two shells here, one for PRIMARY and one for SECONDARY. Execute the

following command on the command prompt:
> mongo localhost:27000

2.	 The prompt of the shell tells us whether the server to which we have
connected is PRIMARY or SECONDARY. It should show the replica set's name
followed by a :, followed by the server state. In this case, if the replica set is
initialized, up, and running, we should see either repSetTest:PRIMARY> or
repSetTest:SECONDARY>.

http://docs.mongodb.org/manual/tutorial/convert-standalone-to-replica-set/
http://docs.mongodb.org/manual/tutorial/convert-standalone-to-replica-set/

Chapter 1

23

3.	 Suppose that the first server we connected to is a secondary, we need to find the
primary. Execute the rs.status() command in the shell and look out for the
stateStr field. This should give us the primary server. Use the mongo shell to
connect to this server.

4.	 At this point, we should be having two shells running, one connected to a primary and
another connected to a secondary.

5.	 In the shell connected to the primary node, execute the following insert:
repSetTest:PRIMARY> db.replTest.insert({_id:1, value:'abc'})

6.	 There is nothing special about this. We just inserted a small document in a collection
that we will use for the replication test.

7.	 By executing the following query on the primary, we should get the following result:
repSetTest:PRIMARY> db.replTest.findOne()

{ "_id" : 1, "value" : "abc" }

8.	 So far, so good. Now, we will go to the shell that is connected to the SECONDARY node
and execute the following:
repSetTest:SECONDARY> db.replTest.findOne()

On doing this, we should see the following error on the console:
 { "$err" : "not master and slaveOk=false", "code" : 13435 }

9.	 Now execute the following on the console:
repSetTest:SECONDARY> rs.slaveOk(true)

10.	 Execute the query that we executed in step 7 again on the shell. This should now get
the results as follows:
repSetTest:SECONDARY>db.replTest.findOne()

{ "_id" : 1, "value" : "abc" }

11.	 Execute the following insert on the secondary node; it should not succeed with the
following message:
repSetTest:SECONDARY> db.replTest.insert({_id:1, value:'abc'})

not master

How it works…
We have done a lot of things in this recipe, and we will try to throw some light on some of the
important concepts to remember.

Installing and Starting the Server

24

We basically connect to a primary and secondary node from the shell and perform (I would
say, try to perform) selects and inserts. The architecture of a Mongo replica set is made of
one primary (just one, no more, no less) and multiple secondary nodes. All writes happen on
the PRIMARY only. Note that replication is not a mechanism to distribute the read request
load that enables scaling the system. Its primary intent is to ensure high availability of data.
By default, we are not permitted to read data from the secondary nodes. In step 6, we simply
insert data from the primary node and then execute a query to get the document that we
inserted. This is straightforward and nothing related to clustering here. Just note that we
inserted the document from the primary and then queried it back.

In the next step, we execute the same query but this time, from the secondary's shell. By
default, querying is not enabled on the SECONDARY. There might be a small lag in replicating
the data possibly due to heavy data volumes to be replicated, network latency, or hardware
capacity to name a few of the causes, and thus, querying on the secondary might not reflect
the latest inserts or updates made on the primary. However, if we are ok with it and can
live with the slight lag in the data being replicated, all we need to do is enable querying
on the SECONDARY node explicitly by just executing one command, rs.slaveOk() or
rs.slaveOk(true). Once this is done, we are free to execute queries on the secondary
nodes too.

Finally, we try to insert the data into a collection of the slave node. Under no circumstances is
this permitted, regardless of whether we have done rs.slaveOk(). When rs.slaveOk() is
invoked, it just permits the data to be queried from the SECONDARY node. All write operations
still have to go to the primary and then flow down to the secondary. The internals of replication
will be covered in a different recipe in the administration section.

See also
The next recipe, Connecting to the replica set to query and insert data from a Java client, is
about connecting to a replica set from a Java client.

Connecting to the replica set to query and
insert data from a Java client

In this recipe, we will demonstrate how to connect to a replica set from a Java client and how
the client would automatically failover to another node in the replica set, should a primary
node fail.

Chapter 1

25

Getting ready
We need to take a look at the Connecting to the single node using a Java client recipe as
it contains all the prerequisites and steps to set up maven and other dependencies. As we
are dealing with a Java client for replica sets, a replica set must be up and running. Refer to
the Starting multiple instances as part of a replica set recipe for details on how to start the
replica set.

How to do it…
1.	 Write/copy the following piece of code: (This Java class is also available for download

from the Packt website.)
package com.packtpub.mongo.cookbook;

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
import com.mongodb.ServerAddress;

import java.util.Arrays;

/**
 *
 */
public class ReplicaSetMongoClient {

 /**
 * Main method for the test client connecting to the
 replica set.
 * @param args
 */
 public static final void main(String[] args) throws
 Exception {
 MongoClient client = new MongoClient(
 Arrays.asList(
 new ServerAddress("localhost", 27000),
 new ServerAddress("localhost", 27001),
 new ServerAddress("localhost", 27002)
)
);
 DB testDB = client.getDB("test");

Installing and Starting the Server

26

 System.out.println("Dropping replTest collection");
 DBCollection collection =
 testDB.getCollection("replTest");
 collection.drop();
 DBObject object = new BasicDBObject("_id",
 1).append("value", "abc");
 System.out.println("Adding a test document to replica
 set");
 collection.insert(object);
 System.out.println("Retrieving document from the
 collection, this one comes from primary node");
 DBObject doc = collection.findOne();
 showDocumentDetails(doc);
 System.out.println("Now Retrieving documents in a loop
 from the collection.");
 System.out.println("Stop the primary instance after few
 iterations ");
 for(int i = 0 ; i < 10; i++) {
 try {
 doc = collection.findOne();
 showDocumentDetails(doc);
 }
 catch (Exception e) {
 //Ignoring or log a message
 }
 Thread.sleep(5000);
 }
 }

 /**
 *
 * @param obj
 */
 private static void showDocumentDetails(DBObject obj) {
 System.out.printf("_id: %d, value is %s\n",
 obj.get("_id"), obj.get("value"));
 }
}

2.	 Connect to any of the nodes in the replica set, say to localhost:27000, and
execute rs.status() from the shell. Take a note of the primary instance in the
replica set and connect to it from the shell if localhost:27000 is not a primary.
Here, switch to the administrator database as follows:
repSetTest:PRIMARY>use admin

Chapter 1

27

3.	 We now execute the preceding program from the operating system shell as follows:
$ mvn compile exec:java -Dexec.mainClass=com.packtpub.mongo.
cookbook.ReplicaSetMongoClient

4.	 Shut down the primary instance by executing the following on the mongo shell that is
connected to the primary:
repSetTest:PRIMARY> db.shutdownServer()

5.	 Watch the output on the console where the com.packtpub.mongo.cookbook.
ReplicaSetMongoClient class is executed using maven.

How it works…
An interesting thing to observe is how we instantiate the MongoClient instance. It is done
as follows:

 MongoClient client = new MongoClient(Arrays.asList(
 new ServerAddress("localhost", 27000),
 new ServerAddress("localhost", 27001),
 new ServerAddress("localhost", 27002)));

The constructor takes a list of com.mongodb.ServerAddress. This class has a lot of
overloaded constructors but we choose to use the one that takes the hostname and then
port. What we have done is provided all the server details in a replica set as a list. We haven't
mentioned what is the PRIMARY node and what are the SECONDARY nodes. MongoClient
is intelligent enough to figure this out and connect to the appropriate instance. The list of
servers provided is called the seed list. It need not contain an entire set of servers in a replica
set though the objective is to provide as much as we can. MongoClient will figure out all
the server details from the provided subset. For example, if the replica set is of five nodes
but we provide only three servers, it works fine. On connecting with the provided replica set
servers, the client will query them to get the replica set metadata and figure out the rest of the
provided servers in the replica set. In the preceding case, we instantiated the client with three
instances in the replica set. If the replica set was to have five members, then instantiating
the client with just three of them is still good enough and the remaining two instances will be
automatically discovered.

Next, we start the client from the command prompt using maven. Once the client is running in
the loop, we bring down the primary instance to find one document. We should see something
as the following output to the console:

_id: 1, value is abc

Now Retrieving documents in a loop from the collection.

Stop the primary instance manually after few iterations

_id: 1, value is abc

Installing and Starting the Server

28

_id: 1, value is abc

Nov 03, 2013 5:21:57 PM com.mongodb.ConnectionStatus$UpdatableNode update

WARNING: Server seen down: Amol-PC/192.168.1.171:27002

java.net.SocketException: Software caused connection abort: recv failed

 at java.net.SocketInputStream.socketRead0(Native Method)

 at java.net.SocketInputStream.read(SocketInputStream.java:150)

 …

WARNING: Primary switching from Amol-PC/192.168.1.171:27002 to Amol-
PC/192.168.1.171:27001

_id: 1, value is abc

As we can see, the query in the loop was interrupted when the primary node went down.
However, the client switched to the new primary seamlessly. Well, nearly seamlessly, as the
client might have to catch an exception and retry the operation after a predetermined interval
has elapsed.

Connecting to the replica set to query and
insert data using a Python client

In this recipe, we will demonstrate how to connect to a replica set using a Python client and
how the client would automatically failover to another node in the replica set, should a primary
node fail.

Getting ready
Refer to the Connecting to the single node using a Python client recipe as it describes how to
set up and install PyMongo, the Python driver for MongoDB. Additionally, a replica set must
be up and running. Refer to the Starting multiple instances as part of a replica set recipe for
details on how to start the replica set.

How to do it…
1.	 Write/copy the following piece of code to replicaset_client.py: (This script is

also available for download from the Packt website.)
from __future__ import print_function
import pymongo
import time

Instantiate MongoClient with a list of server addresses

Chapter 1

29

client = pymongo.MongoClient(['localhost:27002',
'localhost:27001', 'localhost:27000'], replicaSet='repSetTest')

Select the collection and drop it before using
collection = client.test.repTest
collection.drop()

#insert a record in
collection.insert_one(dict(name='Foo', age='30'))

for x in range(5):
 try:
 print('Fetching record: %s' % collection.find_one())
 except Exception as e:
 print('Could not connect to primary')
 time.sleep(3)

2.	 Connect to any of the nodes in the replica set, say to localhost:27000, and
execute rs.status() from the shell. Take a note of the primary instance in the
replica set and connect to it from the shell, if localhost:27000 is not a primary.
Here, switch to the administrator database as follows:
> repSetTest:PRIMARY>use admin

3.	 We now execute the preceding script from the operating system shell as follows:
$ python replicaset_client.py

4.	 Shut down the primary instance by executing the following on the mongo shell that is
connected to the primary:
> repSetTest:PRIMARY> db.shutdownServer()

5.	 Watch the output on the console where the Python script is executed.

How it works…
You will notice that, in this script, we instantiated the mongo client by giving a list of
hosts instead of a single host. As of version 3.0, the pymongo driver's MongoClient()
class can accept either a list of hosts or a single host during initialization and deprecate
MongoReplicaSetClient(). The client will attempt to connect to the first host in the list,
and if successful, will be able to determine the other nodes in the replica set. We are also
passing the replicaSet='repSetTest' parameter exclusively, ensuring that the client
checks whether the connected node is a part of this replica set.

Once connected, we perform normal database operations such as selecting the test database,
dropping the repTest collection, and inserting a single document into the collection.

Installing and Starting the Server

30

Following this, we enter a conditional for loop, iterating five times. Each time, we fetch the
record, display it, and sleep for three seconds. While the script is in this loop, we shut down
the primary node in the replica set as mentioned in step 4. We should see an output similar
to this:

Fetching record: {u'age': u'30', u'_id': ObjectId('5558bfaa0640fd1923fce
1a1'), u'name': u'Foo'}

Fetching record: {u'age': u'30', u'_id': ObjectId('5558bfaa0640fd1923fce
1a1'), u'name': u'Foo'}

Fetching record: {u'age': u'30', u'_id': ObjectId('5558bfaa0640fd1923fce
1a1'), u'name': u'Foo'}

Could not connect to primary

Fetching record: {u'age': u'30', u'_id': ObjectId('5558bfaa0640fd1923fce
1a1'), u'name': u'Foo'}

In the preceding output, the client gets disconnected from the primary node midway. However,
very soon, a new primary node is selected by the remaining nodes and the mongo client is
able to resume the connection.

Starting a simple sharded environment of
two shards

In this recipe, we will set up a simple sharded setup made up of two data shards. There will be
no replication configured as this is the most basic shard setup to demonstrate the concept.
We won't be getting deep into the internals of sharding, which we will explore more in the
administration section.

Here is a bit of theory before we proceed. Scalability and availability are two important
cornerstones to build any mission-critical application. Availability is something that was taken
care of by the replica sets, which we discussed in previous recipes in this chapter. Let's look
at scalability now. Simply put, scalability is the ease with which the system can cope with
increasing data and request load. Consider an e-commerce platform. On regular days, the
number of hits to the site and load is fairly modest and the system's response times and
error rates are minimal. (This is subjective.) Now, consider the days where the system load
becomes twice, thrice, or even more than that of an average day's load, say on Thanksgiving
day, Christmas, and so on. If the platform is able to deliver similar levels of service on these
high load days as on any other day, the system is said to have scaled up well to the sudden
increase in the number of requests.

Chapter 1

31

Now, consider an archiving application that needs to store the details of all the requests that
hit a particular website over the past decade. For each request hitting the website, we create
a new record in the underlying data store. Suppose that each record is of 250 bytes with an
average load of three million requests per day, we will cross 1 TB of the data mark in about
five years. This data would be used for various analytics purposes and might be frequently
queried. The query performance should not be drastically affected when the data size
increases. If the system is able to cope with this increasing data volume and still give decent
performance comparable to performance on low data volumes, the system is said to have
scaled up well.

Now that we have seen in brief what scalability is, let me tell you that sharding is a
mechanism that lets a system scale to increasing demands. The crux lies in the fact that
the entire data is partitioned into smaller segments and distributed across various nodes
called shards. Suppose that we have a total of 10 million documents in a mongo collection.
If we shard this collection across 10 shards, then we will ideally have 10,000,000/10 =
1,000,000 documents on each shard. At a given point of time, only one document will reside
on one shard (which by itself will be a replica set in a production system). However, there
is some magic involved that keeps this concept hidden from the developer who is querying
the collection and who gets one unified view of the collection irrespective of the number of
shards. Based on the query, it is mongo that decides which shard to query for the data and
returns the entire result set. With this background, let's set up a simple shard and take a
closer look at it.

Getting ready
Apart from the MongoDB server already installed, no prerequisites are there from a software
perspective. We will be creating two data directories, one for each shard. There will be a
directory for the data and one for logs.

How to do it…
1.	 We start by creating directories for the logs and data. Create the following directories,

/data/s1/db, /data/s2/db, and /logs. On Windows, we can have c:\data\
s1\db and so on for the data and log directories. There is also a configuration server
that is used in the sharded environment to store some metadata. We will use /data/
con1/db as the data directory for the configuration server.

2.	 Start the following mongod processes, one for each of the two shards, one for the
configuration database, and one mongos process. For the Windows platform, skip the
--fork parameter as it is not supported.
$ mongod --shardsvr --dbpath /data/s1/db --port 27000 --logpath /
logs/s1.log --smallfiles --oplogSize 128 --fork

$ mongod --shardsvr --dbpath /data/s2/db --port 27001 --logpath /
logs/s2.log --smallfiles --oplogSize 128 --fork

www.allitebooks.com

http://www.allitebooks.org

Installing and Starting the Server

32

$ mongod --configsvr --dbpath /data/con1/db --port 25000
--logpath /logs/config.log --fork

$ mongos --configdb localhost:25000 --logpath /logs/mongos.log
--fork

3.	 From the command prompt, execute the following command. This should show a
mongos prompt as follows:
$ mongo

MongoDB shell version: 3.0.2

connecting to: test

mongos>

4.	 Finally, we set up the shard. From the mongos shell, execute the following two
commands:
mongos> sh.addShard("localhost:27000")

mongos> sh.addShard("localhost:27001")

5.	 On each addition of a shard, we should get an ok reply. The following JSON message
should be seen giving the unique ID for each shard added:
{ "shardAdded" : "shard0000", "ok" : 1 }

We used localhost everywhere to refer to the locally running servers. It is
not a recommended approach and is discouraged. The better approach
would be to use hostnames even if they are local processes.

How it works…
Let's see what all we did in the process. We created three directories for data (two for the
shards and one for the configuration database) and one directory for logs. We can have a shell
script or batch file to create the directories as well. In fact, in large production deployments,
setting up shards manually is not only time-consuming but also error-prone.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 1

33

Let's try to get a picture of what exactly we have done and are trying to achieve. The following
is an image of the shard setup that we just did:

Shard 1 Shard 2

Config mongos

Client 1 Client n

If we look at the preceding image and the servers started in step 2, we have shard
servers that would store the actual data in the collections. These were the first two of the
four processes that we started listening to ports 27000 and 27001. Next, we started a
configuration server that is seen on the left side in this image. It is the third server of the
four servers started in step 2 and it listens to port 25000 for the incoming connections. The
sole purpose of this database is to maintain the metadata about the shard servers. Ideally,
only the mongos process or drivers connect to this server for the shard details/metadata and
the shard key information. We will see what a shard key is in the next recipe, where we play
around a sharded collection and see the shards that we have created in action.

Finally, we have a mongos process. This is a lightweight process that doesn't do any
persistence of data and just accepts connections from clients. This is the layer that acts as
a gatekeeper and abstracts the client from the concept of shards. For now, we can view it as
basically a router that consults the configuration server and takes the decision to route the
client's query to the appropriate shard server for execution. It then aggregates the result from
various shards if applicable and returns the result to the client. It is safe to say that no client
connects directly to the configuration or shard servers; in fact, no one ideally should connect
to these processes directly except for some administration operations. Clients simply connect
to the mongos process and execute their queries and insert or update operations.

Installing and Starting the Server

34

Just starting the shard server, configuration server, and mongos process doesn't create a
sharded environment. On starting up the mongos process, we provided it with the details of
the configuration server. What about the two shards that would be storing the actual data?
However, the two mongod processes started as shard servers are not yet declared anywhere
as shard servers in the configuration. This is exactly what we do in the final step by invoking
sh.addShard() for both the shard servers. The mongos process is provided with the
configuration server's details on startup. Adding shards from the shell stores this metadata
about the shards in the configuration database, and the mongos processes then would be
querying this config database for the shard's information. On executing all the steps of the
recipe, we have an operational shard as follows:

Shard 2 Shard nShard 1

mongos mongos mongos

Client Client Client

3 Config
servers

Typical Sharded Cluster

Before we conclude, the shard that we have set up here is far from ideal and not how it would
be done in a production environment. The preceding image gives us an idea of how a typical
shard would be in a production environment. The number of shards would not be two but
many more. Additionally, each shard will be a replica set to ensure high availability. There
would be three configuration servers to ensure availability of the configuration servers as well.
Similarly, there will be any number of mongos processes created for a shard listening for client
connections. In some cases, it might even be started on a client application's server.

There's more…
What good is a shard unless we put it to action and see what happens from the shell on
inserting and querying the data? In the next recipe, we will make use of the shard setup here,
add some data, and see it in action.

Chapter 1

35

Connecting to a shard in the shell and
performing operations

In this recipe, we will connect to a shard from a command prompt, see how to shard a
collection, and observe the data splitting in action on some test data.

Getting ready
Obviously, we need a sharded mongo server setup up and running. See the previous recipe,
Starting a simple sharded environment of two shards, for more details on how to set up a
simple shard. The mongos process, as in the previous recipe, should be listening to port
number 27017. We have got some names in a JavaScript file called names.js. This file needs
to be downloaded from the Packt website and kept on the local filesystem. The file contains
a variable called names and the value is an array with some JSON documents as the values,
each one representing a person. The contents look as follows:

names = [
 {name:'James Smith', age:30},
 {name:'Robert Johnson', age:22},
…
]

How to do it…
1.	 Start the mongo shell and connect to the default port on localhost as follows. This will

ensure that the names will be available in the current shell:
mongo --shell names.js

MongoDB shell version: 3.0.2

connecting to: test

mongos>

2.	 Switch to the database that would be used to test the sharding; we call it shardDB:
mongos> use shardDB

3.	 Enable sharding at the database level as follows:
mongos> sh.enableSharding("shardDB")

4.	 Shard a collection called person as follows:
mongos>sh.shardCollection("shardDB.person", {name: "hashed"},
false)

Installing and Starting the Server

36

5.	 Add the test data to the sharded collection:
mongos> for(i = 1; i <= 300000 ; i++) {

... person = names[Math.round(Math.random() * 100) % 20]

... doc = {_id:i, name:person.name, age:person.age}

... db.person.insert(doc)

}

6.	 Execute the following to get a query plan and the number of documents on each shard:
mongos> db.person.getShardDistribution()

How it works…
This recipe demands some explanation. We downloaded a JavaScript file that defines an array
of 20 people. Each element of the array is a JSON object with the name and age attributes.
We start the shell connecting to the mongos process loaded with this JavaScript file. We then
switch to shardDB, which we use for the purpose of sharding.

For a collection to be sharded, the database in which it will be created needs to be enabled
for the sharding first. We do this using sh.enableSharding().

The next step is to enable the collection to be sharded. By default, all the data will be kept on
one shard and not split across different shards. Think about it; how will Mongo be able to split
the data meaningfully? The whole intention is to split it meaningfully and as evenly as possible
so that whenever we query based on the shard key, Mongo would easily be able to determine
which shard(s) to query. If a query doesn't contain the shard key, the execution of the query
will happen on all the shards and the data would then be collated by the mongos process
before returning it to the client. Thus, choosing the right shard key is very crucial.

Let's now see how to shard the collection. We do this by invoking
sh.shardCollection("shardDB.person", {name: "hashed"}, false). There are
three parameters here:

ff The fully qualified name of the collection in the <db name>.<collection name>
format is the first parameter of the shardCollection method.

ff The second parameter is the field name to shard on in the collection. This is the field
that would be used to split the documents on the shards. One of the requirements
of a good shard key is that it should have high cardinality. (The number of possible
values should be high.) In our test data, the name value has very low cardinality and
thus is not a good choice as a shard key. We hash this key when using this as a shard
key. We do so by mentioning the key as {name: "hashed"}.

Chapter 1

37

ff The last parameter specifies whether the value used as the shard key is unique or
not. The name field is definitely not unique and thus it will be false. If the field was,
say, the person's social security number, it could have been set as true. Additionally,
SSN is a good choice for a shard key due to its high cardinality. Remember that the
shard key has to be present for the query to be efficient.

The last step is to see the execution plan for the finding of all the data. The intent of this
operation is to see how the data is being split across two shards. With 300,000 documents,
we expect something around 150,000 documents on each shard. However, from the
distribution statistics, we can observe that shard0000 has 1,49,715 documents whereas
shard0001 has 150285:

Shard shard0000 at localhost:27000

 data : 15.99MiB docs : 149715 chunks : 2

 estimated data per chunk : 7.99MiB

 estimated docs per chunk : 74857

Shard shard0001 at localhost:27001

 data : 16.05MiB docs : 150285 chunks : 2

 estimated data per chunk : 8.02MiB

 estimated docs per chunk : 75142

Totals

 data : 32.04MiB docs : 300000 chunks : 4

 Shard shard0000 contains 49.9% data, 49.9% docs in cluster, avg obj size
on shard : 112B

 Shard shard0001 contains 50.09% data, 50.09% docs in cluster, avg obj
size on shard : 112B

There are a couple of additional suggestions that I would recommend you to do.

Connect to the individual shard from the mongo shell and execute queries on the person
collection. See that the counts in these collections are similar to what we see in the preceding
plan. Additionally, one can find out that no document exists on both the shards at the same time.

We discussed in brief about how cardinality affects the way the data is split across shards.
Let's do a simple exercise. We first drop the person collection and execute the shardCollection
operation again but, this time, with the {name: 1} shard key instead of {name:
"hashed"}. This ensures that the shard key is not hashed and stored as is. Now, load the
data using the JavaScript function we used earlier in step number 5, and then execute the
explain() command on the collection once the data is loaded. Observe how the data is now
split (or not) across the shards.

Installing and Starting the Server

38

There's more…
A lot of questions must now be coming up such as what are the best practices? What are
some tips and tricks? How is the sharding thing pulled off by MongoDB behind the scenes
in a way that is transparent to the end user?

This recipe here only explained the basics. In the administration section, all such questions
will be answered.

39

2
Command-line

Operations and Indexes

In this chapter, we will cover the following topics:

ff Creating test data

ff Performing simple querying, projections, and pagination from the Mongo shell

ff Updating and deleting data from the shell

ff Creating an index and viewing plans of queries

ff Creating a background and foreground index in the shell

ff Creating and understanding sparse indexes

ff Expiring documents after a fixed interval using the TTL index

ff Expiring documents at a given time using the TTL index

Introduction
In this chapter we will be performing simple queries using the mongo shell. Later in the
chapter, we will have a detailed look at commonly used MongoDB indexes.

Creating test data
This recipe is about creating test data for some of the recipes in this chapter and also for the
later chapters in this book. We will demonstrate how to load a CSV file in a mongo database
using the mongo import utility. This is a basic recipe, and if the reader is aware of the data
import utility; they can just download the CSV file from the Packt website (pincodes.csv),
load it in the collection by themselves, and skip the rest of the recipe. We will use the default
database, test, and the collection will be named postalCodes.

Command-line Operations and Indexes

40

Getting ready
The data used here is for postcodes in India. Download the pincodes.csv file from the
Packt website. The file is a CSV file with 39,732 records; it should create 39,732 documents
on successful import. We need to have the Mongo server up and running. Refer to the
Installing single node MongoDB recipe from Chapter 1, Installing and Starting the Server for
instructions on how to start the server. The server should begin listening for connections on
the default port, 27017.

How to do it…
1.	 Execute the following command from the shell with the file to be imported in the

current directory:
$ mongoimport --type csv -d test -c postalCodes --headerline
--drop pincodes.csv

2.	 Start the mongo shell by typing in mongo on the command prompt.

3.	 In the shell, execute the following command:
> db.postalCodes.count()

How it works…
Assuming that the server is up and running, the CSV file has been downloaded and is kept in
a local directory where we execute the import utility with the file in the current directory. Let's
look at the options given in the mongoimport utility and their meanings:

Command-line option Description
--type This specifies that the type of the input file is CSV. It defaults to JSON;

another possible value being TSV.
-d This is the target database in which the data will be loaded.
-c This is the collection in the previously mentioned database in which

the data will be loaded.
--headerline This is relevant only in case of TSV or CSV files. It indicates that the

first line of the file is the header. The same names would be used as
the name of the fields in the document.

--drop Drop the collection before importing data.

The final value on the command prompt after all the options are given is the name of the file,
pincodes.csv.

Chapter 2

41

If the import goes through successfully, you should see something similar to the following
printed to the console:

2015-05-19T06:51:54.131+0000	 connected to: localhost

2015-05-19T06:51:54.132+0000	 dropping: test.postalCodes

2015-05-19T06:51:54.810+0000	 imported 39732 documents

Finally, we start the mongo shell and find the count of the documents in the collection; it
should indeed be 39,732 as seen in the preceding import log.

The postal code data has been taken from https://github.com/
kishorek/India-Codes/. This data is not taken from an official
source and might not be accurate as it is being compiled manually for
free public use.

See also
The Performing simple querying, projections, and pagination from Mongo shell recipe is about
executing some basic queries on the data imported.

Performing simple querying, projections,
and pagination from Mongo shell

In this recipe, we will get our hands dirty with a bit of querying to select documents from
the test data that we set up in our previous recipe, Creating test data. There is nothing
extravagant in this recipe and someone who is well versed with the query language basics
can skip this recipe. Others who aren't too comfortable with basic querying or those who want
to get a small refresher can continue to read the next section of the recipe. Additionally, this
recipe is intended to get a feel of the test data setup from the previous recipe.

Getting ready
To execute simple queries, we need to have a server up and running. A simple single node is
what we need. Refer to the Installing single node MongoDB recipe from Chapter 1, Installing
and Starting the Server for instructions on how to start the server. The data that we would be
operating on needs to be imported in the database. The steps to import the data are given in
the previous recipe, Creating test data. You also need to start the mongo shell and connect
to the server running on the localhost. Once these prerequisites are complete, we are good
to go.

https://github.com/kishorek/India-Codes/
https://github.com/kishorek/India-Codes/

Command-line Operations and Indexes

42

How to do it…
1.	 Let's first find a count of the documents in the collection:

> db.postalCodes.count()

2.	 Let's find just one document from the postalCodes collection as follows:
> db.postalCodes.findOne()

3.	 Now, we find multiple documents in the collection as follows:
> db.postalCodes.find().pretty()

4.	 The preceding query retrieves all the keys of the first 20 documents and displays
them on the shell. At the end of the result, you will notice a line that says Type "it"
for more. By typing "it", the mongo shell will iterate over the resulting cursor.
Let's do a couple of things now; we will just display the city, state, and pincode
fields. Additionally, we want to display the documents numbered 91 to 100 in the
collection. Let's see how we do this:
> db.postalCodes.find({}, {_id:0, city:1, state:1, pincode:1}).
skip(90).limit(10)

5.	 Let's move a step ahead and write a slightly complex query where we find the top 10
cities in the state of Gujarat sorted by the name of the city, and, similar to the last
query, we just select city, state, and the pincode field:
> db.postalCodes.find({state:'Gujarat'},{_id:0, city:1, state:1,
pincode:1}).sort({city:1}).limit(10)

How it works…
This recipe is pretty simple and allows us to get a feel for the test data that we set up in the
previous recipe. Nevertheless, as with other recipes, I do owe you all some explanation for
what we did here.

We first found the count of the documents in the collection using db.postalCodes.
count() and it should give us 39,732 documents. This should be in sync with the logs
that we saw while importing the data in the postal codes collection. We next queried for one
document from the collection using findOne. This method returns the first document in the
result set of the query. In absence of a query or sort order, as in this case, it will be the first
document in the collection sorted by its natural order.

Next, we perform find rather than findOne. The difference between both of them is that the
find operation returns an iterator for the result set, which we can use to traverse through the
results of the find operation, whereas findOne returns a document. Adding a pretty method
call to the find operation will print the result in a pretty or formatted way.

Chapter 2

43

Note that the pretty method makes sense and works only with find
and not with findOne. This is because the return value of findOne is a
document and there is no pretty operation on the returned document.

We will now execute the following query on the mongo shell:

> db.postalCodes.find({}, {_id:0, city:1, state:1, pincode:1}).skip(90).
limit(10)

Here, we pass two parameters to the find method:

ff The first one is {}, which is the query to select the documents, and, in this case, we
ask mongo to select all the documents.

ff The second parameter is the set of fields that we want in the result documents also
known as projection. Remember that the _id field is present by default unless we
explicitly say _id:0. For all the other fields, we need to say <field_name>:1 or
<field_name>:true. The find portion with projections is the same as saying select
field1, field2 from table in a relational world, and not specifying the fields to
be selected in the find is saying select * from table in a relational world.

Moving on, we just need to look at what skip and limit do:

ff The skip function skips the given number of documents from the result set all the
way up to the end document

ff The limit function then limits the result to the given number of documents

Let's see what this all means with an example. By doing .skip(90).limit(10), we say
that we want to skip the first 90 documents from the result set and start returning from the
91st document. The limit, however, says that we will be returning only 10 documents from the
91st document.

Now, there are some border conditions that we need to know here. What if skip is being
provided with a value more than the total number of documents in the collection? Well, in this
case, no documents will be returned. Additionally, if the number provided to the limit function
is more than the actual number of documents remaining in the collection, then the number
of documents returned will be the same as the remaining documents in the collection and no
exception will be thrown in either cases.

Updating and deleting data from the shell
This again will be a simple recipe that will be looking at executing deletes and updates on
a test collection. We won't be dealing with the same test data that we imported as we don't
want to update/delete any of that, but instead, we will work on a test collection created for
this recipe only.

Command-line Operations and Indexes

44

Getting ready
For this recipe, we will create a collection called updAndDelTest. We will require the server
to be up and running. Refer to the Installing single node MongoDB recipe from Chapter 1,
Installing and Starting the Server for instructions on how to start the server. Start the shell
with the UpdAndDelTest.js script loaded. This script will be available on the Packt website
for download. To know how to start the shell with a script preloaded, refer to the Connecting
to a single node in the Mongo shell with JavaScript recipe in Chapter 1, Installing and Starting
the Server.

How to do it…
1.	 Start the MongoDB shell and preload the script:

$ mongo --shell updAndDelTest.js

2.	 With the shell started and script loaded, execute the following in the shell:
> prepareTestData()

3.	 If all goes well, you should see Inserted 20 documents in updAndDelTest
printed to the console:

4.	 To get a feel of the collection, let's query it as follows:
> db.updAndDelTest.find({}, {_id:0})

5.	 We should see that for each value of x as 1 and 2, we have y incrementing from
1 to 10 for each value of x.

6.	 We will first update some documents and observe the results. Execute the following
update:
> db.updAndDelTest.update({x:1}, {$set:{y:0}})

7.	 Execute the following find command and observe the results; we should get 10
documents. For each of them, note the value of y.
> db.updAndDelTest.find({x:1}, {_id:0})

8.	 We shall now execute the following update:
> db.updAndDelTest.update({x:1}, {$set:{y:0}}, {multi:true})

9.	 Executing the query given in step 6 again to view the updated documents. It will
show the same documents that we saw earlier. Take a note of the values of y again
and compare them to the results that we saw when we executed this query last time
before executing the update given in step 7.

10.	 We will now see how delete works. We will again choose the documents where x is 1
for the deletion test. Let's delete all the documents where x is 1 from the collection:
> db.updAndDelTest.remove({x:1})

Chapter 2

45

11.	 Execute the following find command and observe the results. We will not get any
results. It seems that the remove operation has removed all the documents with
x as 1.
> db.updAndDelTest.find({x:1}, {_id:0})

When you are in the mongo shell and you want to see the source
code of a function, simply type in the function name without the
parenthesis. For example, in this recipe, we can view the code of our
custom function by typing the function name, prepareTestData,
without the parenthesis, and press Enter.

How it works…
First, we set up the data that we will use for the updating and deleting test. We have already
seen the data and know what it is. An interesting thing to observe is that when we execute an
update such as db.updAndDelTest.update({x:1}, {$set:{y:0}}), it only updates
the first document that matches the query provided as the first parameter. This is something
we will observe when we query the collection after this update. The update function has
the following format db.<collection name>.update(query, update object,
{upsert: <boolean>, multi:<boolean>}).

We will see what upsert is in the later recipes. The multi parameter is set to false by default.
This means that multiple documents will not be updated by the update method; only the
first matching document will be updated. However, when we do db.updAndDelTest.
update({x:1}, {$set:{y:0}}, {multi:true}) with multi set to true, all the
documents in the collection that match the given query are updated. This is something that
we can verify after querying the collection.

Removals, on the other hand, behave differently. By default, the remove operation deletes
all the documents that match the provided query. However, if we want to delete only one
document, we explicitly pass the second parameter as true.

The default behavior of update and remove is different. An update
call, by default, updates only the first matching document, whereas
remove deletes all the documents matching the query.

Creating index and viewing plans of queries
In this recipe, we will look at querying the data, analyzing its performance by explaining the
query plan, and then optimizing it by creating indexes.

Command-line Operations and Indexes

46

Getting ready
For the creation of indexes, we need to have a server up and running. A simple single node is
what we need. Refer to the Installing single node MongoDB recipe from Chapter 1, Installing
and Starting the Server for instructions on how to start the server. The data that we will
operate on needs to be imported in the database. The steps to import the data are given in
the previous recipe, Creating test data. Once this prerequisite is complete, we are good to go.

How to do it…
We are trying to write a query that would find us all the zip codes in a given state.

1.	 Execute the following query to view the plan of this query:
> db.postalCodes.find({state:'Maharashtra'}).
explain('executionStats')

Take a note of the following fields: stage, nReturned, totalDocsExamined,
docsExamined, and executionTimeMillis in the result of the explain plan
operation.

2.	 Let's again execute the same query, but this time, we limit the results to 100 results
only:
> db.postalCodes.find({state:'Maharashtra'}).limit(100).explain()

3.	 Take a note of the following fields: nReturned, totalDocsExamined,
docsExamined, and executionTimeMillis in the result.

4.	 We now create an index on the state and pincode fields as follows:
> db.postalCodes.createIndex({state:1, pincode:1})

5.	 Execute the following query:
> db.postalCodes.find({state:'Maharashtra'}).explain()

Take a note of the following fields: stage, nReturned, totalDocsExamined,
docsExamined, and executionTimeMillis in the result.

6.	 As we want the pincodes only, we modify the query as follows and view its plan:
> db.postalCodes.find({state:'Maharashtra'}, {pincode:1, _id:0}).
explain()

Take a note of the following fields: stage, nReturned, totalDocsExamined,
docsExamined, and executionTimeMillis in the result.

Chapter 2

47

How it works…
There is a lot to explain here. We will first discuss what we just did and how to analyze
the stats. Next, we will discuss some points to be kept in mind for the index creation
and some caveats.

Analyzing the plan
Okay, let's look at the first step and analyze the output that we executed:

db.postalCodes.find({state:'Maharashtra'}).explain()

The output on my machine is as follows: (I am skipping the nonrelevant fields for now.)

{
 "stage" : "COLLSCAN",
...
 "nReturned" : 6446,
 "totalDocsExamined " : 39732,
 …
 "docsExamined" : 39732,
 …

 "executionTimeMillis" : 12,
…
}

The value of the stage field in the result is COLLSCAN, which means that a full collection
scan (all the documents scanned one after another) has happened in order to search the
matching documents in the entire collection. The nReturned value is 6446, which is the
number of results that matched the query. The totalDocsExamined and docsExamined
field have values of 39,732, which is the number of documents in the collection scanned to
retrieve the results. This is the also the total number of documents present in the collection
and all were scanned for the result. Finally, executionTimeMillis is the number of
milliseconds taken to retrieve the result.

Improving the query execution time
So far, the query doesn't look too good in terms of performance and there is great scope for
improvement. To demonstrate how the limit applied to the query affects the query plan, we
can find the query plan again without the index but with the limit clause as follows:

> db.postalCodes.find({state:'Maharashtra'}).limit(100).explain()

{

Command-line Operations and Indexes

48

 "stage" : "COLLSCAN",
 …

 "nReturned" : 100,

 "totalDocsExamined" : 19951,

 …

 "docsExamined" : 19951,

 …

 "executionTimeMillis" : 8,

 …

}

The query plan this time around is interesting. Though we still haven't created an index, we do
see an improvement in the time that the query took for execution and the number of objects
scanned to retrieve the results. This is due to the fact that mongo ignores the scanning of the
remaining documents once the number of documents specified in the limit function has been
reached. We can thus conclude that it is recommended that you use the limit function to limit
your number of results where the maximum number of documents accessed is known up front.
This may give better query performance. The word may is important as, in the absence of an
index, the collection might still be completely scanned if the number of matches is not met.

Improvement using indexes
Moving on, we then create a compound index on the state and pincode field. The order of
the index is ascending in this case (as the value is one) and is not significant unless we
plan to execute a multi-key sorting. This is a deciding factor as to whether the result can be
sorted using an index only or mongo needs to sort it in memory later on before returning the
results. As far as the plan of the query is concerned, we can see that there is a significant
improvement:

{

"executionStages" : {

 "stage" : "FETCH",

…

"inputStage" : {

 "stage" : "IXSCAN",

…

 "nReturned" : 6446,

 "totalDocsExamined" : 6446,

Chapter 2

49

 "docsExamined" : 6446,

 …

 "executionTimeMillis" : 4,

…

}

The inputStage field now has the IXSCAN value, which shows that the index is indeed used
now. The number of results stays, as expected, the same at 6446. The number of objects
scanned in the index and the documents scanned in the collection has now reduced to the
same number of documents as in the result. This is because we have now used an index that
gives us the starting document to scan, and only then, the required number of documents are
scanned. This is similar to using the book's index to find a word or scanning the entire book to
search for the word. As expected, the time in executionTimeMillis has reduced as well.

Improvement using covered indexes
This leaves us with one field, executionStages, which is FETCH, and we will see what this
means. To know what this value is, we need to look briefly at how indexes operate.

Indexes store a subset of fields of the original document in the collection. The fields present
in the index are the same as those that the index is created on. The fields, however, are kept
sorted in the index in an order specified during the index creation. Apart from the fields, there
is an additional value stored in the index that acts as a pointer to the original document in
the collection. Thus, whenever the user executes a query, the index is consulted to get a set
of matches if the query contains fields that an index is present on. The pointer, stored with
the index entries matching the query, is then used to make another IO operation to fetch the
complete document from the collection, which is then returned to the user.

The value of executionStages, which is FETCH, indicates that the data requested by the
user in the query is not entirely present in the index, but an additional IO operation is needed
to retrieve the entire document from the collection following the pointer from the index. If
the value is present in the index itself, an additional operation to retrieve the document from
the collection would not be necessary and the data from the index would be returned. This is
called a covered index, and the value of executionStages, in this case, would be IXSCAN.

In our case, we just needed the pincodes. So, why not use projection in our queries to retrieve
just what we need? This would also make the index covered as the index entry just has the
state's name and pincode, and the required data can be served completely without retrieving
the original document from the collection. The plan of the query in this case is interesting too.

Execute the following command:

db.postalCodes.find({state:'Maharashtra'}, {pincode:1, _id:0}).explain()

Command-line Operations and Indexes

50

This gives us the following plan:

{

"executionStages" : {

 "stage" : "PROJECTION",

…

"inputStage" : {

 "stage" : "IXSCAN",

…

 "nReturned" : 6446,

 "totalDocsExamined" : 0,

 "totalKeysExamined": 6446

 "executionTimeMillis" : 4,

…

}

The value of the totalDocsExamined and executionStage: PROJECTION fields is
something to observe. As expected, the data that we requested in the projection can be
served from the index alone. In this case, we scanned 6446 entries in the index and thus,
the totalKeysExamined value is 6446.

As the entire result was fetched from the index, our query did not fetch any documents from
the collection. Hence, the value of totalDocsExamined is 0.

As this collection is small, we do not see a significant difference in the execution time of the
query. This will be more evident on larger collections. Making use of indexes is great and gives
us a good performance. Making use of covered index gives us an even better performance.

The explain results feature of MongoDB has had a major overhaul in
version 3.0. I would suggest spending a few minutes going through
its documentation at http://docs.mongodb.org/manual/
reference/explain-results/.
Another thing to remember is that if your document has a lot of fields,
try and use projection to retrieve only the number of fields we need.
The _id field is retrieved every time by default. Unless we plan to use
it, set _id:0 to not retrieve it if it is not a part of the index. Executing
a covered query is the most efficient way to query a collection.

http://docs.mongodb.org/manual/reference/explain-results/
http://docs.mongodb.org/manual/reference/explain-results/

Chapter 2

51

Some caveats of index creations
We will now see some pitfalls in index creation and some facts when an array field is used in
the index.

Some of the operators that do not use the index efficiently are the $where, $nin, and
$exists operators. Whenever these operators are used in the query, one should bear in
mind that a possible performance bottleneck might occur when the data size increases.

Similarly, the $in operator must be preferred over the $or operator as both can be used to
achieve more or less the same result. As an exercise, try to find the pincodes in the state of
Maharashtra and Gujarat in the postalCodes collection. Write two queries: one using $or
and one using the $in operator. Explain the plan for both these queries.

What happens when an array field is used in the index?

Mongo creates an index entry for each element present in the array field of a document. So, if
there are 10 elements in an array in a document, there will be 10 index entries, one for each
element in the array. However, there is a constraint while creating indexes containing array
fields. When creating indexes using multiple fields, no more than one field can be of a type
array, and this is done to prevent a possible explosion in the number of indexes on adding
even a single element to the array used in the index. If we think of it carefully, an index entry
is created for each element in the array. If multiple fields of the type array were allowed to be
a part of an index, then we would have a large number of entries in the index, which would be
a product of the length of these array fields. For example, a document added with two array
fields, each of length 10, would add 100 entries to the index if it is allowed to create one index
using these two array fields.

This should be good enough, for now, to scratch the surfaces of a plain, vanilla index. We will
see more options and types in the following few recipes.

Creating a background and foreground index
in the shell

In our previous recipe, we looked at how to analyze the queries, how to decide what index
needs to be created, and how to create indexes. This, by itself, is straightforward and looks
reasonably simple. However, for large collections, things start getting worse as the index
creation time is large. The objective of this recipe is to throw some light on these concepts
and avoid these pitfalls while creating indexes, especially on large collections.

Command-line Operations and Indexes

52

Getting ready
For the creation of indexes, we need to have a server up and running. A simple single node is
what we need. Refer to the Installing single node MongoDB recipe from Chapter 1, Installing
and Starting the Server for instructions on how to start the server.

Start connecting two shells to the server by just typing mongo from the operating system shell.
Both of them will, by default, connect to the test database.

Our test data for zip codes is too small to demonstrate the problem faced in index creation on
large collections. We need to have more data and thus, we will start by creating some data to
simulate the problems during index creation. The data has no practical meaning but is good
enough to test the concepts. Copy the following piece in one of the started shells and execute:
(It is a pretty easy snippet to type out.)

for(i = 0; i < 5000000 ; i++) {
 doc = {}
 doc._id = i
 doc.value = 'Some text with no meaning and number ' + i + ' in
 between'
 db.indexTest.insert(doc)
}

A document in this collection will look something as follows:

{ _id:0, value:"Some text with no meaning and number 0 in between" }

The execution will take quite a lot of time, so we need to be patient. Once the execution is
over, we are all set for the action.

If you are keen to know what the current number of documents
loaded in the collection is, keep evaluating the following from
the second shell periodically:

db.indexTest.count()

How to do it…
1.	 Create an index on the value field of the document as follows:

> db.indexTest.createIndex({value:1})

2.	 While the index creation is in progress, which should take quite some time, switch
over to the second console and execute the following:
> db.indexTest.findOne()

Chapter 2

53

3.	 Both the index creation shell and the one where we executed findOne will
be blocked and the prompt will not be shown on both of them until the index
creation is complete.

4.	 Now, this was foreground index creation by default. We want to see the behavior in
background index creation. Drop the created index as follows:
> db.indexTest.dropIndex({value:1})

5.	 Create the index again, but this time in background, as follows:
> db.indexTest.createIndex({value:1}, {background:true})

6.	 In the second mongo shell, execute findOne as follows:
> db.indexTest.findOne()

7.	 This should return one document, which is unlike the first instance, where the
operation was blocked until the index creation completed in the foreground.

8.	 In the second shell, repeatedly execute the following explain operation with a four-
to-five second interval between each explain plan invocation until the index creation
process is complete:
> db.indexTest.find({value:"Some text with no meaning and number 0
in between"}).explain()

How it works…
Let's now analyze what we just did. We created about five million documents with no practical
importance, but we are just looking to get some data that will take a significant amount of
time to build the index.

An index can be built in two ways, in the foreground and background. In either case, the
shell doesn't show the prompt until the createIndex operation has been completed and
will block all operations until the index is created. To illustrate the difference between a
foreground and background index creation, we executed a second mongo shell.

We first created the index in the foreground, which is the default behavior. This index building
didn't allow us to query the collection (from the second shell) until the index was constructed.
The findOne operation is blocked until the entire index was built (from the first shell) before
returning the result. On other hand, the index that was built in the background didn't block the
findOne operation. If you want to try inserting new documents into the collection while the
index building is on, this should work very well. Feel free to drop the index and recreate it in
the background, while simultaneously inserting a document into the indexTest collection,
and you will notice that it works smoothly.

Command-line Operations and Indexes

54

Well, what is the difference between the two approaches and why not always build the index
in the background? Apart from an extra parameter, {background:true} (which can also
be{background:1}) passed as a second parameter to the createIndex call, there are
few differences. The index creation process in the background will be slightly slower than
the index created in the foreground. Furthermore, internally—though not relevant to the end
user—the index created in the foreground will be more compact than the one created in the
background.

Other than this, there will be no significant difference. In fact, if a system is running and an
index needs to be created while it is serving the end users (not recommended, but a situation
can come up at times that demands index creation in a live system), then creating an index
in the background is the only way you can do it. There are other strategies to perform such
administrative activities, which we will see in some recipes in the administration section.

To make things worse for foreground index creation, the lock acquired by mongo during
index creation is not at the collection level but is at the database level. To explain what this
means, we will have to drop the index on the indexTest collection and perform the following
small exercise:

1.	 Start by creating the index in the foreground from the shell by executing the following
command:
> db.indexTest.createIndex({value:1})

2.	 Now, insert a document into the person collection, which may or may not exist at this
point in the test database, as follows:
> db.person.insert({name:'Amol'})

We will see that this insert operation in the person collection will be blocked while index
creation on the indexTest collection is in process. However, if this insert operation was done
on a collection in a different database during the index building, it would execute normally
without blocking. (You can try this out as well.) This clearly shows that the lock is acquired at
the database level and not at the collection or global level.

Prior to version 2.2 of mongo, locks were at the global level, which
is at the mongod process level, and not at the database level as we
saw previously. You need to remember this fact when dealing with a
distribution of mongo older than version 2.2.

Chapter 2

55

Creating and understanding sparse indexes
Schemaless design is one of the fundamental features of Mongo. This allows documents in a
collection to have disparate fields, with some fields present in some documents and absent
in others. In other words, these fields might be sparse, which might have already given you
a clue on what sparse indexes are. In this recipe, we will create some random test data and
see how sparse indexes behave against a normal index. We shall see the advantages and one
major pitfall of using a sparse index.

Getting ready
For this recipe, we need to create a collection called sparseTest. We will require a server
to be up and running. Refer to the Installing single node MongoDB recipe from Chapter 1,
Installing and Starting the Server for instructions on how to start the server. Start the shell
with the SparseIndexData.js script loaded. This script is available on the Packt website
for download. To know how to start the shell with a script preloaded, refer to the Connecting
to a single node in the Mongo shell with JavaScript recipe in Chapter 1, Installing and Starting
the Server.

How to do it…
1.	 Load the data in the collection by invoking the following. This should import 100

documents in the sparseTest collection.
> createSparseIndexData()

2.	 Now, take a look at the data by executing the following query, taking note of the y
field in the top few results:
> db.sparseTest.find({}, {_id:0})

3.	 We can see that the y field is absent, or it is unique if it is present. Let's then execute
the following query:
> db.sparseTest.find({y:{$ne:2}}, {_id:0}).limit(15)

4.	 Take a note of the result; it contains both the documents that match the condition as
well as fields that do not contain the given field, y.

5.	 As the value of y seems unique, let's create a new unique index on the y field
as follows:
> db.sparseTest.createIndex({y:1}, {unique:1})

This throws an error complaining that the value is not unique and the offending value
is the null value.

Command-line Operations and Indexes

56

6.	 We will fix this by making this index sparse as follows:
> db.sparseTest.createIndex({y:1}, {unique:1, sparse:1})

7.	 This should fix our problem. To confirm that the index got created, execute the
following on the shell:
> db.sparseTest.getIndexes()

This should show two indexes, the default one on _id and the one that we just
created in the preceding step.

8.	 Now, execute the query that we executed earlier in step 3 again and see the result.

9.	 Look at the result and compare it with what we saw before the index was created. Re-
execute the query but with the following hint forcing a full collection scan:
>db.sparseTest.find({y:{$ne:2}},{_id:0}).limit(15).
hint({$natural:1})

10.	 Observe the result.

How it works…
These were a lot of steps that we just performed. We will now dig deeper and explain the
internals and reasoning for the weird behavior that we see while querying the collection that
used sparse indexes.

The test data that we created using the JavaScript method just created documents with a key,
x, whose value is a number starting from one, all the way up to 100. The value of y is set only
when x is a multiple of three—its value is a running number as well, starting from one and
should go up to a maximum of 33 when x is 99.

We then execute a query and see the following result:

> db.sparseTest.find({y:{$ne:2}}, {_id:0}).limit(15)

{ "x" : 1 }

{ "x" : 2 }

{ "x" : 3, "y" : 1 }

{ "x" : 4 }

{ "x" : 5 }

{ "x" : 7 }

{ "x" : 8 }

{ "x" : 9, "y" : 3 }

{ "x" : 10 }

{ "x" : 11 }

Chapter 2

57

{ "x" : 12, "y" : 4 }

{ "x" : 13 }

{ "x" : 14 }

{ "x" : 15, "y" : 5 }

{ "x" : 16 }

The value where y is 2 is missing in the result and this is what we intended. Note that the
documents where y isn't present are still seen in the result. We now plan to create an index
on the y field. As the field is either not present or has a value that is unique, it seems natural
that a unique index should work.

Internally, indexes add an entry in the index by default, even if the field is absent in the original
document in the collection. The value going in the index will, however, be null. This means
that there will be the same number of entries in the index as the number of documents in the
collection. For a unique index, the value (including the null values) should be unique across
the collection, which explains why we got an exception during index creation where the field is
sparse (not present in all the documents).

A solution for this problem is making the index sparse, and all we did was add sparse:1 to
the options along with unique:1. This does not put an entry in the index if the field doesn't
exist in the document. Thus, the index will now contain fewer entries. It will only contain those
entries where the field is present in the document. This not only makes the index smaller,
making it easy to fit in the memory, but also solves our problem of adding a unique constraint.
The last thing that we want is an index of a collection with millions of documents to have
millions of entries, where only a few hundred have some values defined.

Though we can see that creating a sparse index did make the index efficient, it introduced
a new problem where some query results were not consistent. The same query that we
executed earlier yields different results. See the following output:

> db.sparseTest.find({y:{$ne:2}}, {_id:0}).hint({y:1}).limit(15)

{ "x" : 3, "y" : 1 }

{ "x" : 9, "y" : 3 }

{ "x" : 12, "y" : 4 }

{ "x" : 15, "y" : 5 }

{ "x" : 18, "y" : 6 }

{ "x" : 21, "y" : 7 }

{ "x" : 24, "y" : 8 }

{ "x" : 27, "y" : 9 }

{ "x" : 30, "y" : 10 }

{ "x" : 33, "y" : 11 }

{ "x" : 36, "y" : 12 }

Command-line Operations and Indexes

58

{ "x" : 39, "y" : 13 }

{ "x" : 42, "y" : 14 }

{ "x" : 45, "y" : 15 }

{ "x" : 48, "y" : 16 }

Why did this happen? The answer lies in the query plan for this query. Execute the following to
view the plan of this query:

>db.sparseTest.find({y:{$ne:2}}, {_id:0}). hint({y:1}).limit(15).
explain()

This plan shows that it used the index to fetch the matching results. As this is a sparse index,
all the documents that didn't have the y field are not present in it and they didn't show up
in the result, though they should have. This is a pitfall that we need to be careful of when
querying a collection with a sparse index and the query happens to use the index. It will yield
unexpected results. One solution is to force a full collection scan, where we provide the query
analyzer a hint using the hint function. Hints are used to force query analyzers to use a
user-specified index. Though this is not recommended usually as you really need to know what
you are doing, this is one of the scenarios where this is really needed. So, how do we force a
full table scan? All we do is provide {$natural:1} in the hint function. A natural ordering
of a collection is the order that it is stored in on the disk for a particular collection. This hint
forces a full table scan and now we get the results as before. The query performance will,
however, degrade for large collections as it is now using a full table scan.

If the field is present in a lot of documents (There is no formal cutoff for what is a lot; it can be
50% for some or 75% for others.) and not really sparse, then making the index sparse doesn't
make much sense apart from when we want to make it unique.

If two documents have a null value for the same field, unique
index creation will fail, and creating it as a sparse index will not
help either.

Expiring documents after a fixed interval
using the TTL index

One of the interesting features in Mongo is automatically expiring data in the collection after
a predetermined amount of time. This is a very useful tool when we want to purge some data
older than a particular timeframe. For a relational database, it is not common for folks to set
up a batch job that runs every night to perform this operation.

With the TTL feature of Mongo, you need not worry about this as the database takes care of it
out of the box. Let's see how we can achieve this.

Chapter 2

59

Getting ready
Let's create data in Mongo that we want to play with using the TTL indexes. We will create a
collection called ttlTest for this purpose. We will require a server to be up and running.
Refer to the Installing single node MongoDB recipe from Chapter 1, Installing and Starting the
Server for instructions on how to start the server. Start the shell with the TTLData.js script
loaded. This script is available on the Packt website for download. To know how to start the
shell with a script preloaded, refer to the Connecting to a single node in the Mongo shell with
JavaScript recipe from Chapter 1, Installing and Starting the Server.

How to do it…
1.	 Assuming that the server has started and the script provided is loaded on the shell,

invoke the following method from the mongo shell:
> addTTLTestData()

2.	 Create a TTL index on the createDate field as follows:
> db.ttlTest.createIndex({createDate:1}, {expireAfterSeconds:300})

3.	 Now, query the collection as follows:
> db.ttlTest.find()

4.	 This should give us three documents. Repeat the process and execute the find
query in approximately 30-40 seconds repeatedly to see the three documents getting
deleted until the entire collection has zero documents left in it.

How it works…
Let's start by opening the TTLData.js file and see what is going on inside it. The code
is pretty simple and it just gets the current date using new Date(). It then creates three
documents with createDate that were four, three, and two minutes behind the current time
for the three documents. So, on the execution of the addTTLTestData() method in this
script, we have three documents in the ttlTest collection with each having a difference of
one minute in their creation time.

Command-line Operations and Indexes

60

The next step is the core of the TTL feature: the creation of the TTL index. It is similar to the
creation of any other index using the createIndex method, except that it also accepts a
second parameter that is a JSON object. These two parameters are as follows:

ff The first parameter is {createDate:1}; this will tell mongo to create an index on
the createDate field, and the order of the index is ascending as the value is 1 (-1
would have been descending).

ff The second parameter, {expireAfterSeconds:300}, is what makes this index
a TTL index, and it tells Mongo to automatically expire the documents after 300
seconds (five minutes).

Okay, but five minutes since when? Is it the time they were inserted in the collection or some
other timestamp? In this case, it considers the createTime field as the base because this
was the field that we created the index on.

This now raises a question: if a field is being used as a base for the computation of time, there
has to be some restriction on its type. It just doesn't make sense to create a TTL index, as we
created previously, on a char field holding, say, the name of a person.

Yes; as we guessed, the type of the field can be of a BSON type date or an array of dates.
What will happen in the case where an array has multiple dates? What will be considered in
that case?

It turns out that Mongo uses a minimum of dates available in the array. Try this scenario out
as an exercise.

Put two dates separated by about five minutes from each other in a document against the
field name, updateField, and then create a TTL index on this field to expire the document
after 10 minutes (600 seconds). Query the collection and see when the document gets
deleted from the collection. It should get deleted after roughly 10 minutes have elapsed after
the minimum time value present in the updateField array.

Apart from the constraint for the type of field, there are a few more constraints:

ff If a field already has an index on it, you cannot create a TTL index. As the _id field
of the collection already has an index by default, it effectively means that you cannot
create a TTL index on the _id field.

ff A TTL index cannot be a compound index involving multiple fields.

ff If a field doesn't exist, it will never expire. (That's pretty logical, I guess.)

ff It cannot be created on capped collections. In case you are not aware of capped
collections, they are special collections in Mongo with a size limit on them with a
FIFO insertion order and delete old documents to make place for new documents,
if needed.

Chapter 2

61

TTL indexes are supported only on the Mongo version 2.2 and above. Note
that the document will not be deleted at exactly the given time in the field.
The cycle will be of a granularity of one minute, which will delete all the
documents eligible for deletion since the last time the cycle was run.

See also
A use case might not demand deleting all the documents after a fixed interval has elapsed.
What if we want to customize the point until a document stays in the collection? This too can
be achieved, which is what will be demonstrated in the next recipe, Expiring documents at a
given time using the TTL index.

Expiring documents at a given time using
the TTL index

In the previous recipe, Expiring documents after a fixed interval using the TTL index, we have
seen how documents can expire after a fixed time period. However, there can be some cases
where we might want to have documents expiring at different times. This is not what we saw in
the previous recipe. In this recipe, we will see how we can specify the time that the document
can expire and it might be different for different documents.

Getting ready
For this recipe, we will create a collection called ttlTest2. We will require a server to be up
and running. Refer to the Installing single node MongoDB recipe from Chapter 1, Installing
and Starting the Server for instructions on how to start the server. Start the shell with the
TTLData.js script loaded. This script is available on the Packt website for download. To
know how to start the shell with a script preloaded, refer to the Connecting to a single node in
the Mongo shell with JavaScript recipe in Chapter 1, Installing and Starting the Server.

How to do it…
1.	 Load the required data in the collection using the addTTLTestData2 method.

Execute the following on the mongo shell:
> addTTLTestData2()

2.	 Now, create the TTL index on the ttlTest2 collection as follows:
> db.ttlTest2.createIndex({expiryDate :1}, {expireAfterSeconds:0})

Command-line Operations and Indexes

62

3.	 Execute the following find query to view the three documents in the collection:
> db.ttlTest2.find()

4.	 Now, after approximately four, five, and seven minutes, see that the documents with
the IDs two, one, and three get deleted, respectively.

How it works…
Let's start by opening the TTLData.js file and see what is going on inside it. Our method of
interest for this recipe is addTTLTestData2. This method simply creates three documents in
the tllTest2 collection with _id of 1, 2, and 3 with their exipryDate fields set to 5, 4, and
7 minutes after the current time, respectively. Note that this field has a future date, unlike the
date given in the previous recipe, where it was a creation date.

Next, we create an index: db.ttlTest2.createIndex({expiryDate :1},
{expireAfterSeconds:0}). This is different from the way we created the index for the
previous recipe, where the expireAfterSeconds field of the object was set to a non-zero
value. This is how the value of the expireAfterSeconds attribute is interpreted. If the value
is non-zero, then this is the time in seconds that has elapsed after a base time when the
document will be deleted from the collection by Mongo. This base time is the value held in the
field that the index is created on (createTime, as in the previous recipe). If this value is zero,
then the date value that the index is created on (expiryDate, in this case) will be the time
when the document will expire.

