
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning Node

Shelley Powers

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Learning Node
by Shelley Powers

Copyright © 2012 Shelley Powers. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Rachel Steely
Copyeditor: Rachel Monaghan
Proofreader: Kiel Van Horn

Indexer: Aaron Hazelton, BIM Publishing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

September 2012: First Edition.

Revision History for the First Edition:
2012-08-24 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449323073 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Node, the image of a hamster rat, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32307-3

[LSI]

1345837731

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449323073
http://www.allitebooks.org

Table of Contents

Preface . ix

1. Node.js: Up and Running . 1
Setting Up a Node Development Environment 2

Installing Node on Linux (Ubuntu) 2
Partnering Node with WebMatrix on Windows 7 4
Updating Node 9

Node: Jumping In 10
Hello, World in Node 10
Hello, World from the Top 11

Asynchronous Functions and the Node Event Loop 13
Reading a File Asynchronously 14
Taking a Closer Look at Asynchronous Program Flow 16

Benefits of Node 19

2. Interactive Node with REPL . 21
REPL: First Looks and Undefined Expressions 21
Benefits of REPL: Getting a Closer Understanding of JavaScript Under the
Hood 23
Multiline and More Complex JavaScript 24

REPL Commands 27
REPL and rlwrap 28
Custom REPL 29

Stuff Happens—Save Often 32

3. The Node Core . 35
Globals: global, process, and Buffer 35

global 36
process 38
Buffer 39

The Timers: setTimeout, clearTimeout, setInterval, and clearInterval 40

iii

www.allitebooks.com

http://www.allitebooks.org

Servers, Streams, and Sockets 41
TCP Sockets and Servers 42
HTTP 44
UDP/Datagram Socket 46
Streams, Pipes, and Readline 48

Child Processes 50
child_process.spawn 50
child_process.exec and child_process.execFile 52
child_process.fork 53
Running a Child Process Application in Windows 53

Domain Resolution and URL Processing 54
The Utilities Module and Object Inheritance 56
Events and EventEmitter 59

4. The Node Module System . 63
Loading a Module with require and Default Paths 63
External Modules and the Node Package Manager 65
Finding Modules 69

Colors: Simple Is Best 71
Optimist: Another Short and Simple Module 72
Underscore 73

Creating Your Own Custom Module 74
Packaging an Entire Directory 75
Preparing Your Module for Publication 75
Publishing the Module 78

5. Control Flow, Asynchronous Patterns, and Exception Handling 81
Promises, No Promises, Callback Instead 81
Sequential Functionality, Nested Callbacks, and Exception Handling 84
Asynchronous Patterns and Control Flow Modules 91

Step 92
Async 95

Node Style 100

6. Routing Traffic, Serving Files, and Middleware . 103
Building a Simple Static File Server from Scratch 103
Middleware 110

Connect Basics 111
Connect Middleware 113
Custom Connect Middleware 118

Routers 121
Proxies 123

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

7. The Express Framework . 127
Express: Up and Running 128
The app.js File in More Detail 129
Error Handling 132
A Closer Look at the Express/Connect Partnership 133
Routing 134

Routing Path 136
Routing and HTTP Verbs 139

Cue the MVC 145
Testing the Express Application with cURL 150

8. Express, Template Systems, and CSS . 153
The Embedded JavaScript (EJS) Template System 153

Learning the Basic Syntax 154
Using EJS with Node 155
Using the EJS for Node Filters 157

Using a Template System (EJS) with Express 158
Restructuring for a Multiple Object Environment 160
Routing to Static Files 161
Processing a New Object Post 163
Working with the Widgets Index and Generating a Picklist 165
Showing an Individual Object and Confirming an Object Deletion 166
Providing an Update Form and Processing a PUT Request 168

The Jade Template System 172
Taking the Nickel Tour of the Jade Syntax 172
Using block and extends to Modularize the View Templates 174
Converting the Widget Views into Jade Templates 176

Incorporating Stylus for Simplified CSS 180

9. Structured Data with Node and Redis . 187
Getting Started with Node and Redis 188
Building a Game Leaderboard 190
Creating a Message Queue 196
Adding a Stats Middleware to an Express Application 201

10. Node and MongoDB: Document-Centric Data . 207
The MongoDB Native Node.js Driver 208

Getting Started with MongoDB 208
Defining, Creating, and Dropping a MongoDB Collection 209
Adding Data to a Collection 210
Querying the Data 213
Using Updates, Upserts, and Find and Remove 217

Implementing a Widget Model with Mongoose 221

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Refactoring the Widget Factory 222
Adding the MongoDB Backend 223

11. The Node Relational Database Bindings . 229
Getting Started with db-mysql 230

Using Query String or Chained Methods 230
Updating the Database with Direct Queries 233
Updating the Database with Chained Methods 236

Native JavaScript MySQL Access with node-mysql 237
Basic CRUD with node-mysql 237
MySQL Transactions with mysql-queues 239

ORM Support with Sequelize 242
Defining a Model 242
Using CRUD, ORM Style 244
Adding Several Objects Easily 246
Overcoming Issues Related to Going from Relational to ORM 247

