
www.allitebooks.com

http://www.allitebooks.org

Mastering JavaScript Promises

Discover and explore the world of promises, one of
JavaScript's most powerful concepts

Muzzamil Hussain

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering JavaScript Promises

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1210715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-550-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Muzzamil Hussain

Reviewers
Luca Mezzalira

Jebin B V

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Ajinkya Paranjape

Technical Editor
Siddhi Rane

Copy Editor
Janbal Dharmaraj

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Muzzamil Hussain has been working in the field of computing/information
technology for more than a decade now. During this period, he developed a wide
range of software products and services for companies around the world.

He completed his Digital Communications Networks course from the prestigious
London Metropolitan University, London, United Kingdom. He is skilled in crafting
software products and services with the best of technical and management skills,
which he has acquired over the past 14 years.

The best part of his wealth of experience is the dual skill sets of project management
and software engineering, which is a paramount feature of his work.

Muzzamil has worked with some of the big industries based in Pakistan, the UK,
the USA, Canada, and UAE. These days, he is associated with Systems Limited, the
first and one of the oldest software companies in Pakistan, in the capacity of senior
project manager.

He also provides consultancy to start-ups on the software development life cycle,
project management, release engineering, and continuous integrations.

He is also heavily involved in experimenting with the latest technologies such as
the MEAN stack, an opinionated full-stack JavaScript framework, and Apache
Hadoop for the distributed processing of large data sets.

www.allitebooks.com

http://www.allitebooks.org

He blogs at http://muzzamil.net/.

There are several people I would like to acknowledge and thank
everyone who helped me not only in writing this book, but also
those who were an inspiration to my professional growth, making
me a better person.
Thanks to all those amazing people around me: my father, Mr.
Musharraf Hussain, and my mother, Mrs. Rifat Hussain, who raised
me with their best resources and provided a healthy foundation for
my life. My teachers, who not only educated me with their best skills
and knowledge, but also made me understand the tough lessons of
life. Finally, my wife, Amber Muzzamil, and my daughters, Abeeha
and Aroush, whose continuous and unconditional support was the
biggest factor in making this book a reality.

www.allitebooks.com

http://muzzamil.net/
http://www.allitebooks.org

About the Reviewers

Luca Mezzalira is a passionate Italian software developer with more than 10 years
of experience in frontend technologies, in particular, JavaScript, HTML 5, Haxe,
Flash, Flex, AIR, Lua, and Swift.

He has often been involved in cutting-edge projects for mobile (iOS, Android, and
Blackberry), desktop, web, and embedded devices too for big corporations.

He really loves his job and tries to apply the Kaizen culture of continuous
improvement and the XP principles and values in his daily life.

He strongly believes that agile and lean methodologies can help you achieve any
goal during your job, improving yourself and the people you are working with.

In his spare time, Luca learns new technologies and methodologies by reading
books and attending meetup events or conferences. He is very flexible and adaptive
to any situation, always trying to achieve great goals in the best way possible.

He has collected different certifications and acknowledgements across the last 10
years, such as Certified Scrum Master and SAFe Agilist; Adobe Certified Expert and
instructor on Flash, Flex, AIR, and Flash Lite; Adobe Community Professional; and
Adobe Italy Consultant.

He has written for national and international technical magazines and is a technical
reviewer for Packt Publishing.

He speaks at national and international conferences and community events, such as
Lean Kanban United Kingdom, Flash Camp, Scotch on the Rocks, 360 Flex, PyCon,
and so on.

www.allitebooks.com

http://www.allitebooks.org

In his spare time, Luca likes to watch football, play with his dogs, Paco and Maya,
and study new programming languages.

The first mention is for my family that always helps me, in
particular, my parents who support and inspire me everyday with
their strength and love. A big thanks to my brother, who is also one
of my best friends. He is the most intelligent person that I've ever
met in my life; his suggestions and ideas are very important to me.
Then, I really have a lot of other friends to say thanks to for what
we have created together until now. I hope to not forget anybody:
Piergiorgio Niero, Chiara Agazzi, Alessandro Bianco, Raffaella
Brandoli, Miguel Barreiro, Mark Stanley, Frank Amankwah,
Matteo Oriani, Manuele Mimo, Goy Oracha, Tommaso Magro,
Sofia Faggian, Matteo Lanzi, Peter Elst, Francesca Beordo, Federico
Pitone, Tiziano Fruet, Giorgio Pedergnani, Andrea Sgaravato, Fabio
Bernardi, Sumi Lim, and many others.
Last but not least, I'd like to say thanks to my girlfriend and my life
partner, Maela, for the amazing time we spend together; her passion
and commitment in our relationship gives me the strength to go
ahead and do my best everyday. Really, thanks, my love!

Jebin B V is a young frontend developer by profession and a full-stack developer.
He has been into web development for the past 4 years and has a very good
command over the design and development of commercial web applications.
He also has a very good sense of design, interaction, and UX when it comes to
web development.

Jebin has developed applications for real-time messaging, big data management,
visualization, network shopping management, CMS, social networking, and so
on. He has great interest in JavaScript, so anything that is from the JavaScript
background excites him. He also has experience in PHP and Java.

He possesses a very good notion of application-level design when it comes to
building frontend applications. He has the nonstop habit of learning on an everyday
basis. He spends a great deal of time on updating himself with new things coming
up in frontend technologies. He loves to learn, teach, master, and lead in his field
of expertise.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Promises.js	 1

The fall and rise of JavaScript	 2
Google's contributions to JavaScript	 2
Where Promises.js came in?	 2
What is a promise?	 3
Why do we need promise in JS?	 3
Software prerequisites	 4

Environment you need before getting started	 4
Future, promise, and delay	 4

Promise pipelining	 5
Read-only views	 5

States of a promise	 6
How do we keep Promises.js in this book?	 6
Browser compatibility	 7
Summary	 7

Chapter 2: The JavaScript Asynchronous Model	 9
Programming models	 9

The single-threaded synchronous model	 10
The multithreaded synchronous model	 10
The asynchronous programming model	 11

Densities with an asynchronous programming model	 12
Why do we need to block the task?	 12
Why not use some more threads?	 13

Learning the JavaScript asynchronous model	 13
How JavaScript implements an asynchronous model	 15
Callbacks in JavaScript	 15

Blocking functions	 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The mechanism of a callback function in JavaScript	 17
Basic rules to implement callbacks	 17
Handling callback hell	 17

The events	 19
The mechanism of event handling	 19

DOM – event capture and event bubbling	 20
A list of the most common events handlers	 20

Triggering functions in response to events	 21
Types of events in JavaScript	 21

Interface events	 22
Mouse events	 22
Form events	 22
W3C events	 22
Microsoft events	 22
Mozilla events	 22

The publisher/subscriber	 23
A brief account of the observer pattern	 23

A formal definition of observer	 23
The push and pull model	 23

The promises object	 25
Summing up – the asynchronous programing model	 26
Summary	 26

Chapter 3: The Promise Paradigm	 29
Callback, revisited	 29
Promise	 30
Deferred	 30
How do promise and deferred relate to each other?	 30
Standard behaviors of the Promise API	 30
Interactive promises	 31
The states and return values of a promise	 31
Common sequencing patterns	 33

Stacked	 33
Parallel	 33
Sequential	 34

Decoupling events and applications logic	 35
Promises as event emitters	 36

What promises prescribed not to do	 37
Avoiding getting into callback hell	 37
Avoiding the use of unnamed promises	 38

Promises and exceptions	 38
The fail method	 40
The then method	 40

Table of Contents

[iii]

Best practices to handle exceptions in promise	 40
Make your exceptions meaningful	 41
Monitor, anticipate, and handle exception	 41
Keep it clean	 41

Considerations while choosing a promise	 41
Summary	 42

Chapter 4: Implementing Promises	 43
How to implement promises	 43
Implementations in Java	 44

The util package of Java	 44
The mechanics of Java to implement a promise	 44
The core components of java.util.concurrent	 45
Timing	 46
Synchronizers	 47
Concurrent collections	 47

The implementation of promise by Java	 48
CompletionService	 48
ExecutorService	 49
Future	 51
Delay and DelayedQueue	 52
FutureTask	 52
Summing up Java and Promises.js	 53

Say hello to JDeferred	 53
A few words about Android Deferred Object	 53

Use case 1 – object success and failure callbacks for a task	 54
Use case 2 – merging several promises	 54

Mechanics of JDeferred	 55
Features of JDeferred	 55
Playing with the code using JDeferred	 56

Deferred object and promise	 56
Deferred Manager	 57
Runnable and callable	 58
wait() and waitSafely()	 59
Filters	 60
Pipes	 60

Ultimate JDeferred	 60
Summary	 61

Chapter 5: Promises in WinRT	 63
An introduction to WinRT	 63
The evolution of WinRT	 64
A little detail about WinJS	 64
WinJS – its purpose and a distribution history	 65

WinJS on GitHub	 65

Table of Contents

[iv]

HTML5, CSS3, and JavaScript	 66
WT with HTML5, CSS3, and JavaScript	 66
The need for integrating promise with WT	 66
Problems when using asynchronous programming	 67
Jumpstarting promises	 67
Writing a function that returns a promise	 67

Adding a change handler for input elements	 68
Error handling	 69
Chaining promises using the then() and done() functions	 71

Example 1A – downloading a web page to a file using two
asynchronous functions	 71
Example 1B – downloading a web page to a file using startAsync	 73

Summary	 74
Chapter 6: Promises in Node.js	 75

The V8 engine – the mechanics	 75
The V8 engine in Google Chrome	 76
The evolution of Node.js	 76
A brief introduction to Node.js	 77
Download and install Node.js	 77
Node Package Manager – NPM	 78
Choice of environment	 78
Setting up the environment for Node.js	 79
A simple node server	 79
Things we learned so far	 80
Node.js with the Q library	 81
Moving ahead with Q	 82
Propagation in Q	 83
Chaining and nesting promises	 85
Sequences in Q	 85
Combination in Q	 86
How to handle errors in Q in Node.js	 87
Making progress with promises	 88
Getting to the end of a chain of promises	 89
Callback-based promises versus Q-based promises	 90

A few words on delay, timeout, and notify	 91
Q.delay()	 91
Q.timeout()	 91
deferred.notify()	 92

Table of Contents

[v]

Q.Promise() – another way to create promises	 93
Static methods of Q	 94
Promise as a proxy	 94
Familiarizing Node.js – the Q way	 95
Unbinds and its solution	 96
Q support for tracing stacks	 96
Making promise-based actions	 98
Object handling promises	 99

Decomposition of primitive access	 99
View revisited	 99
Aborting a promise	 100
Q utilities for Node.js	 100
Summary	 101

Chapter 7: Promises in Angular.js	 103
The evolution of Angular.js	 103
The structure of the Angular.js document	 104
Getting started with Angular.js	 105
Creating your first Angular.js file	 105

Step 1 – create the HTML 5 doc	 105
Step 2 – add the JavaScript file to it	 106

How to use Angular.js on your local machine	 106
What would be your preference for the server?	 107
Key elements of Angular.js	 107

Supplying scope data	 108
Filtering data	 110
Controlling scopes	 112
Routing views	 114

Implementing promises in Angular.js	 117
The schematics of using promises in Angular.js	 117
Promise as a handle for callback	 118
Blindly passing arguments and nested promises	 119
Deferred objects or composed promises	 120
Dealing with the nested calls	 121
Concurrency in Angular.js	 121
The combination of success and error	 123
The safe approach	 124
Route your promise	 124
Summary	 126

Table of Contents

[vi]

Chapter 8: Promises in jQuery	 127
From where it started?	 127
Behind the scenes – how does jQuery work?	 128
Is your document ready to submit?	 128
How to use jQuery	 129
The syntax	 130
Caching in jQuery	 130
A sample example	 132

Selectors	 132
Event methods	 133

JavaScript before and after jQuery	 134
The solution – introducing promises in jQuery	 134
Deferred in jQuery	 135
$.Deferred().promise() in jQuery	 136
Projecting a promise in jQuery	 139
Joining promises with $.when	 143
Your own $.Deferred process	 148
The advent of promises in jQuery	 149
Summary	 150

Chapter 9: JavaScript – The Future Is Now	 151
ECMAScript 6 (ECMA 262)	 151
harmony:generators	 152

The Fibonacci series	 152
The MEAN stack	 153
Real-time communication in JavaScript	 153
Internet of Things	 154
Computer animation and in 3D graphics	 155
NoSQL databases	 156
Summary	 157

Index	 159

[vii]

Preface
In this book, we will explore the concept and implementation of promises in
JavaScript. This book has an evolving context that will lead you from a beginner's
level to the master level of promises. Every chapter of this book will give you an
outline to achieve a specific goal that will help you realize and quantify the amount
of knowledge you absorb in every chapter.

The entire stack of chapters is designed in a way such that the book will evolve as
you go through it. Every chapter in this book is designed in two parts: one is the
concept building part and the other is the experimenting part, where you will be
able to sample snippets of concepts, sometime in code, sometimes in best practices,
and sometimes in images.

The first four chapters are more or less like theoretical knowledge to provide you
with a solid foundation on JavaScript and promises. So, if you're a novice and don't
know anything about JavaScript or promises, you will learn a great deal with these
chapters. The rest of the chapters are more technology-oriented and you will learn
implementation of promises in WinRT, Angular.js, jQuery, and Node.js. So, if you
are a professional and already have some idea of promises, you may jump right into
Chapter 5, Promises in WinRT, but I'd prefer it if you read through all the chapters for
a better understanding of this book.

We will start with the introduction to JavaScript and how it has seen ups and downs
from the late 90s up to the first decade of the twenty first century. We will focus
on what asynchronous programing is and how JavaScript is using it. Moving on,
I will introduce promises and its impact and how it's implemented. To make the
book interesting and impart more knowledge to you, I will show you how promises
has made its place in the heart of Java, one of the most mature object-oriented
programming languages. This add-on content will act as a detour and clarify
concepts in a more efficient way.

Preface

[viii]

The flow of book will then lead you to the implementation of promises in some of the
most used JavaScript libraries. We will see a sample code on how the mechanism of
these libraries work. Finally, we will wrap up the book with our last chapter that will
show you what is coming next in JavaScript, why it has gained so much attention
over the past few years and what would be the possible future of JavaScript.

What this book covers
Chapter 1, Promises.js, covers the history of JavaScript and how it shaped into one of
the leading technologies in modern application development. We will discuss why
there was a need of JavaScript in the early 90s and how this language has seen ups
and downs throughout its existence.

Chapter 2, The JavaScript Asynchronous Model, explains what a programming model
is and how they are implemented in different languages, starting from a simple
programming model to the synchronous model to the asynchronous model. We will
also see how tasks are organized in memory and how they will serve according to their
turns and priorities and how programming models decide what task is to be served.

Chapter 3, The Promise Paradigm, covers the paradigm of promise and the concept
behind it. We will learn the conceptual knowledge of promise, deferred, common
sequence of promise, and how promise helps in decoupling the business logic and
application logic. We will also learn about the relationship between promises
and event emitters and the concept behind the relation between promises and
event emitters.

Chapter 4, Implementing Promises, discusses why we are implementing promises
and why we chose Java as the core subject of this chapter. Java has richer features
than any other programming language, and it also has better mechanism for
asynchronous behavior. This chapter is the point where we start our journey to
master promises.

Chapter 5, Promises in WinRT, explains how promises can be implemented in
WinRT. We will see how promises evolved on the Windows platform and how
it's contributing to different Windows-based devices.

Chapter 6, Promises in Node.js, covers what Node.js is, from where this most amazing
library has evolved, who built it, and why and how it's helping us to create real-time
web apps. We will see Q, the best way to offer promises to Node.js. We will
see how we can work with Q, and then we will see different ways of using Q
along with Node.js.

Preface

[ix]

Chapter 7, Promises in Angular.js, explains how promises will be implemented in
Angular.js, how it evolved and how promises will help in achieving applications
composed for real-time web apps. We will also see the functionality of the Q library
and the Angular.js implementation of promises using code and learn how to use
them in our next application.

Chapter 8, Promises in jQuery, discusses how jQuery started taking shape and how it
became a fundamental element of the modern-day web development. We will learn
how to build basic jQuery documents and how to call the functions embedded into
HTML files. We will learn why we started using deferred and promise in jQuery
and how they are helping us to create cutting edge applications on both web-based
platform and portable devices.

Chapter 9, JavaScript – The Future Is Now, covers how JavaScript is a game changer
and how it has a bright future ahead. We will also explore why JavaScript has
great tendency and adoptability, which will lead it to the next level of usage in
almost every domain of computer science.

What you need for this book
If you are a software engineer who wants to learn more interesting facts about
JavaScript to make your life easier, this book is for you. A simple and engaging
language with narrations and code examples makes this book easy to understand
and apply its practices. This book starts with an introduction to JavaScript promises
and how it evolved over time. You will then learn the JavaScript asynchronous
model and how JavaScript handles asynchronous programming. Next, you will
learn about the promises paradigm and its advantages. Finally, this book will show
you how to implement promises on platforms such as WinRT, jQuery, and Node.js,
which are used in project development.

To get the best out of this book, you should know the basic programming concepts,
the basic syntax of JavaScript, and possess a good understanding of HTML.

Who this book is for
This book is for all the software/web engineers who want to apply the promises
paradigm in their next project and get the best outcome from it. This book has all the
basic as well as advanced concepts of promises in JavaScript. This book can also act
as a reference for the engineers who are already using promises in their projects and
want to improve their current knowledge of this concept.

Preface

[x]

This book is a great resource for frontend engineers, but also serves as a learning
guide for backend engineers who want to make sure their code collaborates
seamlessly within the project.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The click function will call (or execute) the callback function we passed to it."

A block of code is set as follows:

Q.fcall(imException)
.then(
 // first handler-fulfill
 function() { },

);

Any command-line input or output is written as follows:

D:\> node –v

D:\> NPM –v

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " It should
turn into green and display the Success message."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Preface

[xii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Promises.js
In today's world, computer programming languages are getting much more advanced
and there is a shift in the approach of using technologies. This is due to the fact that
technology has been emerging with the rapid change in businesses and their needs.
The vast expansion of business on electronic devices has led universities, researchers,
and industries to invest in generating the latest technologies and tools that result in
the inception of many new computer languages.

However, this is not the case with JavaScript. It's relatively new. It has been used
and dumped at least three times by the modern programming landscape and is
now widely accepted as the tool to develop modern, scalable, and real-time web
applications in today's cyberspace.

In the mid 90s, the era of dot-com was born and it was during this time when
companies wanted to dominate the newly created market called cyberspace. Although
this was a virtual place and had no physical existence, the war for dominance was at its
peak. Netscape Communications Corporation wanted its own variant of a lightweight
interpreted language that would complement Java by appealing to nonprofessional
programmers. This task was given to Brendan Eich who developed the first version
of JavaScript with the name "Mocha". Officially, it was called LiveScript when it was
first released in September 1995 in Netscape's browser in beta version 2.0.

However, the name was changed to JavaScript when the version 2.0 B3 rolled out
later. Since 1995, JavaScript has seen many ups and downs. There are stories of it
being adopted, rejected, and adopted again. Soon after its launch, JavaScript gained
a very popular response throughout the industry. Every major company contributed
to its growth and used it after slight adjustment for their needs.

Promises.js

[2]

The fall and rise of JavaScript
The Netscape browser witnessed the fall of JavaScript in the late 90s and early 2000.
The face of web development was maturing, but very few were still interested in
investing in JavaScript.

It was the advent of the Mozilla foundation that released the first open source
browser, Firefox, in early 2002-2003 since the base was the successor of the former
Netscape browser. They employed JavaScript again within their product. In 2004,
Google introduced Asynchronous JavaScript and XML (AJAX). This led to the
foundation of many techniques and made communication easy with a black and
white frontend and server by minimizing the server calls.

Google's contributions to JavaScript
Google has made more contributions in evolving, developing, and utilizing of
JavaScript than any other organization. It was Google that introduced the V8 engine
in its flagship web browser, Chrome. V8 is the backbone engine of the browser,
and due to the smart usage of JavaScript, the browser is faster, robust, and
adaptable to web and Android devices.

In the year 2009, Node.js arrived based on the same V8 engine as in Chrome. This is
the server side of JavaScript, but far more better and advanced than what Netscape
had introduced in late 90s. The whole idea of Node.js is to develop nonblocking
input/output (I/O) and with few lines of codes, the server can serve up to 20K
clients at a given slot of time.

Soon after Node.js, an entire stack of development has been introduced by the name of
MEAN stack, which is an acronym of MongoDB, Express.js, Angular.js, and Node.js;
where MongoDB is document based, NoSQL is a JavaScript-based database, Express.
js is for a presentation layer, Angular.js is for frontend development of an app, and
Node.js as the server that runs the entire show.

Where Promises.js came in?
Those of you who are aware of how a server-side script executes in an I/O event
know that reading or writing data to and from a drive is blocking in nature, that is,
during its execution, no other operation can be performed by a server-side language,
even by the client. Well, with Promises.js, this is no longer the case. Promises.js
utilizes a nonblocking strategy to perform I/O operations, so a client using your web
app is free to perform any other tasks they want to without having to wait for the
data read/write operation to be completed.

Chapter 1

[3]

What is a promise?
When an eventual value is returned from the completion of a single operation, it
represents a promise. If we analyze promise as a pact from human, it will help us
understand the concept of promises in computer programming especially from the
JavaScript perspective. Every promise is a pact among two or more parties to deliver
some value to the other. The value can either be tangible or intangible, but a promise
must deliver something in return. Until the promise is fulfilled, it remains in an
unfulfilled state. However, when the said commitment has been made, the promise
is said to be fulfilled. If the promise is not delivered as anticipated, the promise is
said to fail.

So, what is a promise? According to the official definition:

Promise is an object or a function with a then method whose behavior confirms to
this specification and represents the eventual result of an asynchronous operation.

The source of this definition is slide number 21 at http://www.slideshare.net/
wookieb/callbacks-promises-generators-asynchronous-javascript.

Why do we need promise in JS?
Promises.js is a JavaScript library that promises asynchronous I/O operations such
as reading and writing on a file. Whenever there is a callback method that involves
making all operations related to I/O, they are to be made asynchronous. This extra
callback parameter confuses our idea of what is the input and what will be its return
value. It never works with control flow primitives. It also doesn't handle errors
thrown by a callback method.

So, we need to handle errors thrown by a callback method, but also need to be
careful not to handle errors thrown by the callback method. By the time we are done
with this, our code will be a mess of error handling.

Despite all this mess of error handling code, we are still left with the problem of the
extra callback parameter hanging around. Promises help you naturally handle errors,
and write cleaner code by not having callback parameters.

http://www.slideshare.net/wookieb/callbacks-promises-generators-asynchronous-javascript
http://www.slideshare.net/wookieb/callbacks-promises-generators-asynchronous-javascript

Promises.js

[4]

Software prerequisites
Before starting Chapter 2, The JavaScript Asynchronous Model, you must need a
set of prerequisite concepts that will make you better understand where to use
Promises.js, and how it can save your time and effort in your recent or upcoming
projects. The following section will elaborate what these concepts are and how
we will use these as a base for our understanding of promise.

The prerequisite of this book is that you have a good understanding of procedural
programing and a compulsory knowledge of basic JavaScript. Since this book
is designed to develop a deeper knowledge of a concept (promise) and its use
in different technologies, it's also imperative that you have a very good
understanding of HTML and how to embed the code for your need.

An understanding of basic programming will help you begin with experiments with
the help of a sample code as soon as you are done with any chapter/section. In this
book, I've tried to make every section self-explanatory and every sample of code as
a standalone script/program up to maximum strength. However, where there was
need, we've added a snippet of code or algorithm to present our point more clearly.

Environment you need before getting started
To use the code within this book, you don't need any extra piece of software/IDE to
start. To sample the code provided in this book, you only need free software/IDE
such as Notepad++ or any other preferred open source GPL or GNU product.

Also, to view the result of your code, you need a web browser such as Google's
Chrome or Mozilla's Firefox. For some examples related to Microsoft technologies,
you will need Internet Explorer 9 or higher.

Future, promise, and delay
Future, promise, and delay describe an object that acts as proxy to a result that is
initially unknown due to computation of its value, which is yet to be completed.
They are normally referred to as constructs used for synchronizing in some
concurrent programming language.

Chapter 1

[5]

Daniel P. Friedman and David Wise proposed the term "promise" in 1975. Peter
Hibbard called it "eventual". The term promise was coined by Liskov and Shrira,
although they referred to the pipelining mechanism by the name "call-stream". The
term promise refers to the fact that in completion of any said operation, an eventual
value will be obtained. In the same way, the value can also be taken as eventual
because it will only yield out on the occurrence of any event. Thus, both terms refer
to the same fact simultaneously.

The terms future, promise, and delay are often used interchangeably. There is some
core difference in implementing these terms. Future is revered as the read-only
placeholder view of the variable, while promise is a writeable single assignment
container that sets the value of the future.

In many cases, future promise are created together. In simple words, future is a value
and promise is a function that sets the value. The future reruns the value of an async
function (promise); setting the value of future is also called resolving, fulfilling, or
binding it.

Promise pipelining
Using future can dramatically reduce the latency in distributed systems; for example,
promise enables promise pipelining in programming languages E and Joule, which
were also called call-stream in the Argus language.

A note to remember here is that promise pipelining should be distinguished from
a parallel asynchronous message passing to a system supporting parallel message
passing but not pipelining. It should also not be confused with pipelined message
processing in actor systems, where it is possible for an actor to specify and begin
executing a behavior for the next message before having completed processing of
the current message.

Read-only views
The read-only view allows reading its value when resolved, but doesn't permit you
to resolve it, thus making it possible to obtain a read-only view of the future.

The support for read-only views is consistent with the principle of least authority.

Promises.js

[6]

The read-only view enables you to set the value to be restricted to the subject that
needs to set it. The sender of an asynchronous message (with result) receives the
read-only promise for the result, and the target of the message receives the resolver.

States of a promise
Promise is based on three states. Each state has a significance and can be used to
drive a certain level of result as per the need. This can help a programmer choose
as per his/her need. The three states of a promise are as follows:

•	 Pending: This is the initial state of a promise
•	 Fulfilled: This is the state of a promise representing a successful operation
•	 Rejected: This is the state of a promise representing a failed operation

Once a promise is fulfilled or rejected, it is immutable (that is, it can never
change again).

With reference to the concepts discussed earlier, it's now clear what a promise
is and how you can use it with all its potential.

How do we keep Promises.js in this
book?
This book will cover the use of Promises.js with every major technology that has
implemented the concept of promise. The book has been carefully divided into
chapters to introduce, discuss, and explain the use of promise within that particular
technology. Every chapter has its standalone set of examples of code to better
understand the best use of Promises.js and its outcome.

The examples will be assuming that the selection of an operating system is purely
your discretion. It may vary from reader to reader based on his/her licenses.

All the code is clearly printed with instructions and comments for a better
understanding. Also, a soft copy is provided with this book enlisting every
piece of code sorted in its respective chapter/section.

Chapter 1

[7]

Browser compatibility
Promises support is extended to many modern browsers but not to all. A handy
reference of what browser it supports is given in desktop and mobile screen
resolutions:

•	 Desktop compatibility:

Feature Chrome Firefox Internet
Explorer

Opera Safari

Basic support 36 31 Not supported
till IE 11.
Added in
Edge

27 8

•	 Mobile compatibility:

Feature Android Firefox
Mobile
(Gecko)

IE Mobile Opera
Mobile

Safari
Mobile

Chrome
for
Android

Basic
support

4.4.4 31 Edge Not
supported

Not
supported

42

Summary
In this chapter, we learned where JavaScript began and how it shaped into one of
the leading technologies in modern application development. We discussed why
there was a need for JavaScript in the early 90s and how this language has seen
ups and downs throughout its existence.

We have also seen how investments from tech companies made their contributions
in creating, developing, and evolving JavaScript as a major player in a dynamic
and fast growing market of web, mobile, and real-time apps.