To conclude, TTL indexes work well if you want to delete the document upon expiry. There
are quite a lot of cases where we might want to move the document to an archive collection,
where the archived collection might be created based on, say, the year and month. In any
such scenarios, a TTL index is not helpful and we might have to write an external job ourselves
that does this work. Such a job could also read the collection for a range of documents,
add them to the target collection, and delete them from the source collection. The folks at
MongoDB have already planned to release a feature that addresses this issue.

See also
In this and the previous recipe, we looked at TTL indexes and how to use them. However,
what if, after creating a TTL index, we want to modify the TTL value? This is possible using
the collMod option. See more on this option in the administration section.

63

3
Programming

Language Drivers

In this chapter, we will cover the following recipes:

ff Executing query and insert operations with PyMongo

ff Executing update and delete operations using PyMongo

ff Implementing aggregation in Mongo using PyMongo

ff Executing MapReduce in Mongo using PyMongo

ff Executing query and insert operations using a Java client

ff Executing update and delete operations using a Java client

ff Implementing aggregation in Mongo using a Java client

ff Executing MapReduce in Mongo using a Java client

Introduction
So far, we have executed the majority of operations in the shell using Mongo. The Mongo
shell is a great tool for administrators to perform administrative tasks and for developers
who would like to quickly test things by querying the data before coding the logic in the
application. However, how do we write application code that will allow us to query, insert,
update, and delete (among other things) the data in MongoDB? There has to be a library for
the programming language that we write our application in. We should be able to instantiate
something or invoke methods from the program to perform some operations on the remote
Mongo process.

Programming Language Drivers

64

How would this happen unless there is some bridge that understands the protocol of
communication with the remote server and is able to transmit the operation over the wire that
we require in order to execute on the Mongo server process and get the result back to the
client. This bridge, simply put, is called the driver, also referred to as client libraries. Drivers
form the backbone of Mongo's programming language interface; in their absence, it would
have been the responsibility of the application to communicate with the Mongo server using a
low-level protocol that the server understands. This would have been a lot of work, not only to
develop, but also to test and maintain. Though the communication protocol is standard, there
cannot be one implementation that works for all the languages. A variety of programming
languages need to have their own implementations exposing similar sets of programming
interfaces to all the languages. The core concepts of client APIs, which we will see in this
chapter, holds good for all the languages.

Mongo has support for all major programming and is supported by
MongoDB Inc. There is even a huge array of programming languages
supported by the community. You can take a look at the various
platforms supported by Mongo by visiting http://docs.mongodb.
org/ecosystem/drivers/community-supported-drivers/.

Executing query and insert operations with
PyMongo

This recipe is all about executing basic query and insert operations using PyMongo. This is
similar to what we did with the Mongo shell earlier in the book.

Getting ready
To execute simple queries, we need to have a server up and running. A simple single node is
what we need. Refer to the Installing single node MongoDB recipe from Chapter 1, Installing
and Starting the Server for instructions on how to start the server. The data that we will be
operating on needs to be imported in the database. The steps to import the data are given
in the Creating test data recipe from Chapter 2, Command-line Operations and Indexes.
Python 2.7, or higher, has to be present on the host operating system along with MongoDB's
Python client, PyMongo. Look at the earlier recipe, Connecting to a single node using a Python
client, in Chapter 1, Installing and Starting the Server on how to install PyMongo for your host
operating system. Additionally, in this recipe, we will execute insert operations and provide a
write concern to use.

http://docs.mongodb.org/ecosystem/drivers/community-supported-drivers/
http://docs.mongodb.org/ecosystem/drivers/community-supported-drivers/

Chapter 3

65

How to do it…
Let's start with querying for Mongo in the Python shell. This will be identical to what we do in
the mongo shell except that this is in the Python programming language, as opposed to the
JavaScript that we have in the mongo shell. We can use the basics that we will see here to
write big production systems that run on Python and use mongo as a data store.

Let's begin by starting the Python shell from the operating system's command prompt. All
these steps are independent of the host operating system. Perform the following steps:

1.	 Type the following in the shell and the Python shell should start:
$ python

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>>

2.	 Then, import the pymongo package and create the client as follows:
>>> import pymongo

>>> client = pymongo.MongoClient('localhost', 27017)

The following is an alternative way to connect

>>> client = pymongo.MongoClient('mongodb://localhost:27017')

3.	 This works well and achieves the same result. Now that we have the client, our next
step is to get the database that we will be performing the operations on. This is unlike
some of the programming languages where we have a getDatabase() method to
get an instance of the database. We will get a reference to the database object that
we will be performing the operations on, test in this case. We will do this in the
following way:
>>> db = client.test

Another alternative is

>>> db = client['test']

4.	 We will query the postalCodes collection. We will limit our results to 10 items.
>>> postCodes = db.postalCodes.find().limit(10)

5.	 Iterate over the results. Watch out for the indentation of the print after the for
statement. The following fragment should print 10 documents as returned:
>>> for postCode in postCodes:

 print 'City: ', postCode['city'], ', State: ',
postCode['state'], ', Pin Code: ', postCode['pincode']

Programming Language Drivers

66

6.	 To find one document, execute the following:
>>> postCode = db.postalCodes.find_one()

7.	 Print the state and city of the returned result as follows:
>>> print 'City: ', postCode['city'], ', State: ',
postCode['state'], ', Pin Code: ', postCode['pincode']

8.	 Let's query top 10 cities in the state of Gujarat sorted by the name of the city and,
additionally, we just select the city, state, and pincode. Execute the following
query in the Python shell:
>>> cursor = db.postalCodes.find({'state':'Gujarat'}, {'_
id':0, 'city':1, 'state':1, 'pincode':1}).sort('city', pymongo.
ASCENDING).limit(10)

The preceding cursor's results can be printed in the same way that we printed the
results in step 5.

9.	 Let's sort the data that we query. We want to sort in a descending order of state and
then by ascending order of the city. We will write the query as follows:
>>> city = db.postalCodes.find().sort([('state', pymongo.
DESCENDING),('city',pymongo.ASCENDING)]).limit(5)

10.	 Iterating through this cursor should print out five results to the console. Refer to step
5 on how we iterate over a cursor returned to print the results.

11.	 So, we have played a bit to find documents and covered the basic operations in
Python as far as the querying of MongoDB is concerned. Now, let's see a bit about
the insert operation. We will use a test collection to perform these operations and
not disturb our postal codes test data. We will use a pymongoTest collection for this
purpose and add documents in a loop to it as follows:
>>> for i in range(1, 21):

 db.pymongoTest.insert_one({'i':i})

12.	 The insert can take a list of dictionary objects and perform a bulk insert. So now,
something similar to the following insert is perfectly valid:
>>> db.pythonTest.insert_many([{'name':'John'}, {'name':'Mark'}])

Any guesses on the return value? In case of a single document insert, the return
value is the value of _id for the newly created document. In this case, it is a list
of IDs.

Chapter 3

67

How it works…
In step 2, we instantiate the client and get the reference to the MongoClient object that will
be used to access the database. There are a couple of ways to get this reference. The first
option is more convenient, unless your database name has some special character, such as
a hyphen (-). For example, if the name is db-test, we would have no option other than to
use the [] operator to access the database. Using either of the alternatives, we now have
an object for the test database in the db variable. After we get the client and db instances
in Python, we query to find the top 10 documents in the natural order from the collection in
step 3. The syntax is identical to how this query would have been executed in the shell. Step 4
simply prints out the results, 10 of them in this case. Generally, if you need instant help on a
particular class using the class name or an instance of this class from the Python interpreter,
simply perform dir(<class_name>) or dir(<object of a class>), which gives you a
list of attributes and functions defined in the module passed. For example, dir('pymongo.
MongoClient') or dir(client), where the client is the variable holding reference to
an instance of pymongo.MongoClient, can be used to get the list of all the supported
attributes and functions. The help function is more informative, prints out the module's
documentation, and is a great source of reference just in case you need instant help. Try
typing help('pymongo.MongoClient') or help(client).

In steps 3 and 4, we query the postalCodes collection, limit the result to the top 10 results,
and print them. The returned object is of a type pymongo.cursor.Cursor class. The
next step gets just one document from the collection using the find_one() function. This
is synonymous to the findOne() method on the collection invoked in the shell. The value
returned by this function is an inbuilt object, dict.

In step 6, we execute another find to query the data. In step 8, we pass two Python dicts.
The first dict is the query, similar to the query parameter we use in mongo shell. The second
dictionary is used to provide the fields to be returned in the result. A value, one, for a field
indicates that the value is to be selected and returned in the result. This is synonymous with
the select statement in a relational database with a few sets of columns provided explicitly
to be selected. The _id field is selected by default unless it is explicitly set to zero in the
selector dict object. The selector provided here is {'_id':0, 'city':1, 'state':1,
'pincode':1}, which selects the city, state, and pincode and suppresses the _id field. We
have a sort method as well. This method has two formats as follows:

sort(sort_field, sort_direction)
sort([(sort_field, sort_direction)…(sort_field, sort_direction)])

The first one is used when we want to sort by one field only. The second representation
accepts a list of pairs of the sort field and sort directions and is used when we want to sort
by multiple fields. We used the first form in the query in step 8 and the second format in our
query in step 9 as we sort first by the state name and then, by city.

Programming Language Drivers

68

If we look at the way we invoke sort, it is invoked on the Cursor instance. Similarly, the
limit function is also on the Cursor class. The evaluation is lazy and deferred until the
iteration is performed in order to retrieve the results from the cursor. Until this point of time,
the Cursor object is not evaluated on the server.

In step 11, we insert a document 20 times in a collection. Each insert, as we can see in the
Python shell, will return a generated _id field. In terms of the syntax of insert, it is exactly
identical to the operation that we perform in the shell. The parameter passed for the insert is
an object of type dict.

In step 12, we pass a list of documents to insert in the collection. This is referred to as a bulk
insert operation, which inserts multiple documents in a single call to the server. The return
value in this case is a list of IDs, one for each document inserted, and the order is the same
as those passed in the input list. However, as MongoDB doesn't support transactions, each
insert will be independent of each other, and a failure of one insert doesn't roll back the entire
operation automatically.

Adding the functionality of inserting multiple documents demanded another parameter for the
behavior. When one of the inserts in the list given fails, should the remaining inserts continue
or the insertion stop as soon as the first error is encountered? The name of the parameter to
control this behavior is continue_on_error and its default value is False, that is, stop as
soon as the first error is encountered. If this value is True and multiple errors occur during
insertion, only the latest error will be available, and hence the default option with False
as the value is sensible. Let's look at a couple of examples. In the Python shell, execute
the following:

>>> db.contOnError.drop()

>>> db.contOnError.insert([{'_id':1}, {'_id':1}, {'_id':2}, {'_id':2}])

>>> db.contOnError.count()

The count that we will get is 1, which is for the first document with the _id field as 1. The
moment another document with the same value of the _id field is found, 1 in this case, an
error is thrown and the bulk insert stops. Now execute the following insert operation:

>>> db.contOnError.drop()

>>> db.contOnError.insert([{'_id':1}, {'_id':1}, {'_id':2}, {'_id':2}],
continue_on_error=True)

>>> db.contOnError.count()

Here, we have passed an additional parameter, continue_on_error, whose value is True.
What this does is ensures that the insert operation will continue with the next document
even if an intermediate insert operation fails. The second insert with _id:1 fails, yet the
next insert goes through before another insert with _id:2 fails (as one document with this
_id is already present). Additionally, the error reported is for the last failure, the one with
_id:2.

Chapter 3

69

See also
The next recipe, Executing update and delete operations using PyMongo, picks up where this
leaves off and introduces the update, remove, and atomic find operations.

Executing update and delete operations
using PyMongo

In the previous recipe, we saw how to execute find and insert operations in MongoDB
using PyMongo. In this recipe, we will see how update and delete work in Python. We will also
see what atomic find and update/delete is and how to execute them. We then conclude by
revisiting find operations and looking at some interesting functions of the cursor object.

Getting ready
If you have already seen and completed the previous recipe, you are all set to go. If not,
it is recommended that you first complete that recipe before going ahead with this one.
Additionally, if you are not sure what read preference and write concern are, refer to the two
recipes, Read preference for querying and Write concern and its significance, in Appendix,
Concepts for Reference of the book.

Before we get started, let's define a small function that iterates through the cursor and shows
the results of a cursor on the console. We will use this function whenever we want to display
the results of a query on the pymongoTests collection. The following is the function body:

>>> def showResults(cursor):

 if cursor.count() != 0:

 for e in cursor:

 print e

 else:

 print 'No documents found'

You can refer to steps 1 and 2 in the previous recipe on how to create a connection to the
MongoDB server and the db object that is used to perform CRUD operations on this database.
Additionally, refer to step 8 in the previous recipe on how to insert the required test data in the
pymongoTest collection. You can confirm the data in this collection by executing the following
in the Python shell once the data is present:

>>> showResults(db.pymongoTest.find())

Programming Language Drivers

70

For a part of the recipe, one is also expected to know how to start a replica set instance. Refer
to the Starting multiple instances as part of a replica set and Connecting to the replica set in
the shell to query and insert data recipes in the first chapter for more details on a replica set
and how to start one.

How to do it…
We will begin by running the following commands in the Python shell:

1.	 We will set a field named gtTen specified with a Boolean value True if the i field
has a value greater than 10. Let's execute the following update:
>>>result = db.pymongoTest.update_one({'i':{'$gt':10}},
{'$set':{'gtTen':True}})

>>> print result.raw_result

{u'n': 1, u'nModified': 0, u'ok': 1, 'updatedExisting': True}

2.	 Query the collection, view its data by executing the following, and check the data that
got updated:
>>> showResults(db.pymongoTest.find())

3.	 The results displayed confirm that only one document got updated. We will now
execute the same update again, but this time around, we will update all the
documents that match the provided query. Execute the following update in the Python
shell. Note that this update is identical to the one we performed in step 1 except for
the additional parameter called multi whose value is given as True. Note the value of
n in the response, which is 10 this time.
>>> result = db.pymongoTest.update_many({'i':{'$gt':10}},{'$set':{
'gtTen':True}})

print result.raw_result

{u'n': 10, u'nModified': 9, u'ok': 1, 'updatedExisting': True}

4.	 Execute the operation that we did in step 2 again to view the contents in the
pymongoTest collection and verify the documents that got updated.

5.	 Let's look at how upsert operations can be performed. Upserts are updates plus
inserts, and they update a document if one exists, just as an update would do, or
else they insert a new document. We will look at an example. Consider the following
update on a document that doesn't exist in the collection:
>>> db.pymongoTest.update_one({'i':21},{'$set':{'gtTen':True}})

Chapter 3

71

6.	 The update here will not update anything and will return the number of updated
documents as zero. However, consider that we want to update a document if it exists,
or else insert a new document and apply the update to it atomically, then we perform
an upsert operation. In this case, the upsert operation is executed as follows. Note
that the return result mentions upsert, ObjectId of the newly inserted document,
and the updatedExisting value, which is False:
>>>result = db.pymongoTest.update_one({'i':21},{'$set':{'gtTen':Tr
ue}}, upsert=True)

>>> print result.raw_result

{u'n': 1,

 u'nModified': 0,

 u'ok': 1,

 'updatedExisting': False,

 u'upserted': ObjectId('557bd3a618292418c38b046d')}

7.	 Let's see how to delete documents from the collection using the remove method:
>>>result = db.pymongoTest.delete_one({'i':21})

>>> print result.raw_result

{u'n': 1, u'ok': 1}

8.	 If we look at the value of n in the preceding response, we can see that it is 1. This
means that one document has been removed.

9.	 To remove multiple documents from the collection, we use the delete_many method:
>>>result = db.pymongoTest.delete_many({'i':{'$gt': 10}})

>>> print result.raw_result

{u'n': 10, u'ok': 1}

10.	 We will look at the find and modify operations now. We can look at these operations
as a way to find a document and update/remove it, and both of these operations are
performed atomically. Once the operation is performed, the document returned is
either the one before or after the update operation was done. (In case of remove,
there will be no document after the operation.) In the absence of this operation, we
cannot guarantee atomicity where multiple client connections could be performing
a similar operation on the same document. The following is an example of how to
perform this find and modify operation in Python:
>>> db.pymongoTest.find_one_and_update({'i':20},
{'$set':{'inWords':'Twenty'}})

{u'_id': ObjectId('557bdb070640fd0a0a935c22'), u'i': 20}

www.allitebooks.com

http://www.allitebooks.org

Programming Language Drivers

72

The previous result shows us that the resulting document returned
is the one before the update was applied.

11.	 Execute the following find method to query and view the document that we updated
in the last step. The resulting document would contain the newly added in the Words
field:
>>> db.pymongoTest.find_one({'i':20})

{u'i': 20, u'_id': ObjectId('557bdb070640fd0a0a935c22'),
u'inWords': u'Twenty'}

12.	 We will execute the find and modify operation again, but this time around, we
return the updated document rather than the document before the update that we
saw in step 9. Execute the following in the Python shell:
>>> db.pymongoTest.find_one_and_update({'i':19}, {'$set':{'inWords
':'Nineteen'}}, new=True)

{u'_id': ObjectId('557bdb070640fd0a0a935c21'), u'i': 19,
u'inWords': u'Nineteen'}

13.	 We saw how to use queries with PyMongo in the previous recipe. Here, we will
continue with the query operation. We saw how the sort and limit functions
were chained to the find operation. The prototype of the call on the postalCodes
collection is as follows:
db.postalCode.find(..).limit(..).sort(..)

14.	 There is an alternate way to achieve this same result. Execute the following query in
the Python shell:
>>>cursor = db.postalCodes.find({'state':'Gujarat'}, {'_id':0,
'city':1, 'state':1, 'pincode':1}, limit=10, sort=[('city',
pymongo.ASCENDING)])

15.	 Print the preceding cursor using the showResult function already defined.

Chapter 3

73

How it works…
Let's look at what all we did in this recipe; we started with updating the documents in a
collection in step 1. The update operation, however, updates only the first matching document
by default and the rest of the matching documents are not updated. In step 2, we added a
parameter called multi with a value True to update multiple documents as part of the same
update operation. Note that all these documents are not updated atomically as part of one
transaction. Looking at the update done in the Python shell, we see a striking resemblance to
what we would have done in the Mongo shell. If we want to name the arguments of the update
operation, the names of the parameter are called spec and document for the document
provided as a query to be used in order to select the documents to update and the update
document, respectively. For instance, the following update is valid:

>>> db.pymongoTest.update_one(spec={'i':{'$gt':10}},document=
{'$set':{'gtTen':True}})

In step 6, we did an upsert (update plus insert) operation. All we had was an additional
parameter, upsert, with a value, True. However, what exactly happens in the case of an
upsert? Mongo tries to update the document matching the provided condition, and if it
finds one, then this would be a regular update. However, in this case (upsert in step 6),
the document was not found. The server inserted the document given as the spec (the first
parameter) parameter in the collection and then applied the update to it with both these
operations taking place atomically.

In steps 7 and 9, we saw the remove operation. The first variant accepted a query and
the matching document was removed. The second variant, in step 9, removes all the
matching documents.

In steps 10 to 12, we executed the find and modify operations. The gist of these operations
is pretty straightforward. What we didn't mention was the find_one_and_replace()
method, which, as the name suggests, can be used to search a document and completely
replace it with another.

Programming Language Drivers

74

All the operations that we saw in this recipe were for a client connected to a standalone
instance. If you are connected to a replica set, the client is instantiated in a different way. We
are also aware of the fact that we are not allowed to query the secondary nodes for data by
default. We need to explicitly do rs.slaveOk() in the mongo shell connected to a secondary
node to query it. It is done in a similar way in a Python client as well. If we are connected to
a secondary node, we cannot query it by default, but the way in which we specify that we are
ok to query on a secondary node is slightly different. Starting with PyMongo 3.0, we can now
pass ReadPreference when initiating MongoClient. This is primarily because, starting
with PyMongo 3.0, pymongo.MongoClient() is the only way to connect to a standalone
instance, replica set, or sharded cluster. The available read preferences are PRIMARY,
SECONDARY, PRIMARY_PREFERRED, SECONDARY_PREFERRED, and NEAREST.

>> client = pymongo.MongoClient('localhost', 27017, readPreference='secon
daryPreferred')

>> print cl.read_preference

SecondaryPreferred(tag_sets=None)

In addition to the client, PyMongo also allows you to have read preferences set at the
database or collection level.

By default, read_preference for a client initialized without an explicit read preference
is PRIMARY (with value zero). However, if we now get the database object from the client
initialized previously, the read preference will be NEAREST (with value 4).

>>> db = client.test

>>> db.read_preference

Primary()

>>>

Setting the read preference is as simple as doing the following:

>>>db = client.get_database('test', read_preference=ReadPreference.
SECONDARY)

Again, as the read preference gets inherited from the client to the database object, it gets
inherited from the database object to the collection object. This would be used as the default
value for all the queries executed against this collection unless the read preference is
specified explicitly in the find operation.

Thus, db.pymongoTest.find_one() will have a cursor that uses the read preference as
SECONDARY (as we have just set it previously to SECONDARY at the database object level).

We will now wrap up the basic operations from a Python driver by trying to do some common
operations that we do in a mongo shell such as getting all the database names, getting a list
of collections in a database, and creating an index on a collection.

Chapter 3

75

In the shell, we do show dbs to show all the database names in the mongo instance
connected. From the Python client, we do the following on the client instance:

>>> client.database_names()

[u'local', u'test']

Similarly, to see the list of collections, we do show collections in the mongo shell; in Python, all
we do on the database object is as follows:

>>> db.collection_names()

[u'system.indexes', u'writeConcernTest', u'pymongoTest']

Now for the index operations; we first see what all indexes are present in the pymongoTest
collection. Execute the following in the Python shell to view the indexes on a collection:

>>> db.pymongoTest.index_information()

{u'_id_': {u'key': [(u'_id', 1)], u'ns': u'test.pymongoTest', u'v': 1}}

We now will create an index on key x, which is sorted in an ascending order on the
pymongoTest collection as follows:

>>>from pymongo import IndexModel, ASCENDING

>>> myindex = IndexModel([("x", ASCENDING)], name='Index_on_X')

>>>db.pymongoTest.create_indexes([myindex])

 ['Index_on_X']

We can again list the indexes to confirm the creation of the index:

>>> db.pymongoTest.index_information()

{u'Index_on_X': {u'key': [(u'x', 1)], u'ns': u'test.pymongoTest', u'v':
1},

 u'_id_': {u'key': [(u'_id', 1)], u'ns': u'test.pymongoTest', u'v': 1}}

We can see that the index has been created. Removing the index is also simple as follows:

db.pymongoTest.drop_index('Index_on_X')

Another parameter called CursorType.TAILABLE is used to denote that the cursor returned
by find is a tailable cursor. Explaining what tailable cursors and giving more details is not
in the scope of this recipe and will be explained in the recipe named Creating and tailing a
capped collection cursors in MongoDB in Chapter 5, Advanced Operations.

Programming Language Drivers

76

Implementing aggregation in Mongo using
PyMongo

We have already seen PyMongo using Python's client interface for Mongo in previous recipes.
In this recipe, we will use the postal codes collection and run an aggregation example using
PyMongo. The intention of this recipe is not to explain aggregation but to show how aggregation
can be implemented using PyMongo. In this recipe, we will aggregate the data based on the
state names and get the top five state names by the number of documents that they appear in.
We will make use of the $project, $group, $sort, and $limit operators for the process.

Getting ready
To execute the aggregation operation, we need to have a server up and running. A simple
single node is what we need. Refer to the Installing single node MongoDB recipe from
Chapter 1, Installing and Starting the Server for instructions on how to start the server. The
data that we will operate on needs to be imported in the database. The steps to import the
data are mentioned in the Creating test data recipe in Chapter 2, Command-line Operations
and Indexes. Additionally, refer to the Connecting to a single node using a Python client
recipe in Chapter 1, Installing and Starting the Server on how to install PyMongo for your host
operating system. As this is a way to implement aggregation in Python, it is assumed that the
reader is aware of the aggregation framework in MongoDB.

How to do it…
1.	 Open the Python terminal by typing the following on the command prompt:

$ Python

2.	 Once the Python shell opens, import pymongo as follows:
>>> import pymongo

3.	 Create an instance of MongoClient as follows:
>>> client = pymongo.MongoClient('mongodb://localhost:27017')

4.	 Get the test database's object as follows:
>>> db = client.test

5.	 Now, we execute the aggregation operation on the postalCodes collection as follows:
result = db.postalCodes.aggregate(

 [

 {'$project':{'state':1, '_id':0}},

 {'$group':{'_id':'$state', 'count':{'$sum':1}}},

 {'$sort':{'count':-1}},

Chapter 3

77

 {'$limit':5}

]

)

6.	 Type the following to view the results:
>>>for r in result:

print r

{u'count': 6446, u'_id': u'Maharashtra'}

{u'count': 4684, u'_id': u'Kerala'}

{u'count': 3784, u'_id': u'Tamil Nadu'}

{u'count': 3550, u'_id': u'Andhra Pradesh'}

{u'count': 3204, u'_id': u'Karnataka'}

How it works…
The steps are pretty straightforward. We have connected to the database running on localhost
and created a database object. The aggregation operation that we invoked on the collection
using the aggregate function is very similar to how we would invoke aggregation in the shell.
The object in the return value, result, is a cursor, which returns an object of type dict
on iteration. This dict contains two keys, each with the name of the state and count of the
number of their occurrence. In step 6, we are simply iterating over the cursor (result) to fetch
each result.

Executing MapReduce in Mongo using
PyMongo

In our previous recipe, Implementing aggregation in Mongo using PyMongo, we saw how to
execute aggregation operations in Mongo using PyMongo. In this recipe, we will work on the
same use case as we did for the aggregation operation but we will use MapReduce. The intent
is to aggregate the data based on the state names and get the top five state names by the
number of documents that they appear in.

Programming language drivers provide us with an interface to invoke the map reduce jobs
written in JavaScript on the server.

Programming Language Drivers

78

Getting ready
To execute the map reduce operations, we need to have a server up and running. A simple
single node is what we need. Refer to the Installing single node MongoDB recipe from Chapter
1, Installing and Starting the Server for instructions on how to start the server. The data that
we will operate on needs to be imported in the database. The steps to import the data are
mentioned in the Creating test data recipe in Chapter 2, Command-line Operations and Indexes.
Additionally, refer to the Connecting to a single node using Python client recipe in Chapter 1,
Installing and Starting the Server on how to install PyMongo for your host operating system.

How to do it…
1.	 Open the Python terminal by typing the following on the command prompt:

>>>python

2.	 Once the Python shell opens, import the bson package as follows:
>>> import bson

3.	 Import the pymongo package as follows:
>>> import pymongo

4.	 Create an of MongoClient as follows:
>>> client = pymongo.MongoClient('mongodb://localhost:27017')

5.	 Get the test database's object as follows:
>>> db = client.test

6.	 Write the following mapper function:
>>> mapper = bson.Code('''function() {emit(this.state, 1)}''')

7.	 Write the following reducer function:
>>> reducer = bson.Code('''function(key, values){return Array.
sum(values)}''')

8.	 Invoke map reduce; the result will be sent to the pymr_out collection:
>>> db.postalCodes.map_reduce(map=mapper, reduce=reducer,
out='pymr_out')

9.	 Verify the result as follows:
>>> c = db.pymr_out.find(sort=[('value', pymongo.DESCENDING)],
limit=5)

>>> for elem in c:

Chapter 3

79

... print elem

...

{u'_id': u'Maharashtra', u'value': 6446.0}

{u'_id': u'Kerala', u'value': 4684.0}

{u'_id': u'Tamil Nadu', u'value': 3784.0}

{u'_id': u'Andhra Pradesh', u'value': 3550.0}

{u'_id': u'Karnataka', u'value': 3204.0}

>>>

How it works…
Apart from the regular import for pymongo, here we import the bson package as well. This
is where we have the Code class; it is the Python object that we use for the JavaScript
map and reduce functions. It is instantiated by passing the JavaScript function body as a
constructor argument.

Once two instances of the Code class are instantiated, one for map and the other for reduce,
all we do is invoke the map_reduce function on the collection. In this case, we passed three
parameters: two Code instances for the map and reduce functions with parameter names
map and reduce, respectively and one string value used to provide the name of the output
collection that the results are written to.

We won't be explaining the map reduce JavaScript functions here but it is pretty simple, and
all it does is emit keys as the names of the states and values that are the number of times
the particular state name occurs. This result document with the key used, the state's name
as the _id field, and another field called value that is the sum of the times the particular
state's name given in the _id field appears in the collection is added to the output collection,
pymr_out. For example, in the entire collection, the state Maharashtra appeared 6446
times, thus the document for the state of Maharashtra is {u'_id': u'Maharashtra',
u'value': 6446.0}. To verify that the result is correct, you can execute the following query
in the mongo shell and see that the result is indeed 6446:

> db.postalCodes.count({state:'Maharashtra'})

6446

We are still not done as the requirement is to find the top five states by their occurrence in
the collection; we still have just the states and their occurrences, so the final step is to sort
the documents by the value field, which is the number of times the state's name occurred in
descending order and limit the result to five documents.

Programming Language Drivers

80

See also
Refer to Chapter 8, Integration with Hadoop for different recipes on executing map reduce
jobs in MongoDB using the Hadoop connector. This allows us to write the map and reduce
functions in languages such as Java, Python, and so on.

Executing query and insert operations using
a Java client

In this recipe, we will look at executing the query and insert operations using the Java
client for MongoDB. Unlike the Python programming language, Java code snippets cannot
be executed from an interactive interpreter, and thus we will be having some unit test cases
already implemented, whose relevant code snippets will be shown and explained.

Getting ready
For this recipe, we will start a standalone instance. Refer to the Installing single node
MongoDB recipe from Chapter 1, Installing and Starting the Server for instructions on
how to start the server.

The next step is to download the Java project, mongo-cookbook-javadriver, from
the Packt website. This recipe uses a JUnit test case to test out various features of the Java
client. In this whole process, we will use some of the most common API calls and thus learn
to use them.

How to do it…
To execute the test case, one can either import the project in an IDE-like Eclipse and execute
the test case or execute the test case from the command prompt using Maven.

The test case that we will execute for this recipe is com.packtpub.mongo.cookbook.
MongoDriverQueryAndInsertTest.

1.	 If you are using an IDE, open this test class and execute it as a JUnit test case.

2.	 If you are planning to use Maven to execute this test case, go to the command
prompt, change the directory at the root of the project, and execute the following to
execute this single test case:
$ mvn -Dtest=com.packtpub.mongo.cookbook.
MongoDriverQueryAndInsertTest test

Everything should get executed fine and the test case should succeed if the Java SDK and
Maven are properly set up and the MongoDB server is up and running and listening to port
27017 for the incoming connections.

Chapter 3

81

How it works…
We will now open the test class that we executed and see some of the important API calls in
the test method. The super class of our test class is com.packtpub.mongo.cookbook.
AbstractMongoTest.

We start by looking at the getClient method in this class. The client instance that has
been created is an instance of the com.mongodb.MongoClient type. There are several
overloaded constructors for this class; however, we use the following to instantiate the client:

MongoClient client = new MongoClient("localhost:27017");

Another method to look at is getJavaDriverTestDatabase in the same abstract class
that gets us the database instance. This instance is synonymous to the implicit variable db
in the shell. Here in Java, this class is an instance of the com.mongodb.DB type. We get an
instance of this DB class by invoking the getDB() method on the client instance. In our case,
we want the DB instance for the javaDriverTest database, which we get as follows:

getClient().getDB("javaDriverTest");

Once we get the instance of com.mongodb.DB, we use it to get the instance of com.
mongodb.DBCollection, which would be used to perform various operations—find and
insert—on the collection. The getJavaTestCollection method in the abstract test class
returns one instance of DBCollection. We get an instance of this class for the javaTest
collection by invoking the getCollection() method on com.mongodb.DB as follows:

getJavaDriverTestDatabase().getCollection("javaTest")

Once we get an instance of DBCollection, we are now ready to perform the operations on
it. In the scope of this recipe, it is limited to the find and insert operations.

Now, we open the main test case class, com.packtpub.mongo.cookbook.
MongoDriverQueryAndInsertTest. Open this class in an IDE or a text editor. We will look
at the methods in this class. The first method that we will look at is findOneDocument. Here,
the line of our interest is the one that queries for the document with the value of _id as 3:
collection.findOne(new BasicDBObject("_id", 3)).

This method returns an instance of com.mongodb.DBObject, which is a key value map
returning the fields of a document as a key and the value of this corresponding key. For
instance, to get the value of _id from the returned DBObject instance, we invoke result.
get("_id") on the returned result.

Programming Language Drivers

82

Our next method to inspect is getDocumentsFromTestCollection. This test case
executes a find operation on the collection and gets all the documents in it. The
collection.find() call executes the find operation on the instance of DBCollection.
The return value of the find operation is com.mongodb.DBCursor. An important point to
note is that invoking the find operation itself doesn't execute the query but just returns the
instance of DBCursor. This is an inexpensive operation that doesn't consume server-side
resources. The actual query gets executed on the server side only when the hasNext or next
method is invoked on the DBCursor instance. The hasNext() method is used to check if
there are more results and the next() method is used to navigate to the next DBObject
instance in the result. An example usage of the DBCursor instance returned to iterate
through the results is as follows:

while(cursor.hasNext()) {
 DBObject object = cursor.next();
 //Some operation on the returned object to get the fields and
 //values in the document
}

We now look at two methods, withLimitAndSkip and withQueryProjectionAndSort.
These methods show us how to sort, limit the number of results, and skip a number of initial
results. As we can see, the sort, limit, and skip methods are chained to each other:

DBCursor cursor = collection
 .find(null)
 .sort(new BasicDBObject("_id", -1))
 .limit(2)
 .skip(1);

All these methods return an instance of DBCursor itself, which allows us to chain the calls.
These methods are defined in the DBCursor class, which changes certain states according to
the operation that they perform in the instance and has return this at the end of the method
to return the same instance.

Remember that the actual operation is invoked on the server only on invoking the hasNext or
next method on DBCursor. Invoking any method such as sort, limit, and skip after the
execution of the query on the server will throw java.lang.IllegalStateException.

We used two variants of the find method. One accepts one parameter for the query to be
executed and one accepts two parameters—the first one for the query and the second is
another DBObject, which is used for projection that will return only a selected set of fields
from the document in the result.

Chapter 3

83

For instance, the following query from the withQueryProjectionAndSort method of
the test case selects all the documents as the first argument as null and the returned
DBCursor will have documents containing just one field called value:

DBCursor cursor = collection
 .find(null, new BasicDBObject("value", 1).append("_id", 0))
 .sort(new BasicDBObject("_id", 1));

The _id field is to be explicitly set to 0, or else it will be returned by default.

Finally, we look at two more methods in the test case, insertDataTest and
insertTestDataWithWriteConcern. We use a couple of variants of the insert method
in these two methods. All insert methods are invoked on the DBCollection instance
and return an instance, com.mongodb.WriteResult. The result can be used to get the
error that occurred during the write operation by invoking the getLastError() method,
the number of documents inserted using the getN() method, and the write concern for the
operation among the few operations. Refer to the Javadoc of the MongoDB API for more detail
on the methods. The two insert operations that we did are as follows:

collection.insert(new BasicDBObject("value", "Hello World"));

collection.insert(new BasicDBObject("value", "Hello World"),
WriteConcern.JOURNALED);

Both of these accept a DBObject instance for the document to be inserted as the first
parameter. The second method allows us to provide the write concern to be used for the
write operation. There are insert methods in the DBCollection class that allow bulk
insert as well. Refer to the Javadocs for more details on various overloaded versions of the
insert method.

See also…
The Javadocs for the current version of the MongoDB driver can be found at https://api.
mongodb.org/java/current/.

Executing update and delete operations
using a Java client

In the previous recipe, we saw how to execute find and insert operations in MongoDB using
the Java client; in this recipe, we will see how updates and deletes work in the Java client.

https://api.mongodb.org/java/current/
https://api.mongodb.org/java/current/

Programming Language Drivers

84

Getting ready
For this recipe, we will start a standalone instance. Refer to the Installing single node
MongoDB recipe from Chapter 1, Installing and Starting the Server for instructions on
how to start the server.

The next step is to download the Java project, mongo-cookbook-javadriver, from the Packt
website. This recipe uses a JUnit test case to test out various features of the Java client. In this
whole process, we will use some of the most common API calls and thus learn to use them.

How to do it…
To execute the test case, one can either import the project in an IDE-like Eclipse and execute
the test case or execute the test case from the command prompt using Maven.

The test case that we are going to execute for this recipe is com.packtpub.mongo.
cookbook.MongoDriverUpdateAndDeleteTest.

1.	 If you are using an IDE, open this test class and execute it as a JUnit test case.

2.	 If you are planning to use Maven to execute this test case, go to the command
prompt, change the directory at the root of the project, and execute the following to
execute this single test case:
$ mvn -Dtest=com.packtpub.mongo.cookbook.
MongoDriverUpdateAndDeleteTest test

Everything should get executed fine if the Java SDK and Maven are properly set up and the
MongoDB server is up and running and listening to port 27017 for the incoming connections.

How it works…
We created a test data for the recipes using a setupUpdateTestData() method. Here, we
simply put documents in the javaTest collection in the javaDriverTest database. We
add 20 documents to this collection with the value of i ranging from 1 to 20. This test data is
used in different test case methods to create test data.

Let's now take a look at the methods in this class. We will first look at basicUpdateTest().
In this method, we first create the test data and then execute the following update:

collection.update(
 new BasicDBObject("i", new BasicDBObject("$gt", 10)),
 new BasicDBObject("$set", new BasicDBObject("gtTen", true)));

Chapter 3

85

The update method here takes two arguments. The first is the query that would be used
to select the eligible documents for the update, and the second parameter is the actual
update. The first parameter looks confusing due to nested BasicDBObject instances;
however, it is the {'i' : {'$gt' : 10}} condition and the second parameter is the
update, {'$set' : {'gtTen' : true}}. The result of the update is an instance of com.
mongodb.WriteResult. The instance of WriteResult tells us the number of documents
that got updated and gets the error that occurred while executing the write operation and
write concern used for the update. Refer to the Javadocs of the WriteConcern class for
more details. This update only updates the first matching document by default only if multiple
documents match the query.

The next method that we will look at is multiUpdateTest, which will update all the
matching documents for the given query instead of the first matching document. The method
that we used is updateMulti on the collection instance. The updateMulti method is
a convenient way to update multiple documents. The following is the call that we make to
update multiple documents:

collection.updateMulti(new BasicDBObject("i",
 new BasicDBObject("$gt", 10)),
 new BasicDBObject("$set", new BasicDBObject("gtTen", true)));

The next operation that we did was to remove documents. The test case method to remove
documents is deleteTest(). The documents are removed as follows:

collection.remove(new BasicDBObject(
 "i", new BasicDBObject("$gt", 10)),
 WriteConcern.JOURNALED);

We have two parameters here. The first is the query for which the matching documents will
be removed from the collection. Note that all matching documents will be removed by default
unlike update, where only the first matching document will be removed by default. The second
parameter is the write concern to be used for the remove operation.

Note that when the server is started on a 32-bit machine, journaling is disabled by default.
When you use Write Concern on such machines, it may cause the operation to fail with the
following exception:

com.mongodb.CommandFailureException: { "serverUsed" :
"localhost/127.0.0.1:27017" , "connectionId" : 5 , "n" : 0 , "badGLE" :
{ "getlasterror" : 1 , "j" : true} , "ok" : 0.0 , "errmsg" : "cannot use
'j' option when a host does not have journaling enabled" , "code" : 2}

This would require the server to be started with the --journal option. On 64-bit machines,
this is not necessary as journaling is enabled by default.

Programming Language Drivers

86

We will look at the findAndModify operation next. The test case method to perform
this operation is findAndModifyTest. The following lines of code are used to perform
this operation:

DBObject old = collection.findAndModify(
 new BasicDBObject("i", 10),
 new BasicDBObject("i", 100));

The operation is the query that will find the matching documents and then update them. The
return type of the operation is an instance of DBObject before the update is applied. One
important feature of the findAndModify operation is that the find and update operations
are performed atomically.

The preceding method is a simple version of the findAndModify operation. There is an
overloaded version of this method with the following signature:

DBObject findAndModify(DBObject query, DBObject fields, DBObject
sort,boolean remove, DBObject update, boolean returnNew, boolean upsert)

Let's see what these parameters are in the following table:

Parameter Description
query This is the query that is used to query the document, which is the one that

gets updated/deleted.
fields The find method supports the projection of fields that need to be selected

in the result document(s) selected. The parameter here does the same job of
selecting the fixed set of fields from the resulting document.

sort If you haven't noticed already, let me tell you that the method can perform
this atomic operation on only one document and also return one document.
This sort function can be used in cases where the query selects multiple
documents and only the first gets chosen for the operation. The sort
function is applied on the result before picking up the first document to
update.

remove This is a Boolean flag that indicates whether to remove or update the
document. If this value is true, the document will be removed.

update Unlike the preceding attribute, this is not a Boolean value but a DBObject
instance that will tell what the update needs to be. Note that the remove
Boolean flag gets precedence over this parameter; if the remove attribute is
true, the update will not happen even if one is provided.

returnNew The find operation returns a document, but which one? The one before the
update was executed or the one after the update gets executed? This Boolean
flag, when given as true, returns the document after the update is executed.

upsert This is a Boolean flag again that executes upsert when true. It is relevant
only when the intended operation is update.

Chapter 3

87

There are more overloaded methods of this operation. Refer to the Javadocs of com.
mongodb.DBCollection for more methods. The findAndModify method that we used
ultimately invokes the method we discussed with the fields and sort parameters as null with
the remaining parameters, remove, returnNew, and upsert being false.

Finally, we look at the query builder support in MongoDB's Java API.

All the queries in mongo are DBObject instances with possibly more nested DBObject
instances in them. Things are simple for small queries, but they start getting ugly for
more complicated queries. Consider a relatively simple query where we want to query for
documents with i > 10 and i < 15. The mongo query for this is {$and:[{i:{$gt:10}},
{i:{$lt:15}}]}. Writing this in Java would mean using BasicDBObject instances, which
is even painful and looks as follows:

 DBObject query = new BasicDBObject("$and",
 new BasicDBObject[] {
 new BasicDBObject("i", new BasicDBObject("$gt", 10)),
 new BasicDBObject("i", new BasicDBObject("$lt", 15))
 });

Thankfully, however, there is a class called com.mongodb.QueryBuilder, which is a utility
class to build the complex queries. The preceding query is built using a query builder as follows:

DBObject query = QueryBuilder.start("i").greaterThan(10).and("i").
lessThan(15).get();

This is less error prone when writing a query and easy to read as well. There are a lot of
methods in the com.mongodb.QueryBuilder class and I would encourage you to go
through the Javadocs of this class. The basic idea is to start construction using the start
method and the key. We then chain the method calls to add different conditions, and when
the addition of various conditions is done, the query is constructed using the get() method,
which returns DBObject. Refer to the queryBuilderSample method in the test class for a
sample usage of query builder support of the MongoDB Java API.

See also
There are some more operations using the GridFS and geospatial indexes. We will see how to
use them in the Java application with a small sample in the advanced query chapter. Refer to
Chapter 5, Advanced Operations for such recipes.

The Javadocs for the current version of the MongoDB driver can be found at https://api.
mongodb.org/java/current/.

https://api.mongodb.org/java/current/
https://api.mongodb.org/java/current/

Programming Language Drivers

88

Implementing aggregation in Mongo using a
Java client

The intention of this recipe is not to explain aggregation but to show you how aggregation can
be implemented using the Java client from a Java program. In this recipe, we will aggregate
the data based on the state names and get the top five state names by the number of
documents that they appear in. We will use the $project, $group, $sort, and $limit
operators for the process.

Getting ready
The test class used for this recipe is com.packtpub.mongo.cookbook.
MongoAggregationTest. To execute the aggregation operations, we need to have a server
up and running. A simple single node is what we need. Refer to the Installing single node
MongoDB recipe from Chapter 1, Installing and Starting the Server for instructions on how to
start the server. The data that we will operate on needs to be imported in the database. The
steps to import the data are given in the Creating test data recipe in Chapter 2, Command-line
Operations and Indexes. The next step is to download the Java project, mongo-cookbook-
javadriver, from the Packt website. Though Maven can be used to execute the test case, it
is convenient to import the project in an IDE and execute the test case class. It is assumed that
you are familiar with the Java programming language and comfortable using the IDE that the
project will be imported to.

How to do it…
To execute the test case, one can either import the project in an IDE-like Eclipse and execute
the test case or execute the test case from the command prompt using Maven.

1.	 If you are using an IDE, open the test class and execute it as a JUnit test case.

2.	 If you are planning to use Maven to execute this test case, go to the command
prompt, change the directory at the root of the project, and execute the following to
execute this single test case:
$ mvn -Dtest=com.packtpub.mongo.cookbook.MongoAggregationTesttest

Everything should get executed fine if the Java SDK and Maven are properly set up and the
MongoDB server is up and running and listening to port 27017 for the incoming connections.

Chapter 3

89

How it works…
The method used for the aggregation functionality is aggregationTest() in our test
class. The aggregation operation is performed on MongoDB from a Java client using the
aggregate() method defined in the DBCollection class. The method has the following
signature:

AggregationOutput aggregate(firstOp, additionalOps)

Only the first argument is mandatory, which forms the first operation in the pipeline.
The second argument is a varagrs argument (variable number of arguments with zero or
more values), which allows more pipeline operators. All these arguments are of the com.
mongodb.DBObject type. In case any exception occurs in the execution of the aggregation
command, the aggregation operation will throw com.mongodb.MongoException with the
cause of the exception.

The return type, com.mongodb.AggregationOutput, is used to get the result of the
aggregation operation. From a developer's perspective, we are more interested in the
results field of this instance, which can be accessed using the results() method of the
returned object. The results() method returns an object of type, Iterable<DBObject>,
which one can iterate to get the results of the aggregation.

Let's look at how we implemented the aggregation pipeline in our test class:

AggregationOutput output = collection.aggregate(
 //{'$project':{'state':1, '_id':0}},
 new BasicDBObject("$project", new BasicDBObject("state",
1).append("_id", 0)),
 //{'$group':{'_id':'$state', 'count':{'$sum':1}}}
 new BasicDBObject("$group", new BasicDBObject("_id", "$state")
 .append("count", new BasicDBObject("$sum", 1))),
 //{'$sort':{'count':-1}}
 new BasicDBObject("$sort", new BasicDBObject("count", -1)),
 //{'$limit':5}
 new BasicDBObject("$limit", 5)
);

There are four steps in the pipeline in the following order: a $project operation, followed by
$group, $sort, and then $limit.

The last two operations look inefficient where we sort all and then just take the top five
elements. In such scenarios, the MongoDB server is intelligent enough to consider the limit
operation while sorting, where only the top five results need to be maintained rather than
sorting all the results.

Programming Language Drivers

90

For version 2.6 of MongoDB, the aggregation result can return a cursor. Though the preceding
code is still valid, the AggregationResult object is no longer the only way to get the results
of the operation. We can use com.mongodb.Cursor that can be used to iterate the results.
Additionally, the preceding format is now deprecated in favor of the format that accepts a list of
pipeline operators rather than varargs for the operators. Refer to the Javadocs of the com.
mongodb.DBCollection class and look at the various overloaded aggregate() methods.

Executing MapReduce in Mongo using a
Java client

In our previous recipe, Implementing aggregation in Mongo using a Java client, we saw how to
execute aggregation operations in Mongo using the Java client. In this recipe, we will work on
the same use case as we did for the aggregation operation but We will use MapReduce. The
intent is to aggregate the data based on the state names and get the top five state names by
the number of documents that they appear in.

If somebody is not aware of how to write MapReduce code for Mongo from a programming
language client and is seeing it for the first time, you might be surprised to see how it is
actually done. You might have imagined that you would be writing the map and reduce
function in the programming language that you are writing the code in, Java in this case,
and then using it to execute the map reduce. However, we need to bear in mind that the
MapReduce jobs run on the mongo servers and they execute JavaScript functions. Hence,
irrespective of the programming language driver, the map reduce functions are written in
JavaScript. The programming language drivers just act as a means of letting us invoke and
execute the map reduce functions (written in JavaScript) on the server.

Getting ready
The test class used for this recipe is com.packtpub.mongo.cookbook.
MongoMapReduceTest. To execute the map reduce operations, we need to have a
server up and running. A simple single node is what we need. Refer to the Installing single
node MongoDB recipe from Chapter 1, Installing and Starting the Server for instructions
on how to start the server. The data that we will operate on needs to be imported in the
database. The steps to import the data are given in the Creating test data recipe in Chapter 2,
Command-line Operations and Indexes. The next step is to download the Java project, mongo-
cookbook-javadriver, from the Packt website. Though Maven can be used to execute the
test case, it is convenient to import the project in an IDE and execute the test case class. It is
assumed that you are familiar with the Java programming language and comfortable using the
IDE that the project will be imported to.

Chapter 3

91

How to do it…
To execute the test case, one can either import the project in an IDE-like Eclipse and execute
the test case or execute the test case from the command prompt using Maven.

1.	 If you are using an IDE, open the test class and execute it as a JUnit test case.

2.	 If you are planning to use Maven to execute this test case, go to the command
prompt, change the directory at the root of the project, and execute the following to
execute this single test case:
$ mvn -Dtest=com.packtpub.mongo.cookbook.MongoMapReduceTesttest

Everything should get executed fine if the Java SDK and Maven are properly set up and the
MongoDB server is up and running and listening to port 27017 for the incoming connections.

How it works…
The test case method for our map reduce test is mapReduceTest().

Map reduce operations can be done in Mongo from a Java client using the mapReduce()
method defined in the DBCollection class. There are a lot of overloaded versions, and you
can refer to the Javadocs of the com.mongodb.DBCollection class for more details on the
various flavors of this method. The one that we used is collection.mapReduce(mapper,
reducer, output collection, query).

The method accepts the following four parameters:

ff The mapper function is of type String and a JavaScript code that would be executed
on the mongo database server

ff The reducer function is of type String and a JavaScript code that would be executed
on the mongo database server

ff The name of the collection that the output of the map reduce execution will be
written to

ff The query that will be executed by the server and the result of this query will be the
input to the map reduce job execution

Programming Language Drivers

92

As the assumption is that the reader is well-versed with the map reduce operations in the
shell, we won't explain the map reduce JavaScript functions that we used in the test case
method. All it does is emit keys as the names of the states and values, which are the number
of times the particular state name occurs. This result is added to the output collection,
javaMROutput, in this case. For example, in the entire collection, the state Maharashtra
appears 6446 times; thus, the document for the state of Maharashtra is {'_id':
'Maharashtra', 'value': 6446}. To confirm that this is the true value or not, you can
execute the following query in the mongo shell and see that the result is indeed 6446:

> db.postalCodes.count({state:'Maharashtra'})

6446

We are still not done as the requirement is to find the top five states by their occurrence in
the collection; we still have just the states and their occurrences, so the final step is to sort
the documents by the value field, which is the number of times the state's name occurs
in descending order, and limit the result to five documents.

See also
Refer to Chapter 8, Integration with Hadoop for different recipes on executing Map Reduce
jobs in MongoDB using the Hadoop connector. This allows us to write the Map and Reduce
functions in languages such as Java, Python, and so on.

93

4
Administration

In this chapter, we will see the following recipes related to MongoDB administration:

ff Renaming a collection

ff Viewing collection stats

ff Viewing database stats

ff Manually padding a document

ff The mongostat and mongotop utilities

ff Getting current executing operations and killing them

ff Using profiler to profile operations

ff Setting up users in Mongo

ff Interprocess security in Mongo

ff Modifying collection behavior using the collMod command

ff Setting up MongoDB as a Windows service

ff Replica set configurations

ff Stepping down as primary from the replica set

ff Exploring the local database of a replica set

ff Understanding and analyzing oplogs

ff Building tagged Replica sets

ff Configuring the default shard for non-sharded collections

ff Manual split and migration of chunks

ff Domain-driven sharding using tags

ff Exploring the config database in a sharded setup

Administration

94

Introduction
In this chapter we will cover some of the tools and practices for administering MongoDB. The
following recipes will help you collect statistics from your database, administer user access,
analyze oplogs and look into some aspects of working with replica sets.

Renaming a collection
Have you ever come across a scenario where you have named a table in a relational database
and at a later point of time felt that the name could have been better? Or perhaps the
organization you work for was late in realizing that the table names are really getting messy
and enforce some standards on the names? Relational databases do have some proprietary
ways to rename the tables and a database admin would do that for you.

This raises a question though. In Mongo world, where collections are synonymous to tables, is
there a way to rename a collection to some other name after it is created? In this recipe, we
will explore this feature of Mongo where we rename an existing collection with some data in it.

Getting ready
We would need to run a MongoDB instance to perform this collection renaming experiment.
Refer to the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server for information on how to start the server. The operations we will perform would be
from mongo shell.

How to do it…
1.	 Once the server is started and assuming it is listening for client connections on

default port 27017, execute the following command to connect to it from the shell:
> mongo

2.	 Once connected, using the default test database. Let's create a collection with some
test data. The collection we will use is named:
sloppyNamedCollection.

> for(i = 0 ; i < 10 ; i++) { db.sloppyNamedCollection.
insert({'i':i}) };

3.	 The test data will now be created (we may verify the data by querying the collection
sloppyNamedCollection).

4.	 Rename the collection neatNamedCollection as follows:
> db.sloppyNamedCollection.renameCollection('neatNamedCollection')

{ "ok" : 1 }

Chapter 4

95

5.	 Verify that the collection sloppyNamedCollection is no longer present by
executing:
> show collections

6.	 Finally, query the neatNamedCollection collection to verify that the data originally
in sloppyNamedCollection is indeed present in it. Simply execute the following on
the mongo shell:
> db.neatNamedCollection.find()

How it works…
Renaming a collection is pretty simple. It is accomplished with the renameCollection
method, which takes two arguments. Generally, the function signature is as follows:

> db.<collection to rename>.renameCollection('<target name of the
collection>', <drop target if exists>)

The first argument is the name to which the collection is to be renamed.

The second parameter that we didn't use is a Boolean value that tells the command whether
to drop the target collection if it exists. This value defaults to false, which means do not drop
the target but give an error. This is a sensible default, otherwise the results would be ghastly
if we accidently gave a collection name that exists and didn't wish to drop it. However, if you
know what you are doing and want the target to be dropped while renaming the collection,
pass the second parameter as true. The name of this parameter is dropTarget. In our case,
the call would have been:

> db.sloppyNamedCollection.renameCollection('neatNamedCollection', true)

As an exercise, try creating the sloppyNamedCollection again and rename it without the
second parameter (or false as the value). You should see mongo complaining that the target
namespace exists. Then, again rename with the second parameter as true, and now the
renaming operation executes successfully.

Note that the rename operation will keep the original and the newly renamed collection in
the same database. This renameCollection method is not enough to move/rename the
collection across another database. In such cases, we need to run the renameCollection
command that looks like this:

> db.runCommand({ renameCollection: "<source_namespace>", to: "<target_
namespace>", dropTarget: <true|false> });

Administration

96

Suppose we want to rename the collection sloppyNamedCollection to
neatNamedCollection as well as move it from test database to newDatabase, we can do
so by executing the following command. Note the switch dropTarget: true used is meant to
remove the existing target collection (newDatabase.neatNamedCollection) if it exists.

> db.runCommand({ renameCollection: "test.sloppyNamedCollection ", to: "
newDatabase.neatNamedCollection", dropTarget: true });

Also, the rename collection operation doesn't work on sharded collections.

Viewing collection stats
Perhaps one of the interesting statistics from an administrative purpose when it comes to
the usage of storage, the number of documents in collection possibly to estimate the future
space, and memory requirements based on the growth of the data is to get a high level
statistics of the collection.

Getting ready
To find the stats of the collection we need to have a server up and running and a single node
is what should be okay. Refer to the Installing single node MongoDB in Chapter 1, Installing
and Starting the Server for information on how to start the server. The data on which we
would be operating needs to be imported in the database. The steps to import the data are
given in the recipe Creating Test Data in Chapter 2, Command-line Operations and Indexes.
Once these steps are completed, we are all set to go ahead with this recipe.

How to do it…
1.	 We would be using postalCodes collection for viewing the stats.

2.	 Open the mongo shell and connect to the running MongoDB instance. In case you
have started the mongo on default port, execute the following:
$ mongo

3.	 With the data imported, create an index on the pincode field if one doesn't exist:
> db.postalCodes.ensureIndex({'pincode':1})

4.	 On the mongo terminal, execute the following:
> db.postalCodes.stats()

5.	 Observe the output and execute the following on the shell:
> db.postalCodes.stats(1024)

6.	 Again, observe the output.

We will now see what these values printed out mean to us in the following section.

Chapter 4

97

How it works…
If we observe the output for both these commands, we see that the second one has all the
figures in KB whereas the first one is in bytes. The parameter provided is known as scale and
all the figures indicating size are divided by this scale. In this case, since we gave the value as
1024, we get all the values in KB whereas if 1024 * 1024 is passed as the value of scale
(the size shown will be in MB). For our analysis, we will use the one that shows the sizes in KB.

> db.postalCodes.stats(1024)

{

 "ns" : "test.postalCodes",

 "count" : 39732,

 "size" : 9312,

 "avgObjSize" : 240,

 "numExtents" : 6,

 "storageSize" : 10920,

 "lastExtentSize" : 8192,

 "paddingFactor" : 1,

 "paddingFactorNote" : "paddingFactor is unused and unmaintained in
 3.0. It remains hard coded to 1.0 for compatibility only.",

 "userFlags" : 1,

 "capped" : false,

 "nindexes" : 2,

 "totalIndexSize" : 2243,

 "indexSizes" : {

 "_id_" : 1261,

 "pincode_1" : 982

 },

 "ok" : 1

}

The following table shows the meaning of the important fields:

Field Description
ns The fully qualified name of the collection with a format

<database>.<collection name>.
count The number of documents in the collection.

Administration

98

Field Description
size The actual storage size occupied by the documents in the collection.

Addition, deletion, and updates to documents in the collection can
change this figure. The scale parameter affects this field's value and
in our case this value is in KB as 1024 is the scale. This number does
include padding, if any.

avgObjSize This is the average size of the document in the collection. It is simply
the size field divided by the count of documents in the collection (the
preceding two fields). The scale parameter affects this field's value and
in our case this value is in KB as 1024 is the scale.

storageSize Mongo preallocates the space on the disk to ensure that the
documents in the collection are kept on continuous locations to provide
better performance in disk access. This preallocation fills up the
files with zeros and then starts allocating space to these documents
inserted. This field tells the size on the storage used by this collection.
This figure will generally be much more than the actual size of the
collection. The scale parameter affects this field's value and in our case
this value is in KB as 1024 is the scale.

numExtents As we saw, mongo pre allocates continuous disk space to the
collections for performance purpose. However as the collection grows,
new space needs to be allocated. This field gives the number of such
continuous chunk allocation. This continuous chunk is called an extent.

nindexes This field gives the number of indexes present on the collection. This
value would be 1 even if we do not create an index on the collection as
mongo implicitly creates an index on the field _id.

lastExtentSize The size of the last extent allocated. The scale parameter affects this
field's value and in our case this value is in KB as 1024 is the scale.

paddingFactor This parameter has been deprecated since version 3.0.0 and is
hardcoded to 1 for backward compatibility reasons.

totalIndexSize Indexes take up space to store too. This field gives the total size taken
up by the indexes on the disk. The scale parameter affects this field's
value and in our case this value is in KB as 1024 is the scale.

indexSizes This field is a document with the key as the name of the index and
value as the size of the index in question. In our case, we had created
an index explicitly on the pincode field; thus, we see the name of the
index as the key and the size of the index on disk as the value. The total
of these values of all the index is same as the value given previously,
totalIndexSize. The scale parameter affects this field's value and
in our case this value is in KB as 1024 is the scale.

Chapter 4

99

Documents are placed on the storage device in continuous locations. If a document is
updated, resulting in an increase in size, Mongo will have to relocate this document. This
operation turns out to be expensive affecting the performance of such update operations.
Starting with Mongo 3.0.0, two data allocation strategies are used. One is The power of 2,
where documents are allocated space in power of 2 (for example, 32, 64, 128, and so on).
The other is No Padding, where collections do not expect document sizes to be altered.

See also
In this recipe, we discussed viewing stats of a collection. See the next recipe to view the stats
at a database level.

Viewing database stats
In the previous recipe, we saw how to view some important statistics of a collection from
an administrative perspective. In this recipe, we get an even higher picture, getting those
(or most of those) statistics at the database level.

Getting ready
To find the stats of the database, we need to have a server up and running and a single node
is what should be okay. Refer to the recipe Installing single node MongoDB in Chapter 1,
Installing and Starting the Server for information on how to start the server. The data on which
we would be operating needs to be imported in the database. The steps to import the data are
given in the recipe Creating Test Data in Chapter 2, Command-line Operations and Indexes.
Once these steps are completed, we are all set to go ahead with this recipe. Refer to the
previous recipe if you need to see how to view stats at the collection level.

How to do it…
1.	 We will use the test database for the purpose of this recipe. It already has a

postalCodes collection in it.