12. Graphics and HTML5 Video . 249
Creating and Working with PDFs 249

Accessing PDF Tools with Child Processes 250
Creating PDFs with PDFKit 258

Accessing ImageMagick from a Child Process 260
Properly Serving HTML5 Video with HTTP 264
Creating and Streaming Canvas Content 268

13. WebSockets and Socket.IO . 273
WebSockets 273
An Introduction to Socket.IO 274

A Simple Communication Example 274
WebSockets in an Asynchronous World 278
About That Client Code 279

Configuring Socket.IO 279
Chat: The WebSockets “Hello, World” 281
Using Socket.IO with Express 284

14. Testing and Debugging Node Applications . 287
Debugging 287

The Node.js Debugger 287
Client-Side Debugging with Node Inspector 290

Unit Testing 292
Unit Testing with Assert 292
Unit Testing with Nodeunit 296
Other Testing Frameworks 297

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Acceptance Testing 301
Selenium Testing with Soda 301
Emulating a Browser with Tobi and Zombie 305

Performance Testing: Benchmarks and Load Tests 306
Benchmark Testing with ApacheBench 307
Load Testing with Nodeload 311

Refreshing Code with Nodemon 313

15. Guards at the Gate . 315
Encrypting Data 316

Setting Up TSL/SSL 316
Working with HTTPS 317
Safely Storing Passwords 319

Authentication/Authorization with Passport 322
Authorization/Authentication Strategies: OAuth, OpenID, Username/
Password Verification 323
The Local Passport Strategy 324
The Twitter Passport Strategy (OAuth) 331

Protecting Applications and Preventing Attacks 337
Don’t Use eval 338
Do Use Checkboxes, Radio Buttons, and Drop-Down Selections 338
Scrub Your Data and Sanitize It with node-validator 339

Sandboxed Code 340

16. Scaling and Deploying Node Applications . 345
Deploying Your Node Application to Your Server 345

Writing That package.json File 346
Keeping Your Application Alive with Forever 349
Using Node and Apache Together 351
Improving Performance 353

Deployment to a Cloud Service 353
Deploying to Windows Azure via Cloud9 IDE 354
Joyent Development SmartMachines 356
Heroku 357
Amazon EC2 357
Nodejitsu 357

Appendix: Node, Git, and GitHub . 359

Index . 363

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Not Your Ordinary JavaScript
You picked the perfect time to learn Node.

The technology evolving around Node is still young and vibrant, with interesting new
variations and twists popping up on a regular basis. At the same time, the technology
has reached a level of maturity that assures you your time learning Node will be well
spent: installation has never been easier, even on Windows; the “best of breed” modules
are beginning to surface from the seeming hundreds available for use; the infrastructure
is becoming robust enough for production use.

There are two important things to keep in mind when you work with Node. The first
is that it is based in JavaScript, more or less the same JavaScript you’re used to working
with in client-side development. True, you can use another language variation, such as
CoffeeScript, but JavaScript is the lingua franca of the technology.

The second important thing to remember is that Node isn’t your ordinary JavaScript.
This is server-side technology, which means some of the functionality—and safeguards
—you’ve come to expect in your browser environment just won’t be there, and all sorts
of new and potentially very unfamiliar capabilities will.

Of course, if Node were like JavaScript in the browser, what fun would that be?

Why Node?
If you explore the source code for Node, you’ll find the source code for Google’s V8,
the JavaScript (technically, ECMAScript) engine that’s also at the core of Google’s
Chrome browser. One advantage to Node.js, then, is that you can develop Node ap-
plications for just one implementation of JavaScript—not half a dozen different brows-
ers and browser versions.

Node is designed to be used for applications that are heavy on input/output (I/O), but
light on computation. More importantly, it provides this functionality directly out of
the box. You don’t have to worry about the application blocking any further processing

ix

while waiting for a file to finish loading or a database to finish updating, because most
of the functionality is asynchronous I/O by default. And you don’t have to worry about
working with threads, because Node is implemented on a single thread.

Asynchronous I/O means that applications don’t wait for an input/out-
put process to finish before going on to the next step in the application
code. Chapter 1 goes into more detail on the asynchronous nature of
Node.

Most importantly, Node is written in a language that many traditional web developers
are familiar with: JavaScript. You may be learning how to use new technologies, such
as working with WebSockets or developing to a framework like Express, but at least
you won’t have to learn a new language along with the concepts. This language famil-
iarity makes it a lot easier to just focus on the new material.

This Book’s Intended Audience
One of the challenges associated with working with Node is that there is an assumption
that most people coming into Node development have come from a Ruby or Python
environment, or have worked with Rails. I don’t have this assumption, so I won’t ex-
plain a Node component by saying it’s “just like Sinatra.”

This book’s only assumption is that you, the reader, have worked with JavaScript and
are comfortable with it. You don’t have to be an expert, but you should know what I’m
talking about when I mention closures, and have worked with Ajax and are familiar
with event handling in the client environment. In addition, you’ll get more from this
book if you have done some traditional web development and are familiar with concepts
such as HTTP methods (GET and POST), web sessions, cookies, and so on. You’ll also
need to be familiar with working either with the Console in Windows, or the Unix
command line in Mac OS X or Linux.