The adaptation of promises concept will make JavaScript much stronger and
will help developers and engineers to write better code in an efficient manner.

In the next chapter, we will see what is an asynchronous model and how
it's better fitted with JavaScript. This will help us understand to adopt and
implement Promises.js in various languages.

[9]

The JavaScript
Asynchronous Model

In this chapter, we will look at the model behind asynchronous programming,
why it was needed, and how it is implemented in JavaScript.

We will also learn what a programming model is and its significance, starting from
a simple programming model to a synchronous model to an asynchronous model.
Since our prime focus is on JavaScript, which employs an asynchronous programming
model, we will discuss it in more detail than the rest of the models.

Let's start with what models are and their significance.

Models are basically templates upon which the logics are designed and fabricated
within a compiler/interpreter of a programming language so that software engineers
can use these logics in writing their software logically. Every programming language
we use is designed on a particular programming model. Since software engineers are
asked to solve a particular problem or to automate any particular service, they adopt
programming languages as per the need.

There is no set rule that assigns a particular language to create products. Engineers
adopt any language based on the need.

Programming models
Ideally, we will focus on three major programming models, which are as follows:

•	 The first one is a single-threaded synchronous model
•	 The second one a is multithreaded model
•	 The third one is an asynchronous programming model

www.allitebooks.com

http://www.allitebooks.org

The JavaScript Asynchronous Model

[10]

Since JavaScript employs an asynchronous model, we will discuss it in greater
detail. However, let's start by explaining what these programming models are
and how they facilitate their end users.

The single-threaded synchronous model
The single-threaded synchronous model is a simple programming model or
single-threaded synchronous programming model, in which one task follows the
other. If there is a queue of tasks, the first task is given first priority, and so on and so
forth. It's the simplest way of getting things done, as shown in the following diagram:

Ti
m

e

The single-threaded synchronous model

Task 1

Task 2

Task 3

The single-threaded synchronous programming model is one of the best examples
of a Queue data structure, which follows the First In First Out (FIFO) rule. This
model assumes that if Task 2 is being executed at the moment, it must have been
done after Task 1 was finished without errors with all the output available as
predicted or needed. This programming model is still supported for writing
down simple programs for simple devices.

The multithreaded synchronous model
Unlike single-thread programming, in multi-thread programming, every task
is performed in a separate thread, so multiple tasks need multiple threads.
The threads are managed by the operating system, and may run concurrently
on a system with multiple process or multiple cores.

It seems quite simple that multiple threads are managed by the OS or the program
in which it's being executed; it's a complex and time-consuming task that requires
multiple level of communications between the threads in order to conclude the
task without any deadlock and errors, as can be seen from the following diagram:

Chapter 2

[11]

Ti
m

e

The threaded model

Task 1 Task 2 Task 3

Some programs implement parallelism using multiple processes instead of
multiple threads, although the programming details are different.

The asynchronous programming model
Within the asynchronous programming model, tasks are interleaved with one
another in a single thread of control.

This single thread may have multiple embedded threads and each thread may
contain several tasks linked up one after another. This model is simpler in
comparison to the threaded case, as the programmers always know the priority
of the task executing at a given slot of time in memory.

Consider a task in which an OS (or an application within OS) uses some sort of a
scenario to decide how much time is to be allotted to a task, before giving the same
chance to others. The behavior of the OS of taking control from one task and passing
it on to another task is called preempting.

The multithreaded sync model is also referred to as
preemptive multitasking. When it's asynchronous,
it's called cooperative multitasking.

The asynchronous model

Ti
m

e

Task 1 Task 2 Task 3

The JavaScript Asynchronous Model

[12]

With threaded systems, the priority to suspend one thread and put another on the
exaction is not in the programmer's hand; it's the base program that controls it. In
general, it's controlled by the operating system itself, but this is not the case with
an asynchronous system.

In asynchronous systems, the control of execution and suspension of a thread is in
complete discretion of the programmer and the thread won't change its state until it's
explicitly asked to do so.

Densities with an asynchronous programming
model
With all these qualities of an asynchronous programming model, it has its densities
to deal with.

Since the control of execution and priority assignment is in a programmer's hand,
he/she will have to organize each task as a sequence of smaller steps that are
executed immediately. If one task uses the output of the other, the dependent task
must be engineered so that it can accept its input as a sequence of bits not together;
this is how programmers fabricate their tasks on and set their priorities. The soul
of an asynchronous system that can outperform synchronous systems almost
dramatically is when the tasks are forced to wait or are blocked.

Why do we need to block the task?
A more common reason why a task is forcefully blocked is that it is waiting to
perform an I/O or transfer data to and from an external device. A normal CPU
can handle data transfer faster than any network link is capable of, which in result
makes a synchronous program blocked that is spending so much time on I/O.
Such programs are also referred as blocking programs for this reason.

The whole idea behind an asynchronous model is avoid wasting CPU time and avoid
blocking bits. When an asynchronous program encounters a task that will normally
get blocked in a synchronous program, it will instead execute some other tasks that
can still make progress. Because of this, asynchronous programs are also called
non-blocking program.

Since the asynchronous program spends less time waiting and roughly giving an
equal amount of time to every task, it supersedes synchronous programs.

Chapter 2

[13]

Compared to the synchronous model, the asynchronous model performs best in
the following scenarios:

•	 There are a large number of tasks, so it's likely that there is always at least
one task that can make progress

•	 The tasks perform lots of I/O, causing a synchronous program to waste
lots of time blocking, when other tasks are running

•	 The tasks are largely independent from one another, so there is little need
for intertask communication (and thus for one task to wait for another)

Keeping all the preceding points in mind, it will almost perfectly highlight a typical
busy network, say a web server in a client-server environment, where each task
represents a client requesting some information from the server. In such cases, an
asynchronous model will not only increase the overall response time, but also add
value to the performance by serving more clients (requests) at a time.

Why not use some more threads?
At this point, you may ask why not add another thread by not relying on a single
thread. Well, the answer is quite simple. The more the threads, the more memory it
will consume, which in turn will create low performance and a higher turnaround
time. Using more threads doesn't only come with a cost of memory, but also with
effects on performance. With each thread, a certain overhead is linked to maintain
the state of that particular thread, but multiple threads will be used when there is
an absolute need of them, not for each and every other thing.

Learning the JavaScript asynchronous
model
Keeping this knowledge in mind, if we see what the JavaScript asynchronous model
is, we can now clearly relate to an asynchronous model in JavaScript and understand
how it's implemented.

In non-web languages, most of the code we write is synchronous, that is, blocking.
JavaScript does its stuff in a different way.

JavaScript is a single-threaded language. We already know what single threaded
actually means for the sake of simplicity—two bits of the same script cannot run at
the same time. In browsers, JavaScript shares a thread with loads of other processes
inline. These "inline processes" can be different from one browser to another, but
typically, JavaScript (JS) is in the same queue as painting, updating styles, and
handling user actions (an activity in one of these processes delays the others).

The JavaScript Asynchronous Model

[14]

As in the image beneath, whenever the asynchronous (non-blocking) script executes in
a browser, it goes from top to bottom in an execution pattern. Starting from the page
load, the script goes to a document object where the JavaScript object is created. The
script then goes into the parsing phase where all the nodes and HTML tags are added.
After the completion of parsing, the whole script will be loaded in the memory as an
asynchronous (non-blocking) script.

Asynchronous (non-blocking) Script execution

Page Loads Document.readyState=loading

JavaScript creates Object

Adds all the node and HTML tags & elements

Since the script is Asynchronous, it will continue to parse

Document.readyState=interactive

Document.readyState=completed

Script completed

Script Execution

Parsing
completed

Continue
parsing

Image
completed

<script Async

src="file.js"

Document
Object

Start parsing

Chapter 2

[15]

How JavaScript implements an asynchronous
model
JavaScript uses an loop event and its cycle is called a "tick" (as in a clock), since
it runs within the time slot bound by the CPU. An interpreter is responsible for
checking whether every tick is an asynchronous callback to be executed. All other
synchronous operations take place within the same tick. The time value passed is
not guaranteed—there's no way of knowing how long it will take until the next tick,
so we usually say the callbacks will run "as soon as possible"; although, some calls
may even be dropped.

An interpreter is the translator program built into the browsers that translates the entire
code to a human-readable language. As it reads line by line, if there is any error in any line,
it will stop execution and present the error on the page.

Within JavaScript, there are four core ways on how an asynchronous model is
implemented in it. These four methods help not only for better performance of your
program, but also in easier maintainability of code. These four methods are as follows:

•	 A callback function
•	 The event listener
•	 The publisher/subscriber
•	 The promises object

Callbacks in JavaScript
In JavaScript, functions are first class citizens, which means they can be treated as
objects and because of the fact that they really are objects themselves. They can do
what a regular object is capable of, such as these:

•	 Stored in variables
•	 Passed as augments to other functions
•	 Created within functions
•	 Returned from functions after a payload of some processed data mechanism

A callback function, also known as a higher-order function, is a function that is
passed to another function (let's call this other function as otherFunction) as a
parameter, and the callback function is called (executed) inside otherFunction.

The JavaScript Asynchronous Model

[16]

A callback function is essentially a pattern (an established solution to a common
problem), and therefore the use of a callback function is also known as a callback
pattern. Because functions are first class objects, we can use callback functions
in JavaScript.

Since functions are first class objects, we can use callback functions in JavaScript,
but what are callback functions? The idea behind callback functions is derived from
functional programming, which uses functions as arguments as implementing
callback functions is as easy as passing regular variables as arguments to functions.

A common use of a callback function can be seen in the following lines of code:

$("#btn_1).click().click.function() {
alert ("Button one was clicked");
});

The code explains itself as follows:

•	 We pass a function as a parameter to the click function
•	 The click function will call (or execute) the callback function we passed to it

This is a typical use of callback functions in JavaScript, and indeed, it is widely
used in jQuery. We will examine promise with respect to jQuery in more details
in Chapter 8, Promises in jQuery.

Blocking functions
While we are discussing what a blocking function in JavaScript is and how one
should implement it, many of us really don't clearly understand what we mean
by a blocking function in JavaScript.

As humans, we have a mind that is designed in such a way that it can do many
tasks at a time, such as while reading this book, you are aware of the surroundings
around you, you can think and type simultaneously, and you can talk to someone
while you are driving.

These examples are for multithreaded models, but is there any blocking function
in our human body? The answer is yes. We have a blocking function because of
which we all have other activities in our mind and within our body; it stops for a
tiny pinch of a nanosecond. This blocking function is called sneezing. When any
human sneezes, all the functions related to mind and body became blocked for a
tiny fraction of nanosecond. This is rarely noticed by people. The same goes with
the blocking function of JavaScript.

Chapter 2

[17]

The mechanism of a callback function in
JavaScript
The question here is, how on earth does a callback function work?

As we know that functions are like first class objects in JS, we can pass them
around in a similar way to variables and return them as functions and use them
in other functions.

When we pass a callback function as arguments to another function, we are only
passing the function definition. We aren't executing functions in parameters. We
are also not passing the function with the trailing pair of executing parenthesis (),
as we would when we are executing a function.

Since the containing function has the callback function in its parameter as a function
definition, it can execute the callback at any time.

It is important to note that the callback function is not executed immediately.
It is "called back" and can still be accessed later via the arguments object by the
containing function.

Basic rules to implement callbacks
There are some basic rules that you need to keep in mind while you are
implementing the callbacks.

Callbacks are normally simple, but you should be familiar with the rule if you are
crafting your own callback functions. Here are some key pointers that you must
take into account while you are working on your callback functions:

•	 Use named or anonymous functions as callbacks
•	 Pass parameters to callback functions
•	 Make sure callback is a function before executing it

Handling callback hell
As JavaScript uses callback functions to handle asynchronous control flow, working
with nesting of callbacks can become messy and most of the time, out of control.

One needs to be very careful while writing callbacks or using it from any
other library.

The JavaScript Asynchronous Model

[18]

Here is what happens if the callbacks are not handled properly:

func1(param, function (err, res)) {
 func1(param, function (err, res)) {
 func1(param, function (err, res)) {
 func1(param, function (err, res)) {
 func1(param, function (err, res)) {
 func1(param, function (err, res)) {
 //do something
 });
 });
 });
 });
 });
});

The preceding situation is commonly referred to as callback hell. This is quite
common in JavaScript, which makes the lives of engineers miserable. This also
makes the code hard for other team members to understand and hard to maintain
for further use. The most drastic of all is that it confuses an engineer, making it
hard for him/her to remember where to pass on the control.

Here are the quick reminders for callback hell:

•	 Never let your function be unnamed. Give your function an understandable
and meaningful name. The name must show it's a callback function that is
performing certain operations instead of defining an anonymous function
in the parameter of the main function.

•	 Make your code less scary to look at and easier to edit, refactor, and hack
on later. Most of the engineers write code in a flow of thought with less
focus on beautification of code, which makes it difficult to maintain
the code later. Use online tools such as http://www.jspretty.com to
add readability to your code.

•	 Separate your code into modules; don't write all your logic in a single
module. Instead, write short meaningful modules so that you can export
a section of code that does a particular job. You can then import that module
into your larger application. This approach can also help you reuse the code
in similar applications, thus making a whole library of your modules.

http://www.jspretty.com

Chapter 2

[19]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

The events
Events are signals that are generated when a specific action takes place. JavaScript
is aware of such signals and responds accordingly.

Events are messages fired in a constant stream as the user works along. Events are
normally based on user actions, and if programmed well, they act upon as directed.
Any event is useless if it doesn't have a handler that works to handle events.

Since JavaScript provides a handsome control to programmers/engineers, it's their
ability to handle events, monitor, and respond to them. The more capable you are at
handling events, the more interactive your application will be.

The mechanism of event handling
There are two conventional ways to implement events in JavaScript. The first one
is via HTML using attributes and second is via script.

To make your application respond to a user's action, you need to do the following:

1.	 Decide which event should be monitored.
2.	 Set up event handlers that trigger functions when an event occurs.
3.	 Write the functions that provide the appropriate responses to the events.

The event handler is always the name of the event perceived by on, for example,
click event handled by a event handler, onClick(). This event handler causes a
function to run, and the function provides the response to the event.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

The JavaScript Asynchronous Model

[20]

DOM – event capture and event bubbling
Document Object Model (DOM) makes it much easier to detect the events and
assign related event handlers to react to them. This uses two concepts of event
capture and event bubbling for this purpose. Let's take a look at how each can
help in detecting and assigning the right handler for the right event.

Capturing an event is referred to as the process of an event as it commutes to its
destination document. Also, it has the ability to capture or intercept this event.

This makes the whole round trip go incrementally downwards to its containing
elements of the tree until it reaches to itself.

On the contrary, event bubbling is the inverse of event capture. With bubbling,
the event is first captured and handled by the innermost element and then
propagated to the outer elements.

A list of the most common events handlers
There is an entire array of event handlers to be put to use for different needs and
situations, but let's add a few more common and regular events handlers.

Please bear in mind that some event handlers may vary from one
browser to another, and this specification becomes more limited
when it comes to Microsoft's Internet Explorer or Mac's Safari.

The following list is quite handy and self-explanatory. To use this list more effectively,
I recommend developers/engineers to make a handy note of it for reference.

Event category When will the event be triggered Event handler
Browser events A page completes loading Onload

The page is removed from the browser window Onunload

JavaScript throws an error Onerror

Mouse events The user clicks over an element onclick

The user double-clicks over an element ondblclick

The mouse button is pressed down over an
element

onmousedown

The mouse button is released over an element onmouseup

The mouse pointer moves onto an element onmouseover

The mouse pointer leaves an element Onmouseout

Chapter 2

[21]

Event category When will the event be triggered Event handler
Keyboard events A key is pressed onkeydown

A key is released onkeyup

A key is pressed and released Onkeypress

Form events The element receives focus from a pointer or by
tabbing navigation

onfocus

The element loses focus onblur

The user selects the type in text or text area field onselect

The user submits a form onsubmit

The user resets a form onreset

The field loses focus and the content has changed
since receiving focus

onchange

As mentioned earlier, these are the most common list of event handlers. There is a
separate list of specifications for Microsoft's Internet explorer that can be found at
http://msdn.microsoft.com/en-us/library/ie/ms533051(v=vs.85).aspx.

A complete list of the event's compatibility can be seen at:

http://www.quirksmode.org/dom/events/index.html

Triggering functions in response to events
JavaScript events need triggering in order to get a response. An event handler is
responsible for responding to such events, but there are four commonly used ways
to trigger events in a proper manner:

•	 The JavaScript pseudo protocol
•	 The inline event handler
•	 The handler as an object property
•	 Event listeners

Types of events in JavaScript
There are many different types of events in JavaScript, some listed as follows:

•	 Interface events
•	 Mouse events
•	 Form events

http://msdn.microsoft.com/en-us/library/ie/ms533051(v=vs.85).aspx
http://www.quirksmode.org/dom/events/index.html

The JavaScript Asynchronous Model

[22]

•	 W3C events
•	 Microsoft events
•	 Mozilla events

Interface events
The interface events occur due to the user's action. When the user clicks on any
element, he/she always causes a click event. When clicking on the element has
specific purpose, an additional interface event is caused.

Mouse events
When the user moves the mouse into the link area, the mouseover event fires.
When he/she clicks on it, the click event fires.

Form events
Forms recognize submit and reset events, which predictably, fire when the user
submits or resets a form. The submit event is the key of any form of a validation script.

W3C events
W3C events fire when the DOM structure of a document is changed. The most
general one is the DOMSubtreeModified event that is fired when the DOM tree
below the HTML element is triggered.

The DOM 2 event specification can be seen at http://www.w3.org/TR/2000/
REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-
mutationevents.

Microsoft events
Microsoft has created a number of its own event's handler specification, which (of
course) can only run on its platform. This can be seen at http://msdn.microsoft.
com/en-us/library/ie/ms533051(v=vs.85).aspx.

Mozilla events
Mozilla has its own specification, and it be seen at https://developer.mozilla.
org/en/docs/Web/API/Event.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-mutationevents
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-mutationevents
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/events.html#Events-eventgroupings-mutationevents
http://msdn.microsoft.com/en-us/library/ie/ms533051(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/ms533051(v=vs.85).aspx
https://developer.mozilla.org/en/docs/Web/API/Event
https://developer.mozilla.org/en/docs/Web/API/Event

Chapter 2

[23]

The publisher/subscriber
Events are yet another solution to communicate when asynchronous callbacks
finish execution. An object can become emitter and publish events that other
objects can listen to. This is one of the finest examples of the observer pattern.

The nature of this method is similar to "event listener", but much better than the
latter because we can view the "message center" in order to find out how much
signal is present and the number of subscribers for each signal, which runs the
monitoring program.

A brief account of the observer pattern
The observer provides very loose coupling between objects. This provides the ability
to broadcast changes to those who are listening to it. This broadcast may be for the
single observer or a group of observers who are waiting to listen. The subject maintains
a list of observers to whom it has to broadcast the updates. The subject also provides
an interface for objects to register themselves. If they are not in the list, the subject
doesn't care who or what is listening to it. This is the way how the subject is decoupled
from the observers, allowing easy replacement of one observer for another observer or
even one subject, as long as it maintains the same series of events.

A formal definition of observer
The following is the definition of observer:

Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.

—Gang of Four

The source of this definition is page 20 of Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional.

The push and pull model
When you create a subject/observer relationship, you would want to send information
to the subject; sometimes, this information can be brief, or sometimes, it can be
additional information. This can also happen that your observer sends a little chunk
of information, and in return, your subject queries more information in response.

The JavaScript Asynchronous Model

[24]

When you're sending a lot of information, it's referred to as the push model, and
when the observers query for more information, it's referred to as the pull model.

The pull model emphasizes the subject's ignorance of its observers, whereas the
push model assumes subjects know something about their observers' needs. The
push model might make observers less reusable because Subject classes make
assumptions about Observer classes that might not always be true. On the other
hand, the pull model may be inefficient because Observer classes must ascertain
what changed without help from the Subject.

—Gang of Four

The source of this definition is page 320, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional.

The advent of observer/push-pub
This observer/push-pub pattern provides a way of thinking on how to maintain
relationship between different parts of an application. This also gives us an idea of
what part of our application should be replaced with observers and subjects in order
to achieve maximum performance and maintainability. Here are some points to bear
in mind when using this pattern in JavaScript in particular, and for other languages
in general:

•	 Using this pattern, it can break down an application into smaller, more
loosely coupled blocks to improve code management and potential for reuse

•	 The observer pattern is best when there is a need to maintain consistency
between related objects, without making classes tightly coupled

•	 Due to the dynamic relationship that exists between observers and subjects,
it provides great flexibility, which may not be as easy to implement when
disparate parts of our application are tightly coupled

The drawbacks of observer/push-pub
Since every pattern has its own price, it is the same with this pattern. The most
common one is due to its loosely coupled nature, it's sometimes hard to maintain the
states of objects and track the path of information flow, resulting in getting irrelevant
information to subjects by those who have not subscribed for this information.

Chapter 2

[25]

The more common drawbacks are as follows:

•	 By decoupling publishers from subscribers, it can sometimes become
difficult to obtain guarantees that particular parts of our application
are functioning as we may expect

•	 Another drawback of this pattern is that subscribers are unaware of
the existence of each other and are blind to the cost of switching
between publishers

•	 Due to the dynamic relationship between subscribers and publishers,
the update dependency can be difficult to track

The promises object
The promises object is the last of the major concepts of asynchronous programming
model implemented. We will be looking at promise as a design pattern.

Promise is a relatively new concept in JavaScript, but it's been around for a long
time and has been implemented in other languages.

Promise is an abstraction that contains two main properties, which make
them easier to work with:

•	 You can attach more than one callback with a single promise
•	 Values and states (errors) get passed along
•	 Due to these properties, a promise makes common asynchronous

patterns using callback easy

A promise can be defined as:

A promise is an observable token given from one object to another. Promises wrap
an operation and notify their observers when the operation either succeeds or fails.

The source of this definition is Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional.

Since the scope of this book revolves around the promise and how it is implemented,
we will discuss it in greater detail in Chapter 3, The Promise Paradigm.

The JavaScript Asynchronous Model

[26]

Summing up – the asynchronous
programing model
So far, we have seen how the asynchronous model is implemented in JavaScript.
This is one core aspect of understanding that JavaScript has its own implementation
for the asynchronous programming model, and it has employed much of the core
concepts in the asynchronous programming model.

•	 The asynchronous mode is very important. In the browser, a very
time-consuming operation should be performed asynchronously, avoiding
the browser unresponsive time; the best example is the Ajax operations.

•	 On the server side, the asynchronous mode of execution since the
environment is single threaded. So, if you allow synchronization to
perform all http requests, server performance will decline sharply
and will soon lose responsiveness.

•	 These are simple reasons why implementation on JavaScript is widely accepted
in modern applications on all ends of needs. Databases such as MongoDB,
Node.js as Server Side JavaScript, Angular.js, and Express.js as frontend, and
logic building tools are examples of how heavily JavaScript is implemented
throughout the industry. Their stack is commonly refer red to as the MEAN
stack (MongoDB, Angular.js, Express.js, and Node.js)

Summary
In this chapter, we learned what a programming model is and how they are
implemented in different languages, starting from a simple programming model
to the synchronous model to the asynchronous model.

We also saw how tasks were organized in the memory and how they were served
according to their turns and priorities, and how programming models decide
what task is to be served.

We have also seen how the asynchronous programming model works in JavaScript,
and why it's necessary to learn the dynamics of the asynchronous model to write
better, maintainable, and robust code.

This chapter also explained how the major concepts of JavaScript are implemented
and their roles from different angles in an application development.

Chapter 2

[27]

We have also seen how callbacks, events, and observer were applied within JavaScript
and how these core concepts are driving today's application development scenes.

In the next chapter, Chapter 3, The Promise Paradigm, we will learn a great deal about
promise and how it's helping in making applications more robust and scalable.

[29]

The Promise Paradigm
In this chapter, we will focus on what the promises paradigm is, from where it
originated, how languages implement it, and what problems it can solve for us.

We have briefly discussed the origin of the promise pattern in Chapter 1, Promises.js.
In this chapter, we will explore this subject in more detail, in a generic way, so that
it would clear the logic and theory behind the adoption of promise in different
languages and in particular, how it's helping us in today's modern programming.

Callback, revisited
In previous chapters, you learned how the JavaScript mechanism works. The
single-threaded model of JavaScript has its limitation, which can be controlled through
better use of callbacks. However, the scenarios such as callback hell really pushed
engineers to find and implement a better way to control the callbacks and maximize
the performance of the program, while staying inside a single thread. A callback is a
function that can be passed as an argument to another function to be executed when
it's called.

There is absolutely no harm in using callbacks, but there are also a number of other
options available to handle asynchronous events. Promise is one such way to handle
asynchronous events and has more efficiency than many of other asynchronous tools
in its family.

To understand more clearly why we needed to implement Promises.js in
asynchronous programming, we need to understand the concept behind the
promise and deferred objects.

www.allitebooks.com

http://www.allitebooks.org

The Promise Paradigm

[30]

Promise
The beauty of working with JavaScript's asynchronous events is that the program
continues its execution, even when it doesn't have any value it needs to work that is
in progress. Such scenarios are named as yet known values from unfinished work.
This can make working with asynchronous events in JavaScript challenging.

Promises are a programming construct that represents a value that is still unknown.
Promises in JavaScript enable us to write asynchronous code in a parallel manner to
synchronous code.

Deferred
Deferred is an object that represents work that is not yet being done, and promise
is an object representing a value that is not yet known.

The objects provide a way to take care of registering multiple callbacks into a
self-managed callbacks queues, invoke callbacks queues, and relay the success
or failure state of any synchronous function.

How do promise and deferred relate to
each other?
So far, in Chapter 2, The JavaScript Asynchronous Model, we discussed promises and
how they work. Let's have a look at how promises and deferred work:

1.	 Every deferred object has a promise that serves as a proxy for the
future result.

2.	 A deferred object can be resolved or rejected by its caller, which separates
the promise from the resolver, while a promise is a value returned by an
asynchronous function.

3.	 The promise can be given to a number of consumers and each will
observe the resolution incessantly, while the resolver/deferred can be
given to any number of users and the promise will be resolved by the
one that first resolved it.

Standard behaviors of the Promise API
There are few standards as per a promise/proposal, which has to be fulfilled for
the true implementation of the concept. These standards are the keys to implement
promises, and any library/language must comply with it for true implementation.

Chapter 3

[31]

A promise does the following:

•	 A promise returns an eventual value when a single completion of an
operation occurs.

•	 A promise has three states: unfulfilled (when a promise is waiting to be
processed), fulfilled (when a promise has been completed and the desired
result has been obtained), and finally, failed (when the result of a promise
was obtained but not as anticipated).

•	 Promise has a then property, which must be a function and must return
a promise. In order to complete a promise, fulfilledHandler,
errorHandler, and progressHandler must be called in.

•	 With a promise, callback handlers return the fulfillment value from
the returned promise.

•	 The promise value must be persistent. This should maintain a state,
and within that state, the value must be preserved.

This API does not define how promises are created. It only provides a
necessary interface that promise provides to promise consumers to interact with it.
Implementations are free to define how promises are generated. Some promise may
provide their own function to fulfill the promise and other promises may be fulfilled
by mechanisms that are not visible to the promise consumer. Promises themselves
may include other additional convenient methods as well.

Interactive promises
Interactive promises are extended promises that add more value to the paradigm
by adding two more functions to its arsenal, get and call:

•	 get(propertyName): This function requests the given property from the
target of promise. This also returns a promise to provide the value of the
stated property from promise's target.

•	 call(functionName, arg1, arg2…): This function requests to call the
given method/function on the target of promise. It also returns a promise
to provide the return value of the requested function call.

The states and return values of a promise
From Chapter 1, Promises.js, we are already aware that a promise is based on
three states. Let's brush up our memory on these states, in accordance with
promises paradigm.

The Promise Paradigm

[32]

Promise has three states:

•	 Unfulfilled promise
•	 Fulfilled promise
•	 Failed promise

A promise exists within these three states.