2.	 Connect to the server using the mongo shell by typing in the following command
from the operating system terminal. It is assumed that the server is listening to port
27017.
$ mongo

Administration

100

3.	 On the shell, execute the following command and observe the output:
> db.stats()

4.	 On the shell, again execute the following but this time around we add the scale
parameter. Observe the output:
> db.stats(1024)

How it works…
The scale parameter, which is a parameter to the stats function, divides the number of
bytes with the given scale value. In this case, it is 1024 and hence all the values will be in KB.
We analyze the following output:

> db.stats(1024)

{

 "db" : "test",

 "collections" : 3,

 "objects" : 39738,

 "avgObjSize" : 143.32699179626553,

 "dataSize" : 5562,

 "storageSize" : 16388,

 "numExtents" : 8,

 "indexes" : 2,

 "indexSize" : 2243,

 "fileSize" : 196608,

 "nsSizeMB" : 16,

"extentFreeList" : {

 "num" : 4,

 "totalSize" : 2696

 },
 "dataFileVersion" : {

 "major" : 4,

 "minor" : 5

 },

 "ok" : 1

}

Chapter 4

101

The following table shows the meaning of the important fields:

Field Description
db This is the name of the database whose stats are being

viewed.
collections This is the total number of collections in the database.
objects This is the count of documents across all collections in

the database. If we find the stats of a collection using
db.<collection>.stats(), we get the count of
documents in the collection. This attribute is the sum of
counts of all the collections in the database.

avgObjectSize This is simply the size in bytes of all the objects in all the
collections in the database divided by the count of the
documents across all the collections. This value is not
affected by the scale provided, although this is a size
field.

dataSize This is the total size of the data held across all the
collections in the database. This value is affected by the
scale provided.

storageSize This is the total amount of storage allocated to collections
in this database for storing documents. This value is
affected by the scale provided.

numExtents This is the count of all the number of extents in the
database across all the collections. This is basically the
number of extents (logical containers) in the collection
stats for collections in this database.

indexes This is the sum of number of indexes across all collections
in the database

indexSize This is the size in bytes for all the indexes of all the
collections in the database. This value is affected by the
scale provided.

fileSize This is a sum of the size of all the database files you should
find on the filesystem for this database. The files would be
named test.0, test.1, and so on for test database.
This value is affected by the scale provided.

nsSizeMB This is the size of the file in MB for the .ns file of the
database.

extentFreeList.num This is the number of free extends in freelist. You can look
at extent as an internal data structure of MongoDB.

extentFreeList.totalSize Size of the extents on the freelist.

Administration

102

For more information on these, you can refer to books such as Instant MongoDB by Packt
Publishing (http://www.packtpub.com/big-data-and-business-inteliigence/
instant-mongodb-instant).

How it works…
Let's start by looking at the collections field. If you look carefully at the number and
execute the show collections command on the mongo shell, you will find one extra collection
in the stats as compared to those by executing the command. The difference is for one
collection, which is hidden. Its name is system.namespaces collection. You may do a
db.system.namespaces.find() to view its contents.

Getting back to the output of stats operation on the database, the objects field in the
result has an interesting value too. If we find the count of documents in the postalCodes
collection, we see it is 39732. The count shown here is 39738, which means there are six
more documents. These six documents come from the system.namespaces and system.
indexes collection. Executing a count query on these two collections will confirm it. Note that
the test database doesn't contain any other collection apart from postalCodes. The figures
would change if the database contains more collections with documents in it.

Another thing to note is the value of the avgObjectSize and there is something weird in this
value. Unlike this very field in the collection's stats, which is affected by the value of the scale
provided, in database stats this value is always in bytes. This is pretty confusing and I am not
really sure why this is not scaled according to the provided scale.

Manually padding a document
Without getting too much into the internals of the storage, MongoDB uses memory mapped
files, which means that the data is stored in files exactly as how it would be in memory and
it would use the low level OS services to map these pages to memory. The documents are
stored in continuous locations in mongo data files and problem arises when the document
grows and no longer fits in the space. In such scenarios, mongo rewrites the document
towards the end of the collection with the updated data and clearing up the space where it
was originally placed (note that this space is not released to OS as free space).

This is not a big problem for applications that don't expect the documents to grow in size.
However, this is a big performance hit for those who foresee this growth in the document size
over a period of time and potentially a lot of such document movements. With the release
of MongoDB 3.0, the Power of 2 method became the default size allocation strategy. As
the name suggests, this method stores documents in space allocated in powers of 2. This
provides additional padding to the documents as well as better reuse of free space caused by
relocation or deletion of documents.

That said, if you still wish to introduce manual padding in your strategy, read on.

http://www.packtpub.com/big-data-and-business-inteliigence/instant-mongodb-instant
http://www.packtpub.com/big-data-and-business-inteliigence/instant-mongodb-instant

Chapter 4

103

Getting ready
Nothing is needed for this recipe unless you plan to try out this simple technique, in which
case you would need a single instance up and running. Refer to the recipe Installing single
node MongoDB in Chapter 1, Installing and Starting the Server for information on how to start
the server.

How to do it…
The idea of this technique is to add some dummy data to the document to be inserted. This
dummy data's size in addition to other data in the document is approximately same as the
anticipated size of the document.

For example, if the average size of the document is estimated to be around 1200 bytes over
a period of time and there is 300 bytes of data present in the document while inserting it, we
will add a dummy field of size around 900 bytes so that the total document size sums up to
1200 bytes.

Once the document is inserted, we unset this dummy field, which leaves a hole in the file
between the two consecutive documents. This empty space would then be used when the
document grows over a period of time minimizing the document movements. The empty space
may also be used by another document. The more foolproof way is to remove the padding
only when you are using the space. However, any document growing beyond the anticipated
average growth will have to be copied by the server to the end of the collection. Needless to
say, documents not growing to the anticipated size will tend to waste disk space.

The applications can come up with some intelligent strategy to perhaps the adjust the size
of the padding field based on say some particular field of the document to take care of these
shortcomings but that is something up to the application developers.

Let's now see a sample of this approach:

1.	 We define a small function that will add a field called padField with an array of
string values to the document. Its code is as follows:
function padDocument(doc) {
 doc.padField = []
 for(i = 0 ; i < 20 ; i++) {
 doc.padField[i] = 'Dummy'
 }
}

It will add an array called padField and add 20 times a string called Dummy. There is
no restriction on what type you add to the document and how many times it is added as
long as it consumes the space you desire. The preceding code is just a sample.

Administration

104

2.	 The next step is to insert a document. We will define another function called insert
to do that:
function insert(collection, doc) {
 //1. Pad the document with the padField
 padDocument(doc);
 //2. Create or store the _id field that would be used later
 if(typeof(doc._id) == 'undefined') {
 _id = ObjectId()
 doc._id = _id
 }
 else {
 _id = doc._id
 }
 //3. Insert the document with the padded field
 collection.insert(doc)
//4. Remove the padded field, use the saved _id to find the
document to be updated.
collection.update({'_id':_id}, {$unset:{'padField':1}})
}

3.	 We will now put this into action by inserting a document in the collection testCol
as follows:
insert(db.testCol, {i:1})

4.	 You may query the testCol using the following query and check if the document
inserted exists or not:
> db.testCol.findOne({i:1})

Note that on querying you would not find the padField in it. However, the space once
occupied by the array stays between the subsequently inserted documents even if the field
was unset.

How it works…
The insert function is self-explanatory and has comments in it to tell what it does. An
obvious question is how do we believe if this indeed what we intent to do. For this purpose,
we shall do a small activity as follow. We will work on a manualPadTest collection for this
purpose. From the mongo shell, execute the following:

> db.manualPadTest.drop()

> db.manualPadTest.insert({i:1})

> db.manualPadTest.insert({i:2})

> db.manualPadTest.stats()

Chapter 4

105

Take a note of the avgObjSize field in the stats. Next, execute the following from the
mongo shell:

> db.manualPadTest.drop()

> insert(db.manualPadTest , {i:1})

> insert(db.manualPadTest , {i:2})

> db.manualPadTest.stats()

Take a note of the avgObjSize field in the stats. This figure is much larger than the one we
saw earlier with a regular insert without padding. The paddingFactor as we see in both
cases still is one, but the latter case has more buffer for the document to grow.

One catch in the insert function we used in this recipe is that the insert into the collection
and the update document operations are not atomic.

The mongostat and mongotop utilities
Most of you might find these names similar to two popular Unix commands, iostat and top.
For MongoDB, mongostat and mongotop are two utilities which does pretty much the same
job as these two Unix commands do and there is no prize for guessing that these are used to
monitor the mongo instance.

Getting ready
In this recipe, we would be simulating some operations on a standalone mongo instance by
running a script that would attempt to keep your server busy, and then in another terminal we
will run these utilities to monitor the db instance.

You need to start a standalone server listening to any port for client connections; in this case,
we will stick to the default 27017. If you are not aware how to start a standalone server, refer
to Installing single node MongoDB in Chapter 1, Installing and Starting the Server. We also
need to download the script KeepServerBusy.js from Packt site and keep it handy for
execution on local drive. Also, it is assumed that the bin directory of your mongo installation
is present in the path variable of your operating system. If not, then these commands need
to be executed with the absolute path of the executable from the shell. These two utilities
mongostat and mongotop comes standard with the mongo installation.

How to do it…
1.	 Start the MongoDB server, and let it listen to the default port for connections.

2.	 In a separate terminal, execute the provided JavaScript KeepServerBusy.js
as follows:
$ mongo KeepServerBusy.js –quiet

Administration

106

3.	 Open a new OS terminal and execute the following command:
$ mongostat

4.	 Capture the output content for some time and then hit Ctrl + C to stop the command
from capturing more stats. Keep the terminal open or copy the stats to another file.

5.	 Now, execute the following command from the terminal:
$ mongotop

6.	 Capture the output content for some time and then hit Ctrl + C to stop the command
from capturing more stats. Keep the terminal open or copy the stats to another file.

7.	 Hit Ctrl + C in the shell where the provided JavaScript KeepServerBusy.js was
executed to stop the operation that keeps the server busy.

How it works…
Let's see what we have captured from these two utilities.

We start by analyzing mongostat. On my laptop, the capture using mongostat looks
like this:

mongostat

connected to: 127.0.0.1

insert query update delete getmore command flushes mapped vsize res
faults idx miss % qr|qw ar|aw netIn netOut conn time

 1000 1 950 1000 1 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|1 431k 238k 2 08:59:21

 1000 1 1159 1000 1 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|0 468k 252k 2 08:59:22

 1000 1 984 1000 1 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|1 437k 240k 2 08:59:23

 1000 1 1066 1000 1 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|1 452k 246k 2 08:59:24

 1000 1 944 1000 1 2|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|1 431k 237k 2 08:59:25

 1000 1 1149 1000 1 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|1 466k 252k 2 08:59:26

 1000 2 1015 1053 2 1|0 0 624.0M 1.4G 50.0M
0 0 0|0 0|0 450k 293k 2 08:59:27

You may choose to look at what the script KeepServerBusy.js is doing to keep the server
busy. All it does is insert 1000 documents in collection monitoringTest, then update them
one by one to set a new key in it, executes a find and iterates through all of them, and finally
deletes them one by one and is basically a write intensive operation.

Chapter 4

107

The output does look ugly with content wrapping, but let's analyze the fields one by one and
see what the fields to keep an eye on.

Column(s) Description
insert, query, update,
delete

The first four columns are the number of insert, query,
update and delete operation per second. It is per second as
the time frame these figures are captured are separated by one
second, which is indicated by the last column.

getmore When the cursor runs out of data for the query, it executes
a getmore operation on the server to get more results for
the query executed earlier. This column shows the number of
getmore operations executed in this given time frame of 1
second. In our case, there are not many getmore operations that
are executed.

commands This is the number of commands executed on the server in the
given time frame of 1 second. In our case, it wasn't much and
was only one. The number after a | is 0 in our case, as this was
in standalone mode. Try executing mongostat connecting to
a replica set primary and secondary. You should see slightly
different figures there.

flushes This is the number of times data was flushed to disk in the
interval of 1 second. (fsync in case of MMAPv1 storage engine,
and checkpoints triggered between polling interval in case of
WiredTiger storage engine)

mapped, virtual, and
resident memory

Mapped memory is the amount of memory mapped by the Mongo
process to the database. This will typically be same as the size
of the database. Virtual memory on other hand is the memory
allocated to the entire mongod process. This will be more than
twice the size of mapped memory especially when journaling
is enabled. Finally, resident memory is the actual of physical
memory used by mongo. All these figures are given in MB. The
total amount of physical memory might be a lot more than what
is being used by Mongo, but that is really not a concern unless
a lot of page faults occur (which does happen in the previously
mentioned output).

faults These are the number of page faults occurring per second. These
numbers should be as less as possible. It indicates the number
of times mongo had to go to disk to obtain the document/index
that was missing in the main memory. This problem is not as big a
problem when using SSD for persistent storage as it is when using
spinning disk drives.

Administration

108

Column(s) Description
locked Since version 2.2, all write operations to a collection lock the

database in which the collection is and does not acquire a global
level lock. This field shows the database that was locked for a
majority of the time in the given time interval. In our case, the
test database is locked for a majority of time.

idx miss % This field gives the number of times a particular index was needed
and was not present in memory. This causes a page fault and the
disk needs to be accessed to get the index. Another disk access
might be needed to get the document as well. This figure too
should be low. A high percentage of index miss is something that
would need attention.

qr | qw These are the queued up reads and writes that are waiting for
getting a chance to be executed. If this number goes up, it shows
that the database is getting overwhelmed by the volume of read
and writes than it could handle. If the values are too high, keep
an eye on page faults and database lock percents in order to
get more insights on increased queue counts. If the data set is
too large, sharding the collection can improve the performance
significantly.

ar | aw This is the number of active readers and writers (clients). Not
something to worry of even for a large number as far as other
stats we saw previously are under control.

netIn and netOut The network traffic in and out of the mongo server in the given
time frame. Figure is measured in bits. For example, 271k means
271 kilobits.

conn This indicates the number of open connections. Something to
keep a watch on to see if this doesn't keep getting higher.

time This is the time interval when this sample was captured.

There are some more fields seen if mongostat is connected to a replica set primary or
secondary. As an assignment, once the stats or a standalone instance are collected, start a
replica set server and execute the same script to keep the server busy. Use mongostat to
connect to a primary and secondary instance and see different stats captured.

Apart from mongostat, we also used the mongotop utility to capture the stats. Let's see its
output and make some sense out of it:

$>mongotop

connected to: 127.0.0.1

 ns total read
write

2014-01-15T17:55:13

Chapter 4

109

 test.monitoringTest 899ms 1ms
898ms

 test.system.users 0ms 0ms
0ms

 test.system.namespaces 0ms 0ms
0ms

 test.system.js 0ms 0ms 0ms

 test.system.indexes 0ms 0ms
0ms

 ns total read
write

2014-01-15T17:55:14

 test.monitoringTest 959ms 0ms
959ms

 test.system.users 0ms 0ms 0ms

 test.system.namespaces 0ms 0ms
0ms

 test.system.js 0ms 0ms 0ms

 test.system.indexes 0ms 0ms
0ms

 ns total read
write

2014-01-15T17:55:15

 test.monitoringTest 954ms 1ms
953ms

 test.system.users 0ms 0ms
0ms

 test.system.namespaces 0ms 0ms
0ms

 test.system.js 0ms 0ms 0ms

 test.system.indexes 0ms 0ms
0ms

There is not much to see in this stat. We see the total time a database was busy reading or
writing in the given slice of 1 second. The value given in the total would be sum of the read and
the write time. If we actually compare the mongotop and mongostat for the same time slice,
the percentage of time duration for which the write was taking place would be very close to the
figure given in the percentage time that the database was locked in the mongostat output.

Administration

110

The command mongotop accepts a parameter on the command line as follows:

$ mongotop 5

In this case, the interval after which the stats will be printed out will be 5 seconds as opposed
to the default value of 1 second.

Starting with MongoDB 3.0, both mongotop and mongostat
utilities allow output in JSON format using --json option. This
can be very useful if you were to use custom monitoring or metrics
collection scripts, which would rely on these utilities.

See also
ff In the recipe Getting current executing operations and killing them, we will see how

to get the current executing operations from the shell and kill them if needed

ff In the recipe Using profiler to profile operations, we will see how to use the inbuilt
profiling feature of Mongo to log operation execution times.

Getting current executing operations and
killing them

In this recipe, we will see how to view the current running operations and kill some operations
that are running for a long time.

Getting ready
We will simulate some operations on a standalone mongo instance. We need to start a
standalone server listening to any port for client connections; in this case, we will stick to the
default 27017. If you are not aware how to start a standalone server, refer to Installing single
node MongoDB in Chapter 1, Installing and Starting the Server. We also need to start two
shells connected to the server started. One shell would be used for background index creation
and another would be used to monitor the current operation and then kill it.

How to do it…
1.	 We would not be able to simulate the actual long running operation in our test

environment. We will try to create an index and hope it takes long to create.
Depending on your target hardware configuration, the operation may take some time.

Chapter 4

111

2.	 To start with this test, let's execute the following on the mongo shell:
> db.currentOpTest.drop()

> for(i = 1 ; i < 10000000 ; i++) { db.currentOpTest.
insert({'i':i})}

The preceding insertion might take some time to insert 10 million documents.

3.	 Once the documents are inserted, we will execute an operation that would create
the index in background. If you would like to know more about index creation, refer
to the recipe Creating a background and foreground index in the shell in Chapter 2,
Command-line Operations and Indexes, but it is not a prerequisite for this recipe.

4.	 Create a background index on the field i in the document. This index creation
operation is what we will be viewing from the currentOp operation and is what we
will attempt to kill from using the kill operation. Execute the following in one shell to
initiate the background index creation operation. This takes fairly long time and on
my laptop it took well over 100 seconds.
> db.currentOpTest.ensureIndex({i:1}, {background:1})

5.	 In the second shell, execute the following command to get the current executing
operations:
> db.currentOp().inprog

6.	 Take a note of the progress of the operations and find the one that is necessary for
index creation. In our case, it was the only in progress on test machine. It will be an
operation on system.indexes and the operation will be insert. The keys to lookout
for in the output document are ns and op, respectively. We need to note the first
field of this operation, opid. In this case, it is 11587458. The sample output of the
command is given in next section.

7.	 Kill the operation from the shell using the following command, using the opid
(operation ID) we got earlier:
> db.killOp(11587458)

How it works…
We will split our explanation into two sections, the first about the current operation details and
second about killing the operation.

In our case, index creation process is the long-running operation that we intend to kill. We
create a big collection with about 10 million documents and initiate a background index
creation process.

Administration

112

On executing the db.currentOp() operation, we get a document as the result with a field
inprog whose value is an array of other documents each representing a currently running
operation. It is common to get a big list of documents on a busy system. Here is a document
taken for the index creation operation:

{
 "desc" : "conn12",
 "threadId" : "0x3be96c0",
 "connectionId" : 12,
 "opid" : 3212789,
 "active" : true,
 "secs_running" : 1,
 "microsecs_running" : NumberLong(729029),
 "op" : "query",
 "ns" : "test.$cmd",
 "query" : {
 "createIndexes" : "currentOpTest",
 "indexes" : [
 {
 "key" : {
 "i" : 1
 },
 "name" : "i_1",
 "background" : 1
 }
]
 },
 "client" : "127.0.0.1:36542",
 "msg" : "Index Build (background) Index Build
 (background): 384120/1000000 38%",
 "progress" : {
 "done" : 384120,
 "total" : 1000000
 },
 "numYields" : 3003,
 "locks" : {
 "Global" : "w",
 "MMAPV1Journal" : "w",
 "Database" : "w",
 "Collection" : "W"
 "waitingForLock" : true,
 "lockStats" : {
 "Global" : {
 "acquireCount" : {

Chapter 4

113

 "w" : NumberLong(3004)
 }
 },
 "MMAPV1Journal" : {
 "acquireCount" : {
 "w" : NumberLong(387127)
 },
 "acquireWaitCount" : {
 "w" : NumberLong(9)
 },
 "timeAcquiringMicros" : {
 "w" : NumberLong(60025)
 }
 },
 "Database" : {
 "acquireCount" : {
 "w" : NumberLong(3004),
 "W" : NumberLong(1)
 }
 },
 "Collection" : {
 "acquireCount" : {
 "W" : NumberLong(3004)
 },
 "acquireWaitCount" : {
 "W" : NumberLong(1)
 },
 "timeAcquiringMicros" : {
 "W" : NumberLong(66)
 }
 },
 "Metadata" : {
 "acquireCount" : {
 "W" : NumberLong(4)
 }
 }
 }
 }

Administration

114

We will see what these fields mean in the following table:

Field Description
opid This is a unique operation ID identifying the operation. This is the ID to be

used to kill an operation.
active The Boolean value indicating whether the operation has started or not, it

is false only if it is waiting for acquiring the lock to execute the operation.
The value will be true once it starts even if at a point of time where it has
yielded the lock and is not executing.

secs_running Gives the time in seconds the operation is executing for.
op This is the type of the operation. In the case of index creation, it is

inserted into a system collection of indexes. Possible values are insert,
query, getmore, update, remove, and command.

ns This is the fully qualified namespace for the target. It would be in the form
<database name>.<collection name>.

insert This is the document that would be inserted in the collection.
query This is a field that would be present for other operations, other than

insert, getmore, and command.
client The ip address/hostname and the port of the client who initiated the

operation.
desc This is the description of the client, mostly the client connection name.
connectionId This is the identifier of the client connection from which the request

originated.
locks This is a document containing the locks held for this operation. The

document shows the type and mode of locks held for the operation being
analyzed. The possible modes are as follows:

R represents Shared (S) lock.

W represents Exclusive (X) lock.

r represents Intent Shared (IS) lock.

w represents Intent Exclusive (IX) lock.
waitingForLock This field indicates if the operation is waiting for a lock to be acquired. For

instance, if the preceding index creation was not a background process,
other operations on this database would queue up for the lock to be
acquired. This flag for those operations would then be true.

msg This is a human-readable message for the operation. In this case, we do
see the percentage of operation complete as this is an index creation
operation.

progress The state of the operation, the total gives the total number of documents
in the collection and done gives the number indexed so far. In this
case, the collection already had some more documents over 10 million
documents. The percentage completion is computed from these figures.

Chapter 4

115

Field Description
numYields This is the number of times the process has yielded the lock to allow

other operations to execute. Since this is the background index creation
process, this number will keep on increasing as the server yields it
frequently to let other operations execute. Had it been a foreground
process, the lock would never be yielded till the operation completes.

lockStats This document has more nested documents giving the stats for the total
time this operation has held the read or write lock and also the time it
waited to acquire the lock.

In case you have a replica set, there would be more lot of getmore
operations on the oplog on primary from secondary.

1.	 To see the system operations being executed too, we need to pass a true value as the
parameter to the currentOp function call as follows:
> db.currentOp(true)

2.	 Next, we will see how to kill the user initiated operation using the killOp function.
The operation is simply called as follows:
> db.killOp(<operation id>)

In our case, the index creation process had the process ID 11587458 and thus it will
be killed as follows:
> db.killOp(11587458)

On killing any operation, irrespective of whether the given operation ID exists or not,
we see the following message on the console:
{ "info" : "attempting to kill op" }

Thus, seeing this message doesn't mean that the operation was killed. It just means
that the operation if it exists will be attempted to be killed.

3.	 If some operation cannot be killed immediately and if the killOp command is
issued for it, the field killPending in the currentOp will start appearing for the
given operation. For example, execute the following query on the shell:
> db.currentOpTest.find({$where:'sleep(100000)'})

Administration

116

This will not return and the thread executing the query will sleep for 100 seconds. This is
an operation that cannot be killed using killOp. Try executing the command currentOp
from another shell (do not press Tab for auto completion, your shell may just hang), get the
operation ID, and then kill it using the killOp. You should see that the process still would be
running if you execute the currentOp command, but the document for the process details
will now contain a new key killPending stating that the kill for this operation is requested
but pending.

Using profiler to profile operations
In this recipe, we will look at mongo's inbuilt profiler that would be used to profile the
operations executed on the mongo server. It is a utility that is used to log all or slow
operations that could be used for analysis of the performance of the server.

Getting ready
In this recipe, we will perform some operations on a standalone mongo instance and profile
them. We need to start a standalone server listening to any port for client connections; in this
case, we will stick to the default 27017. If you are not aware how to start a standalone server,
refer to Installing single node MongoDB in Chapter 1, Installing and Starting the Server. We
also need to start a shell that would be used to perform querying, enabling profiling, and
viewing the profiling operation.

How to do it…
1.	 Once the server is started and the shell is connected to it, execute the following to get

the current profiling level:
> db.getProfilingLevel()

2.	 The default level should be 0 (no profiling, if we have not set it earlier).

3.	 Let's set the profiling level to 1 (log slow operations only) and log all the operations
slower than 50 ms. Execute the following on the shell:
> db.setProfilingLevel(1, 50)

4.	 Now, let's execute an insert operation into a collection, and then execute a couple
of queries:
> db.profilingTest.insert({i:1})

> db.profilingTest.find()

> db.profilingTest.find({$where:'sleep(70)'})

5.	 Now, execute the query on the following collection:
> db.system.profile.find().pretty()

Chapter 4

117

How it works…
Profiling is something that would not be enabled by default. If you are happy about the
performance of the database, there is no reason one would enable the profiler. It is only when
one feels there is some room for improvement and wants to target some expensive operations
taking place. An important question is what classifies an operation to be slow? The answer
is, it depends from application to application. In mongo, slow means any operation above
100 ms. However, while setting the profiling level, you may choose the threshold value.

There are three possible values for profiling levels:

ff 0: Disable profiling

ff 1: Enable profiling for slow operations, where the threshold value for an operation to
be classified as slow is provided with the call while setting the profiling level

ff 2: Profile all operations

While profiling all operations might not be a very good idea and might not be commonly used
as we shall soon see, setting the value to 1 and a threshold provided to it is a good way to
monitor slow operations.

If we look at the steps that we executed, we see that we can get the current profiling
level by executing the operation db.getProfilingLevel(). To get more information,
for example, what value is set as a threshold for the slow operations, we can use
db.getProfilingStatus(). This returns a document with the profiling level and the
threshold value for slow operations.

For setting the profiling level, we call the db.setProfilingLevel() method. In our case, we
set it for logging all operations taking more than 50 ms as db.setProfilingLevel(1, 50).

To disable profiling, simply execute db.setProfilingLevel(0).

Next we executed three operations, one to insert a document, one to find all documents, and
finally a find that calls sleep with a value of 70 ms to slow it down.

The final step was to see these profiled operations that are logged in the system.profile
collection. We execute a find to see the operations logged. For my execution, the insert and
the final find operation with the sleep were logged.

Administration

118

Obviously, this profiling has some overhead but it is negligible. Hence, we would not enable
it by default but only when we want to profile slow operations. Also, another question would
be, Will this profiling collection increase over a period of time? The answer is No, as this is a
capped collection. Capped collections are fixed size collections that preserve insertion orders
and act as a circular queue filling in the new documents, discarding the oldest when it gets
full. A query on system.namespaces should show the stats. The query execution would
show the following for the system.profile collection:

{"name":"test.system.profile", "options":{"capped":true, "size":1048576
}}

As we can see, the size of the collection is 1 MB, which is incredibly small. Setting the profiling
level to 2 thus would easily overwrite the data on busy systems. One may also choose to
explicitly create a collection with the name system.profile as a capped collection and of
any size they prefer should they choose to retain more operations in it. To create a capped
collection explicitly, you can execute the following:

db.createCollection('system.profile', {capped:1, size: 1048576})

Obviously, the size chosen is arbitrary and you are free to allocate any size to this collection
based on how frequently the data gets filled and how much of profiling data you want to keep
before it gets overwritten.

As this is a capped collection and insertion order is preserved, a query with the sort order
{$natural:-1} would be perfectly fine and very efficient to find the operations in the
reverse order of the execution time.

We would finally take a look at the document that got inserted in the system.profile
collection and see what all operations it has logged:

{
 "op" : "query",
 "ns" : "test.profilingTest",
 "query" : {
 "$where" : "sleep(70)"
 },
 "ntoreturn" : 0,
 "ntoskip" : 0,
 "nscanned" : 1,
 "keyUpdates" : 0,
 "numYield" : 0,
 "lockStats" : {
 …<<<<snip>>>
 },
 "nreturned" : 0,
 "responseLength" : 20,
 "millis" : 188,

Chapter 4

119

 "ts" : ISODate("2014-01-27T17:37:02.482Z"),
 "client" : "127.0.0.1",
 "allUsers" : [],
 "user" : ""
}

As we can see in the document, there are indeed some interesting stats. Let's look at some
of them in the following table. Some of these fields are identical to the fields we see when
we execute the db.currentOp() operation from the shell and we then discussed in the
previous recipe.

Field Description
op This is the operation that got executed; in this case, it was a find and

thus it is query in this case.
ns This is the fully qualified name of the collection on which

the operation was performed. It would be of the format
<database>.<collection name>.

query It shows the query that got executed on the server.
nscanned This has a similar meaning to explain plan. It is the total number of

documents and index entries scanned.
numYields This is the number of times the lock was yielded when the operation

was executed. Higher yields could indicate that the query required a
lot of disk access. This could be a good indication of re-looking at the
index or optimizing the query itself.

lockStats Some interesting stats for the time taken to acquire the lock and the
time for which the lock was held.

nreturned The number of documents returned.
responseLength The length of the response in bytes.
millis Most important of all, the time taken in milliseconds to execute the

operation. This can be a good starting point to catch slow queries.
ts This is the time when the operation was executed.
client This is the hostname/IP address of the client who executed the

operation.

Administration

120

Setting up users in Mongo
Security is one of the cornerstones of any enterprise-level system. Not always would you find a
system in a completely safe and secure environment to allow unauthenticated user access to
it. Apart from test environments, almost every production environment requires proper access
rights and perhaps audit of the system access too. Mongo security has multiple aspects:

ff Access rights for the end users accessing the system. There would be multiple roles
such as admin, read-only users, and read and write non-administrative users.

ff Authentication of the nodes that are added to the replica set. In a replica set, one
should only be allowed to add authenticated systems. The integrity of the system
would be compromised if any unauthenticated node is added to the replica set.

ff Encryption of the data that is transmitted across the wire between the nodes of
the replica sets or even the client and the server (or the mongos process in case of
sharded setup).

In this and the next recipe, we would be looking at how to address the first and the second
point given here. The third point of encrypting the data being transmitted on the wire is not
supported by default by the community edition of mongo and would need a rebuild of mongo
database with the ssl option enabled.

Getting ready
In this recipe, we will set up users for a standalone mongo instance. We need to start a
standalone server listening to any port for client connections; in this case, we will stick to the
default 27017. If you are not aware how to start a standalone server, refer to Installing single
node MongoDB in Chapter 1, Installing and Starting the Server. We also need to start a shell
that would be used for this admin operation. For a replica set, we will only be connected to a
primary and perform these operations.

How to do it…
We will add an admin user, a read-only user for a test database, and a read-write user for test
database in this recipe.

It is assumed that at this point:

ff The server is up and running, and we are connected to it from the shell.

ff The server is started without any special command-line argument other than those
mentioned in Chapter 1, Installing and Starting the Server for Starting a single node
instance using command-line options recipe. We thus have full access to the server
for any user.

Chapter 4

121

Perform the following steps:

1.	 The first step we will do is to create an admin user. All the commands assume that
you are using MongoDB 3.0 and above.

2.	 First, we start by creating the admin user in admin database as follows:
> use admin

> db.createUser({

 user:'admin', pwd:'admin',

 customData:{desc:'The admin user for admin db'},

 roles:['readWrite', 'dbAdmin', 'clusterAdmin']

 })

3.	 We will add the read_user and write_user to test database. To add the users,
execute the following from the mongo shell:
> use test

> db.createUser({

 user:'read_user', pwd:'read_user',

 customData:{desc:'The read only user for test database'},

 roles:['read']

 }

)

> db.createUser({

 user:'write_user', pwd:'write_user',

 customData:{desc:'The read write user for test database'},

 roles:['readWrite']

 }

)

4.	 Now shut down the mongo server and the close the shell too. Restart the mongo
server but with the --auth option on the command line:
$ mongod .. <other options as provided earlier> --auth

If your mongod instance is using /etc/mongod.conf, then add the line auth =
true in the configuration file and restart the mongod service.

5.	 Now connect to the server from the newly opened mongo shell and execute the
following:
> db.testAuth.find()

6.	 The collection testAuth need not exist, but you should see an error that we are not
authorized to query the collection.

Administration

122

7.	 We will now log in from the shell using a read_user as follows:
> db.auth('read_user', 'read_user')

8.	 We will now execute the same find operation as follows. It should not give an error
and it might not return any results depending on whether the collection exists or not:
> db.testAuth.find()

9.	 Now, we will try to insert a document as follows. We should get an error that you are
not authorized to insert data in this collection.
> db.testAuth.insert({i:1})

10.	 We will now log out and log in again, but with a write user as follows. Note the
difference in the way we login this time around as against the previous instance.
We are providing a document as the parameter to the auth function, where as in
previous case we passed two parameters for the username and password:
> db.logout()

> db.auth({user:'write_user', pwd:'write_user'})

Now to execute the insert again as follows, this time around it
should work

> db.testAuth.insert({i:1})

11.	 Now, execute the following on the shell. You should get the unauthorized error:
> db.serverStatus()

12.	 We will now switch to admin database. We are currently connected to the server
using a write_user that has read-write permissions on the test database. From
the mongo shell, try to do the following:
> use admin

> show collections

13.	 Close the mongo shell or open a new shell as follows from the operating system's
console. This should take us directly to admin database:
$ mongo -u admin -p admin admin

14.	 Now execute the following on the shell. It should show us the collections in the
admin database:
> show collections

15.	 Try and execute the following operation:
> db.serverStatus()

Chapter 4

123

How it works…
We executed a lot of steps and now we will take a closer look at them.

Initially, the server is started without --auth option and hence no security is enforced by
default. We create an admin user with the db.createUser method. The signature of the
method to create the user is createUser(user, writeConcern). The first parameter is
the user, which actually is a JSON document and second is the write concern to use for user
creation. The JSON document for the user has the following format:

{
 'user' : <user name>,
 'pwd' : <password>,
 'customData': {<JSON document providing any user specific data>}
 'roles':[<roles of the user>]
}

The roles provided here can be provided as follows, assuming that the current database when
the user is created is test on the shell:

[{'role' : 'read', 'db':'reports'}, 'readWrite']

This gives the user being created read access to the reports db and readWrite access to the
test database. Let's see the complete user creation call of the test user:

> use test

> db.createUser({

 user:'test', pwd:'test',

 customData:{desc:'read access on reports and readWrite access on
test'},

 roles:[

 {role:'read', db : 'reports'},

 'readWrite'

]

 }

)

The write concern, which is an optional parameter, can be provided as the JSON document.
Some examples values are {w:1}, {w:'majority'}.

Coming back to the admin user creation, we created the user in step 2 using the
createUser method and gave three inbuilt roles to this user in the admin database.

In step 3, we created the read and read-write users in test database using the same
createUser method.

Administration

124

We shut down the MongoDB server after the admin, read, and read-write user creation
and restarted it with the --auth option.

On starting the server again, we will connect to it from the shell in step 8, but
unauthenticated. Here, we try to execute a find query on a collection in test database, which
fails as we are unauthenticated. This indicates that the server now requires appropriate
credentials to execute operations on it. In step 8 and 9, we log in using the read_user
and first execute a find operation (which succeeds), and then an insert that doesn't as
the user has read privileges only. The way to authenticate a user by invoking from the shell
db.auth(<user name>, <password>) and db.logout(), which will logout the current
logged in user.

In steps 10 to 12, we demonstrate that we can perform insert operations using write_
user but admin operations like db.serverStatus() cannot be executed. This is because
these operations execute an admin command on the server, which a non-admin user and
not permitted to invoke these. Similarly, when we change the database to admin, the write_
user, which is from test database, is not permitted to perform any operations like getting a
list of collections or any operation to query a collection in admin database.

In Step 14, we log in to the shell using the admin user to the admin database. Previously, we
logged in to database using the auth method; in this case, we used the -u and -p options
for providing the username and the password. We also provided the name of the database to
connect to, which is admin in this case. Here, we are able to view the collections on the admin
database and also execute admin operations like getting the server status. Executing the
db.serverStatus call is possible as the user is given the clusterAdmin role.

One final thing to note, apart from writing to a collection, a user with write privileges can also
create indexes on the collection in which he has write access.

There's more…
In this recipe, we saw how we can create different users and what permissions they have
restricting some set of operations. In the following recipe, we will see how we can have
authentication done at process level. That is, how can one mongo instance authenticate itself
for being added to a replica set.

See also
ff MongoDB comes with a lot of built-in user roles with various privileges associated

to each of them. Refer to the following URL to get details of various in built roles:
http://docs.mongodb.org/manual/reference/built-in-roles/.

ff MongoDB also supports custom user roles. Refer to the following URL for knowing
more about defining custom user roles: http://docs.mongodb.org/manual/
core/authorization/#user-defined-roles.

http://docs.mongodb.org/manual/reference/built-in-roles/
http://docs.mongodb.org/manual/core/authorization/#user-defined-roles
http://docs.mongodb.org/manual/core/authorization/#user-defined-roles

Chapter 4

125

Interprocess security in Mongo
In the previous recipe, we saw how authentication can be enforced for user to be logged in
before allowing any operations on Mongo. In this recipe, we will look at interprocess security.
By the term interprocess security, we don't mean to encrypt the communication but only to
ensure that the node being added to a replica set is authenticated before being added to the
replica set.

Getting ready
In this recipe, we will start multiple mongo instances as part of a replica set and thus you
might have to refer to the recipe Starting multiple instances as part of a replica set from
Chapter 1, Installing and Starting the Server if you are not aware of how to start a replica set.
Apart from that, in this recipe, all we would be looking at how to generate key file to be used
and the behavior when an unauthenticated node is added to the replica set.

How to do it…
To set the ground, we would be starting three instances, each listening to port 27000, 27001,
and 27002, respectively. The first two would be started by providing it a path to the key file and
the third wouldn't be. Later, we will try to add these three instances to the same replica set.

1.	 Let's generate key the key file first. There is nothing spectacular about generating the
key file. This is as simple as having a file with 6 to 1024 characters from the base64
character set. On Linux filesystem, you may choose to generate pseudo random bytes
using openssl and encode them to base64. The following command will generate
500 random bytes and those bytes will then be base64 encoded and written to the
file keyfile:
$ openssl rand –base64 500 > keyfile

2.	 On a Unix filesystem, the key file should not have permissions for world and group.
Thus, we should do the following after it is created:
$ chmod 400 keyfile

3.	 Not giving write permission to the creator ensures that we don't overwrite the
contents accidently. On Windows platform, however, openssl doesn't come out of
the box and thus you have to download it, the archive extracted, and the bin folder
added to the OS path variable. For Windows, we can download it from the following
URL: http://gnuwin32.sourceforge.net/packages/openssl.htm.

http://gnuwin32.sourceforge.net/packages/openssl.htm

Administration

126

4.	 You may even choose not to generate the key file using the approach mentioned here
(using openssl) and can take an easy way out by just typing in plain text in the key
file from any text editor or your choice. However, note that the characters \r, \n, and
spaces are stripped off by mongo and the remainder text is considered as the key.
For example, we may create a file with the following content added to the key file.
Again, the file will be named keyfile with the following content:
somecontentaddedtothekeyfilefromtheeditorwithoutspaces

5.	 Using any approach mentioned here, we must not have a keyfile in place that
would be used for next steps of the recipe.

6.	 We will now secure the mongo processes by starting the mongo instance as follows.
I will start the following on windows, and my key file ID is named keyfile and is
placed on c:\MongoDB. The data path is c:\MongoDB\data\c1, c:\MongoDB\
data\c2, and c:\MongoDB\data\c3 for the three instances, respectively.

7.	 Start the first instance listening to port 27000 as follows:
C:\>mongod --dbpath c:\MongoDB\data\c1 --port 27000 --auth
--keyFile c:\MongoDB\keyfile --replSet secureSet --smallfiles
--oplogSize 100

8.	 Similarly, start the second server listening to port 27001 as follows:
C:\>mongod --dbpath c:\MongoDB\data\c2 --port 27001 --auth
--keyFile c:\MongoDB\keyfile --replSet secureSet --smallfiles
--oplogSize 100

9.	 The third instance would be started but without the --auth and the --keyFile
option listening to port 27002 as follows:
C:\>mongod --dbpath c:\MongoDB\data\c3 --port 27002 --replSet
secureSet --smallfiles --oplogSize 100

10.	 We then start a mongo shell and connect it to port 27000, which is the first instance
started. From the mongo shell, we type:
> rs.initiate()

11.	 In few seconds, the replica set would be initiated with just one instance in it. We will
now try to add two new instances to this replica set. First, add the one listening on
port 27001 as follows (you will need to add the appropriate hostname, Amol-PC is
the hostname in my case):
> rs.add({_id:1, host:'Amol-PC:27001'})

12.	 We will execute rs.status() command to see the status of our replica set. In the
command's output, we should see our newly added instance.

Chapter 4

127

13.	 We will now finally try and add an instance that was started without the --auth and
the --keyFile option as follows:
> rs.add({_id:2, host:'Amol-PC:27002'})

This should add the instance to the replica set, but using rs.status() will show
the status of the instance as UNKNOWN. The server logs for the instance running on
27002 too should show some authentication errors.

14.	 We would finally have to restart this instance; however, this time we provide the
--auth and the --keyFile option as follows:
C:\>mongod --dbpath c:\MongoDB\data\c3 --port 27002 --replSet
secureSet --smallfiles --oplogSize 100 --auth --keyFile c:\
MongoDB\keyfile

15.	 Once the server is started, connect to it from the shell again and type in
rs.status() in few moments, it should come up as a secondary instance.

There's more…
In this recipe, we saw interprocess security for preventing unauthenticated nodes from being
added to the mongo replica set. We still haven't secured the transport by encrypting the data
that is being sent over the wire. In the Appendix, we will show how to build the mongo server
from the source and how to enable encryption of the contents over the wire.

Modifying collection behavior using the
collMod command

This is a command that would be executed to change the behavior of a collection in mongo. It
could be thought of as a collection modify operation (officially, it is not mentioned anywhere
though).

For a part of this recipe, knowledge of TTL indexes is required.

Getting ready
In this recipe, we will execute the collMod operation on a collection. We need to start a
standalone server listening to any port for client connections; in this case, we will stick to the
default 27017. If you are not aware how to start a standalone server, refer to Installing single
node MongoDB in Chapter 1, Installing and Starting the Server. We also need to start a shell
that would be used for this administration. It is highly recommended to take a look at the
recipes Expiring documents after a fixed interval using the TTL index and Expiring documents
at a given time using the TTL index in Chapter 2, Command-line Operations and Indexes if you
are not aware of them.

Administration

128

How it works…
This operation can be used to do a couple of things:

1.	 Assuming we have a collection with TTL index, as we saw in Chapter 2,
Command-line Operations, let us see the list indexes by executing the following:
> db.ttlTest.getIndexes()

2.	 To change the expiry to 800 ms from 300 ms, execute the following:
> db.runCommand({collMod: 'ttlTest', index: {keyPattern:
{createDate:1}, expireAfterSeconds:800}})

How it works…
The collMod command always has the following format: {collMod : <name of the
collection>, <collmod operation>}.

We use the index operation using collMod to modify the TTL index. If a TTL index is already
created and the time to live needs to be changed after creation, we use the collMod
command. This operation-specific field to the command is as follows:

{index: {keyPattern: <the field on which the index was originally
created>, expireAfterSeconds:<new time to be used for TTL of the index>}}

The keyPattern is the field, of the collection, on which the TTL index is created and the
expireAfterSeconds will contain the new time to be changed to. On successful execution,
we should see the following in the shell:

{ "expireAfterSeconds_old" : 300, "expireAfterSeconds_new" : 800, "ok" :
1 }

Setting up MongoDB as a windows service
Windows services are long-running applications that run in background, similar to daemon
threads. Databases are good candidates for such type of services, whereby they would start
and stop when the host machines starts and stops (you may, however, choose to manually
start/stop a service). Many database vendors provide a feature to start the database as a
service when installed on the server. MongoDB lets you do that as well and this is what we will
see in this recipe.

Chapter 4

129

Getting ready
Refer to the recipe Installing single node MongoDB with options from the config file in
Chapter 1, Installing and Starting the Server for getting information on how to start a
MongoDB server using an external configuration file. Since mongo is run as a service in
this case, it cannot be provided with command-like arguments and configuring it from
configuration file is the only alternative. Refer to the prerequisites of the Installing single
node MongoDB recipe in Chapter 1, Installing and Starting the Server, which is all we would
need for this recipe.

How to do it…
1.	 We will first create a config file with three configuration values the port, dbpath,

and the logpath file. We name the file mongo.conf and keep it at location c:\
conf\mongo.conf with the following three entries in it (you may choose any path
for config file location, database and logs):
port = 27000

dbpath = c:\data\mongo\db

logpath = c:\logs\mongo.log

2.	 Execute the following from the windows terminal, which you may need to execute as
an administrator. On Windows 7, the following steps were executed:

1.	 Press the Windows key on your keyboard.

2.	 In the Search programs and files space, type cmd.

3.	 In the programs, the command prompt program will be seen; right-click on it
and select Run as administrator.

3.	 In the shell, execute the following:
C:\>mongod --config c:\conf\mongo.conf –install

4.	 The log printed out on the console should confirm that the service is installed properly.

5.	 The service can be started as follows from the console:
C:\>net start MongoDB

6.	 The service can be stopped as follows:
C:\>net stop MongoDB

Administration

130

7.	 Type in services.msc in the Run window (Windows button + R). In the management
console, search for MongoDB service. We should see it as follows:

8.	 The service is automatic, that is, it will be started when the operating system starts. It
can be changed to manual by right-clicking on it and selecting Properties.

9.	 To remove a service, we need to execute the following from the command prompt:
C:\>mongod --remove

10.	 There are more options available that can be used to configure the name of the
service, display name, description, and the user account used to run the service.
These can be provided as command-line arguments. Execute the following to see the
possible options and take a look at the Windows Service Control Manager options:
C:\> mongod --help

Replica set configurations
We have had a good discussion on what replica set is in Chapter 1, Installing and Starting
the Server in the recipe Starting multiple instances as part of a replica set, and we saw how
to start a simple replica set. In the recipe Interprocess security in Mongo in this chapter, we
saw how to start a replica set with interprocess authentication. To be honest, that is pretty
much what we do in setting up a standard replica set. There are a few configurations that one
must know and should be aware of how it affects the replica set's behavior. Note that we still
are not discussing tag aware replication in this recipe and it would be taken up later in this
chapter as a separate recipe Building tagged replica sets.

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set in Chapter 1, Installing
and Starting the Server for the prerequisites and know about the replica set basics. Go ahead
and set up a simple three-node replica set on your computer as mentioned in the recipe.

Chapter 4

131

Before we go ahead with the configurations, we will see what elections are in a replica set and
how they work from a high level. This is good to know about elections because some of the
configuration options affect the voting process in the elections.

Elections in a replica set
Mongo replica set has a single primary instance and multiple secondary instances. All
database writes happen only through the primary instance and are replicated to the
secondary instances. Read operations can happen from secondary instances depending on
the read preference. Refer to the Understanding ReadPreference for querying in the Appendix
to know what read preference is. If, however, the primary goes down or is not reachable for
some reason, the replica set becomes unavailable for writes. MongoDB replica set has a
feature to automatically failover to a secondary, by promoting it to a primary and make the set
available to clients for both read and write operations. The replica set remains unavailable for
that brief moment till a new primary comes up.

It all sounds good but the question is, who decides upon who the new primary instance would
be? The process of choosing a new primary happens through an election. Whenever any
secondary detects that it cannot reach out to a primary, it asks all replica set nodes in the
instance to elect itself as the new primary.

All other nodes in the replica set who receive this request for election of primary will perform
certain checks before they vote a Yes to the secondary requesting an election:

1.	 They would first check if the existing primary is reachable. This is necessary because
the secondary requesting the re-election is not able to reach the primary possibly
because of a network partition in which case it should not be allowed to become a
primary. In such case the instance receiving the request will vote a No.

2.	 Secondly, the instance would check the state of replication of itself with the
secondary requesting the election. If it finds that the requesting secondary is
behind itself in the replicated data, it would vote a No.

3.	 Finally, the primary is not reachable, but some instance with priority higher than
the secondary requesting the re-election, is reachable from it. This is possible if the
secondary requesting the re-election can't reach out to the secondary with higher
priority possibly due to a network partition. In this scenario the instance receiving the
request for election would vote a No.

The preceding checks are pretty much what would be happening (not necessarily in the order
mentioned previously) during the re-election; if these checks pass, the instance votes a Yes.

The election is void even if a single instance votes No. However, if none of the instances have
voted a No, then the secondary that requests the election would become a new primary if
it receives a Yes from majority of instances. If the election becomes void, there would be a
re-election with the same secondary or any other instance requesting an election with the
aforementioned process till a new primary is elected.

www.allitebooks.com

http://www.allitebooks.org

Administration

132

Now that we have an idea about the elections in replica set and the terminologies, let's look at
some of the replica set configurations. Few of these options are related to votes and we start
by looking at these options first.

Basic configuration for a replica set
From the first chapter when we set up a replica set, we had a configuration similar to the
following one. The basic replica set configuration for a three member set is as follows:

{
 "_id" : "replSet",
 "members" : [
 {
 "_id" : 0,
 "host" : "Amol-PC:27000"
 },
 {
 "_id" : 1,
 "host" : "Amol-PC:27001"
 },
 {
 "_id" : 2,
 "host" : "Amol-PC:27002"
 }
]
}

We would not be repeating the entire configuration in all the steps in the following sections.
All the flags we would be mentioning would be added to the document of a particular member
in the members array. In the preceding example, if node with _id as 2 is to be made arbiter,
we would be having the following configuration for it in the configuration document shown
previously:

{
 "_id" : 2,
 "host" : "Amol-PC:27002"
 "arbiterOnly" : true
}

Generally, the steps to reconfigure an existing replica set are as follows:

1.	 Assign the configuration document to a variable. If the replica set is already
configured, it can be obtained using the rs.conf() call from the shell.
> var conf = rs.conf()

Chapter 4

133

2.	 The members field in the document is an array of documents for each individual
member of a replica set. To add a new property to a particular member, we do the
following. For instance, if we want to add the votes key and set its value to 2 for the
third member of the replica set (index 2 in the array), we would do the following:
> conf.members[2].votes = 2

3.	 Just changing the JSON document won't change the replica set. We need to
reconfigure it if the replica set is already in place, as follows:
> rs.reconfig(conf)

4.	 If the configuration is done for the first time, we would call the following:
> rs.initiate (conf)

For all the steps given next, you need to follow the preceding steps to reconfigure or initiate
the replica set unless some other steps are mentioned explicitly.

How to do it…
In this recipe, we will look at some of the possible configurations that can be done in a replica
set. The explanation will be minimal with all the explanation done in the next section, as usual.

1.	 The first configuration is arbiterOnly option. It is used to configure a replica set
member as a member that holds no data but only has rights to vote. The following key
need to be added to the configuration of the member who would be made an arbiter:
{_id: ... , 'arbiterOnly': true }

2.	 One thing to remember regarding this configuration is that once a replica set is
initiated, no existing member can be changed to an arbiter from a non-arbiter node
and vice versa. We can, however, add arbiter to an existing replica set using the
helper function rs.addArb(<hostname>:<port>). For example, add an arbiter
listening to port 27004 to an existing replica set. The following was done on my
machine to add an arbiter:
> rs.addArb('Amol-PC:27004')

3.	 When the server is started to listen to port 27004 and rs.status() is executed
from the mongo shell, we should see that the state and the strState for this
member is 7 and ARBITER, respectively.

4.	 The next option votes affects the number of votes a member has in the election.
By default, all members have one vote each, this option can be used to change the
number of votes a particular member has. It can be set as follows:
{_id: ... , 'votes': <0 or 1>}

5.	 Votes of existing members of a replica set can be changed and the replica set can be
reconfigured using the rs.reconfig() helper.

Administration

134

6.	 Though the option votes is available, which can potentially change the number of
votes to form a majority, it usually doesn't add much value and not a recommended
option to use in production.

7.	 Next replica set configuration option is called the priority. It determines the
eligibility of a replica set member to become a primary (or not to become a primary).
The option is set as follows:
{_id: ... , 'priority': <priority number>}

8.	 Higher number indicates more likely hood of becoming a primary, the primary would
always be the one with the highest priority amongst the members alive in a replica
set. Setting this option in an already configured replica set will trigger an election.

9.	 Setting the priority to 0 will ensure that a member will never become primary.

10.	 Next option we would be looking at is hidden. Setting the value of this option to true
ensures that the replica set member is hidden. The option is set as follows:
{_id: ... , 'hidden': <true/false>}

11.	 One thing to keep in mind is that when the replica set member is hidden, its priority too
should be made 0 to ensure it doesn't become primary. Though this seems redundant;
as of the current version, the value or priority needs to be set explicitly.

12.	 When a programming language client connects to a replica set, it would not be able
to discover hidden members. However, after using rs.status() from the shell, the
member's status would be visible.

13.	 Let's look at the slaveDelay option now. This option is used to set lag in time for
the slave from the primary of the replica set. The option is set as follows:
{_id: ... , 'slaveDelay': <number of seconds to lag>}

14.	 Like the hidden member, slave delayed members too should have the priority set to 0
to ensure they don't ever become primary. This needs to be set explicitly.

15.	 Let's look at the final configuration option: buildIndexes. This value if not specified
by default, is true, which indicates if an index is created on the primary, it needs to be
replicated on the secondary too. The option is set as follows:
{_id: ... , 'buildIndexes': <true/false>}

16.	 When using this option with a value set to false, the priority is set to 0 to ensure they
don't ever become primary. This needs to be set explicitly. Also, this option cannot
be set after the replica set is initiated. Just like an arbiter node, this needs to be set
when the replica set is being created or when a new member node is being added to
the replica set.

Chapter 4

135

How it works…
In this section, we will explain and understand the significance of different types of members
and the configuration options we saw in the previous section.

Replica set member as an arbiter
The English meaning of the word arbiter is a judge who resolves a dispute. In the case of
replica sets, the arbiter node is present just to vote in case of elections and not replicate any
data. This is in fact, a pretty common scenario due to a fact that that a Mongo replica set
needs to have at least three instances (and preferably odd number of instances, 3 or more).
A lot of applications do not need to maintain three copies of data and are happy with just two
instances, one primary and a secondary with the data.

Consider the scenario where only two instances are present in the replica set. When the
primary goes down, the secondary instance cannot form a proper majority because it only has
50 percent votes (its own vote) and thus cannot become a primary. If a majority of secondary
instances goes down, then the primary instance steps down from primary and becomes a
secondary, thus making the replica set unavailable for writes. Thus, a two-node replica set is
useless as it doesn't stay available even when any of the instances goes down. It defeats the
purpose of setting up a replica set and thus at least three instances are needed in a replica set.

Arbiters come handy in such scenarios. We set up a replica set instance with three instances
with only two having data and one acting as an arbiter. We need not maintain three copies
of data at the same time we eliminate the problem we faced by setting up a two-instance
replica set.

Priority of replica set members
The priority flag can be used by itself or in conjunction with other options like hidden,
slaveDelay, and buildIndexes, where we don't want the member with one of these
three options to be ever made primary. We will look at these options soon.

Administration

136

Some more possible use cases where we would never want a replica set to become a primary
are as follows:

ff When the hardware configuration of a member would not be able to deal with the
write and read requests should it become a primary and the only reason it is being
put in there is for replicating the data.

ff We have a multi data centers setup where one replica set instance is present in
another data center for the sake of geographically distributing the data for DR
purposes. Ideally, the network latency between the application server hosting the
application and the database should be minimal for optimum performance. This
could be achieved if both the servers (application server and the database server)
are in the same data center. Not changing the priority of the replica set instance in
another data center makes it equally eligible for being chosen as a primary and thus
compromising on the application's performance if the server in other data center gets
chosen as primary. In such scenarios, we can set the priority to be 0 for the server in
the second data center and a manual cutover would be needed by the administrator
to fail over to another data center should an emergency arise.

In both scenarios mentioned here, we could also have the respective members hidden so that
the application client doesn't have a view of these members in the first place.

Similar to setting a priority to 0 for not allowing one to be primary, we can also be biased to
one member to be primary whenever it is available by setting its priority to a value greater
than 1, because the default value of priority is 1.

Suppose we have a scenario for budget reasons we have one of the members storing data
on SSDs and remaining on spinning disks. We would ideally want the member with SSDs
to be the primary whenever it is up and running. It is only when it is not available we would
want another member to become a primary, In such scenarios we can set the priority of the
member running on SSD to a value greater than 1. The value doesn't really matter as long as
it is greater than the rest, that is, setting it to 1.5 or 2 makes no difference as long as priority
of other members is less.

Hidden, slave delayed, and build index configuration
The term hidden for a replica set node is from an application client that is connected to the
replica set and not for an administrator. For an administrator, the hidden members are equally
important to be monitored and thus their state is seen in the rs.status() response. Hidden
members participate in elections too like all other members.

For the slaveDelay option, most common use case is to ensure that the data in a member
as a particular point of time lags behind the primary by the provided number of seconds
and can be restored in case some unforeseen error has happened, say a human error for
erroneously updating some data. Remember, longer the time delay, more is the time we get
recover but at the cost of possibly stale data.

Chapter 4

137

The buildIndexes option is useful in cases where we have a replica set member with
non-production standard hardware and the cost of maintaining the indexes are not worth
it. You may choose to set this option for members where no queries are executed on it.
Obviously, if you set this option it can never become a primary member, and thus the
priority option is forced to be set to 0.

There's more…
You can achieve some interesting things using tags in replica sets. This would be discussed in
a later recipe, after we learn about tags in the recipe Building tagged replica sets.

Stepping down as primary from the replica
set

There are times when for some maintenance activity during business hours we would like to
take a server out from the replica set, perform the maintenance and put it back in the replica
set. If the server to be worked upon is the primary, we somehow need to step down from
the primary member position, perform re-election and ensure that it doesn't get re-elected
for a minimum given time frame. After the server becomes secondary once the step down
operation is successful, we can take it out of the replica set, perform the maintenance activity
and put it back in the replica set.

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set from Chapter 1, Installing
and Starting the Server for the prerequisites and know about the replica set basics. Set up a
simple three-node replica set on your computer, as mentioned in the recipe.

How to do it…
Assuming at this point of time we have a replica set up and running, do the following:

1.	 Execute the following from the shell connected to one of the replica set members and
see which instance currently is the primary:
> rs.status()

2.	 Connect to that primary instance from the mongo shell and execute the following on
the shell:
> rs.stepDown()

Administration

138

3.	 The shell should reconnect again and you should see that the instance connected to
and initially a primary instance now becomes secondary. Execute the following from
the shell so that a new primary is now re-elected:
> rs.status()

4.	 You can now connect to the primary, modify the replica set configuration and go
ahead with the administration on the servers.

How it works…
The preceding steps mentioned are pretty simple, but there are a couple of interesting things
that we will see.

The method we saw previously, rs.stepDown() did not have any parameters. The function
can in fact take a numeric value, which is the number of seconds for which the instance
stepped down won't participate in the elections and won't become a primary and the default
value for this is 60 seconds.

Another interesting thing to try out is what if the instance that was asked to step down has
a higher priority than other instances. Well, it turns out that the priority doesn't matter when
you step down. The instance stepped down will not become primary no matter what for the
provided number of seconds. However, if priority is set for the instance stepped down and it
is higher than others, then after the time given to stepDown elapses an election will happen
and the instance with higher priority will become primary again.

Exploring the local database of a replica set
In this recipe, we will explore the local database from a replica set's perspective. The local
database may contain collections that are not specific to replica sets, but we will focus only on
the replica set specific collections and try to take a look at what's in them and what they mean.

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set from Chapter 1, Installing
and Starting the Server for the prerequisites and know about the replica set basics. Go ahead
and set up a simple three-node replica set on your computer, as mentioned in the recipe.

How to do it…
1.	 With the replica set up and running, we need to open a shell connected to the

primary. You may connect randomly to any one member; use rs.status()
and then determine the primary.

Chapter 4

139

2.	 With shell open, first switch to local database and the view the collections in the
local database as follows:
> use local

switched to db local

> show collections

3.	 You should find a collection called me. Querying this collection should show us one
document and it contains the hostname of the server to which we are currently
connected to:
>db.me.findOne()

4.	 There would be two fields, the hostname and the _id field. Take a note of the _id
field—it is important.

5.	 Take a look at the replset.minvalid collection. You will have to connect
to a secondary member from the shell to execute the following query. Switch to the
local database first:
> use local

switched to db local

> db.replset.minvalid.find()

6.	 This collection just contains the single document with a key ts and a value that is
the timestamp till the time the secondary we are connected to is synchronized. Note
down this time.

7.	 From the shell in primary, insert a document in any collection. We will use
the database as test. Execute the following from the shell of the primary member:
> use test

switched to db test

> db.replTest.insert({i:1})

8.	 Query the secondary again, as follows:
> db.replset.minvalid.find()

9.	 We should see that the time against the field ts has now incremented corresponding
to the time this replication happened from primary to secondary. With a slave delayed
node, you will see this time getting updated only after the delay period has elapsed.

10.	 Finally, we will see the collection system.replset. This collection is the
place where the replica set configuration is stored. Execute the following:
> db.system.replset.find().pretty()

11.	 Actually, when we execute rs.conf(), the following query gets executed:
db.getSisterDB("local").system.replset.findOne()

Administration

140

How it works…
The database local is a special (non-replicated) database that is used to hold the replication
and instance specific details in it. Try creating a collection of your own in the local database
and insert some data in it; it would not be replicated to the secondary nodes.

This database gives us some view of the data stored by mongo for internal use. However, as
an administrator, it is good to know about these collections and the type of data in it.

Most the collections are pretty straightforward. From the shell of the secondary execute the
query db.me.findOne() in the local database and we should see that _id there should
match the _id field of the document present in the slaves collection.