You’ll also enjoy the book more if you’re interested in some of the new technologies
such as WebSockets, or working with frameworks to create applications. I cover these
as a way of introducing you to how Node can be used in real-world applications.

Most importantly, as you progress through the book, keep an open mind. Be prepared
to hit an occasional alpha/beta wall and run into the gotchas that plague a dynamic
technology. Above all, meet the prospect of learning Node with anticipation, because
it really can be a lot of fun.

If you’re not sure you’re familiar enough with JavaScript, you might
want to check out my introductory text on JavaScript, Learning Java-
Script, Second Edition (O’Reilly).

x | Preface

How to Best Use This Book
You don’t have to read this book’s chapters in order, but there are paths through the
book that are dependent on what you’re after and how much experience you have with
Node.

If you’ve never worked with Node, then you’re going to want to start with Chapter 1
and read through at least Chapter 5. These chapters cover getting both Node and the
package manager (npm) installed, how to use them, creating your first applications,
and utilizing modules. Chapter 5 also covers some of the style issues associated with
Node, including how to deal with Node’s unique approach to asynchronous develop-
ment.

If you have had some exposure to Node, have worked with both the built-in Node
modules and a few external ones, and have also used REPL (read-eval-print loop—the
interactive console), you could comfortably skip Chapter 1–Chapter 4, but I still
recommend starting no later than Chapter 5.

I incorporate the use of the Express framework, which also utilizes the Connect mid-
dleware, throughout the book. If you’ve not worked with Express, you’re going to want
to go through Chapter 6–Chapter 8, which cover the concepts of routing, proxies, web
servers, and middleware, and introduce Express. In particular, if you’re curious about
using Express in a Model-View-Controller (MVC) framework, definitely read Chap-
ter 7 and Chapter 8.

After these foundation chapters, you can skip around a bit. For instance, if you’re
primarily working with key/value pairs, you’ll want to read the Redis discussion in
Chapter 9; if you’re interested in document-centric data, check out Chapter 10, which
introduces how to use MongoDB with Node. Of course, if you’re going to work only
with a relational database, you can go directly to Chapter 11 and skip the Redis and
MongoDB chapters, though do check them out sometime—they might provide a new
viewpoint to working with data.

After those three data chapters, we get into specialized application use. Chapter 12
focuses purely on graphics and media access, including how to provide media for the
new HTML5 video element, as well as working with PDF documents and Canvas.
Chapter 13 covers the very popular Sockets.io module, especially for working with the
new web socket functionality.

After the split into two different specialized uses of Node in Chapter 12 and Chap-
ter 13, we come back together again at the end of the book. After you’ve had some time
to work with the examples in the other chapters, you’re going to want to spend some
in Chapter 14, learning in-depth practices for Node debugging and testing.

Chapter 15 is probably one of the tougher chapters, and also one of the more important.
It covers issues of security and authority. I don’t recommend that it be one of the first

Preface | xi

chapters you read, but it is essential that you spend time in this chapter before you roll
a Node application out for general use.

Chapter 16 is the final chapter, and you can safely leave it for last, regardless of your
interest and experience. It focuses on how to prepare your application for production
use, including how to deploy your Node application not only on your own system, but
also in one of the cloud servers that are popping up to host Node applications. I’ll also
cover how to deploy a Node application to your server, including how to ensure it plays
well with another web server such as Apache, and how to ensure your application
survives a crash and restarts when the system is rebooted.

Node is heavily connected with the Git source control technique, and most (if not all)
Node modules are hosted on GitHub. The Appendix provides a Git/GitHub survival
guide for those who haven’t worked with either.

I mentioned earlier that you don’t have to follow the chapters in order, but I recommend
that you do. Many of the chapters work off effort in previous chapters, and you may
miss out on important points if you skip around. In addition, though there are numer-
ous standalone examples all throughout the book, I do use one relatively simple Express
application called Widget Factory that begins life in Chapter 7 and is touched on, here
and there, in most of the rest of the chapters. I believe you’ll have a better time with
the book if you start at the beginning and then lightly skim the sections that you know,
rather than skip a chapter altogether.

As the king says in Alice in Wonderland, “Begin at the beginning and go on till you come
to the end: then stop.”

The Technology
The examples in this book were created in various releases of Node 0.6.x. Most were
tested in a Linux environment, but should work, as is, in any Node environment.

Node 0.8.x released just as this book went to production. The examples in the chapters
do work with Node 0.8.x for the most part; I have indicated the instances where you’ll
need to make a code change to ensure that the application works with the newest Node
release.

The Examples
You can find the examples as a compressed file at the O’Reilly web page for this book
(http://oreil.ly/Learning_node). Once you’ve downloaded and uncompressed it, and
you have Node installed, you can install all the dependency libraries for the examples
by changing to the examples directory and typing:

npm install -d

I’ll cover more on using the Node package manager (npm) in Chapter 4.

xii | Preface

http://oreil.ly/Learning_node

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Node by Shelley Powers
(O’Reilly). Copyright 2012 Shelley Powers, 978-1-449-32307-3.”

Preface | xiii

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Learning_node.