The beginning of a promise is from an unfulfilled state. This is due to the fact that a
promise is a proxy for an unknown value.

When the promise is filled with the value it's waiting for, it's in the fulfilled state.
The promise will be labeled as failed if it returns an exception.

A promise may move from an unfulfilled to a fulfilled or failed state. Observers
(or the objects/events waiting) are notified when the promise is either rejected or
fulfilled. Once the promise is rejected or resolved, its output (value or state) cannot
be modified.

The following code snippet will help you understand more easily than theory:

// Promise to be filled with future value
var futureValue = new Promise();

// .then() will return a new promise
var anotherFutureValue = futureValue.then();

// Promise state handlers (must be a function).
// The returned value of the fulfilled / failed handler will be the
value of the promise.
futureValue.then({

 // Called if/when the promise is fulfilled
 fulfilledHandler: function() {},

 // Called if/when the promise fails
 errorHandler: function() {},

 // Called for progress events (not all implementations of promises
have this)
 progressHandler: function() {}
});

Chapter 3

[33]

Common sequencing patterns
Promise and deferred enables us to represent simple tasks combined with
complex tasks to a fine-grained control over their sequences.

As mentioned earlier, deferred is an object that represents work that is not being
done yet and promise is an object representing a value that is currently unknown.
This concept helps us write asynchronous JavaScript, similar to how we write
synchronous code.

Promises make it comparatively easy to abstract small pieces of functionality
shared across multiple asynchronous tasks. Let's take a look at the most common
sequencing patterns that promises makes easier:

•	 Stacked
•	 Parallel
•	 Sequential

Stacked
Stacked binds multiple handlers anywhere in the application to the same promise
event. This helps us bind a number of handlers in a cleaner way so that it gives
control to sequence within our code. Here is a sample for stacked and bind handlers:

var req = $.ajax(url);
 req.done(function () {
 console.log('your assigned Request has been completed');
 });

 //Somewhere in the application
 req.done(function (retrievedData) {
 $('#contentPlaceholder').html(retrievedData);
 });

Parallel
Parallel simply asks multiple promises to return a single promise, which alerts
of their multiple completion.

With the parallel sequence, you can write multiple promises to return a single
promise. In a parallel sequence, an array of asynchronous tasks are executed
concurrently and return a single promise when all the tasks have succeeded or
rejected with an error in case of failure.

The Promise Paradigm

[34]

A general code snippet that shows how parallel sequence returns a single promise is
shown as follows:

$.when(task01, task02).done(function () {
 console.log('taskOne and taskTwo were finished');
});

For a more clear understanding, here is a sample function that processes the
parallel sequence:

function testPromiseParallelSequence(tasks)
{

 var results = []; //an array of async tasks

 //tasks.map() will map all the return call was made.

 taskPromises = tasks.map(function(task)
 {
 return task();
 }); //returning all the promise

Sequential
Actions need to be in sequence if the output of one action is an input to another.
HTTP requests are such a case where one action is an input to the other. Sequence
also enables you to transfer the control of one part of the code to the other.

It executes tasks in a sequential order that is defined by the need of the application,
or the scope of the tasks that need to be queued in order to be served.

Here is a generic example in which one sequence processes and passes control to the
other as an input:

// seq1 and seq2 represents sequence one and two respectively
var seq1, seq2, url;
url = 'http://sampleurl.com;
seq1 = $.ajax(url);
 seq2 = seq1.then(

 function (data) {
 var def = new $.Deferred();

 setTimeout(function () {

Chapter 3

[35]

 console.log('Request completed');
 def.resolve();
 },1000);

 return def.promise();
 },

 function (err) {
 console.log('sequence 1 failed: Ajax request');
 }
);
 seq2.done(function () {
 console.log('Sequence completed')
 setTimeout("console.log('end')",500);
 });

Decoupling events and applications logic
Promises provide an efficient way to decouple the events and application logic.
This makes the implementation of events and application logic easier to build and
maintenance also saleable.

ASYNCHRONOUS
API PROVIDER

ASYNCHRONOUS
API PROVIDER

ASYNCHRONOUS
API PROVIDER

Promise

Business Logic

A simple way to show how promises decouple events and business logic

The significance of durability in promises is that it's not an "EventEmitter", but can
be converted into one by intelligent implementation. But then again, it would be a
crippled one.

The Promise Paradigm

[36]

Promises as event emitters
The problem in using promises as an event emitter is it's composition. It's the
progression events in promises that cannot compose very well with EventEmitter.
Promises chain and compose whereas events, on the other hand, are unable to do so.
An implementation of Q library is discarding the progression in favor of estimation
in v2. This is why progression was never included in ECMAScript 6. We will learn
a great deal about a few of these emerging technologies in Chapter 9, JavaScript – The
Future Is Now.

Coming back to our topic of how promises is decoupling events and applications
logic, we can use events to trigger the resolution/failure of promises by passing the
value at the same time, which allows us to decouple. Here is the code:

var def, getData, updateUI, resolvePromise;
// The Promise and handler
def = new $.Deferred();

updateUI = function (data) {
 $('p').html('I got the data!');
 $('div').html(data);
};
getData = $.ajax({
 url: '/echo/html/',
 data: {
 html: 'testhtml',
 delay: 3
 },
 type: 'post'
 })
 .done(function(resp) {
 return resp;
 })
 .fail(function (error) {
 throw new Error("Error getting the data");
 });

// Event Handler
resolvePromise = function (ev) {
 ev.preventDefault();
 def.resolve(ev.type, this);

Chapter 3

[37]

 return def.promise();
};

// Bind the Event
$(document).on('click', 'button', resolvePromise);

def.then(function() {
 return getData;
})
.then(function(data) {
 updateUI(data);
})
.done(function(promiseValue, el) {
 console.log('The promise was resolved by: ', promiseValue, ' on ',
el);
});
// Console output: The promise was resolved by: click on <button>
</button>

The reference of the following code is available at http://jsfiddle.net/
cwebbdesign/NEssP/2.

What promises prescribed not to do
Promises clearly outline what not to do while implementing a promises paradigm.
We saw most of these rules in Chapter 2, The JavaScript Asynchronous Model. Let's
take a look at these from the promises paradigm in order to refresh our memories.

The following two practices must be taken into account while implementing
promises, regardless of what implementation you are using:

•	 Avoiding getting into a callback hell
•	 Avoiding use of unnamed promises

Avoiding getting into callback hell
We are already aware what callbacks are and how to handle them. Callbacks are
a great way to implement an asynchronous model, but they have their own cost.
They are unmanageable at some point, and that point comes in when you start your
descent in callbacks. The deeper you dive in, the more difficult it becomes to handle,
thus leading you into a callback hell scenario.

http://jsfiddle.net/cwebbdesign/NEssP/2
http://jsfiddle.net/cwebbdesign/NEssP/2

The Promise Paradigm

[38]

All of the promises implementations have sorted this problem very simply
and wisely.

Handling Callbacks in Promises

Name your
Function

Beautify your
Code

Modularize
your Code

A handy way to tackle callback hell

Avoiding the use of unnamed promises
As we saw from Chapter 2, The JavaScript Asynchronous Model, the use of unnamed
promises can cause huge problems and will cost more time than the normal
function of writing and testing. In some instances, it's good and recommended
that you do not give the name of your function, but it's not good practice to
leave your promise unnamed.

If someone thinks anonymous functions are hard to deal with, then unreasonably
named functions are hard to understand and maintain. I recommend that you come
up with a proper, predecided naming convention, and it should be done well before
writing the actual code. I prefer to use CamelCase notation in Microsoft style, in
which the starting name of the function is in lowercase and the connecting name is
in uppercase.

Promises and exceptions
Consider a function that throws exceptions within the promise paradigm. You won't
find any trace or log if you try to see what has happened to the exception-throwing
function. You will see no output on the screen or on console. Why? The reason is
hidden in the basics of promise.

Chapter 3

[39]

Promises are designed to produce two types of output—a promise will either be
fulfilled or rejected. So naturally, it won't show up anywhere at the output streams
since promises are not designed to produce any other output except these two
predefined states. However, it's not promise that does not give any facility to handle
exceptions. In fact, it provides a robust way to show and handle such exceptions, by
implementing a proper handler to catch the exception and display the reason at any
desirable output stream.

In most of the promises paradigm, the exception is handled by fail and then.
The handlers differ from one library to another and from one language to another
language. In many advance high-level languages, error and exception handling
are managed automatically without adding much of code and explicitly telling
compiler/ interpreter, but in those libraries and languages, in which it's not handled
on auto-basis, you have to write an explicit code to handle exception manually.

At this point, it's significant to mention that we are using a bit of code from Q,
just to make you understand that exemption handling is also a part of promises
implementation and how to deal with an exception, if one occurs. In our next chapter,
we will focus more on how to implement promises in other libraries and languages.

Coming back to the topic, like many other implementations, Q has its own
mechanism of dealing with promises.

Consider that this code is about to throw an exception:

function imException()
{
throw "imException";

}//end of code

Since it's not the right implementation of handling exception in promises using
Q, there will be no output at all, and if we want to handle it as per implementation
of the Promises paradigm in Q, we will want to add a rejection handler.

Let's take Q as an example, in order to see if we can add the same function using its
fcall() method:

Q.fcall(imException);

This method call is not meant to handle the exceptions, so it won't show anything.
To handle it, we need to add a rejection handler that will help us to track and
monitor the exception.

www.allitebooks.com

http://www.allitebooks.org

The Promise Paradigm

[40]

The fail method
The simplest way to handle exception is using fail. Let's restructure our code to
implement the fail method:

// code view before exception handler
Q.fcall(imException);

//code after exception handler
Q.fcall(imException) .fail(function(err) { console.log(err); });

The then method
Normally, we would use then to handle chaining promise. This will take two
arguments and the return promise-based execution of one of these handlers:

Q.fcall(imException)
.then(
 // first handler-fulfill
 function() { },

 // second handler -reject
 function(err) {
 console.log(err);
 }
);

The first argument was a fulfill method and the second is rejection handler, as
shown in the preceding code. Using these simple techniques, Q implements
exception handling.

Best practices to handle exceptions in
promise
Promise provides an impressive way to handle exceptions. Exception handling
in promise is quite simple and easy to implement, and almost all libraries and
implementations support a generic way of implementation. Here are some of
best practices to deal with exceptions:

Chapter 3

[41]

Make your exceptions meaningful
To maximize performance and maintainability, throw understandable errors. The
best practice is to reject a promise and reject it with an error instance. Make it a habit
not to reject an error object or primitive values.

Monitor, anticipate, and handle exception
Keep an eye on the effects of errors on the flow of execution. The best practice for
doing this is to anticipate failures in your handlers. The better you are at anticipation,
the better will be your control over the flow of execution. Always think whether your
rejection handler should be invoked by failures in the resolution handler, or if there
should be a different behavior.

Keep it clean
When you are done dealing with exception, start CleanUp as soon as the error
occurs. When the chain of promises is processed and a result has been delivered in
either rejected or fulfilled state, terminate the chain and clean up the unused thread.
This will help in not only optimizing the throughput of code, but also creating
manageable outputs.

Mozilla has its own implementation for handling errors in promise, which can be
seen at https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_
code_modules/Promise.jsm/Promise.

Considerations while choosing a promise
Before you start working with a promise library, there are a number of elements you
should keep in mind. Not all the implementations of a promise's implementation are
created equally. They are different from one another in terms of offered utilities by
API, performance, and sometimes, behavior too.

A promise/proposal just outlines the proposed behavior of the promises and not
implementation specifications. This results in varying libraries offering a different
set of features. These are the ways that they differ from one another:

•	 All promises/compliments have then(); function and also have varying
features in their API. In addition to this, they're still able to exchange
promises with each other.

•	 In promise/compliant libraries, a thrown exception is translated into a
rejection and the errorHandler() method is called with the exception.

https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise

The Promise Paradigm

[42]

As a result of the differing implementations, there are interoperability problems
when working with libraries that return or expect promise/compliant.

There may be trade-offs in choosing a promise library. Every library has its own
pros and cons, and it is purely up to you to decide what to use depending on the
particular use case and your project needs.

Summary
In this chapter, we covered the paradigm of promise and the concept behind it. We
have covered the conceptual knowledge of promise, deferred, common sequences
of promise, and how promise helps in decoupling the business logic and application
logic. We have also covered the relation between promise and event emitters and
the idea behind it.

Due to the virtue of this chapter, we are now able the select which promise library
we should use on the basis of our knowledge gained.

In our next chapter, we will be looking at the implementation of promise in different
programming languages and will examine the ease they are bringing for the
developers and end users.

[43]

Implementing Promises
In the last chapter, Chapter 3, The Promise Paradigm, we have seen how promise and
its theories were fabricated together to form a whole new amazing picture of the
software engineering paradigm, and especially in today's modern asynchronous
application development life cycle.

In this chapter, we will start experimenting on how this concept can take shape
by implementing promises in real time. Why do we need to see its implementation?
The answer to this question is quite simple; we need to see how the concept we
have developed so far is true and how much of this concept is really applicable.
Also, with these little implementations of promises, we will plot the base of our
foundation to use promise in other technologies in later chapters. So, let's see
how we will go about with this implementation phase.

How to implement promises
So far, we have learned the concept of promise, its basic ingredients, and some of the
basic functions it has to offer in nearly all of its implementations, but how are these
implementations using it? Well, it's quite simple. Every implementation, either in the
language or in the form of a library, maps the basic concept of promises. It then maps
it to a compiler/interpreter or in code. This allows the written code or functions to
behave in the paradigm of promise, which ultimately presents its implementations.

Implementing Promises

[44]

Promises are now part of the standard package for many languages. The obvious
thing is that they have implemented it in their own way as per the need. We will
be examining more on how these languages are implementing the concept of
promise in detail in this chapter.

Implementations in Java
Java is among the world's favorite and most admired programming languages and is
used in millions of devices across the globe. There is no need to say anything further
about Java, except that it's the first choice of engineers when it comes to creating
application software that uses multithreaded and controlled asynchronous patterns
and behaviors. Java is one of the few languages that has implemented asynchronous
behavior by default in its compiler, which helps programmers to write robust,
scalable, and maintainable pieces of software.

The util package of Java
Naturally, Java has more acceptability for the concept of promise and its
implementation. There are many implementations in the package of java.util.
concurrent, regarding promise and its implementations. We have handpicked
some of the interfaces and classes that are helping out in implementing promises
or nearly matching the concept.

The mechanics of Java to implement a promise
Within the java.util.concurrent package, there are a number of interfaces
and classes that will help us to write concurrent and asynchronous code, but there
are a few particular interfaces and libraries that are specific to this promise/
future implementation.

The java.util.concurrent package is home to concurrent programming (as the
name says) and is the home of few small standardized extensible frameworks. This
also helps in implementing some of the core classes, which in normal conditions,
are hard to work with.

Chapter 4

[45]

The core components of java.util.concurrent
The java.util.concurrent package has many classes and components, but some of
the core components that make this particular package more adaptable to work are:

Core components of java.util.concurrent

Executors Timing

Queues

Concurrent
Collections

Memory
Consistency
Properties

Synchronizers

Core components of the Java util.concurrent package

Executor
Executor is a simple standardized interface, which is commonly used to define
custom threaded subsystems. These subsystems include the thread pools,
asynchronous I/O, and task-based lighter frameworks.

Tasks created in the thread can either be executed in "the same task-execution
thread" or in a new thread; this may also be executed in the thread calling execute
sequentially or concurrently. Whichever thread the execute pattern task adopts is
purely based on the concrete Executor class used.

The ExecutiveService interface provides a fully stacked asynchronous tasks
framework. This interface is for a number of tasks of the pool, which includes the
controlled shutdown of Executor, managing of different in-pool cues, and scheduling
of tasks. There are a few more associates that work with ExecutiveService to add
support to delay the periodic and periodic task executing. One such associate is
ScheduledExecutorService, a subinterface that works with the ExecutiveService
interface in managing the delayed and periodic tasks executing whenever called upon.

There is another interface called the ExecutorService interface, which provides
methods to arrange the execution of any function that is expressed as callable.

Implementing Promises

[46]

Queues
When it comes to the queue, the only thought that first emerges is the pattern
of First In First Out (FIFO). Just as other languages apply this data structure in
their own ways, Java treats it as an efficient and scalable thread-safe, nonblocking
FIFO queue by employing the ConcurrentLinkedQueue class from its java.util.
concurrent package. In the same package, five implementations support the
BlockingQueue interface.

The BlockingQueue interface is a queue, which has an advanced wait mechanism.
This holds the queue to further get into processing until all the previous processing
is done. This also waits for the space to make the queue available when storing
an element.

The five implementations of the BlockingQueue interface are listed as follows:

•	 LinkedBlockingQueue

•	 ArrayBlockingQueue

•	 SynchronousQueue

•	 PriorityBlockingQueue

•	 DelayQueue

We will discuss some of these relevant implementations in the following section.

Timing
Since util is the utilities package, it has controls in the form of classes and interfaces
that help engineers to make use of their daily routine stuff. One such package is the
timing of a method or interface. This is to perform certain instructed operations, and
eventually, they time out themselves once the operation is done.

Most of us are already aware of the importance of session creation and session
timeout, especially those of us who are programmers for the Web. Session tracking
is a subject in its own and doesn't really link that much from the structure of this
chapter, so we will return our focus to the topic of timing.

This packing is like a timing belt of Java programs. In any engine, the role of a timing
belt is to make sure that certain mechanical operations are done within a specified
amount of time; it is the same as with this package. This controls the in-time and
out-time of functions and also the definite/indefinite waits. The point to remember
is that all these methods use the time out in every case. This helps threads define the
amount of time a method spends within a thread pool and saves the actual program
to perform with scalability.

Chapter 4

[47]

Synchronizers
Java provides a low-level thread creation and execution so that programmers can
easily handle and modify the thread-level control. In earlier versions, the controlling
of threads was considered the hardest topic to deal with, as there was much of the
manual control than automation of threads and their synchronization. At this time,
Java was much more advanced in controlling multiple threads than its competing
languages, but still playing with threads was a fairly hard task for Java engineers.

In the later versions of Java, this problem was considered as the most important one
to find a regulation, and finally, with the emergence of version 7, the compiler has
fixed most of the problems faced by engineers.

In the current version, which is version 8, five classes aid the purpose
of synchronization:

•	 The Semaphore class is a classic concurrency tool and has been around for
a very long time (http://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/Semaphore.html)

•	 The CountDownLatch class is a very simple yet common utility for blocking
until a given number of signals, events, or operations being performed in
other thread are being taken care off (http://docs.oracle.com/javase/7/
docs/api/java/util/concurrent/CountDownLatch.html)

•	 The CyclicBarrier class is a resettable multiway synchronization
point, which is useful in some styles of parallel programming (http://
docs.oracle.com/javase/7/docs/api/java/util/concurrent/
CyclicBarrier.html)

•	 The Phaser class provides a more flexible form of barrier that may be used to
control phased computation among multiple threads (http://docs.oracle.
com/javase/7/docs/api/java/util/concurrent/Phaser.html)

•	 The Exchanger class allows two threads to exchange objects at a rendezvous
point and is useful in several pipeline designs (http://docs.oracle.com/
javase/7/docs/api/java/util/concurrent/Exchanger.html)

Concurrent collections
The Concurrent packages provide the implementations for a multithreaded context
and has the following implementations.

Since it has more specific sync facilities, some of its classes use the prefix Concurrent
to highlight the additional facilitates it is providing. A few more prominent ones are:

•	 ConcurrentHashMap

•	 ConcurrentSkipListMap

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Phaser.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Exchanger.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Exchanger.html

Implementing Promises

[48]

•	 ConcurrentSkipListSet

•	 CopyOnWriteArrayList

•	 CopyOnWriteArraySet

The virtue of concurrent collection is its safe thread, but not overlooked by a single
locking mechanism, in particular. Only in the case of ConcurrentHashMap, it allows
any sum of concurrent reads as well as concurrent writes. Why, then, do we use
synchronized classes? The answer is that they are very useful in preventing all the
access to a collection using a single lock, but it has a cost, and poorer scalability.

In other cases where multiple threads are in line to access a common collection, the
current version of classes is more advisable, whereas unsynchronized locks are used
when either collections are unshared or they can be accessed when holding other locks.

The implementation of promise by Java
Java implements the paradigm of promise using its promising class and interfaces.
Although its asynchronous behavior is one of the core and flagship features of
Java, here are the ingredients of how promise is implemented in Java:

•	 Interfaces:
°° CompletionService

°° ExecutorService

°° Future

•	 Classes:

°° Delayed

°° DelayQueue

°° FutureTask

CompletionService
The CompletionService interface acts as a service to make a distinction between
new asynchronous tasks from the result of completed tasks. This follows a simple
process in which the producer adds the tasks for execution. For the consumers, this
interface takes completed tasks and processes their results in the order that they were
marked as completed. This service can be used for many concurrent operations, such
as managing an asynchronous I/O. The mechanism of an asynchronous I/O is the
tasks that are submitted in one part of the program or set of programs or in a system,
and then acted upon the different parts of the program. The submission order may
be different than the order they were requested initially.

Chapter 4

[49]

The mechanism of an asynchronous I/O is that it reads tasks and stores it in one part
of the program, such as buffer.

This can be a single program (such as browser) or a set of programs (such as an
operating system thread pool). The thread handler decides which thread needs
to be executed first.

This interface relies on a separate executor or actually executes the tasks
due to which the CompletionService interface only manages an internal
completion queue. As interfaces implement, they need a class to do so, and
the ExecutorCompletionService class provides such a facility.

ExecutorService
The ExecutorService interface has two main roles to perform—one is to provide
methods to manage the termination of asynchronous tasks, and the other is to
provide the methods that can produce a future value for tracing. This tracking
can be done for either one or more asynchronous tasks.

The use of an Executor for ExecutorService:

•	 ExecutorService inherits Executor, which provides the methods to
manage termination and production of a future value to track the progress.

•	 ExecutorService when shutdown rejects all the new tasks. They have
been loaded with two different methods:

°° shutdown()

°° shutdownNow()

The shutdown() method allows the tasks in memory to conclude their states and
then terminate them. Also, it prevents the memory from entering and processing it
for any upcoming tasks. On the other hand, shutdownnow() doesn't give any such
liberty; it just terminates whatever is in the memory, then and there. This also totally
rejects the entry of new tasks in the memory by nullifying the existing thread.

Both the methods have their own significance, but since both are related to termination
of existing tasks, they must be used with much care and with proper understanding of
the potential consequences.

The following code snippet is taken from the original Java docs, which is available
at http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ExecutorService.html:

class NetworkService implements Runnable {
 private final ServerSocket serverSocket;

www.allitebooks.com

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://www.allitebooks.org

Implementing Promises

[50]

 private final ExecutorService pool;

 public NetworkService(int port, int poolSize)
 throws IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool(poolSize);
 }

 public void run() { // run the service
 try {
 for (;;) {
 pool.execute(new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown();
 }
 }
}

class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request on socket
 }
}

The following method shuts down an ExecutorService interface in two
phases: first, by calling shutdown to reject incoming tasks, and then by calling
shutdownNow(), if necessary, to cancel any lingering tasks:

void shutdownAndAwaitTermination(ExecutorService pool) {
 pool.shutdown(); // Disable new tasks from being submitted
 try {
 // Wait a while for existing tasks to terminate
 if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
 pool.shutdownNow(); // Cancel currently executing tasks
 // Wait a while for tasks to respond to being cancelled
 if (!pool.awaitTermination(60, TimeUnit.SECONDS))
 System.err.println("Pool did not terminate");
 }
 } catch (InterruptedException ie) {
 // (Re-)Cancel if current thread also interrupted

Chapter 4

[51]

 pool.shutdownNow();
 // Preserve interrupt status
 Thread.currentThread().interrupt();
 }
}

Future
In Java, future represents the value of the result of an asynchronous computation.
Methods are provided to track the status of result. These methods indicate whether
the current state is waiting or not.

The catch is, you can only yield the result using get or when the computation is done.

Cancellation can be done via the cancel method; this sounds very easy to remember.
Cancellation of a Future value can be done using the cancellation method.

You can also check whether the task was completed normally or cancelled by virtue
of this method invocation. Once the computation is done, it cannot be cancelled; this
sounds so promising to us, just like the concept of promise.

You can also use Future to cancel tasks. Although it's not a very good approach, if
you want to do it, then you can declare many types of Future objects and ask the
method to return null; that's it! You got your task cancelled once again. This must be
done before the final computation of the tasks.

Here is the code snippet:

interface ArchiveSearcher { String search(String target); }

class App {

 ExecutorService executor = ...ArchiveSearcher searcher = ...
 void showSearch(final String target)
 throws InterruptedException {
 Future<String> future
 = executor.submit(new Callable<String>() {
 public String call() {
 return searcher.search(target);
 }});
 displayOtherThings(); // do other things while searching
 try {

Implementing Promises

[52]

 displayText(future.get()); // use future
 } catch (ExecutionException ex) { cleanup(); return; }
 }
}

The FutureTask class is an implementation of Future that implements Runnable,
and so may be executed by an Executor. For example, the previous construction
with submit can be replaced by the following:

FutureTask<String> future =
 new FutureTask<String>(new Callable<String>() {
 public String call() {
 return searcher.search(target);
 }});
executor.execute(future);

Delay and DelayedQueue
Delay is an interface that uses a marker to mark those objects that were acted upon,
after they were given a delay.

DelayedQueue is an unbounded queue that is used to collect all the objects that were
delayed/expired. Since it's a queue, it must have a header element whose delay has
expired long ago.

Since it's a queue and is similar to a queue data structure, it has a starting point
called header and an ending point called footer. When it comes to future, the queue
we are referring to here has a value, which has already expired due to the failed
promise or unfulfilled promise.

If such an element was not found, will the poll return null when the expiration
occurs? Well, it occurs when the method getDelay(TimeUnit.NANOSECONDS) returns
the value as less than or equal to zero. The expired elements in this way cannot be
removed, so they are treated as normal ones.

FutureTask
FutureTask is the cancellable asynchronous computation. This is the basic
provider of Future that is loaded with methods from start of a method to cancel
it. This also helps in the retrieving of the result of the computation, and since it's
an implementation, the result can be extracted when the computation has been
completed. Needless to mention that once the result is computed, it cannot be
pulled back or changed as it's a promise.

Chapter 4

[53]

Summing up Java and Promises.js
If we conclude the preceding discussion, it's clear that Java has a clearer approach
and implementation when it comes to Promises.js. It's a mature way of handling
asynchronous behavior, and especially, the way it handles multithreading is far
better than what other languages have to offer. However, as every implementation
has its own drawbacks, Java too has it, and it's quite acceptable since you cannot just
copy and paste the theory as it is with any compiler/interpreter. There are few more
supportive frameworks/libraries contributed by an open source community to add
the remainder of its implementation.

Say hello to JDeferred
Inspired by the implementation of promise in jQuery, few Java Engineers have
started to develop a library called JDeferred. This implements the concept of
promise as robustly as it should be by leaving the gaping holes of the java.util.
concurrent package. This was a brief of how JDeferred works. Let's dive deep
into what it is and its unique advantages, as compared to other implantations
available in the market.

Just like jQuery has a deferred object, JDeferred is designed in a similar way to
behave and contact with Java's compiler. JDeferred is not only similar with jQuery's
implementation of promise, but it also extends its support to the Android Deferred
Object. Chapter 8, Promises in jQuery is the dedicated chapter on jQuery and its
mechanism and working on promise, so we can skip that part for now and see what
the Android Deferred Object is, and how it fits into the implementation of promise.

A few words about Android Deferred Object
It would be unfair not to showcase the existence of Android Deferred Object and its
properties when we are discussing JDeferred. The Android Deferred Object is a
utility or more simply, it is a chainable utility object that can actually do all the same
stuff for the Android domain. It can register multiple callbacks in a single callback
queue; it can invoke callback queues and after processing. It also can relay the state
of success or failure to whichever function is waiting for; it doesn't matter whether
it's a synchronous function or an asynchronous function.