The config document we see gives the hostname of the secondary instance that we are referring
to. Note that the port and other configuration options of the replica set member are not present
in this document. Finally, the syncedTo time tells us till what time the secondary instances
are synced up with the primary. We saw the collection replset.minvalid on the secondary,
which tells us the time till which it is synced with primary. This value in the syncedTo time on
primary would be same as in replset.minvalid on respective secondary.

There's more…
We have not seen the oplog, which is interesting to look at. We would take a look at this
special collection in a separate recipe, Understanding and analyzing oplogs.

Understanding and analyzing oplogs
Oplog is a special collection and forms the backbone of the MongoDB replication. When
any write operation or configuration changes are done on the replica set's primary, they are
written to the oplog on the primary. All the secondary members then tail this collection to get
the changes to be replicated. Tailing is synonymous to tail command in Unix and can only be
done on a special type of collection called capped collection. Capped collections are fixed
size collections which maintain the insertion order just like a queue. When the collection's
allocated space becomes full, the oldest data is overwritten. If you are not aware of capped
collections and what tailable cursors are, please refer to Creating and tailing a capped
collection cursors in MongoDB in Chapter 5, Advanced Operations for more details.

Oplog is a capped collection present in the non-replicated database called local. In our
previous recipe, we saw what a local database is and what collections are present in it.
Oplog is something we didn't discuss in last recipe, as it demands a lot more explanation and
a dedicated recipe is needed to do justice.

Chapter 4

141

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set from Chapter 1,
Installing and Starting the Server for the prerequisites and know about the replica set basics.
Go ahead and set up a simple three-node replica set on your computer as mentioned in the
recipe. Open a shell and connect to the primary member of the replica set. You will need to
start the mongo shell and connect to the primary instance.

How to do it…
1.	 Execute the following steps after connecting to a primary from the shell to get the

timestamp of the last operation present in the oplog. We would be interested in
looking at the operations after this time.
> use test

> local = db.getSisterDB('local')

> var cutoff = local.oplog.rs.find().sort({ts:-1}).limit(1).
next().ts

2.	 Execute the following from the shell. Keep the output in the shell or copy it to some
place. We will analyze it later:
> local.system.namespaces.findOne({name:'local.oplog.rs'})

3.	 Insert 10 documents as follows:
> for(i = 0; i < 10; i++) db.oplogTest.insert({'i':i})

4.	 Execute the following update to set a string value for all documents with value
of i greater than 5, which is 6, 7, 8 and 9 in our case. It would be a multiupdate
operation:
> db.oplogTest.update({i:{$gt:5}}, {$set:{val:'str'}}, false,
true)

5.	 Now, create the index as follows:
> db.oplogTest.ensureIndex({i:1}, {background:1})

6.	 Execute the following query on oplog:
> local.oplog.rs.find({ts:{$gt:cutoff}}).pretty()

Administration

142

How it works…
For those aware of messaging and its terminologies, Oplog can be looked at as a topic in
messaging world with one producer, the primary instance, and multiple consumers, the
secondary instances. Primary instance writes to an oplog all the contents that need to be
replicated. Thus, any create, update, and delete operations as well as any reconfigurations
on the replica sets would be written to the oplog and the secondary instances would tail
(continuously read the contents of the oplog being added to it, similar to a tail with -f option
command in Unix) the collection to get documents written by the primary. If the secondary has
a slaveDelay configured, it will not read documents more than the maximum time minus
the slaveDelay time from the oplog.

We started by saving an instance of the local database in the variable called local and
identified a cutoff time that we would use for querying all the operations we will perform in
this recipe from the oplog.

Executing a query on the system.namespaces collection in the local database shows us
that the collection is a capped collection with a fixed size. For performance reasons capped
collections are allocated continuous space on the filesystem and are preallocated. The size
allocated by the server is dependent on the OS and CPU architecture. While starting the
server the option oplogSize can be provided to mention the size of the oplog. The defaults
are generally good enough for most cases. However, for development purpose, you can
choose to override this value for a smaller value. Oplogs are capped collections that need to
be preallocated a space on disk. This preallocation not only takes time when the replica set
is first initialized but takes up a fixed amount of disk space. For development purpose, we
generally start multiple MongoDB processes as part of the same replica set on same machine
and would want them to be up and running as quickly as possible with minimum resource
usage. Also, having the entire oplog in memory becomes possible if the oplog size is small. For
all these reasons, it is advisable to start the local instances for development purpose with a
small oplog size.

We performed some operations such as insert 10 documents and update four documents
using a multi update and create an index. If we query the oplog for entries after the cutoff, we
computed earlier we see 10 documents for each insert in it. The document looks something
like this:

{
 "ts" : Timestamp(1392402144, 1),
 "h" : NumberLong("-4661965417977826137"),
 "v" : 2, "op" : "i",
 "ns" : "test.oplogTest",
 "o" : {
 "_id" : ObjectId("52fe5edfd473d2f623718f51"),
 "i" : 0
 }
}

Chapter 4

143

As we can see, we first look at the three fields: op, ns, and o. These stand for the operation,
the fully qualified name of the collection into which the data is being inserted, and the actual
object to be inserted. The operation i stand for insert operation. Note that the value of
o, which is the document to be inserted, contains the _id field that got generated on the
primary. We should see 10 such documents, one for each insert. What is interesting to see is
what happens on a multi update operation. The primary puts four documents, one for each
of them affected for the updates. In this case, the value op is u, which is for update and the
query used to match the document is not the same as what we gave in the update function,
but it is a query that uniquely finds a document based on the _id field. Since there is an index
already in place for the _id field (created automatically for each collection), this operation
to find the document to be updated is not expensive. The value of the field o is the same
document we passed to the update function from the shell. The sample document in the
oplog for the update is as follows:

{
 "ts" : Timestamp(1392402620, 1),
 "h" : NumberLong("-7543933489976433166"),
 "v" : 2,
 "op" : "u",
 "ns" : "test.oplogTest",
 "o2" : {
 "_id" : ObjectId("52fe5edfd473d2f623718f57")
 },
 "o" : {
 "$set" : {
 "val" : "str"
 }
 }
}

The update in the oplog is the same as the one we provided. This is because the $set
operation is idempotent, which means you may apply an operation safely any number of times.

However, update using $inc operator is not idempotent. Let's execute the following update:

> db.oplogTest.update({i:9}, {$inc:{i:1}})

In this case, the oplog would have the following as the value of o.

"o" : {
 "$set" : {
 "i" : 10
 }
}

Administration

144

This non-idempotent operation is put into oplog by Mongo smartly as an idempotent operation
with the value of i set to a value that is expected to be after the increment operation once.
Thus it is safe to replay an oplog any number of times without corrupting the data.

Finally, we can see that the index creation process is put in the oplog as an insert operation
in the system.indexes collection. For large collections, index creation can take hours and
thus the size of the oplog is very important to let the secondary catch up from where it hasn't
replicated since the index creation started. However, since version 2.6, index creation initiated
in background on primary will also be built in background on secondary instances.

For more details on the index creation on replica sets, visit the following URL: http://docs.
mongodb.org/master/tutorial/build-indexes-on-replica-sets/.

Building tagged replica sets
In Chapter 1, Installing and Starting the Server, we saw how to set up a simple replica in
Starting multiple instances as part of a replica set and saw what is the purpose of a replica
set. We also have a good deal of explanation on what WriteConcern is in the Appendix of
the book and why it is used. What we saw about write concerns is that it offers a minimum
level guarantee for a certain write operation. However, with the concept of tags and write
concerns, we can define a variety of rules and conditions which must be satisfied before a
write operation is deemed successful and a response is sent to the user.

Consider some common use cases such as the following:

1.	 Application wants the write operation to be propagated to at least one server in each
of its data center. This ensures that in event of a data center shutdown, other data
centers will have the data that was written by the application.

2.	 If there are no multiple data centers, at least one member of a replica set is kept on
different rack. For instance, if the rack's power supply goes down, the replica set will
still be available (not necessarily for writes) as at least one member is running on a
different rack. In such scenarios, we would want the write to be propagated to at least
two racks before responding back to the client with a successful write.

3.	 It is possible that a reporting application queries a group of secondary
of a replica set for generating some reports regularly. (Such secondary might be
configured to never become a primary). After each write, we want to ensure that
the write operation is replicated to at least one reporting replica member before
acknowledging the write as successful.

The preceding use cases are a few of the common use cases that arise and are not
addressed using simple write concerns that we have seen earlier. We need a different
mechanism to cater to these requirements and replica sets with tags is what we need.

http://docs.mongodb.org/master/tutorial/build-indexes-on-replica-sets/
http://docs.mongodb.org/master/tutorial/build-indexes-on-replica-sets/

Chapter 4

145

Obviously, the next question is what exactly are tags? Let's take an example of a blog.
Various posts in the blog have different tags attached to them. These tags allow us to easily
search, group, and relate posts together. Tags are some user defined text with some meaning
attached to it. If we draw an analogy between the blog post and the replica set members,
similar to how we attach tags to a post, we can attach tags to each replica set member. For
example, in a multiple data center scenario with two replica set members in data center
1 (dc1) and one member in data center 2 (dc2), we can have the following tags assigned
to the members. The name of the key and the value assigned to the tag is arbitrary and is
chosen during design of the application; you may choose to even assign any tags like the
administrator who set up the server if you really find it useful to address your use case:

Replica Set Member Tag
Replica set member 1 {'datacentre': 'dc1', 'rack': 'rack-dc1-1'}

Replica set member 2 {'datacentre': 'dc1', 'rack': 'rack-dc1-2'}

Replica set member 3 {'datacentre': 'dc2', 'rack': 'rack-dc2-2'}

That is good enough to lay the foundation of what a replica set tags are. In this recipe, we will
see how to assign tags to replica set members and more importantly, how to make use of
them to address some of the sample use cases we saw earlier.

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set from Chapter 1,
Installing and Starting the Server for the prerequisites and know about the replica set basics.
Go ahead and set up a simple three-node replica set on your computer, as mentioned in the
recipe. Open a shell and connect to the primary member of the replica set.

If you need to know about write concerns, refer to the overview of write concerns in the
Appendix of the book.

For inserting documents in the database, we will use Python as it gives us an interactive
interface like the mongo shell. Refer to the recipe Connecting to a single node using a Python
client in Chapter 1, Installing and Starting the Server for steps on how to install pymongo.
Mongo shell would have been the most ideal candidate for the demonstration of the insert
operations, but there are certain limitations around the usage of the shell with our custom
write concern. Technically, any programming language with the write concerns mentioned in
the recipe for insert operations would work fine.

Administration

146

How to do it…
1.	 With the replica set started, we will add tags to it and reconfigure it as follows. The

following commands are executed from the mongo shell:
> var conf = rs.conf()

> conf.members[0].tags = {'datacentre': 'dc1', 'rack': 'rack-
dc1-1'}

> conf.members[1].tags = {'datacentre': 'dc1', 'rack': 'rack-
dc1-2'}

> conf.members[2].priority = 0

> conf.members[2].tags = {'datacentre': 'dc2', 'rack': 'rack-
dc2-1'}

2.	 With the replica set tags set (not that we have not yet reconfigured the replica set),
we need to define some custom write concerns. First, we define one that will ensure
that the data gets replicated to at least to one server in each data center. Execute the
following in the mongo shell again:
> conf.settings = {'getLastErrorModes' : {'MultiDC':{datacentre :
2}}}

> rs.reconfig(conf)

3.	 Start the python shell and execute the following:
>>> import pymongo

>>> client = pymongo.MongoClient('localhost:27000,localho
st:27001',
replicaSet='replSetTest')

>>> db = client.test

4.	 We will now execute the following insert:
>>>db.multiDCTest.insert({'i':1}, w='MultiDC', wtimeout=5000)

5.	 The preceding insert goes through successfully and the ObjectId would be printed
out; you may query the collection to confirm from either the mongo shell or Python
shell.

6.	 Since our primary is one of the servers in data centre 1, we will now stop the
server listening to port 27002, which is the one with priority 0 and tagged to
be in a different data center.

7.	 Once the server is stopped (you may confirm using the rs.status() helper function
from the mongo shell), execute the following insert again, this insert should error out:
>>>db.multiDCTest.insert({'i':2}, w='MultiDC', wtimeout=5000)

Chapter 4

147

8.	 Restart the stopped mongo server.

9.	 Similarly, we can achieve rack awareness by ensuring that the write propagates to at
least two racks (in any data centre) by defining a new configuration as follows from
the mongo shell:
{'MultiRack':{rack : 2}}

10.	 The settings value of the conf object would then be as follows. Once set, reconfigure
the replica set again using rs.reconfig(conf) from the mongo shell:
{
 'getLastErrorModes' : {
 'MultiDC':{datacentre : 2},
 'MultiRack':{rack : 2}
 }
}

11.	 We saw WriteConcern used with replica set tags to achieve some functionality
like data center and rack awareness. Let's see how we can use replica set tags
with read operations.

12.	 We will see how to make use of replica set tags with read preference. Let's
reconfigure the set by adding one more tag to mark a secondary member that
will be used to execute some hourly stats reporting.

13.	 Execute the following steps to reconfigure the set from the mongo shell:
> var conf = rs.conf()

> conf.members[2].tags.type = 'reports'

> rs.reconfig(conf)

14.	 This will configure the same member with priority 0 and the one in a different data
center with an additional tag called type with a value reports.

15.	 We now go back to the python shell and perform the following steps:
>>> curs = db.multiDCTest.find(read_preference=pymongo.
ReadPreference.SECONDARY,

 tag_sets=[{'type':'reports'}])

>>> curs.next()

16.	 The preceding execution should show us one document from the collection (as we
has inserted data in this test collection in previous steps).

Administration

148

17.	 Stop the instance which we have tagged for reporting, that is, the server listening to
connections on port 27002 and execute the following on the python shell again:
>>> curs = db.multiDCTest.find(read_preference=pymongo.
ReadPreference.SECONDARY,

 tag_sets=[{'type':'reports'}])

>>> curs.next()

18.	 This time around, the execution should fail and state that no secondary found with
the required tag sets.

How it works…
In this recipe, we did a lot of operations on tagged replica sets and saw how it can affect the
write operations using WriteConcern and read operations using ReadPreference. Let's
look at them in some details now.

WriteConcern in tagged replica sets
We set up a replica set that was up and running, which we reconfigured to add tags. We
tagged the first two servers in datacenter 1 and in different racks (servers running listening
to port 27000 and 27001 for client connections) and the third one in datacenter 2 (server
listening to port 27002 for client connections). We also ensured that the member in
datacenter 2 doesn't become a primary by setting its priority to 0.

Our first objective is to ensure that the write operations to the replica set gets replicated to at
least one member in the two datacenters. To ensure this, we define a write concern as follows
{'MultiDC':{datacentre : 2}}. Here, we first define the name of the write concern as
MultiDC. The value which is a JSON object has one key with name datacenter, which is same
as the key used for the tag we attached to the replica set and the value is a number 2, which
will be looked as the number of distinct values of the given tag that should acknowledge the
write before it is deemed successful.

For instance, in our case, when the write comes to server 1 in datacenter 1, the number of
distinct values of the tag datacenter is 1. If the write operation gets replicated to the second
server, the number still stays one as the value of the tag datacenter is same as the first
member. It is only when the third server acknowledges the write operation, the write satisfies
the defined condition of replicating the write to distinct two values of the tag datacenter
in the replica set. Note that the value can only be a number and not have something like
{datacentre : 'dc1'} this definition is invalid and an error will be thrown while
re-configuring the replica set.

Chapter 4

149

But we need to register this write concern somewhere with the server. This is done in the
final step of the configuration by setting the settings value in configuration JSON. The value to
set is getLastErrorModes. The value of getLastErrorModes is a JSON document with
all possible write concerns defined in it. We later defined one more write concern for write
propagated to at least two racks. This is conceptually in line with MultiDC write concern and
thus we will not be discussing it in details here. After setting all the required tags and the
settings, we reconfigure the replica set for the changes to take effect.

Once reconfigured, we perform some write operations using the MultiDC write concern. When
two members in two distinct datacenters are available, the write goes through successfully.
However, when the server in second datacenter goes down, the write operation times out
and throws an exception to the client initiating the write. This demonstrates that the write
operation will succeed or fail as per how we intended.

We just saw how these custom tags can be used to address some interesting use cases,
which are not supported by the product implicitly as far as write operations are concerned.
Similar to write operations, read operations can take full advantages of these tags to address
some use cases such as reading from a fixed set of secondary members that are tagged with
a particular value.

ReadPreference in tagged replica sets
We added another custom tag annotating a member to be used for reporting purposes, we
then fire a query operation with the read preference to query a secondary and provide the
tag sets that should be looked for before considering the member as a candidate for read
operation. Remember that when using primary as the read preference, we cannot use tags
and that is reason we explicitly specified the value of the read_preference to SECONDARY.

Configuring the default shard for
non-sharded collections

In the recipe Starting a simple sharded environment of two shards in Chapter 1, Installing and
Starting the Server we set up a simple two-shard server. In the recipe Connecting to a shard in
the shell and performing operations in Chapter 1, Installing and Starting the Server we added
data to a person collection that was sharded. However, for any collection that is not sharded,
all the documents end up on one shard called the primary shard. This situation is acceptable
for small databases with relatively small number of collections. However, if the database size
increases and at the same time the number of un-sharded collections increase, we end up
overloading a particular shard (which is the primary shard for a database) with a lot of data
from these un-sharded collections. All query operations for such un-sharded collections as
well as those on the collections whose particular range in the shard reside on this server
instance will be directed to this it. In such scenario, we can have the primary shard of a
database changed to some other instance so that these un-sharded collections get balanced
out across different instances.

Administration

150

In this recipe, we will see how to view this primary shard and change it to some other server
whenever needed.

Getting ready
Following the recipe Starting a simple sharded environment of two shards in Chapter 1,
Installing and Starting the Server set up and start a sharded environment. From the shell,
connect to the started mongos process. Also, assuming that the two shards servers are
listening to port 27000 and 27001, connect from the shell to these two processes. So, we
have a total of three shells opened, one connected to the mongos process and two to these
individual shards.

We need are using the test database for this recipe and sharding has to be enabled on it. If
it not, then you need to execute the following on the shell connected to the mongos process:

mongos> use test

mongos> sh.enableSharding('test')

How to do it…
1.	 From the shell connected to the mongos process, execute the following two

commands:
mongos> db.testCol.insert({i : 1})

mongos> sh.status()

2.	 In the databases, look out for test database and take a note of the primary.
Suppose the following is a part (showing the part under databases only) of the output
of sh.status():
databases:

 { "_id" : "admin", "partitioned" : false, "primary" : "config"
}

 { "_id" : "test", "partitioned" : true, "primary" :
"shard0000" }

The second document under the databases shows us that the database test
is enabled for sharding (because partitioned is true) and the primary shard is
shard0000.

3.	 The primary shard, which is shard0000 in our case, is the mongod process
listening to port 27000. Open the shell connected to this process and execute the
following in it:
> db.testCol.find()

Chapter 4

151

4.	 Now, connect to another mongod process listening to port 27001 and again execute
the following query:
> db.testCol.find()

Note that the data would be found only on the primary shard and not on other shard.

5.	 Execute the following command from the mongos shell:
mongos> use admin

mongos> db.runCommand({movePrimary:'test', to:'shard0001'})

6.	 Execute the following command from mongo shell connected to the mongos process:
mongos> sh.status()

7.	 From the shell connected to the mongos processes running on port 27000 and
27001, execute the following query:
> db.testCol.find()

How it works…
We started a sharded setup and connected to it from the mongos process. We started by
inserting a document in the testCol collection that is not enabled for sharding in the test
database, which is not enabled for sharding as well. In such cases, the data lies on shard
called the primary shard. Do not misunderstand this for the primary of a replica set. This is
a shard (that itself can be a replica set) and it is the shard chosen by default for all database
and collection for which sharding is not enabled.

When we add the data to a non-sharded collection, it was seen only on the shard that is
primary. Executing sh.status() tells us the primary shard. To change the primary, we need
to execute a command from the admin database from the shell connected to the mongos
process. The command is as follows:

db.runCommand({movePrimary:'<database whose primary shard is to be
changed>', to:'<target shard>'})

Once the primary shard was changed, all existing data of non-sharded database and
collection was migrated to the new primary and all subsequent writes to non-sharded
collections will go to this shard.

Use this command with caution as it will migrate all the unsharded collections to the new
primary, which may take time for big collections.

Administration

152

Manual split and migration of chunks
Though MongoDB does a good job of splitting and migrating chunks across shards to maintain
the balance, under some circumstances such as a small number of documents or relatively
large number of small documents where the automatic balancer doesn't split the collection,
an administrator might want to split and migrate the chunks manually. In this recipe, we will
see how to split and migrate the collection manually across shards. For this recipe, we will set
up a simple shard as we saw in Chapter 1, Installing and Starting the Server.

Getting ready
Refer to the recipe Starting a simple sharded environment of two shards in Chapter 1,
Installing and Starting the Server to set up and start a sharded environment. It is preferred
to start a clean environment without any data in it. From the shell, connect to the started
mongos process.

How to do it…
1.	 Connect to the mongos process from the mongo shell and enable sharding on the

test database and the splitAndMoveTest collection as follows:
> sh.enableSharding('test')

> sh.shardCollection('test.splitAndMoveTest', {_id:1}, false)

2.	 Let's load the data in the collection as follows:
> for(i = 1; i <= 10000 ; i++) db.splitAndMoveTest.insert({_id :
i})

3.	 Once the data is loaded, execute the following:
> db. splitAndMoveTest.find().explain()

Note the number of documents in two shards in the plan. The value to lookout for is
in the two documents under the shards key in the result of explain plan. Within these
two documents the field to lookout for is n.

4.	 Execute the following to see the splits of the collection:
> config = db.getSisterDB('config')

> config.chunks.find({ns:'test.splitAndMoveTest'}).pretty()

5.	 Split the chunk into two at 5000 as follows:
> sh.splitAt('test.splitAndMoveTest', {_id:5000})

Chapter 4

153

6.	 Splitting it doesn't migrate it to the second server. See what exactly happened with
the chunks by executing the following query again:
> config.chunks.find({ns:'test.splitAndMoveTest'}).pretty()

7.	 We will now move the second chunk to the second shard:
> sh.moveChunk('test.splitAndMoveTest', {_id:5001}, 'shard0001')

8.	 Execute the following query again and confirm the migration:
> config.chunks.find({ns:'test.splitAndMoveTest'}).pretty()

9.	 Alternatively, the following explain plan will show a split of about 50-50:
> db. splitAndMoveTest.find().explain()

How it works…
We simulate a small data load by adding monotonically increasing numbers and discover
that the numbers are not split across two shards evenly by viewing the query plan. It is not a
problem as the chunk size needs to reach a particular threshold, 64 MB by default, before the
balancer decides to migrate the chunks across the shards to maintain balance. This is pretty
perfect as in real world, when the data size gets huge we will see that eventually over a period
of time the shards are well balanced.

However, if the administration does decide to split and migrate the chunks, it is possible to do
it manually. The two helper functions sh.splitAt and sh.moveChunk are there to do this
work. Let's look at their signatures and see what they do.

The function sh.splitAt takes two arguments, first is the namespace, which has the format
<database>.<collection name> and the second parameter is the query that acts as the
split point to split the chunk into two, possibly two uneven portions depending on where the
given document is in the chunk. There is another method, sh.splitFind, which will try and
split the chunk in two equal portions.

Splitting doesn't mean the chunk moves to another shard, it just breaks one big chunk into
two, but the data stays on the same shard. It is an inexpensive operation which involves
updating the config DB.

Next, we executed was to migrate the chunk to a different shard after we split it into
two. The operation sh.MoveChunk is used just to do that. This function takes three
parameters, first one is again the namespace of the collection that has the format
<database>.<collection name>, second parameter is a query a document whose chunk
would be migrated, and the third parameter is the destination chunk.

Once the migration is done, the query's plan shows us that the data is split in two chunks.

Administration

154

Domain-driven sharding using tags
The recipes Starting a simple sharded environment of two shards and Connecting to a
shard in the shell and performing operations in Chapter 1, Installing and Starting the Server
explained how to start a simple two server shard and then insert data in a collection after
choosing a shard key. The data that gets sharded is more technical where the data chunk
is kept to a manageable size by Mongo by splitting it into multiple chunks and migrating the
chunks across shards to keep the chunk distribution even across shards. But what if we want
the sharding to be more domain oriented? Suppose we have a database for storing postal
addresses and we shard based on postal codes where we know the postal code range of
a city. What we can do is tag the shard servers according to the city name as the tag, add
shard range (postal codes), and associate this range with the tag. This way, we can state
which servers can contain the postal addresses of which cities. For instance, we know that
Mumbai being most populous city, the number of addresses would be huge and thus we add
two shards for Mumbai. On the other hand, one shard should be enough to cope up with the
volumes of the Pune city. For now we tag just one shard. In this recipe, we will see how to
achieve this use case using tag aware sharding. If the description is confusing, don't worry, we
will see how to implement what we just discussed.

Getting ready
Refer to the recipe Starting a simple sharded environment of two shard in Chapter 1,
Installing and Starting the Server for information on how to start a simple shard. However,
for this recipe, we will add an additional shard. So, we will now start three mongo servers
listening to port 27000, 27001, and 27002. Again, it is recommended to start off with a clean
database. For the purpose of this recipe, we will be using the collection userAddress to
store the data.

How to do it…
1.	 Assuming that we have three shard up and running, let's execute the following:

mongos> sh.addShardTag('shard0000', 'Mumbai')

mongos> sh.addShardTag('shard0001', 'Mumbai')

mongos> sh.addShardTag('shard0002', 'Pune')

2.	 With tags defined, let's define range of pin codes that will map to a tag:
mongos> sh.addTagRange('test.userAddress', {pincode:400001},
{pincode:400999}, 'Mumbai')

mongos> sh.addTagRange('test.userAddress', {pincode:411001},
{pincode:411999}, 'Pune')

Chapter 4

155

3.	 Enable sharding for the test database and the userAddress collection as follows:
mongos> sh.enableSharding('test')

mongos> sh.shardCollection('test.userAddress', {pincode:1})

4.	 Insert the following documents in the userAddress collection:
mongos> db.userAddress.insert({_id:1, name: 'Varad', city: 'Pune',
pincode: 411001})

mongos> db.userAddress.insert({_id:2, name: 'Rajesh', city:
'Mumbai', pincode: 400067})

mongos> db.userAddress.insert({_id:3, name: 'Ashish', city:
'Mumbai', pincode: 400101})

5.	 Execute the following plans:
mongos> db.userAddress.find({city:'Pune'}).explain()

mongos> db.userAddress.find({city:'Mumbai'}).explain()

How it works…
Suppose we want to partition data driven by domain in a shard, we can use tag aware
sharding. It is an excellent mechanism that lets us tag the shards and then split the data
range across shards identified by the tags. We don't really have to bother about the actual
machines and their address hosting the shard. Tags act as a good abstraction in the way, we
can tag a shard with multiple tags and one tag can be applied to multiple shards.

In our case, we have three shards and we apply tags to each of them using the
sh.addShardTag method. The method takes the shard ID, which we can see in the
sh.status call with the shards key. This sh.addShardTag method can be used to keep
adding tags to a shard. Similarly, there is a helper method sh.removeShardTag to remove
an assignment of the tag from the shard. Both these methods take two parameters, the first
one is the shard ID and second one of the tag to remove.

Once the tagging is done, we assign range of the values of the shard key to the tag. The method
sh.addTagRange is used to do that. It accepts four parameters, first one is the namespace,
which is the fully qualified name of the collection, second and third parameters are the start
and end value of the range for this shard key and the fourth parameter is the tag name of
the shards hosting the range being added. For example, the call sh.addTagRange('test.
userAddress', {pincode:400001}, {pincode:400999}, 'Mumbai') says we are
adding the shard range 400001 to 400999 for the collection test.userAddress, and this
range will be stored in the shards tagged as Mumbai.

Administration

156

Once the tagging and adding tag range is done, we enabled sharding on database and
collection and add data to it from Mumbai and Pune city with respective pin codes. We then
query and explain the plan to see that the data did indeed reside on the shards we have
tagged for Pune and Mumbai city. We can also add new shards to this sharded setup and
accordingly tag the new shard. The balancer will then accordingly balance the data based on
the value it is tagged. For instance, if the addresses in Pune increase overloading a shard,
we can add a new shard with tag as Pune. The postal address for Pune will then be sharded
across these two server instances for tagged for Pune city.

Exploring the config database in a sharded
setup

Config database is the backbone of a sharded setup in Mongo. It stores all the metadata of
the shard setup and has a dedicated mongod process running for it. When a mongos process
is started we provide it with the config servers' URL. In this recipe, we will take a look at some
collections in the config database and dive deep into their content and significance.

Getting ready
We need a sharded setup for this recipe. Refer to the recipe Starting a simple sharded
environment of two shard in Chapter 1, Installing and Starting the Server for information
on how to start a simple shard. Additionally, connect to the mongos process from a shell.

How to do it…
1.	 From the console connected to the mongos process, switch to the config database

and execute the following:
mongos> use config

mongos>show collections

2.	 From the list of all collections, we will visit a few. We start with the databases
collection. This keeps a track of all the databases on this shard. Execute the
following from the shell:
mongos> db.databases.find()

3.	 The content of the result is pretty straightforward, the value of the field _id is for the
database. The value of field partitioned tells us whether sharding is enabled for the
database or not; true indicates it is enabled and the field primary gives the primary
shard where the data of non-sharded collections reside upon.

4.	 Next, we will visit the collections collection. Execute the following from the shell:
mongos> db.collections.find().pretty()

Chapter 4

157

This collection, unlike the databases collection we saw earlier, contains only those
collections for which we have enabled sharding. The field _id gives the namespace
of the collection in the <database>.<collection name> format, the field key
gives the shard key and the field unique, indicates whether the shard key is unique or
not. These three fields come as the three parameters of the sh.shardCollection
function in that very order.

5.	 Next, we look at the chunks collection. Execute the following on the shell. If the
database was clean when we started this recipe, we won't have a lot of data in this:
mongos> db.chunks.find().pretty()

6.	 We then look at the tags collection and execute the following query:
mongos> db.tags.find().pretty()

7.	 Let's query the mongos collection as follows.
mongos> db.mongos.find().pretty()

This is a simple collection that gives the list of all mongos instances connected to the
shard with the details like the host and port on which the mongos instance is running,
which forms the _id field. The version and figures like for how much time the process is
up and running in seconds.

8.	 Finally, we look at the version collection. Execute the following query. Note that is not
similar to other queries we execute:
mongos>db.getCollection('version').findOne()

How it works…
We saw the collections and databases collection while we queried them and they are
pretty simple. Let's look at the collection called chunks. Here is a sample document
from this collection:

{
 "_id" : "test.userAddress-pincode_400001.0",
 "lastmod" : Timestamp(1, 3),
 "lastmodEpoch" : ObjectId("53026514c902396300fd4812"),
 "ns" : "test.userAddress",
 "min" : {
 "pincode" : 400001
 },
 "max" : {
 "pincode" : 411001
 },
 "shard" : "shard0000"
}

Administration

158

The fields of interest are ns, min, max, and shard, which are the namespace of the
collection, the minimum value present in the chunk, the maximum value present in the chunk,
and the shard on which this chunk lies, respectively. The value of the chunk size is 64 MB by
default. This can be seen in the settings collection. Execute db.settings.find() from the
shell and look at the value of the field value, which is the size of the chunk in MB. Chunks are
restricted to this small size to ease the migration process across shards, if needed. When the
size of the chunk exceeds this threshold, mongo server finds a suitable point in the existing
chunk to break it into two and adds a new entry in this chunks collection. This operation is
called splitting, which is inexpensive as the data stays where it is; it is just logically split into
multiple chunks. The balancer on mongo tries to keep the chunks across shards balanced
and the moment it sees some imbalance, it migrates these chunks to a different shard. This is
expensive and also depends largely on the network bandwidth. If we use sh.status(), the
implementation actually queries the collections we saw and prints the pretty formatted result.

159

5
Advanced Operations

In this chapter, we will cover the following recipes:

ff Atomic find and modify operations

ff Implementing atomic counters in Mongo

ff Implementing server-side scripts

ff Creating and tailing a capped collection cursors in MongoDB

ff Converting a normal collection to capped collection

ff Storing binary data in Mongo

ff Storing large data in Mongo using GridFS

ff Storing data to GridFS from Java client

ff Storing data to GridFS from Python client

ff Implementing triggers in Mongo using oplog

ff Flat plane (2D) geospatial queries in Mongo using geospatial indexes

ff Spherical indexes and GeoJSON compliant data in Mongo

ff Implementing full text search in Mongo

ff Integrating MongoDB for full text search with Elasticsearch

Introduction
In Chapter 2, Command-line Operations and Indexes, we saw how to perform basic operations
from the shell to query, update, and insert documents, and also saw different types of indexes
and index creation. In this chapter, we will see some of the advanced features of Mongo,
such as GridFS, Geospatial Indexes, and Full text search. Other recipes we will see include an
introduction and use of capped collections and implementing server-side scripts in MongoDB.

Advanced Operations

160

Atomic find and modify operations
In Chapter 2, Command-line Operations and Indexes, we had some recipes that explained
various CRUD operations we perform in MongoDB. There was one concept that we didn't cover
and it is atomically find and modify documents. Modification consists of both update and
delete operations. In this recipe, we will go through the basics of MongoDB's findAndModify
operation. In the next recipe, we will use this method to implement a counter.

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of MongoDB. That is the only prerequisite for this recipe.
Start a mongo shell and connect to the started server.

How to do it…
1.	 We will test a document in atomicOperationsTest collection. Execute the

following from the shell:
> db.atomicOperationsTest.drop()

> db.atomicOperationsTest.insert({i:1})

2.	 Execute the following from the mongo shell and observe the output:
> db.atomicOperationsTest.findAndModify({

 query: {i: 1},

 update: {$set : {text : 'Test String'}},

 new: false

 }

)

3.	 We will execute another one this time but with slightly different parameters; observe
the output for this operation:
> db.atomicOperationsTest.findAndModify({

 query: {i: 1},

 update: {$set : {text : 'Updated String'}}, fields: {i:
 1, text :1, _id:0},

 new: true

 }

)

Chapter 5

161

4.	 We will execute another update this time that would upsert the document as follows:
>db.atomicOperationsTest.findAndModify({

 query: {i: 2},

 update: {$set : {text : 'Test String'}},

 fields: {i: 1, text :1, _id:0},

 upsert: true,

 new: true

 }

)

5.	 Now, query the collection once as follows and see the documents present:
> db.atomicOperationsTest.find().pretty()

6.	 We will finally execute the delete as follows:
>db.atomicOperationsTest.findAndModify({

 query: {i: 2},

 remove: true,

 fields: {i: 1, text :1, _id:0},

 new: false

 }

)

How it works…
If we perform find and update operations independently by first finding the document and
then updating it in MongoDB, the results might not be as expected. There might be an
interleaving update between the find and the update operations, which may have changed the
document state. In some of the specific use cases, like implementing atomic counters, this
is not acceptable and thus we need a way to atomically find, update, and return a document.
The returned value is either the one before the update is applied or after the update is applied
and is decided by the invoking client.

Now that we have executed the steps in the preceding section, let's see what we actually
did and what all these fields in the JSON document passed as the parameter to the
findAndModify operation mean. Starting with step 3, we gave a document as a parameter
to the findAndModify function that contains the fields query, update, and new.

The query field specifies the search parameters that would be used to find the document and
the update field contains the modifications that need to be applied. The third field, new, if set
to true, tells MongoDB to return the updated document.

Advanced Operations

162

In step 4, we actually added a new field to the document passed as a parameter called fields
that is used to select a limited set of fields from the result document returned. Also, the value
of the field new is true, which tells that we want the updated document that is, the one after
the update operation is executed and not the one before.

In step 5 contains a new field called upsert, which upserts (update + insert) the document.
That is, if the document with the given query is found, it is updated else a new one is created
and updated. If the document didn't exist and an upsert happened, having the value of the
parameter new as false will return null. This is because there was nothing present before
the update operation was executed.

Finally, in step 7, instead of the update field, we used the remove field with the value true
indicating that the document is to be removed. Also, the value of the new field is false,
which means that we expect the document that got deleted.

See also
An interesting use case of atomic FindandModify operations is developing an atomic
counter in Mongo. In our next recipe, we will see how to implement this use case.

Implementing atomic counters in Mongo
Atomic counters are a necessity for a large number of use cases. Mongo doesn't have a built
in feature for atomic counters; nevertheless, it can be easily implemented using some of its
cool offerings. In fact, with the help of previously described findAndModify() command,
implementing is quite simple. Refer to the previous recipe Atomic find and modify operations
to know what atomic find and modify operations are in Mongo.

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of Mongo. That is the only prerequisite for this recipe. Start
a mongo shell and connect to the started server.

How to do it…
1.	 Execute the following piece of code from the mongo shell:

> function getNextSequence(counterId) {

 return db.counters.findAndModify(

 {

 query: {_id : counterId},

 update: {$inc : {count : 1}},

Chapter 5

163

 upsert: true,

 fields:{count:1, _id:0},

 new: true

 }

).count

}

2.	 Now from the shell invoke the following:
> getNextSequence('Posts Counter')

> getNextSequence('Posts Counter')

> getNextSequence('Profile Counter')

How it works…
The function is as simple as a findAndModify operation on a collection used to store all
the counters. The counter identifier is the _id field of the document stored and the value
of the counter is stored in the field count. The document passed to the findAndModify
operations accepts the query, which uniquely identifies the document storing the current
count—a query using the _id field. The update operation is an $inc operation that will
increment the value of the count field by 1. But what if the document doesn't exist? This
will happen on the first invocation of the counter. To take care of this scenario, we will set
the upsert flag to true. The value of count will always start with 1 and there is no way it
would accept any user-defined start number for the sequence or a custom increment step. To
address such requirements, we will have to specifically add a document with the initialized
values to the counters collection. Finally, we are interested in the state of the counter after the
value is incremented; hence, we set the value of the field new as true.

On invoking this method thrice (as we did), we should see the following in the collection
counters. Simply execute the following query:

>db.counters.find()

{ "_id" : "Posts Counter", "count" : 2 }

{ "_id" : "Profile Counter", "count" : 1 }

Using this small function, we now have implemented atomic counters in Mongo.

See also
We can store such common code on a Mongo server that would be available for execution in
other functions. Look at the recipe Implementing server-side scripts to see how we can store
JavaScript functions on the Mongo server. This allows us even to invoke this function from
other programming language clients.

Advanced Operations

164

Implementing server-side scripts
In this recipe, we will see how to write server stored JavaScript similar to stored procedures in
relational databases. This is a common use case where other pieces of code require access to
these common functions and we have them in one central place. To demonstrate server-side
scripts, the function will simply add two numbers.

There are two parts to this recipe. First, we see how to load the scripts from the collections on
the client-side JavaScript shell and secondly, we will see how to execute these functions on
the server.

The documentation specifically mentions that it is not recommended to
use server-side scripts. Security is one concern though if the data is not
properly audited and hence we need to be careful with what functions
are defined. Since Mongo 2.4, the server-side JavaScript engine is
V8, which can execute multiple threads in parallel as opposed to the
engine prior to version 2.4 of Mongo, which executes only one thread
at a time.

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of Mongo. That is the only prerequisite for this recipe. Start
a mongo shell and connect to the started server.

How to do it…
1.	 Create a new function called add and save it to the collection db.system.js as

follows. The current database should be test:
> use test

> db.system.js.save({ _id : 'add', value : function(num1, num2)
{return num1 + num2}})

2.	 Now that this function is defined, load all the functions as follows:
> db.loadServerScripts()

3.	 Now, invoke add and see if it works:
> add(1, 2)

4.	 We will now use this function and execute this on the server-side instead: Execute the
following from the shell:
> use test

> db.eval('return add(1, 2)')

Chapter 5

165

5.	 Execute the following steps (you can execute the preceding command):
> use test1

> db.eval('return add(1, 2)')

How it works…
The collection system.js is a special MongoDB collection used to store JavaScript code. We
add a new server-side JavaScript using the save function in this collection. The save function
is just a convenience function that inserts the document if it is not present or updates an
existing one. The objective is to add a new document to this collection which you may add
even using insert or upsert.

The secret lies in the method loadServerScripts. Let's look at the code of this method:
this.system.js.find().forEach(function(u){eval(u._id + " = " +
u.value);});

It evaluates a JavaScript using the eval function and assigns the function defined in the
value attribute of the document to a variable named with the name given in the _id field of
the document for each document present in the collection system.js.

For example, if the following document is present in the collection system.js, { _id :
'add', value : function(num1, num2) {return num1 + num2}}, then the
function given in the value field of the document will be assigned to the variable named as
add in the current shell. The value add is given in the _id field of the document.

These scripts do not really execute on the server but their definition is stored on the server in
a collection. The JavaScript method loadServerScripts, just instantiates some variables
in the current shell and make those functions available for invocation. It is the JavaScript
interpreter of the shell that executes these functions and not the server. The collection
system.js is defined in the scope of the database. Once loaded, these act as JavaScript
functions defined in the shell and hence the functions are available throughout the scope of
the shell irrespective of the database currently active.

As far as security is concerned, if the shell is connected to the server with security enabled,
then the user invoking loadServerScripts must have privileges to read the collections in
the database. For more details on enabling security and various roles a user can have, refer
to the recipe Setting up users in Mongo in Chapter 4, Administration. As we saw earlier, the
function loadServerScripts reads data from the collection system.js and if the user
doesn't have privileges to read from the collection, the function invocation will fail. Apart
from that, the functions executed from the shell after being loaded should have appropriate
privileges. For instance, if a function inserts/updates in any collection, the user should have
read and write privileges on that particular collection accessed from the function.

Advanced Operations

166

Executing scripts on the server is perhaps what one would expect to be server-side script
as opposed to executing in the shell connected. In this case, the functions are evaluated on
the server's JavaScript engine and the security checks are more stringent as long running
functions can hold locks, having detrimental effects on the performance. The wrapper
to invoke the execution of a JavaScript code on the server-side is the db.eval function
accepting the code to evaluate on the server-side along with the parameters if any.

Before evaluating the function, the write operation takes a global lock; this can be skipped if
the parameter nolock is used. For instance, the preceding add function can be invoked as
follows instead of calling db.eval and achieving the same results. We additionally provided
the nolock field to instruct the server not to acquire the global lock before evaluating the
function. If this function were to perform write operations on a collection, then the nolock
field is ignored.

> db.runCommand({eval: function (num1, num2) {return num1 + num2},
args:[1, 2],nolock:true})

If security is enabled on the server, the invoking user needs to have the following four roles:
userAdminAnyDatabase, dbAdminAnyDatabase, readWriteAnyDatabase, and
clusterAdmin (on the admin database) to successfully invoke the db.eval function.

Programming languages do provide a way for invocation of such server-side scripts using the
eval function. For instance, in Java API, the class com.mongodb.DB has the method eval
to invoke server-side JavaScript code. Such server-side executions are highly useful when
we want to avoid unnecessary network traffic for the data and get the result to the clients.
However, too much logic on the database server can quickly make things difficult to maintain
and affect the performance of the server badly.

As of MongoDB 3.0.3, the db.eval() method is being deprecated
and it is advised that users do not rely on this method but instead use
client-side scripts. See https://jira.mongodb.org/browse/
SERVER-17453 for more details.

Creating and tailing a capped collection
cursors in MongoDB

Capped collections are fixed size collections where documents are added towards the end of
the collection, similar to a queue. As capped collection have a fixed size, older documents are
removed if the limit is reached.

They are naturally sorted by the order of the insertion and any retrieval needed on them
required ordered by time can be retrieved using the $natural sort order. This makes
document retrieval very fast.

https://jira.mongodb.org/browse/SERVER-17453
https://jira.mongodb.org/browse/SERVER-17453

Chapter 5

167

The following figure gives a pictorial representation of a capped collection of a size which is
good enough to hold up to three documents of equal size (which is too small for any practical
use, but good for understanding). As we can see in the image, the collection is similar to a
circular queue where the oldest document is replaced by the newly added document should
the collection become full. The tailable cursors are special types of cursors that tail the
collection similar to a tail command in Unix. These cursors iterate through the collection
similar to a normal cursors do, but additionally wait for data to be available in the collection if
it is not available. We will see capped collections and tailable cursors in detail in this recipe.

Getting ready
Look at the recipe Installing single node MongoDB recipe in Chapter 1, Installing and Starting
the Server and start a single instance of Mongo. That is the only prerequisite for this recipe.
Start a MongoDB shell and connect to the started server.

How to do it…
There are two parts to this recipe: in the first part, we will create a capped collection called
testCapped and try performing some basic operations on it. Next, we will be creating a
tailable cursor on this capped collection.

1.	 Drop the collection if one already exists with this name.
> db.testCapped.drop()

2.	 Now create a capped collection as follows. Note the size given here is the size in
bytes allocated for the collection and not the number of documents it contains:
> db.createCollection('testCapped', {capped : true, size:100})

3.	 We will now insert 100 documents in the capped collection as follows:
> for(i = 1; i < 100; i++) {

db.testCapped.insert({'i':i, val:'Test capped'})

 }

Advanced Operations

168

4.	 Now query the collection as follows:
> db.testCapped.find()

5.	 Try to remove the data from the collection as follows:
> db.testCapped.remove()

6.	 We will now create and demonstrate a tailable cursor. It is recommended that
you type/copy the following pieces of code into a text editor and keep it handy
for execution.

7.	 To insert data in a collection, we will be using the following fragment of code. Execute
this piece of code in the shell:
> for(i = 101 ; i < 500 ; i++) {

 sleep(1000)

 db.testCapped.insert({'i': i, val :'Test Capped'})

}

8.	 To tail a capped collection, we use the following piece of code:
> var cursor = db.testCapped.find().addOption(DBQuery.Option.
tailable).addOption(DBQuery.Option.awaitData)

while(cursor.hasNext()) {

 var next = cursor.next()

 print('i: ' + next.i + ', value: ' + next.val)

}

9.	 Open a shell and connect to the running mongod process. This will be the second
shell opened and connected to the server. Copy and paste the code mentioned in
step 8 in this shell and execute it.

10.	 Observe how the records inserted are shown as they are inserted into the capped
collection.

How it works…
We will create a capped collection explicitly using the createCollection function. This is the
only way a capped collection is created. There are two parameters to the createCollection
function. The first one is the name of the collection and the second is a JSON document
that contains the two fields, capped and size, which are used to inform the user that the
collection is capped or not and the size of the collection in bytes respectively. An additional
field max can be provided to specify the maximum number of documents in the collection. The
field size is required even if the max field is specified. We then insert and query the documents.
When we try to remove the documents from the collection, we would see an error that removal
is not permitted from the capped collection. It allows the documents to be deleted only when
new documents are added and there isn't space available to accommodate them.

Chapter 5

169

What we see next is a tailable cursor we created. We start two shells and one of them is a
normal insertion of documents with an interval of 1 second between subsequent insertions.
In the second shell, we create a cursor and iterate through it and print the documents that
we get from the cursor onto the shell. The additional options we added to the cursor make
the difference though. There are two options added, DBQuery.Option.tailable and
DBQuery.Option.awaitData. These options are for instructing that the cursor is tailable,
rather than normal, where the last position is marked and we can resume where we left off,
and secondly to wait for more data for some time rather than returning immediately when
no data is available and when we reach towards the end of the cursor, respectively. The
awaitData option can be used with tailable cursors only. The combination of these two
options gives us a feel similar to the tail command in Unix filesystem.

For a list of available options, visit the following page: http://docs.mongodb.org/
manual/reference/method/cursor.addOption/.

There's more…
In the next recipe, we will see how to convert a normal collection to a capped collection.

Converting a normal collection to a capped
collection

This recipe will demonstrate the process of converting a normal collection to a capped collection.

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of Mongo. That is the only prerequisite for this recipe. Start
a mongo shell and connect to the started server.

How to do it…
1.	 Execute the following to ensure you are in the test database:

> use test

2.	 Create a normal collection as follows. We will be adding 100 documents to it,
type/copy the following code snippet on to the mongo shell and execute it.
The command is as follows:
for(i = 1 ; i <= 100 ; i++) {

 db.normalCollection.insert({'i': i, val :'Some Text Content'})

}

http://docs.mongodb.org/manual/reference/method/cursor.addOption/
http://docs.mongodb.org/manual/reference/method/cursor.addOption/

Advanced Operations

170

3.	 Query the collection as follows to confirm it contains the data:
> db.normalCollection.find()

4.	 Now, query the collection system.namespaces as follows and note the result
document:
> db.system.namespaces.find({name : 'test.normalCollection'})

5.	 Execute the following command to convert the collection to capped collection:
> db.runCommand({convertToCapped : 'normalCollection', size :
100})

6.	 Query the collection to take a look at the data:
> db.normalCollection.find()

7.	 Query the collection system.namespaces as follows and note the result document:
> db.system.namespaces.find({name : 'test.normalCollection'})

How it works…
We created a normal collection with 100 documents and then tried to convert it to a capped
collection with 100 bytes size. The command has the following JSON document passed to
the runCommand function, {convertToCapped : <name of normal collection>,
size: <size in bytes of the capped collection>}. This command creates a
capped collection with the mentioned size and loads the documents in natural ordering from
the normal collection to the target capped collection. If the size of the capped collection
reaches the limit mentioned, the old documents are removed in the FIFO order making space
for new documents. Once this is done, the created capped collection is renamed. Executing
a find on the capped collection confirms that not all 100 documents originally present in the
normal collection are present in the capped collection. A query on the system.namespaces
collection before and after the execution of the convertToCapped command shows the
change in the collection attributes. Note that, this operation acquires a global write lock
blocking all read and write operations in this database. Also, any indexes present on the
original collection are not created for the capped collection, upon conversion.

There's more…
Oplog is an important collection used for replication in MongoDB and is a capped collection. For
more information on replication and oplogs, refer to the recipe Understanding and analyzing
oplogs in Chapter 4, Administration. In a recipe later in this chapter, we will use this oplog to
implement a feature similar to after insert/update/delete trigger of a relational database.

Chapter 5

171

Storing binary data in Mongo
So far, we saw how to store text values, dates, and numbers fields in a document. Binary
content also needs to be stored at times in the database. Consider cases where users
would need to store files in a database. In relational databases, the BLOB data type is most
commonly used to address this requirement. MongoDB also supports binary contents to
be stored in a document in the collection. The catch is that the total size of the document
shouldn't exceed 16 MB, which is the upper limit of the document size as of the writing this
book. In this recipe, we will store a small image file into Mongo's document and also retrieve
it later. If the content you wish to store in MongoDB collections is greater than 16 MB, then
MongoDB offers an out of the box solution called GridFS. We will see how to use GridFS in
another recipe later in this chapter.

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of MongoDB. Also, the program to write binary content to
the document is written in Java. Refer to the recipes Executing query and insert operations
using a Java client, Implementing aggregation in Mongo using a Java client and Executing
MapReduce in Mongo using a Java client in Chapter 3, Programming Language Drivers, for
more details on Java drivers. Open a mongo shell and connect to the local MongoDB instance
listening to port 27017. For this recipe, we will be using the project mongo-cookbook-
bindata. This project is available in the source code bundle downloadable from Packt site.
The folder needs to be extracted on the local filesystem. Open a command line shell and go to
the root of the project extracted. It should be the directory where the file pom.xml is found.

How to do it…
1.	 On the operating system shell with the pom.xml present in the current directory of

the mongo-cookbook-bindata project, execute the following command:
$ mvn exec:java -Dexec.mainClass=com.packtpub.mongo.cookbook.
BinaryDataTest

2.	 Observe the output; the execution should be successful.

3.	 Switch to mongo shell that is connected to the local instance and execute the
following query:
> db.binaryDataTest.findOne()

4.	 Scroll through the document and take a note of the fields in the document.

Advanced Operations

172

How it works…
If we scroll through the large document printed out, we see that the fields are fileName,
size, and data. The first two fields are of type string and number respectively, which we
populated on document creation and hold the name of the file we provide and the size in
bytes. The data field is a field of BSON type BinData, where we see the data encoded in
Base64 format.

The following lines of code show how we populated the DBObject that we added to
the collection:

DBObject doc = new BasicDBObject("_id", 1);
doc.put("fileName", resourceName);
doc.put("size", imageBytes.length);
doc.put("data", imageBytes);

As we see above, two fields fileName and size are used to store the name of the file and
the size of the file and are of type string and number respectively. The field data is added
to the DBObject as a byte array, it gets stored automatically as the BSON type BinData
in the document.

See also
What we saw in this recipe is straightforward as long as the document size is less than
16 MB. If the size of the files stored exceeds this value, we have to resort to solutions like
GridFS, which is explained in next recipe Storing large data in Mongo using GridFS.

Storing large data in Mongo using GridFS
A document size in MongoDB can be up to 16 MB. But does that mean we cannot store data
more than 16 MB in size? There are cases where you prefer to store videos and audio files in
database rather than in a filesystem for a number of advantages such as a few of them are
storing metadata along with them, when accessing the file from an intermediate location, and
replicating the contents for high availability if replication is enabled on the MongoDB server
instances. GridFS can be used to address such use cases in MongoDB. We will also see how
GridFS manages large content that exceeds 16 MB and analyzes the collections it uses for
storing the content behind the scene. For test purpose, we will not use data exceeding 16 MB
but something smaller to see GridFS in action.

Chapter 5

173

Getting ready
Look at the recipe Installing single node MongoDB in Chapter 1, Installing and Starting the
Server and start a single instance of Mongo. That is the only prerequisite for this recipe. Start
a Mongo shell and connect to the started server. Additionally, we will use the mongofiles utility
to store data in GridFS from command line.

How to do it…
1.	 Download the code bundle of the book and save the image file glimpse_of_

universe-wide.jpg to your local drive (you may choose any other large file as
the matter of fact and provide appropriate names of the file with the commands we
execute). For the sake of the example, the image is saved in the home directory. We
will split our steps into three parts.

2.	 With the server up and running, execute the following command from the operating
system's shell with the current directory being the home directory. There are two
arguments here. The first one is the name of the file on the local filesystem and the
second one is the name that would be attached to the uploaded content in MongoDB.
$ mongofiles put -l glimpse_of_universe-wide.jpg universe.jpg

3.	 Let's now query the collections to see how this content is actually stored in the
collections behind the scenes. With the shell open, execute the following two queries.
Make sure that in the second query, you ensure to mention not selecting the data
field.
> db.fs.files.findOne({filename:'universe.jpg'})

> db.fs.chunks.find({}, {data:0})

4.	 Now that we have put a file to GridFS from the operating system's local filesystem, we
will see how we can get the file to the local filesystem. Execute the following from the
operating system shell:
$ mongofiles get -l UploadedImage.jpg universe.jpg

5.	 Finally, we will delete the file we uploaded as follows. From the operating system
shell, execute the following:
$ mongofiles delete universe.jpg

6.	 Confirm the deletion using the following queries again:
> db.fs.files.findOne({filename:'universe.jpg'})

> db.fs.chunks.find({}, {data:0})

Advanced Operations

174

How it works…
Mongo distribution comes with a tool called mongofiles, which lets us upload the large content
to Mongo server that gets stored using the GridFS specification. GridFS is not a different
product but a specification that is standard and followed by different drivers for MongoDB for
storing data greater than 16 MB, which is the maximum document size. It can even be used
for files less than 16 MB, as we did in our recipe, but there isn't really a good reason to do
that. There is nothing stopping us from implementing our own way of storing these large files,
but it is preferred to follow the standard. This is because all drivers support it and does the
heavy lifting of splitting of big file into small chunks and assembling them back when needed.

We kept the image downloaded from the Packt Publishing site and uploaded using mongofiles
to MongoDB. The command to do that is put and the -l option gives the name of the file on
the local drive that we want to upload. Finally, the name universe.jpg is the name of the
file we want it to be stored as on GridFS.

On successful execution, we should see something like the following on the console:

connected to: 127.0.0.1

added file: { _id: ObjectId('5310d531d1e91f93635588fe'), filename:
"universe.jpg

", chunkSize: 262144, uploadDate: new Date(1393612082137), md5:

d894ec31b8c5add

d0c02060971ea05ca", length: 2711259 }

done!

This gives us some details of the upload, the unique _id for the uploaded file, the name of
the file, the chunk size, which is the size of the chunk this big file is broken into (by default
256 KB), the date of upload, the checksum of the uploaded content, and the total length of
upload. This checksum can be computed beforehand and then compared after the upload to
check if the uploaded content was not corrupt.

Execute the following query from the mongo shell in test database:

> db.fs.files.findOne({filename:'universe.jpg'})

We see that the output we saw for the put command of mongofiles same as the document
queried above in the collection fs.files. This is the collection where all the uploaded file
details are put when some data is added to GridFS. There will be one document per upload.
Applications can later also modify this document to add their own custom meta data along
with the standard details added to my Mongo when adding the data. Applications can very
well use this collection to add details like, the photographer, the location where the image was
taken, where was it taken, and details like tags for individuals in the image in this collection if
the document is for an image upload.

Chapter 5

175

The file content is something that contains this data. Let's execute the following query:

> db.fs.chunks.find({}, {data:0})

We have deliberately left out the data field from the result selected. Let's look at the structure
of the result document:

{
_id: <Unique identifier of type ObjectId representing this chunk>,
file_id: <ObjectId of the document in fs.files for the file whose
 chunk this document represent>,
n:<The chunk identifier starts with 0, this is useful for knowing
 the order of the chunks>,
data: <BSON binary content for the data uploaded for the file>
}

For the file we uploaded, we have 11 chunks of a maximum 256 KB each. When a file is
being requested, the fs.chunks collection is searched by the file_id that comes from
the _id field of fs.files collection and the field n, which is the chunk's sequence. A unique
index is created on these two fields when this collection is created for the first time when a
file is uploaded using GridFS for the fast retrieval of chunks using the file ID sorted by chunk
sequence number.

Similar to put, the get option is used to retrieve the files from the GridFS and put them on
local filesystem. The difference in the command is to use the get instead of put, the -l still
is used to provide the name of the file that this file would be saved as on the local filesystem
and the final command line parameter is the name of the file as stored in GridFS. This is
the value of the filename field in fs.files collection. Finally, the delete command of
mongofiles simply removes the entry of the file from fs.files and fs.chunks collections.
The name of the file given for delete is again the value present in the filename field of the
fs.files collection.

Some important use cases of using GridFS are when there is some user generated contents
like large reports on some static data that doesn't change too often and are expensive to
generate frequently. Instead of running them all the times, it can be run once and stored
until a change in the static data is detected; in which case, the stored report is deleted and
re-executed on next request of the data. The filesystem may not always be available to the
application to write the files to, in which case this is a good alternative. There are cases where
one might be interested in some intermediate chunk of the data stored, in which case the
chunk containing the required data be accessed. You get some nice features like the MD5
content of the data, which is stored automatically and is available for use by the application.

Advanced Operations

176

Now that we have seen what GridFS is, let's see some scenarios where using GridFS might
not be a very good idea. The performance of accessing the content from MongoDB using
GridFS and directly from the filesystem will not be same. Direct filesystem access will be faster
than GridFS and Proof of Concept (POC) for the system to be developed is recommended to
measure the performance hit and see if it is within the acceptable limits; if so, the trade off in
performance might be worth for the benefits we get. Also, if your application server is fronted
with CDN, you might not actually need a lot of IO for static data stored in GridFS. Since GridFS
stores the data in multiple documents in collections, atomically updating them is not possible.
If we know the content is less than 16 MB, which is the case in lot of user-generated content,
or some small files uploaded, we may skip GridFS altogether and store the content in one
document as BSON supports storing binary content in the document. Refer to the previous
recipe Storing binary data in Mongo for more details.

We would rarely use mongofiles utility to store, retrieve, and delete data from GridFS. Though
it may occasionally be used, we will mostly perform these operations from an application. In
the next couple of recipes, we will see how to connect to GridFS to store, retrieve, and delete
files using Java and Python clients.

There's more…
Though this is not much to do with Mongo, Openstack is an Infrastructure as a Service
(IaaS) platform and offers a variety of services for Compute, Storage, Networking, and so
on. One of the image storage service called Glance supports a lot of persistent stores to
store the images. One of the supported stores by Glace is MongoDB's GridFS. You can find
more information on how to configure Glance to use GridFS at the following URL: http://
docs.openstack.org/trunk/config-reference/content/ch_configuring-
openstack-image-service.html.

See also
You can refer to the following recipes:

ff Storing data to GridFS from Java client

ff Storing data to GridFS from Python client

Storing data to GridFS from Java client
In the previous recipe, we saw how to store data to GridFS using a command-line utility that
comes with MongoDB to manage large data files: mongofiles. To get an idea of what GridFS
is and what collections are used behind the scenes to store the data, refer to the previous
recipe Storing large data in Mongo using GridFS.

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-image-service.html
http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-image-service.html
http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-image-service.html

Chapter 5

177

In this recipe, we will look at storing data to GridFS using a Java client. The program will be a
highly scaled down version of mongofiles utility and focus only on how to store, retrieve, and
delete data rather than trying to provide a lot of options like mongofiles do.

Getting ready
Refer to the recipe Installing single node MongoDB from Chapter 1, Installing and Starting
the Server, for all the necessary setup for this recipe. If you are interested in more details on
Java drivers, refer to the recipes Implementing aggregation in Mongo using a Java client and
Executing MapReduce in Mongo using a Java client in Chapter 3, Programming Language
Drivers. Open a mongo shell and connect to the local mongod instance listening to port
27017. For this recipe, we will be using the project mongo-cookbook-gridfs. This project
is available in the source code bundle downloadable from Packt site. The folder needs to be
extracted on the local filesystem. Open a terminal of your operating system and go to the root
of the project extracted. It should be the directory where the file pom.xml is found. Also, save
the file glimpse_of_universe-wide.jpg on the local filesystem, similar to the previous
recipe, found in the downloadable bundle for the book from the Packt site.