To comment or ask technical questions about this book, please send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Learning_node
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Thanks, as always, to friends and family who help keep me sane when I work on a
book. Special thanks to my editor, Simon St. Laurent, who listened to me vent more
than once.

My thanks also to the production crew who helped take this book from an idea to the
work you’re now holding: Rachel Steely, Rachel Monaghan, Kiel Van Horn, Aaron
Hazelton, and Rebecca Demarest.

When you work with Node, you’re the recipient of a great deal of generosity, starting
with the creator of Node.js, Ryan Dahl, and including the creator of npm, Isaac
Schlueter, who is also now the Node.js gatekeeper.

Others who provided extremely useful code and modules in this book are Bert Belder,
TJ Holowaychuk, Jeremy Ashkenas, Mikeal Rogers, Guillermo Rauch, Jared Hanson,
Felix Geisendörfer, Steve Sanderson, Matt Ranney, Caolan McMahon, Remy Sharp,
Chris O’Hara, Mariano Iglesias, Marco Aurélio, Damián Suárez, Jeremy Ashkenas,
Nathan Rajlich, Christian Amor Kvalheim, and Gianni Chiappetta. My apologies for
any module developers I have inadvertently omitted.

And what would Node be without the good people who provide tutorials, how-tos,
and helpful guides? Thanks to Tim Caswell, Felix Geisendörfer, Mikato Takada, Geo
Paul, Manuel Kiessling, Scott Hanselman, Peter Krumins, Tom Hughes-Croucher, Ben
Nadel, and the entire crew of Nodejitsu and Joyent.

Preface | xv

CHAPTER 1

Node.js: Up and Running

Node.js is a server-side technology that’s based on Google’s V8 JavaScript engine. It’s
a highly scalable system that uses asynchronous, event-driven I/O (input/output),
rather than threads or separate processes. It’s ideal for web applications that are fre-
quently accessed but computationally simple.

If you’re using a traditional web server, such as Apache, each time a web resource is
requested, Apache creates a separate thread or invokes a new process in order to handle
the request. Even though Apache responds quickly to requests, and cleans up after the
request has been satisfied, this approach can still tie up a lot of resources. A popular
web application is going to have serious performance issues.

Node, on the other hand, doesn’t create a new thread or process for every request.
Instead, it listens for specific events, and when the event happens, responds accord-
ingly. Node doesn’t block any other request while waiting for the event functionality
to complete, and events are handled—first come, first served—in a relatively uncom-
plicated event loop.

Node applications are created with JavaScript (or an alternative language that compiles
to JavaScript). The JavaScript is the same as you’d use in your client-side applications.
However, unlike JavaScript in a browser, with Node you have to set up a development
environment.

Node can be installed in a Unix/Linux, Mac OS, or Windows environment. This chap-
ter will walk you through setting up a development environment for Node in Windows
7 and Linux (Ubuntu). Installation on a Mac should be similar to installation on Linux.
I’ll also cover any requirements or preparation you need to take before installing the
application.

Once your development environment is operational, I’ll demonstrate a basic Node
application and walk you through the important bit—the event loop I mentioned
earlier.

1

Setting Up a Node Development Environment
There is more than one way to install Node in most environments. Which approach
you use is dependent on your existing development environment, your comfort level
working with source code, or how you plan to use Node in your existing applications.

Package installers are provided for both Windows and Mac OS, but you can install
Node by grabbing a copy of the source and compiling the application. You can also use
Git to clone (check out) the Node repo (repository) in all three environments.

In this section I’m going to demonstrate how to get Node working in a Linux system
(an Ubuntu 10.04 VPS, or virtual private server), by retrieving and compiling the source
directly. I’ll also demonstrate how to install Node so that you can use it with Microsoft’s
WebMatrix on a Windows 7 PC.

Download source and basic package installers for Node from http://no
dejs.org/#download. There’s a wiki page providing some basic instruc-
tion for installing Node in various environments at https://github.com/
joyent/node/wiki/Installing-Node-via-package-manager. I also encour-
age you to search for the newest tutorials for installing Node in your
environment, as Node is very dynamic.

Installing Node on Linux (Ubuntu)
Before installing Node in Linux, you need to prepare your environment. As noted in
the documentation provided in the Node wiki, first make sure Python is installed, and
then install libssl-dev if you plan to use SSL/TLS (Secure Sockets Layer/Transport Layer
Security). Depending on your Linux installation, Python may already be installed. If
not, you can use your systems package installer to install the most stable version of
Python available for your system, as long as it’s version 2.6 or 2.7 (required for the most
recent version of Node).

This book assumes only that you have previous experience with Java-
Script and traditional web development. Given that, I’m erring on the
side of caution and being verbose in descriptions of what you need to
do to install Node.

For both Ubuntu and Debian, you’ll also need to install other libraries. Using the Ad-
vanced Packaging Tool (APT) available in most Debian GNU/Linux systems, you can
ensure the libraries you need are installed with the following commands:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install build-essential openssl libssl-dev pkg-config

2 | Chapter 1: Node.js: Up and Running

http://nodejs.org/#download
http://nodejs.org/#download
https://github.com/joyent/node/wiki/Installing-Node-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node-via-package-manager

The update command just ensures the package index on your system is up to date, and
the upgrade command upgrades any existing outdated packages. The third command
line is the one that installs all of the necessary packages. Any existing package depen-
dencies are pulled in by the package manager.