Its working is quite straightforward. You obtain a promise out of a function that
was executed asynchronously. As we can work around with promise, you can
attach callbacks to get notified about the success or failure. Whenever this piece
of program that was working asynchronously finishes off as expected, the promise
is called to be resolved in case of any error; it calls the rejected parameter.

Implementing Promises

[54]

Use case 1 – object success and failure callbacks
for a task
Say that you need an asynchronous HTTP request. A simple way of using Android
Deferred Object is to wrap the request in to DeferredAsyncTask and attach callbacks
to your action. Here is the code for such a scenario:

new DeferredAsyncTask<HttpResponse,HttpResponse,Void>() {
 protected abstract Resolved doInBackground() throws Exception {
 //do your async code here
 }
}
.done(new ResolveCallback<HttpResponse> {
 public void onResolve(HttpResponse resolved) {
 //your success code here
 }
})
.fail (new RejectCallback<HttpResponse> {
 public void onReject(HttpResponse rejected) {
 //your failure code here
 }
});

The reference to preceding code is available at https://github.com/
CodeAndMagic/android-deferred-object.

Use case 2 – merging several promises
This use case is best for when you need to add several executed promises into a
single one by merging them as a single promise. A convenient way is to call the
DeferredObject.when method:

Promise<A1,B1,C1> p1 = new DeferredAsyncTask<A1,B1,C1>() { ... };
Promise<A2,B2,C2> p1 = new DeferredAsyncTask<A2,B2,C2>() { ... };
Promise<A3,B3,C3> p3 = new DeferredAsyncTask<A3,B3,C3>() { ... };
//when gives you a new promise that gets triggered when all the merged
promises are resolved or one of them fails
DeferredObject.when(p1,p2,p3)
.done(new ResolveCallback<MergedPromiseResult3<A1,A2,A3>() {
 public void onResolve(MergedPromiseResult3<A1,A2,A3> resolved){
 Log.i(TAG, "got: " + resolved.first() + resolved.second() +
 resolved.third());
 }
})

https://github.com/CodeAndMagic/android-deferred-object
https://github.com/CodeAndMagic/android-deferred-object

Chapter 4

[55]

.fail(new RejectCallback<MergedPromiseReject>() {
 public void onReject(MergedPromiseReject rejected) {
 //failure handling here
 }
})
.progress(new ProgressCallback<MergedPromiseProgress>() {
 public void onProgress(final MergedPromiseProgress progress){
 //you get notified as the merged promises keep coming in
 }
});
//Merging doesn't stop you do add individual callbacks for promises
that are in the merge
p1.done(...).fail(...)
//Or even merging them in another way
DeferredObject.when(p1,p2).done(...).fail(...)

Mechanics of JDeferred
Coming back to our core discussion of JDeferred, there is almost everything that this
implementation has adopted from promises and considered to be more promised
than any other library. We will look at what the features it's providing are, and how
they are implemented within.

Features of JDeferred
The implementation of JDeferred provides all the methods needed to present the
promise paradigm in Java. This has features such as deferred objects and promise,
promise callbacks, multiple promises, callable and runnable methods, and Java's
generic support.

The following table summarizes the features, along with their available
implementation:

Feature Available implementation
Deferred object and promise N/A
Promise callbacks .then(…)

.done(…)

.fail(…)

.progress(…)

.always(…)

Implementing Promises

[56]

Feature Available implementation
Multiple promises .when(p1, p2, p3,

…).then(…)

Callable and runnable
wrappers

.when(new Runnable()
{…})

Java generic support Deferred<Integer,
Exception, Double>
deferred;

deferred.resolve(10);

deferred.reject(new
Exception());

deferred.
progress(0.80);

Playing with the code using JDeferred
We will now explore some of the common examples of this implementation,
which are used most often. We will be looking at the following topics:

•	 Deferred object and promise
•	 Deferred Manager
•	 Runnable and callable
•	 wait() and waitSafely()
•	 Filters
•	 Pipes

Deferred object and promise
The following code will help you understand how JDeferred implements deferred
objects and promise. This code has comments for a better understanding:

//creating new deferred object by calling method DeferredObject();

Deferred deferredObj = new DeferredObject();

//now its time to make some promise
Promise promise = deferredObj.promise();

promise.done(new DoneCallback() {

 public void onDone(Object result) {

Chapter 4

[57]

 //some code here
 }

}).fail(new FailCallback() {
 public void onFail(Object rejection) {
 //some more code
 }
}).progress(new ProgressCallback() {
 public void onProgress(Object progress) {
 //some code here

 }
}).always(new AlwaysCallback() {
 public void onAlways(State state, Object result, Object
 rejection) {
 //some code here

 }
});

Deferred Manager
Deferred Manager is a simple way to manage your deferred objects. Call the default
method of Deferred Manager, and then add the number of promises you want:

//create Deferred Manager's object
DeferredManager theDeferredManager = new DefaultDeferredManager();

// uncomment this to specify Executor

// DeferredManager theDeferredManager = new
DefaultDeferredManager(myExecutorService);

//add and initialize number of promises

Promise pm1, pm2, pm3;
theDeferredManager.when(p1, p2, p3)

// or you can add here .done(…)
//or you can add the fail here using .fail(…)

Implementing Promises

[58]

Runnable and callable
Runnable and callable, which is as good as promise, can be used as follows:

DeferredManager theDeferredManager = new DefaultDeferredManager();

theDeferredManager.when(new Callable<Integer>()

{
 public Integer call() {
 // return something
 // or throw a new exception
 }

}).done(new DoneCallback<Integer>() {
 public void onDone(Integer result) {
 ...
 }

}).fail(new FailCallback<Throwable>() {
 public void onFail(Throwable e) {
 ...
 }

});

You can use DeferredCallable and DeferredRunnable if you want to do
the following:

•	 Be notified about the progress made by the callable or runnable
•	 You want to make your Deferred object

Here is an example code:

final Deferred deferred = ...
Promise ThePromise = deferred.promise();
ThePromise.then(…);

Runnable runable = new Runnable() {

 public void run() {
 while (…) {
 deferred.notify(myProgress);
 }

Chapter 4

[59]

 deferred.resolve("done");
 }
}

Extending DeferredRunnable:

DeferredManager theDeferredManager = …;
theDeferredManager.when(new DeferredRunnable<Double>(){
 public void run() {
 while (…) {
 notify(myProgress);
 }
 }
}).then(…);

wait() and waitSafely()
The wait() and waitSafely() functions are the part of JDeferred that wants
to assume the control of all asynchronous tasks. This is not recommended, but
can be very useful in some cases:

Promise promise = theDeferredManager.when(...)
 .done(...) //when done
 .fail(...) // when fail

synchronized (p)
 while (promise.isPending()) {
 try {
 promise.wait();
 } catch (InterruptedException e) { ... }
 }
}

The shortcut to the preceding code is as follows:

Promise promise = theDeferredManager.when(...)
 .done(...)
 .fail(...)

try {
 promise.waitSafely(); //replaced waitSafely();
} catch (InterruptedException e) {
 ...
}

Implementing Promises

[60]

Filters
Here is the code that we will use for the filtration of promise and deferred objects:

Deferred d = …;
Promise promise = d.promise();
Promise filtered = promise.then(new DoneFilter<Integer, Integer>() {
 public Integer filterDone(Integer result)
 return result * 10;
 }
});

filtered.done(new DoneCallback<Integer>{
 public void onDone(Integer result) {
 // result would be original * 10

Pipes
Pipes in JDeferred also act for the asynchronous computation of tasks within the
ordered manner:

Deferred d = ...;
Promise promise = d.promise();

promise.then(new DonePipe<Integer, Integer, Exception, Void>() {
 public Deferred<Integer, Exception, Void> pipeDone(Integer
 result) {
 if (result < 100) {
 return new DeferredObject<Integer, Void,
 Void>().resolve(result);
 } else {
 return new DeferredObject<Integer, Void, Void>().reject(new
 Exception(...));
 }
 }
}).done(...).fail(...);

d.resolve(80) -> done!
d.resolve(100) -> fail!

Ultimate JDeferred
As you have seen, it's a much more powerful implementation of Java using promise.
Java is very powerful when it comes to implementing the promise paradigm.

Chapter 4

[61]

Actually, Java itself has many powerful features, but when it comes to proper
implementation, such frameworks help us out. Since they are community
maintained, they have a problem in terms of quality, as you may find nontested
and unverified code that can waste your time. However, JDeferred has almost
identical implementation, compared to jQuery.

Summary
Within this chapter of the book, we have actually started our journey towards
mastering the promise. This chapter covered why we are implementing promise and
why we chose Java as the core of this chapter. Java has richer features than any other
programming language and it's also tried very well to keep it more or less similar
to the automation of asynchronous behavior. We explored the core components of
Java's util.concurrent class in greater detail and by virtue of which we have seen
many live examples from Java docs online. Since Java cannot implement the promise
paradigm in whole due to the limitations that we have seen, an open source library
that acts exactly the same as the promise's paradigm has prescribed it. JDeferred
has cleared the rest of the doubts out of our minds by taking full advantage of
implementing the core values of promise, such as future, deferred, and so on.

In the next chapter, we will carry out a more practical work to develop our
understanding of promise with WinRT.

[63]

Promises in WinRT
In last four chapters, we spent time making our concept strong and our foundation of
thoughts aligned to promise. From this chapter onwards, we will explore promise in
different technologies. We will see how these technologies adopted the concept, the
reasons why thy adopted it, and how long promise has been associated with these
technologies. We will sample some of the code bases of related technologies in order
to get firsthand knowledge on how to actually implement promise in real time.

An introduction to WinRT
Our first lookout for the technology is WinRT. What is WinRT? It is the short form
for Windows Runtime. This is a platform provided by Microsoft to build applications
for Windows 8+ operating system. It supports application development in C++/ICX,
C# (C sharp), VB.NET, TypeScript, and JavaScript.

Microsoft adopted JavaScript as one of its prime and first-class tools to develop
cross-browser apps and for the development on other related devices. We are now
fully aware of what the pros and cons of using JavaScript are, which has brought
us here to implement the use of promise.

Promises in WinRT

[64]

You guessed it right! In this chapter, we will focus on how promise is implemented
on WinRT, which was the need of implementation, and how it's implemented. We
will also sample some code wherever needed to see how well promise is helping
in this platform, and how one can actually use it.

The evolution of WinRT
With the announcement of Windows 8, Microsoft has released a complete new
architecture of its famous and most used operating system, Windows. This architecture
is for all the devices and platforms, including mobile phones, tablets, wearable, and so
on. Due to this singleton approach, a unified approach for application development
was very much needed, so Microsoft included a few more tools and languages in
its platform, and from there JavaScript for Windows, or Win, came on to the scene.

You may ask why have they adopted JavaScript and why not some other language
for their expanding arsenal of web programming? The answer lies in the architecture
of JavaScript. In the previous chapters, we learned how JavaScript is considered to
be the best tool for web-based programming and how it's useful in many scenarios.
Microsoft has adopted this power and embedded it into its WinRT platform. By
adding this, Microsoft has an edge over many of its competitors, as it now has access
to a wider range of programmers who know that JavaScript can also program for
Microsoft and show their work to a large number of users.

A little detail about WinJS
WinJS was released as an open source JavaScript library, which was released by
Microsoft under the Apache License. It was initially aimed to be used for building
the software for Windows app store, but later, it became widely accepted to port
on all browsers. Now, it is used in combination with HTML5 to build apps for
both brewers-based and for windows app store.

It was first announced on April 4, 2014, at the Microsoft Build conference 2014,
and since then it has seen an evolution from version 1.0 to 3.0 with loads of
functions and implementations within its SDK.

Chapter 5

[65]

WinJS – its purpose and a distribution
history
WinJS 1.0 was first released with Windows 8.0. Here are its notable distributions
up until now. The distribution history is as follows:

The distribution name Purpose/focused area
WinJS 1.0 This was released as the JavaScript library for Windows 8.0.
WinJS 2.0 for Windows 8.1 This is an updated version and released under Apache

License at GitHub.
WinJS Xbox 1.0 for
Windows

This was an exclusive release for Xbox one for Windows.

WinJS Phone 2.1 for
Windows Phone 8.1

This was released for Windows phone development
platform.

WinJS 3.0 This was released in September 2014 for improved cross-
platform functionality, JavaScript modularization, and
improvements in a universal control design.

WinJS on GitHub
Since WinJS is an open source software, it's hosted on GitHub as MSTF, Microsoft
Open Technologies. I presume that you are aware of what GitHub is and what it's
used for; if not, check out https://github.com/.

The online repository of WinJS has three basic divisions:

• WinJS, which is written in TypeScript and can be found at https://github.
com/winjs/winjs

• WinJS modules that are written in JS and can be seen at https://github.
com/winjs/winjs-modules

• The WinJS bower, which is also written in JS and be found at https://
github.com/winjs/winjs-bower

Code in these repository is constantly updated and bug fixes are committed by
programmers around the globe 24 x 7, which is the sole beauty of open source
projects. The base repository is located at https://github.com/winjs.

With online emulators, you can try WinJS at http://try.buildwinjs.com.

https://github.com/
https://github.com/winjs/winjs
https://github.com/winjs/winjs
https://github.com/winjs/winjs-modules
https://github.com/winjs/winjs-modules
https://github.com/winjs
http://try.buildwinjs.com
https://github.com/winjs/winjs-bower
https://github.com/winjs/winjs-bower

Promises in WinRT

[66]

HTML5, CSS3, and JavaScript
HTML5, CSS3, and JS are a de facto model for web app development, for one strong
reason. They all are more than technologies: they are standards. There were times
when companies were in the habit of introducing their own platform, and with
many bounties, they offered to programmers to use their platforms. Back in those
days, keeping a standard for the application on all browsers was a nightmare for
developers, and hence a lot of time was consumed on projects for their compatibility
rather than their actual feature development. This frustration was addressed by W3C
and other standard maintaining bodies and started to work on standardsthat would
be acceptable for all the major game players of the industry. They will use these as
their base, rather than developing their own standard for every tiny need. This caused
the evolution of HTML5 and CSS3. Since JavaScript was around already and was
considered to be the language of the browser, it was combined with the remaining two
to become a default technology bundle for both proprietary and open source projects.

Now, with every platform, these can be used but with a very little difference in
syntax. This came as a relief to the programmers and engineers as they could now
focus on solving business problems rather than compatibility.

WT with HTML5, CSS3, and JavaScript
JavaScript in WT allows programmers to build apps using HTML and CSS. A lot of
WT apps using JavaScript are as same as writing markups for the website. In addition
to this, JavaScript on WT provides some additional features and introduces some
different ways that you can use it under this platform. Since the implementation of
JavaScript varies from platform to platform in WT, it's more or less in the Microsoft
style where, with default JS properties available, WT adds some extra features for
JavaScript. This provides the enhanced support of touch, more control over the look
and feel of the UI (user interface). This also provides controls such as DatePicker,
TimePicker, and ListView, and an exclusive access to WinJS.

The need for integrating promise with WT
JS is one of the primary languages on the WT platform. Besides the benefits of JS, there
are some drawbacks too. We all know from our discussion in the previous chapter
that callback hell was the core reason why there was a need to add promise into it, and
the same goes here. WT also faced the same problem, but was quick enough to solve
it by implementing promise into it. Promise in JS for WT is the game changer when it
comes to writing robust, scalable, and maintainable apps for the Windows platform.
Although WT was not the first one that implemented promise, but it is one of the
quicker adopters of the concept and implementer.

Chapter 5

[67]

In fact, JavaScript programmers started using WT JS for Windows, and due to the fact
that it's highly adoptable, many more professionals are joining that community.

Problems when using asynchronous
programming
Just to refresh your memory, in Chapter 2, The JavaScript Asynchronous Model,
we learned a great deal on asynchronous programming, what it is, and how JS
implements it. We all know that the problem in using JS is the level of complexity it
has developed, as it's heavily dependent on the callbacks for most of its operations.
In the Handling callback hell section of Chapter 2, The JavaScript Asynchronous Model,
we saw that it's nearly impossible to debug the code if callbacks were getting out of
control. The promise paradigm was then called in to solve this problem. The same
occurrences are with JS when applied at WT.

Jumpstarting promises
Asynchronous APIs in the Windows library for JS are represented as promises, as
defined by common JS promises/proposals. One can make his/her code more robust
by including an error handler, and this is considered to be the most important aspect
of debugging, and because of this many more JavaScript developers are preferring to
use promises.

There is a prerequisite for this jumpstart.

Writing a function that returns a promise
The following is a sample code using which you can develop a good understanding
on how to implement the promises in WT effectively. Follow these steps:

1.	 Create a blank Windows Runtime app named IamPromise.
2.	 Add an input element.
3.	 Add a div element that displays the result for the URL.
4.	 Add styling instructions to default.css to add some presentation

in the app.
5.	 Add a change handler for the input element.
6.	 In the change handler, call xhr.
7.	 Build and debug the app, and then enter a URL.

Promises in WinRT

[68]

8.	 Create a WT app in JS in VS2013.
9.	 Add an input element.
10.	 Within HTML, create an input element using the following code:

<div>
<input id="inputUrl" />
<!—the input id above is called input URL -- >
</div>

Add a DIV element that displays the result for the URL.

<div id="ResultDiv">Result</div>
<!—the div id named here as ResultDiv -- >

Add the styling instructions to "default.css".

input {
 // add your style statements here
}

Adding a change handler for input elements
Use the following code to understand the WinJS.Utilitties.Ready function,
which is called immediately after the event of DOM content being loaded. This is
initiated after the page has been parsed, but before all the resources are loaded:

WinJS.Utilities.ready(function () {

 // get the element by id
 var input = document.getElementById("inputUrl");
 // add our event listener here
 input.addEventListener("change", changeHandler);

}, false);

In the change handler, call xhr.

Chapter 5

[69]

Call xhr in the change handler by passing it in the URL that the user entered.
Afterwards, update the div element with the result. The xhr function is the function
that returns a promise. We can also use the then or done function of the promise to
update the UI (user interface), but there is a difference between the usage of then()
and done() within WT specification. The then() function is executed as soon as
the xhr function has either returned as a success or an error has been made by
XmlHttpRequest. On the contrary, the done() function is the same except that it
is guaranteed to throw any error that is not handled inside the function:

function changeHandler(e) {
 var input = e.target;
 var resDiv = document.getElementById("ResultDiv");

 WinJS.xhr({ url: e.target.value }).then(function
 completed(result) {
 if (result.status === 200) {
 resDiv.style.backgroundColor = "lightGreen";
 resDiv.innerText = "Success";
 }
 });
}

And finally, it is time to test your code. Build and debug the app and then enter a
URL. If the URL is valid, the resultant div element, in our case ResultDiv, should
turn green and display the Success message. The code won't do anything if a wrong
URL is entered.

One thing to keep in mind here is that after you enter the URL,
a click may be needed outside the input control for the change
event to happen. This mostly is not the case, but just for a tip, it
is a simpler way to get the future value of promise.

Now, the second best part comes in—handling errors.

Error handling
The best part of using promise is that the error handling and debugging becomes
simpler. By simply adding a few functions, you can not only pin point the location
of an error in your code, but also get the relevant error log either on the console or
on the browser. You don't have to add alert() all the time to investigate the
nature and location of the error.

Promises in WinRT

[70]

The same goes for our previous code, in which we can add an error function inside
then(). Remember in the previous code where when an error occurred, no error
was shown? However, not this time. We will add an error handler, which will
change the background color of success to red if any error was found:

function changeHandler(e) {
 var input = e.target;
 var resDiv = document.getElementById("ResultDiv");

 WinJS.xhr({url: e.target.value}).then(
 function fulfilled (result) {
 if (result.status === 200) {
 resDiv.style.backgroundColor = "lightGreen";
 resDiv.innerText = "Successfully returned the Promise ";
 }
 },
 // our error handler Function

 function error(e) {
 resDiv.style.backgroundColor = "red";

 if (e.message != undefined) { // when the URL is incorrect
 or blank.
 resDiv.innerText = e.message;
 }

 else if (e.statusText != undefined) { // If XmlHttpRequest
 was made.
 resDiv.innerText = e.statusText;
 }

 else {
 resDiv.innerText = "Error";
 }
 });
}

Build and debug the app and enter the URL. If the URL was correct, success will
be displayed, otherwise the button will turn red and display an error message.

Note that in the preceding function, error(e), we concatenated the
e parameter with a message. Use this practice to convert the error
into a string, as it will show more understandable messages that will
help you to debug and remove errors.

Chapter 5

[71]

Chaining promises using the then() and
done() functions
As with the specifications, you can not only use then and done functions to achieve
a single task, but also for making a chain out of it. In such a way, you can also create
your own conditions within the code that will make your code more powerful,
optimized, and logical. There are certain limitations though and these are also logical.
You can add multiple then() such as then().then().then(), but you cannot do
something like then().done().then(). You may be wondering about the logic
behind this. With every then(), it returns a promise, which you can input to the next
then() function, but when you add done(), it returns undefined, which breaks the
logic of a promise, yet you will get nothing out of such a chain.

So, in a nutshell, you can do this: then().then().done().

However, you cannot do this: then().done().then().

A generic example of doing such operations can look like this:

FirstAsync()
 .then(function () { return SecondAsync(); })
 .then(function () { return ThirdAsync(); })
 .done(function () { finish(); });

Also, keep in mind that if you didn't add an error handler to done() and the
operation has an error, it will throw an exception, which will cost the entire event
loop. You won't be able to catch such an exception in a try catch block, even if it's
written inside the block, and the only way to get it is via window.onerror().

However, this won't be the case when you don't add an error handler with then().
It won't throw an exception as it's not designed in this way, instead it will only
return a promise in an error state, which can do more harm for the next inline
chain or processed output. So add error handlers, whether it's then() or done().

Example 1A – downloading a web page to a
file using two asynchronous functions
Using this example, we will be able to download a web page to a file. There are
several ways to do this. The simplest one is to ask the browser to save the file for
you, but that will be the browser's ability to act upon our instructions and not our
code's ability to do so. Also, you can imagine how this simple operation can easily
explain how to do it by using two asynchronous methods.

Promises in WinRT

[72]

Now, have a look at the following code:

//WinJs code

WinJS.Utilities.startLog();

// Allocate the URI where to get the download the file.
var AllocatedUri = new Windows.Foundation.UriExample("http://www.
packt.com");

// Get the folder for temporary files.
var temporaryFolder =
Windows.Storage.ApplicationData.current.temporaryFolder;

// Create the temp file asynchronously.
temporaryFolder.createFileAsync("temporary.text",
Windows.Storage.CreationCollisionOption.replaceExisting)
 .then(function (tempFile) {

 // lets start the download operation if the createFileAsync
 call succeeded

 var Iamdownloader = new
 Windows.Networking.BackgroundTransfer.BackgroundDownloader();
 var transfer = Iamdownloader.createDownload(uriExample,
 tempFile);
 return transfer.startAsync();
 })
 .then(

 //Define the function to use when the download completes
 successfully
 function (result) {
 WinJS.log && WinJS.log("File was download successfully ");
 });

Again, we will now explain which line is doing what.

There are three main methods to emphasize on: createFileAsync, startAsync,
and then.

Chapter 5

[73]

The first then function gets the result. This then passes the result to the handler
function. A BackgroundDownloader method creates the download operation and
startAsync creates the routine to initiate the downloads. You can see here that
startAsync is the one that returns a promise, and we chain it with the second
then() by returning the value of startAsync() in the first completion. The second
then() is responsible for a completion handler whose parameter contains the
download operation.

Example 1B – downloading a web page to a
file using startAsync
Another ability to chain the then() and done() functions is to track the progress
of an asynchronous operation by writing a progress function. Due to this, we can
not only track the progress but can also obtain a great deal about the error
conditions by adding an error function.

In our next example, we will see how to download a web page asynchronously
to a file, using the startAsync function and with the error handler. The output of
this example will be the same as the previous one, but the mechanism will be a
bit different:

// Allocate the URI where to get the download the file.
var AllocatedUri = new
Windows.Foundation.Uri("http://www.packt.com");

// Get the folder for temporary files.
var temporaryFolder =
Windows.Storage.ApplicationData.current.temporaryFolder;

// Create the temp file asynchronously.
temporaryFolder.createFileAsync("tempfile.txt",
Windows.Storage.CreationCollisionOption.replaceExisting)
 .then(function (tempFile) {

 // lets start the download operation if the createFileAsync
 call succeeded

 var Iamdownloader = new
 Windows.Networking.BackgroundTransfer.BackgroundDownloader();

Promises in WinRT

[74]

 var transfer = Iamdownloader.createDownload(uriExample,
 tempFile);
 return transfer.startAsync();
 })
 .then(
 //Define the function to use when the download completes
 successfully
 function (result) {
 WinJS.log && WinJS.log("File was download successfully ");
 },

 // this is where we add the error handlers which displays
 function (err) {
 WinJS.log && WinJS.log("File download failed.");
 },
 // Define the progress handling function.
 function (progress) {
 WinJS.log && WinJS.log("Bytes retrieved: " +
 progress.progress.bytesReceived);
 });

The only difference in this code is the proper error handler addition, which makes
the error handling easy and readable.

Summary
In this chapter, we learned how promises can be implemented in WinRT. We saw
how promises evolved in the Windows platform and how it's contributing to different
Windows-based devices. We also saw how it helps Windows-based gaming consoles
and in the creation of Windows-based apps for Windows Store.

It's the adaptability of promises that has led to it finding its place in all the major
leading technologies. Even technology giants such as Microsoft couldn't neglect
its existence and are able to give full attention and scope in its present and
upcoming technologies.

In the next chapter, we will learn how promises are being implemented in one of
the fastest growing server-side JavaScript, the Node.js.

[75]

Promises in Node.js
In the previous chapter, we learned about promises in WinRT and how they are
implemented using the Microsoft platform. The promises concept has had wider
coverage than other languages. This is one of the fastest growing concepts in open
source technologies.

In this chapter, we will discuss an implementation of JavaScript that is dramatically
changing the course of modern web development and enhancing our ways to
real-time web. This amazing piece of technology is called Node.js, a platform written
in JavaScript and based on the V8 Engine by Google. Promises in Node.js are far more
interesting, evolving, and productive than any other platform or implementation can
offer. Let's dive into the details and find out what promises in Node.js have to offer
for real-time web.

The V8 engine – the mechanics
A term that was only known to Formula One racers and sports car manufacturers
was brought into web browsers in 2008 when Google first launched its amazing
web browser, Google Chrome.

Like many real-life products and their mechanisms were being copied and depicted
in computing industry, the V8 engine is one the true examples of such modeling in
recent times. Since the scope of this book is focused on promises, let's take a brief
look at what the V8 engine is in reality.

The V8 engine is a nontraditional engine with eight cylinders mounted on a
crankshaft to produce extra horsepower. This engine is smoother than a V6
(another V-shaped engine), and less expensive than a V12 engine.

Promises in Node.js

[76]

The V8 engine in Google Chrome
An open source project that makes Google number one in the web browser race is
Google Chrome. Chrome is built on an exclusively designed JavaScript Engine called
the V8. Based on V8, Chrome has gained popularity and attention from users all
around the world in a very short space of time. It was first rolled out on September
2, 2008. However, what does this V8 JavaScript engine do which makes it faster and
exceptional than any other program? It doesn't go into compiling the high-level
language interpreter to machine code. It basically skips the middle part of code
interpreting and converts the high-level code to machine code then and there. This is
the reason why Chrome is much faster:

Conversion of Page request in Classical versus Google Chrome

Page Request from browser Interpreter / compiler Machine code

G
oo

gl
e

C
hr

om
e

C
la

ss
ic

al
 W

eb
 B

ro
w

se
r

Request 1 Request 1

Request 1Request 1

Request 1

The evolution of Node.js
After the release of Google Chrome as an open source web browser, people
started to take interest in it. There were two main reasons for this rapid interest.
From a common user's perspective, it was much faster than any other web
browser available, and from a developer's perspective, it was something that had
revolutionized the browser technology by converting the high-level instructions
into machine code instantly, removing a complete layer of middleware of compiler
or interpreter.