How to do it…
1.	 We are assuming that the collections of GridFS are clean and no prior data is

uploaded. If there is nothing crucial in the database, you can execute the following to
clear the collection. Do exercise caution before dropping the collections.
> use test

> db.fs.chunks.drop()

> db.fs.files.drop()

2.	 Open an operating system shell and execute the following:
$ mvn exec:java -Dexec.mainClass=com.packtpub.mongo.cookbook.
GridFSTests -Dexec.args="put ~/glimpse_of_universe-wide.jpg
universe.jpg"

3.	 The file I need to upload was placed in the home directory. You can choose to give the
file path of the image file after the put command. Bear in mind if the path contains
spaces, the whole path need to be given within single quotes.

Advanced Operations

178

4.	 If the preceding command runs successfully, we should expect the following output to
the command line:
Successfully written to universe.jpg, details are:

Upload Identifier: 5314c05e1c52e2f520201698

Length: 2711259

MD5 hash: d894ec31b8c5addd0c02060971ea05ca

Chunk Side in bytes: 262144

Total Number Of Chunks: 11

5.	 Once the preceding execution is successful, which we can confirm from the console
output, execute the following from the mongo shell:
> db.fs.files.findOne({filename:'universe.jpg'})

> db.fs.chunks.find({}, {data:0})

6.	 Now, we will get the file from GridFS to local filesystem, execute the following to
perform this operation:
$ mvn exec:java -Dexec.mainClass=com.packtpub.mongo.cookbook.
GridFSTests -Dexec.args="get '~/universe.jpg' universe.jpg"

Confirm the file is present on the local filesystem at the mentioned location.
We should see the following printed to the console output to indicate a successful
write operation:
Connected successfully..

Successfully written 2711259 bytes to ~/universe.jpg

7.	 Finally, we will delete the file from GridFS:
$ mvn exec:java -Dexec.mainClass=com.packtpub.mongo.cookbook.
GridFSTests -Dexec.args="delete universe.jpg"

8.	 On successful deletion, we should see the following output in the console:
Connected successfully..

Removed file with name 'universe.jpg' from GridFS

How it works…
The class com.packtpub.mongo.cookbook.GridFSTests accepts three types of
operations: put to upload file to GridFS, get to get contents from GridFS to local filesystem,
and delete to delete files from GridFS.

Chapter 5

179

The class accepts up to three parameters, the first one is the operation with valid values as
get, put, and delete. The second parameter is relevant for get and put operations and
is the name of the file on local filesystem to write the downloaded content to be written or
source the content from for upload respectively. The third parameter is the name of the file in
GridFS, which is not necessarily same as the name on local filesystem. For delete, however,
only the filename on GridFS is needed which would be deleted.

Let's see some important snippets of code from the class which is specific to GridFS.

Open the class com.packtpub.mongo.cookbook.GridFSTests in your favorite IDE and
look for the methods handlePut , handleGet, and handleDelete. These are the methods
where all the logic is. We will start with the handlePut method first, which is for uploading
the contents of the file from local filesystem to GridFS.

Irrespective of the operation we perform, we will create an instance of the class com.
mongodb.gridfs.GridFS. In our case, we instantiated it as follows:

GridFS gfs = new GridFS(client.getDB("test"));

The constructor of this class takes the database instance of class com.mongodb.DB. Once
the instance of GridFS is created, we will invoke the method createFile on it. This method
accepts two parameters, the first one is the InputStream sourcing the bytes of the content
to be uploaded and the second parameter is the name of the file on GridFS for the file that
would be saved on GridFS. However, this method doesn't create the file on GridFS but returns
and instance of com.mongodb.gridfs.GridFSInputFile. The upload will happen only
when we call save method in this returned object. There are few overloaded variants of this
createFile method. Please refer to Javadocs of the class com.mongodb.gridfs.GridFS
for more details.

Our next method is handleGet, which gets the contents of the file saved on GridFS to
the local filesystem. Similar to the com.mongodb.DBCollection class, the class com.
mongodb.gridfs.GridFS has the find and findOne methods for searching. However,
instead of accepting any DBObject query, find and findOne in GridFS accept filename or
the ObjectID value of the document to search in fs.files collection. Similarly, the return
value is not a DBCursor but an instance of com.mongodb.gridfs.GridFSDBFile. This
class has various methods that get the InputStream of the bytes of content present in
the file on GridFS, writeTo file or OutputStream and a method, getLength that gives
the number of bytes in the file. Refer to the Javadocs of the class com.mongodb.gridfs.
GridFSDBFile for details.

Finally, we look at the method handleDelete, which is used to delete the files on GridFS
and is the simplest of the lot. The method on the object of GridFS is remove, which accepts a
string argument: the name of the file to delete on the server. The return type of this method
is void. So irrespective of whether the content is present on GridFS or not, the method will
not return a value nor throw an exception if a name is provided to this method for a file that
doesn't exist.

Advanced Operations

180

See also
You can refer to the following recipes:

ff Storing binary data in Mongo

ff Storing data to GridFS from Python client

Storing data to GridFS from Python client
In the recipe Storing large data in Mongo using GridFS, we saw what GridFS is and how it
could be used to store the large files in MongoDB. In the previous recipe, we saw to use
GridFS API from a Java client. In this recipe, we will see how to store image data into MongoDB
using GridFS from a Python program.

Getting ready
Refer to the recipe Connecting to the single node using a Java client from Chapter 1, Installing
and Starting the Server, for all the necessary setup for this recipe. If you are interested
in more detail on Python drivers refer to the following recipes: Executing query and insert
operations with PyMongo and Executing update and delete operations using PyMongo in
Chapter 3, Programming Language Drivers. Download and save the image glimpse_of_
universe-wide.jpg from the downloadable bundle available with the book from the Packt
site to local filesystem as we did in the previous recipe.

How to do it…
1.	 Open a Python interpreter by typing in the following in the operating system shell.

Note that the current directory is same as the directory where the image file
glimpse_of_universe-wide.jpg is placed:
$ python

2.	 Import the required packages as follows:
>>>import pymongo

>>>import gridfs

3.	 Once the Python shell is opened, create a MongoClient and a database object to
the test database as follows:
>>>client = pymongo.MongoClient('mongodb://localhost:27017')

>>>db = client.test

Chapter 5

181

4.	 To clear the GridFS-related collections execute the following:
>>> db.fs.files.drop()

>>> db.fs.chunks.drop()

5.	 Create the instance of GridFS as follows:
>>>fs = gridfs.GridFS(db)

6.	 Now, we will read the file and upload its contents to GridFS. First, create the file
object as follows:
>>>file = open('glimpse_of_universe-wide.jpg', 'rb')

7.	 Now put the file into GridFS as follows
>>>fs.put(file, filename='universe.jpg')

8.	 On successfully executing put, we should see the ObjectID for the file uploaded. This
would be same as the _id field of the fs.files collection for this file.

9.	 Execute the following query from the Python shell. It should print out the dict object
with the details of the upload. Verify the contents
>>> db.fs.files.find_one()

10.	 Now, we will get the uploaded content and write it to a file on the local filesystem.
Let's get the GridOut instance representing the object to read the data out of GridFS
as follows:
>>> gout = fs.get_last_version('universe.jpg')

11.	 With this instance available, let's write the data to the file to a file on local filesystem
as follows. First, open a handle to the file on local filesystem to write to as follows:
>>> fout = open('universe.jpg', 'wb')

12.	 We will then write content to it as follows:
>>>fout.write(gout.read())

>>>fout.close()

>>>gout.close()

13.	 Now verify the file on the current directory on the local filesystem. A new file called
universe.jpg will be created with same number of bytes as the source present
in it. Verify it by opening it in an image viewer.

Advanced Operations

182

How it works…
Let's look at the steps we executed. In the Python shell, we import two packages, pymongo
and gridfs, and instantiate the pymongo.MongoClient and gridfs.GridFS instances.
The constructor of the class gridfs.GridFS takes on an argument, which is the instance of
pymongo.Database.

We open a file in binary mode using the open function and pass the file object to the GridFS
put method. There is an additional argument called filename passed, which would be the
name of the file put into GridFS. The first parameter need not be a file object but any object
with a read method defined.

Once the put operation succeeds, the return value is an ObjectID for the uploaded
document in fs.files collection. A query on fs.files can confirm that the file is
uploaded. Verify that the size of the data uploaded matches the size of the file.

Our next objective is to get the file from GridFS on to the local filesystem. Intuitively, one would
imagine if the method to put a file in GridFS is put, then the method to get a file would be get.
True, the method is indeed get, however, it will get only based on the ObjectId that was
returned by the put method. So, if you are okay to fetch by ObjectId, get is the method for
you. However, if you want to get by the filename, the method to use is get_last_version. It
accepts the name of the filename that we uploaded and the return type of this method is of type
gridfs.gridfs_file.GridOut. This class contains the method read, which will read out
all the bytes from the uploaded file to GridFS. We open a file called universe.jpg for writing in
binary mode and write all the bytes read from the GridOut object.

See also
You can refer to the following recipes:

ff Storing binary data in Mongo

ff Storing data to GridFS from Java client

Chapter 5

183

Implementing triggers in Mongo using oplog
In a relational database, a trigger is a code that gets invoked when an insert, update, or
a delete operation is executed on a table in the database. A trigger can be invoked either
before or after the operation. Triggers are not implemented in MongoDB out of the box and in
case you need some sort of notification for your application whenever any insert/update/
delete operations are executed, you are left to manage that by yourself in the application.
One approach is to have some sort of data access layer in the application, which is the only
place to query, insert, update, or delete documents from the collections. However, there
are few challenges to it. First, you need to explicitly code the logic to accommodate this
requirement in the application, which may or may not be feasible. If the database is shared
and multiple applications access it, things become even more difficult. Secondly, the access
needs to be strictly regulated and no other source of insert/update/delete be permitted.

Alternatively, we need to look at running some sort of logic in a layer close to the database.
One way to track all write operations is by using an oplog. Note that read operations cannot
be tracked using oplogs. In this recipe, we will write a small Java application that would tail
an oplog and get all the insert, update and delete operations happening on a Mongo
instance. Note that this program is implemented in Java and works equally well in any other
programming language. The crux lies in the logic for the implementation, the platform for
implementation can be any. Also, this works only if the mongod instance is started as a part
of replica set and not a standalone instance. Also, this trigger like functionality can only be
invoked only after the operation is performed and not before the data gets inserted/updated
or deleted from the collection.

Getting ready
Refer to the recipe Starting multiple instances as part of a replica set from Chapter 1,
Installing and Starting the Server, for all the necessary setup for this recipe. If you are
interested in more details on Java drivers, refer to the following recipes Executing query and
insert operations using a Java client and Executing update and delete operations using a Java
client in Chapter 3, Programming Language Drivers. Prerequisites of these two recipes are all
we need for this recipe.

Refer to the recipe Creating and tailing a capped collection cursors in MongoDB in this
chapter to know more about capped collections and tailable cursors if you are not aware or
need a refresher. Finally, though not mandatory, Chapter 4, Administration, explains oplog in
depth in the recipe Understanding and analyzing oplogs. This recipe will not explain oplog in
depth as we did in Chapter 4, Administration. Open a shell and connect it to the primary of the
replica set.

Advanced Operations

184

For this recipe, we will be using the project mongo-cookbook-oplogtrigger. This project
is available in the source code bundle downloadable from Packt site. The folder needs to
be extracted on the local filesystem. Open a command line shell and go to the root of the
project extracted. It should be the directory where the file pom.xml is found. Also, the
TriggerOperations.js file would be needed to trigger operations in the database that we
intend to capture.

How to do it…
1.	 Open an operating system shell and execute the following:

$ mvn exec:java -Dexec.mainClass=com.packtpub.mongo.cookbook.
OplogTrigger -Dexec.args="test.oplogTriggerTest"

2.	 With the Java program started, we will open the shell as follows with the file
TriggerOperations.js present in the current directory and the mongod instance
listening to port 27000 as the primary:
$ mongo --port 27000 TriggerOperations.js --shell

3.	 Once the shell is connected, execute the following function we loaded from the
JavaScript:
test:PRIMARY> triggerOperations()

4.	 Observe the output printed out on the console where the Java program com.
packtpub.mongo.cookbook.OplogTrigger is being executed using Maven.

How it works…
The functionality we implemented is pretty handy for a lot of use cases but let's see what
we did at a higher level first. The Java program com.packtpub.mongo.cookbook.
OplogTrigger is something that acts as a trigger when new data is inserted, updated, or
deleted from a collection in MongoDB. It uses oplog collection that is the backbone of the
replication in Mongo to implement this functionality.

The JavaScript we have just acts as a source of producing, updating, and deleting data from
the collection. You may choose to open the TriggerOperations.js file and take a look at
how it is implemented. The collection on which it performs is present in the test database and
is called oplogTriggerTest.

Chapter 5

185

When we execute the JavaScript function, we should see something like the following printed
to the output console:

[INFO] <<< exec-maven-plugin:1.2.1:java (default-cli) @ mongo-cookbook-
oplogtriger <<<

[INFO]

[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ mongo-cookbook-
oplogtriger ---

Connected successfully..

Starting tailing oplog...

Operation is Insert ObjectId is 5321c4c2357845b165d42a5f

Operation is Insert ObjectId is 5321c4c2357845b165d42a60

Operation is Insert ObjectId is 5321c4c2357845b165d42a61

Operation is Insert ObjectId is 5321c4c2357845b165d42a62

Operation is Insert ObjectId is 5321c4c2357845b165d42a63

Operation is Insert ObjectId is 5321c4c2357845b165d42a64

Operation is Update ObjectId is 5321c4c2357845b165d42a60

Operation is Delete ObjectId is 5321c4c2357845b165d42a61

Operation is Insert ObjectId is 5321c4c2357845b165d42a65

Operation is Insert ObjectId is 5321c4c2357845b165d42a66

Operation is Insert ObjectId is 5321c4c2357845b165d42a67

Operation is Insert ObjectId is 5321c4c2357845b165d42a68

Operation is Delete ObjectId is 5321c4c2357845b165d42a5f

Operation is Delete ObjectId is 5321c4c2357845b165d42a62

Operation is Delete ObjectId is 5321c4c2357845b165d42a63

Operation is Delete ObjectId is 5321c4c2357845b165d42a64

Operation is Delete ObjectId is 5321c4c2357845b165d42a60

Operation is Delete ObjectId is 5321c4c2357845b165d42a65

Operation is Delete ObjectId is 5321c4c2357845b165d42a66

Operation is Delete ObjectId is 5321c4c2357845b165d42a67

Operation is Delete ObjectId is 5321c4c2357845b165d42a68

The Maven program will be continuously running and never terminate as the Java program
doesn't. You may hit Ctrl + C to stop the execution.

Advanced Operations

186

Let's analyze the Java program, which is where the meat of the content is. The first
assumption is that for this program to work, a replica set must be set up as we will use
Mongo's oplog collection. The Java programs created a connection to the primary of the
replica set members, connects to the local database, and gets the oplog.rs collection.
Then, all it does is find the last or nearly the last timestamp in the oplog. This is done to
prevent the whole oplog to be replayed on startup but to mark a point towards the end in the
oplog. Here is the code to find this timestamp value:

DBCursor cursor = collection.find().sort(new BasicDBObject("$natural",
-1)).limit(1);
int current = (int) (System.currentTimeMillis() / 1000);
return cursor.hasNext() ? (BSONTimestamp)cursor.next().get("ts") : new
BSONTimestamp(current, 1);

The oplog is sorted in the reverse natural order to find the time in the last document in it.
Since oplogs follow the first in first out pattern, sorting the oplog in the descending natural
order is equivalent to sorting by the timestamp in descending order.

Once this is done, finding the timestamp as before, we query the oplog collection as usual but
with two additional options:

DBCursor cursor = collection.find(QueryBuilder.start("ts")
 .greaterThan(lastreadTimestamp).get())
 .addOption(Bytes.QUERYOPTION_TAILABLE)
 .addOption(Bytes.QUERYOPTION_AWAITDATA);

The query finds all documents greater than a particular timestamp and adds two options,
Bytes.QUERYOPTION_TAILABLE and Bytes.QUERYOPTION_AWAITDATA. The latter
option can only be added when the former option is added. This not only queries and returns
the data, but also waits for some time when the execution reaches the end of the cursor for
some more data. Eventually, when no data arrives, it terminates.

During every iteration, store the last seen timestamp as well. This is used when the cursor
closes when no more data is available and we query again to get a new tailable cursor
instance. The query this time will use the timestamp we have stored on previous iteration,
when the last document was seen. This process continues indefinitely and we basically tail the
collection in a similar way to how we tail a file in Unix using the tail command.

The oplog document contains a field called op for the operation whose value is i, u, and d for
insert, update, and delete, respectively. The field o contains the inserted or deleted object's
ID (_id) in case of insert and delete. In case of update, the file o2 contains the _id. All we do
is simply check for these conditions and print out the operation and the ID of the document
inserted/deleted or updated.

Chapter 5

187

Something to be careful about is as follows. Obviously, the deleted documents would not be
available in the collection so, the _id would not really be useful if you intend to query. Also, be
careful when selecting a document after update using the ID we get as some other operation
later in the oplog might already have performed more updates on the same document and our
application's tailable cursor has yet to reach that point. This is common in case of high-volume
systems. Similarly, for inserts we have a similar problem. The document we might query using
the provided ID might be updated/deleted already. Applications using this logic to track these
operations must be aware of them.

Alternatively, take a look at the oplog that contains more details. Like the document inserted,
the update statement executed, and so on. Updates in the oplog collection are idempotent,
which means they can be applied any number of times without unintended side effects.
For instance, if the actual update was to increment the value by 1, the update in the oplog
collection will have the set operator with the final value to be expected. This way, the same
update can be applied multiple times. The logic you would use would then have to be more
sophisticated to implement such scenarios.

Also, failovers are not handled here. This is needed for production based systems. The infinite
loop on the other hand opens a new cursor as soon as the first one terminates. There could
be a sleep duration introduced before the oplog is queried again to avoid overwhelming the
server with queries. Note that the program given here is not a production quality code but just
a simple demo of the technique that is being used by a lot of other systems to get notified for
new data insert, delete, and updates to collections in MongoDB.

MongoDB didn't have the text search feature until version 2.4 and prior to that all full text
search was handled using external search engines like Solr or Elasticsearch. Even now,
though the text search feature in MongoDB is production ready, many would still use an
external dedicated search indexer. It won't be a surprise if the decision is taken to use an
external full text index search tool instead of leveraging the MongoDB's inbuilt one. In case
of Elasticsearch, the abstraction to flow the data in to the indexes is known as a river. The
MongoDB river in Elasticsearch, which adds data to the indexes as and when the data gets
added to the collections in Mongo is built on the same logic as we saw in the simple program
implemented in Java.

Flat plane 2D geospatial queries in Mongo
using geospatial indexes

In this recipe, we will see what geospatial queries are and then see how to apply these
queries on flat planes. We will put it to use in a test map application.

Advanced Operations

188

Geospatial queries can be executed on data in which geospatial indexes are created. There
are two types of geospatial indexes. The first one is called the 2D indexes and is the simpler
of the two, it assumes that the data is given as x,y coordinates. The second one is called 3D
or spherical indexes and is relatively more complicated. In this recipe, we will explore the 2D
indexes and execute some queries on 2D data. The data on which we are going to work upon
is a 25 x 25 grid with some coordinates representing bus stops, restaurants, hospitals,
and gardens.

Getting ready
Refer to the recipe Connecting to the single node using a Java client from Chapter 1, Installing
and Starting the Server, for all the necessary setup for this recipe. Download the data file
2dMapLegacyData.json and keep it on the local filesystem ready to import. Open a mongo
shell connecting to the local MongoDB instance.

Chapter 5

189

How to do it…
1.	 Execute the following command from the operating system shell to import the data

into the collection. The file 2dMapLegacyData.json is present in the current
directory.
$ mongoimport -c areaMap -d test --drop 2dMapLegacyData.json

2.	 If we see something like the following on the screen, we can confirm that the import
has gone through successfully:
connected to: 127.0.0.1

Mon Mar 17 23:58:27.880 dropping: test.areaMap

Mon Mar 17 23:58:27.932 check 9 26

Mon Mar 17 23:58:27.934 imported 26 objects

3.	 After the successful import, from the opened mongo shell, verify the collection and its
content by executing the following query:
> db.areaMap.find()

This should give you the feel of the data in the collection.

4.	 The next step is to create 2D geospatial index on this data. Execute the following to
create a 2D index:
$ db.areaMap.ensureIndex({co:'2d'})

5.	 With the index created, we will now try to find the nearest restaurant from the place
an individual is standing. Assuming the person is not fussy about the type of cuisine,
let's execute the following query assuming that the person is standing at location
(12, 8), as shown in the image. Also, we are interested in just three nearest places.
$ db.areaMap.find({co:{$near:[12, 8]}, type:'R'}).limit(3)

6.	 This should give us three results, starting with the nearest restaurant with the
subsequent ones given in increasing distance. If we look at the image given earlier,
we kind of agree with the results given here.

7.	 Let's add more options to the query. The individual has to walk and thus wants the
distance to be restricted to a particular value in the results. Let's rewrite the query
with the following modification:
$ db.areaMap.find({co:{$near:[12, 8], $maxDistance:4}, type:'R'})

8.	 Observe the number of results retrieved this time around.

Advanced Operations

190

How it works…
Let's now go through what we did. Before we continue, let's define what exactly we mean
by the distance between two points. Suppose on a cartesian plane that we have two points
(x1, y1) and (x2, y2), the distance between them would be computed using the formula:

√(x1 – x2)
2 + (y1 – y2)

2

Suppose the two points are (2, 10) and (12, 3), the distance would be: √(2 – 12)2 + (10 – 3)2
= √(-10)2 + (7)2 = √149 =12.207.

After knowing how calculations for distance calculation are done behind the scenes by
MongoDB, let's see what we did right from step 1.

We started by importing the data normally into a collection, areaMap in the test database
and created an index as db.areaMap.ensureIndex({co:'2d'}). The index is created on
the field co in the document and the value is a special value, 2d, which denotes that this is a
special type of index called 2D geospatial index. Usually, we give this value as 1 or -1 in other
cases denoting the order of the index.

There are two types of indexes. The first is a 2D index that is commonly used for planes whose
span is less and do not involve spherical surfaces. It could be something like a map of the
building, a locality, or even a small city where the curvature of the earth covering the portion
of the land is not really significant. However, once the span of the map increases and covers
the globe, 2D indexes will be inaccurate for predicting the values as the curvature of the earth
needs to be considered in the calculations. In such cases, we go for spherical indexes, which
we will discuss soon.

Once the 2D index is created, we can use it to query the collection and find some points near
the point queried. Execute the following query:

> db.areaMap.find({co:{$near:[12, 8]}, type:'R'}).limit(3)

It will query for documents that are of the type R, which are of type restaurants and closes
to the co-ordinates (12,8). The results returned by this query will be in the increasing order of
the distance from the point in question, (12, 8) in this case. The limit just limits the result to
top three documents. We may also provide the $maxDistance in the query, which will restrict
the results with a distance less than or equal to the provided value. We queried for locations
not more than four units away, as follows:

> db.areaMap.find({co:{$near:[12, 8], $maxDistance:4}, type:'R'})

Chapter 5

191

Spherical indexes and GeoJSON compliant
data in Mongo

Before we continue with this recipe, we need to look at the previous recipe Flat plane 2D
geospatial queries in Mongo using geospatial indexes to get an understanding of what
geospatial indexes are in MongoDB and how to use the 2D indexes. So far, we have imported
the JSON documents in a non-standard format in MongoDB collection, created geospatial
indexes, and queried them it. This approach works perfectly fine and in fact, it was the only
option available until MongoDB 2.4. version 2.4 of MongoDB supports an additional way to
store, index, and query the documents in the collections. There is a standard way to represent
geospatial data particularly meant for geodata exchange in JSON and the specification of
GeoJSON mentions it in detail in the following link: http://geojson.org/geojson-spec.
html. We can now store the data in this format.

There are various geographic figure types supported by this specification. However, for our use
case, we will be using the type Point. First let's see how the document we imported before
using a non-standard format looked and how the one using GeoJSON format looks.

ff Document in non-standard format:
{"_id":1, "name":"White Street", "type":"B", co:[4, 23]}

ff Document in GeoJSON format:
{"_id":1, "name":"White Street", "type":"B", co:{type: 'Point',
coordinates : [4, 23]}}

It looks more complicated than the non-standard format and for our particular case I do
agree. However, when representing polygons and other lines, the non-standard format might
have to store multiple documents. In this case, it can be stored in a single document just by
changing the value of the type field. Refer to the specification for more details.

Getting ready
The prerequisites for this recipe are same as the prerequisites for the previous recipe except
that the file to be imported would be 2dMapGeoJSONData.json and countries.geo.
json. Download these files from the Packt site and keep them on the local filesystem for
importing them later.

Special thanks to Johan Sundström for sharing the world data.
The GeoJSON for the world is taken from https://github.
com/johan/world.geo.json. The file is massaged to enable
importing and index creation in Mongo. Version 2.4 doesn't support
MultiPolygon and thus all MultiPolygon type of shapes are omitted.
The shortcoming seems to be fixed in Version 2.6 though.

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
https://github.com/johan/world.geo.json
https://github.com/johan/world.geo.json

Advanced Operations

192

How to do it…
1.	 Import the GeoJSON compatible data in a new collection as follows. This contains

26 documents similar to what we imported last time around, except that they are
formatted using the GeoJSON format.
$ mongoimport -c areaMapGeoJSON -d test --drop 2dMapGeoJSONData.
json

$ mongoimport -c worldMap -d test --drop countries.geo.json

2.	 Create a Geospatial index on this collections as follows:
> db.areaMapGeoJSON.ensureIndex({"co" : "2dsphere"})

> db.worldMap.ensureIndex({geometry:'2dsphere'})

3.	 We will now first query the collection areaMapGeoJSON collection as follows:
> db.areaMapGeoJSON.find(

{ co:{

 $near:{

 $geometry:{

 type:'Point',

 coordinates:[12, 8]

 }

 }

 },

 type:'R'

}).limit(3)

4.	 Next, we will try to find all the restaurants that fall within the square drawn between
the points (0, 0), (0, 11), (11, 11), and (11, 0). Refer to the figure given in the
introduction of the previous recipe for getting a clear visual of the points and the
results to expect.

5.	 Write the following query and observe the results:
> db.areaMapGeoJSON.find(

{ co:{

 $geoIntersects:{

 $geometry:{

 type:'Polygon',

 coordinates:[[[0, 0], [0, 11], [11, 11], [11, 0], [0, 0]]]

 }

 }

Chapter 5

193

 },

 type:'R'

})

Check if it contains the three restaurants at coordinates (2, 6), (10, 5), and (10, 1)
as expected.

6.	 We will next try and perform some operations that would find all the matching
objects that lie completely within another enclosing polygon. Suppose that we want
to find some bus stops that lie within a given square block. Such use cases can be
addressed using the $geoWithin operator, and the query to achieve it is as follows:
> db.areaMapGeoJSON.find(

 {co:{

 $geoWithin:{

 $geometry:{
 type: 'Polygon',
 coordinates : [[[3, 9], [3, 24], [6, 24], [6, 9], [3, 9]]]}

 }

 },

 type:'B'

 }

)

7.	 Verify the results; we should have three bus stops in the result. Refer to the image of
the map in the previous recipe's introduction to get the expected results of the query.

8.	 When we execute the above commands, they just print the documents in ascending
order of the distance. However, we don't see the actual distance in the result. Let's
execute the same query as in point number 3 and additionally, get the calculated
distances as following:
> db.runCommand({

 geoNear: "areaMapGeoJSON",

 near: [12, 8],

 spherical: true,

 limit:3,

 query:{type:'R'}

 }

)

Advanced Operations

194

9.	 The query returns one document with an array within the field called results
containing the matching documents and the calculated distances. The result
also contains some additional stats giving the maximum distance, the average of
the distances in the result, the total documents scanned, and the time taken in
milliseconds.

10.	 We will finally query on the world map collection to find which country the provided
coordinate lies in. Execute the following query as follows from the mongo shell:
> db.worldMap.find(

 {geometry:{

 $geoWithin:{

 $geometry:{

 type:'Point',

 coordinates:[7, 52]

 }

 }

 }

 }

 ,{properties:1, _id:0}

)

11.	 All the possible operations we can perform with the worldMap collection are
numerous and not all are practically possible to cover in this recipe. I would
encourage you to play around with this collection and try out different use cases.

How it works…
Starting from version MongoDB 2.4, the standard way for storing geospatial data in JSON
is also supported. Note that the legacy approach that we saw is also supported. However, if
you are starting afresh, it is recommended to go ahead with this approach for the following
reasons.

ff It is a standard and anybody aware of the specification would easily be able to
understand the structure of the document

ff It makes storing complex shapes, polygons, and multiple lines easy

ff It also lets us query easily for the intersection of the shapes using the
$geoIntersect and other new set of operators

Chapter 5

195

For using GeoJSON-compatible documents, we import JSON documents in the file
2dMapGeoJSONData.json into the collection areaMapGeoJSON and create the
index as follows:

> db.areaMapGeoJSON.ensureIndex({"co" : "2dsphere"})

The collection has data similar to what we had imported into the areaMap collection in the
previous recipe but with a different structure that is compatible to JSON format. The type
here used is 2Dsphere and not 2D. The 2Dsphere type of index also considers the spherical
surfaces in calculations. Note that the field co, on which we are creating the geospatial index,
is not an array of coordinates but a document itself that is GeoJSON compatible.

We query where the value of the $near operator is not an array of the coordinates, as we did
in our previous recipe, but a document with the key $geometry and the value is a GeoJSON-
compatible document for a point with the coordinates. The results, irrespective of the query
we use are identical. Refer to point 3 in this recipe and point 5 in the previous recipe to see
the difference in the query. The approach using GeoJSON looks more complicated but it has
some advantages which we will soon see.

It is important to note that we cannot mix two approaches. Try executing the query in the
GeoJSON format that we just executed on the collection areaMap and see that although we
do not get any errors, the results are not correct.

We used the $geoIntersects operator in point 5 of this recipe. This is only possible when
the documents are stored in GeoJSON format in the database. The query simply finds all the
points in our case that intersect any shape we create. We create a polygon using the GeoJSON
format as follows:

{
 type:'Polygon',
 coordinates:[[[0, 0], [0, 11], [11, 11], [11, 0], [0, 0]]]
}

The coordinates are for the square, giving the four corners in a clockwise direction with
the last coordinate the same as the first denoting it to be complete. The query executed
is the same as $near, apart from the fact that the $near operator is replaced by the
$geoIntersects and the value of the $geometry field is the GeoJSON document of the
polygon with which we wish to find the intersecting points in the areaMapGeoJSON collection.
If we look at the results obtained and look at the figure in the introduction section or previous
recipe, they indeed are what we expected.

Advanced Operations

196

We also saw what the $geoWithin operator is in point number 12, which is pretty handy to
use when we want to find the points or even within another polygon. Note that only shapes
completely inside the given polygon will be returned. Suppose that, similar to our worldMap
collection, we have a cities collection with their coordinates specified in a similar manner.
We can then use the polygon of a country to query all the polygons that lie within it in the
cities collection, thus giving us the cities. Obviously, an easier and faster way would be to
store the country code in the city document. Alternatively, if we have some data missing in the
city's collection and the country is not present, one point anywhere within the city's polygon
(since a city entirely lies in one country) can be used and a query can be executed on the
worldMap collection to get its country, which we have demonstrated in point number 12.

A combination of what we saw previously can be put to good use to compute the distances
between two points or even execute some geometric operation.

Some of the functionalities like getting the centroid of a polygon figure stored as GeoJSON in
the collection or even the area of a polygon are not supported out of the box and there should
have been some utility functions to help compute these given the coordinates. These features
are good and are commonly required, and perhaps we might have some support in future
release; such operations are to be implemented by developers themselves. Also, there is no
straightforward way to find if there is an overlap between two polygons, what the coordinates
are, where they overlap, the area of overlap, and so on. The $geoIntersects operator we
saw does tell us what polygons do intersect with the given polygon, point, or line.

Though nothing related to Mongo, the GeoJSON format doesn't have support for circles,
and hence storing circles in Mongo using GeoJSON format is not possible. Refer to the
following link http://docs.mongodb.org/manual/reference/operator/query-
geospatial/ for more details on geospatial operators.

Implementing full text search in Mongo
Many of us (I won't be wrong to say all of us) use Google every day to search content on
the web. To explain in short: the text that we provide in the text box on Google's page is
used to search the pages on the web it has indexed. The search results are then returned
to us in some order determined by Google's page rank algorithm. We might want to have a
similar functionality in our database that lets us search for some text content and give the
corresponding search results. Note that this text search is not same as finding the text as part
of the sentence, which can easily be done using regex. It goes way beyond that and can be
used to get results that contain the same word, a similar sounding word, have a similar base
word, or even a synonym in the actual sentence.

Since MongoDB Version 2.4, text indexes have been introduced, which let us create text
indexes on a particular field in the document and enable text search on those words. In this
recipe, we will be importing some documents and creating text indexes on them, which we will
later query to retrieve the results.

http://docs.mongodb.org/manual/reference/operator/query-geospatial/
http://docs.mongodb.org/manual/reference/operator/query-geospatial/

Chapter 5

197

Getting ready
A simple, single node is what we would need for the test. Refer to the recipe Installing single
node MongoDB from Chapter 1, Installing and Starting the Server, for how to start the server.
However, do not start the server yet. There would be an additional flag provided during the
startup to enable text search. Download the file BlogEntries.json from the Packt site and
keep it on your local drive ready to be imported.

How to do it…
1.	 Start the MongoDB server listening to port 27017 as follows. Once the server

is started, we will be creating the test data in a collection as follows. With the
file BlogEntries.json placed in the current directory, we will be creating the
collection userBlog as follows using mongoimport:
$ mongoimport -d test -c userBlog --drop BlogEntries.json

2.	 Now, connect to the mongo process from a mongo shell by typing the following
command from the operating system shell:
$ mongo

3.	 Once connected, get a feel of the documents in the userBlog collection as follows:
> db.userBlog.findOne()

4.	 The field blog_text is of our interest and this is the one on which we will be
creating a text search index.

5.	 Create a text index on the field blog_text of the document as follows:
> db.userBlog.ensureIndex({'blog_text':'text'})

6.	 Now, execute the following search on the collection from the mongo shell:
$ db.userBlog.find({$text: {$search : 'plot zoo'}})

Look at the results obtained.

7.	 Execute another search as follows:
$ db.userBlog.find({$text: {$search : 'Zoo -plot'}})

Advanced Operations

198

How it works…
Let's now see how it all works. A text search is done by a process called reverse indexes. In
simple terms, this is a mechanism where the sentences are broken up into words and then
those individual words point back to the document which they belong to. The process is not
straightforward though, so let's see what happens in this process step by step at a high level:

1.	 Consider the following input sentence, I played cricket yesterday. The first
step is to break this sentence into tokens and they become [I, played, cricket,
yesterday].

2.	 Next, the stop words from the broken down sentence are removed and we are
left with a subset of these. Stop words are a list of very common words that are
eliminated as it makes no sense to index them as they can potentially affect the
accuracy of the search when used in the search query. In this case, we will be left
with the following words [played, cricket, yesterday]. Stop words are language
specific and will be different for different languages.

3.	 Finally, these words are stemmed to their base words, in this case it will be [play,
cricket, yesterday]. Stemming is process of reduction of a word to its root. For
instance, all the words play, playing, played, and plays have the same root
word, play. There are a lot of algorithms and frameworks present for stemming a
word to its root form. Refer to the Wikipedia http://en.wikipedia.org/wiki/
Stemming page for more information on stemming and the algorithms used for
this purpose. Similar to eliminating stop words, the stemming algorithm is language
dependent. The examples given here were for the English language.

If we look at the index creation process, it is created as follows db.userBlog.
ensureIndex({'blog_text':'text'}). The key given in the JSON argument is the
name of the field on which the text index is to be created and the value will always be the
text denoting that the index to be created is a text index. Once the index is created, at a high
level, the preceding three steps get executed on the content of the field on which the index
is created in each document and a reverse index is created. You can also choose to create a
text index on more than one field. Suppose that we had two fields, blog_text1 and blog_
text2; we can create the index as {'blog_text1': 'text', 'blog_text2':'text'}.
The value {'$**':'text'} creates an index on all fields of the document.

Finally, we executed the search operation by invoking the following: db.userBlog.
find({$text: {$search : 'plot zoo'}}).

This command runs the text search on the collection userBlog and the search string used is
plot zoo. This searches for the value plot or zoo in the text in any order. If we look at the
results, we see that we have two documents matched and the documents are ordered by the
score. This score tells us how relevant the document searched is, and the higher the score,
the more relevant it is. In our case, one of the documents had both the words plot and zoo in
it, and thus got a higher score than a document, as we see here:

http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Stemming

Chapter 5

199

To get the scores in the result, we need to modify the query a bit, as follows:

db.userBlog.find({$text:{$search:'plot zoo'}}, {score: { $meta:
"textScore"}})

We now have an additional document provided in the find method that asks for the score
calculated for the text match. The results still are not ordered in descending order of score.
Let's see how to sort the results by score:

db.userBlog.find({$text:{$search:'plot zoo'}}, { score: { $meta:
"textScore" }}).sort({score: { $meta: "textScore"}})

As we can see, the query is same as before, it's just the additional sort function that we have
added, which will sort the results by descending order of score.

When the search is executed as {$text:{$search:'Zoo -plot'}, it searches for all the
documents that contain the word zoo and do not contain the word plot, thus we get only
one result. The - sign is for negation and leaves out the document from the search result
containing that word. However, do not expect to find all documents without the word plot by
just giving -plot in the search.

If we look at the contents returned as the result of the search, it contains the entire matched
document in the result. If we are not interested in the entire document, but only a few
documents, we can use projection to get the desired fields of the document. The following
query, for instance, db.userBlog.find({$text: {$search : 'plot zoo'}},{_
id:1}) will be same as finding all the documents in the userBlog collection containing the
words zoo or plot, but the results will contain the _id field from the resulting documents.

If multiple fields are used for creation of index, then we may have different weights for
different fields in the document. For instance, suppose blog_text1 and blog_text2 are two
fields of a collection. We can create an index where blog_text1 has higher weight than
blog_text2 as follows:

db.collection.ensureIndex(
 {
 blog_text1: "text",
 blog_text2: "text"
 },
 {
 weights: {
 blog_text1: 2,
 blog_text2: 1,
 },
 name: "MyCustomIndexName"
 }
)

Advanced Operations

200

This gives the content in blog_text1 twice as much weight as that in blog_text2. Thus,
if a word is found in two documents but is present in the blog_text1 field of the first
document and blog_text2 of second document, then the score of first document will be
more than the second. Note that we also have provided the name of the index using the name
field as MyCustomIndexName.

We also see from the language key that the language in this case is English. MongoDB
supports various languages for implementing text search. Languages are important when
indexing the content as they decide the stop words, and stemming of words is language
specific too.

Visit the link http://docs.mongodb.org/manual/reference/command/text/#text-
search-languages for more details on the languages supported by Mongo for text search.

So, how do we choose the language while creating the index? By default, if nothing is
provided, the index is created assuming the language is English. However, if we know the
language is French, we create the index as follows:

db.userBlog.ensureIndex({'text':'text'}, {'default_language':'french'})

Suppose that we had originally created the index using the French language, the getIndexes
method would return the following document:

[
 {
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "ns" : "test.userBlog",
 "name" : "_id_"
 },
 {
 "v" : 1,
 "key" : {
 "_fts" : "text",
 "_ftsx" : 1
 },
 "ns" : "test.userBlog",
 "name" : "text_text",
 "default_language" : "french",
 "weights" : {
 "text" : 1
 },

http://docs.mongodb.org/manual/reference/command/text/#text-search-languages
http://docs.mongodb.org/manual/reference/command/text/#text-search-languages

Chapter 5

201

 "language_override" : "language",
 "textIndexVersion" : 1
 }
]

However, if the language was different per document basis, which is pretty common in
scenarios like blogs, we have a way out. If we look at the document above, the value of the
language_override field is language. This means that we can store the language of the
content using this field on a per document basis. In its absence, the value will be assumed as
the default value, french in the preceding case. Thus, we can have the following:

{_id:1, language:'english', text: ….} //Language is English
{_id:2, language:'german', text: ….} //Language is German
{_id:3, text: ….} //Language is the default one, French in this
case

There's more…
To use MongoDB text search in production, you would need version 2.6 or higher. Integrating
MongoDB with other systems like Solr and Elasticsearch is also an option. In the next recipe,
we will see how to integrate Mongo with Elasticsearch using the mongo-connector.

See also
ff For more information on the $text operator, visit http://docs.mongodb.org/

manual/reference/operator/query/text/

Integrating MongoDB for full text search
with Elasticsearch

MongoDB has integrated text search features, as we saw in the previous recipe. However,
there are multiple reasons why one would not use the Mongo text search feature and fall back
to a conventional search engine like Solr or Elasticsearch, and the following are few of them:

ff The text search feature is production ready in version 2.6. In version 2.4, it was
introduced in beta and not suitable for production use cases.

ff Products like Solr and Elasticsearch are built on top of Lucene, which has proven itself
in the search engine arena. Solr and Elasticsearch are pretty stable products too.

ff You might already have expertise on products like Solr and Elasticsearch and would
like to use it as a full text search engine rather than MongoDB.

ff Some particular feature that you might find missing in MongoDB search which your
application might require, for example, facets.

http://docs.mongodb.org/manual/reference/operator/query/text/
http://docs.mongodb.org/manual/reference/operator/query/text/

Advanced Operations

202

Setting up a dedicated search engine does need additional efforts to integrate it with a
MongoDB instance. In this recipe, we will see how to integrate a MongoDB instance with a
search engine, Elasticsearch.

We will be using the mongo-connector for integration purpose. It is an open source project
that is available at https://github.com/10gen-labs/mongo-connector.

Getting ready
Refer to the recipe Connecting to a single node using a Python client, in Chapter 1, Installing
and Starting the Server for installing and setting up Python client. The tool pip is used for
getting the mongo-connector. However, if you are working on a Windows platform, the steps to
install pip was not mentioned earlier. Visit the URL https://sites.google.com/site/
pydatalog/python/pip-for-windows to get pip for windows.

The prerequisites for starting the single instance are all we need for this recipe. We would,
however, start the server as a one node replica set for demonstration purpose in this recipe.

Download the file BlogEntries.json from the Packt site and keep it on your local drive
ready to be imported.

Download elastic search from the following URL for your target platform: http://www.
elasticsearch.org/overview/elkdownloads/. Extract the downloaded archive and
from the shell, go to the bin directory of the extraction.

We will get the mongo-connector source from GitHub.com and run it. A Git client is needed
for this purpose. Download and install the Git client on your machine. Visit the URL http://
git-scm.com/downloads and follow the instructions for installing Git on your target
operating system. If you are not comfortable installing Git on your operating system, then
there is an alternative available that lets you download the source as an archive.

Visit the following URL https://github.com/10gen-labs/mongo-connector. Here, we
will get an option that lets us download the current source as an archive, which we can then
extract on our local drive. The following image shows that the download option available on
the bottom-right corner:

https://github.com/10gen-labs/mongo-connector
https://sites.google.com/site/pydatalog/python/pip-for-windows
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://www.elasticsearch.org/overview/elkdownloads/
http://www.elasticsearch.org/overview/elkdownloads/
http://git-scm.com/downloads
http://git-scm.com/downloads
https://github.com/10gen-labs/mongo-connector

Chapter 5

203

Note that we can also install mongo-connector in a very easy way using
pip as follows:
pip install mongo-connector

However, the version in PyPi is a very old with not many features
supported and thus using the latest from the repository is
recommended.

Similar to the previous recipe, where we saw text search in Mongo, we will use the same five
documents to test our simple search. Download and keep the BlogEntries.json file.

Advanced Operations

204

How to do it…
1.	 At this point, it is assumed that Python and PyMongo are installed and pip for your

operating system platform is installed. We will now get mongo-connector from
source. If you have already installed the Git client, we will be executing the following
on the operating system shell. If you have decided to download the repository as an
archive, you may skip this step. Go to the directory where you would like to clone the
connector repository and execute the following:
$ git clone https://github.com/10gen-labs/mongo-connector.git

$ cd mongo-connector

$ python setup.py install

2.	 The preceding setup will also install the Elasticsearch client that will be used by
this application.

3.	 We will now start a single mongo instance but as a replica set. From the operating
system console, execute the following:
$ mongod --dbpath /data/mongo/db --replSet textSearch
--smallfiles --oplogSize 50

4.	 Start a mongo shell and connect to the started instance:
$ mongo

5.	 From the mongo shell initiate the replica set as follows:
> rs.initiate()

6.	 The replica set will be initiated in a few moments. Meanwhile, we can proceed to
starting the elasticsearch server instance.

7.	 Execute the following from the command after going to the bin directory of
the extracted elasticsearch archive:
$ elasticsearch

8.	 We won't be getting into the Elasticsearch settings, and we will start it in the
default mode.

9.	 Once started, enter the following URL in the browser http://localhost:9200/_
nodes/process?pretty.

Chapter 5

205

10.	 If we see a JSON document as the following, giving the process details, we have
successfully started elasticsearch.
{

 "cluster_name" : "elasticsearch",

 "nodes" : {

 "p0gMLKzsT7CjwoPdrl-unA" : {

 "name" : "Zaladane",

 "transport_address" : "inet[/192.168.2.3:9300]",

 "host" : "Amol-PC",

 "ip" : "192.168.2.3",

 "version" : "1.0.1",

 "build" : "5c03844",

 "http_address" : "inet[/192.168.2.3:9200]",

 "process" : {

 "refresh_interval" : 1000,

 "id" : 5628,

 "max_file_descriptors" : -1,

 "mlockall" : false

 }

 }

 }

}

11.	 Once the elasticsearch server and mongo instance are up and running, and the
necessary Python libraries are installed, we will start the connector that will sync the
data between the started mongo instance and the elasticsearch server. For the
sake of this test, we will be using the collection user_blog in the test database.
The field on which we would like to have text search implemented is the field blog_
text in the document.

12.	 Start the mongo-connector from the operating system shell as follows. The following
command was executed with the mongo-connector's directory as the current directory.
$ python mongo_connector/connector.py -m localhost:27017 -t
http://localhost:9200 -n test.user_blog --fields blog_text -d
mongo_connector/doc_managers/elastic_doc_manager.py

Advanced Operations

206

13.	 Import the BlogEntries.json file into the collection using mongoimport utility
as follows. The command is executed with the .json file present in the current
directory.
$ mongoimport -d test -c user_blog BlogEntries.json --drop

14.	 Open a browser of your choice and enter the following URL in it: http://
localhost:9200/_search?q=blog_text:facebook.

15.	 You should see something like the following in the browser:

How it works…
Mongo-connector basically tails the oplog to find new updates that it publishes to
another endpoint. We used elasticsearch in our case, but it could be even be Solr. You may
choose to write a custom DocManager that would plugin with the connector. Refer to the wiki
https://github.com/10gen-labs/mongo-connector/wiki for more details, and the
readme for https://github.com/10gen-labs/mongo-connector gives some detailed
information too.

We gave the connector the options -m, -t, -n, --fields, and -d and what they mean is
explained in the table as follows:

Option Description
-m URL of the MongoDB host to which the connector connects to get the data to be

synchronized.
-t The target URL of the system with which the data is to be synchronized with.

Elasticsearch in this case. The URL format will depend on the target system.
Should you choose to implement your own DocManager, the format will be one
that your DocManager understands.

-n This is the namespace that we would like keep synchronized with the external
system. The connector will just be looking for changes in these namespaces
while tailing the oplog for data. The value will be comma separated if more than
one namespaces are to be synchronized.

--fields These are the fields from the document that will be sent to the external system.
In our case, it doesn't make sense to index the entire document and waste
resources. It is recommended to add to the index just the fields that you would
like to add text search support. The identifier _id and the namespace of the
source is also present in the result, as we can see in the preceding screenshot.
The _id field can then be used to query the target collection.

http://localhost:9200/_search?q=blog_text:facebook
http://localhost:9200/_search?q=blog_text:facebook
https://github.com/10gen-labs/mongo-connector/wiki
https://github.com/10gen-labs/mongo-connector

Chapter 5

207

Option Description
-d This is the document manager to be used, in our case we have used the

elasticsearch's document manager.

For more supported options, refer to the readme of the connector's page on GitHub.

Once the insert is executed on the MongoDB server, the connector detects the newly added
documents to the collection of its interest, user_blog, and starts sending the data to be
indexed from the newly documents to the elasticsearch. To confirm the addition, we execute a
query in the browser to view the results.

Elasticsearch will complain that the index names have upper case characters in them. The
mongo-connector doesn't take care of this, and thus the name of the collection has to be in
lower case. For example, the name userBlog will fail.

There's more…
We have not done any additional configuration on elasticsearch as that was not the objective
of the recipe. We were more interested in integrating MongoDB and elasticsearch. You
will have to refer to elasticsearch documentation for more advanced config options. If
integrating with elasticsearch is required, there is a concept called rivers in elasticsearch
that can be used as well. Rivers are elasticsearch's way to get data from another data
source. For MongoDB, the code for the river can be found at https://github.com/
richardwilly98/elasticsearch-river-mongodb/. The readme in this repository has
steps on how to set it up.

In this chapter, we saw a recipe, Implementing triggers in Mongo using oplog, on how to
implement trigger-like functionalities using Mongo. This connector and MongoDB river for
elasticsearch rely on the same logic for getting the data out of Mongo as and when it is needed.

See also
ff You may find additional elasticsearch documentation at http://www.

elasticsearch.org/guide/en/elasticsearch/reference/

https://github.com/richardwilly98/elasticsearch-river-mongodb/
https://github.com/richardwilly98/elasticsearch-river-mongodb/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/

209

6
Monitoring and Backups

In this chapter, we will take a look at the following recipes:

ff Signing up for MMS and setting up an MMS monitoring agent

ff Managing users and groups in MMS Console

ff Monitoring instances and setting up alerts in MMS

ff Setting up monitoring alerts in MMS

ff Back up and restore data in Mongo using out-of-the-box tools

ff Configuring MMS Backup service

ff Managing backups in MMS Backup service

Introduction
Monitoring and backup is an important aspect of any mission-critical software in production.
Monitoring proactively lets us take action whenever an abnormal event occurs in the system
that can compromise data consistency, availability, or the performance of the system. Issues
may come to light after having a significant impact in the absence of monitoring the systems
proactively. We covered administration-related recipes in Chapter 4, Administration, and both
these activities are part of it; however, they demand a separate chapter as the content to be
covered is extensive. In this chapter, we will see how to monitor various parameters and set up
alerts for various parameters of your MongoDB cluster using the Mongo Monitoring Service
(MMS). We will look at some mechanisms to backup data using the out-of-the-box tools and
also using the MMS backup service.

Monitoring and Backups

210

Signing up for MMS and setting up an MMS
monitoring agent

MMS is a cloud-based or on-premise service that enables you to monitor your MongoDB
cluster. The on-premise version is available with an enterprise subscription only. It gives you
one central place that lets the administrators monitor the health of the server instances and
the boxes on which the instances are running. In this recipe, we will see what the software
requirements are and how to set up MMS for Mongo.

Getting ready
We will be starting a single instance of mongod, which we will use for monitoring purposes.
Refer to the recipe Installing single node MongoDB from Chapter 1, Installing and Starting
the Server to start a MongoDB instance and connect to it from a Mongo shell. The monitoring
agent used for sending the statistics of the mongo instance to the monitoring service uses
Python and pymongo. Refer to the recipe Connecting to a single node using a Python client
in Chapter 1, Installing and Starting the Server to learn more about how to install Python and
pymongo, the Python client of MongoDB.

How to do it…
If you don't already have a MMS account, then log in to https://mms.mongodb.com/ and
sign up for an account. On signing up and logging in, you should see the following page:

https://mms.mongodb.com/

Chapter 6

211

Click on the Get Started button under Monitoring.

1.	 Once we reach the Download Agent option in the menu, click on the appropriate
OS platform to download the agent. Follow the instructions given after selecting the
appropriate OS platform. Note down the apiKey too. For example, if the Windows
platform is selected, we would see the following:

2.	 Once the installation is complete, open the file monitoring-agent.config. It will
be present in the configuration folder selected while installing the agent.

3.	 Look out for the key mmsApiKey in the file and set its value to the API key that was
noted down in step 1.

4.	 Once the service is started (we have to go to services.msc on Windows, which
can be done by typing services.msc in the run dialog (Windows + R) and start
the service manually). The service would be named MMS Monitoring Agent. On the
web page, click on the Verify Agent button. If all goes well, the started agent will be
verified and a success message will be shown.

Monitoring and Backups

212

5.	 The next step is to configure the host. This host is the one that is seen from the agent's
perspective running on the organization or individual's infrastructure. The following
screen shows the screen used for the addition of a host. The hostname is the internal
hostname (the hostname on the client's network), and the MMS on the cloud doesn't
need to reach out to the MongoDB processes. It is the agent that collects the data from
these mongodb processes and sends the data to the MMS service.

Once the host's details are added, click on the Verify Host button. Once verification is
done, click the Start Monitoring button.

We have successfully set up MMS and added one host to it that will be monitored.

Chapter 6

213

How it works…
In this recipe, we set up an MMS agent and monitoring for a standalone MongoDB instance.
The installation and setup process is pretty simple. We also added a standalone instance and
all was okay.

Suppose we have a replica set up and running (refer to the recipe Starting multiple instances
as part of a replica set in Chapter 1, Installing and Starting the Server, for more details on
how to start a replica set) and the three members are listening to ports 27000, 27001, and
27002. Refer to point number 6 in the How to do it… section where we set up one standalone
host. In the drop-down menu for Host Type select Replica Set and in the Internal hostname,
give a valid hostname of any member of the replica set (in my case Amol-PC and port
27001 were given, which is a secondary instance); all other instances will be automatically
discovered and will be visible under the hosts, as shown here:

We didn't see what is to be done when security is enabled on the cluster, which is
pretty common in production environments and we have replica sets or shard setup. If
authentication is enabled, we need proper credentials for the MMS agent to gather the
statistics. The DB Username and DB Password that we give while adding a new host (point
number 6 in the How to do it… section) should have a minimum of clusterAdmin and
readAnyDatabase role.

There's more…
What we saw in this recipe was how to set up MMS agent and create an account from
the MMS console. However, we can add groups and users for the MMS console as an
administrator granting various users privileges for performing various operations on different
groups. In the next recipe, we will throw some light on user and group management in the
MMS console.

Monitoring and Backups

214

Managing users and groups in MMS console
In the previous recipe, we saw how to set up an MMS account and set up an MMS agent.
In this recipe, we will throw some light on how to set up the groups and user access to the
MMS console.

Getting ready
Refer to the previous recipe for setting up the agent and MMS account. This is the only
prerequisite for this recipe.

How to do it…
1.	 Start by going to Administration | Users on the left-hand side of the screen, as

shown here:

Chapter 6

215

Here, you can view the existing users and also add new users. On clicking the Add
User (encircled in the top right corner of the preceding image) button, you should see
the following popup window that allows you to add a new user:

The preceding screen will be used to add users. Take a note of the various
available roles.

2.	 Similarly, go to Administration | My Groups to view and add new groups by clicking
on the Add Group button. In the text box, type the name of the group. Remember that
the name of the group you enter should be available globally. The given name of the
group should be unique across all users of MMS and not just your account.

Monitoring and Backups

216

3.	 When a new group is created, it will be visible in the top left corner in a drop-down
menu for all the groups, as shown here:

4.	 You can switch between the groups using this drop-down menu, which should show
all the details and stats relevant to the selected group.

Remember that a group once created cannot be deleted.
So be careful while creating one.

How it works…
The tasks we did in the recipe are pretty straightforward and don't need a lot of explanation
except for one question. When and why do we add a group? It is when we want to segregate
our MongoDB instances by different environments or applications. There will be a different
MMS agent running for each group. Creating a new group is necessary when we want to have
separate monitoring groups for different environments of an application (Development, QA,
Production, and so on), and each group has different privileges for the users. That is, the
same agent cannot be used for two different groups. While configuring the MMS agent, we
give it an API key unique to the group. To view the API key for the group, select the appropriate
group from the drop-down menu at the top of the screen (if your user has access to only
group, the drop-down menu won't be seen) and go to Administration | Group Settings as
shown in the next screenshot. The Group ID and the API Key will both be shown on the top of
the page.

Chapter 6

217

Note that not all user roles will see this option. For example, read-only users can only
personalize their profile and most of the other options will not be visible.

Monitoring instances and setting up alerts
on MMS

The previous couple of recipes showed us how to set up an MMS account, set up an agent,
add hosts, and manage user access to MMS console. The core objective of MMS is monitoring
the host instances, which has not been discussed yet. In this recipe, we will perform some
operations on the host that we added to MMS in the first recipe and monitor it from the
MMS console.

Getting ready
Follow the recipe Signing up for MMS and setting up an MMS monitoring agent, and that is
pretty much all that is needed for this recipe. You may choose to have a standalone instance
or a replica set, either way is fine. Also, open a mongo shell and connect to the primary
instance from it (it is a replica set).

How to do it…
1.	 Start by logging into MMS console and clicking on Deployment on the left. Then, click

on the Deployment link in the submenu again, as shown in the following screenshot:

Click on one of the hostnames to see a large variety of graphs showing various
statistics. In this recipe, we will analyze the majority of these.

Monitoring and Backups

218

2.	 Open the bundle downloaded for the book. In Chapter 4, Administration, we used a
JavaScript to keep the server busy with some operations named KeepServerBusy.
js. We will be using the same script this time around.

3.	 In the operating system shell, execute the following with the .js file in current
directory. The shell connects to port 27000 in my case for the primary:
$ mongo KeepServerBusy.js --port 27000 --quiet

4.	 Once it's started, keep it running and give it some 5 to 10 minutes before you start
monitoring the graphs on MMS console.

How it works…
In Chapter 4, Administration, we saw a recipe, The mongostat and mongotop utilities that
demonstrated how these utilities can be used to get the current operations and resource
utilization. That is a fairly basic and helpful way to monitor a particular instance. MMS,
however, gives us one place to monitor the MongoDB instance with pretty easy-to-understand
graphs. MMS also gives us historical stats, which mongostat and mongotop cannot give.

Before we go ahead with the analysis of the metrics, I would like to mention that in the case
of MMS monitoring, the data is not queried nor sent out over the public network. It is just the
statistics that are sent over a secure channel by the agent. The source code for the agent
is open source and is available for examination if needed. The mongod servers need not be
accessible from the public network as the cloud-based MMS service never communicates with
the server instances directly. It is the MMS agent that communicates with the MMS service.
Typically, one agent is enough to monitor several servers unless you plan to segregate them
into different groups. Also, it is recommended to run the agent on a dedicated machine/
virtual machine and not share it with any of the mongod or mongos instances unless it is a
less crucial test instance group you are monitoring.

Let's see some of these statistics on the console; we start with the memory-related ones. The
following graph shows the resident, mapped, and virtual memory.

Chapter 6

219

As we can see, the resident memory for the data set is 82 MB, which is very low and it is the
actual physical memory used up by the mongod process. This current value is significantly
below the free memory available and generally this will increase over a period of time till it
reaches a point where it has used up a large chunk of the total physical available memory.
This is automatically taken care of by the mongod server process, and we can't force it to use
up more memory even though it is available on the machine it is running on.

The mapped memory, on other hand, is about the total size of the database and is mapped by
MongoDB. This size can be (and usually is) much higher than the physical memory available,
which enables the mongod process to address the entire dataset as it is present in memory
even if it isn't. MongoDB offloads the responsibility of mapping and loading data to and from
disk to the underlying operating system. Whenever a memory location is accessed and it is
not available in the RAM (that is, the resident memory), the operating system fetches the
page into memory, evicting some pages to make space for the new page if necessary. What
exactly is a memory mapped file? Let's try to see with a super scaled down version. Suppose
we have a file of 1 KB (1024 bytes) and the RAM is only 512 bytes, then obviously we cannot
have the whole file in memory. However, you can ask the operating system to map this file to
available RAM in pages. Suppose each page is 128 bytes, then the total file is 8 pages (128
* 8 = 1024). But the OS can only load four pages, and we assume it loaded the first 4 pages
(up to 512 bytes) in the memory. When we access byte number 200, it is okay and found in
the memory as it is in present on page 2. But what if we access byte 800, which is logically on
page 7 that is not loaded in memory? What OS does is takes one page out from the memory
and loads this page 7 containing byte number 800. MongoDB as an application gives the
impression that everything was loaded in the memory and was accessed by the byte index,
but actually it wasn't and the OS transparently did the work for us. Since the page accessed
was not present in the memory and we had to go to the disk to load it in the memory it is
called a page fault.

Monitoring and Backups

220

Getting back to the stats shown in the graph, the virtual memory contains all the memory
usage including the mapped memory plus any additional memory used, such as the memory
associated with the thread stack associated with each connection. If journaling is enabled,
this size will definitely be more than twice than that of the mapped memory as journaling too
will have a separate memory mapping for the data. Thus, we have two addresses mapping the
same memory location. This doesn't mean that the page will be loaded twice. It just means
that two different memory locations can be used to address the same physical memory. Very
high virtual memory might need some investigation. There is no predetermined definition of
a too high or low value; generally these values are monitored for your system under normal
circumstances when you are happy with the performance of your system. These benchmark
values should then be compared with the figures seen when system performance goes down
and then appropriate action can be taken.

As we saw earlier, page faults are caused when an accessed memory location is not present
in the resident memory, causing the OS to load the page from memory. This IO activity will
definitely cause performance to go down and too many page faults can bring down database
performance dramatically. The following screenshot shows quite a few page faults happening
per minute. However, if the disk used is an SSD instead of spinning disks, the hit in terms of
seek time from the drive might not be significantly high.