Once your system is prepared, download the Node tarball (the compressed, archived
file of the source) to your system. I use wget to access tarballs, though you can also use
curl. At the time I’m writing this, the most recent source for Node is version 0.8.2:

wget http://nodejs.org/dist/v0.8.2/node-v0.8.2.tar.gz

Once you’ve downloaded it, unzip and untar the file:

tar -zxf node-v0.8.2.tar.gz

You now have a directory labeled node-v0.6.18. Change into the directory and issue
the following commands to compile and install Node:

./configure
make
sudo make install

If you’ve not used the make utility in Unix before, these three commands set up the
makefile based on your system environment and installation, run a preliminary make to
check for dependencies, and then perform a final make with installation. After process-
ing these commands, Node should now be installed and accessible globally via the
command line.

The fun challenge of programming is that no two systems are alike. This
sequence of actions should be successful in most Linux environments,
but the operative word here is should.

Notice in the last command that you had to use sudo to install Node. You need root
privileges to install Node this way (see the upcoming note). However, you can install
Node locally by using the following, which installs Node in a given local subdirectory:

mkdir ~/working
./configure --prefix=~/working
make
make install
echo 'export PATH=~/working/bin:${PATH}' >> ~/.bashrc
. ~/.bashrc

So, as you can see here, setting the prefix configuration option to a specified path in
your home directory installs Node locally. You’ll need to remember to update your
PATH environmental variable accordingly.

Setting Up a Node Development Environment | 3

To use sudo, you have to be granted root, or superuser, privileges, and
your username must be listed in a special file located at /etc/sudoers.

Although you can install Node locally, if you’re thinking of using this approach to use
Node in your shared hosting environment, think again. Installing Node is just one part
of using Node in an environment. You also need privileges to compile an application,
as well as run applications off of certain ports (such as port 80). Most shared hosting
environments will not allow you to install your own version of Node.

Unless there’s a compelling reason, I recommend installing Node using sudo.

At one time there was a security concern about running the Node pack-
age manager (npm), covered in Chapter 4, with root privilege. However,
those security issues have since been addressed.

Partnering Node with WebMatrix on Windows 7
You can install Node in Windows using a very basic installation sequence as outlined
in the wiki installation page provided earlier. However, chances are that if you’re going
to use Node in a Windows environment, you’re going to use it as part of a Windows
web development infrastructure.

There are two different Windows infrastructures you can use Node with at this time.
One is the new Windows Azure cloud platform, which allows developers to host ap-
plications in a remote service (called a cloud). Microsoft provides instructions for in-
stalling the Windows Azure SDK for Node, so I won’t be covering that process in this
chapter (though I will examine and demonstrate the SDK later in the book).

You can find the Windows Azure SDK for Node and installation in-
structions at https://www.windowsazure.com/en-us/develop/nodejs/.

The other approach to using Node on Windows—in this case, Windows 7—is by in-
tegrating Node into Microsoft’s WebMatrix, a tool for web developers integrating open
source technologies. Here are the steps we’ll need to take to get Node up and running
with WebMatrix in Windows 7:

4 | Chapter 1: Node.js: Up and Running

https://www.windowsazure.com/en-us/develop/nodejs/

1. Install WebMatrix.

2. Install Node using the latest Windows installation package.

3. Install iisnode for IIS Express 7.x, which enables Node applications with IIS on
Windows.

4. Install Node templates for WebMatrix; these simplify Node development.

You install WebMatrix using the Microsoft Web Platform Installer, as shown in Fig-
ure 1-1. The tool also installs IIS Express, which is a developer version of Microsoft’s
web server. Download WebMatrix from http://www.microsoft.com/web/webmatrix/.

Figure 1-1. Installing WebMatrix in Windows 7

Once the WebMatrix installation is finished, install the latest version of Node using
the installer provided at the primary Node site (http://nodejs.org/#download). Installa-
tion is one-click, and once you’re finished you can open a Command window and type
node to check for yourself that the application is operational, as shown in Figure 1-2.

For Node to work with IIS in Windows, install iisnode, a native IIS 7.x module created
and maintained by Tomasz Janczuk. As with Node, installation is a snap using the
prebuilt installation package, available at https://github.com/tjanczuk/iisnode. There are
x86 and x64 installations, but for x64, you’ll need to install both.

Setting Up a Node Development Environment | 5

http://www.microsoft.com/web/webmatrix/
http://nodejs.org/#download
https://github.com/tjanczuk/iisnode

Figure 1-2. Testing in the Command window to ensure Node is properly installed

During the iisnode installation, a window may pop up telling you that you’re missing
the Microsoft Visual C++ 2010 Redistributable Package, as shown in Figure 1-3. If so,
you’ll need to install this package, making sure you get the one that matches the version
of iisnode you’re installing—either the x86 package (available at http://www.microsoft
.com/download/en/details.aspx?id=5555) or the x64 package (available at http://www
.microsoft.com/download/en/details.aspx?id=14632), or both. Once you’ve installed the
requisite package, run the iisnode installation again.