Chapter 6

[77]

Many developers started exploring the code base to find the possibilities of
solutions they were involved in and to get the most out of this new amazing
compilation of codebase.

Ryan Dahl was among those developers who wanted to give a shot to V8 JavaScript
engine as he was busy trying to solve a problem while working at Joyent. The
problem was making a browser know how much time is left for an upload process.
Inspired by the recent release of V8 and Ruby's Mongrel web server, he drafted the
codebase that later evolved into Node.js.

A brief introduction to Node.js
What Dahl had created was the first release of a brand new concept in the modern
web app development, Node.js.

In plain words, its server-side JavaScript is built on Google's V8 engine. Node.js
is an event-based and nonblocking I/O. It's lightweight, efficient, and best suited
for data-intensive real-time web apps that run on distributed devices.

Download and install Node.js
You can download Node.js from its official website at http://nodejs.org/
download.

Node.js is available for a variety of platforms. Select your operating system and
the installer will guide you through the rest.

Node.js is also available on GitHub as an open source project at https://github.
com/joyent/node for developers around the world to contribute to its evolution
and development.

The installation instructions are quite simple and easy to understand, just follow the
installers related to your operating systems. This is quite straightforward and the
process gets completed without much hassle. All you need to do is just follow the
onscreen instructions.

http://nodejs.org/download
http://nodejs.org/download
https://github.com/joyent/node
https://github.com/joyent/node

Promises in Node.js

[78]

Node Package Manager – NPM
One of the best virtues of using Node.js is NPM or Node Package Manager. It's an
effective way for developers to collaborate on ideas by sharing codebase in a much
faster way. However, this is not it. The best use of NPM is to download and install
a different simple directory of code called the package. It can be done easily by just
typing in simple commands (such as npm install express) that will download and
install the entire package on your machine. With every package, there is a .json file
that has the metadata about the package. In Unix-based environments, Node Package
Managers not only help in downloading and setting up other packages, but are also
able to update Node.js itself.

NPM is also another reason why Node.js is getting popular in the community
of JavaScript developers. Unlike other languages where uploading libraries and
binaries are very time-consuming and permission-oriented. With NPM, it's a
much faster and less-permission oriented model that fascinates developers to
upload and share their work throughout the community.

For more information on NPM and to add your contributions, check out
https://www.npmjs.com/.

In later sections, we will see how NPM will help us in installing and using
packages of our choice and how much faster and sleeker it is to work with NPM.

Choice of environment
Node.js is platform independent in a way that it has all the installations, setups,
and libraries available for all the major operating systems currently available.
It's available for all Unix-based operating systems, as well as Mac and Windows
platforms. Since our prime focus here is to make you understand what the link is
between Node.js and promises, we will base our code examples on the Windows
7 (any edition) platform since it's widely available and Node.js is also available for
Windows 7 in stable conditions. Plus, it's very simple and less time-consuming.

Please remember that using Windows-based systems won't make any
difference to code and their outputs. This will remain the same for every
operating system with no change of any kind. You can easily use the
same codebase on any other operating system without any hesitation.

https://www.npmjs.com/

Chapter 6

[79]

Setting up the environment for Node.js
Let's familiarize ourselves with the environment and how things are getting done
using Node.js. First things first, we must know how to set up things to compile the
code and run it over our machine.

If you are reading this section, it's assumed that you already have Node.js installed
on your machine with the latest release; otherwise, please refer to the earlier section
to download and install Node.js.

After you have set up Node.js, check which version of Node.js and NPM is available
on your machine by typing in the following commands:

D:\> node –v

D:\> NPM –v

The output should be similar to the following screenshot:

Checking versions of Node.js and NPM

Please note that the current version of Node.js is 0.10.31 and the current version
of NPM is 1.4.23. Our examples will be based on these versions, not lesser than
these versions.

A simple node server
Now, we have our environment ready to do some experiments, let's get the most
obvious activity done by trying a simple node server. For this, you only need two
pieces of software. One is your default text editor such as Notepad in Windows or
Nano for Ubuntu and a web browser. For the web browser, we prefer to use Google
Chrome as it's easily available for all platforms and is native to Node.js.

So, type the following code in your favorite text editor:

// simple server written in Nodejs
// This server would be running on default IP http://127.0.0.1
var http = require('http');
http.createServer(function (request, response)
{
 response.writeHead(200, {'Content-Type': 'text/plain'}); // this
 defines the MIME type of content

Promises in Node.js

[80]

 response.end('Hello World\n'); // this is the browser's output.
}).listen(1337, '127.0.0.1'); // 1337 is the port number where the
browser is listing to this request.
console.log('Server running at http://127.0.0.1:1337/'); //This
line will show at command prompt

Save the file by any name with the .js extension. For our example, we use the name
server_example.js. Save this file in a directory (such as Promises_in_Node) and
open your terminal program. For Windows, it will be Command Prompt. Navigate
to the directory where you have saved your file and type in the following command:

If the code has no errors, it will compile and show the following output on the screen:

Now, open Chrome and type http://127.0.0.1:1337/ in the address bar and hit
Enter. This screen will show you the successful output from the Node.js server:

That's it! You are now ready to take a deep dive in to promises in Node.js.

Things we learned so far
Let's sum up what we have learned so far. We learned what V8 engine is and
how it's developed by Google Chrome as a JavaScript engine, what Node.js is
and how it was started as a problem-solving technique to a full-fledged application
development platform. We learned about the Node Package Manager and how it
can be used in the Node.js application development. We then learned about where
to download Node.js, how to install it, and what dependencies we have to take in
consideration while developing for Node.js, and finally, we learned to write a simple
server using Node.js and seen its output in a browser. This is a check point and if you
are still confused about Node.js, please read through again and then move on.

Chapter 6

[81]

The following sections will let you understand more about Node.js and promises
and how promises are gaining so much respect from Node.js developers.

Node.js with the Q library
In Chapter 2, The JavaScript Asynchronous Model, we discussed what callback hell is
and how we are dealing with using promises. With every language, implementation
also changes. The same case is with Node.js. promises in Node.js are implemented in
a different way. In Node.js, promises are not only used for dealing with callback hell,
instead if a function cannot return a value or throw an exception, it can easily pass on
a promise. This is a little different from what we have seen in the previous chapters.
From the perspective of Node.js, a promise is an object that represents the return
value or that can throw an exception Furthermore, it can also be used as a proxy for a
remote object to improve latency.

Let's have a look at the following code:

process_one(function (value1) {
 process_two(value1, function(value2) {
 process_three(value2, function(value3) {
 process_four(value3, function(value4) {
 // Do something with value4
 });
 });
 });
});

Messy, isn't it? Not only is it messy, but also very confusing and hard to maintain.
Now, look at the following code using promise:

Q.fcall(process_one)
.then(process_two)
.then(process_three)
.then(process_four)
.then(function (value4) {
 // Do something with value4
})
.catch(function (error) {
 // Error Handler
})
.done();

Promises in Node.js

[82]

Now, this code is less confusing, more productive, and it has one additional quality,
which is an implicit error propagation like we have try-catch and finally blocks
in Java that catch any unwanted exception and save the program from crashing
totally when encountered with an unexpected condition.

The callback approach is known as the inversion of control, a function that is capable
of accepting a callback rather than returning a value. Such a mechanism can more
easily be described as the phrase, Don't call me, I will call you.

Promises in Q have a very special tendency as it's clearly made independent the input
arguments from control flow arguments. One can only be able to see its true benefits
when using and creating APIs, particularly, variadic, rest, and spread arguments.

Moving ahead with Q
After a brief introduction to Node.js and Q, let's see how we can develop
applications. First, we need to get the Q library to set up the modules for it.

Using the Node Package Manager, install the Q library as shown in the
following screenshot:

As you can see, the prompt says its q at version 1.2.0, which is stable and also
backward compatible. We will use this release for all our examples in this chapter.

With this installation and past upgrades in our environment, we are now able to
sample some of the common yet fruitful features that promises give us in Q.

Promises have a then method, which you can use to get the eventual return value
(fulfillment) or throw an exception (rejection). By now, we all know it, after reading
the previous chapters of this book.

iPromiseSomething() .then(function (value) { //your code },
function (reason) { //your code });

Here is how the preceding line of code works:

•	 If iPromiseSomething returns a promise that gets fulfilled later with a return
value, the first function (the fulfillment handler) will be called

•	 If the iPromiseSomething function gets rejected later by a thrown exception,
the second function (the rejection handler) will be called with the exception

Chapter 6

[83]

As you can see, the resolution of a promise is always asynchronous, which means the
fulfillment or rejection handler will always be called in the next turn of the event loop
(that is, process.nextTick in Node.js). This mechanism ensures that it will always
return a value either before the fulfillment or rejection handlers are executed.

Propagation in Q
The then method always returns a promise that will either be handled or rejected.

In our example code, we assign the output to the reapPromise variable, which will
hold the value:

var reapPromise = getInputPromise()
.then(function (input) {
}, function (reason) {
});

The reapPromise variable is the new promise for the return value of either handler.
Only one handler will ever be called and it will be responsible for resolving
reapPromise as a function, which can only either return a value (a future value) or
throw an exception.

Whatever is the case, there will be the following possible outcomes:

•	 If you return a value in a handler, reapPromise will get fulfilled
•	 If an exception is thrown in a handler, reapPromise will get rejected
•	 If a promise is returned in a handler, reapPromise will become that promise
•	 As it will become a new promise, it will be useful for managing delays,

combining results, or recovering from errors.

If the getInputPromise() promise gets rejected and you forget the rejection
handler, the error will go to reapPromise:

var reapPromise = getInputPromise()
.then(function (value) {
});

If the input promise gets fulfilled and you fail the fulfillment handler, the value
will go to reapPromise:

var reapPromise = getInputPromise()
.then(null, function (error) {
});

Promises in Node.js

[84]

When you are only interested in handling the error, Q promises to provide a
fail shorthand:

var reapPromise = getInputPromise()
.fail(function (error) {
});

If you are writing JavaScript for modern engines only or using CoffeeScript,
you may use catch instead of fail.

Promises also provide a fin function that is like a finally clause. The final handler
gets called, with no arguments, when the promise returned by getInputPromise()
either returns a value or throws an error.

The value returned or error thrown by getInputPromise() passes directly to
reapPromise unless the final handler fails, and may be delayed if the final handler
returns a promise:

var reapPromise = getInputPromise()
.fin(function () {
});

In short:

•	 If the handler returns a value, the value is ignored
•	 If the handler throws an error, the error passes to reapPromise
•	 If the handler returns a promise, reapPromise gets postponed

The eventual value or error has the same effect as an immediate return value or
thrown error; a value would be ignored, an error would be forwarded.

So when we are looking for propagation, we need to keep in mind what we want
to see from our returning value. The then, fail, and fin functions are the keys to
remember while using propagations in Q.

If you are writing JavaScript for modern engines, you may use
finally instead of fin.

Chapter 6

[85]

Chaining and nesting promises
Remember chaining in promises in Chapter 2, The JavaScript Asynchronous Model,
where we learned all the things about chaining and callback hell handling? This is
just same for Node.js using Q.

There are two ways you can chain a promise in Node.js using Q: one is you can
chain a promise inside a handler and the other is outside of it.

Let's suppose we are doing multiple things at a time, we can set up the promise
chain like this:

f1_promise()
 .then(function() { return s1_promise(); })
 .then(function() { return t1_promise(); })
 ...
 .then(function() { return nth_promise(); });

So, we can say that the ANY_promise() function can contain some behavior, and this
will return a promise object that leads to eventually return a result. As soon as the
real result is returned, it will set off the next function in the chain.

This looks good now, what if you want to set off an asynchronous function and wait
until we get a result before executing the behavior of the next promise in the chain?

Q has a solution for this. Using .defer() and deferred.resolve(), you can get it
in a much more manageable and predictable manner.

Sequences in Q
Like chaining, sequences is another way to stage your result in the way you want.
Sequence is the way you can use in a predefined manner to get the outcome
of the situation as desired. To hold it more tightly and to generate the result,
Q provides sequences in a unique way.

Suppose you have a number of promise-generating functions, all of them need to
be run in a sequence. You can do it manually like this example:

return seq(startValue).then(secondValue).then(thirdValue);

You have to make sure that every then() must be in a sequence with another
then(); to maintain the sequence. Failing to do so will break the sequence,
and you will not be able to get another value later.

Promises in Node.js

[86]

The other way is to instruct your sequence dynamically. This can be faster but
needs more attention while executing the code as unpredictable code may harm the
overall sequence.

Here is a snippet of how you can do it dynamically:

var funcs = [startValue, secondValue, thirdValue];

var result = Q(startValue);
funcs.forEach(function (f) {
 result = result.then(f);
});
return result;

If this looks like you are using too many lines of code, use reduce:

return func.reduce(function (tillNow, f) {
 return tillNow.then(f);
}, Q(startValue));

Combination in Q
With Q, you have a unique facility in Node.js to write cleaner and manageable code
if you want to combine a list of array of promises. This can help you to write a more
complex level of sequential data structure in a more manageable way. How can we
get there? Use all. Consider the following example:

return Q.all([
 eventAdd(2, 2),
 eventAdd (10, 20)
]);

The Q.all([func1(), func2()]); function will be the generic form of the preceding
code. You can also use spread to replace then. Can we replace another new thing
with Q? Not really! The spread function spreads the values over the arguments of the
fulfillment handler. For the rejection handler, it will get the first signal of failure. So,
any of the promises destined to fail first will get it handled by a rejection handler:

function eventAdd (var1, var2) {
 return Q.spread([var1, var2], function (var1, var2) {
 return a + b;
 })

Chapter 6

[87]

}

Q.spread(). Call all initially

return getUsr() .then(function (userName) { return [username,
getUser(userName)]; }) .spread(function (userName, user) {
});

When you call the function, it will return allSettled. Within this function, a promise
will be returned as an array that holds the value. When this promise has been fulfilled,
the array contains the fulfillment values of the original promise within the same
sequence as those promises. The beauty is, if any promise is rejected, it will be rejected
immediately, not waiting for the rest of others to come and share their statuses:

Q.allSettled(promises)
.then(function (results) {
 results.forEach(function (result) {
 if (result.state === "fulfilled") {
 var value = result.value;
 } else {
 var reason = result.reason;
 }
 });
});

The any function takes in an array of promises to return a promise that is fulfilled
by the first given promise to be fulfilled, or rejected, provided all the given promises
were rejected:

Q.any(promises).then(function (firstPromise) {
 // list of any of the promises that were fulfilled.
}, function (error) {
 // All of the promises were rejected.
});

How to handle errors in Q in Node.js
There are times when rejection occurs with the promises creating errors. These
errors are clever enough to dodge the handler assigned to take care of such errors.
So, we need to take care of them explicitly.

Promises in Node.js

[88]

Let's have a look at the following snippet and see how it can be handled:

return scenario().then(function (value) {
 throw new Error("I am your error mesg here .");
}, function (error) {
 // We only get here if scenario fails
});

Why is this case happening? Suppose the parallelism between promises and
try/catch and while we are trying to execute scenario(), the error handler
represents a catch for scenario(), while the fulfillment handler represents
code that happens after the try/catch block. Now, this code needs its own
try/catch block.

The try/catch block is not a new concept for all of you who have written code for
some major languages. Since Node.js is based on JavaScript and Q is handling it at
the moment, the syntax might be a bit different but the functionality is more or less
the same like the following code:

Q.
try(function()
 {return scneario().then(function(value)throw new Error("im
 your thrown error");)})
.catch({ function (error)
 {console.error("i am catched",error)}
});

Simply put, in terms of promises, it means you are chaining your rejection handlers.

Making progress with promises
Unlike other libraries, a promise has a unique communication ability. It can update
you on its progress if you want it to talk to you. Preferably, these are notifications
programmed by developers in a way that it can notify them on specified intervals
of time to tell them what is the progress. We can do it by using our favorite
then() function:

return uploadFile()
.then(function () {
 // Success uploading the file
}, function (err) {
 // There was an error, and we get the reason for error
}, function (progress) {
 // this is where I am reporting back my progress. executed
});

Chapter 6

[89]

There are more than enough advantages of using Q. For this specific topic,
it provides us a short call progress which minimizes our effort to only one line
using *.progress();.

return uploadFile().progress(function (progress) {
 // We get notified of the upload's progress
});

Getting to the end of a chain of promises
When we are talking about ending a promise chain, we have to make sure that any
error doesn't get handled before the end, as it will get rethrown and reported.

This is a temporary solution. We are exploring ways to make unhandled errors
visible without any explicit handling.

So, returned like the following code:

return hoo()
.then(function () {
 return "foo";
});
Or we can do It like this:
hoo()
.then(function () {
 return "bar";
})
.done();

Why are we doing this? Why do we need to invoke the mechanism like this? The
answer is very simple, you have to end the chain or have to return it to another
promise. This is due to the fact that since handlers catch errors, it's an unfortunate
pattern that the exceptions can go unobserved.

Every once in a while, you will need to create a promise from scratch. This is quite
normal; you can either create your own promise or get it from another chain.
Whatever the case is, consider that it's a beginning. There are a number of ways in
which you can create a new promise using Q. Here are some of them:

Q.fcall();
//Using this function fcall you can create and call other //
functions, along with Promise functions. To do that simply //follow
this syntax
return Q.fcall(function () {
 return 10;
});

Promises in Node.js

[90]

Not only this, fcall(); can also be used to get an exception-handled promise that
looks like the following snippet:

return Q.fcall(function () {
 throw new Error("I am an error");
});

Since fcall(); can call functions, or even promised functions, this uses the
eventualAdd(); function to add two numbers:

return Q.fcall(eventualAdd, 2, 2);

Callback-based promises versus
Q-based promises
Say you have to interlink with callback-based instead of promise-based, what would
be your options? The answer is Q provides Q.nfcall() and friends();, but most
of the time, we have to rely on deferred:

var deferred = Q.defer();
FS.readFile("hoo.txt", "utf-8", function (error, text) {
 if (error) {
 deferred.reject(new Error(error));
 } else {
 deferred.resolve(text);
 }
});
return deferred.promise;

Normally, we can achieve it like this:

//normal way of handling rejected promises.
deferred.reject(new Error("Can't do it"));
//this is how we do it
var rejection = Q.fcall(function () {
 throw new Error("Can't do it");
});
deferred.resolve(rejection);

Chapter 6

[91]

A few words on delay, timeout, and notify
There are situations when we want to make the output of our functions a bit delayed
or slower than normal. This is when we are waiting for a certain event to occur such
as checking the password's strength at the strength indicator.

For all such needs, Q provides a collection of functions to give you this kind of
control. These functions are:

•	 Q.delay()

•	 Q.notify()

•	 deferred.notify()

The preceding functions are not only able to create delays when required but
also notify when the delay is likely to occur. If you want to defer the notification,
deferred.notify() will serve the purpose.

Q.delay()
The following code is a simplified implementation of Q.delay:

function delay(ms) {
 var deferred = Q.defer();
 setTimeout(deferred.resolve, ms);
 return deferred.promise;
}

Q.timeout()
A simple way to work with Q.timeout:

function timeout(promise, ms) {
 var deferred = Q.defer();
 Q.when(promise, deferred.resolve);
 delay(ms).then(function () {
 deferred.reject(new Error("Timed out"));
 });
 return deferred.promise;
}

Promises in Node.js

[92]

deferred.notify()
Finally, you can send a progress notification to the promise with
deferred.notify().

There is a wrapper for XML HTTP requests in the browser:

function requestOkText(url) {
 var request = new XMLHttpRequest();
 var deferred = Q.defer();
 request.open("GET", url, true);
 request.onload = onload;
 request.onerror = onerror;
 request.onprogress = onprogress;
 request.send();

 function onload() {
 if (request.status === 200) {
 deferred.resolve(request.responseText);
 } else {
 deferred.reject(new Error("Status code was " +
 request.status));
 }
 }

 function onerror() {
 deferred.reject(new Error("Can't XHR " +
 JSON.stringify(url)));
 }

 function onprogress(event) {
 deferred.notify(event.loaded / event.total);
 }

 return deferred.promise;
}

Here is an example of how to use this requestOkText function:

requestOkText("http://localhost:5000")
.then(function (responseText) {
 // If the HTTP response returns 200 OK, log the response text.
 console.log(responseText);
}, function (error) {
 // If there's an error or a non-200 status code, log the
 error.

Chapter 6

[93]

 console.error(error);
}, function (progress) {
 // Log the progress as it comes in.
 console.log("Request progress: " + Math.round(progress * 100)
 + "%");
});

Q.Promise() – another way to create
promises
Q.Promise is an alternative promise-creation API that has the same power as
the deferred concept, but without introducing another conceptual entity.

Let's rewrite the preceding requestOkText example using Q.Promise:

function requestOkText(url) {
 return Q.Promise(function(resolve, reject, notify) {
 var request = new XMLHttpRequest();
 request.open("GET", url, true);
 request.onload = onload;
 request.onerror = onerror;
 request.onprogress = onprogress;
 request.send();

 function onload() {
 if (request.status === 200) {
 resolve(request.responseText);
 } else {
 reject(new Error("Status code was " +
 request.status));
 }
 }
 function onerror() {
 reject(new Error("Can't XHR " + JSON.stringify(url)));
 }
 function onprogress(event) {
 notify(event.loaded / event.total);
 }
 });
}

If requestOkText were to throw an exception, the returned promise will be rejected
with this thrown exception as the reason for its rejection.

Promises in Node.js

[94]

Static methods of Q
Typecasting of promises objects is a must and you must have to convert promises
generated from different sources in Q type promises. This is because of the simple
fact that not all promise libraries have the same warranties as Q and certainly don't
provide all of the same methods.

//using when
return Q.when(AmIAvalueOrPromise, function (value) {
}, function (error) {
});
//The following are equivalent:
return Q.all([a, b]);
return Q.fcall(function () {
 return [a, b];
})
.all();

Most libraries only provide a partially functional then method. Q, on the other
hand, is quite different to others:

return Q($.ajax(...))
.then(function () {
});

If there is any way that the promise you have got is not a Q promise as provided by
your library, you should wrap it using a Q function. You can even use Q.invoke();
as shorthand, as shown in the following code:

return Q.invoke($, 'ajax', ...)
.then(function () {
});

Promise as a proxy
One marvelous thing about a promise that distinguishes it from the rest is that
it can act as a proxy for another object, not only for local objects but also for a
remote object. There are methods that let you confidently employ properties or
call functions. All of these exchanges return promises, so that they can be chained.

Chapter 6

[95]

Here is list of functions you can use as proxies of a promise:

Direct manipulation Using a promise as a proxy
value.foo promise.get("foo")

value.foo = value promise.put("foo", value)

delete value.foo promise.del("foo")

value.foo(...args) promise.post("foo", [args])

value.foo(...args) promise.invoke("foo", ...args)

value(...args) promise.fapply([args])

value(...args) promise.fcall(...args)

You can trim round-trips by using these functions instead of then() if the promise is
a proxy for a remote object.

Even in the case of local objects, these methods can be used as shorthand for
particularly-simple gratification handlers. For example, you can replace:

return Q.fcall(function () {
 return [{ foo: "bar" }, { foo: "baz" }];
})
.then(function (value) {
 return value[0].foo;
});

With the following code:

return Q.fcall(function () {
 return [{ foo: "bar" }, { foo: "baz" }];
})
.get(0)
.get("foo");

Familiarizing Node.js – the Q way
When you're working with functions that make use of the Node.js callback pattern,
where callbacks are in the form of function(err, result), Q provides a few advantageous
service functions for adapting between them. The two most important functions are:
Q.nfcall() and Q.nfapply():

•	 Q.nfcall(): The Node.js function call
return Q.nfcall(FS.readFile, "foo.txt", "utf-8");

Promises in Node.js

[96]

•	 Q.nfapply(): The Node.js function apply

return Q.nfapply(FS.readFile, ["foo.txt", "utf-8"]);

They are both used for calling functions with the same resemblance of Node.js so
that they can generate promises.

Unbinds and its solution
When you are working with methods, instead of simple functions, it's highly likely
that you can easily run into the common problems where passing a method to another
function—such as Q.nfcall—unbinds the method from its owner. Q has to offer its
services here too so that you can avoid this, by adopting any of these two ways:

•	 Use Function.prototype.bind()
•	 Use these methods provided by Q:

return Q.ninvoke(redisClient, "get", "user:1:id"); // node invoke
return Q.npost(redisClient, "get", ["user:1:id"]); // node post

There is yet another way you can create reusable wrappers, using:

•	 Q.denodeify:
//using Q.denodeify
var readFile = Q.denodeify(FS.readFile);
return readFile("foo.txt", "utf-8");

•	 Q.nbind:

// Q.nbind
var redisClientGet = Q.nbind(redisClient.get, redisClient);
return redisClientGet("user:1:id");

Q support for tracing stacks
Q also extends its optional support for long stack traces; this helps developers to
manage the stack property of an error by providing the entire reasons of errors and
rejection reason rather to simply halt without any meaningful or readable error.

The following function is one such example where the error was not handled in
a meaningful manner and when someone tried to execute this snippet, he/she
experienced meaningless and untraceable errors:

function TheDepthOfMyCode() {

Chapter 6

[97]

 Q.delay(100).done(function explode() {
 throw new Error("hello I am your error Stack!");
 });
}
TheDepthOfMyCode ();

This will gives us a raw-looking unhelpful stack trace looking similar to this:

Error: hello I am your error Stack!

 at explode (/path/to/test.js5:166)

 at _fulfilled (/path/to/test.js:q:54)

 at resolvedValue.promiseDispatch.done (/path/to/q.js:923:20)

 at makePromise.promise.promiseDispatch (/path/to/q.js:400:23)

 at pending (/path/to/q.js:397:39)

 at process.startup.processNextTick.process._tickCallback (node.
js:244:9)

However, if you turn this feature on by setting Q.longStackSupport = true,
then this will give us a nice-looking helpful stack trace looking similar to this:

Error: hello I am your error Stack!

 at explode (/path/to/test.js:3:11)

From previous event:

 at theDepthsOfMyProgram (/path/to/test.js:2:16)

 at Object.<anonymous> (/path/to/test.js:7:1)

Unlike most of the time, in JavaScript, we use breakpoints or use alert() to see
where the error occurred, which is quite frustrating and time consuming. Q has not
only given us an elegant way to get to a point where the error is happening, but also
the entire trace can be read and analyzed to solve the problem.

In Node.js, this feature can also be enabled through the Q_DEBUG
environment variable:

Q_DEBUG=1 node server.js

This will enable long stack support at every instance of Q.

Promises in Node.js

[98]

Making promise-based actions
Starting off with Q, perform actions that return promises. Let's say, make Node.js
action http.get as the promised action:

// using-promise.js
var httpGet = function (opts) {
 var deferred = Q.defer();
 http.get(opts, deferred.resolve);
 return deferred.promise;
};

Later, you can use: httpGet(...).then(function (res) {...}); but you have
to make sure that functions return promises. The first Q.defer() returns a set of an
empty promise and operations for it. The deferred.promise is the empty promise
which fixes a certain value:

// promise-resolve-then-flow.js
var deferred = Q.defer();
deferred.promise.then(function (obj) {
 console.log(obj);
});

deferred.resolve("Hello World");

This prints Hello World to the console. In general, you can transform usual
callback actions:

// promise-translate-action.js
action(arg1, arg2, function (result) {
 doSomething(result);
});

To promise actions:

// promise-translate-action.js
var promiseAction = function (arg1, arg2) {
 var deferred = Q.defer();
 action(arg1, arg2, deferred.resolve);
 return deferred.promise;
}

promiseAction(arg1, arg2).then(function (result) {
 doSomething(result);
});

Chapter 6

[99]

Object handling promises
We learned a great deal about how promises help object handling whether these
are local objects or remote ones. As mentioned earlier, the then callback can use
the result in any way. Also, each handling is decomposed primitives of property
accesses or function calls, for example:

// object-unsued.js
httpGet(url.parse("http://abc.org")).then(function (response) {
 return response.headers["location"].replace(/^http:/, "");
}).then(console.log);

Decomposition of primitive access
Q can decompose continuous actions of each primitive access. Let's have a look at the
following code:

// object-decomposed.js
httpGet(url.parse("http://abc.org")).then(function (response) {
 return response.headers;
}).then(function (handlers) {
 return handlers["location"];
}).then(function (location) {
 return location.replace(/^http:/, "");
}).then(console.log);

There is another good thing about promises of Q. They have a support method of
primitive access as a promise.