Chapter 6

221

A large number of page faults usually occur when there isn't enough physical memory to
accommodate the data set and the OS needs to get the data from the disk into memory. Note
that this stat shown in the preceding screenshot is taken on a Windows platform and might
seem high for a very trivial operation. This value is the sum of hard and soft page faults and
doesn't really give a true figure of how good (or bad) the system is. These figures would be
different on a Unix-based OS. There is a JIRA (https://jira.mongodb.org/browse/
SERVER-5799) open as of the writing of this book which reports this problem.

One thing you might need to remember is that in production systems, MongoDB doesn't work
well with a NUMA architecture and you might see a lot of page faults happening even if the
available memory seems to be high enough. Refer to the URL http://docs.mongodb.org/
manual/administration/production-notes/ for more details.

There is an additional graph which gives some details about non-mapped memory. As we
saw earlier in this section, there are three types of memory: mapped, resident, and virtual.
Mapped memory is always less than virtual memory. Virtual memory will be more than twice
that of mapped memory if journaling is enabled. If we look at the image given in this section
earlier, we see that the mapped memory is 192 MB whereas the virtual memory is 532MB.
Since journaling is enabled, the memory is more than twice that of the mapped memory.
When journaling is enabled, the same page of data is mapped twice in memory. Note that
the page is physically loaded only once, it is just that the same location can be accessed
using two different addresses. Let's find the difference between the virtual memory, which
is 532MB, and twice the mapped memory that is 384 MB (2 * 192 = 384). The difference
between these figures is 148 MB (532 - 384).

What we see here is the portion of virtual memory that is not mapped memory. This value is
the same as what we just calculated.

https://jira.mongodb.org/browse/SERVER-5799
https://jira.mongodb.org/browse/SERVER-5799
http://docs.mongodb.org/manual/administration/production-notes/
http://docs.mongodb.org/manual/administration/production-notes/

Monitoring and Backups

222

As mentioned earlier, a high or low value for non-mapped memory is not defined, however
when the value reaches GBs we might have to investigate; possibly the number of open
connections is high and we need to check if there is a leak with client applications not closing
them after using it. There is a graph that gives us the number of connections open and it
looks as follows:

Once we know the number of connections and find it too high as compared to the expected
count, we will need to find the clients who have opened the connections to that instance. We
can execute the following JavaScript code from the shell to get those details. Unfortunately, at
the time of writing this book, MMS doesn't have this feature to list out the client connection
details.

testMon:PRIMARY> var currentOps = db.currentOp(true).inprog;

 currentOps.forEach(function(c) {

 if(c.hasOwnProperty('client')) {

 print('Client: ' + c.client + ", connection id is: " + c.desc);

 }

 //Get other details as needed

 });

Chapter 6

223

The db.currentOp method returns all the idle and system operations in the result. We
then iterate through all the results and print out the client host and the connection details. A
typical document in the result of the currentOp looks like this. You can choose to tweak the
preceding code to include more details as per your need:

 {

 "opid" : 62052485,

 "active" : false,

 "op" : "query",

 "ns" : "",

 "query" : {

 "replSetGetStatus" : 1,

 "forShell" : 1

 },

 "client" : "127.0.0.1:64460",

 "desc" : "conn3651",

 "connectionId" : 3651,

 "waitingForLock" : false,

 "numYields" : 0,

 "lockStats" : {

 "timeLockedMicros" : {

 },

 "timeAcquiringMicros" : {

 }

 }

 }

In Chapter 4, Administration, we saw a recipe, The mongostat and mongotop utilities that was
used to get some details on the percent of time a database was locked and the number of
update, insert, delete, and getmore operations executed per second. You may refer to these
recipes and try them out. We had used the same JavaScript that we have used currently to
keep the server busy.

Monitoring and Backups

224

In MMS console, we have graphs giving these details as follows:

The first one, opcounters, shows the number of operations executed at a particular point
in time. This should be similar to what we saw using the mongostat utility. The one on the
right shows us the percentage of time a database was locked. The drop-down menu lists the
database names. We can select an appropriate database that we want to see the stats for.
Again, this statistic can be seen using the mongostat utility. The only difference is that with
the command-line utility, we see the stats as of the current time, whereas here we see the
historical stats too.

In MongoDB, indexes are stored in BTrees and the next graph shows the number of times
the BTree index was accessed, hit, and missed. At the minimum, the RAM should be enough
to accommodate the indexes for optimum performance. So in this metric, the misses should
be 0 or very low. A high number of misses results in a page fault for the index and possibly
additional page faults for the corresponding data if the query is not covered, that is, all its
data cannot be sourced from the index, which is a double blow for performance. One good
practice while querying is to use projections and fetch only the necessary fields from the
document. This is helpful whenever we have our selected fields present in an index, in which
case the query becomes covered and all the necessary data is sourced from the index only. To
learn more about on covered indexes, refer to the recipe Creating index and viewing plans of
queries in Chapter 2, Command-line Operations and Indexes.

Chapter 6

225

For busy applications if the volumes are very high, with multiple write and read operations
contending for lock, the operations queue up. Untill Version 2.4 of MongoDB, the locks are
at the database level. Thus, even if the writes are happening on another collection, read
operations on any collection in that database will block. This queuing operation affects the
performance of the system and is a good indicator that the data might need to be sharded
across to scale the system.

Remember, no value is defined as high or low; it is the
acceptable value on an application-to-application basis.

Monitoring and Backups

226

MongoDB flushes the data from the journal immediately and the data file periodically to disk.
The following metrics give us the flush time per minute at a given point of time. If the flush
takes up a significant percentage of the time per minute, we can safely say that the write
operations are forming a bottleneck for performance.

There's more…
We have seen monitoring of the MongoDB instances/cluster in this recipe. However, setting
up alerts to get notifications when certain threshold values are crossed is what we still haven't
seen. In the next recipe, we will see how to achieve this with a sample alert that is sent out
over an e-mail when the page faults exceed a predetermined value.

See also
ff Monitoring the hardware, such as CPU usage, is pretty useful and MMS console

does support that. However, it needs munin-node to be installed to enable CPU
monitoring. Refer to the page http://mms.mongodb.com/help/monitoring/
configuring/ for setting up munin-node and hardware monitoring.

ff For updating the monitoring agent, refer to the page http://mms.mongodb.com/
help/monitoring/tutorial/update-mms/.

http://mms.mongodb.com/help/monitoring/configuring/
http://mms.mongodb.com/help/monitoring/configuring/
http://mms.mongodb.com/help/monitoring/tutorial/update-mms/
http://mms.mongodb.com/help/monitoring/tutorial/update-mms/

Chapter 6

227

Setting up monitoring alerts in MMS
In the previous recipe, we saw how to monitor various metrics from MMS console. This is a
great way to see all the stats in one place and get an overview of the health of the MongoDB
instances and cluster. However, it is not possible to monitor the system continuously, 24/7, for
the support personnel and there has to be some mechanism to automatically send out alerts
in case some threshold is exceeded. In this recipe we will set up an alert whenever the page
faults exceeds 1000.

Getting ready
Refer to the previous recipe to set up Monitoring Mongo Instances using MMS. That is the only
prerequisite for this recipe.

How to do it…
1.	 Click on the Activity option on the left side menu, and then Alert Settings. On the

Alert Settings page, click on Add Alert.

2.	 Add a new alert for the Host that is a primary instance and if the page faults exceed a
given number, which is 1000 page faults per minute. The notification is chosen to be
an e-mail in this case and the interval after which the alert will be sent is 10 minutes.

3.	 Click on Save to save the alert.

Monitoring and Backups

228

How it works…
The steps were pretty simple and we were successful in setting up MMS alerts when the
page faults exceeded 1000 per minute. As we saw in the previous recipe, no fixed value is
classified as high or low. It is something that is acceptable for your system, which comes with
benchmarking the system during the testing phases in your environment. Similar to page
faults, there is a vast array of alerts that can be set up. Once an alert is raised, it will be sent
every 10 minutes, as we have set, until the condition for sending the alerts is not met. In this
case, if the number of page faults falls below 1000 or somebody manually acknowledges the
alert, no further alerts will be sent further for that incident.

As we see in the following screenshot, the alert is open and we can acknowledge the alert:

On clicking on Acknowledge, the following popup will let us choose the duration for which we
will acknowledge:

Chapter 6

229

This means that for this particular incident, no more alerts will be sent out until the selected
time period elapses.

The Open alerts can be viewed by clicking on the Activities menu option on the left.

See also
ff Visit the URL http://www.mongodb.com/blog/post/five-mms-monitoring-

alerts-keep-your-mongodb-deployment-track for some of the important
alerts that you should set up for your deployment

Back up and restore data in Mongo using
out-of-the-box tools

In this recipe, we will look at some basic backup and restore operations using utilities such as
mongodump and mongorestore to back up and restore files.

Getting ready
We will start a single instance of mongod. Refer to the recipe Installing single node MongoDB
in Chapter 1, Installing and Starting the Server, to start a mongo instance and connect to
it from a mongo shell. We will need some data to backup. If you already have some data in
your test database, that will be fine. If not, create some from the countries.geo.json file
available in the code bundle using the following command:

$ mongoimport -c countries -d test --drop countries.geo.json

How to do it…
1.	 With the data in the test database, execute the following (assuming we want to

export the data to a local directory called dump in the current directory):
$ mongodump -o dump -oplog -h localhost -port 27017

Verify that there is data in the dump directory. All files will be .bson files, one per
collection in the respective database folder created.

2.	 Now let's import the data back into the mongo server using the following command.
This is again with the assumption that we have the directory dump in the current
directory with the required .bson files present in it:
mongorestore --drop -h localhost -port 27017 dump -oplogReplay

http://www.mongodb.com/blog/post/five-mms-monitoring-alerts-keep-your-mongodb-deployment-track
http://www.mongodb.com/blog/post/five-mms-monitoring-alerts-keep-your-mongodb-deployment-track

Monitoring and Backups

230

How it works…
Just a couple of steps executed to export and restore the data. Let's now see what it exactly
does and what the command-line options for this utility are. The mongodump utility is used to
export the database into the .bson files, which can then be later used to restore the data in
the database. The export utility exports one folder per database except local database, and
then each of them will have one .bson file per collection. In our case, we used the -oplog
option to export a part of the oplog too and the data will be exported to the oplog.bson
file. Similarly, we import the data back into the database using the mongorestore utility.
We explicitly ask the existing data to be dropped by providing the --drop option before the
import and replay of the contents in the oplog if any.

The mongodump utility simply queries the collection and exports the contents to the files.
The bigger the collection, the longer it will take to restore the contents. It is thus advisable to
prevent write operations when the dump is being taken. In the case of sharded environments,
the balancer should be turned off. If the dump is taken while the system is running, export
with the -oplog option to export the contents of the oplog as well. This oplog can then be
used to restore to the point in time data. The following table shows some of the important
options available for the mongodump and mongorestore utility, first for mongodump:

Option Description
--help Shows all the possible, supported options and a brief

description of these options.
-h or --host The host to connect to. By default, it is localhost on port

27017. If a standalone instance is to be connected to,
we can set the hostname as <hostname>:<port
number>. For a replica set, the format will be
<replica set name>/<hostname>:<port>,…
.<hostname>:<port> where the comma-separated
list of hostnames and port is called the seed list. It can
contain all or a subset of hostnames in a replica set.

--port The port number of the target MongoDB instance. This
is not really relevant if the port number is provided in the
previous -h or --host option.

-u or --username Provides the username of the user using which the
data would be exported. Since the data is read from all
databases, the user is at least expected to have read
privileges in all databases.

-p or --password The password used in conjunction with the username.
--authenticationDatabase The database in which the user credentials are kept. If not

specified, the database specified in the --db option is
used.

-d or --db The database to back up. If not specified, then all the
databases are exported.

Chapter 6

231

Option Description
-c or --collection The collection in the database to be exported.
-o or --out The directory to which the files will be exported. By default,

the utility will create a dump folder in the current directory
and export the contents to that directory.

--dbpath If we don't intend to connect to the database server and
instead directly read from the database file. The value
is the path of the directory where the database files will
be found. The server should not be up and running while
reading directly from the database files as the export locks
the data files, which can't happen if a server is up and
running. A lock file will be created in the directory while the
lock is acquired.

--oplog With the option enabled, the data from the oplog from
the time the export process started is also exported.
Without this option enabled, the data in the export will not
represent a single point in time if writes are happening in
parallel as the export process can take few hours and it
simply is a query operation on all the collections. Exporting
the oplog gives an option to restore to a point in time data.
There is no need to specify this option if you are preventing
write operations while the export is in progress.

Similarly, for the mongorestore utility, here are the options. The meaning of the
options --help, -h, or --host, --port, -u, or --username, -p or --password,
--authenticationDatabase, -d, or --db, -c or --collection.

Option Description
--dbpath If we don't intend to connect to the database server and instead

directly write to the database file, use this option. The value is the
path of the directory where the database files will be found. The
server should not be up and running while writing directly to the
database files as the restore operation locks the data files, which
can't happen if a server is up and running. A lock file will be created
in the directory while the lock is acquired.

--drop Drop the existing data in the collection before restoring the data from
the exported dumps.

--oplogReplay If the data was exported while writes to the database were allowed
and if the --oplog option was enabled during export, the oplog
exported will be replayed on the data to bring all the data in the
database to the same point in time.

Monitoring and Backups

232

Option Description
--oplogLimit The value of this parameter is a number representing the time in

seconds. This option is used in conjunction with oplogReplay
command line option, which is used to tell the restore utility to replay
the oplog and stop just at the limit specified by this option.

You might think, Why not copy the files and take a backup? That works well but there are
a few problems associated with it. First, you cannot get a point-in-time backup unless write
operations are disabled. Secondly, the space used for backups is very high as the copy would
also copy the 0 padded files of the database as against the mongodump, which exports just
the data.

Having said that, filesystem snapshotting is a commonly used practice for backups. One thing
to remember is while taking the snapshot the journal files and the data files need to come in
the same snapshot for consistency.

If you were using Amazon Web Services (AWS), it would be highly recommended that you
upload your database backups to AWS S3. As you may be aware, AWS offers extremely high
data redundancy with a very low storage cost.

Download the script generic_mongodb_backup.sh from the Packt Publishing website and
use it to automate your backup creation and upload to AWS S3.

Configuring MMS Backup service
MMS Backup is a relatively new offering by MongoDB for real-time incremental backup of
your MongoDB instances, replica sets, and shards, and offers you point in time recovery of
your instances. The service is available as on-premise (in your data center) or cloud. However,
we will demonstrate the on-cloud service that is the only option for the Community and
Basic subscription. For more details on the available options, you can visit different product
offerings by MongoDB at https://www.mongodb.com/products/subscriptions.

Getting ready
Mongo MMS Backup service will work only on Mongo 2.0 and above. We will start a single
server that we will backup. MMS backup relies on the oplog for continuous backup and since
oplog is available only in replica sets, the server needs to be started as a replica set. Refer
to the recipe Connecting to a single node using a Python client in Chapter 1, Installing and
Starting the Server to learn more about how to install Python and PyMongo, the Python client
of Mongo.

https://www.mongodb.com/products/subscriptions

Chapter 6

233

How to do it…
If you don't already have a MMS account, then log in to https://mms.mongodb.com/ and
sign up for an account. For screenshots, refer to the recipe Signing up for MMS and setting up
an MMS monitoring agent in this chapter.

1.	 Start a single instance of Mongo and replace the value of the appropriate filesystem
path on your machine:
$ mongod --replSet testBackup --smallfiles --oplogSize 50 --dbpath
/data/mongo/db

Note that the smallfiles and oplogSize are options only set for testing purposes
and are not to be used in production.

2.	 Start a shell, connect to the instance in step 1 and initiate the replica set as follows:
> rs.initiate()

The replica set will be up and running in some time.

3.	 Go back to the browser to mms.mongodb.com. Add a new host by clicking on the
+ Add Host button. Set the type as replica set and the hostname as your hostname
and the port as the default one 27017 in our case. Refer to the recipe Signing up for
MMS and setting up an MMS monitoring agent for the screenshots of the Add Host
process.

4.	 Once the host is successfully added, register for MMS backup by clicking on the
Backup option the left and then Begin Setup.

5.	 An SMS or Google authenticator can be used for registration. If a smartphone is
available with Android, iOS, or Blackberry OS, Google authenticator is a good option.
For countries like India, Google Authenticator is the only option available.

6.	 Assuming Google Authenticator is not configured already and we are planning to use
it, we would need the app to be installed on your smartphone. Go to the respective
app store of your mobile OS platform and install the Google Authenticator software.

https://mms.mongodb.com/

Monitoring and Backups

234

7.	 With the software installed on the phone, come back to the browser. You should see
the following screen on selecting the Google Authenticator:

8.	 Begin the setup for a new account by scanning the QR code from the Google
Authenticator application. If barcode scanning is a problem, you may choose to
manually enter the key given on the right side of the screen.

Chapter 6

235

9.	 Once the scanning or the key is entered successfully, your smartphone should
show a 6-digit number that changes every 30 seconds. Enter that number in the
Authentication Code box given on the screen.

It is important not to delete this account in Google Authenticator on
your phone as this will be used in future whenever we wish to change
any settings related to backup, such as stopping backup, changing
exclusion list, and almost any operation in MMS backup. The QR code
and key will not be visible again once the setup is done. You will have
to contact MongoDB support to get the configuration reset.

10.	 Once the authentication is done, the next screen you should see is the billing address
and billing details, such as the card you register. All charges below $5 are waived so
you should be ok to try out a small test instance before being charged.

11.	 Once the credit card details are saved, we move ahead with the setup. We will have
for installation a backup agent. This is a separate agent from the monitoring agent.
Choose the appropriate platform and follow the instructions for its installation. Take a
note of the location where the configuration files of the agent will be placed.

12.	 A new popup will contain the instruction/link to the archive/installer for the platform
and the steps to install. It should also contain the apiKey. Take a note of the API key;
we will need it in the next step.

13.	 Once the installation is complete, open the local.config file placed in the config
directory of the agent installation (the location that was shown/modified during
installation of the agent) and paste/type in the apiKey noted down in the previous step.

14.	 Once the agent is configured and started, click on the Verify Agent button.

Monitoring and Backups

236

15.	 Once the agent is successfully verified, we will start by adding a host to back up.
The drop-down menu should show us all the replica sets and shards we have added.
Select the appropriate one and set the Sync source as the primary instance, as that
is the only one we have in our standalone instance. Sync source is only used for the
initial sync process. Whenever we have a proper replica set with multiple instances, I
prefer using a secondary as a sync process instance.

Since the instance is not started with security, leave the DB Username and DB
Password fields blank.

Chapter 6

237

16.	 Click on the button Manage excluded namespaces if you wish to skip a
particular database or collection being backed up. If nothing is provided, by
default everything will be backed up. The format for the collection name will be
<databasename>.<collection name>. Alternatively, it could be just the
database name, in which case all collections in that database would not be eligible
for backup.

17.	 Once the details are all ok, click on the Start button. This should complete the setup
of the backup process for a replica set on MMS.

The installation steps I performed were on Windows OS and the service
needs to be started manually in that case. Press Windows + R and type
services.msc. The name of the service is MMS Backup Agent.

How it works…
The steps are pretty simple and this is all we need to do to set up a server for Mongo
MMS backup. One important thing mentioned earlier is that MMS backup uses multifactor
authentication for any operation once the backup is set up, and the account set up in Google
Authenticator for MongoDB should not be deleted. There is no way to recover the original key
used for setting up the authenticator. You will have to clear the Google Authenticator settings
and set up a new key. To do that, click on the Help & Support link in the bottom-left corner of
the screen and click on How do I reset my two-factor authentication?.

On clicking the link, a new window will open up and ask for the username. An e-mail will be
sent out to the registered e-mail ID which allows you to reset the two-factor authentication.

Monitoring and Backups

238

As mentioned, oplog is used to synchronize the current MongoDB instance with the MMS
service. However, for the initial sync, an instance's data files are used. The instance to use is
provided by us when we set up the backup of replica set. As this is a resource-heavy operation,
I prefer to use a secondary instance for this on busy systems so as not to add more querying
on the primary instance by the MMS backup agent. Once the instance is done with initial
synchronization, the oplog of the primary instance will be used to get the data on a continuous
basis. Agent does write to a collection called mms.backup in admin database periodically.

The backup agent for MMS backup is different from the MMS monitoring agent. Though
there is no restriction on having them both running on the same machine, you might need to
evaluate that before having such a setup in production. The safe bet would be to have them
running on separate machines. Never run either of these agents with a mongod or mongos
instance on the same box in production. There are a couple of important reasons why it is not
recommended to run the agent on the same box as the mongod instances:

ff The resource utilization of the agent is dependent on the cluster size it monitors.
We don't want the agent to use a lot of resources affecting the performance of the
production instance.

ff The agent could be monitoring a lot of server instances at a time. Since there is only
one instance of this agent, we do not want it to go down during database server
maintenance and restart.

The community edition of MongoDB built with SSL or enterprise versions with the SSL option
used for communication between the client and the mongo server must do some additional
steps. The first step is to check the My deployment supports SSL for MongoDB connections
flag when we set up the replica set for backup (see step 15). Note the check box at the bottom
in the screenshot that should be checked. Secondly, open the local.config file for the
MMS configuration and look out for these two properties:

sslTrustedServerCertificates=
sslRequireValidServerCertificates=true

The first is the fully qualified path of the certifying authority's certificate in PEM format. This
certificate will be used to verify the certificate presented by the mongod instance running over
SSL. The second property can be set to false if certificate verification is to be disabled, this
is however not a recommended option. As far as the traffic between the backup agent and
MMS backup is concerned, data sent from the agent to the MMS service over SSL is secure
irrespective of whether SSL is enabled on your MongoDB instances or not. The data at rest in
the data center for the backed up data is not encrypted.

Chapter 6

239

If security is enabled on the mongod instance, a username and password need to be provided,
which will be used by the MMS backup agent. The username and password are provided while
setting up backup for the replica set, as in step 15. Since the agent needs to read the oplog,
possibly all databases for the initial sync and write data to admin database the following roles
are expected for the user: readAnyDatabase, clusterAdmin, readWrite on admin and
local databases, and userAdminAnyDatabase. This is in case in version 2.4 and above. In
versions prior to v2.4, we would expect the user to have read access on all the databases and
read/write access to admin and local databases.

While setting up a replica set for backup you may get an error like, Insufficient oplog
size: The oplog window must be at least 1 hours over the last 24
hours for all active replica set members. Please increase the oplog..
While you may think this is always something to do with oplog size, it is also seen when the
replica set has an instance that is in recovering state. This might feel misleading, so do look
out for recovering nodes, if any, in the replica set while setting up a backup for a replica set.
As per the MMS support too, it seems too restrictive to not set up a replica set for backup with
some recovering nodes, and it might be fixed in the future.

Managing backups in MMS Backup service
In the previous recipe, we saw how to set up MMS backup service and a simple one member
replica set was set up for backup. Though a single member replica set makes no sense at
all, it was needed as a standalone instance cannot be set up for backup in MMS. In this
recipe, we dive deeper and look at the operations we can perform on the server that is set
up for backup, such as starting, stopping, or terminating a backup; managing exclusion lists;
managing backup snapshots and retention; and restoring to point in time data.

Getting ready
The previous recipe is all that is needed for this recipe. The necessary setup is expected to be
done as we are going to use the same server we had set up for backup in this recipe.

How to do it…
With the server up and running, let's import some data to it. It can be anything, but we chose
to use the countries.geo.json file that was used in the last chapter. It should be available
in the bundle downloaded from the Packt site.

Start by importing the data into a collection called countries in the test database. Use
the following command to do it. The following import command was executed with the current
directory having the countries.geo.json file:

$ mongoimport -c countries -d test --drop countries.geo.json

Monitoring and Backups

240

We have already seen how to exclude namespaces when the replica set backup was being set
up. We will now see how to exclude namespaces once the backup for a replica set is done.
Click on the Backup menu option on the left and then the Replica Set Status, which opens
by default when Backup is clicked. Click on the Gear button on the right side of the row where
the replica set is shown. It should look like this:

1.	 As we see in the preceding image, click on Edit Excluded Namespaces and type in
the name of the collection that we want to exclude. Suppose we want to exclude the
applicationLogs collection in test database, type in test.applicationLogs.

2.	 On saving, you will be asked to enter the token code that is currently displayed on
your Google Authenticator.

3.	 On successful validation of the code, the namespace test.applicationLogs will
be added to the list of namespaces excluded from being backed up.

4.	 We now shall see how to manage snapshot scheduling. A snapshot is the state of
the database as of a particular point in time. To manage the snapshot frequency and
retention policy, click on the Gear button shown in the previous screenshot and click
on Edit Snapshot Schedule.

5.	 As we can see in the following image, we can set the times when the snapshots are
taken and their retention period. We will discuss more on this in the next section. Any
changes to it would need multifactor authentication to save the changes.

Chapter 6

241

6.	 We will now see how we go about restoring the data using MMS backup. At any point
in time whenever we want to restore the data, click on Backup and Replica Set
Status/Shard Cluster Status click on set/cluster name.

On clicking it, we will see the snapshots that are saved against this set. It should look
something like this:

We have encircled some of the portions on the screen which we will see one by one.

Monitoring and Backups

242

7.	 To restore to the time when the snapshot was taken, click on the Restore this
snapshot link in the Actions column of the grid.

8.	 The preceding image shows us how we can export the data either over HTTPS or SCP.
We select HTTPS for now, and click Authenticate. We will see about SCP in the next
section.

9.	 Enter the token that is received either over SMS or seen on Google Authenticator and
click Finalize Request on entering the auth code.

10.	 On successful authentication, click on Restore Jobs. This is a one-time download that
will let you download the tar.gz archive. Click on the download link to download the
tar.gz archive.

11.	 Once the archive is downloaded, extract it to get the database files within it.

Chapter 6

243

12.	 Stop the mongod instance, replace the database files with the ones that are
extracted, and restart the server to get the data as of the time when the snapshot
was taken. Note that the database file will not contain data for the collection that was
excluded from backup if all.

13.	 We will now see how to get point in time data using MMS backup.

14.	 Click on Replica Set Status / Shard Cluster Status and then the cluster/set which is
to be restored.

1.	 On the right-hand side of the screen, click on the Restore button.

2.	 This should give a list of available snapshots or you may enter a custom time.
Check Use Custom Point In Time. Click on the Date field and select a date
and a time to which you want to restore the data in Hours and Minutes and
click Next. Note that the Point in Time feature only restores to a point in last
24 Hours.

Here, you will be asked to specify the format as HTTPS or SCP. The
subsequent steps are similar to what we did on the previous occasion,
from step 14 onwards.

How it works…
After setting up the backup for a replica set, we imported random data into the database.
Backup for this database would be done by MMS and later on we will restore the database
using this backup. We saw how to exclude namespaces from being backed up in steps 2-5.

Looking at the snapshot and retention policy settings, we can see we have the choice of
the time interval in which the snapshots are to be taken and the number of days they are
to be retained (step 9). We can see that by default snapshots are taken every 6 hours and
they are saved for 2 days. The snapshot that is taken at the end of the day gets saved for a
week. The snapshot taken at the end of the week and month are saved for 4 weeks and 13
months respectively. A snapshot can be taken once every 6, 8, 12, and 24 hours. However,
you need to understand the flip side of taking snapshots after long time duration. Suppose
the last snapshot is taken at 18 hours; getting the data as of that time for restore is very easy
as it is stored on the MMS backup servers. However, we need the data as of 21:30 hours for
restoration. Since MMS backup supports point in time backup, it would use the base snapshot
at 18:00 hours and then just replay the changes on it after the snapshot is taken at 21:30
hours. This is similar to how an oplog would be replayed on the data. There is a cost for this
replay and thus getting point in time backup is slightly more expensive than getting the data
from a snapshot. Here, we had to replay the data for 3.5 hours, from 18:00 hours to 21:30
hours. Imagine if the snapshots were set to be taken after 12 hours and our first snapshot is
taken at 00:00 hours, then we would have snapshots at 00:00 hours and 12:00 hours every
day. To restore the data as of 21:30 hours with 12:00 hours as the last snapshot, we will have
to replay 9.5 hours of data. This is much more expensive.

Monitoring and Backups

244

More frequent snapshots means more storage space usage but less time needed to restore a
database to a given point in time. At the same time, less frequent snapshots require less storage
but at the cost of more time to restore the data to a point in time. You need to decide and have
a trade-off between these two, space and time of restoration. For the daily snapshot, we can
choose retention of between 3 to 180 days. Similarly, for the weekly and monthly snapshots, the
retention period can be chosen between 1 to 52 weeks and 1 to 36 months, respectively.

The screenshot in step 9 has a column for the expiry of the snapshot. This, for the first
snapshot taken, is 1 year, whereas others expire in 2 days. The expiration is as per what we
discussed in the last paragraph. On changing the expiration values, the old snapshots are not
affected or adjusted as per the changed times. However, the new snapshots taken will be as
per the modified settings for the retention and frequency.

We saw how to download the dump (step 10 onwards) and then use it to restore the data in
the database. It was pretty straightforward and doesn't need a lot of explanation except a
couple of things. First, if the data is for a shard, there will be multiple folders—one for each
shard and each of them will have the database files as against what we saw here in case of
a replica set where we have a single folder with database files in it. Finally, let's look at the
screen when we choose SCP as the option:

Chapter 6

245

SCP is short for secure copy. The files will be copied over a secure channel to a machine's
filesystem. The host that is given needs to have a public IP which will be used to SCP. This
makes a lot of sense when we want the data from MMS to be delivered to a machine running
on Unix OS on the cloud, for example, one of the AWS virtual instances. Rather than getting
the file using HTTPS on our local machine and then reuploading it to the server on the cloud,
you can specify the location on which the data needs to be copied in the Target Directory
block, the hostname, and the credentials. There are a couple of ways of authentication
too. A password is an easy way with an additional option to SSH key pair. If you have to
configure host's firewalls on the cloud to allow incoming traffic over the SSH port, the public IP
addresses are given at the bottom of the screen (64.70.114.115/32 or 4.71.186.0/24
in our screenshot). You should whitelist them to allow incoming secure copy requests over
port 22.

See also
We have seen running backups using MMS which uses oplogs for this purpose. There is a
recipe called Implementing triggers in Mongo using oplog in Chapter 5, Advanced Operations,
which uses oplog to implement trigger-like functionalities. This concept is the backbone of the
real-time backup used by MMS backup service.

247

7
Deploying MongoDB

on the Cloud

In this chapter, we will cover the following recipes:

ff Setting up and managing the MongoLab account

ff Setting up a sandbox MongoDB instance on MongoLab

ff Performing operations on MongoDB from MongoLab GUI

ff Setting up MongoDB on Amazon EC2 without AMI

ff Setting up MongoDB using the Docker containers

Introduction
Though explaining cloud computing is not in the scope for this book, I will explain it in just one
paragraph. Any business, big or small, needs hardware infrastructure with different software
installed on it. An operating system is the basic software needed along with different servers
(from the software perspective) for storage, mail, web, database, DNS, and so on. The list
of software frameworks/platforms that are needed would end up being large. The point of
interest here is that the initial budget for this hardware and software platform is high, and so
we are not even considering the real estate needed to host it. This is where cloud computing
providers such as Amazon, Rackspace, Google, and Microsoft come into play. They have
hosted the high-end hardware and software in different data centers across the globe and let
us choose from different configurations to start an instance. This is then accessed remotely
over the public network for management purposes. Literally, all our setting up is done in the
cloud provider's data center and we just pay as we use. Shut down the instance and you stop
paying for it. Not only small start-ups, but large enterprises often temporarily fall back to cloud
servers for temporary rise in the computing resource demands. The prices offered by the
providers are very competitive too, particularly AWS, and its popularity says it all.

Deploying MongoDB on the Cloud

248

The wiki page, http://en.wikipedia.org/wiki/Cloud_computing, has a lot
of details, perhaps a bit too much for someone new to the concept, but is a good read
nevertheless. The article at http://computer.howstuffworks.com/cloud-
computing/cloud-computing.htm is pretty good and also recommended for you to read
if you are not aware of the concept of cloud computing.

In this chapter, we will set up MongoDB instances on the cloud using MongoDB service
providers and then by ourselves on Amazon Web Service (AWS).

Setting up and managing the MongoLab
account

In this recipe, we will evaluate one of the vendors, MongoLab, that provides MongoDB
as a service. This introductory recipe will introduce to you what MongoDB as a service
is and then will demonstrate how to set up and manage an account in MongoLab
(https://mongolab.com/).

In all the recipes in the book so far, we have covered setting up, administering, monitoring,
and developing the instances of MongoDB in the organizational/personal premises. This
not only needs manpower with the appropriate skill set to manage the deployments, but
also appropriate hardware to install and run Mongo servers. This needs large investments
up front that might not be a viable solution for start-ups or even organizations who are
not clear on adopting or migrating to this technology. They might want to evaluate it and
see how it goes before moving full-fledged to this solution. What would be ideal is to have
a service provider who takes care of hosting the MongoDB deployments, managing and
monitoring the deployments, and providing support. The organizations opting for these
services need not invest up front to set up the servers or recruit or outsource to consultants
for the administration and monitoring of the instances. All that one needs to do is choose the
hardware and software platforms and configurations and an appropriate MongoDB version,
and then set up an environment from a user-friendly GUI. It even gives you an option to use
your existing cloud provider's servers.

We saw in brief what these vendor hosting services do and why they are needed; we will start
this recipe by setting up an account with MongoLab and see some basic user and account
management. MongoLab is by no means the only hosting provider for MongoDB. You can also
look at http://www.mongohq.com/ and http://www.objectrocket.com/. At the time
of writing this book, MongoDB themselves started providing MongoDB as a service on the
Azure cloud and is currently in the beta phase.

How to do it…
1.	 Visit https://mongolab.com/signup/ to sign up if you don't have an account

created; just fill in the relevant details and create one account.

http://en.wikipedia.org/wiki/Cloud_computing
http://computer.howstuffworks.com/cloud-computing/cloud-computing.htm
http://computer.howstuffworks.com/cloud-computing/cloud-computing.htm
https://mongolab.com/
http://www.mongohq.com/
http://www.objectrocket.com/
https://mongolab.com/signup/

Chapter 7

249

2.	 Once the account has been created, click on the Account link in the top right corner:

3.	 Click on the Account Users tab at the top; it should be selected by default:

4.	 To add a new account, click on the + Add account user button. One pop-up window
will ask for the username, e-mail ID, and password. Enter the relevant details and
click on the Add button.

5.	 Click on the user, and you should be navigated to a page where you can change the
username, e-mail ID, and password. You can transfer the administrative rights to the
user by clicking on the Change to admin button on this screen.

6.	 Similarly, by clicking on your own user details, you have the option to change the
username, e-mail ID, and password.

7.	 Click on the Set up two-factor authentication button to activate the multifactor
authentication using Google Authenticator. You need to have the Google Authenticator
installed on your Android, iOS, or BlackBerry phone to proceed with the setting up of
multifactor authentication.

8.	 On clicking the button, we should see the QR code that can be scanned using
Google Authenticator or, if scanning is not possible, click on the URL underneath the
QR code, which should show the code. Set up a time-based account in the Google
Authenticator manually. There are two types of Google Authenticator accounts, time-
based and counter-based.

Deploying MongoDB on the Cloud

250

Refer to http://en.wikipedia.org/wiki/
Google_Authenticator for more details.

9.	 Similarly, you can delete users from the accounts page by clicking on the cross next
to the user's row in Account Users.

How it works…
There is not much to explain in this section. The setup process and user administration is
pretty simple. Note that the users that we added here are not database users. These are
the users that have access to the MongoLab account. Account can be the name of the
organization and can be seen at the top of the screen. The multifactor authentication account
setup in the Google Authenticator software on the handheld device should not be deleted
as whenever the user logs in to the MongoLab account from the browser, he will be asked to
enter the Google Authenticator account to continue.

Setting up a sandbox MongoDB instance on
MongoLab

In the previous recipe, we saw how to set up an account on MongoLab and add users to the
account. We still haven't seen how to fire up an instance on the cloud and use it to perform
some simple operations. In this recipe, this is exactly what we will do.

Getting ready
Refer to the previous recipe, Setting up and managing MongoLab account, to set up an account
with MongoLab. We will set up a free sandbox instance. We will require some way to connect to
this started mongo instance and thus will need a mongo shell that comes only with the complete
mongo installation or you can choose to use a programming language of your choice in order to
connect to the started mongo instance. Refer to Chapter 3, Programming Language Drivers for
recipes on connecting and performing operations using a Java or Python client.

How to do it…
1.	 Go to the home page, https://mongolab.com/home, and click on the Create new

button.

http://en.wikipedia.org/wiki/Google_Authenticator
http://en.wikipedia.org/wiki/Google_Authenticator
https://mongolab.com/home

Chapter 7

251

2.	 Select a cloud provider, for this example, we choose Amazon Web Services (AWS):

3.	 Click on the Single-node (development) and then, the Sandbox options. Do not
change the location of the cloud server as the free sandbox instance is not available
in all data centers. As this is a sandbox, we are okay with any location.

4.	 Add any name for your database; the name that I chose is mongolab-test. Click on
Create new MongoDB deployment after entering the name.

5.	 This should take you to the home page, and the database should now be visible. Click
on the instance name. The page here shows the details of the MongoDB instance
selected. The instruction to connect in the shell or programming language is given at
the top of the page along with the public hostname of the started instance.

Deploying MongoDB on the Cloud

252

6.	 Click on the Users tab and then the Add database user button. In the pop-up window,
add the username and password as testUser and testUser, respectively (or any
of your choice).

7.	 With the user added, start the mongo shell as follows, assuming that the name of the
database is mongolab-test and the username and password is testUser:
$ mongo <host-name>/mongolab-test –u testUser –p testUser

On connecting, execute the following in the shell and check whether the database
name is mongolab-test:
> db

8.	 Insert one document in a collection as follows:
> db.messages.insert({_id:1, message:'Hello mongolab'})

9.	 Query the collection as follows:
> db.messages.findOne()

How it works…
The steps executed are very simple, and we created one shared sandbox instance in the
cloud. MongoLab themselves do not host the instances but use one of the cloud providers to
do the hosting. MongoLab does not support sandbox instances for all providers. The storage
with the sandbox instance is 0.5 GB and is shared with other instances on the same machine.
Shared instances are cheaper than running on a dedicated instance but the price is paid in
performance. The CPU and IO is shared with other instances and thus the performance of
our shared instance is not necessarily in our control. For a production use case, a shared
instance is not a recommended option. Similarly, we need to set up a replica set when
running in production. If we look at the image in step 2, then we see another tab next to the
Single-node (development) option. This is where you can choose the configuration for the
machine in terms of RAM and disk capacity (and the price as well) and set up a replica set.

Chapter 7

253

As you can see, you get to choose the version of MongoDB to use. Even if a new version of
MongoDB gets released, MongoLab will not start supporting it immediately as they usually
wait for a few minor versions to be rolled out before supporting them for production users.
Additionally, when we choose a configuration, the default available option is two data nodes
and one arbiter, which is sufficient for a majority of use cases.

The RAM and disk chosen depend completely on the nature of the data and how query-
intensive or write-intensive it is. This sizing is something that we do irrespective of whether
we are deploying on our own infrastructure or the cloud. The working set is something that
is important to be known before we choose the RAM of the hardware. Proofing of concepts
and experiments are done to deal with a subset of data and then the estimation can be done
for the entire dataset. If IO activity is high and low IO latency is desired, you can even opt for
SSD, as shown in the preceding image. Standalone instances are as good as replica sets
in terms of scalability except for availability. Thus, we can choose standalone instances for
such estimation and development purposes. Shared instances, both free and paid, are good
candidates for development purposes. Note that shared instances cannot be restarted on
demand as we can for dedicated instances.

Deploying MongoDB on the Cloud

254

What cloud provider do we choose? If you already have your application servers deployed
in the cloud, then obviously it has to be the same vendor as your existing vendor. It is
recommended that you use the same cloud vendor for the application server and database,
and see that they are both deployed on the same location in order to minimize latency and
improve on performance. If you are starting fresh, then invest some time in choosing the cloud
provider. Look at all the other services that the application would need, such as the storage,
compute, other services such as mail, notification services, and so on. All this analysis is
outside the scope of this book, but once you are done with this and finalized with a provider,
you can choose the provider to use accordingly in MongoLab. As far as the pricing goes, all the
leading providers offer competitive pricing.

Performing operations on MongoDB from
MongoLab GUI

In the previous recipe, we saw how to set up a simple sandbox instance for MongoDB in the
cloud using MongoLab. In this recipe, we build on it and see what services MongoLab provides
you with, from the management, administrative, monitoring, and backups perspectives.

Getting ready
Refer to the previous recipe, Setting up a sandbox MongoDB instance on MongoLab, on how
to set up a sandbox instance in the cloud using MongoLab.

How to do it…
1.	 Go to https://mongolab.com/home; you should see the list of databases,

servers, and clusters. If you have followed the last recipe, you should see one
standalone database, mongolab-test (or whatever name you chose for the
database). Click on the database name, which should take you to the database
details page.

2.	 After clicking on the Collections tab, which should be selected by default, we should
see the list of collections present in the database. If the previous recipe was executed
before this one, you should see one collection, messages, in the database.

https://mongolab.com/home

Chapter 7

255

3.	 Click on the name of the collection and we should get navigated to the collection
details page as follows:

4.	 Click on the Stats option to view the stats of the collection.

5.	 In the Documents tab, we can query the collection. By default, we see all the
documents with 10 documents shown per page, which can be changed from the
records/page drop-down menu. A maximum value of 100 can be chosen.

6.	 There is another way to view the documents, as a table. Click on the table radio
button in the Display mode and click on the link to create/edit table view. In the
popup that is shown, enter the following document for the messages collection and
click on Submit:
{
 "id": "_id",
 "Message Text": "message"
}

Deploying MongoDB on the Cloud

256

On doing this, the display will change as follows:

7.	 From the --Start new search-- dropdown, select the [new search] option, as shown in
the following image:

8.	 With the new query, we see the following fields that let us enter the query string, sort
order, and projections. Enter the query as {"_id":1} and fields as {"message":1,
"_id":0}:

9.	 You can choose to save the query by clicking on the Save this search button and
giving a name to the query to be saved.

10.	 Individual documents can be deleted by clicking on the cross next to each record.
Similarly, the Delete all button at the top will delete all the contents of the collection.

11.	 Similarly, clicking on + Add document will pop up an editor to type in the document
that would be inserted into the collection. As MongoDB is schemaless, the document
need not have a fixed set of fields; the application should make sense out of it.

12.	 Go to https://mongolab.com/databases/<your database name>
(mongolab-test, in this case), which can also be reached by clicking on the
database name from the home page.

13.	 Click on the Stats tab next to the Users tab. The content shown here in the table is
the result of the db.stats() command.

Chapter 7

257

14.	 Similarly, click on the Backups tab at the top next to the Stats tab. Here, we have
options to take a recurring or one-time backup.

15.	 When you click on Schedule recurring backup, you get a pop-up window that lets you
enter the details of the scheduling, such as the frequency of the backup, time of the
day when the backup needs to be taken, and the number of backups to keep.

16.	 The backup location can be chosen as either MongoLab's own S3 bucket or the
Rackspace cloud file. You can choose to use your own account's storage, in which
case you will have to share the AWS access key/secret key or UserID/API key in case
of Rackspace.

How it works…
Steps 1 to 5 are pretty straightforward. In step 6, we provided a JSON document to show the
results in a tabular format. The format of the document is as follows:

{
 <display column 1> : <name of the field in the JSON document> ,
 <display column 2> : <name of the field in the JSON document> ,

 <display column n> : <name of the field in the JSON document>
}

The key is the name of the column to display and the value of the name of the field in the
actual document whose value will be shown as the value of this column. To get a clear
understanding, look at the document defined for the messages collection, and then take
a look at the displayed tabular data. The following is the JSON document that we provided,
which states the name of the column as the value of the key and the actual field in the
document as the value of the column:

{
 "id": "_id",
 "Message Text": "message"
}

Note that the field name and values of the JSON documents here are enclosed in quotes. The
Mongo shell is lenient in this sense, where it allows us to give field names without quotes.

If we visit step 16 about backups, we see that the backups are stored either in MongoLab's
AWS S3/Rackspace cloud file or your custom AWS S3 bucket /Rackspace cloud files. In
the latter cases, you need to share your AWS/Rackspace credentials with MongoLab. If
this is a concern and the credentials can potentially be used to access other resources, it
is recommended that you create a separate account and use it for backup purposes from
MongoLab. You can also use the backup created to create a new MongoDB server instance
from MongoLab. Needless to say, if you have used your own AWS S3 bucket/Rackspace cloud
files, storage charges are additional as they are not a part of MongoLab's charges.

Deploying MongoDB on the Cloud

258

There are some important points worth mentioning. MongoLab provides a REST API for
various operations. The REST API can be used in place of the standard drivers to perform
CRUD operations; however, using MongoDB client libraries is the recommended approach.
One good reason to use the REST API right now over a language driver is if the client is
connecting to the MongoDB server over a public network. The shell that we started on our
local machine connecting to the MongoDB server on the cloud sends unencrypted data to the
server, which makes it vulnerable. On the other hand, if REST APIs are used, the traffic is sent
over a secure channel as HTTPS is used. MongoLab plans to support a secure channel for
the communication between the client and server in future, but as of the writing of this book,
this is not available. If the application and database are in the same data center of the cloud
provider, you are safe and can depend on the security provided by the cloud provider for their
local network, which generally is not a concern. However, there is nothing that you can do for
secure communication other than ensuring that your data doesn't go over public networks.

One more scenario where MongoLab doesn't work is when you want the instances to be
running on your own instance of a virtual machine rather than one chosen by MongoLab or we
want the application to be in a virtual private cloud. Cloud providers do provide services such
as Amazon VPC, where part of the AWS cloud can be treated as a part of your network. If you
intend to deploy your MongoDB instance in such an environment, MongoLab cannot be used.

Setting up MongoDB on Amazon EC2
manually

In the previous few recipes, we saw how to start MongoDB in the cloud using a hosted service
provided by MongoLab that gave an alternative to set up MongoDB on all the leading cloud
vendors. However, if we plan to host and monitor the instance ourselves for greater control
or set up within our own virtual private cloud, we can do it ourselves. Though the procedure
varies from cloud provider to provider, we will be demonstrating it using AWS. There are a
couple of ways to do it, but in this recipe, we will use Amazon Machine Image (AMI). AMI is
a template containing details such as the operating system, software that would be available
on the started virtual machine, and so on. All this information would be used while booting
up a new virtual machine instance on the cloud. To know more about AMI, refer to http://
en.wikipedia.org/wiki/Amazon_Machine_Image.

http://en.wikipedia.org/wiki/Amazon_Machine_Image
http://en.wikipedia.org/wiki/Amazon_Machine_Image

Chapter 7

259

Talking about AWS EC2, which stands for Elastic Cloud Compute, it is a service that lets you
create, start, and stop servers of different configurations in the cloud running on operating
systems of your choice. (The prices differ accordingly.) Similarly, Amazon Elastic Block
Store (EBS) is a service that provides persistent block storage with high availability and low
latency. Initially, each instance has a store known as an ephemeral store attached to it. This
is a temporary store and the data might be lost when the instance restarts. The EBS block
storage is thus attached to the EC2 instance to maintain persistence even when the instance
is stopped and then restarted. Standard EBS does not provide guaranteed minimum IO
operations per second (IOPS). For a moderate workload, the default of about 100 IOPS is
okay. However, for a high performance IO, EBS blocks with guaranteed IOPS are also available.
The pricing is more as compared to the standard EBS block but is a good option to opt for if a
low IO rate can be a bottleneck in the performance of the system.

In this recipe, we will set up a small micro instance that is good enough as a sandbox instance
with one EBS block volume attached.

Getting ready
The first thing that you need to do is sign up for an AWS account. Visit http://aws.amazon.
com/ and click on Sign up. Log in if you have an Amazon account, or else, create a new one.
You will have to give your credit card details although the recipes that we have here will use
the free micro instance unless we explicitly mention otherwise. We will connect to the instance
on the cloud using Putty. You can download Putty and install it on your machine if it is not
already installed. It can be downloaded from http://www.putty.org/.

For this specific recipe for the installation using AMI, we cannot use the micro instance and
will have to use the Standard Large. You can get more details about the pricing of the EC2
instances in different regions at https://aws.amazon.com/ec2/pricing/. Choose the
appropriate region based on the geographical and financial factors.

1.	 The first thing that you need to do is create a key pair in case you have not created
one already. The following steps from 1 to 5 are only to create the key pair. This key
pair will be used to log in to the Unix instance started in the cloud from the Putty
client. Skip to step 6 if the key pair has already been created and the .pem file is
available for you.

http://aws.amazon.com/
http://aws.amazon.com/
http://www.putty.org/
https://aws.amazon.com/ec2/pricing/

Deploying MongoDB on the Cloud

260

2.	 Go to https://console.aws.amazon.com/ec2/ and make sure that the region
you have on the top right (as shown in the following image) is the same as the one in
which you are planning to set up the instance.

3.	 Once the region is selected, the page with the Resources heading will show you all
the instances, key pairs, IP addresses, and so on for this region. Click on the Key
Pairs link, which should direct you to the page where all the existing key pairs will be
shown and you can create new ones.

4.	 Click on the Create Key Pair button, and in the pop-up window, type any name of your
choice. Let's say that we call it EC2 Test Key Pair, and then click on Create.

5.	 Once created, a .pem file will be generated. Ensure that the file is saved as this would
be needed for subsequent access to the machine.

6.	 We will next convert this .pem file to a .ppk file to be used with Putty.

7.	 Start puttygen; if it is not available already, it can be downloaded from http://www.
chiark.greenend.org.uk/~sgtatham/putty/download.html.

You should see the following on the screen:

https://console.aws.amazon.com/ec2/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Chapter 7

261

8.	 Select the SSH-2 RSA option and click on the Load button. In the file dialog, select All
files and then select the .pem file that was downloaded with the key pair, which was
generated in the EC2 console.

9.	 Once the .pem file is imported, click the Save private key option and save the file
with any name; the file this time is a .ppk file. Save this file for future logging in to
the EC2 instance from putty.

If you are using Mac OS X or Linux, you can use the
ssh-keygen utility to generate the SSH keys.

How to do it…
1.	 Go to https://console.aws.amazon.com/ec2/ and click on the Instances

option on the left and then the Launch Instance button:

2.	 As we want to start a free micro instance, check the Free tier only checkbox on the
left. On the right-hand side, select the instance that we want to set up. We choose to
use the Ubuntu server. Click on Select to navigate to the next window.

3.	 Choose the micro instance and click on Review and Launch. Ignore the security
warning; the default security group that you will have is the one that will accept
connections over port 22 from all the hosts on a public network.

4.	 Without editing any default settings, click on Launch. Upon launch, a popup will
appear that lets you choose an existing key pair. If you proceed without a key pair, you
will need the password or need to create a new key pair. In the previous recipe, we
already created a key pair, which is what we will use here.

5.	 Click on Launch Instance to start the new micro instance.

6.	 Refer to steps 9 to 12 in the previous recipe on how to connect to the started
instance using Putty. Note that we will be using the Ubuntu user instead of ec2-
user, which we used in the last recipe, as this time, we are using Ubuntu instead of
Amazon Linux.

https://console.aws.amazon.com/ec2/

Deploying MongoDB on the Cloud

262

7.	 Before we add a MongoDB repository, we need to import the MongoDB public key
as follows:
$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv 7F0CEB10

8.	 Execute the following command in the operating system shell:
$ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-
org/3.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-
org-3.0.list

9.	 Load the local database by executing the following command:
$ sudo apt-get install mongodb-org

10.	 Execute the following command to create the required directories:
$ sudo mkdir /data /log

11.	 Start the mongod process as follows:
$ sudo mongod --dbpath /data --logpath /log/mongodb.log
--smallfiles --oplogsize 50 –fork

To ensure that the server process is up and running, execute the following command
in the shell and we should see the following in the log:
$ tail /log/mongodb.log

2015-05-04T13:41:16.533+0000 [initandlisten] journal dir=/data/
journal

2015-05-04T13:41:16.534+0000 [initandlisten] recover : no journal
files present, no recovery needed

2015-05-04T13:41:16.628+0000 [initandlisten] waiting for
connections on port 27017

12.	 Start the mongo shell as follows and execute the following command:
$ mongo

> db.ec2Test.insert({_id: 1, message: 'Hello World !'})

> db.ec2Test.findOne()

Chapter 7

263

How it works…
A lot of steps are self-explanatory. It is recommended that you at least go through the
previous recipe as a lot of concepts are explained there. Most concepts explained in the
preceding recipe apply here. A few things that are different are explained in this section.
For the installation, we chose Ubuntu as against Amazon Linux, which is the standard
when you set up the server using AMI. Different operating systems have different steps for
installation. Refer to http://docs.mongodb.org/manual/installation/ for steps
on how to install MongoDB on different platforms. Steps 7 to 9 in this recipe are specific for
the installation of MongoDB on Ubuntu. Refer to https://help.ubuntu.com/12.04/
serverguide/apt-get.html for more details on the apt-get command that we executed
here to install MongoDB.

In our case, we chose to have the data, journal, and log folder on the same EBS volume.
This is because what we set up is a dev instance. In case of a prod instance, there are
different EBS volumes with provisioned IOPS for optimum performance. This setup allows
us to gain advantage of the fact that these different volumes have different controllers and
thus concurrent write operations are possible. EBS volumes with provisioned volumes are
backed by the SSD drives. The production deployment notes at http://docs.mongodb.
org/manual/administration/production-notes/ states that MongoDB deployment
should be backed by the RAID-10 disks. When deploying on AWS, prefer PIOPS over RAID-10.
For instance, if 4000 IOPS is desired, then choose an EBS volume with 4000 IOPS rather
than a RAID-10 setup with a 2 X 2000 IOPS or 4 X 1000 IOPS setup. This not only eliminates
unnecessary complexity, but also makes snapshotting a single disk possible as against
dealing with multiple disks in a RAID-10 setup. Speaking of snapshotting, the journal log
and data are written to separate volumes in majority of the production deployments. This is
the scenario where snapshotting doesn't work. We need to flush the DB writes, lock the data
for further writes until the backup is complete, and then release the lock. Refer to http://
docs.mongodb.org/manual/tutorial/backup-with-filesystem-snapshots/ for
more details on snapshottiing and backups.

Refer to http://docs.mongodb.org/ecosystem/platforms/ for more details on
deployment on different cloud providers. There is a section specifically for backups on the
Amazon EC2 instances. Prefer using AMIs to set up the MongoDB instances for production
deployments as demonstrated in the previous recipe over manually setting up the instances.
A manual setup is okay for small development purposes, where a large instance with EBS
volumes with provisioned IOPS is an overkill.

http://docs.mongodb.org/manual/installation/
https://help.ubuntu.com/12.04/serverguide/apt-get.html
https://help.ubuntu.com/12.04/serverguide/apt-get.html
http://docs.mongodb.org/manual/administration/production-notes/
http://docs.mongodb.org/manual/administration/production-notes/
http://docs.mongodb.org/manual/tutorial/backup-with-filesystem-snapshots/
http://docs.mongodb.org/manual/tutorial/backup-with-filesystem-snapshots/
http://docs.mongodb.org/ecosystem/platforms/

Deploying MongoDB on the Cloud

264

See also
ff Cloud formation is a way where you can define templates and automate your

instance creation for the EC2 instances. You can know more what cloud formation
is at https://aws.amazon.com/cloudformation/ and refer to https://
mongodb-documentation.readthedocs.org/en/latest/ecosystem/
tutorial/automate-deployment-with-cloudformation.html.

ff Another alternative is using Mongo's cloud service: https://docs.cloud.
mongodb.com/tutorial/nav/add-servers-through-aws-integration/.

ff You can know more on RAID by referring to these two URLs on Wikipedia:
http://en.wikipedia.org/wiki/Standard_RAID_levels and http://
en.wikipedia.org/wiki/Nested_RAID_levels. The description given here is
quite comprehensive.

Setting up MongoDB using the Docker
containers

The container movement, as I like to call it, has touched almost all the aspects of information
technology. Docker, being the tool of choice, is integral to the creating and managing of
containers.

In this recipe, we will install Docker on the Ubuntu (14.04) server and run MongoDB in
a container.

Getting ready
1.	 First, we need to install Docker on our Ubuntu server, which can be done by running

this command:
$ wget -qO- https://get.docker.com/ | sh

2.	 Start the Docker service:
$ service docker start

> docker start/running, process 24369

3.	 Confirm that Docker is running as follows:
$ docker info

> Containers: 40

> Images: 311

> Storage Driver: aufs

> Root Dir: /var/lib/docker/aufs

https://aws.amazon.com/cloudformation/
https://mongodb-documentation.readthedocs.org/en/latest/ecosystem/tutorial/automate-deployment-with-cloudformation.html
https://mongodb-documentation.readthedocs.org/en/latest/ecosystem/tutorial/automate-deployment-with-cloudformation.html
https://mongodb-documentation.readthedocs.org/en/latest/ecosystem/tutorial/automate-deployment-with-cloudformation.html
https://docs.cloud.mongodb.com/tutorial/nav/add-servers-through-aws-integration/
https://docs.cloud.mongodb.com/tutorial/nav/add-servers-through-aws-integration/
http://en.wikipedia.org/wiki/Standard_RAID_levels
http://en.wikipedia.org/wiki/Nested_RAID_levels
http://en.wikipedia.org/wiki/Nested_RAID_levels

Chapter 7

265

> Dirs: 395

> Execution Driver: native-0.2

> Kernel Version: 3.13.0-37-generic

> Operating System: Ubuntu 14.04.2 LTS

> WARNING: No swap limit support

How to do it…
1.	 Fetch the default MongoDB image from Docker Hub as follows:

$ docker pull mongo

2.	 Let's confirm that the images are installed with the following command:
$ docker images | grep mongo

3.	 Start the MongoDB server:
$ docker run -d --name mongo-server-1 mongo

> dfe7684dbc057f2d075450e3c6c96871dea98ff6b78abe72944360f4c239a72e

Alternately, you can also run the docker ps command to check the list of running
containers.

4.	 Fetch the IP of this container:
$ docker inspect mongo-server-1 | grep IPAddress

> "IPAddress": "172.17.0.3",

5.	 Connect to our new container using the mongo client:
$ mongo 172.17.0.3

>MongoDB shell version: 3.0.4

> connecting to: 172.17.0.3/test

>

6.	 Create a directory on the server:
$ mkdir –p /data/db2

7.	 Start a new MongoDB container:
$ docker run -d --name mongo-server-2 -v /data/db1:/data/db mongo

8.	 Fetch the IP of this new container as mentioned in Step 4, and connect using the
Mongo client:
$ docker inspect mongo-server-2 | grep IPAddress

> "IPAddress": "172.17.0.4",

$ mongo 172.17.0.4

Deploying MongoDB on the Cloud

266

>MongoDB shell version: 3.0.4

> connecting to: 172.17.0.4/test

>

9.	 Let's make another directory for our final container:
$ mkdir –p /data/db3

Start a new MongoDB container:
$ docker run -d --name mongo-server-3 -v /data/db3:/data/db -p
9999:27017 mongo

10.	 Let's connect to this container via localhost:
$ mongo localhost:9999

> MongoDB shell version: 3.0.4

> connecting to: localhost:9999/test

How it works…
We start by downloading the default MongoDB image from DockerHub (https://hub.
docker.com/_/mongo/). A Docker image is a self-sustaining OS image that is customized
for the application that it is supposed to run. All Docker containers are isolated executions of
these images. This is very similar to how an OS template is used to create virtual machines.

The image download operation defaults to fetching the latest stable MongoDB image, but
you can specify your version of choice by mentioning the tag, for example, docker pull
mongo:2.8.

We verify that the image was downloaded by running the docker images command, which
will list all the images installed on the server. In step 3, we start a container in the detached
(-d) mode with the name, mongo-server-1, using our mongo image. Describing the
container internals may be out of the scope of this cookbook, but, in short, we now have an
isolated docker pseudo-sever running inside our Ubuntu machine.

By default, each Docker container gets an RFC 1918 (non-routable) IP address space
assigned by the docker server. In order to connect to this container, we fetch the IP address in
step 4 and connect to the mongodb instance in step 5.

However, each Docker container is ephemeral and hence, destroying the container would
mean losing the data. In step 6, we create a local directory that can be used to store our
mongo database. We start a new container in step 7; it is similar to our earlier command
with the addition of the Volumes (-v) switch. In our example, we are exposing the /data/
db2 directory to the mongo container namespace as /data/db. This is similar to NFS-like file
mounting but within the confines of the kernel namespace.

https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/

Chapter 7

267

Finally, if we want external systems to connect to this container, we bind the container's ports
to that of the host machine. In step 9, we use the Port (-p) switch to bind the TCP 9999 port
on the Ubuntu server to TCP 27017 of this container. This ensures that any external systems
connecting to the server's port 9999 will be routed to this particular container.

See also
You can also try to link two containers using the Link (-l) command line parameter of the
docker command.

For more information visit http://docs.docker.com/userguide/dockerlinks/.

http://docs.docker.com/userguide/dockerlinks/

269

8
Integration with

Hadoop

In this chapter, we will cover the following recipes:

ff Executing our first sample MapReduce job using the mongo-hadoop connector

ff Writing our first Hadoop MapReduce job

ff Running MapReduce jobs on Hadoop using streaming

ff Running a MapReduce job on Amazon EMR

Introduction
Hadoop is a well-known open source software to process large datasets. It also has an API for
the MapReduce programming model, which is widely used. Nearly all the big data solutions
have some sort of support to integrate them with Hadoop in order to use its MapReduce
framework. MongoDB has a connector as well that integrates with Hadoop and lets us
write MapReduce jobs using the Hadoop MapReduce API, process the data residing in the
MongoDB/MongoDB dumps, and write the result to the MongoDB/MongoDB dump files. In
this chapter, we will look at some recipes about the basic MongoDB and Hadoop integration.