Figure 1-3. Message warning us that we need to install the C++ redistributable package

If you want to install the iisnode samples, open a Command window with administrator
privileges, go to the directory where iisnode is installed—either Program Files for 64-
bit, or Program Files (x86)—and run the setupsamples.bat file.

6 | Chapter 1: Node.js: Up and Running

http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.microsoft.com/download/en/details.aspx?id=14632
http://www.microsoft.com/download/en/details.aspx?id=14632

To complete the WebMatrix/Node setup, download and install the Node templates
for WebMatrix, created by Steve Sanderson and found at https://github.com/SteveSan
derson/Node-Site-Templates-for-WebMatrix.

You can test that everything works by running WebMatrix, and in the opening pages,
select the “Site from Template” option. In the page that opens, shown in Figure 1-4,
you’ll see two Node template options: one for Express (introduced in Chapter 7) and
one for creating a basic, empty site configured for Node. Choose the latter option, giving
the site a name of First Node Site, or whatever you want to use.

Figure 1-4. Creating a new Node site using a template in WebMatrix

Figure 1-5 shows WebMatrix once the site has been generated. Click the Run button,
located in the top left of the page, and a browser page should open with the ubiquitous
“Hello, world!” message displayed.

If you’re running the Windows Firewall, the first time you run a Node application, you
may get a warning like that shown in Figure 1-6. You need to let the Firewall know this
application is acceptable by checking the “Private networks” option and then the “Al-
low access” button. You want to restrict communication to just your private network
on your development machine.

Setting Up a Node Development Environment | 7

https://github.com/SteveSanderson/Node-Site-Templates-for-WebMatrix
https://github.com/SteveSanderson/Node-Site-Templates-for-WebMatrix

Figure 1-5. Newly generated Node site in WebMatrix

Figure 1-6. Warning that the Windows Firewall blocked Node application, and the option to bypass

If you look at the generated files for your new WebMatrix Node project, you’ll see one
named app.js. This is the Node file, and it contains the following code:

8 | Chapter 1: Node.js: Up and Running

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end('Hello, world!');

}).listen(process.env.PORT || 8080);

What this all means, I’ll get into in the second part of this chapter. The important item
to take away from this code right now is that we can run this same application in any
operating system where Node is installed and get the exact same functionality: a service
that returns a simple message to the user.

To access the iisnode examples from WebMatrix, select the WebMatrix
option “Site from Folder,” and then input the following into the dialog
that opens: %localappdata%\iisnode\www.

Updating Node
Node stable releases are even numbered, such as the current 0.8.x, while the develop-
ment releases are odd numbered (currently 0.9.x). I recommend sticking with stable
releases only—at least until you have some experience with Node.

Updating your Node installation isn’t complicated. If you used the package installer,
using it for the new version should just override the old installation. If you’re working
directly with the source, you can always uninstall the old source and install the new if
you’re concerned about potential clutter or file corruption. In the Node source direc-
tory, just issue the uninstall make option:

make uninstall

Download the new source, compile it, and install it, and you’re ready to go again.

The challenge with updating Node is determining whether a specific environment,
module, or other application works with the new version. In most cases, you shouldn’t
have version troubles. However, if you do, there is an application you can use to
“switch” Node versions. The application is the Node Version Manager (Nvm).

You can download Nvm from GitHub, at https://github.com/creationix/nvm. Like
Node, Nvm must be compiled and installed on your system.

To install a specific version of Node, install it with Nvm:

nvm install v0.4.1

To switch to a specific version, use the following:

nvm run v0.4.1

Setting Up a Node Development Environment | 9

https://github.com/creationix/nvm

To see which versions are available, use:

nvm ls

Node: Jumping In
Now that you have Node installed, it’s time to jump into your first application.

Hello, World in Node
As is typical for testing out any new development environment, language, or tool, the
first application we’ll create is “Hello, World”—a simple application that prints out a
greeting to whomever accesses it.

Example 1-1 shows all the text needed to create Hello, World in Node.

Example 1-1. Hello, World in Node

// load http module
var http = require('http');

// create http server
http.createServer(function (req, res) {

 // content header
 res.writeHead(200, {'content-type': 'text/plain'});

 // write message and signal communication is complete
 res.end("Hello, World!\n");
}).listen(8124);

console.log('Server running on 8124');

The code is saved in a file named helloworld.js. As server-side functionality goes, this
Node application is neither too verbose, nor too cryptic; one can intuit what’s hap-
pening, even without knowing Node. Best of all, it’s familiar since it’s written in a
language we know well: JavaScript.

To run the application, from the command line in Linux, the Terminal window in Mac
OS, or the Command window in Windows, type:

node helloworld.js

The following is printed to the command line once the program has successfully started:

Server running at 8124

Now, access the site using any browser. If the application is running on your local
machine, you’ll use localhost:8124. If it’s running remotely, use the URL of the remote
site, with the 8124 port. A web page with the words “Hello, World!” is displayed.
You’ve now created your first complete and working Node application.

10 | Chapter 1: Node.js: Up and Running

If you’re installing Node in a Fedora system, be aware that Node is re-
named due to name conflicts with existing functionality. There’s more
on this at http://nodejs.tchol.org/.