By them, the decomposed actions also translate to:

// object.primitive.js
httpGet(url.parse("http://example.org"))
 .get("handlers").get("location").post("replace", [/^http:/,
""])
 .then(console.log);

View revisited
The view() method helps in mirroring all the values into Q-based promises without
any distinction, either it comes from a value or any other function. There are two
methods that can make this possible:

•	 promise.post(name)

•	 promise.send(name)

Promises in Node.js

[100]

This converts a method of the promise value to a promise of the method result.

A result of view() has methods for all methods of the promise value. You can use
view in the then callback of view(), for example:

// object-view.js
Q.resolve(new Date()).view().then(function (dateView) {
 return dateView.toTimeString().then(function (str) {
 return /\((.*)\)/.exec(str)[0]
 });
}).then(console.log);

Aborting a promise
We saw how done(); is used earlier, but here it comes in with a total impression.

Using done();, we can conclude our promise and abort our program. I always
have a way to chain the promises:

then().then().done();

If the promise is vetted (and did not catch the error before), the done() function
forcibly spawns an uncatchable error (for example, setTimeout(function ()
{throw ex;}, 0)).

On Node.js REPL, run Q.reject("uncaught").done(), then exit with an error.

If the error reached to the done() function, you can think of it just a programming
bug (not an exception state).

Q utilities for Node.js
In this chapter, we came to know that promises are getting more easy to use within
Node.js. The following is the set of all major utilities offered by Q for using Node.js:

•	 Q.nfapply(fs.readFile, [filename, encoding]).then(console.log);

•	 Q.nfcall(fs.readFile, filename, encoding).then(console.log);

•	 Q.nfbind(fs.readFile)(filename, encoding).then(console.log);

•	 Q.npost(fs, "readFile", [filename, encoding]).then(console.
log);

•	 Q.nsend(fs, "readFile", filename, encoding).then(console.log);

Chapter 6

[101]

Q has more to offer, but the preceding ones are the best and most used and sensible
use of these can help us write a more manageable, cleaner, and dynamically
controlled mechanism.

Summary
This chapter was an amazing journey from start to finish, and it has taught us from
the very beginning about Node.js. We didn't opt for explaining stuff in computer
science terminology, instead we went to the mechanical part of the V8 engine, and
from there we saw how real-world objects can be mapped into computing.

We learned what Node.js is, from where this most amazing library started, who built
it, and why and how it's helping us create real-time web apps.

Then we moved to Q, the best way to offer promises to Node.js. We saw how we can
install Q and then we saw different ways of using Q along with Node.js. We have
also achieved our purpose of using Q as a promises implementation of Node.js.

This chapter will encourage you to start working on Node.js, especially on how to
take advantage of Q as the library of promises for Node.js.

In the next chapter, we will be looking in-depth in the world of Angular.js and how it
got promises implementation.

[103]

Promises in Angular.js
In the last chapter, we learned about Node.js and its implementations. We also
saw how Node.js can be used to amplify the real-time web and how promises can
be used to deliver more efficient apps.

In this chapter, we examine another side of promises implementation, promises
in Angular.js.

As we go along, we will learn what is Angular.js, why it was created, what benefits
it will give us, and lastly, how promises get implemented in Angular.js.

Let's get started with the introduction of Angular.js and how to set it up. Some
sample code and working examples will be provided. We will then move to
promises in Angular.js.

The evolution of Angular.js
Since the birth of single-page web applications, there have been a number of ways
one can write code for such apps. The usage of single-page web apps has been
increasing rapidly due to the fact that they are faster, platform independent, and
lightweight for all types of devices and auto-adjust to all screen sizes. This is the
main reason why engineers want to develop single-page web apps and are more
interested in using libraries and frameworks that ease their routine work.

The inception of Angular.js was on the same concept. The core of Angular.js is that it
employs the declarative programming concept that states user interfaces should be
used to connect software services, while we can use imperative programming to
define business logic.

Promises in Angular.js

[104]

Angular.js's framework extends classical HTML (HTML5) to couple the content
together. It uses a two-way data binding technique that is helpful in the automatic
synchronization of both model and views. With all these features, Angular.js is
independent of DOM, which helps in increased performance and security standards
of coupled modules.

The most notable nonfunctional property of Angular.js is the brain that maintains
it—Google.

Google is the force behind the development, maintaining, and releasing of different
versions of Angular.js.

Angular.js was first released in the year 2009 with the aim of providing client-side
MVC (model view controller) implementation that can ease both development and
testing of applications. Also, it provides a toolset embedded for creating rich Internet
applications and tools for modern real-time web applications.

Read the HTML page
Show output or bind
output with another

input

Bind the attributes

The structure of the Angular.js document
Angular.js uses the HTML file at the base document for its implementation. Its
syntax is very simple and easy to remember. The structure of the page is a simple
HTML file with ng at its start. This is called the Angular.js directive and it can be
used with HTML or can be linked as a individual document.

To start using Angular.js, you need to add a few lines and it will be up and running.
For using Angular.js, perform the following steps:

1.	 Add the ng directive; you only need to add this simple code to start using
the Angular.js:
<html ng-app="opdsys">

2.	 Add the library to the file:
<script type="text/JavaScript"
src="js/lib/angular.min.js"></script>

Chapter 7

[105]

3.	 Now, define the variable within the HTML tag like this:
<tr ng-repeat= "reservations in reservation| archive" >

4.	 Finally, you can use it by calling out the variable:

<td> {{reservations.id}} < /td>

Getting started with Angular.js
To download Angular.js, go to https://angularjs.org/ and hit the Download
button. The following dialog box will appear:

Select the stable and minified build and click on Download. This file is a compact one
with all the whitespaces removed so that it loads faster. You need to save this file to
your working directory as you will need it in the following sections of this chapter.

Creating your first Angular.js file
We will use the downloaded file to include it in our HTML. From there, it will show
its magic on how Angular.js is a two-way banded framework and show the results in
real time.

Step 1 – create the HTML 5 doc
Create a file like this:

<html>
<head>
 <title></title>

https://angularjs.org/

Promises in Angular.js

[106]

</head>
<body>

</body>
</html>

Step 2 – add the JavaScript file to it
Create a JavaScript file with the following code:

<html>
<head>
 <title> OPD System</title>
 <script type="text/javascript" src='angular.min.js' ></script>
</head>
<body> </body>

Add the Angular.js directive in the preceding code:

<html ng-app >
<head>
 <title>OPD System</title>
 <script type="text/javascript" src='angular.min.js' ></script>
</head>
<body>
</body>

That's it; you now have a working Angular.js file for further use.

How to use Angular.js on your local
machine
There are several ways you can sample Angular.js on your local machine. One way
is to use your locally installed server. The XAMPP or Node.js server can be the best
option to use for executing the Angular.js code.

You can download the XAMPP server from https://www.apachefriends.org/
download.html and install it over your PC. Once you are done with installation, you
can just drop your Angular.js files/folders in the htdocs folder and access these files
by simply visiting http://localhost/source/, where source should be the folder
name inside htdocs.

https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html

Chapter 7

[107]

Using Node.js, simply paste the following code to a text file and save it as app.js:

//sample node server from official site at https://nodejs.org/
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Save this file to any folder on your drive. Now, open Command Prompt by typing
cmd in the Run utility of your Windows machine and go to the folder where app.js
is located.

Once you reach there, please type in the following lines and hit Enter:

> node app.js

You will see the response on screen like this:

Server running at http://127.0.0.1:1337/

Once you get this response, your server is ready to use. Drop your Angular.js files in
the same folder where the app.js file is located and access it using a browser like this:

http://127.0.0.1:1337/source/

Here, source is the folder where app.js is located.

What would be your preference for the
server?
You can use any of these servers as they both are open source and both have great
adoptability for the Angular.js. It's completely up to you which one you can use. To
make things more understandable for you, I chose Node.js as it's very handy and
easy to maintain with more performance output.

Key elements of Angular.js
Before we get into how promises are implemented in Angular.js, we will first look
at the key elements of Angular.js and how they work for us.

Promises in Angular.js

[108]

Within this section, you will learn the key elements of Angular.js. The skills
acquired will be used in the forthcoming sections of this chapter. You will then
be able to apply the concepts of promises in Angular.js and write your own
custom-made promises in Angular.js as per your need.

The most common elements we will discuss are:

•	 Supplying scope data
•	 Filtering output
•	 Controlling scopes
•	 Routing views

Supplying scope data
We will play around with the frontend HTML, CSS, and JavaScript to display the
results in the browser. We will also get bootstrap from http://getbootstrap.com/
getting-started/#download to give cosmetic touches in the code:

1.	 The folder structure must be as defined in the following image. To demonstrate
how code works, we will be using the Node.js server. The folder name public
needs to deploy at the folder where app.js is located. Once the server has
started, navigate to http://127.0.0.1:3000 and you will see the app
running there.

public

css Bootstrap files

img All images

js All JavaScript Files
(Angular.js)

Index.html

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download

Chapter 7

[109]

2.	 We will create an app for available services at a subway station. Let's
call this station Stratford from where we will be looking at which subway
service is available.

3.	 Create a file in the js/controller folder and name it app.js. Here is how
this file will look like:
function AppCtrl ($scope) {
 $scope.serviceName = {
 "CRTL": {
 "code": "CRTL",
 "name": "Central Line Service",
 "currentLocation": "Oxford Circus",

 },

 "JUBL": {
 "code": "JUBL",
 "name": "Jubblie Line Service",
 "currentLocation": "westham",

 },

 "DLR": {
 "code": "DLR",
 "name": "Docland Ligt railway",
 "currentLocation": " westham",

 },

 };
}

4.	 Now, at the root of the public folder create an HTML file, name it as index.
html, and add the following code:
<html ng-app>
<head>
 <title>Services listing </title>
 <script type="text/javascript"
 src="js/lib/angular.min.js"></script>
 <script type="text/javascript"
 src="js/controllers/app.js"></script>
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/bootstrap-
 responsive.min.css">

Promises in Angular.js

[110]

</head>
<body>
 < ul ng-repeat="services in services">
 {{serviceName.code}}
 {{serviceName.name}}
 </body>
</html>

Now, when you hit refresh at the browser, it will show you which services are away
from Stratford station. However, how can this be made possible?

At the top of the HTML doc, there is an ng directive that will create the Angular.js
app, and then we can include the JavaScript files; one from Angular.js's minified file
and the other is our created JavaScript file that supplies scope to let HTML display it.
This all happened due to one variable declaration, $scope.

$scope is responsible for binding data and providing output within the supplied
scope. This helps Angular.js to maintain its uniqueness to perform the computation
in an isolated or defined area of influence, that's all!

Filtering data
Sometimes, we need to have a specific format of data to display data from our app.
Within Angular.js, it's as easy as simply supplying some operators to the element
where we want to filter it.

The operator used for this purpose is the pipe, |. As soon as we add a pipe sign,
Angular.js knows that we want to filter out something. Let's take a look at two
of the most important filters of all:

To convert text in to uppercase at the page output, consider the following code:

<html ng-app>
<head>
 <title>Services listing </title>
 <script type="text/javascript"
 src="js/lib/angular.min.js"></script>
 <script type="text/javascript"
 src="js/controllers/app.js"></script>
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/bootstrap-
 responsive.min.css">
</head>

Chapter 7

[111]

<body>
 <div class="container" ng-controller="AppCtrl">
 <h1>Services from Stratford station</h1>

 <li ng-repeat="service in service">{{serviceName.code}}
 - {{serviceName.name | uppercase}}

 </div>
</body>
</html>

The most helpful feature of filtering out data is to get an entire object as JSON. This
will not only help in the debugging mode, but it's also used to validate the supplied
data to see if the format is correct.

Consider the following code which will not only filter out data as a JSON object,
but also validate it before displaying the output:

<html ng-app>
<head>
 <title>Services listing </title>
 <script type="text/javascript"
 src="js/lib/angular.min.js"></script>
 <script type="text/javascript"
 src="js/controllers/app.js"></script>
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/bootstrap-
 responsive.min.css">
</head>
<body>
 <div class="container" ng-controller="AppCtrl">
 <h1>Services from Stratford station</h1>

 <li ng-repeat="service in service">{{serviceName.code}}
 - {{serviceName | json}}

 </div>
</body>
</html>

This will return the entire JavaScript object as JSON. You can now validate data or
get into the debugging mode by getting your hands dirty, digging the JavaScript
code and adding alert().

Promises in Angular.js

[112]

Controlling scopes
We can also supply an entire function to a particular stream instead of a single
variable; this will help us interlink the different parts of any app without much
hassle. Consider the following JavaScript code which is displaying how we are
supplying an entire function to a particular stream:

function AppCtrl ($scope) {
 $scope.serviceName = {
 "CRTL": {
 "code": "CRTL",
 "name": "Central Line Service",
 "currentLocation": "Oxford Circus",

 },

 "JUBL": {
 "code": "JUBL",
 "name": "Jubblie Line Service",
 "currentLocation": "westham",

 },

 "DLR": {
 "code": "DLR",
 "name": "Docland Ligt railway",
 "currentLocation": " westham",

 },

 };

 $scope.curretStation = null;

 $scope.setAirport = function (code) {
 $scope.curretStation = $scope.service[code];
 };
}

Chapter 7

[113]

In the last three lines, we added a function that will be fully passed on to the
calling ng directive at the HTML output. The code of HTML will look like this:

<html ng-app>
<head>
 <title>Services listing </title>
 <script type="text/javascript"
 src="js/lib/angular.min.js"></script>
 <script type="text/javascript"
 src="js/controllers/app.js"></script>
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/bootstrap-
 responsive.min.css">
</head>
<body>
 <div class="container" ng-controller="AppCtrl">
 <h1>Services from Stratford station</h1>

 <li ng-repeat="Services in ServicesName">
 <a href="" ng-
 click="setAirport(Services.code)">{{Services.code}} -
 {{Services.code}}

 <p ng-show="currentStation">Current Services:
 {{currentStationname}}</p>
 </div>
</body>
</html>

Notice that we are writing very neat code with very few updates. We can achieve
many changes as desired in the last lines before the body tag is completed; you will
notice how we have passed an entire function using Angular.js.

Promises in Angular.js

[114]

Routing views
Conventional websites were made up of many pages linked together via an href
tag. Their content was hard to read and required more maintenance than ever. With
the emergence of single page web apps, the information appeared on the browser
instantly as the views can be routed from one link to another without hitting the
server repeatedly, or without having to wait for the page to load.

public

css Bootstrap files

img All images

js All JavaScript Files
(Angular.js)

Index.html

partials Contains views

From our examples, we will add another file as a module and place it under the root
of the JS folder. The code will look like this:

angular.module('services', [])
 .config(airlineRouter);

function airlineRouter ($routeProvider) {
 $routeProvider
 .when('/', {templateUrl: 'partials/destinations.html',

Chapter 7

[115]

 controller: 'DestinationsCtrl'})
 .when('/Services/:airportCode', {
 templateUrl: 'partials/stations.html',
 controller: 'ServiceCtrl'
 })
 .when('/service', {
 template: '<h3>Flights</h3> {{Services | json}}',
 controller: 'FlightsCtrl'})
 .when('/reservations', {
 template: '<h3>Your Reservations</h3> {{Services | json}}',
 controller: 'ReservationsCtrl'});
}

This will generate views dynamically on the fly at the browser without hitting
the server. We need a couple of more files to add more dynamicity. We will
add the partials folder in which we placed two more files named services and
destination.

The destination.html file will look like this:

<div class="pull-left span6">
 <h3>All Destinations</h3>

 <li ng-repeat="destinationin destinations">
 <a href="" ng-click="setDestinations
 (service.code)">{{name.code}} - {{destination.name}}

</div>
<div class="span5" ng-include src="sidebarURL"></div>

The services.html file will look like this:

<div ng-show="CurrentServices">
 <h3>{{CurrentServices.name}}</h3>

 <h4>Destinations</h4>

 <li ng-repeat="destination in CurrentServices.destinations">
 <a ng-href="#/airports/{{destination}}">{{destination}}

</div>

Promises in Angular.js

[116]

After editing the index.html file at the root of the public folder, the view will look
like this:

<html ng-app="ServiceCtrl">
<head>
 <title>Demo</title>
 <script type="text/javascript"
 src="js/lib/angular.min.js"></script>
 <script type="text/javascript"
 src="js/controllers/app.js"></script>
 <script type="text/javascript"
 src="js/controllers/destinations.js"></script>
 <script type="text/javascript"
 src="js/controllers/services.js"></script>
 <script type="text/javascript"
 src="js/controllers/reservations.js"></script>
 <script type="text/javascript"
 src="js/controllers/station.js"></script>
 <script type="text/javascript" src="js/app.js"></script>
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/bootstrap-
 responsive.min.css">
</head>
<body>
 <div class="container" ng-controller="AppCtrl">
 <h1>AngulAir</h1>

 <ul class="nav nav-pills">
 <li ng-class="destinationsActive">
 Destinations

 <li ng-class="servicesActive">
 services

 <li ng-class="reservationsActive">
 Reservations

 <div ng-view></div>
 </div>
</body>
</html>

Chapter 7

[117]

Implementing promises in Angular.js
Promise is all about how async behavior can be applied on a certain part of an
application or on the whole. There is a list of many other JavaScript libraries where
the concept of promises exists but in Angular.js, it's present in a much more efficient
way than any other client-side applications.

Promises comes in two flavors in Angular.js, one is $q and the other is Q. What is
the difference between them? We will explore it in detail in the following sections.
For now, we will look at what promise means to Angular.js.

There are many possible ways to implement promises in Angular.js. The most
common one is to use the $q parameter, which is inspired by Chris Kowal's Q library.
Mainly, Angular.js uses this to provide asynchronous methods' implementations.

With Angular.js, the sequence of services is top to bottom starting with $q, which
is considered as the top class; within it, many other subclasses are embedded, for
example, $q.reject() or $q.resolve(). Everything that is related to promises in
Angular.js must follow the $q parameters.

Starting with the $q.when() method, it seems like it creates a method immediately
rather it only normalizes the value that may or may not create the promise object.
The usage of $q.when() is based on the value supplied to it. If the value provided
is a promise, $q.when() will do its job and if it's not, a promise value, $q.when()
will create it.

The schematics of using promises in
Angular.js
Since Chris Kowal's Q library is the global provider and inspiration of promises
callback returns, Angular.js also uses it for its promise implementations. Many of
Angular.js services are by nature promise oriented in return type by default. This
includes $interval, $http, and $timeout. However, there is a proper mechanism
of using promises in Angular.js. Look at the following code and see how promises
maps itself within Angular.js:

var promise = AngularjsBackground();
promise.then(
 function(response) {
 // promise process
 },
 function(error) {

Promises in Angular.js

[118]

 // error reporting
 },
 function(progress) {
 // send progress

});

All of the mentioned services in Angular.js return a single object of promise. They
might be different in taking parameters in, but in return all of them respond back in
a single promise object with multiple keys. For example, $http.get returns a single
object when you supply four parameters named data, status, header, and config.

$http.get('/api/tv/serials/sherlockHolmes ')
 .success(function(data, status, headers, config) {
 $scope.movieContent = data;
});

If we employ the promises concept here, the same code will be rewritten as:

var promise = $http.get('/api/tv/serials/sherlockHolmes ')
promise.then(
 function(payload) {
 $scope.serialContent = payload.data;
});

The preceding code is more concise and easier to maintain than the one before this,
which makes the usage of Angular.js more adaptable to the engineers using it.

Promise as a handle for callback
The implementation of promise in Angular.js defines your use of promise as a callback
handle. The implementations not only define how to use promise for Angular.js, but
also what steps one should take to make the services as "promise-return". This states
that you do something asynchronously, and once your said job is completed, you
have to trigger the then() service to either conclude your task or to pass it to another
then() method: /asynchronous _task.then().then().done().

In simpler form, you can do this to achieve the concept of promise as a handle for
call backs:

angular.module('TVSerialApp', [])
 .controller('GetSerialsCtrl',
 function($log, $scope, TeleService) {
 $scope.getserialListing = function(serial) {
 var promise =

Chapter 7

[119]

 TeleService.getserial('SherlockHolmes');
 promise.then(
 function(payload) {
 $scope.listingData = payload.data;
 },
 function(errorPayload) {
 $log.error('failure loading serial', errorPayload);
 });
 };
 })
 .factory('TeleService', function($http) {
 return {

 getserial: function(id) {
 return $http.get(''/api/tv/serials/sherlockHolmes' + id);
 }
 }
 });

Blindly passing arguments and nested
promises
Whatever service of promise you use, you must be very sure of what you are passing
and how this can affect the overall working of your promise function. Blindly passing
arguments can cause confusion for the controller as it has to deal with its own results
too while handling other requests. Say we are dealing with the $http.get service and
you blindly pass too much of load to it. Since it has to deal with its own results too in
parallel, it might get confused, which may result in callback hell. However, if you want
to post-process the result instead, you have to deal with an additional parameter called
$http.error. In this way, the controller doesn't have to deal with its own result, and
calls such as 404 and redirects will be saved.

You can also redo the preceding scenario by building your own promise and
bringing back the result of your choice with the payload that you want with the
following code:

factory('TVSerialApp', function($http, $log, $q) {
 return {
 getSerial: function(serial) {
 var deferred = $q.defer();
 $http.get('/api/tv/serials/sherlockHolmes' + serial)
 .success(function(data) {
 deferred.resolve({

Promises in Angular.js

[120]

 title: data.title,
 cost: data.price});
 }).error(function(msg, code) {
 deferred.reject(msg);
 $log.error(msg, code);
 });
 return deferred.promise;
 }
 }
});

By building a custom promise, you have many advents. You can control inputs and
output calls, log the error messages, transform the inputs into desired outputs, and
share the status by using the deferred.notify(mesg) method.

Deferred objects or composed promises
Since custom promise in Angular.js can be hard to handle sometimes and can fall
into malfunction in the worse case, the promise provides another way to implement
itself. It asks you to transform your response within a then method and returns a
transformed result to the calling method in an autonomous way. Considering the
same code we used in the previous section:

this.getSerial = function(serial) {
 return $http.get('/api/tv/serials/sherlockHolmes'+ serial)
 .then(
 function (response) {
 return {
 title: response.data.title,
 cost: response.data.price

 });
 });
};

The output we yield from the preceding method will be a chained, promised, and
transformed. You can again reuse the output for another output, chain it to another
promise, or simply display the result.

The controller can then be transformed into the following lines of code:

$scope.getSerial = function(serial) {
 service.getSerial(serial)
 .then(function(serialData) {

Chapter 7

[121]

 $scope.serialData = serialData;
 });
};

This has significantly reduced the lines of code. Also, this helps us in maintaining
the service level since the automechanism of failsafe in then() will help it to be
transformed into failed promise and will keep the rest of the code intact.

Dealing with the nested calls
While using internal return values in the success function, promise code can sense
that you are missing one most obvious thing: the error controller. The missing error
can cause your code to stand still or get into a catastrophe from which it might
not recover. If you want to overcome this, simply throw the errors. How? See the
following code:

this.getserial = function(serial) {
 return $http.get('/api/tv/serials/sherlockHolmes' + serial)
 .then(
 function (response) {
 return {
 title: response.data.title,
 cost: response.data.price
 });
 },
 function (httpError) {
 // translate the error
 throw httpError.status + " : " +
 httpError.data;
 });
};

Now, whenever the code enters into an error-like situation, it will return a single
string, not a bunch of $http statutes or config details. This can also save your entire
code from going into a standstill mode and help you in debugging. Also, if you
attached log services, you can pinpoint the location that causes the error.

Concurrency in Angular.js
We all want to achieve maximum output at a single slot of time by asking multiple
services to invoke and get results from them. Angular.js provides this functionality via
its $q.all service; you can invoke many services at a time and if you want to join all/
any of them, you just need then() to get them together in the sequence you want.

Promises in Angular.js

[122]

Let's get the payload of the array first:

[
 { url: 'myUr1.html' },
 { url: 'myUr2.html' },
 { url: 'myUr3.html' }
]

And now this array will be used by the following code:

service('asyncService', function($http, $q) {
 return {
 getDataFrmUrls: function(urls) {
 var deferred = $q.defer();
 var collectCalls = [];
 angular.forEach(urls, function(url) {
 collectCalls.push($http.get(url.url));
 });

 $q.all(collectCalls)
 .then(
 function(results) {
 deferred.resolve(
 JSON.stringify(results))
 },
 function(errors) {
 deferred.reject(errors);
 },
 function(updates) {
 deferred.update(updates);
 });
 return deferred.promise;
 }
 };
});

A promise is created by executing $http.get for each URL and is added to an array.
The $q.all function takes the input of an array of promises, which will then process
all results into a single promise containing an object with each answer. This will get
converted in JSON and passed on to the caller function.

The result might be like this:

[
 promiseOneResultPayload,

Chapter 7

[123]

 promiseTwoResultPayload,
 promiseThreeResultPayload
]

The combination of success and error
The $http returns a promise; you can define its success or error depending on this
promise. Many think that these functions are a standard part of promise—but in
reality, they are not as they seem to be.

Using promise means you are calling then(). It takes two parameters—a callback
function for success and a callback function for failure.

Imagine this code:

$http.get("/api/tv/serials/sherlockHolmes")
.success(function(name) {
 console.log("The tele serial name is : " + name);
})
.error(function(response, status) {
 console.log("Request failed " + response + " status code: " +
 status);
};

This can be rewritten as:

$http.get("/api/tv/serials/sherlockHolmes")
.success(function(name) {
 console.log("The tele serial name is : " + name);
})
.error(function(response, status) {
 console.log("Request failed " + response + " status code: " +
 status);
};

$http.get("/api/tv/serials/sherlockHolmes")
.then(function(response) {
 console.log("The tele serial name is :" + response.data);
}, function(result) {
 console.log("Request failed : " + result);
};

One can use either the success or error function depending on the choice of a
situation, but there is a benefit in using $http—it's convenient. The error function
provides response and status, and the success function provides the response data.

Promises in Angular.js

[124]

This is not considered as a standard part of a promise. Anyone can add their own
versions of these functions to promises, as shown in the following code:

//my own created promise of success function

promise.success = function(fn) {
 promise.then(function(res) {
 fn(res.data, res.status, res.headers, config);
 });
 return promise;
};

//my own created promise of error function

promise.error = function(fn) {
 promise.then(null, function(res) {
 fn(res.data, res.status, res.headers, config);
 });
 return promise;
};

The safe approach
So the real matter of discussion is what to use with $http? Success or error?
Keep in mind that there is no standard way of writing promise; we have to look
at many possibilities.

If you change your code so that your promise is not returned from $http, when
we load data from a cache, your code will break if you expect success or error to
be there.

So, the best way is to use then whenever possible. This will not only generalize
the overall approach of writing promise, but also reduce the prediction element
from your code.

Route your promise
Angular.js has the best feature to route your promise. This feature is helpful when
you are dealing with more than one promise at a time. Here is how you can achieve
routing through the following code:

$routeProvider
 .when('/api/', {
 templateUrl: 'index.php',

Chapter 7

[125]

 controller: 'IndexController'
 })
 .when('/video/', {
 templateUrl: 'movies.php',
 controller: 'moviesController'
 })

As you can observe, we have two routes: the api route takes us to the index page,
with IndexController, and the video route takes us to the movie's page.

app.controller('moviesController', function($scope, MovieService) {
 $scope.name = null;

 MovieService.getName().then(function(name) {
 $scope.name = name;
 });
});

There is a problem, until the MovieService class gets the name from the backend, the
name is null. This means if our view binds to the name, first it's empty, then its set.