Integration with Hadoop

270

Executing our first sample MapReduce job
using the mongo-hadoop connector

In this recipe, we will see how to build the mongo-hadoop connector from the source and
set up Hadoop just for the purpose of running the examples in the standalone mode. The
connector is the backbone that runs Hadoop MapReduce jobs on Hadoop using the data
in Mongo.

Getting ready

There are various distributions of Hadoop; however, we will use Apache Hadoop (http://
hadoop.apache.org/). The installation will be done on Ubuntu Linux. Apache Hadoop
always runs on the Linux environment for production, and Windows is not tested for
production systems. For development purposes, Windows can be used. If you are a Windows
user, I would recommend that you install a virtualization environment such as VirtualBox
(https://www.virtualbox.org/), set up a Linux environment, and then install Hadoop
on it. Setting up VirtualBox and Linux on it is not shown in this recipe, but this is not a tedious
task. The prerequisite for this recipe is a machine with the Linux operating system on it and
an Internet connection. The version that we will set up here is 2.4.0 of Apache Hadoop. At the
time of writing of this book, the latest version of Apache Hadoop, which is supported by the
mongo-hadoop connector, is 2.4.0.

A Git client is needed to clone the repository of the mongo-hadoop connector to the local
filesystem. Refer to http://git-scm.com/book/en/Getting-Started-Installing-
Git to install Git.

You will also need MongoDB to be installed on your operating system. Refer to http://
docs.mongodb.org/manual/installation/ and install it accordingly. Start the mongod
instance listening to port 27017. It is not expected for you to be an expert in Hadoop but
some familiarity with it will be helpful. Knowing the concept of MapReduce is important and
knowing the Hadoop MapReduce API will be an advantage. In this recipe, we will explain what
is needed to get the work done. You can get more details on Hadoop and its MapReduce API
from other sources. The wiki page at http://en.wikipedia.org/wiki/MapReduce gives
some good information about the MapReduce programming.

How to do it…
1.	 We will first install Java, Hadoop, and the required packages. We will start with

installing JDK on the operating system. Type the following on the command
prompt of the operating system:
$ javac –version

http://hadoop.apache.org/
http://hadoop.apache.org/
https://www.virtualbox.org/
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://en.wikipedia.org/wiki/MapReduce

Chapter 8

271

2.	 If the program doesn't execute and you are told about various packages that contain
javac and program, then we need to install Java as follows:
$ sudo apt-get install default-jdk

This is all we need to do to install Java.

3.	 Download the current version of Hadoop from http://www.apache.org/dyn/
closer.cgi/hadoop/common/ and download version 2.4.0 (or the latest
mongo-hadoop connector support).

4.	 After the .tar.gz file is downloaded, execute the following on the command prompt:
$ tar –xvzf <name of the downloaded .tar.gz file>

$ cd <extracted directory>

Open the etc/hadoop/hadoop-env.sh file and replace export JAVA_HOME =
${JAVA_HOME} with export JAVA_HOME = /usr/lib/jvm/default-java.

We will now get the mongo-hadoop connector code from GitHub on our local
filesystem. Note that you don't need a GitHub account to clone a repository.
Clone the Git project from the operating system command prompt as follows:
$git clone https://github.com/mongodb/mongo-hadoop.git

$cd mongo-hadoop

5.	 Create a soft link—the Hadoop installation directory is the same as the one that we
extracted in step 3:
$ln –s <hadoop installation directory> ~/hadoop-binaries

For example, if Hadoop is extracted/installed in the home directory, then this is the
command to be executed:
$ln –s ~/hadoop-2.4.0 ~/hadoop-binaries

By default, the mongo-hadoop connector will look for a Hadoop distribution under the
~/hadoop-binaries folder. So, even if the Hadoop archive is extracted elsewhere,
we can create a soft link to it. Once this link has been created, we should have the
Hadoop binaries in the ~/hadoop-binaries/hadoop-2.4.0/bin path.

6.	 We will now build the mongo-hadoop connector from the source for the Apache
Hadoop version 2.4.0. The build-by-default builds for the latest version, so as of now,
the -Phadoop_version parameter can be left out as 2.4 is the latest.
$./gradlew jar –Phadoop_version='2.4'

This build process will take some time to get completed.

7.	 Once the build completes successfully, we will be ready to execute our first MapReduce
job. We will do this using a treasuryYield sample provided with the mongo-hadoop
connector project. The first activity is to import the data to a collection in Mongo.

http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://www.apache.org/dyn/closer.cgi/hadoop/common/

Integration with Hadoop

272

8.	 Assuming that the mongod instance is up and running and listening to port 27017
for connections and the current directory is the root of the mongo-hadoop connector
code base, execute the following command:
$ mongoimport -c yield_historical.in -d mongo_hadoop --drop
examples/treasury_yield/src/main/resources/yield_historical_
in.json

9.	 Once the import action is successful, we are left with copying two jar files to the lib
directory. Execute the following in the operating system shell:
$ wget http://repo1.maven.org/maven2/org/mongodb/mongo-java-
driver/2.12.0/mongo-java-driver-2.12.0.jar

$ cp core/build/libs/mongo-hadoop-core-1.2.1-SNAPSHOT-
hadoop_2.4.jar ~/hadoop-binaries/hadoop-2.4.0/lib/

$ mv mongo-java-driver-2.12.0.jar ~/hadoop-binaries/hadoop-2.4.0/
lib

The JAR built for the mongo-hadoop core to be copied was named
as shown in the preceding section for the trunk version of the code
and built for Hadoop-2.4.0. Change the name of the JAR accordingly
when you build it yourself for a different version of the connector
and Hadoop. The Mongo driver can be the latest version. Version
2.12.0 is the latest version at the time of writing of this book.

10.	 Now, execute the following command on the command prompt of the operating
system shell:
 ~/hadoop-binaries/hadoop-2.4.0/bin/hadoop jar examples/
treasury_yield/build/libs/treasury_yield-1.2.1-SNAPSHOT-
hadoop_2.4.jar \
com.mongodb.hadoop.examples.treasury.TreasuryYieldXMLConfig \
-Dmongo.input.split_size=8 -Dmongo.job.verbose=true \
-Dmongo.input.uri=mongodb://localhost:27017/mongo_hadoop.yield_
historical.in \
-Dmongo.output.uri=mongodb://localhost:27017/mongo_hadoop.yield_
historical.out

11.	 The output should print out a lot of things; however, the following line in the output
tells us that the map reduce job is successful:
 14/05/11 21:38:54 INFO mapreduce.Job: Job job_
local1226390512_0001 completed successfully

Chapter 8

273

12.	 Connect the mongod instance running on localhost from the mongo client and
execute a find on the following collection:
$ mongo

> use mongo_hadoop

switched to db mongo_hadoop

> db.yield_historical.out.find()

How it works…
Installing Hadoop is not a trivial task and we don't need to get into this to try our samples for
the hadoop-mongo connector. To learn about Hadoop, its installation, and other things, there
are dedicated books and articles available. For the purpose of this chapter, we will simply
download the archive and extract and run the MapReduce jobs in the standalone mode. This
is the quickest way to get going with Hadoop. All the steps up to step 6 are needed to install
Hadoop. In the next couple of steps, we will clone the mongo-hadoop connector recipe. You
can also download a stable version for your version of Hadoop at https://github.com/
mongodb/mongo-hadoop/releases if you prefer not to build from the source. We then
build the connector for our version of Hadoop (2.4.0) till step 13. Step 14 onward is what
we will do to run the actual MapReduce job to work on the data in MongoDB. We imported
the data to the yield_historical.in collection, which will be used as an input for the
MapReduce job. Go ahead and query the collection in the mongo shell using the mongo_
hadoop database to see a document. Don't worry if you don't understand the contents; we
want to see what we intend to do with this data in this example.

The next step was to invoke the MapReduce operation on the data. The Hadoop command
was executed giving one jar's path, (examples/treasury_yield/build/libs/
treasury_yield-1.2.1-SNAPSHOT-hadoop_2.4.jar). This is the jar that contains
the classes implementing the sample MapReduce operation for the treasury yield. The com.
mongodb.hadoop.examples.treasury.TreasuryYieldXMLConfig class in this JAR
file is the Bootstrap class containing the main method. We will visit this class soon. There
are lots of configurations supported by the connector. The complete list of configurations
can be found at https://github.com/mongodb/mongo-hadoop/. For now, we will just
remember that mongo.input.uri and mongo.output.uri are the collections for input
and output for the map reduce operations.

With the project cloned, you can now import it to any Java IDE of your choice. We are
particularly interested in the project at /examples/treasury_yield and core present in
the root of the cloned repository.

https://github.com/mongodb/mongo-hadoop/releases
https://github.com/mongodb/mongo-hadoop/releases
https://github.com/mongodb/mongo-hadoop/

Integration with Hadoop

274

Let's look at the com.mongodb.hadoop.examples.treasury.
TreasuryYieldXMLConfig class. This is the entry point for the MapReduce method
and has a main method in it. To write MapReduce jobs for mongo using the mongo-hadoop
connector, the main class always has to extend from com.mongodb.hadoop.util.
MongoTool. This class implements the org.apache.hadoop.Tool interface, which has
the run method and is implemented for us by the MongoTool class. All that the main method
needs to do is execute this class using the org.apache.hadoop.util.ToolRunner class
by invoking its static run method passing the instance of our main class (which is an instance
of Tool).

There is a static block that loads some configurations from two XML files, hadoop-local.
xml and mongo-defaults.xml. The format of these files (or any XML file) is as follows.
The root node of the file is the configuration node with multiple property nodes under it:

<configuration>
 <property>
 <name>{property name}</name>
 <value>{property value}</value>
 </property>
 ...
</configuration>

The property values that make sense in this context are all those that we mentioned in the
URL provided earlier. We instantiate com.mongodb.hadoop.MongoConfig wrapping
an instance of org.apache.hadoop.conf.Configuration in the constructor of the
bootstrap class, TreasuryYieldXmlConfig. The MongoConfig class provides sensible
defaults, which are enough to satisfy majority of the use cases. Some of the most important
things that we need to set in the MongoConfig instance are the output and input format,
mapper and reducer classes, output key and value of the mapper, and output key and
value of the reducer. The input format and output format will always be the com.mongodb.
hadoop.MongoInputFormat and com.mongodb.hadoop.MongoOutputFormat
classes, which are provided by the mongo-hadoop connector library. For the mapper and
reducer output key and value, we have any of the org.apache.hadoop.io.Writable
implementations. Refer to the Hadoop documentation for different types of the Writable
implementations in the org.apache.hadoop.io package. Apart from these, the mongo-
hadoop connector also provides us with some implementations in the com.mongodb.
hadoop.io package. For the treasury yield example, we used the BSONWritable instance.
These configurable values can either be provided in the XML file that we saw earlier or be
programmatically set. Finally, we have the option to provide them as vm arguments that we did
for mongo.input.uri and mongo.output.uri. These parameters can be provided either
in the XML or invoked directly from the code on the MongoConfig instance; the two methods
are setInputURI and setOutputURI, respectively.

Chapter 8

275

We will now look at the mapper and reducer class implementations. We will copy the
important portion of the class here in order to analyze. Refer to the cloned project for the
entire implementation:

public class TreasuryYieldMapper
 extends Mapper<Object, BSONObject, IntWritable, DoubleWritable> {

 @Override
 public void map(final Object pKey,
 final BSONObject pValue,
 final Context pContext)
 throws IOException, InterruptedException {
 final int year = ((Date) pValue.get("_id")).getYear() + 1900;
 double bid10Year = ((Number) pValue.get("bc10Year")).
doubleValue();
 pContext.write(new IntWritable(year), new
DoubleWritable(bid10Year));
 }
}

Our mapper extends the org.apache.hadoop.mapreduce.Mapper class. The four generic
parameters are the key class, type of the input value, type of the output key, and output value.
The body of the map method reads the _id value from the input document, which is the
date, and extracts the year out of it. Then, it gets the double value from the document for the
bc10Year field and simply writes to the context key-value pair where key is the year and value
of the double to the context key value pair. The implementation here doesn't rely on the value
of the pKey parameter passed, which can be used as the key instead of hardcoding the _id
value in the implementation. This value is basically the same field that would be set using the
mongo.input.key property in the XML or the MongoConfig.setInputKey method. If
none is set, _id is the default value.

Let's look at the reducer implementation (with the logging statements removed):

public class TreasuryYieldReducer
 extends Reducer<IntWritable, DoubleWritable, IntWritable,
 BSONWritable> {

 @Override
 public void reduce(final IntWritable pKey, final
 Iterable<DoubleWritable> pValues, final Context pContext)
 throws IOException, InterruptedException {
 int count = 0;
 double sum = 0;
 for (final DoubleWritable value : pValues) {
 sum += value.get();
 count++;

Integration with Hadoop

276

 }
 final double avg = sum / count;
 BasicBSONObject output = new BasicBSONObject();
 output.put("count", count);
 output.put("avg", avg);
 output.put("sum", sum);
 pContext.write(pKey, new BSONWritable(output));
 }
}

This class extends from org.apache.hadoop.mapreduce.Reducer and has four generic
parameters: the input key, input value, output key, and output value. The input to the reducer
is the output from the mapper, and thus, if you notice carefully, the type of the first two generic
parameters is the same as the last two generic parameters of the mapper that we saw earlier.
The third and fourth parameters are the type of the key and value emitted from the reduce.
The type of the value is BSONDocument and thus we have BSONWritable as the type.

We now have the reduce method that has two parameters: the first one is the key, which
is the same as the key emitted from the map function, and the second parameter is java.
lang.Iterable of the values emitted for the same key. This is how standard map reduce
functions work. For instance, if the map function gave the following key value pairs, (1950,
10), (1960, 20), (1950, 20), (1950, 30), then reduce will be invoked with two unique keys,
1950 and 1960, and the values for the key 1950 will be Iterable with (10, 20, 30), whereas
that of 1960 will be Iterable of a single element (20). The reducer's reduce function simply
iterates though Iterable of the doubles, finds the sum and count of these numbers, and
writes one key value pair where the key is the same as the incoming key and the output value
is BasicBSONObject with the sum, count, and average for the computed values.

There are some good samples including the Enron dataset in the examples of the cloned
mongo-hadoop connector. If you would like to play around a bit, I would recommend that
you take a look at these example projects and run them.

There's more…
What we saw here is a readymade sample that we executed. There is nothing like writing one
MapReduce job ourselves to clear our understanding. In the next recipe, we will write one
sample MapReduce job using the Hadoop API in Java and see it in action.

See also…
If you're wondering what the Writable interface is all about and why you should not use
plain old serialization instead, then refer to this URL that gives the explanation by the creator
of Hadoop himself: http://www.mail-archive.com/hadoop-user@lucene.apache.
org/msg00378.html.

http://www.mail-archive.com/hadoop-user@lucene.apache.org/msg00378.html
http://www.mail-archive.com/hadoop-user@lucene.apache.org/msg00378.html

Chapter 8

277

Writing our first Hadoop MapReduce job
In this recipe, we will write our first MapReduce job using the Hadoop MapReduce API and
run it using the mongo-hadoop connector getting the data from MongoDB. Refer to the
Executing MapReduce in Mongo using a Java client recipe in Chapter 3, Programming
Language Drivers to see how MapReduce is implemented using a Java client, test data
creation, and problem statement.

Getting ready
Refer to the previous Executing our first sample MapReduce job using the mongo-hadoop
connector recipe to set up the mongo-hadoop connector. The prerequisites of this recipe and
the Executing MapReduce in Mongo using a Java client recipe from Chapter 3, Programming
Language Drivers are all that we need for this recipe. This is a maven project and thus maven
needs to be set up and installed. Refer to the Connecting to the Single node from a Java client
recipe in Chapter 1, Installing and Starting the Server where we provided the steps to set up
maven in Windows; this project is built on Ubuntu Linux and the following is the command that
you need to execute in the operating system shell to get maven:

$ sudo apt-get install maven

How to do it…
1.	 We have a Java mongo-hadoop-mapreduce-test project, which can be

downloaded from the Packt website. The project is targeted to achieve the same use
case that we achieved in the recipes in Chapter 3, Programming Language Drivers
where we used MongoDB's MapReduce framework. We had invoked that MapReduce
job using the Python and Java client on previous occasions.

2.	 On the command prompt with the current directory in the root of the project, where
the pom.xml file is present, execute the following command:
$ mvn clean package

3.	 The JAR file, mongo-hadoop-mapreduce-test-1.0.jar, will be built and kept in
the target directory.

4.	 With the assumption that the CSV file is already imported to the postalCodes
collection, execute the following command with the current directory still in the
root of the mongo-hadoop-mapreduce-test project that we just built:
~/hadoop-binaries/hadoop-2.4.0/bin/hadoop \

 jar target/mongo-hadoop-mapreduce-test-1.0.jar \

 com.packtpub.mongo.cookbook.TopStateMapReduceEntrypoint \

 -Dmongo.input.split_size=8 \

-Dmongo.job.verbose=true \

Integration with Hadoop

278

-Dmongo.input.uri=mongodb://localhost:27017/test.postalCodes \

-Dmongo.output.uri=mongodb://localhost:27017/test.
postalCodesHadoopmrOut

5.	 Once the MapReduce job is completed, open the mongo shell by typing the
following on the operating system command prompt and execute the following
query in the shell:
$ mongo

> db.postalCodesHadoopmrOut.find().sort({count:-1}).limit(5)

6.	 Compare the output to the one that we got earlier when we executed the MapReduce
jobs using mongo's map reduce framework (in Chapter 3, Programming Language
Drivers).

How it works…
We have kept the classes very simple and with the bare minimum things that we
need. We just have three classes in our project: TopStateMapReduceEntrypoint,
TopStateReducer, and TopStatesMapper, all in the same com.packtpub.mongo.
cookbook package. The mapper's map function just writes a key value pair to the context,
where the key is the name of the state and value is an integer value, one. The following is the
code snippet from the mapper function:

context.write(new Text((String)value.get("state")), new
IntWritable(1));

What the reducer gets is the same key that is the list of the states and Iterable of integer
value, one. All that we do is write the same name of the state and sum of the iterables to the
context. Now, as there is no size method in Iterable that can give the count in constant time,
we are left with adding up all the ones that we get in linear time. The following is the code in
the reducer method:

int sum = 0;
for(IntWritable value : values) {
 sum += value.get();
}
BSONObject object = new BasicBSONObject();
object.put("count", sum);
context.write(text, new BSONWritable(object));

Chapter 8

279

We write the text string that is the key and value that is the JSON document containing
the count to the context. The mongo-hadoop connector is then responsible for writing the
postalCodesHadoopmrOut document to the output collection that we have, with the _id
field the same as the key emitted. Thus, when we execute the following, we get the top five
states with the most number of cities in our database:

> db. postalCodesHadoopmrOut.find().sort({count:-1}).limit(5)

{ "_id" : "Maharashtra", "count" : 6446 }

{ "_id" : "Kerala", "count" : 4684 }

{ "_id" : "Tamil Nadu", "count" : 3784 }

{ "_id" : "Andhra Pradesh", "count" : 3550 }

{ "_id" : "Karnataka", "count" : 3204 }

Finally, the main method of the main entry point class is as follows:

Configuration conf = new Configuration();
MongoConfig config = new MongoConfig(conf);
config.setInputFormat(MongoInputFormat.class);
config.setMapperOutputKey(Text.class);
config.setMapperOutputValue(IntWritable.class);
config.setMapper(TopStatesMapper.class);
config.setOutputFormat(MongoOutputFormat.class);
config.setOutputKey(Text.class);
config.setOutputValue(BSONWritable.class);
config.setReducer(TopStateReducer.class);
ToolRunner.run(conf, new TopStateMapReduceEntrypoint(), args);

All we do is wrap the org.apache.hadoop.conf.Configuration object with the com.
mongodb.hadoop.MongoConfig instance to set various properties and then submit the
MapReduce job for execution using ToolRunner.

See also
We executed a simple MapReduce job on Hadoop using the Hadoop API, sourcing the data
from MongoDB, and writing the data to the MongoDB collection. What if we want to write
the map and reduce functions in a different language? Fortunately, this is possible using
a concept called Hadoop streaming where stdout is used as a means to communicate
between the program and Hadoop MapReduce framework. In the next recipe, we will
demonstrate how to use Python to implement the same use case that we did in this recipe
using Hadoop streaming.

Integration with Hadoop

280

Running MapReduce jobs on Hadoop using
streaming

In our previous recipe, we implemented a simple MapReduce job using the Java API of
Hadoop. The use case was the same as what we did in the recipes in Chapter 3, Programming
Language Drivers where we implemented MapReduce using the Mongo client APIs in Python
and Java. In this recipe, we will use Hadoop streaming to implement MapReduce jobs.

The concept of streaming works on communication using stdin and stdout. You can get
more information on Hadoop streaming and how it works at http://hadoop.apache.org/
docs/r1.2.1/streaming.html.

Getting ready…
Refer to the Executing our first sample MapReduce job using the mongo-hadoop connector
recipe in this chapter to see how to set up Hadoop for development purposes and build the
mongo-hadoop project using Gradle. As far as the Python libraries are concerned, we will be
installing the required library from the source; however, you can use pip (Python's package
manager) to set up if you do not wish to build from the source. We will also see how to set up
pymongo-hadoop using pip.

Refer to recipe Connecting to a single node using a Python client, in Chapter 1, Installing and
Starting the Server on how to install PyMongo for your host operating system.

How it works…
1.	 We will first build pymongo–hadoop from the source. With the project cloned to the

local filesystem, execute the following in the root of the cloned project:
$ cd streaming/language_support/python

$ sudo python setup.py install

2.	 After you enter the password, the setup will continue to be installed on pymongo-
hadoop on your machine.

3.	 This is all we need to do to build pymongo-hadoop from the source. However, if you
had chosen not to build from the source, you can execute the following command in
the operating system shell:
$ sudo pip install pymongo_hadoop

4.	 After installing pymongo-hadoop in either way, we will now implement our mapper
and reducer function in Python. The mapper function is as follows:
#!/usr/bin/env python

import sys

http://hadoop.apache.org/docs/r1.2.1/streaming.html
http://hadoop.apache.org/docs/r1.2.1/streaming.html

Chapter 8

281

from pymongo_hadoop import BSONMapper
def mapper(documents):
 print >> sys.stderr, 'Starting mapper'
 for doc in documents:
 yield {'_id' : doc['state'], 'count' : 1}
 print >> sys.stderr, 'Mapper completed'

BSONMapper(mapper)

5.	 Now for the reducer function, which will look like the following:
#!/usr/bin/env python

import sys
from pymongo_hadoop import BSONReducer
def reducer(key, documents):
 print >> sys.stderr, 'Invoked reducer for key "', key,
 '"'
 count = 0
 for doc in documents:
 count += 1
 return {'_id' : key, 'count' : count}

BSONReducer(reducer)

6.	 The environment variables, $HADOOP_HOME and $HADOOP_CONNECTOR_HOME,
should point to the base directory of Hadoop and the mongo-hadoop connector
project, respectively. Now, we will invoke the MapReduce function using the following
command in the operating system shell. The code available with the book on the
Packt website has the mapper, reduce Python script, and shell script that will be
used to invoke the mapper and reducer function:
$HADOOP_HOME/bin/hadoop jar \

$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming* \

-libjars $HADOOP_CONNECTOR_HOME/streaming/build/libs/mongo-hadoop-
streaming-1.2.1-SNAPSHOT-hadoop_2.4.jar \

-input /tmp/in \

-output /tmp/out \

-inputformat com.mongodb.hadoop.mapred.MongoInputFormat \

-outputformat com.mongodb.hadoop.mapred.MongoOutputFormat \

-io mongodb \

-jobconf mongo.input.uri=mongodb://127.0.0.1:27017/test.
postalCodes \

Integration with Hadoop

282

-jobconf mongo.output.uri=mongodb://127.0.0.1:27017/test.
pyMRStreamTest \

-jobconf stream.io.identifier.resolver.class=com.mongodb.hadoop.
streaming.io.MongoIdentifierResolver \

-mapper mapper.py \

-reducer reducer.py

The mapper.py and reducer.py files are present in the current directory when
executing this command.

7.	 On executing the command, which should take some time for the successful
execution of the MapReduce job, open the mongo shell by typing the following
command on the operating system command prompt and execute the following
query from the shell:
$ mongo

> db.pyMRStreamTest.find().sort({count:-1}).limit(5)

8.	 Compare the output to the one that we got earlier when we executed the MapReduce
jobs using mongo's MapReduce framework in Chapter 3, Programming Language
Drivers.

How to do it…
Let's look at steps 5 and 6 where we write the mapper and reducer functions. We
define a map function that accepts a list of all the documents. We iterate through these and
yield documents, where the _id field is the name of the key and the count value field has a
value of one. There will be the same number of documents yielded as the total number of
input documents.

We instantiate BSONMapper finally, which accepts the mapper function as the parameter.
The function returns a generator object, which is then used by this BSONMapper class to
feed the value to the MapReduce framework. All we need to remember is that the mapper
function needs to return a generator (which is returned as we call yield in the loop) and then
instantiate the BSONMapper class, which is provided to us by the pymongo_hadoop module.
For the intrigued, you can choose to look at the source code under the project cloned on our
local filesystem in the streaming/language_support/python/pymongo_hadoop/
mapper.py file and see what it does. It is a small and simple-to-understand piece of code.

Chapter 8

283

For the reducer function, we get the key and list of documents for this key as the value. The
key is the same as the value of the _id field emitted from the document in the map function.
We simply return a new document here with _id as the name of the state and count is the
number of documents for this state. Remember that we return a document and not emit one
as we did in map. Finally, we instantiate BSONReducer and pass the reducer function. The
source code under the project cloned on our local filesystem in the streaming/language_
support/python/pymongo_hadoop/reducer.py file has the implementation of the
BSONReducer class.

We finally invoked the command in the shell to initiate the MapReduce job that uses
streaming. A few things to note here are that we need two JAR files: one in share/hadoop/
tools/lib of the Hadoop distribution and one in the mongo-hadoop connector, which is
present in the streaming/build/libs/ directory. The input and output formats are com.
mongodb.hadoop.mapred.MongoInputFormat and com.mongodb.hadoop.mapred.
MongoOutputFormat, respectively.

As we saw earlier, sysout and sysin forms the backbone of streaming. So, basically, we
need to encode our BSON objects to write to sysout, and then, we should be able to read
sysin to convert the content to the BSON objects again. For this purpose, the mongo-
hadoop connector provides us with two framework classes, com.mongodb.hadoop.
streaming.io.MongoInputWriter and com.mongodb.hadoop.streaming.
io.MongoOutputReader to encode and decode from and to the BSON objects. These
classes extend from org.apache.hadoop.streaming.io.InputWriter and org.
apache.hadoop.streaming.io.OutputReader, respectively.

The value of the stream.io.identifier.resolver.class property is given as com.
mongodb.hadoop.streaming.io.MongoIdentifierResolver. This class extends from
org.apache.hadoop.streaming.io.IdentifierResolver and gives us a chance
to register our implementations of org.apache.hadoop.streaming.io.InputWriter
and org.apache.hadoop.streaming.io.OutputReader with the framework. We also
register the output key and output value class using our custom IdentifierResolver. Just
remember to use this resolver always in case you are using streaming with the mongo-hadoop
connector.

We finally execute the mapper and reducer python functions, which we discussed earlier.
An important thing to remember is that do not print out logs to sysout from the mapper
and reducer functions. The sysout and sysin mapper and reducer are the means of
communication, and writing logs to it can yield undesirable behavior. As we can see in the
example, write either to standard error (stderr) or a log file.

When using a multiline command in Unix, you continue the command on
the next line using \. However, remember not to have spaces after \.

Integration with Hadoop

284

Running a MapReduce job on Amazon EMR
This recipe involves running the MapReduce job on the cloud using AWS. You will need an
AWS account in order to proceed. Register with AWS at http://aws.amazon.com/. We will
see how to run a MapReduce job on the cloud using Amazon Elastic Map Reduce (Amazon
EMR). Amazon EMR is a managed MapReduce service provided by Amazon on the cloud.
Refer to https://aws.amazon.com/elasticmapreduce/ for more details. Amazon EMR
consumes data, binaries/JARs, and so on from AWS S3 bucket, processes them and writes
the results back to S3 bucket. Amazon Simple Storage Service (Amazon S3) is another
service by AWS for data storage on the cloud. Refer to http://aws.amazon.com/s3/ for
more details on Amazon S3. Though we will use the mongo-hadoop connector, an interesting
fact is that we won't require a MongoDB instance to be up and running. We will use the
MongoDB data dump stored in an S3 bucket for our data analysis. The MapReduce program
will run on the input BSON dump and generate the result BSON dump in the output bucket.
The logs of the MapReduce program will be written to another bucket dedicated for logs. The
following figure gives us an idea of how our setup would look at a high level:

Getting ready
We will use the same Java sample as we did in the Writing our first Hadoop MapReduce job
recipe for this recipe. To know more about the mapper and reducer class implementation,
you can refer to the How It works section of the same recipe. We have a mongo-hadoop-
emr-test project available with the code that can be downloaded from the Packt website,
which is used to create a MapReduce job on the cloud using the AWS EMR APIs. To simplify
things, we will upload just one JAR to the S3 bucket to execute the MapReduce job. This JAR
will be assembled using a BAT file for Windows and a shell script on Unix-based operating
systems. The mongo-hadoop-emr-test Java project has the mongo-hadoop-emr-
binaries subdirectory containing the necessary binaries along with the scripts to assemble
them in one JAR.

http://aws.amazon.com/
https://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/

Chapter 8

285

The assembled mongo-hadoop-emr-assembly.jar file is also provided in the subdirectory.
Running the .bat or .sh file will delete this JAR and regenerate the assembled JAR, which is
not mandatory. The already provided assembled JAR is good enough and will work just fine. The
Java project contains subdirectory data with a postalCodes.bson file in it. This is the BSON
dump generated out of the database containing the postalCodes collection. The mongodump
utility provided with the mongo distribution is used to extract this dump.

How to do it…
1.	 The first step of this exercise is to create a bucket on S3. You can choose to use an

existing bucket; however, for this recipe, I am creating a com.packtpub.mongo.
cookbook.emr-in bucket. Remember that the name of the bucket has to be
unique across all the S3 buckets and you will not be able to create a bucket with this
very name. You will have to create one with a different name and use it in place of
com.packtpub.mongo.cookbook.emr-in that is used in this recipe.

Do not create bucket names with an underscore (_); instead, use
a hyphen (-). The bucket creation with an underscore will not fail;
however, the MapReduce job later will fail as it doesn't accept
underscores in the bucket names.

2.	 We will upload the assembled JAR files and a .bson file for the data to the newly
created (or existing) S3 bucket. To upload the files, we will use the AWS web
console. Click on the Upload button and select the assembled JAR file and the
postalCodes.bson file to be uploaded to the S3 bucket. After uploading, the
contents of the bucket should look as follows:

3.	 The following steps are to initiate the EMR job from the AWS console without writing
a single line of code. We will also see how to initiate this using AWS Java SDK. Follow
steps 4 to 9 if you are looking to initiate the EMR job from the AWS console. Follow
steps 10 and 11 to start the EMR job using the Java SDK.

Integration with Hadoop

286

4.	 We will first initiate a MapReduce job from the AWS console. Visit https://
console.aws.amazon.com/elasticmapreduce/ and click on the Create
Cluster button. In the Cluster Configuration screen, enter the details as shown in
the image, except for the logging bucket, which you need to select as your bucket to
which the logs need to be written. You can also click on the folder icon next to the
textbox for the bucket name and select the bucket present for your account to be
used as the logging bucket.

The termination protection option is set to No as this is a test instance.
In case of any error, we would rather want the instances to terminate
in order to avoid keeping them running and incurring charges.

5.	 In the Software Configuration section, select the Hadoop version as 2.4.0 and AMI
version as 3.1.0 (hadoop 2.4.0). Remove the additional applications by clicking on
the cross next to their names, as shown in the following image:

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

Chapter 8

287

6.	 In the Hardware Configuration section, select the EC2 instance type as
m1.medium. This is the minimum that we need to select for the Hadoop version
2.4.0. The number of instances for the slave and task instances is zero. The following
image shows the configuration that is selected:

7.	 In the Security and Access section, leave all the default values. We also have no
need for a Bootstrap Action, so leave this as well.

8.	 The final step is to set up Steps for the MapReduce job. In the Add step drop down,
select the Custom JAR option, and then select the Auto-terminate option as Yes, as
shown in the following image:

Now click on the Configure and Add button and enter the details.

The value of the JAR S3 Location is given as s3://com.packtpub.mongo.
cookbook.emr-in/mongo-hadoop-emr-assembly.jar. This is the location in
my input bucket; you need to change the input bucket as per your own input bucket.
The name of the JAR file would be same.

Integration with Hadoop

288

Enter the following arguments in the Arguments text area; the name of the main
class is the first in the list:
com.packtpub.mongo.cookbook.TopStateMapReduceEntrypoint

-Dmongo.job.input.format=com.mongodb.hadoop.BSONFileInputFormat

-Dmongo.job.mapper=com.packtpub.mongo.cookbook.TopStatesMapper

-Dmongo.job.reducer=com.packtpub.mongo.cookbook.TopStateReducer

-Dmongo.job.output=org.apache.hadoop.io.Text

-Dmongo.job.output.value=org.apache.hadoop.io.IntWritable

-Dmongo.job.output.value=org.apache.hadoop.io.IntWritable

-Dmongo.job.output.format=com.mongodb.hadoop.
BSONFileOutputFormat

-Dmapred.input.dir=s3://com.packtpub.mongo.cookbook.emr-in/
postalCodes.bson

-Dmapred.output.dir=s3://com.packtpub.mongo.cookbook.emr-out/

9.	 The value of the final two arguments contains the input and output bucket used for
my MapReduce sample; this value will change according to your own input and output
buckets. The value of Action on failure would be Terminate. The following image
shows the values filled in; click on Save after all these details have been entered:

10.	 Now click on the Create Cluster button. This will take some time to provision and
start the cluster.

11.	 In the following few steps, we will create a MapReduce job on EMR using the
AWS Java API. Import the EMRTest project provided with the code samples to
your favorite IDE. Once imported, open the com.packtpub.mongo.cookbook.
AWSElasticMapReduceEntrypoint class.

Chapter 8

289

12.	 There are five constants that need to be changed in the class. They are the Input,
Output, and Log bucket that you will use for your example and the AWS access
and secret key. The access key and secret key act as the username and password
when you use AWS SDK. Change these values accordingly and run the program. On
successful execution, it should give you a job ID for the newly initiated job.

13.	 Irrespective of how you initiated the EMR job, visit the EMR console at https://
console.aws.amazon.com/elasticmapreduce/ to see the status of your
submitted ID. The Job ID that you can see in the second column of your initiated job
will be same as the job ID printed to the console when you executed the Java program
(if you initiated using the Java program). Click on the name of the job initiated,
which should direct you to the job details page. The hardware provisioning will take
some time, and then finally, your map reduce step will run. Once the job has been
completed, the status of the job should look as follows on the Job details screen:

When expanded, the Steps section should look as follows:

14.	 Click on the stderr link below the Log files section to view all the logs' output for the
MapReduce job.

15.	 Now that the MapReduce job is complete, our next step is to see the results of it. Visit
the S3 console at https://console.aws.amazon.com/s3 and visit the output
bucket. In my case, the following is the content of the out bucket:

The part-r-0000.bson file is of our interest. This file contains the results of our
MapReduce job.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/s3

Integration with Hadoop

290

16.	 Download the file to your local filesystem and import to a running mongo instance
locally, using the mongorestore utility. Note that the restore utility for the following
command expects a mongod instance to be up and running and listening to port
27017 with the part-r-0000.bson file in the current directory:
$ mongorestore part-r-00000.bson -d test -c mongoEMRResults

17.	 Now, connect to the mongod instance using the mongo shell and execute the
following query:
> db.mongoEMRResults.find().sort({count:-1}).limit(5)

We will see the following results for the query:
{ "_id" : "Maharashtra", "count" : 6446 }

{ "_id" : "Kerala", "count" : 4684 }

{ "_id" : "Tamil Nadu", "count" : 3784 }

{ "_id" : "Andhra Pradesh", "count" : 3550 }

{ "_id" : "Karnataka", "count" : 3204 }

18.	 This is the expected result for the top five results. If we compare the results that
we got in Executing MapReduce in Mongo using a Java client from Chapter 3,
Programming Language Drivers using Mongo's MapReduce framework and the
Writing our first Hadoop MapReduce job recipe in this chapter, we can see that the
results are identical.

How it works…
Amazon EMR is a managed Hadoop service that takes care of the hardware provisioning and
keeps you away from the hassle of setting up your own cluster. The concepts related to our
MapReduce program have already been covered in the Writing our first Hadoop MapReduce
job recipe and there is nothing more to mention. One thing that we did was to assemble the
JARs that we need in one big fat JAR to execute our MapReduce job. This approach is okay for
our small MapReduce job; in case of larger jobs where a lot of third-party JARs are needed, we
will have to go for an approach where we will add the JARs to the lib directory of the Hadoop
installation and execute in the same way as we did in our MapReduce job that we executed
locally. Another thing that we did differently from our local setup was not to use a mongid
instance to source the data and write the data to, but instead, we used the BSON dump files
from the mongo database as an input and wrote the output to the BSON files. The output
dump will then be imported to a mongo database locally and the results will be analyzed. It is
pretty common to have the data dumps uploaded to S3 buckets, and running analytics jobs
on this data that has been uploaded to S3 on the cloud using cloud infrastructure is a good
option. The data accessed from the buckets by the EMR cluster need not have public access
as the EMR job runs using our account's credentials; we are good to access our own buckets
to read and write data/logs.

Chapter 8

291

See also
After trying out this simple MapReduce job, it is highly recommended that you get to
know about the Amazon EMR service and all its features. The developer's guide for EMR
can be found at http://docs.aws.amazon.com/ElasticMapReduce/latest/
DeveloperGuide/.

There is a sample MapReduce job in the Enron dataset given as part of the mongo-hadoop
connector's examples. It can be found at https://github.com/mongodb/mongo-
hadoop/tree/master/examples/elastic-mapreduce. You can choose to implement
this example as well on Amazon EMR as per the given instructions.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
https://github.com/mongodb/mongo-hadoop/tree/master/examples/elastic-mapreduce
https://github.com/mongodb/mongo-hadoop/tree/master/examples/elastic-mapreduce

293

9
Open Source and
Proprietary Tools

In this chapter, we will cover some open source and proprietary tools. The following are the
recipes that we will go through in this chapter:

ff Developing using spring-data-mongodb

ff Accessing MongoDB using JPA

ff Accessing MongoDB over REST

ff Installing a GUI-based client, MongoVUE, for MongoDB

Introduction
There is a vast array of tools/frameworks available to ease the development/administration
process for software that uses MongoDB. We will look at some of these available frameworks
and tools. For a developer's productivity (Java developers, in this case), we will look at
spring-data-mongodb, which is a part of the popular spring data suite.

JPA is an ORM specification that is widely used, particularly with relational databases. (This
was the objective of the ORM frameworks.) However, there are a few implementations that let
us use it with NoSQL stores—MongoDB, in this case. We will look at a provider who provides
this implementation and put it to the test with a simple use case.

We will use spring-data-rest to expose the CRUD repositories for MongoDB over a REST
interface for clients to invoke various operations supported by the underlying spring-data-mongo
repository.

Open Source and Proprietary Tools

294

Querying the database in the shell is okay, but it would be nice to have a good GUI to enable
us to do all the administrative-related/development-related tasks from the GUI rather than
execute the commands in the shell to perform these activities. We will look at one such tool
in this chapter.

Developing using spring-data-mongodb
From a developer's perspective, when a program needs to interact with a MongoDB instance,
they need to use the respective client APIs for their specific platforms. The trouble with doing
this is that we need to write a lot of boilerplate code and it is not necessarily object-oriented.
For instance, we have a class called Person with various attributes such as name, age,
address, and so on. The corresponding JSON document shares a similar structure to this
person class as follows:

{
 name:"…",
 age:..,
 address:{lineOne:"…", …}
}

However, to store this document, we need to convert the Person class to DBObject, which is
a map with key and value pairs. What is really needed is to let us persist this Person class
itself as an object in the database without having to convert it to DBObject.

Additionally, some of the operations such as searching by a particular field of a document,
saving an entity, deleting an entity, searching by the ID, and so on are pretty common
operations, and we tend to repeatedly write similar boilerplate code. In this recipe, we will
see how spring-data-mongodb relieves us of these laborious and cumbersome tasks to
reduce, not only the development effort, but also the possibility of introducing bugs in these
commonly written functions.

Getting ready
The SpringDataMongoTest project, present in the bundle with the chapter, is a Maven
project and has to be imported to any IDE of your choice. The required maven artifacts will
automatically be downloaded. A single MongoDB instance is required to be up and running and
listening to port 27017. Refer to the Installing single node MongoDB recipe from Chapter 1,
Installing and Starting the Server, for instructions on how to start a standalone instance.

For the aggregation example, we will use the postal codes data. Refer to the Creating test data
recipe in Chapter 2, Command-line Operations and Indexes, for the creation of the test data.

Chapter 9

295

How to do it…
1.	 We will explore the spring-data-mongodb's repository feature first. Open the test

case's com.packtpub.mongo.cookbook.MongoCrudRepositoryTest class
from your IDE and execute it. If all goes well and the MongoDB server instance is
reachable, the test case will get executed successfully.

2.	 Another test case, com.packtpub.mongo.cookbook.
MongoCrudRepositoryTest2, is used to explore more features of the repository
support provided by spring-data-mongodb. This test case too should get executed
successfully.

3.	 We will see how spring-data-mongodb's MongoTemplate can be used to perform
CRUD operations and other common operations on MongoDB. Open the com.
packtpub.mongo.cookbook.MongoTemplateTest class and execute it.

4.	 Alternatively, if an IDE is not used, all the tests can be executed using maven
from the command prompt with the current directory being in the root of the
SpringDataMongoTest project:
$ mvn clean test

How it works…
We will first look at what we did in com.packtpub.mongo.cookbook.
MongoCrudRepositoryTest, where we saw the repository support provided by
spring-data-mongodb. Just in case you didn't notice, we haven't written a single line of
code for the repository. The magic of implementing the required code for us is done by
the spring data project.

Let's start by looking at the relevant portions of the XML configuration file:

 <mongo:repositories base-package="com.packtpub.mongo.cookbook" />
 <mongo:mongo id="mongo" host="localhost" port="27017"/>
 <mongo:db-factory id="factory" dbname="test" mongo-ref="mongo"/>
 <mongo:template id="mongoTemplate" db-factory-ref="factory"/>

We first look at the last three lines, which are the spring-data-mongodb namespace
declarations to instantiate com.mongodb.Mongo, a factory for the com.mongodb.
DB instances from the client, and template instance, which is used to perform various
operations on MongoDB, respectively. We will see org.springframework.data.
mongodb.core.MongoTemplate in more detail later.

Open Source and Proprietary Tools

296

The first line is a namespace declaration for the base package of all the CRUD repositories
that we have. In this package, we have an interface with the following body:

public interface PersonRepository extends PagingAndSortingRepository<P
erson, Integer>{

 /**
 *
 * @param lastName
 * @return
 */
 Person findByLastName(String lastName);
}

The PagingAndSortingRepository interface is from the org.springframework.
data.repository package of the spring data core project and extends from
CrudRepository in the same project. These interfaces give us some of the most common
methods such as searching by the ID/primary key, deleting an entity, and inserting and
updating an entity. The repository needs an object that it maps to the underlying data store.
The spring data project supports a large number of data stores not just limited to SQL (using
JDBC and JPA) or MongoDB, but also to other NoSQL stores such as Redis and Hadoop and
search engines such as Solr and Elasticsearch. In case of spring-data-mongodb, the object is
mapped to a document in the collection.

The PagingAndSortingRepository<Person, Integer> signature indicates that the
first one is the entity that the CRUD repository is built for and the second is the type of the
primary key/ID field.

We added just one findByLastName method, which accepts one string value for the last
name as a parameter. This is an interesting operation that is specific to our repository and
not even implemented by us, but it will still work just as expected. Person is a POJO where
we annotated the id field with the org.springframework.data.annotation.Id
annotation. Nothing else is really special about this class; it just has some plain getters
and setters.

With all these small details, let's join these dots together by answering some questions that
you'll have in mind. First, we will see which server, database, and collection our data goes to.
If we look at the XML definition, mongo:mongo, for the configuration file, we can see that we
instantiated the com.mongodb.Mongo class by connecting to localhost and port 27017. The
mongo:db-factory declaration is used to denote that the database to be used is test.
One final question is: which collection? The simple name of our class is Person. The name
of the collection is the simple name with the first character in lowercase, and thus, Person
goes to person and something like BillingAddress would go to the billingAddress
collection. These are the default values. However, if you need to override this value, you can
annotate your class with the org.springframework.data.mongodb.core.mapping.
Document annotation and use its collection attribute to give any name of your choice, as we
will see in a later example.

Chapter 9

297

To view the document in the collection, execute just one test case saveAndQueryPerson
method from the com.packtpub.mongo.cookbook.MongoCrudRepositoryTest class.
Now, connect to the MongoDB instance in the mongo shell and execute the following query:

> use test

> db.person.findOne({_id:1})

{

 "_id" : 1,

 "_class" : "com.packtpub.mongo.cookbook.domain.Person",

 "firstName" : "Steve",

 "lastName" : "Johnson",

 "age" : 20,

 "gender" : "Male"

 …

}

As we can see in the preceding result, the contents of the document are similar to the object
that we persisted using the CRUD repository. The names of the field in the document are the
same as the names of the respective attributes in the Java object with two exceptions. The
field annotated with @Id is now _id, irrespective of the name of the field in the Java class and
an additional _class attribute is added to the document whose value is the fully qualified
name of the Java class itself. This is not of any use to the application but is used by spring-
data-mongodb as metadata.

Now it makes more sense and gives us an idea what spring-data-mongodb must be doing for
all the basic CRUD methods. All the operations that we perform will use the MongoTemplate
(MongoOperations, which is an interface that MongoTemplate implements) class from the
spring-data-mongodb project. Using the primary key, it will invoke a find by the _id field on
the collection derived using the Person entity class. The save method simply calls the save
method on MongoOperations, which, in turn, calls the save method on the com.mongodb.
DBCollection class.

Open Source and Proprietary Tools

298

We still haven't answered how the findByLastName method worked. How does spring know
what query to invoke in order to return the data? These are the special types of methods that
begin with find, findBy, get, or getBy. There are some rules that one needs to follow while
naming a method, and the proxy object on the repository interface is able to correctly convert
this method into an appropriate query on the collection. For instance, the findByLastName
method in the repository for the Person class will execute a query on the lastName field in
person's document. Hence, the findByLastName(String lastName) method will fire the
db.person.find({'lastName': lastName }) query on the database. Based on the
return type of the method defined, it will return either List or the first result in the returned
result from the database. We used findBy in our queries; however, anything that begins with
find, has any text in between, and ends with By, works. For instance, findPersonBy is also
the same as findBy.

To see more on these findBy methods, we have another test MongoCrudRepositoryTest2
class. Open this class in your IDE where it can be read along with this text. We already executed
this test case; now, let's see these findBy methods used and their behavior. This interface
has seven findBy methods in it, with one of the methods being a variant of another method in
the same interface. To get a clear idea of the queries, we will first look at one of the documents
in the personTwo collection in the test database. Execute the following in the mongo shell
connected to the MongoDB server running on localhost:

> use test

> db.personTwo.findOne({firstName:'Amit'})

{

 "_id" : 2,

 "_class" : "com.packtpub.mongo.cookbook.domain.Person2",

 "firstName" : "Amit",

 "lastName" : "Sharma",

 "age" : 25,

 "gender" : "Male",

 "residentialAddress" : {

 "addressLineOne" : "20, Central street",

 "city" : "Mumbai",

 "state" : "Maharashtra",

 "country" : "India",

 "zip" : "400101"

 }

}

Note that the repository uses the Person2 class; however, the name of the collection used is
personTwo. This was possible because we used the @Document(collection="personT
wo") annotation on the top of the Person2 class.

Chapter 9

299

Getting back to the seven methods in the com.packtpub.mongo.cookbook.
PersonRepositoryTwo repository class, let's look at them one by one:

Method Description
findByAgeGreaterThanEqual This method will fire a query

on the personTwo collection,
{'age':{'$gte':<age>}}.

The secret lies in the name of the method. If
we break it up, what we have after findBy
tells us what we want. The age property
(with the first character in lowercase) is the
field that would be queried on the document
with the $gte operator because we have
GreaterThanEqual in the name of the
method. The value that would be used for
the comparison would be the value of the
parameter passed. The result is a collection of
the Person2 entities as we will have multiple
matches.

findByAgeBetween This method will again be queried on age
but will be using a combination of $gt and
$lt to find the matching result. The query,
in this case, would be {'age' : {'$gt'
: from, '$lt' : to}}. It is important
to note that both the values from and to are
exclusive in the range. There are two methods
in the test case, findByAgeBetween and
findByAgeBetween2. These methods
demonstrate the behavior of the between query
for different input values.

findByAgeGreaterThan This method is a special method that also sorts
the result because there are two parameters
to the method: the first parameter is the value
against which the age will be compared and
the second parameter is the field of the org.
springframework.data.domain.Sort
type. For more details, refer to the Javadocs for
spring-data-mongodb.

Open Source and Proprietary Tools

300

Method Description
findPeopleByLastNameLike This method is used to find results by the last

name matching a pattern. Regular expressions
are used for the matching purpose. For
instance, in this case, the query fired will
be {'lastName' : <lastName as
regex>}. This method's name begins with
findPeopleBy instead of findBy, which
works the same as findBy. Thus, when we
say findBy in all the descriptions, we actually
mean find…By.

The value provided as the parameter will be
used to match the last name.

findByResidentialAddressCountry This is an interesting method to look at.
Here, we are searching by the country of the
residential address. This is, in fact, a field in the
Address class in the residentialAddress
field of the person. Take a look at the document
from the personTwo collection for how the
query should be.

When spring data finds the name as
ResidentialAddressCountry, it
will try to find various combinations using
this string. For instance, it can look at the
residentialAddressCountry field
in the Person class or residential.
addressCountry, residentialAddress.
country, or residential.address.
country. If there are no conflicting values
as in our case the residentialAddress.
The field 'country' is a part of the 'Person2'
document and thus that would be used in the
query.

However, if there are conflicts, then
underscores can be used to clearly
specify what we are looking at. In this
case, the method can be renamed
findByResidentialAddress_country
to clearly specify what we expect as the result.
The test case findByCountry2 method
demonstrates this.

Chapter 9

301

Method Description
findByFirstNameAndCountry This is an interesting method. We are not

always able to use the method names to
implement what we actually want to. The
name of the method required for spring
to automatically implement the query
might be a bit awkward to use as is. For
instance, findByCountryOfResidence
sounds better than
findByResidentialAddressCountry.
However, we are stuck with the latter as that is
how spring-data-mongodb would construct the
query. Using findByCountryOfResidence
gives no details on how to construct the query
to spring data.

There is a solution for this. You can choose
to use the @Query annotation and specify
the query to be executed when the method is
invoked. The following is the annotation that we
used:

@Query("{'firstName':?0,
'residentialAddress.country':
?1}")

We write the value as a query that would get
executed and bind the parameters of the
functions to the query as numbered parameters
starting from zero. Thus, the first parameter of
the method will be bound to ?0, the second to
?1, and so on.

We saw how the findBy or getBy methods are automatically translated to the queries for
MongoDB. Similarly, we have the following prefixes for the methods. The countBy method
returns the long number for the count for a given condition, which is derived from the rest
of the method name similar to findBy. We can have deleteBy or removeBy to delete the
documents by the derived condition. One thing to note about the com.packtpub.mongo.
cookbook.domain.Person2 class is that it does not have a no argument constructor or
setter to set the values. Instead, spring will use reflection to instantiate this object.

A lot of the findBy methods are supported by spring-data-mongodb and all are not covered
here. Refer to the spring-data-mongodb reference manual for more details. A lot of XML-based
or Java-based configuration options are available and can be found in the reference manual.
The URLs are given in the See also section later in this recipe.

Open Source and Proprietary Tools

302

We are not done yet; we have another test case, com.packtpub.mongo.cookbook.
MongoTemplateTest, which uses org.springframework.data.mongodb.core.
MongoTemplate to perform various operations. You can open the test case class and see
what operations are performed and which methods of MongoTemplate are invoked.

Let's look at some of the important and frequently used methods of the MongoTemplate class:

Method Description
save This method is used to save (insert, if new; or else, update) an entity

in MongoDB. The method takes one parameter, the entity, and
finds the target collection based on its name or the @Document
annotation present on it.

There is an overloaded version of the save method that also accepts
the second parameter, the name of the collection to which the data
entity passed needs to be persisted.

remove This method will be used to remove documents from the collection.
It has some overloaded methods in this class. All of them accept
either an entity to be deleted or the org.springframework.
data.mongodb.core.query.Query instance, which is used
to determine the document(s) to be deleted. The second parameter
is the name of the collection from which the document has to be
deleted. When an entity is provided, the name of the collection can be
derived. With a Query instance provided, we have to give either the
name of the collection or the entity class name, which, in turn, will be
used to derive the name of the collection.

updateMulti This is the function invoked to update multiple documents with
one update call. The first parameter is the query that would be
used to match the documents. The second parameter is the org.
springframework.data.mongodb.core.query.Update
instance. This is the update that would be executed on the documents
selected using the first Query object. The next parameters are the
entity class or collection name to execute the update on. Refer to the
Javadocs for more details on the method and its various overloaded
versions.

updateFirst It is the opposite of the updateMulti method. This operation will
update just the first matching document. We have not covered this
method in our unit test case.

Chapter 9

303

Method Description
insert We mentioned that the save method can perform insertion and

updates. The insert method in the template calls the insert
method of the underlying mongo client. If one entity or document is
to be inserted, there is no difference in calling the insert or save
method.

However, as we can see in the insertMultiple method in the test
case, we created a list of three Person instances and passed them
to the insert method. All the three documents for the three Person
instances will go to the server as part of one call. The behavior on
what happens whenever an insert fails is determined by the continue
on error parameter of the Write Concern. It will determine whether
the bulk insert fails at the first failure or continues even after errors
while reporting the last error. The URL, http://docs.mongodb.
org/manual/core/bulk-inserts/, gives more details on
bulk inserts and various write concern parameters that can alter the
behavior.

findAndRemove/
findAllAndRemove

Both these operations are used to find and then remove the
document(s). The first one finds one and then returns the deleted
document. This operation is atomic. The latter, however, finds all
the documents and removes them before returning the list of all the
entities of all the documents deleted.

findAndModify This method is functionally similar to findAndModify that we have
with the mongo client library. It will atomically find and modify the
document. If the query matches more than one document, only the
first match will be updated. The first two parameters of this method
are the query and update to execute. The next few parameters are
either the entity class or collection name to execute the operation on.
Additionally, there is a special org.springframework.data.
mongodb.core.FindAndModifyOptions class, which makes
sense only for the findAndModify operation. This instance tells us
whether we are looking for the new instance or old instance after the
operation is performed and whether upsert is to be performed. It is
relevant only if the document with the matching query doesn't exist.
There is an additional Boolean flag to tell the client whether this is a
findAndRemove operation. In fact, the findAndRemove operation
that we saw earlier is just a convenient function that delegates
findAndModify with this remove flag set.

http://docs.mongodb.org/manual/core/bulk-inserts/
http://docs.mongodb.org/manual/core/bulk-inserts/

Open Source and Proprietary Tools

304

In the preceding table, we mentioned the Query and Update classes when talking
about update. These are special convenient classes in spring-data-mongodb, which
let us build MongoDB queries using a syntax that is easy to understand with improved
readability. For instance, the query to check whether lastName is Johnson in mongo is
{'lastName':'Johnson'}. The same query can be constructed in spring-data-mongodb
as follows:

new Query(Criteria.where("lastName").is("Johnson"))

This syntax looks neat compared to giving the query in JSON. Let's take another example
where we want to find all the females under 30 years in our database. The query would now
be built as follows:

new Query(Criteria.where("age").lt(30).and("gender").is("Female"))

Similarly, for update, we want to set a Boolean flag, youngCustomer, to true for some of the
customers based on some conditions. To set this flag in the document, the MongoDB format
would be as follows:

{'$set' : {'youngCustomer' : true}}

In spring-data-mongodb, this would be achieved in the following way:

new Update().set("youngCustomer", true)

Refer to the Javadocs for all the possible methods that are available to build the query and
updates in spring-data-mongodb to be used with MongoTemplate.

These methods are by no means the only ones available in the MongoTemplate class. There
are a lot of other methods for geospatial indexes, convenient methods to get the count of
the documents in a collection, aggregation and MapReduce support, and so on. Refer to the
Javadocs of MongoTemplate for more details and methods.

Speaking of aggregation, we also have a test case aggregationTest method to perform
the aggregation operation on the collection. We have a postalCodes collection in MongoDB
that contains the postal code details of various cities. An example document in the collection
is as follows:

{
 "_id" : ObjectId("539743b26412fd18f3510f1b"),
 "postOfficeName" : "A S D Mello Road Fuller Marg",
 "pincode" : 400001,
 "districtsName" : "Mumbai",
 "city" : "Mumbai",
 "state" : "Maharashtra"
}

Chapter 9

305

Our aggregation operation intends to find the top five states by the number of documents in
the collection. In mongo, the aggregation pipeline would look as follows:

[
{'$project':{'state':1, '_id':0}},
{'$group':{'_id':'$state', 'count':{'$sum':1}}}
{'$sort':{'count':-1}},
{'$limit':5}
]

In spring-data-mongodb, we invoked the aggregation operation using MongoTemplate:

Aggregation aggregation = newAggregation(

 project("state", "_id"),
 group("state").count().as("count"),
 sort(Direction.DESC, "count"),
 limit(5)
);

AggregationResults<DBObject> results = mongoTemplate.aggregate(
 aggregation,
 "postalCodes",
 DBObject.class);

The key is in creating the instance of the org.springframework.data.mongodb.
core.aggregation.Aggregation class. The newAggregation method is statically
imported from the same class and accepts varargs for different instances of the org.
springframework.data.mongodb.core.aggregation.AggregationOperation
instances corresponding to the one operation in the chain. The Aggregation class has
various static methods to create the instances of AggregationOperation. We have used
a few of them such as project, group, sort, and limit. Refer to the Javadocs for more
details and available methods. The aggregate method in MongoTemplate takes three
arguments. The first one is the instance of the Aggregation class, the second one is the
name of the collection, and the third one is the return type of the aggregation result. Refer to
the aggregation operation test case for more details.

See also
ff Refer to the Javadocs at http://docs.spring.io/spring-data/mongodb/

docs/current/api/ for more details and API documentation

ff The reference manual for the spring-data-mongodb project can be found at http://
docs.spring.io/spring-data/data-mongodb/docs/current/reference/

http://docs.spring.io/spring-data/mongodb/docs/current/api/
http://docs.spring.io/spring-data/mongodb/docs/current/api/
http://docs.spring.io/spring-data/data-mongodb/docs/current/reference/
http://docs.spring.io/spring-data/data-mongodb/docs/current/reference/

Open Source and Proprietary Tools

306

Accessing MongoDB using JPA
In this recipe, we will use a JPA provider that allows us to use JPA entities to achieve
object-to-document mapping with MongoDB.

Getting ready
Start the standalone server instance listening to port 27017. This is a Java project using JPA.
Familiarity with JPA and its annotations is expected, though what we will be looking at is fairly
basic. Refer to the Connecting to the single node using a Java client recipe in Chapter 1,
Installing and Starting the Server, to see how to set up maven if you are not aware of it.
Download the DataNucleusMongoJPA project from the bundle provided with this book.
Though we will be executing the test cases from the command prompt, you can import the
project to your favorite IDE to view the source code.

How to do it…
1.	 Go to the root directory of the DataNucleusMongoJPA project and execute the

following in the shell:
$ mvn clean test

2.	 This should download the necessary artifacts needed to build and run the project and
execute the test cases successfully.

3.	 Once the test cases get executed, open a mongo shell and connect to the local instance.

4.	 Execute the following query in the shell:
> use test

> db.personJPA.find().pretty()

How it works…
First, let's look at a sample document that was created in the personJPA collection:

{
 "_id" : NumberLong(2),
 "residentialAddress" : {
 "residentialAddress_zipCode" : "400101",
 "residentialAddress_state" : "Maharashtra",
 "residentialAddress_country" : "India",
 "residentialAddress_city" : "Mumbai",
 "residentialAddress_addressLineOne" : "20, Central
street"

Chapter 9

307

 },
 "lastName" : "Sharma",
 "gender" : "Male",
 "firstName" : "Amit",
 "age" : 25
}

The steps that we executed are pretty simple; let's look at the classes that are used one by
one. We start with the com.packtpub.mongo.cookbook.domain.Person class. On the
top of the class (after the package and imports), we have the following:

@Entity
@Table(name="personJPA")
public class Person {

This denotes that the Person class is an entity and the collection to which it would persist
is personJPA. Note that JPA was designed primarily as an Object Relational Mapping
(ORM) tool and, so, the terminologies used are more for a relational database. A table
in RDBMS is synonymous to a collection in MongoDB. The rest of the class contains the
attributes of person and the columns annotated with @Column and @Id for a primary key.
These are simple JPA annotations. What is interesting to look at is the com.packtpub.
mongo.cookbook.domain.ResidentialAddress class, which is stored as a
residentialAddress variable in the Person class. If we look at the person document
that we gave earlier, all the values given in the @Column annotation are the names of
the keys for person; also notice how Enum gets converted to a string value as well. The
residentialAddress field is the name of the variable in the Person class against which
the address instance is stored. If we look at the ResidentialAddress class, we can see
the @Embeddable annotation at the top above the class name. This is again a JPA annotation
that denotes that this instance is not an entity itself, but is embedded in another Entity
or Embeddable class. Note the names of the fields in the document; in this case, they have
the following format: <name of the variable in person class>_<value of the
variable name in ResidentialAddress class>.