Since we didn’t use an ampersand (&) following the node command—telling the ap-
plication to run in the background—the application starts and doesn’t return you to
the command line. You can continue accessing the application, and the same words
get displayed. The application continues until you type Ctrl-C to cancel it, or otherwise
kill the process.

If you want to run the application in the background within a Linux system, use the
following:

node helloworld.js &

However, you’ll then have to find the process identifier using ps -ef, and manually kill
the right process—in this case, the one with the process identifier 3747—using kill:

ps -ef | grep node
kill 3747

Exiting the terminal window will also kill the process.

In Chapter 16, I cover how to create a persistent Node application in-
stallation.

You won’t be able to start another Node application listening at the same port: you can
run only one Node application against one port at a time. If you’re running Apache at
port 80, you won’t be able to run the Node application at this port, either. You must
use a different port for each application.

You can also add helloworld.js as a new file to the existing WebMatrix website you
created earlier, if you’re using WebMatrix. Just open the site, choose the “New File...”
option from the menu bar, and add the text shown in Example 1-1 to the file. Then
click the Run button.

WebMatrix overrides the port in the application. When you run the
application, you’ll access the application from the port defined for the
project, not specified in the http.Server.listen method.

Hello, World from the Top
I’ll get more in depth on the anatomy of Node applications in the next couple of chap-
ters, but for now, let’s take a closer look at the Hello, World application.

Returning to the text in Example 1-1, the first line of code is:

Node: Jumping In | 11

http://nodejs.tchol.org/

var http = require('http');

Most Node functionality is provided through external applications and libraries called
modules. This line of JavaScript loads the HTTP module, assigning it to a local variable.
The HTTP module provides basic HTTP functionality, enabling network access of the
application.

The next line of code is:

http.createServer(function (req, res) { ...

In this line of code, a new server is created with createServer, and an anonymous
function is passed as the parameter to the function call. This anonymous function is
the requestListener function, and has two parameters: a server request (http.Server
Request) and a server response (http.ServerResponse).

Within the anonymous function, we have the following line:

res.writeHead(200, {'content-Type': 'text/plain'});

The http.ServerResponse object has a method, writeHead, that sends a response header
with the response status code (200), as well as provides the content-type of the re-
sponse. You can also include other response header information within the headers
object, such as content-length or connection:

{ 'content-length': '123',
 'content-type': 'text/plain',
 'connection': 'keep-alive',
 'accept': '*/*' }

A second, optional parameter to writeHead is a reasonPhrase, which is a textual de-
scription of the status code.

Following the code to create the header is the command to write the “Hello, World!”
message:

res.end("Hello, World!\n");

The http.ServerResponse.end method signals that the communication is finished; all
headers and the response body have been sent. This method must be used with every
http.ServerResponse object.

The end method has two parameters:

• A chunk of data, which can be either a string or a buffer.

• If the chunk of data is a string, the second parameter specifies the encoding.

Both parameters are optional, and the second parameter is required only if the encoding
of the string is anything other than utf8, which is the default.

Instead of passing the text in the end function, I could have used another method, write:

res.write("Hello, World!\n");

and then:

12 | Chapter 1: Node.js: Up and Running

www.allitebooks.com

http://www.allitebooks.org

res.end();

The anonymous function and the createServer function are both finished on the next
line in the code:

}).listen(8124);

The http.Server.listen method chained at the end of the createServer method listens
for incoming connections on a given port—in this case, port 8124. Optional parameters
are a hostname and a callback function. If a hostname isn’t provided, the server accepts
connections to web addresses, such as http://oreilly.com or http://examples.burningbird
.net.

More on the callback function later in this chapter.

The listen method is asynchronous, which means the application doesn’t block pro-
gram execution, waiting for the connection to be established. Whatever code following
the listen call is processed, and the listen callback function is invoked when the
listening event is fired—when the port connection is established.

The last line of code is:

console.log('Server running on 8124/');

The console object is one of the objects from the browser world that is incorporated
into Node. It’s a familiar construct for most JavaScript developers, and provides a way
to output text to the command line (or development environment), rather than to the
client.

Asynchronous Functions and the Node Event Loop
The fundamental design behind Node is that an application is executed on a single
thread (or process), and all events are handled asynchronously.

Consider how the typical web server, such as Apache, works. Apache has two different
approaches to how it handles incoming requests. The first is to assign each request to
a separate process until the request is satisfied; the second is to spawn a separate thread
for each request.

The first approach (known as the prefork multiprocessing model, or prefork MPM) can
create as many child processes as specified in an Apache configuration file. The ad-
vantage to creating a separate process is that applications accessed via the request, such
as a PHP application, don’t have to be thread-safe. The disadvantage is that each process
is memory intensive and doesn’t scale very well.

Asynchronous Functions and the Node Event Loop | 13

http://oreilly.com
http://examples.burningbird.net
http://examples.burningbird.net

The second approach (known as the worker MPM), implements a hybrid process-
thread approach. Each incoming request is handled via a new thread. It’s more efficient
from a memory perspective, but also requires that all applications be thread-safe.
Though the popular web language PHP is now thread-safe, there’s no guarantee that
the many different libraries used with it are also thread-safe.