This is where router comes in. Router resolves the problem of setting the name as
null. Here's how we can do it:

var getName = function(MovieService) {
 return MovieService.getName();
 };

$routeProvider
 .when('/api/', {
 templateUrl: 'index.php',
 controller: 'IndexController'
 })
 .when('/video/', {
 templateUrl: 'movies.php',
 controller: 'moviesController'
 })

After adding the resolve, we can revisit our code for a controller:

app.controller('MovieController', function($scope, getName) {

 $scope.name = name;

});

Promises in Angular.js

[126]

You can also define multiple resolves for the route of your promises to get the best
possible output:

$routeProvider
 .when('/video', {
 templateUrl: '/MovieService.php',
 controller: 'MovieServiceController',

 // adding one resole here
 resolve: {
 name: getName,
 MovieService: getMovieService,
 anythingElse: getSomeThing
 }
 // adding another resole here
 resolve: {
 name: getName,
 MovieService: getMovieService,
 someThing: getMoreSomeThing
 }
 })

Summary
In this chapter, we learned how promise is implemented in Angular.js, how it evolved,
and how promises help in creating applications composed for real-time web apps. We
also saw the functionality of the Q library and Angular.js implementation of promises
using code and learned how to use them in our next application.

The specification of promise in Angular.js is very close to the proposed specification by
ECMAScript 6, but there might be a change when Angular.js fully adopts promises as
its own specification. It will define its own set of rules to use promise, which might not
be the same as the specification itself.

In the next chapter, we will look at how promises are implemented in jQuery,
what will be the mechanism, and what benefits it will bring.

[127]

Promises in jQuery
In the last chapter, we learned how promises were implemented in Angular.js and
how they provided benefit in the fast growing real-time web app industry. In this
chapter, we will explore another very famous and useful JavaScript library for
frontend web/mobile apps development.

jQuery is one the most used JavaScript libraries and it is recognized as one of the
most maintainable, progressive, and easy to adopt libraries around. jQuery has also
a credit to shrink the mile-long lines of code into plainer and simpler short code.
This utility helped jQuery gain popularity beyond imagination. In this chapter,
we will be looking at the history of jQuery, how it evolved, what is the basic way
to use it, and how promises are playing a part in the maturity of jQuery. Let's start
with the history of jQuery in brief.

From where it started?
The classical way of writing code in JavaScript was quite a tedious task. Since the
language did not have many set rules, the code written in JavaScript was becoming
unattainable and rewriteable. The way developers chose the names of their functions
and variables was making simple functions nonreadable and thus not worthy to
use in another project of a similar nature. Also, the fact was that JavaScript was
considered as a second rated language in the computing world due to which not
many people were using it seriously.

In August 2006 the birth of jQuery, enlightened the JavaScript world. John Resig,
the brain behind jQuery, announced in his blog post that jQuery 1.0 was released.
This was the first time when people really started taking JavaScript seriously and
were convinced of its trustworthiness. Though JavaScript has been around since
the early 90s (as described in the first chapter), it has seen many ups and downs.
Finally, with the release of Firefox browser and jQuery, JavaScript managed to
gain some credibility.

Promises in jQuery

[128]

Behind the scenes – how does jQuery
work?
jQuery is based on a simple line of write less, do more; within a few lines of jQuery
code, you will be able to achieve more tasks than conventional ways of writing code.
jQuery has made many tasks easy to conclude in a short time span. It also brings
neatness and readability in code, which earlier, was rare in JavaScript.

After the arrival of jQuery, things started to change dramatically for JavaScript.
Many new implementations started to come on the screen with much more mature
approaches, but the place jQuery has gained was unmatched then and still is.

Having said this, let's come back to our topic: how does jQuery work behind
the scenes?

It all rotates around the $ sign. The jQuery library provides the jQuery (); function,
which allows you select elements just like CSS selectors. For example:

var itemsList = jQuery query("ul");

Or:

var itemsList = $("ul");

In the preceding line, the $ sign is the representation of jQuery. In JavaScript, the
variable name can be anything, but must not start with a numeric value and must
not include a hyphen. In this way, using $ is more convenient for the rules and easy
to remember. You may also find functions like this:

window.jQuery = window.$ = jQuery;

Here the $ sign comes at the very end of the function, and this is the same sight
you will notice in the jQuery source code.

The mechanism is when you call $() and supply a selector to it, you are actually
creating a new jQuery object. In JavaScript, functions are objects too, which means
$() has not only embedded a single object, but it may contain methods, variables,
and multiple objects. So, you might use $.support for information on the current
environment or you may also use $.ajax for an AJAX call to make an AJAX request.

Is your document ready to submit?
Sometimes, it can happen that you submit your document when its half finished
without knowing that it still needs to be processed further. Such an event triggers
a chain of events that will eventually make your page or app go into the
service-fail mode.

Chapter 8

[129]

Using jQuery, this is something that happens rarely as it provides the $(document).
ready() method, which will help to complete of the processing the document.
A simple example can be seen here:

$(document).ready(function() {
 console.log('ready!');
});

The function will execute and will be passed to .ready() once the document
is ready. We are using $(document) to create a jQuery object from the page's
document. We will then call the .ready() function on that object, passing it the
function we want to execute.

How to use jQuery
As we saw in Chapter 7, Promises in Angular.js, the documents related to Angular.js
was the JavaScript file that was linked in HTML pages to call the functions; the
same structure is used in jQuery.

jQuery is a JavaScript file that was linked in at the very beginning of our HTML
file. This can be done in two ways: either call the file from its location on the Web
or download the JavaScript file on your local hard drive and then embed the code.
Either way it will work, but we prefer to use it from our hard drive.

The following lines of code show when we want to link a file from its remote location:

<head>
<script src="http://ajax.aspnetcdn.com/ajax/jQuery/
jquery-1.9.min.js"></script>
</head>

Or, we can download the file on our local hard drive and change the syntax like this:

<head>
<script src="js/jQuery/jquery-1.9.min.js"></script>
</head>

Here, src="js is indicating the local folder where JavaScript file exists.

In a nutshell, you can either use the already written jQuery by embedding it at the
head of the HTML file using the URL or you can download it and make your own
modifications. In both ways, your output will be generated on the screen of the
browser.

Promises in jQuery

[130]

The syntax
The real power of jQuery lies in its custom made syntax, which will help in selecting
HTML elements and perform some action. Its syntax is quite straightforward and
easy to remember, plus it's very neatly written. Here is a sample of jQuery syntax:

$(selector).action ()

The dollar sign ($) defines whether you will use jQuery, whereas the selector
query is to find the HTML element and action defines what kind of action will be
performed on selected elements.

Here are some examples that will explain how jQuery works using its syntax:

•	 $(this).hide(): This hides the current element
•	 $("p").hide(): The hides all <p> elements
•	 $(".test").hide(): This hides all elements with class="test"
•	 $("#test").hide(): This hides the element with id="test"

These are a few examples of hundreds of other methods provided by jQuery. For the
complete reference on methods and APIs, here's the link for all your jQuery needs:
https://api.jquery.com/.

Caching in jQuery
Let's discuss caching in brief specifically relating to jQuery and as a concept in general.

The concept of caching is as old as the Internet itself, at least with the modern day
Internet. Developers are using it to store repetitive data and to reduce cost to server
calls or to remember the connection between the user and server.

Caching helps in many ways to boost the performance of web apps by writing
images and sending the session's information to the user's hard drive at a special
location called the temporary storage. Mostly, this location is specifically created
on the local hard drive and is there to deal with such type of data.

https://api.jquery.com/

Chapter 8

[131]

Say you are surfing an online shopping cart over your browser. At the very first
instance, the site is being loaded to your temporary memory. This includes adding
images of products and other meta information that marks the initial caching of that
particular website. Now, say you have decided to purchase a product and signed in
to the user's area of the shopping cart. This will cache your information in a little text
file called a cookie, which holds the information about who you are and remembers
the web server you are talking to. This is a flow of caching your information over
the temporary location to reduce server calls, optimize navigation, and let the server
remember your identity.

What does jQuery have to offer when it comes to caching and handing elements that
need to cache? Let's take a look.

Caching in jQuery is offered by data function, and it's the same as any other function
calls you make within jQuery. This function itself allows you to bind random data
to random selectors. Most of the developers use it for manipulation with DOM
elements, but this is not limited to it. You can add multiple selectors to bind to
multiple references at a given time slot as the function takes care of it automatically;
it's as simple and easy as this. However, how do the elements and their handlers
stay in the memory?

jQuery follows the "name corresponds value" method to write and handle the
elements in the memory. The unique part of it is the name of element can be same
for many entries, but they must have to point to different DOM elements. In this
way, reference by value comes into play and referring to a particular element will
be faster and easy to traverse by the program using it.

Now, to add elements to the data function, we will follow a syntax similar to the
one shown here:

$("#Textbox_").data("im_textbox1", value)

From here, you can see that we bind the selector with the data() function, and
within the function, we supplied two parameters as the name and its corresponding
value. In this way, we can bind as many selectors as we want to cache them up.

However, the story has a twist. You can write in cache using data(), but it won't
remove data on its own. You have to remove it manually from the temporary
memory. You can do it by calling out the removeData() method like this:

$("#Textbox_").removeData(value)

Promises in jQuery

[132]

Of course, you can automate the function call of removeData() by writing some
kind of cron/timer job function. However, this requires smart engineering and
loads of dry run to that particular job as this can wipe out any important data from
the temporary storage permanently, so it's advised to use such timer jobs in a very
careful manner.

Overall, caching in jQuery is an essential component, and without this, you cannot
optimize your application's flow and data traversing. Using jQuery cache will also
optimize the number of server calls and will boost the performance of your piece
of code.

A sample example
Before we start the prime topic of this chapter, we need to understand how we draft
files that can use jQuery query. This will give us a better understanding of the code
level working and will make us skilled to use promises in jQuery.

Let's start with selectors.

Selectors
Selectors enable us to select and manipulate HTML. We can use them to find
HTML elements that are based on their IDs: classes, types, attributes, values, and
much more stuff. These selectors are just like selectors in CSS, but with the jQuery
touch. Here touch is all the selectors start with the dollar sign, $, followed by round
brackets and dot, as shown in the following code:

<!DOCTYPE html>
<html>
 <head>
 <title> Selector in action </title>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 $(document).ready(function(){
 $("button").click(function(){
 $("p").hide(); // this will able to select
 paragraph element from HTML
 });
 });
 </script>
 </head>
 <body>

Chapter 8

[133]

 <h2>I am a heading </h2> <!-- this is the place from where
 the paragraph is selected -->
 <p>I am a paragraph.</p>
 <button>I am a button </button>
 </body>
</html>

Have a look at the preceding code. The script tag right after the </script> tag is
the place where the selector defines itself and then processes the requests. Once the
page is loaded, it will say "I am a paragraph" with a button, and when you click on it,
the name of the button will change to "I am a button" from "I am a paragraph." This
all happened without any page change since jQuery was able to play with HTML
elements on the go and display results on the same page. This is one helpful feature
of jQuery out of the many that developers are using on a daily basis. Such binding,
instantaneous computing is the reason why jQuery is the choice of many groups of
developers.

Event methods
jQuery has many event-driven interfaces. These interfaces are invoked when you
trigger some event. There are many events such as mouse click, double-click by
mouse, keystroke, mouse hover, and touch. They are made simple by jQuery; all
you need to do is write a few lines of code and the rest of the processing will be
taken over by the jQuery library. Have a look at the following example:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 $(document).ready(function(){
 $("h1").click(function(){
 $(this).hide();
 });
 });
 </script>
 </head>
 <body>
 <h1> Click me to make me disappear </h1>
 </body>
</html>

Promises in jQuery

[134]

Okay, what will happen to the page when I click on the text that appears on the
screen? Any guesses? Yes, it will disappear as I passed the value of the h1 tag into
the jQuery function, which will then hide it when it senses the mouse has been
clicked on it. This is how we normally used to play around with placeholders in
the forms or text areas, but nowadays, forms have this ability built in.

Having said this, it's time to move on to the core of our chapter.

JavaScript before and after jQuery
There was a time when a simple mouse click can be caught by a simple function,
element.onClick = functionName. This was good till the time another function
came about that wanted to listen to the same click. This was solved by adding the
addListenerEvent function from the DOM function. This had added as many
possible listener functions, and we used to adopt this approach.

However, such happenings are meant to reoccur as we are now facing the same
problem with AJAX calls. AJAX uses a single callback function and not only the
jQuery $ajax(), but also the XMLHttpRequest object which has similar problems.

The solution – introducing promises in
jQuery
The solution to the preceding problem was finally delivered in jQuery 1.5 as the
deferred object. Before the deferred concept was introduced in jQuery, the typical
AJAX call was something like this:

$.ajax({
 url: "/testURL.com",
 Success: TheSuccessFunction,
 Error: TheErrorFunction
});

Can you guess what could be the output of this function? Yes, a single
XMLHttpRequest object, which is quite expected for those who are still maintaining
the apps built before jQuery 1.5.

Now, what dramatical change was introduced in jQuery 1.5. First of all, it's based
on a specification of common JavaScript that defines common interfaces and can
be extended as per the needs, and secondly, they are quite global and you can use
these in similar services, such as Node.js.

Chapter 8

[135]

After the addition of deferred objects in jQuery 1.5, the preceding code was rewritten
like this:

var promise = $.ajax({
 url: "/testURL.com"
});
promise.done(TheSuccessFunction);
promise.fail(TheErrorFunction);

If you want to write a more concise version of the preceding code, it can be achieved
as follows:

var promise = $.ajax({
 url: "/testURL.com"
});

promise.then(TheSuccessFunction,TheErrorFunction);

Likewise, there are a number of other advancements that were brought in by
introducing promise in jQuery. In the following sections, we will take a closer look
into how jQuery is getting its promises fulfilled.

Deferred in jQuery
Like in any other implementation of promises, Deferred also has its importance
and value in jQuery. The power lies in the implementation of the concept, which is
straightforward, yet very powerful. In jQuery, deferred has two important methods
that are used to attach with three important events so that they can be linked to a
callback. The methods are resolve and reject, and the events that can be attached
with a callback are done(), fail(), and always(). Let's see it with an example:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 var deferred = $.Deferred();

 deferred.done(function(value) {
 alert(value);
 });

Promises in jQuery

[136]

 deferred.resolve("hello $.deferred ");

 </script>
 </head>
 <body>
 <h1> $.deferred was just displayed </h1>
 </body>
</html>

The thing to remember here is that callback will always be executed no matter
whether deferred is resolved or not, but when you call the reject method, the
failed callback will be executed. Having said that, our preceding example can look
like this:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 var deferred = $.Deferred();

 deferred.resolve("hello resolve");

 deferred.done(function(value) {
 alert(value);
 });

 </script>
 </head>
 <body>
 <h1> sample example of Deferred object. </h1>
 </body>
</html>

If we are to summarize what the $.Deferred object is; we can say it's just a promise
that has methods, which will allow its owner to either resolve or reject it.

$.Deferred().promise() in jQuery
One of the shiny stars of Deferred is its promises. What this method can do? Well, it
returns an object, and with nearly the same interface as Deferred. However, there is
a catch. It's there just to attach the callbacks and not to resolve or reject.

Chapter 8

[137]

This is quite useful in some other conditions, say you want to call out an API. This
will not have the ability to resolve or reject the deferred. Such code will eventually
fail as the promise here does not have a method.

Try executing this code, save it as test.html and run the file:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getPromise(){
 return $.Deferred().promise();
 }

 try{
 getPromise().resolve("a");
 }
 catch(err){
 alert(err);
 }
 </script>
 </head>
 <body>
 <h1> you have seen the error. </h1>
 </body>
</html>

You will get an error like this:

Promises in jQuery

[138]

So, as mentioned earlier, it returns an object and with nearly the same interface as
that of Deferred. However, it's there just to attach the callbacks not to resolve or
reject; this is the catch that we talked about earlier. Now, how can we resolve it?
Simple. You can use promise as a return value for another function; let's try the
following code:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 var post = $.ajax({
 url: "/localhost/json/",
 data: {json: JSON.stringify({firstMovieName:
 "Terminator", secondMovieName: "Terminator 2"})} ,
 type: "POST"
 });

 post.done(function(p){
 alert(p.firstMovieName + " saved.");
 });

 post.fail(function(){
 alert("error! b/c this URL is not functioning");
 });

 </script>
 </head>
 <body>
 <h1> you have seen the error. </h1>
 </body>
</html>

When you run the preceding code, it will give you an error in the alert dialog box on
the page, which it shouldn't when the URL passed in the URL variable is real. For the
sake of understanding, let's assume the URL was proper and that it saved the value,
the result will be like this:

Chapter 8

[139]

The preceding code and the one before that has only one difference—you can add
as many callbacks as you want, the grammar of the code is clean as it shows that we
don't want an extra parameter in the method. Thus, you can ask promise in jQuery
to perform some operations.

Projecting a promise in jQuery
In some cases, we have to just display the name of a promise. This will be much
needed when you only want to see what the element can be or what operations you
want to perform on an object. Using jQuery, we can easily achieve it by using the
pipe() function.

Consider this code where we are projecting the result, which is an actor:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 var post = $.post("/echo/json/",
 {
 json: JSON.stringify({firstName: "Arnold",
 lastName: "Schwarzenegger"})
 }
).pipe(function(p){
 return "Name Saved >> " + p.firstName + " " +
 p.lastName;
 });

Promises in jQuery

[140]

 post.done(function(r){ alert(r); });
 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

The result of the code will be the full name, Arnold Schwarzenegger, displayed on
an alert dialog box at the browser:

As you can see, the projection of the result is an actor name used as an object. So,
instead of deferred of a person, we have a deferred of Name Saved >> Arnold
Schwarzenegger.

The pipe function can also be used to return the object from deep inside a method
call. We can dig out an actor name and his IMDB rating, as explained in the
following code:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getActorById(customerId){
 return $.post("/echo/json/", {
 json: JSON.stringify({firstName: "Arnold",
 lastName: "Schwarzenegger", rating: "8.0"})
 }).pipe(function(p){
 return p.rating;
 });
 }

Chapter 8

[141]

 function getRating(rating){
 return $.post("/echo/json/", {
 json: JSON.stringify({
 rating: "8.0" })
 }).pipe(function(p){
 return p.rating;
 });

 }

 function getActorRatingById(id){
 return getActorById)
 .pipe(getRating);
 }

 getActorRatingById(123)
 .done(function(a){
 alert("The rating of Actor is " + a);
 });

 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

When you run this code, it will give you an alert output on the browser, which will
look like this:

Promises in jQuery

[142]

By the virtue of pipe(), we will dig into callback and on passing the correct
parameters to the function getActorById(); we able to get our desired results
displayed. In a similar manner, you can use pipe() to reject deferred inside
the callback.

One more thing that you can do with pipe is recursive deferred. Say, you have an
asynchronous operation at the backend of API calls, and you need to poll all the
response sets before you can put them to use. You can ask pipe() to help you out.

Consider the following code that will help collect API responses and let you know
whether all the responses are collected or not:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getStatus(){
 var d = $.Deferred();
 $.post(
 "/echo/json/",
 {
 json: JSON.stringify({status:
 Math.floor(Math.random()*4+1)}),
 delay: 1
 }
).done(function(s){
 d.resolve(s.status);
 }).fail(d.reject);
 return d.promise();
 }

 function pollApiCallDone(){
 //do something
 return getStatus()
 .pipe(function(s){
 if(s === 1 || s == 2) {
 return s;
 }

 return pollApiCallDone();
 });
 }

Chapter 8

[143]

 $.blockUI({message: "Please wait while we are Loading
 the results"});

 pollApiCallDone()
 .pipe(function(s){
 switch(s){
 case 1:
 return "completed";
 case 2:
 return "not completed";
 }
 })
 .done(function(s){
 $.unblockUI();
 alert("The status of collection of API call is
 >>> " + s);
 });

 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

Please note that we didn't give any hardcoded value for computing the results,
rather we used math.random() to calculate the results every time we hit refresh.
This is just a mechanism using which you can pool data, validate it, and then use
it as required.

So, we saw how the pipe() method can be beneficial in writing neat and maintainable
code. This also gave us a view of how we can use deferred in the longer run while
remaining under the umbrella of jQuery.

Joining promises with $.when
$.when is another method that can accept multiple promises and return a master
deferred object. This master object can be resolved if all the promises are resolved,
or it would be rejected if any of the promises were rejected. You may have sequence
like when().then().done() or you can add multiple when() methods followed by
then() and done().

Promises in jQuery

[144]

Let's take a look at an example of how the code will look like with $when():

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getActorByRating(id){
 var d = $.Deferred();
 $.post(
 "/echo/json/",
 {json: JSON.stringify({firstName: "Arnold",
 lastName: "Schwarzenegger", rating: "8.0"})}
).done(function(p){
 d.resolve(p);
 }).fail(d.reject);
 return d.promise();
 }

 function getActorById(rating){
 return $.post("/echo/json/", {
 json: JSON.stringify({
 rating: "8.0"})
 }).pipe(function(p){
 return p.rating;
 });
 }

 $.when(getActorByRating(123), getActorById("123456789"))
 .done(function(person, rating){
 alert("The name is " + person.firstName + " and the
 rating is " + rating);
 });
 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

Chapter 8

[145]

When you execute the preceding code, it will generate an output like this:

Notice that at the end of the code, the $.when function returns a new master deferred
object, and we used two results in one done() callback.

We also changed the getActorByRating() method due to the fact that the promise
of an AJAX call, which has the content payload, has the first element in the result
along with status code included.

However, this is not the end; you can also use $.when with pipes. Let's see how:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getActor(id){
 var d = $.Deferred();
 $.post(
 "/echo/json/",
 {json: JSON.stringify({firstName: "Arnold",
 lastName: "Schwarzenegger", rating: "8.0"})}
).done(function(p){
 d.resolve(p);
 }).fail(d.reject);
 return d.promise();
 }

 function getPersonByRating(rating){
 return $.post("/echo/json/", {
 json: JSON.stringify({
 rating: "8.0" })
 }).pipe(function(p){

Promises in jQuery

[146]

 return p.rating;
 });
 }

 $.when(getActor(123), getPersonByRating("123456789"))
 .pipe(function(person, rating){
 return $.extend(person, {rating: rating});
 })
 .done(function(person){
 alert("The name is " + person.firstName + " and the
 rating is " + person.rating);
 });

 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

From the preceding code, you can easily see how when() and pipe() can work in
combination and produce results. By summarizing the preceding code, we can say
the sequence of our code was like when(), pipe(), and done(). The done() method
is the last milestone that has compiled and presented the result on our screen.

We can also use when() as an operator. Remember in JavaScript, every method can
be a variable. Let's see how to do it using this code:

<!DOCTYPE html>
<html>
 <head>
 <script src="http://code.jquery.com/jquery-
 1.9.0.js"></script>
 <script>
 function getActor(id){
 var d = $.Deferred();
 $.post(
 "/echo/json/",
 {json: JSON.stringify({firstName: "Arnold",
 lastName: "Schwarzenegger", rating: "8.0"}),
 delay: 4}
).done(function(p){
 d.resolve(p);
 }).fail(d.reject);
 return d.promise();

Chapter 8

[147]

 }

 function getActorByRating(rating){
 return $.post("/echo/json/", {
 json: JSON.stringify({
 rating: "8.0"
 }),
 delay: 2
 }).pipe(function(p){
 return p.rating;
 });
 }

 function load(){
 $.blockUI({message: "Loading..."});
 var loading = getActor(123)
 .done(function(c){
 $("span#firstName").html(c.firstName)
 });

 var loadingRating = getActorByRating("8.0")
 .done(function(rating){
 $("span#rating").html(rating)
 });

 $.when(loading, loadingRating)
 .done($.unblockUI);
 }

 load();

 </script>
 </head>
 <body>
 <h1> you have seen the result . </h1>
 </body>
</html>

So from the preceding code, you can clearly see how we can use when() in many
different ways. We can add more variety to it as it has many implementations and
best case scenarios for solving complex problems.

Promises in jQuery

[148]

Your own $.Deferred process
You can customize the deferred object as per your need. This is simple and can be
achieved by calling out the jQuery.Deferred() method. We can also define our own
process and the sequence of the flow and arrange the output as required. We can use
setInterval() to set up the delays and setTimeout() to decide when to end the
sequence. The scope of variable declaration decides whether the deferred object has
to be locally or globally processed. If the deferred object is assigned to a local variable,
we can call deferred object's resolve(), promise(), and notify() events.

Let's have a look at this example:

var myCustomPromise = process();
myCustomPromise.done(function() {
 $('#result').html('done.');
});
myCustomPromise.progress(function() {
 $('#result').html($('#result').html() + '.');
});

function process() {
 var deferred = $.Deferred();

 MyTimerCall = setInterval(function() {
 deferred.notify();
 }, 1000);

 setTimeout(function() {
 clearInterval(MyTimerCall);
 deferred.resolve();
 }, 10000);

 return deferred.myCustomPromise();
}

So, from the preceding code, we are able to achieve a skeleton of the processes. This
can be simplified by making it more concise or by adding some combining methods
such as then(), when(), and so on.

Let's have a look at this compact code:

var MyTimerCall;

(function process() {

Chapter 8

[149]

 $('#result').html('waiting…');
 var deferred = $.Deferred();

 MyTimerCall = setInterval(function() {
 deferred.notify();
 }, 1000);

 setTimeout(function() {
 clearInterval(MyTimerCall);
 deferred.resolve();
 }, 10000);

 return deferred.promise();
})().then(function() { $('#result').html('done.'); },
 null,
 function() { $('#result').
 html($('#result').html() + '.'); });

This is more concise and easy to scale. The learning element from this section
is one thing; you can also go for the custom-made deferred in jQuery. It's easy,
maintainable, and you can scale it as per your need.

The advent of promises in jQuery
So far we learned how promise can be used in jQuery, what deferred object is,
and how we can achieve certain tasks using this concept. Why should we use it?
The answer is simple, it has many capabilities to maximize our output and build
applications in a lesser time. However, what can it actually do for us? Let's have a
look.

We can call the done() and fail() functions as many times as we want, with
different callbacks. Maybe we have a callback function that can halt our animation,
or one that does a new AJAX call, and so on:

var promise = $.ajax({
 url: "/echo/"
});

promise.done(StopFadeFunction);
promise.done(FormAjaxFunction);
promise.done(ShowIErrorFunction);
promise.fail(GetErrorFunction);

Promises in jQuery

[150]

No matter whether the AJAX call has finished, we can still call the done() and
fail() functions and the callbacks are executed immediately. So, variables stated
are not a big deal. When the call has finished, it will end up in either the success state
or the failed state, and this state will not change.

We can combine promises. Say we have to do two simultaneous AJAX calls and
we need to execute a function when both are successfully finished, as shown in the
following code:

$.when() function.
var promise1 = $.ajax("/echo1");
var promise2 = $.ajax("/echo2");
$.when(promise1, promise2).done(function(Obj1, Obj2) {
 // place object handler here
});

From jQuery 1.8, we can chain the then() function consecutively:

var promiseOne = $.ajax("/echo1");

function getSomthing () {
 return $.ajax("/echo2");
}
promiseOne.then(getSomthing).then(function(customeServerScript){
 // Both promises are resolved
});

Summary
So, with this chapter coming to an end, let's revise the topics we have covered so far.

We have seen the how jQuery has started taking shape and how it became a
fundamental element of the modern-day web development. We have learned how
to build basic jQuery documents and how to call the functions embedded into HTML
files. We have learned why we started using deferred and promise in jQuery and how
it helped us in achieving cutting-edge applications on both web -based platform and
portable devices. We have seen saw many working examples to understand better
and clear any doubts. The topic of promises in jQuery is huge, but we tried to
summarize as much as we can to lay out solid foundations for those who hadn't
used this property before and to help those who are already using it.