There is one problem here. The names of the fields are too long, consuming unnecessary
space. The solution is to have a shorter value in the @Column annotation. For instance, the
@Column(name="ln") annotation instead of @Column(name="lastName"), will create
the key with a ln name in the document. Unfortunately, this doesn't work with the embedded
ResidentialAddress class; in which case, you will have to deal with shorter variable
names. Now that we have seen the entity classes, let's see persistence.xml:

<persistence-unit name="DataNucleusMongo">
 <class>com.packtpub.mongo.cookbook.domain.Person</class>
 <properties>
 <property name="javax.persistence.jdbc.url"
 value="mongodb:localhost:27017/test"/>
 </properties>
</persistence-unit>

Open Source and Proprietary Tools

308

We have got just the persistence-unit definition here with the name as DataNucleusMongo.
There is one class node that is the entity that we will use. Note that the embedded address
class is not mentioned here as it is not an independent entity. In the properties, we mentioned
the URL of the data store to connect to. In this case, we connect to the instance on localhost,
port 27017, and database test.

Now, let's look at the class that queries and inserts the data. This is our com.packtpub.
mongo.cookbook.DataNucleusJPATest test class. We create javax.persistence.
EntityManagerFactory as Persistence.createEntityManagerFactory("
DataNucleusMongo"). This is a thread-safe class and its instance is shared across
threads; the string argument is also the same as the name of the persistence unit that
we used in persistence.xml. All the other invocations on javax.persistence.
EntityManager to persist or query the collection require us to create an instance using
EntityManagerFactory—use it and then close it once the operation is completed. All the
operations performed are as per the JPA specifications. The test case class persists entities
and also queries them.

Finally, we look at pom.xml, particularly the enhancer plugin that we used, which is as follows:

<plugin>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-maven-plugin</artifactId>
 <version>4.0.0-release</version>
 <configuration>
 <log4jConfiguration>${basedir}/src/main/resources/log4j.
properties</log4jConfiguration>
 <verbose>true</verbose>
 </configuration>
 <executions>
 <execution>
 <phase>process-classes</phase>
 <goals>
 <goal>enhance</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The entities that we have written need to be enhanced in order to be used as JPA entities
using data nucleus. The preceding plugin will be attached to the process-class phase and
then call the plugin's enhance.

Chapter 9

309

See also
ff There are various ways to enhance JPA entities using a data nucleus enhancer. Refer

to http://www.datanucleus.org/products/datanucleus/jdo/enhancer.
html for possible options. There is even a plugin for Eclipse to allow entity classes to
be enhanced/instrumented for data nucleus.

ff The JPA 2.1 specification can be found at https://www.jcp.org/aboutJava/
communityprocess/final/jsr338/index.html.

Accessing MongoDB over REST
In this recipe, we will see how to access MongoDB and perform CRUD operations using REST
APIs. We will use spring-data-rest for REST access and spring-data-mongodb to perform
the CRUD operations. Before you continue with this recipe, it is important to know how to
implement the CRUD repositories using spring-data-mongodb. Refer to the Developing using
spring-data-mongodb recipe in this chapter to know how to use this framework.

The question one must be having is, why is a REST API needed? There are scenarios where
there is a database that is being shared by many applications and is possibly written in
different languages. Writing JPA DAO or using spring-data-mongodb is good enough for Java
clients but not for clients in other languages. Having APIs locally with the application doesn't
even give us a centralized way to access the database. This is where REST APIs come into
play. We can develop the server-side data access layer and the CRUD repository in Java—
spring-data-mongodb to be precise—and then expose it over a REST interface for a client
written in any language to invoke them. We not only invoke our API in a platform-independent
way, but also provide a single point of entry into our database.

Getting ready
Apart from the prerequisites of the spring-data-mongodb recipe, we have a few more
requirements for this recipe. The first thing is to download the SpringDataRestTest
project from the Packt website and import it to your IDE as a maven project. Alternatively, if
you do not wish to import to the IDE, you can run the server servicing the requests from the
command prompt, which we will see in the next section. There is no specific client application
used to perform the CRUD operations over REST. I will be demonstrating the concepts using
the Chrome browser and a special plugin of the Advanced REST Client browser to send HTTP
POST requests to the server. The tools can be found under the Developer Tools section of the
Chrome web store.

http://www.datanucleus.org/products/datanucleus/jdo/enhancer.html
http://www.datanucleus.org/products/datanucleus/jdo/enhancer.html
https://www.jcp.org/aboutJava/communityprocess/final/jsr338/index.html
https://www.jcp.org/aboutJava/communityprocess/final/jsr338/index.html

Open Source and Proprietary Tools

310

How to do it…
1.	 If you have imported the project in your IDE as a maven project, execute the com.

packtpub.mongo.cookbook.rest.RestServer class, which is the bootstrap
class and starts the server locally that would accept client connections.

2.	 If the project is to be executed from the command prompt as a maven project, go to
the root directory of the project and run the following:
mvn spring-boot:run

3.	 The following line on the command will be seen on the command prompt if all goes
well and the server has been started:
[INFO] Attaching agents: []

4.	 After starting the server in either way, enter http://localhost:8080/people
in the browser's address bar and we should see the following JSON response. This
response is seen because the underlying person collection is empty.
{
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/people{?page,size,sort}",
 "templated" : true
 },
 "search" : {
 "href" : "http://localhost:8080/people/search"
 }
 },
 "page" : {
 "size" : 20,
 "totalElements" : 0,
 "totalPages" : 0,
 "number" : 0
 }
}

5.	 We will now insert a new document in the person collection using an HTTP POST
request to http://localhost:8080/people. We will be sending a POST request
to the server using the Advanced REST Client Chrome extension. The document
posted is:
{"lastName":"Cruise", "firstName":"Tom", "age":52, "id":1}.

Chapter 9

311

The request's content type is application/json.

The following image shows the POST request sent to the server and the response
from the server:

6.	 We will now query this document from the browser using the _id field, which is 1 in
this case. Enter http://localhost:8080/people/1 in the browser's address
bar. You should see the document that we inserted in step 3.

7.	 Now that we have one document in the collection, (you can try to insert more
documents for people with different names and, more importantly, a unique ID.)
we will query the document using the last name. First, type the following URL in
the browser's address bar to view the entire search options available: http://
localhost:8080/people/search. We should see one search method,
findByLastName, that accepts a command line parameter, lastName.

8.	 To search by the last name, Cruise in our case, enter the following URL in
the browser's address bar: http://localhost:8080/people/search/
findByLastName?lastName=Cruise.

Open Source and Proprietary Tools

312

9.	 We will now update the last name and age of the person with the ID 1, Tom Cruise
for now. Let's update the last name to Hanks and the age to 58. To do this, we
will be using the HTTP PATCH request and the request will be sent to http://
localhost:8080/people/1, which uniquely identifies the document to update.
The body of the HTTP PATCH request is {"lastName":"Hanks", "age":58}.
Refer to the following image for the request that we sent out for an update:

10.	 To validate whether our update went through successfully or not (we know it
did as we got a response status 204 after the PATCH request), enter http://
localhost:8080/people/1 again in the browser's address bar.

11.	 Finally, we delete the document. This is straightforward, and we simply send a
DELETE request to http://localhost:8080/people/1. Once the DELETE
request is successful, send an HTTP GET request from the browser to http://
localhost:8080/people/1 and we should not get any document in return.

How it works…
We will not be reiterating the spring-data-mongodb concepts again in this recipe, but will look
at some of the annotations that we added specifically for the REST interface to the repository
class. The first one is on the top of the class name, as follows:

@RepositoryRestResource(path="people")
public interface PersonRepository extends PagingAndSortingRepository<P
erson, Integer> {

This is used to instruct the server that this CRUD repository can be accessed using the people
resource. This is the reason why we always make HTTP GET and POST requests on http://
localhost:8080/people/.

http://localhost:8080/people/
http://localhost:8080/people/

Chapter 9

313

The second annotation is in the findByLastName method. We have the following method
signature:

Person findByLastName(@Param("lastName") String lastName);

Here, the method's lastName parameter is annotated with the @Param annotation, which
is used to annotate the name of the parameter that will have the value of the lastName
parameter that will be passed while invoking this method on the repository. If we look at step
6 in the previous section, we can see that findByLastName is invoked using an HTTP GET
request, and the value of the URL lastName parameter is used as the string value passed
while invoking the repository method.

Our example here is pretty simple with just one parameter used for the search operation.
We can have multiple parameters for the repository method and an equal number of
parameters in the HTTP request that will be mapped to these parameters for the method
to be invoked on the CRUD repository. For some types, such as dates to be sent out, use the
@DateTimeFormat annotation, which will be used to specify the date and time format. Refer
to the spring Javadocs at http://docs.spring.io/spring/docs/current/javadoc-
api/ for more information on this annotation and its usage.

This was all about the GET request that we made to the REST interface to query and search
data. We initially created a document data sending an HTTP POST request to the server. To
create new documents, we would always be sending a POST request—with the document to
be created as the body of the request—to the URL identifying the REST endpoint, in our case,
http://localhost:8080/people/. All documents posted to this collection would be
making use of PersonRepository to persist Person in the corresponding collection.

Our final two steps were to update person and delete person. The HTTP request types to
perform these operations are PATCH and DELETE, respectively. In step 7, we updated the
document for the person Tom Cruise and updated his last name and age. To achieve this,
our PATCH request is sent to a URL identifying a specific person instance, which is http://
localhost:8080/people/1. Note that in case of creating a new person, our POST request
was always sent to http://localhost:8080/people, as against the PATCH and DELETE
requests, where we sent the HTTP request to a URL representing the specific person that we
want to update or delete. In the case of update, the body of the PATCH request is JSON whose
provided fields would replace the corresponding fields in the target document to update. All
the other fields would be left as is. In our case, lastName and the age of the target document
were updated and firstName was left untouched. In case of delete, the message body was
not empty, and the DELETE request itself indicates that the target to which the request was
sent should be deleted.

You can also send a PUT request instead of PATCH to a URL, identifying a specific person;
in which case, the entire document in the collection would get updated or replaced with the
document provided as part of the PUT request.

http://docs.spring.io/spring/docs/current/javadoc-api/
http://docs.spring.io/spring/docs/current/javadoc-api/

Open Source and Proprietary Tools

314

See also
The spring-data-rest home is at http://projects.spring.io/spring-data-rest/,
where you can find links to its Git repository, reference manual, and Javadocs URL.

Installing a GUI-based client, MongoVUE, for
MongoDB

In this recipe, we will look at a GUI-based client for MongoDB. Throughout the book, we have
used the mongo shell to perform various operations that we need. Its advantages are as follows:

ff It comes packaged with the MongoDB installation

ff Being lightweight, you don't need to worry about it taking up your system's resources

ff On servers where GUI-based interfaces are not present, shell is the only option to
connect, query, and administer the server instance

Having said this, if you are not on a server and want to connect to a database instance to
query, view the plan of a query, administer, and so on, it is nice to have a GUI with these
features to let you do things in the click of a button. As a developer, we always query our
relational database with a GUI-based thick client, so why not for MongoDB?

In this recipe, we will see how to install some features of a MongoDB client, MongoVUE. This
client is available only for Windows machines. This product has both a paid version (with
various levels of licensing per number of users) and free version that has some limitations.
For this recipe, we'll be looking at the free version.

Getting ready
For this recipe, the following steps are necessary:

1.	 Start a single instance of MongoDB server. The port on which the connections are
accepted will be the default one, 27017.

2.	 Import the following two collections from the command prompt after the mongod
server has started:
$ mongoimport --type json personTwo.json -c personTwo -d test –
drop

$ mongoimport --type csv -c postalCodes -d test pincodes.csv
--headerline –drop

http://projects.spring.io/spring-data-rest/

Chapter 9

315

How to do it…
1.	 Download the installer ZIP for the MongoVUE from http://www.mongovue.com/

downloads/. Once downloaded, it is a matter of a few clicks and the software gets
installed.

2.	 Open the installed application; as this is a free version, we will have all the features
available for the first 14 days, after which, some of the features will not be available.
The details of this can be seen at http://www.mongovue.com/purchase/.

3.	 The first thing that we will do is add a database connection:

�� Once the following window has opened, click on the (+) button to add a new
connection:

http://www.mongovue.com/downloads/
http://www.mongovue.com/downloads/
http://www.mongovue.com/purchase/

Open Source and Proprietary Tools

316

�� Once opened, we will get another window in which we will fill in the server
connection details. Fill in the following details in the new window and click on
Test. This should succeed if the connection works; finally, click on Save.

�� Once added, connect to the instance.

4.	 In the left navigation panel, we will see the instances added and the databases in
them, as shown in the following image:

Chapter 9

317

As we can see in the preceding image, hovering the mouse over the name of the
collection shows us the size and count of the documents in the collection.

5.	 Let's see how to query a collection and get all the documents. We will use the
postalCodes collection for our test. Right-click on the collection name, and click
on View. We will see the contents of the collection shown as either a Tree View, where
we can expand and see the contents, Table View, which shows the contents in a
tabular grid, and Text View, which shows the contents as normal JSON text.

6.	 Let's see what happens when we query a collection with nested documents;
personTwo is a collection with the following sample document in it:
{
 "_id" : 1,
 "_class" : "com.packtpub.mongo.cookbook.domain.Person2",
 "firstName" : "Steve",
 "lastName" : "Johnson",
 "age" : 30,
 "gender" : "Male",
 "residentialAddress" : {
 "addressLineOne" : "20, Central street",
 "city" : "Sydney",
 "state" : "NSW",
 "country" : "Australia"
 }
}

When we query to see all the documents in the collection, we see the following image:

The residentialAddress column shows that the value is a nested document with
the given number of fields present in it. Hovering your mouse over it shows the nested
document; alternatively, you can click on the column to show the contents in this
document again as a grid. Once the nested documents are shown, you can click on
the top of the grid to come back one level.

Open Source and Proprietary Tools

318

7.	 Let's see how to write queries to retrieve selected documents:

�� Right-click on the postalCodes collection, and click on Find. We will type
the following query in the {Find} textbox and the {Sort} field, and click on the
Find button to the right:

�� We can choose the type of view that we want from the tab, which is a
Tree View, Table View, or Text View. The plan of the query is also shown.
Whenever any operation is run, the Learn shell at the bottom shows the
actual Mongo query executed. In this case, we see the following:
[11:17:07 PM]

db.postalCodes.find({ "city" : /Mumbai/i }).limit(50);

db.postalCodes.find({ "city" : /Mumbai/i }).limit(50).
explain();

�� The plan of a query is also shown every time, and, as of the current version
1.6.9.0, there is no way to disable the showing of the query plan with the query.

8.	 In Tree View, right-clicking on a document will give you more options, such as expand
it, copy the JSON contents, add keys to this document, remove the document, and so
on. Try to remove a document from this collection using a right-click, and try adding
any additional keys to the document. You can choose to restore the documents by
reimporting the data from the postalCodes collection.

Chapter 9

319

9.	 To insert a document in the collection, perform the following. We will be inserting a
document in the personTwo collection:

�� Right-click on the personTwo collection name, and click on Insert/Import
Documents…, as shown in the following screenshot:

�� Another pop-up window will appear, where you can choose to enter a single
JSON document or valid text file with the JSON documents to be imported.
We imported the following document by importing a single document:
{
 "_id" : 4,
 "firstName" : "Jack",
 "lastName" : "Jones",
 "age" : 35,
 "gender" : "Male"
}

�� Query the collection once the document has been imported successfully; we
will view the newly imported document along with the old ones.

Open Source and Proprietary Tools

320

10.	 Let's see how to update the document:

�� You can either right-click on the collection name to the left and click Update,
or select the Update option at the top. In either case, we will see the
following window. Here, we will be updating the age of the person that we
inserted in the previous step:

�� Some things to note in this GUI are the query textbox on the left-hand side
to find the document to be updated and the update JSON on the right-hand
side, which will be applied to the selected document(s).

�� Before you update, you can choose to hit the Count button to see the
number of documents that can be updated (in this case, one). Clicking on
Find will show you the documents in the Tree form. On the right-hand side,
below the update JSON text, we have the option to update one document
and multiple documents by clicking on Update 1 or Update All.

�� You can choose an Upsert operation in case the documents for the given
Find condition are not found.

�� The radio buttons on the bottom right of the preceding screen shows either
the output of the getLastError operation or the result after the update, in
which case, a query will be executed to find the document(s) updated.

�� The find query, however, is not foolproof and might return different results
than those truly updated as a separate query, the same as in the Find
textbox. The update and find operations are not atomic.

11.	 We have queried on small collections so far. As the size of the collection increases,
queries performing full collection scans are not acceptable and we need to create
indexes as follows:

�� To create an index by lastName in ascending order and age in descending
order, we will invoke db.personTwo.ensureIndex({'lastName':1,
'age':-1}).

Chapter 9

321

�� Using MongoVUE, there is a way to visually create the same index by
right-clicking on the collection name on the left-hand side of the screen
and selecting Add Index….

�� In the new pop-up window, enter the name of the index and select the Visual
tab as shown. Select the lastName and age fields with ascending and
descending values, respectively:

�� Once these details are filled in, click on Create. This should create the index
for us by firing the ensureIndex command.

�� You can choose the index to be Unique and Drop Duplicates (which will
be enabled when unique is selected), or even create big, long, and running
index creations in the background.

�� Note the Json tab next to the Visual tab. This is the place where you can
type the ensureIndex command as you do in the shell in order to create
the index.

12.	 We will see how to drop an index:

�� Simply expand the tree on the left-hand side (as shown in the screen shot in
step 9)

�� On expanding the collection, we will see all the indexes created on it

Open Source and Proprietary Tools

322

�� Except for the default index on the _id field, all the other indexes can
be dropped

�� Simply right-click on the name and select Drop index to drop or click on
Properties to view its properties

13.	 After seeing how to do the basic CRUD operations and creating an index, let's look at
how to execute the aggregation operations:

�� There are no visual tools as in the index creation for aggregation but simply a
text area where we enter our aggregation pipeline

�� In the following sample, we perform aggregation on the postalCodes
collection to find the top five states by the number of times they appear in
the collection

�� We will have the following aggregation pipeline entered:
{'$project' : {'state':1, '_id':0}},
{'$group': {'_id':'$state', 'count':{'$sum':1}}},
{'$sort':{'count':-1}},
{'$limit':5}

�� Once the pipeline is entered, hit the Aggregate button to get the
aggregation results

14.	 Executing MapReduce is even cooler. The use case that we will be executing is similar
to the preceding one, but we will see how to implement a MapReduce operation using
MongoVUE:

�� To execute a map reduce job, right-click on the collection name in the
left-hand side menu, and click on Map Reduce.

Chapter 9

323

�� This option is right above the Aggregation option that we saw in the previous
image. This gives us a pretty neat GUI to enter the Map, Reduce, Finalize
and the In & Out, as shown in the following image:

�� The Map function is simply the following:
function Map() {
 emit(this.state, 1)
}

�� The Reduce function is the following:
function Reduce(key, values) {
 return Array.sum(values)
}

�� Leave the Finalize method unimplemented, and in the In & Out section,
fill in the following details:

�� Click on Go to start executing the MapReduce job.

Open Source and Proprietary Tools

324

�� We will print the output to the mongoVue_mr collection. Query the
mongoVue_mr collection using the following query:
db.mongoVue_mr.find().sort({value:-1}).limit(5)

�� Check the results against those that we got using aggregation.

�� The format of map reduce was chosen as Reduce. For more options and
their behavior, visit http://docs.mongodb.org/manual/reference/
command/mapReduce/#mapreduce-out-cmd.

15.	 Monitoring the server instances is now possible using MongoVUE:

�� To monitor an instance, click on Tools | Monitoring in the top menu.

�� By default, no server will be added, and we will have to click on + Add Server
to add a server instance.

�� Select the Local Instance added or any server that you want to monitor, and
click on Connect.

�� We will see quite a lot of monitoring details. MongoVUE uses the
db.serverStatus command to serve these stats and limit the frequency at
which we execute this command on busy server instances, we can choose the
Refresh Interval at the top of the screen, as shown in the following image:

http://docs.mongodb.org/manual/reference/command/mapReduce/#mapreduce-out-cmd
http://docs.mongodb.org/manual/reference/command/mapReduce/#mapreduce-out-cmd

Chapter 9

325

How it works…
What we covered in the previous sections was pretty straightforward for us to perform the
majority of our activities as a developer and administrator.

There's more…
Refer to Chapter 4, Administration and Chapter 6, Monitoring and Backups, for recipes on the
administration and monitoring of the MongoDB instances.

See also
ff Refer to http://www.mongovue.com/tutorials/ for various tutorials on

MongoVUE

While writing this book, MongoDB was planning to release a similar data
visualisation and manipulation product called Compass. You should
check it out https://www.mongodb.com/products/compass.

http://www.mongovue.com/tutorials/
https://www.mongodb.com/products/compass

327

Concepts for Reference

This appendix contains some additional information that will help you understand the recipes
better. We will discuss write concern and read preference in as much detail as possible.

Write concern and its significance
Write concern is the minimum guarantee that the MongoDB server provides with respect to
the write operation done by the client. There are various levels of write concern that are set by
the client application, to get a guarantee from the server that a certain stage will be reached
in the write process on the server side.

The stronger the requirement for a guarantee, the greater the time taken (potentially) to get a
response from the server. With write concern, we don't always need to get an acknowledgement
from the server about the write operation being completely successful. For some less crucial
data such as logs, we might be more interested in sending more writes per second over a
connection. On the other hand, when we are looking to update sensitive information, such as
customer details, we want to be sure of the write being successful (consistent and durable);
data integrity is crucial and takes precedence over the speed of the writes.

Concepts for Reference

328

An extremely useful feature of write concern is the ability to compromise between one of
the factors: the speed of write operations and the consistency of the data written, on a
case-to-case basis. However, it needs a deep understanding of the implications of setting
up a particular write concern. The following diagram runs from the left and goes to the right,
and shows the increasing level of write guarantees:

Client

Write

operation

Response

Write operation

Response

Network

Journal

I II III IV

Write data

to journal

Write data

to drive
Drive

(Disk / SSD)

Mongo

driver

Mongo

primary

instance

{w: -1}

&

{w: 0}

{w: 1} {j: true} {fsync: true}

As we move from I to IV, the guarantee for the performed write gets stronger and stronger,
but the time taken to execute the write operation is longer from a client's perspective. All write
concerns are expressed here as JSON objects, using three different keys, namely, w, j, and
fsync. Additionally, another key called wtimeout is used to provide timeout values for the
write operation. Let's see the three keys in detail:

ff w: This is used to indicate whether to wait for the server's acknowledgement or not,
whether to report write errors due to data issues or not, and about the data being
replicated to secondary. Its value is usually a number and a special case where the
value can be majority, which we will see later.

ff j: This is related to journaling and its value can be a Boolean (true/false or 1/0).

ff fsync: This is a Boolean value and is related to whether the write should wait till
the data is flushed to disk or not before responding.

ff wtimeout: This specifies the timeout for write operations, whereby the driver throws
an exception to the client if the server doesn't respond back in seconds within the
provided time. We will see the option in some detail soon.

Appendix

329

In part I, which we have demarcated till driver, we have two write concerns, namely, {w:-1} and
{w:0}. Both these write concerns are common, in a sense that they neither wait for the server's
acknowledgement upon receiving the write operation, nor do they report any exception on the
server side caused by unique index violation. The client will get an ok response and will discover
the write failure only when they query the database at some later point of time and find the data
missing. The difference is in the way both these respond on the network error. When we set
{w:-1}, the operation doesn't fail and a write response is received by the user. However, it will
contain a response stating that a network error prevented the write operation from succeeding
and no retries for write must be attempted. On the other hand, with {w:0}, if a network error
occurs, the driver might choose to retry the operation and throw an exception to the client if the
write fails due to network error. Both these write concerns give a quick response back to the
invoking client at the cost of data consistency. These write concerns are ok for use cases such
as logging, where occasional log write misses are fine. In older versions of MongoDB, {w:0}
was the default write concern if none was mentioned by the invoking client. At the time of writing
this book, this has changed to {w:1} by default and the option {w:0} is deprecated.

In part II of the diagram, which falls between the driver and the server, the write concern we
are talking about is {w:1}. The driver waits for an acknowledgement from the server for the
write operation to complete. Note that the server responding doesn't mean that the write
operation was made durable. It means that the change just got updated into the memory,
all the constraints were checked, and any exception will be reported to the client, unlike
the previous two write concerns we saw. This is a relatively safe write concern mode, which
will be fast, but there is still a slim chance of the data being lost if it crashes in those few
milliseconds when the data was written to the journal from the memory. For most use
cases, this is a good option to set. Hence, this is the default write concern mode.

Moving on, we come to part III of the diagram, which is from the entry point into the server as
far as the journal. The write concern we are looking for here is at {j:1} or {j:true}. This
write concern ensures a response to the invoking client only when the write operation is written
to the journal. What is a journal though? This is something that we saw in depth in Chapter 4,
Administration, but for now, we will just look at a mechanism that ensures that the writes are
made durable and the data on the disk doesn't get corrupted in the event of server crashes.

Finally, let's come to part IV of the diagram; the write concern we are talking about is
{fsync:true}. This requires that the data be flushed to disk to get before sending the
response back to the client. In my opinion, when journaling is enabled, this operation doesn't
really add any value, as journaling ensures data persistence even on server crash. Only when
journaling is disabled does this option ensure that the write operation is successful when the
client receives a success response. If the data is really important, journaling should never be
disabled in the first place as it also ensures that the data on the disk doesn't get corrupted.

Concepts for Reference

330

We have seen some basic write concerns for a single-node server or those relevant to the
primary node only in a replica set.

An interesting thing to discuss is, what if we have a write concern such
as {w:0, j:true}? We do not wait for the server's acknowledgement
and also ensure that the write has been made to the journal. In this
case, journaling flag takes precedence and the client waits for the
acknowledgement of the write operation. One should avoid setting such
ambiguous write concerns to avoid unpleasant surprises.

We will now talk about write concern when it involves secondary nodes of a replica set as well.
Let's take a look at the following diagram:

Client

Network

Mongo

driver

Primary

node

Write

Result

Secondary

Acknowledge

Propagate write

Acknowledge

SecondaryPropagate

write

Any write concern with a w value greater than one indicates that secondary nodes too need
to acknowledge before sending a response back. As seen in the preceding diagram, when a
primary node gets a write operation, it propagates that operation to all secondary nodes. As
soon as it gets a response from a predetermined number of secondary nodes, it acknowledges
the client that the write has been successful. For example, when we have a write concern
{w:3}, it means that the client should be sent a response only when three nodes in the cluster
acknowledge the write. These three nodes include the primary node. Hence, it is now down to
two secondary nodes to respond back for a successful write operation.

Appendix

331

However, there is a problem with providing a number for the write concern. We need to know
the number of nodes in the cluster and accordingly set the value of w. A low value will send an
acknowledgement to a few nodes replicating the data. A value too high may unnecessarily slow
the response back to the client, or in some cases, might not send a response at all. Suppose
you have a three-node replica set and we have {w:4} as the write concern, the server will not
send an acknowledgement till the data is replicated to three secondary nodes, which do not
exist as we have just two secondary nodes. Thus, the client waits for a very long time to hear
from the server about the write operation. There are a couple of ways to address this problem:

ff Use the wtimeout key and specify the timeout for the write concern. This will ensure
that a write operation will not block for longer than the time specified (in milliseconds)
for the wtimeout field of the write concern. For example, {w:3, wtimeout:10000}
ensures that the write operation will not block more than 10 seconds (10,000 ms),
after which an exception will be thrown to the client. In the case of Java, a
WriteConcernException will be thrown with the root cause message stating the
reason as timeout. Note that this exception does not rollback the write operation. It just
informs the client that the operation did not get completed in the specified amount of
time. It might later be completed on the server side, some time after the client receives
the timeout exception. It is up to the application program to deal with the exception
and programmatically take the corrective steps. The message for the timeout exception
does convey some interesting details, which we will see on executing the test program
for the write concern.

ff A better way to specify the value of w, in the case of replica sets, is by specifying
the value as majority. This write concern automatically identifies the number
of nodes in a replica set and sends an acknowledgement back to the client when
the data is replicated to a majority of nodes. For example, if the write concern is
{w:"majority"} and the number of nodes in a replica set is three, then majority
will be 2. Whereas, at the later point in time, when we change the number of nodes
to five, the majority will be 3 nodes. The number of nodes to form a majority
automatically gets computed when the write concern's value is given as majority.

Now, let us put the concepts we discussed into use and execute a test program that will
demonstrate some of the concepts we just saw.

Setting up a replica set
To set up a replica set, you should know how to start the basic replica set with three nodes.
Refer to the Starting multiple instances as part of a replica set recipe in Chapter 1, Installing
and Starting the Server. This recipe is built on that recipe because it needs an additional
configuration while starting the replica set, which we will discuss in the next section. Note that
the replica used here has a slight change in configuration to the one you have used earlier.

Concepts for Reference

332

Here, we will use a Java program to demonstrate various write concerns and their behavior.
The Connecting to a single node using a Java client recipe in Chapter 1, Installing and Starting
the Server, should be visited until Maven is set up. This can be a bit inconvenient if you are
coming from a non-Java background.

The Java project named Mongo Java is available for download at the
book's website. If the setup is complete, you can test the project just by
executing the following command:
mvn compile exec:java
-Dexec.mainClass=com.packtpub.mongo.cookbook.
FirstMongoClient

The code for this project is available for download at the book's website.
Download the project named WriteConcernTest and keep it on a
local drive ready for execution.

So, let's get started:

1.	 Prepare the following configuration file for the replica set. This is identical to the config
file that we saw in the Starting multiple instances as part of a replica set recipe in
Chapter 1, Installing and Starting the Server, where we set up the replica set, as
follows, with just one difference, slaveDelay:5, priority:0:
cfg = {

 _id:'repSetTest',

 members:[

 {_id:0, host:'localhost:27000'},

 {_id:1, host:'localhost:27001'},

 {_id:2, host:'localhost:27002', slaveDelay:5, priority:0}

]

}

2.	 Use this config to start a three-node replica set, with one node listening to port
27000. The others can be any ports of your choice, but stick to 27001 and 27002 if
possible (we need to update the config accordingly if we decide to use a different port
number). Also, remember to set the name of the replica set as replSetTest for the
replSet command-line option while starting the replica set. Give some time to the
replica set to come up before going ahead with next step.

3.	 At this point, the replica set with the earlier mentioned specifications should be up
and running. We will now execute the test code provided in Java, to observe some
interesting facts and behaviors of different write concerns. Note that this program
also tries to connect to a port where no Mongo process is listening for connections.
The port chosen is 20000; ensure that before running the code, no server is up and
running and listening to port 20000.

Appendix

333

4.	 Go to the root directory of the WriteConcernTest project and execute the
following command:
mvn compile exec:java
-Dexec.mainClass=com.packtpub.mongo.cookbook.WriteConcernTests

It should take some time to execute completely, depending on your hardware
configuration. Roughly around 35 to 40 seconds were taken on my machine, which
has a spinning disk drive with a 7200 RPM.

Before we continue analyzing the logs, let us see what those two additional fields added to
the config file to set up the replica were. The slaveDelay field indicates that the particular
slave (the one listening on port 27002 in this case) will lag behind the primary by 5 seconds.
That is, the data being replicated currently on this replica node will be the one that was added
on to the primary 5 seconds ago. Secondly, this node can never be a primary and hence,
the priority field has to be added with the value 0. We have already seen this in detail in
Chapter 4, Administration.

Let us now analyze the output from the preceding command's execution. The Java class
provided need not be looked at here; the output on the console is sufficient. Some of the
relevant portions of the output console are as follows:

[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ mongo-cookbook-
wctest ---

Trying to connect to server running on port 20000

Trying to write data in the collection with write concern {w:-1}

Error returned in the WriteResult is NETWORK ERROR

Trying to write data in the collection with write concern {w:0}

Caught MongoException.Network trying to write to collection, message is
Write operation to server localhost/127.0.0.1:20000 failed on database
test

Connected to replica set with one node listening on port 27000 locally

Inserting duplicate keys with {w:0}

No exception caught while inserting data with duplicate _id

Now inserting the same data with {w:1}

Caught Duplicate Exception, exception message is { "serverUsed" :
"localhost/127.0.0.1:27000" , "err" : "E11000 duplicate key error index:
test.writeConcernTest.$_id_ dup key: { : \"a\" }" , "code" : 11000 , "n"
: 0 , "lastOp" : { "$ts" :1386009990 , "$inc" : 2} , "connectionId" : 157
, "ok" : 1.0}

Average running time with WriteConcern {w:1, fsync:false, j:false} is 0 ms

Average running time with WriteConcern {w:2, fsync:false, j:false} is 12
ms

Average running time with WriteConcern {w:1, fsync:false, j:true} is 40 ms

Concepts for Reference

334

Average running time with WriteConcern {w:1, fsync:true, j:false} is 44 ms

Average running time with WriteConcern {w:3, fsync:false, j:false} is 5128
ms

Caught WriteConcern exception for {w:5}, with following message {
"serverUsed" : "localhost/127.0.0.1:27000" , "n" : 0 , "lastOp" : {
"$ts" : 1386009991 , "$inc" : 18} , "connectionId" : 157 , "wtimeout"
: true , "waited" : 1004 , "writtenTo" : [{ "_id" : 0 , "host" :
"localhost:27000"} , { "_id" : 1 , "host" : "localhost:27001"}] , "err" :
"timeout" , "ok" : 1.0}

 [INFO] --

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 36.671s

[INFO] Finished at: Tue Dec 03 00:16:57 IST 2013

[INFO] Final Memory: 13M/33M

[INFO] ---

The first statement in the log states that we try to connect to a Mongo process listening on
port 20000. As there should not be a Mongo server running and listening to this port for client
connections, all our write operations to this server should not succeed, and this will now give
us a chance to see what happens when we use the write concerns {w:-1} and {w:0} and
write to this nonexistent server.

The next two lines in the output show that when we have the write concern {w:-1}, we do
get a write result back, but it contains the error flag set to indicate a network error. However,
no exception is thrown. In the case of the write concern {w:0}, we do get an exception in the
client application for any network errors. Of course, all other write concerns ensuring a strict
guarantee will throw an exception in this case too.

Now we come to the portion of the code that connects to the replica set where one of the nodes
is listening to port 27000 (if not, the code will show the error on the console and terminate).
Now, we attempt to insert a document with a duplicate _id field ({'_id':'a'}) into a
collection, once with the write concern {w:0} and once with {w:1}. As we see in the console,
the former ({w:0}) didn't throw an exception and the insert went through successfully from the
client's perspective, whereas the latter ({w:1}) threw an exception to the client, indicating a
duplicate key. The exception contains a lot of information about the server's hostname and port,
at the time when the exception occurred: the field for which the unique constraint failed; the
client connection ID; error code; and the value that was not unique and caused the exception.
The fact is that, even when the insert was performed using {w:0} as the write concern, it failed.
However, as the driver didn't wait for the server's acknowledgement, it was never communicated
about the failure.

Appendix

335

Moving on, we now try to compute the time taken for the write operation to complete. The time
shown here is the average of the time taken to execute the same operation with a given write
concern five times. Note that these times will vary on different instances of execution of the
program, and this method is just meant to give some rough estimates for our study. We can
conclude from the output that the time taken for the write concern {w:1} is less than that
of {w:2} (asking for an acknowledgement from one secondary node) and the time taken for
{w:2} is less than {j:true}, which in turn is less than {fsync:true}. The next line of the
output shows us that the average time taken for the write operation to complete is roughly 5
seconds when the write concern is {w:3}. Any guesses on why that is the case? Why does it
take so long? The reason is, when w is 3, we send an acknowledgement to the client only when
two secondary nodes acknowledge the write operation. In our case, one of the nodes is delayed
from the primary by about 5 seconds, and thus, it can acknowledge the write only after 5
seconds, and hence, the client receives a response from the server in roughly 5 seconds.

Let us do a quick exercise here. What do you'll think would be the approximate response time
when we have the write concern as {w:'majority'}? The hint here is, for a replica set of
three nodes, two is the majority.

Finally we see a timeout exception. Timeout is set using the wtimeout field of the document
and is specified in milliseconds. In our case, we gave a timeout of 1000 ms, that is 1 second,
and the number of nodes in the replica set to get an acknowledgement from before sending
the response back to the client is 5 (four secondary instances). Thus, we have the write
concern as {w:5, wtimeout:1000}. As our maximum number of nodes is three, the
operation with the value of w set to 5 will wait for a very long time until two more secondary
instances are added to the cluster. With the timeout set, the client returns and throws an
error to the client, conveying some interesting details. The following is the JSON sent as an
exception message:

{ "serverUsed" : "localhost/127.0.0.1:27000" , "n" : 0 , "lastOp" : {
"$ts" : 1386015030 , "$inc" : 1} , "connectionId" : 507 , "wtimeout"
: true , "waited" : 1000 , "writtenTo" : [{ "_id" : 0 , "host" :
"localhost:27000"} , { "_id" : 1 , "host" : "localhost:27001"}] , "err" :
"timeout" , "ok" : 1.0}

Let us look at the interesting fields. We start with the n field. This indicates the number
of documents updated. As in this case it is an insert and not an update, it stays 0. The
wtimeout and waited fields tell us whether the transaction did timeout and the amount of
time for which the client waited for a response; in this case 1000 ms. The most interesting
field is writtenTo. In this case, the insert was successful on these two nodes of the replica
set when the operation timed out, and hence, it is seen in the array. The third node has a
slaveDelay value of 5 seconds and, hence, the data is still not written to it. This proves that
the timeout doesn't roll back the insert and it does go through successfully. In fact, the node
with slaveDelay will also have the data after 5 seconds, even if the operation times out,
and this makes perfect sense as it keeps the primary and secondary instances in sync. It is
the responsibility of the application to detect such timeouts and handle them.

Concepts for Reference

336

Read preference for querying
In the previous section, we saw what a write concern is and how it affects the write operations
(insert, update, and delete). In this section, we will see what a read preference is and how it
affects query operations. We'll discuss how to use a read preference in separate recipes, to
use specific programming language drivers.

When connected to an individual node, query operations will be allowed by default when
connected to a primary, and in case if it is connected to a secondary node, we need to
explicitly state that it is ok to query from secondary instances by executing rs.slaveOk()
from the shell.

However, consider connecting to a Mongo replica set from an application. It will connect to
the replica set and not a single instance from the application. Depending on the nature of
the application, it might always want to connect to a primary; always to a secondary; prefer
connecting to a primary node but would be ok to connect to a secondary node in some
scenarios and vice versa and finally, it might connect to the instance geographically close
to it (well, most of the time).

Thus, the read preference plays an important role when connected to a replica set and not
to a single instance. In the following table, we will see the various read preferences that are
available and what their behavior is in terms of querying a replica set. There are five of them
and the names are self-explanatory:

Read preference Description
primary This is the default mode and it allows queries to be executed only

on primary instances. It is the only mode that guarantees the most
recent data, as all writes have to go through a primary instance.
Read operations however will fail if no primary is available, which
happens for a few moments when a primary goes down and
continues till a new primary is chosen.

primaryPreferred This is identical to the preceding primary read preference, except
that during a failover, when no primary is available, it will read data
from the secondary and those are the times when it possibly doesn't
read the most recent data.

secondary This is exactly the opposite to the default primary read preference.
This mode ensures that read operations never go to a primary and
a secondary is chosen always. The chances of reading inconsistent
data that is not updated to the latest write operation are maximal in
this mode. It, however, is ok (in fact, preferred) for applications that
do not face end users and are used for some instances to get hourly
statistics and analytics jobs used for in-house monitoring, where
the accuracy of the data is least important, but not adding a load to
the primary instance is key. If no secondary instance is available or
reachable, and only a primary instance is, the read operation will fail.

Appendix

337

Read preference Description
secondaryPreferred This is similar to the preceding secondary read preference, in all

aspects except that if no secondary is available, the read operations
will go to the primary instance.

nearest This, unlike all the preceding read preferences, can connect
either to a primary or a secondary. The primary objective for this
read preference is minimum latency between the client and an
instance of a replica set. In the majority of the cases, owing to
the network latency and with a similar network between the
client and all instances, the instance chosen will be one that is
geographically close.

Similar to how write concerns can be coupled with shard tags, read preferences can also be
used along with shard tags. As the concept of tags has already been introduced in Chapter 4,
Administration, you can refer to it for more details.

We just saw what the different types of read preferences are (except for those using tags) but
the question is, how do we use them? We have covered Python and Java clients in this book
and will see how to use them in their respective recipes. We can set read preferences at
various levels: at the client level, collection level, and query level, with the one specified at
the query level overriding any other read preference set previously.

Let us see what the nearest read preference means. Conceptually, it can be visualized as
something like the following diagram:

Primary Secondary

Replica set

Application

Secondary

Application

Data Center I Data Center II

Driver

Public network

Concepts for Reference

338

A Mongo replica set is set up with one secondary, which can never be a primary, in a
separate data center and two (one primary and a secondary) in another data center. An
identical application deployed in both the data centers, with a primary read preference, will
always connect to the primary instance in Data Center I. This means, for the application in
Data Center II, the traffic goes over the public network, which will have high latency. However,
if the application is ok with slightly stale data, it can set the read preference as the nearest,
which will automatically let the application in Data Center I connect to an instance in Data
Center I and will allow an application in Data Center II to connect to the secondary instance
in Data Center II.

But then the next question is, how does the driver know which one is the nearest? The term
"geographically close" is misleading; it is actually the one with the minimum network latency.
The instance we query might be geographically further than another instance in the replica
set, but it can be chosen just because it has an acceptable response time. Generally, better
response time means geographically closer.

The following section is for those interested in internal details from the driver on how the
nearest node is chosen. If you are happy with just the concepts and not the internal details,
you can safely skip the rest of the contents.

Knowing the internals
Let us see some pieces of code from a Java client (driver 2.11.3 is used for this purpose) and
make some sense out of it. If we look at the com.mongodb.TaggableReadPreference.
NearestReadPreference.getNode method, we see the following implementation:

@Override
ReplicaSetStatus.ReplicaSetNode getNode(ReplicaSetStatus.ReplicaSet
set) {
 if (_tags.isEmpty())
 return set.getAMember();

 for (DBObject curTagSet : _tags) {
 List<ReplicaSetStatus.Tag> tagList = getTagListFromDBObject(curTa
gSet);
 ReplicaSetStatus.ReplicaSetNode node = set.getAMember(tagList);
 if (node != null) {
 return node;
 }
 }
 return null;
}

For now, if we ignore the contents where tags are specified, all it does is execute
set.getAMember().

Appendix

339

The name of this method tells us that there is a set of replica set members and we returned
one of them randomly. Then what decides whether the set contains a member or not? If we
dig a bit further into this method, we see the following lines of code in the com.mongodb.
ReplicaSetStatus.ReplicaSet class:

public ReplicaSetNode getAMember() {

 checkStatus();

 if (acceptableMembers.isEmpty()) {

 return null;

 }

 return acceptableMembers.get(random.nextInt(acceptableMembers.
size()));

}

Ok, so all it does is pick one from a list of replica set nodes maintained internally. Now, the
random pick can be a secondary, even if a primary can be chosen (because it is present in the
list). Thus, we can now say that when the nearest is chosen as a read preference, and even if
a primary is in the list of contenders, it might not necessarily be chosen randomly.

The question now is, how is the acceptableMembers list initialized? We see it is done in the
constructor of the com.mongodb.ReplicaSetStatus.ReplicaSet class as follows:

this.acceptableMembers =
 Collections.unmodifiableList(calculateGoodMembers(all,
 calculateBestPingTime(all, true),
 acceptableLatencyMS, true));

The calculateBestPingTime line just finds the best ping time of all (we will see what this
ping time is later).

Another parameter worth mentioning is acceptableLatencyMS. This gets initialized in
com.mongodb.ReplicaSetStatus.Updater (this is actually a background thread that
updates the status of the replica set continuously), and the value for acceptableLatencyMS
is initialized as follows:

slaveAcceptableLatencyMS = Integer.parseInt(System.getProperty("com.
mongodb.slaveAcceptableLatencyMS", "15"));

As we can see, this code searches for the system variable called com.mongodb.
slaveAcceptableLatencyMS, and if none is found, it initializes to the value 15,
which is 15 ms.

Concepts for Reference

340

This com.mongodb.ReplicaSetStatus.Updater class also has a run method that
periodically updates the replica set stats. Without getting too much into it, we can see that
it calls updateAll, which eventually reaches the update method in com.mongodb.
ConnectionStatus.UpdatableNode:

long start = System.nanoTime();
CommandResult res = _port.runCommand(_mongo.getDB("admin"),
isMasterCmd);
long end = System.nanoTime()

All it does is execute the {isMaster:1} command and record the response time in
nanoseconds. This response time is converted to milliseconds and stored as the ping time.
So, coming back to the com.mongodb.ReplicaSetStatus.ReplicaSet class it stores,
all calculateGoodMembers does is find and add the members of a replica set that are
no more than acceptableLatencyMS milliseconds more than the best ping time found
in the replica set.

For example, in a replica set with three nodes, the ping times from the client to the three nodes
(node 1, node 2, and node 3) are 2 ms, 5 ms, and 150 ms respectively. As we see, the best time
is 2 ms and hence, node 1 goes into the set of good members. Now, from the remaining nodes,
all those with a latency that is no more than acceptableLatencyMS more than the best,
which is 2 + 15 ms = 17 ms, as 15 ms is the default that will be considered. Thus, node 2 is
also a contender, leaving out node 3. We now have two nodes in the list of good members
(good in terms of latency).

Now, putting together all that we saw on how it would work for the scenario we saw in the
preceding diagram, the least response time will be from one of the instances in the same data
center (from the programming language driver's perspective in these two data centers), as the
instance(s) in other data centers might not respond within 15 ms (the default acceptable value)
more than the best response time due to public network latency. Thus, the acceptable nodes
in Data Center I will be two of the replica set nodes in that data center, and one of them will be
chosen at random, and for Data Center II, only one instance is present and is the only option.
Hence, it will be chosen by the application running in that data center.

341

Index
Symbols
$text operator

reference link 201
@DateTimeFormat annotation

reference link 313
using 313

A
aggregation

implementing, with Java client 88, 89
implementing, with PyMongo 76, 77

alerts
setting up, on MMS 217-226

Amazon EC2
MongoDB, setting up 258-264
URL 259

Amazon Elastic Map Reduce (Amazon EMR)
about 284
MapReduce job, running 284-290
URL 284

Amazon Machine Image (AMI)
about 258
URL 258

Amazon Simple Storage Service (Amazon S3)
URL 284

Amazon Web Services (AWS)
about 232, 248
URL 259

Apache Hadoop
URL 270

atomic counters
implementing 162, 163

atomic find operation
performing 160-162

atomic modify operation
performing 160-162

B
background index

creating 51-54
binary data

storing 171, 172
built-in user roles

URL 124

C
capped collection

cursors, creating 166-168
cursors, tailing 166-168
normal collection, converting 169, 170

cloud computing
reference link 248

collection
manual splitting 152, 153
migrating 152, 153
modifying, collMod command used 127, 128
renaming 94-96
stats, viewing 96-99

command-line options
--config or -f 4
--configsvr 5

342

--dbpath 5
--dirctoryperdb 6
--help or -h 4, 9
--host 9
--logappend 4
--logpath 4
--oplogSize 5
--password or -p 10
--port 4, 9
--quiet 4
--replSet 5
--shardsvr 5
--shell 9
--smallfiles 5
--storageEngine 6
--username or -u 10
--verbose or -v 4
used, for starting single node instance 3-6

config database
exploring, in sharded setup 156-158

connector options, Mongo
-d option 207
--fields option 207
-m option 206
-n option 206
-t option 206

covered indexes
using 49, 50

custom user roles
URL 124

D
data

restoring, with mongorestore utility 229-232
storing, to GridFS from Java client 176-178
storing, to GridFS from Python client 180-182

data backup
with mongodump utility 230-232

database stats
viewing 99-102

Data Center I 338, 340

Data Center II 338, 340
default shard

configuring, for non-sharded
collections 149-151

delete operations
executing, with Java client 83-87
executing, with PyMongo 69-75

Docker containers
URL 267
used, for setting up MongoDB 264-267

documents
expiring, with index 58-61
expiring, with TTL index 61, 62
padding, manually 102-104

domain-driven sharding
with tags 154-156

driver 64

E
Elastic Block Store (EBS) 259
Elasticsearch

Mongo DB, integrating for full text
search 201-207

URL 202
executing operations

killing 110-115
obtaining 110-115

F
findAndModify operation, parameters

fields 86
remove 86
returnNew 86
sort 86
update 86
upsert 86

flat plane 2D geospatial queries
performing, with geospatial indexes 188-190

foreground index
creating 51-54

343

full text search
implementing 196-201
Mongo DB, integrating with

Elasticsearch 201-207
reference link 200

G
GeoJSON compliant data

spherical indexes 191-196
geospatial indexes

used, for performing flat plane 2D geospatial
queries 188-190

Git
URL 270

Glance
about 176
reference link 176

Google Authenticator
URL 250

GridFS
about 171
data, storing from Java client 176-179
data, storing from Python client 180-182
used, for storing large data 172-176

GUI-based client
installing 314-325

H
Hadoop

about 269
MapReduce job, running on 280-283
MapReduce job, writing 277-279
URL 271

I
index

covered indexes, using 49, 50
creating 45-47
documents, expiring 58-61
pitfalls, of index creation 51
using 48

Infrastructure as a Service (IaaS) 176
insert operations

executing, with Java client 80-83
executing, with PyMongo 64-68

interprocess security
about 125
setting 125-127

IO operations per second (IOPS) 259

J
Java client

data, storing to GridFS 176-179
delete operations, executing 83-87
replica set connection, for

inserting data 24-28
replica set connection, for querying

data 24-28
update operations, executing 83-87
used, for executing insert operations 80-83
used, for executing MapReduce 90-92
used, for executing query 80-83
used, for implementing aggregation 88, 89
used, for performing single node

connection 10-14
JavaScript

single node connection, performing 7-9
JDK

URL 10
JIRA

URL 221
JPA

about 293
reference link 309
used, for accessing MongoDB 306-308

L
large data

storing, GridFS used 172-176
local database

exploring, of replica set 138-140

344

M
MapReduce

executing, with Java client 90-92
executing, with PyMongo 77-79
reference link 270

MapReduce job
executing, mongo-hadoop connector

used 270-276
running, on Amazon EMR 284-290
running on Hadoop, streaming used 280-283

Maven
URL 10

MMS Backup service
backups, managing 239-245
configuring 232-239
reference link 232

MMS console
groups, managing 214-217
users, managing 214-217

mongo-connector
installing 203
reference link 206
URL 202

MongoDB
accessing, JPA used 306-308
accessing, over REST 309-313
integrating with Elasticsearch, for full text

search 201-207
interprocess security 125-127
operations, performing from

MongoLab 254-258
setting up, as windows service 128-130
setting up, Docker containers used 264-267
setting up, on Amazon EC2 258-264
URL 270
users, setting up 120-124

mongodump utility
--authenticationDatabase option 230
-c or --collection option 231
--dbpath option 231
-d or --db option 230
--help option 230

-h or --host option 230
-o or --out option 231
--oplog option 231
-p or --password option 230
--port option 230
-u or --username option 230
used, for data backup 229-232

mongo-hadoop connector
used, for executing MapReduce job 270-276

mongoimport utility, options
-c 40
-d 40
--drop 40
--headerline 40
--type 40

MongoLab
account, managing 248-250
account, setting up 248-250
operations, performing on

MongoDB 254-258
sandbox MongoDB instance,

setting up 250-254
URL 248

Mongo Monitoring Service (MMS)
about 209
alerts, setting up 217-226
instances, monitoring 217-226
monitoring alerts, setting up 227-229
setting up 210-213
URL 210

mongorestore utility
--dbpath option
--drop option 231
--oplogLimit option 232
--oplogReplay option 231
used, for restoring data 229-232

Mongo shell
background index, creating 51-54
foreground index, creating 51-54
pagination, performing 41-43
projections, performing 41-43
queries, performing 41-43
single node, connecting to 7-9

345

test data, deleting 43-45
test data, updating 43-45

mongostat utilities
about 105
using 105-109

MongoTemplate class
findAllAndRemove method 303
findAndModify method 303
findAndRemove method 303
remove method 302
save method 302
updateMulti method 302, 303

mongotop utilities
about 105
using 105-109

MongoVUE
installing 314-325
URL 315

monitoring alerts
setting up, in MMS 227-229

N
non-sharded collections

default shard, configuring 149-151
normal collection

converting, to capped collection 169, 170

O
Object Relational Mapping (ORM) 307
openssl

URL 125
oplog

about 140
analyzing 140-144
used, for implementing triggers 183-187

P
pagination

performing 41-43

PersonRepositoryTwo repository class
findByAgeBetween method 299
findByAgeGreaterThanEqual method 299
findByAgeGreaterThan method 299
findByFirstNameAndCountry method 301
findByResidentialAddressCountry

method 300
findPeopleByLastNameLike method 300

pip
URL 202

primary shard 151
profiler to profile operations

using 116-119
projections

performing 41-43
Proof of Concept (POC) 176
Putty

URL 259
using 259

PyMongo
aggregation, implementing 76, 77
delete operations, executing 69-75
insert operations, executing 64-68
MapReduce, executing 77-79
query, executing 64-68
update operations, executing 69-75

Python client
data, storing to GridFS 180-182
replica set connection,

for inserting data 28-30
replica set connection,

for querying data 28-30
used, for performing single node

connection 15-17

Q
queries

executing, with Java client 80-83
executing, with PyMongo 64-68
execution time, improving 47
performing 41-43
plan, analyzing 47
plans, viewing 45-47

346

R
read preference

about 336-338
for querying 336
internals 338-340
nearest 337
primary 336
primaryPreferred 336
secondary 336
secondaryPreferred 337

replica set
as arbiter 135
buildIndexes option 137
configuring 130-135
connecting from Java client,

for inserting data 24-28
connecting from Java client,

for querying data 24-28
connecting from shell,

for inserting data 22-24
connecting from shell,

for querying data 22-24
connecting with Python client, for inserting

data 28-30
connecting with Python client, for querying

data 28-30
elections 131, 132
hidden 136, 137
local database, exploring 138-140
multiple instances, starting 17-22
priority 135
setting up 331-335
slaveDelay option 136
stepping down 137, 138

REST
MongoDB, accessing 309-313

rivers
about 207
URL 207

S
sandbox MongoDB instance

setting up, on MongoLab 250-254
server-side scripts

implementing 164-166
sharded environment

starting 30-34
shards

connecting to, from shell 35-38
operations, performing 35-38

single node connection
performing, from Mongo shell with

JavaScript 7-9
performing, Java client used 10-14
performing, Python client used 15-17

single node instance
starting, command-line options used 3-6

single node MongoDB
installing 2
installing, with options from config file 6, 7

sparse indexes
creating 55-58

spherical indexes
performing, on GeoJSON

compliant data 191-196
spring-data-mongodb

reference link 305
using 294-305

streaming
reference link 280
used, for running MapReduce job on

Hadoop 280-283

T
tagged replica sets

building 144-148
read preference 149
write concern, defining 148, 149

347

tags
used, for domain-driven sharding 154-156

test data
creating 39-41
deleting 43-45
updating 43-45

triggers
implementing, oplog used 183-187

TTL index
used, for expiring documents 61, 62

U
update operations

executing, with Java client 83-87
executing, with PyMongo 69-75

users
setting up, in Mongo 120-124

V
VirtualBox

URL 270

W
windows service

MongoDB, setting up 128-130
write concern

about 327
fsync key 328
j key 328
replica set, setting up 331-335
significance 327-331
w key 328
wtimeout option 328

Thank you for buying

MongoDB Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Web Development with
MongoDB and NodeJS
Second Edition
ISBN: 978-1-78528-752-7 Paperback: 300 pages

Build an interactive and full-featured web application
from scratch using Node.js and MongoDB

1.	 Configure your development environment to use
Node.js and MongoDB.

2.	 Use Node.js to connect to a MongoDB database
and perform data manipulations.

3.	 A practical guide with clear instructions to design
and develop a complete web application from
start to finish.

MongoDB for Java Developers
ISBN: 978-1-78528-027-6 Paperback: 192 pages

Design, build, and deliver efficient Java applications
using the most advanced NoSQL database

1.	 Reuse the skills you have acquired through
Hibernate or Spring to promote your applications
to use NoSQL storage.

2.	 Explore the list of libraries that are already
available to assist you in developing Java EE
applications with MongoDB.

3.	 A step-by-step tutorial to create leaner and faster
applications using MongoDB.

Please check www.PacktPub.com for information on our titles

MongoDB Data Modeling
ISBN: 978-1-78217-534-6 Paperback: 202 pages

Focus on data usage and better design schemas with
the help of MongoDB

1.	 Create reliable, scalable data models with
MongoDB.

2.	 Optimize the schema design process to support
applications of all kinds.

3.	 Use this comprehensive guide to implement
advanced schema designs.

Learning MongoDB [Video]
ISBN: 978-1-78398-392-6 Duration: 03:26 hours

A comprehensive guide to using MongoDB for
ultra-fast, fault tolerant management of big data,
including advanced data analysis

1.	 Master MapReduce and the MongoDB
aggregation framework for sophisticated
manipulation of large sets of data.

2.	 Manage databases and collections, including
backup, recovery, and security.

3.	 Discover how to secure your data using SSL, both
from the client and via programming languages.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Starting the Server
	Introduction
	Installing single node MongoDB
	Starting a single node instance using command-line options
	Single node installation of MongoDB with options from the config file
	Connecting to a single node in the Mongo shell with JavaScript
	Connecting to a single node using a Java client
	Connecting to a single node using a Python client
	Starting multiple instances as part of a replica set
	Connecting to the replica set in the shell to query and insert data
	Connecting to the replica set to query and insert data from a Java client
	Connecting to the replica set to query and insert data using a Python client
	Starting a simple sharded environment of two shards
	Connecting to a shard in the shell and performing operations

	Chapter 2: Command-line Operations and Indexes
	Introduction
	Creating test data
	Performing simple querying, projections, and pagination from Mongo shell
	Updating and deleting data from the shell
	Creating index and viewing plans of queries
	Creating a background and foreground index in the shell
	Creating and understanding sparse indexes
	Expiring documents after a fixed interval using the TTL index
	Expiring documents at a given time using the TTL index

	Chapter 3: Programming
Language Drivers
	Introduction
	Executing query and insert operations with PyMongo
	Executing update and delete operations using PyMongo
	Implementing aggregation in Mongo using PyMongo
	Executing MapReduce in Mongo using PyMongo
	Executing query and insert operations using a Java client
	Executing update and delete operations using a Java client
	Implementing aggregation in Mongo using a Java client
	Executing MapReduce in Mongo using a Java client

	Chapter 4: Administration
	Introduction
	Renaming a collection
	Viewing collection stats
	Viewing database stats
	Manually padding a document
	The mongostat and mongotop utilities
	Getting current executing operations and killing them
	Using profiler to profile operations
	Setting up users in Mongo
	Interprocess security in Mongo
	Modifying collection behavior using the collMod command
	Setting up MongoDB as a windows service
	Replica set configurations
	Stepping down as primary from the replica set
	Exploring the local database of a replica set
	Understanding and analyzing oplogs
	Building tagged replica sets
	Configuring the default shard for
non-sharded collections
	Manual split and migration of chunks
	Domain-driven sharding using tags
	Exploring the config database in a sharded setup

	Chapter 5: Advanced Operations
	Introduction
	Atomic find and modify operations
	Implementing atomic counters in Mongo
	Implementing server-side scripts
	Creating and tailing a capped collection cursors in MongoDB
	Converting a normal collection to a capped collection
	Storing binary data in Mongo
	Storing large data in Mongo using GridFS
	Storing data to GridFS from Java client
	Storing data to GridFS from Python client
	Implementing triggers in Mongo using oplog
	Flat plane 2D geospatial queries in Mongo using geospatial indexes
	Spherical indexes and GeoJSON compliant data in Mongo
	Implementing full text search in Mongo
	Integrating MongoDB for full text search with Elasticsearch

	Chapter 6: Monitoring and Backups
	Introduction
	Signing up for MMS and setting up an MMS monitoring agent
	Managing users and groups in MMS console
	Monitoring instances and setting up alerts on MMS
	Setting up monitoring alerts in MMS
	Back up and restore data in Mongo using out-of-the-box tools
	Configuring MMS Backup service
	Managing backups in MMS Backup service

	Chapter 7: Deploying MongoDB
on the Cloud
	Introduction
	Setting up and managing the MongoLab account
	Setting up a sandbox MongoDB instance on MongoLab
	Performing operations on MongoDB from MongoLab GUI
	Setting up MongoDB on Amazon EC2 manually
	Setting up MongoDB using the Docker containers

	Chapter 8: Integration with Hadoop
	Introduction
	Executing our first sample MapReduce job using the mongo-hadoop connector
	Writing our first Hadoop MapReduce job
	Running MapReduce jobs on Hadoop using streaming
	Running a MapReduce job on Amazon EMR

	Chapter 9: Open Source and Proprietary Tools
	Introduction
	Developing using spring-data-mongodb
	Accessing MongoDB using JPA
	Accessing MongoDB over REST
	Installing a GUI-based client, MongoVUE, for MongoDB

	Appendix: Concepts for Reference
	Write concern and its significance
	Read preference for querying

	Index