In the next chapter, we will see how all the combined JavaScript and their properties
are shaping up to bring the world closer and making our life easier in the days
to come.

[151]

JavaScript – The Future
Is Now

So far in the previous chapters, we focused on how to become indispensably good
at applying the concept of promises in different JavaScript libraries and how we
can get maximum advantages in our future projects. However, this is not all about
JavaScript.

Although promises are huge and their implementations can bring a number of
benefits, that's not the end of JavaScript. In fact, JavaScript has more to offer in the
coming years than we can have even thought of. It is the progressive language of the
modern age and it's gaining popularity day by day. What else can JavaScript offer
us? We will try to find out in this chapter.

Let's start with ECMAScript 6.

ECMAScript 6 (ECMA 262)
ECMAScript Language Specification is in its sixth version. Since the time its first
version was published in 1997, ECMAScript has become one of the world's most
vastly adopted general purpose programming languages. It is known for its ability
to embed itself in web browsers along with its ability to use server-side and
embedded applications.

Many consider the sixth edition to be the most detailed and most widely covered
update of ECMAScript since its inception in 1997.

We will consider the sixth edition of ECMA 262 for our discussion in this chapter; it's
a draft version with the aims to include better support for large applications, library
creation, and for the use of ECMAScript as a compilation target for other languages.

JavaScript – The Future Is Now

[152]

harmony:generators
harmony:generators are first class croutons that will be represented as objects, which
will be encapsulating suspended execution contexts (that is, function activations).
Till date, these are under review and can be changed, so we will just take these under
consideration to gain knowledge about them.

A few high-level examples would be helpful in better understanding of what the
shape of harmony will be after it gets approved.

Since these are unapproved drafts, we will use examples from the ECMAScript
parent website.

The reference code to be used in this section can be found at http://wiki.
ecmascript.org/doku.php?id=harmony:generators.

The Fibonacci series
The "infinite" sequence of Fibonacci numbers is:

Function* Fibonacci () {
 let [prev, curr] = [0, 1];
 For (;;) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
}

Generators can be iterated over in loops:

for (n of fibonacci()) {
 // truncate the sequence at 1000
 if (n > 1000)
 break;
 print(n);
}

Generators are iterators as shown in the following code:

let seq = fibonacci();
print(seq.next()); // 1
print(seq.next()); // 2
print(seq.next()); // 3
print(seq.next()); // 5
print(seq.next()); // 8

http://wiki.ecmascript.org/doku.php?id=harmony:generators
http://wiki.ecmascript.org/doku.php?id=harmony:generators

Chapter 9

[153]

The preceding snippets are very high-level syntax, and there is a fair chance that they
will be modified. Generators will be a key element and a remarkable addition
to harmony but will take time to fully implement it.

The MEAN stack
Although the MEAN stack is not a new concept, this has provided us the base of
everything in JavaScript. It provides you with a JavaScript-based web server in the
form of Node.js, a database in the form of MongoDB, which also has JavaScript as
the core language, Express.js as a Node.js web application framework, and Angular.
js as the frontend element that can let you extend HTML in a more advanced and
modern way.

The concepts have been around for a while, but they have the potential to grow
beyond imagination. Imagine a full-scale financial application or an entire banking
system based on the MEAN stack or controlling industries. The hardware will be
utilizing services from this stack, but this will happen in the near future, which is
not so late, but still it needs time to fully implement the stack.

The reason I am saying this is because the corporate sector is still reluctant in
adopting the MEAN standard or moving towards it and the reason is the level of
maturity and financial backup of these open source products. Also, they have to
upgrade their existing infrastructure. Whatever the reason, modern day web apps
are heavily using this stack for writing lightweight and scalable apps. Let's mark
the MEAN stack as our item number one for the future of JavaScript.

Real-time communication in JavaScript
Another powerful feature that has been called the future of JavaScript is real-time
communication between two sockets. Before JavaScript, socket programming had
been around for so long that every major programming language had its version of
reading and writing data using sockets, but with JavaScript, this is kind of a new
concept that needs a lot of work at this stage. There are certain ways in which you
can implement real-time socket programming in JavaScript, but the most mature
way at the moment is by using Socket.IO.

It basically enables a two-way event-based communication in real time that will, in
turn, make the communication between two entities possible. It supports a variety of
platforms, which includes web browsers, handheld devices, mobile devices, and any
other device that has the communication feature enabled. Its implementation is fairly
easy and reliable with high quality and speed.

JavaScript – The Future Is Now

[154]

What can we achieve with this? Well, there are a number of possibilities, and it
depends on how you can give them a try based on the support Socket.IO has to offer.
At this point in time, you can write real-time analytics for your business intelligence
or market predictions or trend identification, or you can use it for real-time media
streaming from one part of the planet to other using its binary stream functions, or you
can use it to monitor you premises from a remote location. All these implementations
are available right now and such ideas can be brought to reality by using the functions
smartly.

The conclusion is that Socket.IO is one of the most robust real-time communication
libraries that you can rely on. Looking at the current trend, we can safely say that
real-time communication between devices can be one of the greatest strengths of
JavaScript in future. This doesn't really have to happen via Socket.IO; any library
that has potential will dominate. It's about the concept of how JavaScript will
impress us in the near future.

Internet of Things
Not too long ago, hardware interfacing with devices and machines was only limited
to certain mature and developed programming languages, and no one gave any
thought to whether JavaScript would be able to stand in the same line as these
mature languages. It was a status quo limited to C++ or Java or some other
high-level languages, but this is not the case anymore.

With more focus on JavaScript, developers and engineers are now trying to use the
power of JavaScript in hardware interfacing. They are overcoming the problems of
JavaScript by writing down intelligent code and by utilizing libraries that are already
using communication to a device to some extent.

One such effort is called Raspberry Pi. Let's talk about Raspberry Pi and its purpose,
then we will take a look at how JavaScript is using it.

Raspberry Pi is a simple credit card-type computer design to learn programming in a
very simple and effective manner. It comes with a board that you can call a computer
without any peripherals attached. You have to attach the mouse, keyboard, and a
screen to bring it to life. It has an operating system mounted on an SD card and is
open for experiments. This is portable and you can attach any device to it or program
another device using it. It has all the basic elements that a computer must have, but
in a very simple, portable, and easy-to-handle manner.

Now, what does it have to do with JavaScript? Well, JavaScript is now everywhere,
so its implementation has also started for Raspberry Pi with Pijs.io.

Chapter 9

[155]

Like you can write in any other language for Raspberry Pi, you can also use
JavaScript to write applications of your handheld computer. This JavaScript library
will allow you to interact with hardware using JavaScript and program devices for
your needs. You can see the library at http://pijs.io/.

As discussed earlier, hardware interfacing is not limited to Raspberry Pi; any other
implementations that are out there must be doing the same thing. The core of these
lines is to show how powerful JavaScript is becoming and how widely it is accepted.
Now, people are considering it for programming their devices, regardless of whether
these devices belong to their daily use or commercial use. The future of JavaScript
in computer hardware interfacing is very bright and it's growing rapidly.

Computer animation and in 3D graphics
In 1996, a whole new concept of computer generated images (CGI) was introduced
in the revolutionary movie, Toy Story. This movie had set new standards in
animation and computer graphics. The success of the movie was not just due
to its screenplay but also due to the technology used to build it.

In the current time, the field of computer animation has developed from many
aspects and is still growing at a rapid speed. So, what does JavaScript have to do
with all these advancements? Well, JavaScript is getting readier than ever before
to play its role in computer animated and 3D graphics via the Web.

WebGL is an open source JavaScript API for rendering 2D and 3D images and
objects. The power of WebGL lies in its extension to nearly every browser by
adopting the standards of browsers and their engines. It's highly adaptable and
can be used in any modern day web browser to render images as required.

By the virtue of WebGL, it's now possible to write interactive and cutting edge
games that require no additional plug-in to run. It will also help in the future to
see animated computer modeling with a browser rather than using heavy, costly,
and bulky software. It will also help in visualizing information on the go. So, you
can see the visual impact of stock prices when they go up and down to other stocks
where you have invested.

So far, WebGL has gained support from all the key players of the industry that
includes Apple for its Safari; Microsoft for its IE 11 and its later release, the Edge
browser; Google for its Chrome browser; and Mozilla for its Firefox. Also, note
here that WebGL is the brainchild of Vladimir Vukićević of Mozilla, who released
its initial version in 2011.

http://pijs.io/

JavaScript – The Future Is Now

[156]

We can conclude with the fact that JavaScript has planted seeds in animated and
3D graphics as well, and in the near future, this will not only help JavaScript to gain
credibility to, but will also bring ease to many developers and engineers who have to
learn new languages every time they face a limitation in their current language pack.
With a unified language, the output apps will be more interesting.

NoSQL databases
There was a time when knowing RDBMS was a must for all developers, especially
for those who were working on database-driven applications. The expectation was
that you must know what primary keys were, what joins were, how to normalize
databases, and what entity-relationship diagrams were. However, slowly this scenario
is fading and a new concept of NoSQL is emerging in today's world, where vast
data-driven applications are still in play.

Before we move forward, let's talk about why engineers are focusing on non-
RDBMS technologies. The reason is simple. Data-driven applications have grown
in a tremendous way and they're generating terabytes of data around the world in
every hour of the day. To process such data and get the desired result is not an easy
task. Database Administrators (DBAs) write a query and execute it to fetch the
data from distributed repositories of databases, they have to wait for several hours
to know whether the results are printed on their screen or a slight error in placing
the operator has destroyed all their efforts. This is because of the way RDBMS was
designed, but in today's modern world, such delays and computing times cost you
a fortune and your reputation.

What is the alternative then? NoSQL databases! In an earlier section of this chapter,
we already saw that MongoDB played a key role in the MEAN stack. However, it's
worth giving MongoDB a few more lines here as it's our candidate for the future
growth of JavaScript.

What is MongoDB? It's a document-oriented NoSQL database with cross-platform
adaptability with JSON such as documents. Till February 2015, it was the fourth most
popular DBMS in the world and is considered to be the most popular data store in
the world.

Why have we listed MongoDB in our candidates for future JavaScript growth?
Simply because it's JavaScript-based and you can write scripts within its console in
pure JavaScript. This makes it a highly adaptable DB technology based in JavaScript.
The way it's progressing, it will not only obsolete current scenario of RDBMS but
also will do wonders when combined with the rest of the MEAN stack or hardware
interfacing or the Web or with Socket.IO.

Chapter 9

[157]

In any shape, MongoDB will help the rest of the applications to grow in the
future and also transform the existing RDBMS to more accessible and quick
responder engines.

Summary
In this chapter, we learned that JavaScript is a game changer and that it has a bright
future ahead. JavaScript has a great tendency and adaptability, which will lead it to
the next level of usage in almost every domain of computer science. The possibilities
are limitless, and the sky is the limit for JavaScript. In the near future, JavaScript will
dominate every other programming language due to its adaptability, acceptability,
and contributions of thousands of developers and committed software giants.

With this, we come to the end of this book.

Let's recap what we learned in this book. At the beginning, we took a deep dive
into what JavaScript is and from where it began, what the structure of JavaScript
is and how different browsers are using it. We also saw different programming
models and the one that is being used by JavaScript.

Then, our journey took a bend towards the core of this book, Promises.js. We learned
a great deal about the basics of promises that has taken us towards the advanced
usages of this concept. We then saw it with respect to different technologies and
also samples the code to clear out any ambiguities.

So, all in all, this book is not only about promises in JavaScript, but it has a solid
overview of the history, implementation, and usages of JavaScript and promises.
With this book, you can not only become a master in promises, but also retain a
unique level of understanding, thus implementing this concept in much brighter
and numerous ways.

Happy learning!

[159]

Index
Symbols
$.Deferred process 148
$.deferred().promise(), in jQuery 136-139
$.when method

promises, joining with 143-147

A
Android Deferred Object

defining 53
failure callbacks, for task 54
object success, for task 54
several promises, merging 54
URL 54

Angular.js
concurrency 121, 122
defining 105
evolution 103, 104
promises, implementing 117
URL 105
using 104
using, on local machine 106, 107

Angular.js directive 104
Angular.js document

structure 104, 105
Angular.js file

creating 105
HTML 5 doc, creating 105
JavaScript file, adding 106

application logic
decoupling 35

arguments
passing 119, 120

Asynchronous JavaScript and
XML (AJAX) 2

asynchronous programming
using, problems 67

asynchronous programming model
about 11, 12
blocking programs, defining 12, 13
defining 26
densities, defining with 12
threads, using 13

B
base repository, WinJS

URL 65
binding 5
BlockingQueue interface

implementations 46
bootstrap

URL 108

C
callback 29
callback-based promise

versus Q-based promise 90
callbacks, in JavaScript

basic rules, for implementing 17
function, blocking in humans 16
handling 17, 18
working 17

call stream 5
compatibility, event

URL 21
components, java.util.concurrent

about 45
Executor 45
Queues 46

[160]

composed promise 120
computer animation

about 155
in 3D graphics 155

computer generated images (CGI) 155
Concurrent packages

classes 47
CountDownLatch class

about 47
URL 47

createFileAsync method 72
CSS3 66
CyclicBarrier class

about 47
URL 47

D
Database Administrator (DBA) 156
deferred

about 30
working 30

Deferred, in jQuery 135, 136
deferred objects 120
delay 91
distribution history, WinJS

WinJS 1.0 65
WinJS 2.0 for Windows 8.1 65
WinJS 3.0 65
WinJS Phone 2.1 for Windows Phone 8.1 65
WinJS Xbox 1.0 for Windows 65

Document Object Model (DOM) 20
DOM 2 event specification

URL 22
done() function

defining 71
done() method 146

E
ECMAScript 6 (ECMA 262) 151
elements, Angular.js

about 107
data, filtering 110, 111
scope data, supplying 108-110
scopes, controlling 112, 113
views, routing 114-116

environment
selecting 78
setting up, for Node.js 79

error
and success, combination 123

error handling 69, 70
event handling

defining 19
DOM 20

events
about 19
decoupling 35
event handling, mechanism 19
form events 22
functions, triggering in response

to events 21
interface events 22
Microsoft events 22
mouse events 22
Mozilla events 22
types 21
W3C events 22

events handlers
about 20
onblur 21
onchange 21
onclick 20
ondblclick 20
Onerror 20
onfocus 21
onkeydown 21
Onkeypress 21
onkeyup 21
Onload 20
onmousedown 20
Onmouseout 20
onmouseover 20
onmouseup 20
onreset 21
onselect 21
onsubmit 21
Onunload 20
URL 21

events, in JavaScript
defining 21

example, jQuery
about 132

[161]

event methods 133
selectors 132, 133

exception handling, in promise
best practices 40

exceptions 38, 39
Exchanger class

about 47
URL 47

ExecutiveService interface 45
Executor

using, for ExecutorService 49
ExecutorService interface

shutdown() method 49
shutdownnow() method 49
URL 49

F
fail method 40
Fibonacci series 152
First In First Out (FIFO) 46

G
GitHub

URL 65

H
harmony:generators

about 152
Fibonacci series 152
URL 152

HTML5 66

I
implementations, in Java 44
input/output (I/O) 2
integration of promise, with WT

need for 66
interactive promises

about 31
call function 31
get function 31

Internet of Things 154, 155

J
Java

about 44
concurrent collections 47
java.util.concurrent package,

components 45
synchronizers 47
timing 46
used, for implementing promise 44
util package 44

JavaScript
about 66
after jQuery 134
before jQuery 134
benefits 151
defining 127
fall 2
Google's contributions 2

JavaScript asynchronous model
callbacks, in JavaScript 15, 16
implementing 15
learning 13, 14

JavaScript library
URL 155

JDeferred
Android Deferred Object 53
Deferred Manager 57
Deferred object and promise 56
defining 53-55
features 55, 56
filters 60
pipes 60
promise paradigm, implementing 60, 61
runnable and callable 58
used, for code 56
wait() function 59
waitSafely() function 59

jQuery
about 127-129
caching 130, 131
defining 127
examples 130
promise, projecting in 139-143
promises, defining in 134, 135
promises, using 149, 150

[162]

syntax 130
URL 130
using 129
working 128

JS
about 66
drawbacks 66

M
MEAN stack 153
Microsoft events

URL 22
MongoDB 156
Mozilla events

URL 22
multithreaded synchronous model 10
MVC (model view controller) 104

N
nested calls

dealing with 121
nested promises

passing 119
Node.js

about 75
defining 77, 81, 95
downloading 77
environment, setting up for 79
evolution 76, 77
installing 77
Q.nfapply() 96
Q.nfcall() 95
Q utilities, used for 100
URL 77
with Q library 81, 82

Node.js, on GitHub
URL 77

Node Package Manager. See NPM
NoSQL databases 156
notify 91
NPM

about 78
URL 78

O
object handling promises

about 99
decomposition, of primitive access 99

observer pattern
defining 23
push and pull model 23

observer/push-pub pattern
drawbacks 24, 25

online repository, of WinJS 65

P
Phaser class

about 47
URL 47

pipe function 140
programming models

about 9, 10
asynchronous programming model 11, 12
multithreaded synchronous model 10
single-threaded synchronous model 10

promise
aborting 100
about 3, 30, 38, 39, 44
browser compatibility 7
callbacks, handling 37, 38
chaining 85
change handler, adding for input

element 68, 69
creating, Q.Promise() used 93
defining, in jQuery 134, 135
implementing 37, 43
implementing, in Angular.js 117
implementing, in Java 48
implementing, in WT 67
joining, with $.when 143-147
jumpstarting 67
need for, in JS 3
nesting 85
progress, making with 88, 89
projecting, in jQuery 139-143
return value 31
routing 124, 125
selecting, considerations 41

[163]

states 6
state value 31
unnamed promises, avoiding 38
used, as callback handle 118
using, in jQuery 149, 150
working 30

Promise API
standard behaviors 30, 31

promise, as event emitters
about 36
URL 37

promise, as proxy 94
promise-based actions

creating 98
promise chain

ending 89
promise implementation, by Java

CompletionService interface 48
defining 48, 53
Delay 52
DelayedQueue 52
ExecutorService interface 49, 50
future 51, 52
FutureTask 52

promise pipelining 5
Promises.js

about 2
using 6

promises object
about 25
properties 25

promise, states
failed promise 32
fulfilled promise 32
unfulfilled promise 32

promises, used in Angular.js
schematics 117, 118

proxy, of promise
functions 95

publisher/subscriber
about 23
observer pattern, defining 23

pull model 24
push model 24

Q
Q

combination 86, 87
deferred.notify() 91
errors, handling in Node.js 87
Q.delay() 91
Q.notify() 91
sequences 85
static methods 94
utilities, for Node.js 100

Q-based promise
versus callback-based promise 90

Q.delay() 91
Q library

about 82
installing 82
propagation 83, 84

Q.Promise()
used, for creating promise 93

Q support
for tracing stacks 96, 97

Q.timeout() 91

R
Raspberry Pi 154
ready documents

submitting 128, 129
real-time communication, in

JavaScript 153, 154
resolving 5
reusable wrappers

creating 96
Q.denodeify 96
Q.nbind 96

S
safe approach, $http

defining 124
Semaphore class

about 47
URL 47

[164]

sequencing patterns
about 33
parallel 33
sequential 34
stacked 33

server
using 107

simple node server 79, 80
single-threaded synchronous model 10
software prerequisites

about 4
environment 4

spread function 86
startAsync method

used, for downloading web page
to file 73, 74

states, of promise
fulfilled 6
pending 6
rejected 6

success
and error, combination 123

T
temporary storage 130
then() function

defining 71
then method 73
timeout 91
two asynchronous functions

used, for downloading web page to file 71

U
unbinds

defining 96
util 46

V
V8 engine

about 75, 76
in Google Chrome 76

view() method
defining 99
promise.post(name) 100
promise.send(name) 100

W
WebGL 155
WinJS

defining 64
distribution history, defining 65
on GitHub 65
URL 65

WinJS browser, JS
URL 65

WinJS modules, JS
URL 65

WinJS, TypeScript
URL 65

WinRT
about 63
evolution 64

WT
with CSS3 66
with HTML5 66
with JavaScript 66

X
XAMPP server

URL 106
xhr function 69

Thank you for buying
Mastering JavaScript Promises

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering JavaScript High
Performance
ISBN:978-1-78439-729-6 Paperback: 208 pages

Master the art of building, deploying, and optimizing
faster web applications with JavaScript

1.	 Test and optimize JavaScript code efficiently.

2.	 Build faster and more proficient JavaScript
programs for web browsers and hybrid
mobile apps.

3.	 Step-by-step tutorial stuffed with
real-world examples.

Mastering jQuery
ISBN: 978-1-78398-546-3 Paperback: 400 pages

Elevate your development skills by leveraging every
available ounce of jQuery

1.	 Create and decouple custom event types to
efficiently use them and suit your users' needs.

2.	 Incorporate custom, optimized versions of
the jQuery library into your pages to maximize
the efficiency of your website.

3.	 Get the most out of jQuery by gaining exposure
to real-world examples with tricks and tips to
enhance your skills.

Please check www.PacktPub.com for information on our titles

JavaScript Mobile Application
Development
ISBN: 978-1-78355-417-1 Paperback: 332 pages

Create neat cross-platform mobile apps using Apache
Cordova and jQuery Mobile

1.	 Configure your Android, iOS, and Window
Phone 8 development environments.

2.	 Extend the power of Apache Cordova
by creating your own Apache Cordova
cross-platform mobile plugins.

3.	 Enhance the quality and the robustness of
your Apache Cordova mobile application
by unit testing its logic using Jasmine.

JavaScript Promises Essentials
ISBN: 978-1-78398-564-7 Paperback: 90 pages

Build fully functional web applications using
Promises, the new standard in JavaScript

1.	 Integrate JavaScript Promises into your
application by mastering the key concepts
of the Promises API.

2.	 Replace complex nested callbacks in JavaScript
with the more intuitive chained Promises.

3.	 Acquire the knowledge needed to start working
with JavaScript Promises immediately.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Promises.js
	The fall and rise of JavaScript
	Google's contributions to JavaScript
	Where Promises.js came in?
	What is a promise?
	Why do we need promise in JS?
	Software prerequisites
	Environment you need before getting started

	Future, promise, and delay
	Promise pipelining
	Read-only views

	States of a promise
	How do we keep Promises.js in this book?
	Browser compatibility
	Summary

	Chapter 2: The JavaScript Asynchronous Model
	Programming models
	The single-threaded synchronous model
	The multithreaded synchronous model
	The asynchronous programming model
	Densities with an asynchronous programming model
	Why do we need to block the task?
	Why not use some more threads?

	Learning the JavaScript asynchronous model
	How JavaScript implements an asynchronous model
	Callbacks in JavaScript
	Blocking functions

	The mechanism of a callback function in JavaScript
	Basic rules to implement callbacks
	Handling callback hell

	The events
	The mechanism of event handling
	DOM – event capture and event bubbling
	A list of the most common events handlers

	Triggering functions in response to events
	Types of events in JavaScript
	Interface events
	Mouse events
	Form events
	W3C events
	Microsoft events
	Mozilla events

	The publisher/subscriber
	A brief account of the observer pattern
	A formal definition of observer
	The push and pull model

	The promises object
	Summing up – the asynchronous programing model
	Summary

	Chapter 3: The Promise Paradigm
	Callback, revisited
	Promise
	Deferred
	How do promise and deferred relate to each other?
	Standard behaviors of the Promise API
	Interactive promises
	The states and return values of a promise
	Common sequencing patterns
	Stacked
	Parallel
	Sequential

	Decoupling events and applications logic
	Promises as event emitters

	What promises prescribed not to do
	Avoiding getting into callback hell
	Avoiding the use of unnamed promises

	Promises and exceptions
	The fail method
	The then method

	Best practices to handle exceptions in promise
	Make your exceptions meaningful
	Monitor, anticipate, and handle exception
	Keep it clean

	Considerations while choosing a promise
	Summary

	Chapter 4: Implementing Promises
	How to implement promises
	Implementations in Java
	The util package of Java
	The mechanics of Java to implement a promise
	The core components of java.util.concurrent
	Timing
	Synchronizers
	Concurrent collections

	The implementation of promise by Java
	CompletionService
	ExecutorService
	Future
	Delay and DelayedQueue
	FutureTask
	Summing up Java and Promises.js

	Say hello to JDeferred
	A few words about Android Deferred Object
	Use case 1 – object success and failure callbacks for a task
	Use case 2 – merging several promises

	Mechanics of JDeferred
	Features of JDeferred
	Playing with the code using JDeferred
	Deferred object and promise
	Deferred Manager
	Runnable and callable
	wait() and waitSafely()
	Filters
	Pipes

	Ultimate JDeferred
	Summary

	Chapter 5: Promises in WinRT
	An introduction to WinRT
	The evolution of WinRT
	A little detail about WinJS
	WinJS – its purpose and a distribution history
	WinJS on GitHub

	HTML5, CSS3, and JavaScript
	WT with HTML5, CSS3, and JavaScript
	The need for integrating promise with WT
	Problems when using asynchronous programming
	Jumpstarting promises
	Writing a function that returns a promise
	Adding a change handler for input elements

	Error handling
	Chaining promises using the then() and done() functions
	Example 1A – downloading a web page to a file using two asynchronous functions
	Example 1B – downloading a web page to a file using startAsync

	Summary

	Chapter 6: Promises in Node.js
	The V8 engine – the mechanics
	The V8 engine in Google Chrome
	The Evolution of Node.js
	A brief introduction to Node.js
	Download and install Node.js
	Node Package Manager – NPM
	Choice of environment
	Setting up the environment for Node.js
	A simple node server
	Things we learned so far
	Node.js with the Q library
	Moving ahead with Q
	Propagation in Q
	Chaining and nesting promises
	Sequences in Q
	Combination in Q
	How to handle errors in Q in Node.js
	Making progress with Promises
	Getting to the end of a chain of promises
	Callback-based promises versus
Q-based promises
	A few words on delay, timeout, and notify
	Q.delay()
	Q.timeout()
	deferred.notify()

	Q.Promise() – another way to create promises
	Static methods of Q
	Promise as a proxy
	Familiarizing Node.js – the Q way
	Unbinds and its solution
	Q support for tracing stacks
	Making promise-based actions
	Object handling promises
	Decomposition of primitive access

	View revisited
	Aborting a promise
	Q utilities for Node.js
	Summary

	Chapter 7: Promises in Angular.js
	The evolution of Angular.js
	The structure of the Angular.js document
	Getting started with Angular.js
	Creating your first Angular.js file
	Step 1 – create the HTML 5 doc
	Step 2 – add the JavaScript file to it

	How to use Angular.js on your local machine
	What would be your preference for the server?
	Key elements of Angular.js
	Supplying scope data
	Filtering data
	Controlling scopes
	Routing views

	Implementing promises in Angular.js
	The schematics of using promises in Angular.js
	Promise as a handle for callback
	Blindly passing arguments and nested promises
	Deferred objects or composed promises
	Dealing with the nested calls
	Concurrency in Angular.js
	The combination of success and error
	The safe approach
	Route your promise
	Summary

	Chapter 8: Promises in jQuery
	From where it was started?
	Behind the scenes – how does jQuery work?
	Is your document ready to submit?
	How to use jQuery
	The syntax
	Caching in jQuery
	A sample example
	Selectors
	Event methods

	JavaScript before and after jQuery
	The solution – introducing promises in jQuery
	Deferred in jQuery
	$.Deferred().promise() in jQuery
	Projecting a promise in jQuery
	Joining promises with $.when
	Your own $.Deferred process
	The advent of promises in jQuery
	Summary

	Chapter 9: JavaScript – The Future Is Now
	ECMAScript 6 (ECMA 262)
	harmony:generators
	The Fibonacci series

	The MEAN stack
	Real-time communication in JavaScript
	Internet of Things
	Computer animation and in 3D graphics
	NoSQL databases
	Summary

	Index