Regardless of the approach used, both types respond to requests in parallel. If five
people access a web application at the exact same time, and the server is set up
accordingly, the web server handles all five requests simultaneously.

Node does things differently. When you start a Node application, it’s created on a single
thread of execution. It sits there, waiting for an application to come along and make a
request. When Node gets a request, no other request can be processed until it’s finished
processing the code for the current one.

You might be thinking that this doesn’t sound very efficient, and it wouldn’t be except
for one thing: Node operates asynchronously, via an event loop and callback functions.
An event loop is nothing more than functionality that basically polls for specific events
and invokes event handlers at the proper time. In Node, a callback function is this event
handler.

Unlike with other single-threaded applications, when you make a request to a Node
application and it must, in turn, make some request of resources (such as a database
request or file access), Node initiates the request, but doesn’t wait around until the
request receives a response. Instead, it attaches a callback function to the request. When
whatever has been requested is ready (or finished), an event is emitted to that effect,
triggering the associated callback function to do something with either the results of
the requested action or the resources requested.

If five people access a Node application at the exact same time, and the application
needs to access a resource from a file, Node attaches a callback function to a response
event for each request. As the resource becomes available for each, the callback function
is called, and each person’s request is satisfied in turn. In the meantime, the Node
application can be handling other requests, either for the same applications or a dif-
ferent application.

Though the application doesn’t process the requests in parallel, depending on how
busy it is and how it’s designed, most people usually won’t perceive any delay in the
response. Best of all, the application is very frugal with memory and other limited
resources.

Reading a File Asynchronously
To demonstrate Node’s asynchronous nature, Example 1-2 modifies the Hello, World
application from earlier in the chapter. Instead of just typing out “Hello, World!” it
actually opens up the previously created helloworld.js and outputs the contents to the
client.

14 | Chapter 1: Node.js: Up and Running

Example 1-2. Asynchronously opening and writing out contents of a file

// load http module
var http = require('http');
var fs = require('fs');

// create http server
http.createServer(function (req, res) {

 // open and read in helloworld.js
 fs.readFile('helloworld.js', 'utf8', function(err, data) {

 res.writeHead(200, {'Content-Type': 'text/plain'});
 if (err)
 res.write('Could not find or open file for reading\n');
 else

 // if no error, write JS file to client
 res.write(data);
 res.end();
 });
}).listen(8124, function() { console.log('bound to port 8124');});

console.log('Server running on 8124/');

A new module, File System (fs), is used in this example. The File System module wraps
standard POSIX file functionality, including opening up and accessing the contents
from a file. The method used is readFile. In Example 1-2, it’s passed the name of the
file to open, the encoding, and an anonymous function.

The two instances of asynchronous behavior I want to point out in Example 1-2 are
the callback function that’s attached to the readFile method, and the callback function
attached to the listen method.

As discussed earlier, the listen method tells the HTTP server object to begin listening
for connections on the given port. Node doesn’t block, waiting for the connection to
be established, so if we need to do something once the connection is established, we
provide a callback function, as shown in Example 1-2.

When the connection is established, a listening event is emitted, which then invokes
the callback function, outputting a message to the console.

The second, more important callback instance is the one attached to readFile. Access-
ing a file is a time-consuming operation, relatively speaking, and a single-threaded
application accessed by multiple clients that blocked on file access would soon bog
down and be unusable.

Instead, the file is opened and the contents are read asynchronously. Only when the
contents have been read into the data buffer—or an error occurs during the process—
is the callback function passed to the readFile method called. It’s passed the error (if
any), and the data if no error occurs.

Asynchronous Functions and the Node Event Loop | 15

In the callback function, the error is checked, and if there is no error, the data is then
written out to the response back to the client.

Taking a Closer Look at Asynchronous Program Flow
Most people who have developed with JavaScript have done so in client applications,
meant to be run by one person at a time in a browser. Using JavaScript in the server
may seem odd. Creating a JavaScript application accessed by multiple people at the
same time may seem even odder.

Our job is made easier because of the Node event loop and being able to put our trust
in asynchronous function calls. However, we’re no longer in Kansas, Dorothy—we are
developing for a different environment.

To demonstrate the differences in this new environment, I created two new applica-
tions: one as a service, and one to test the new service. Example 1-3 shows the code for
the service application.

In the code, a function is called, synchronously, to write out numbers from 1 to 100.
Then a file is opened, similar to what happened in Example 1-2, but this time the name
of the file is passed in as a query string parameter. In addition, the file is opened only
after a timer event.

Example 1-3. New service that prints out a sequence of numbers and then the contents of a file

var http = require('http');
var fs = require('fs');

// write out numbers
function writeNumbers(res) {

 var counter = 0;

 // increment global, write to client
 for (var i = 0; i<100; i++) {
 counter++;
 res.write(counter.toString() + '\n');
 }
}

// create http server
http.createServer(function (req, res) {

 var query = require('url').parse(req.url).query;
 var app = require('querystring').parse(query).file + ".txt";

 // content header
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // write out numbers
 writeNumbers(res);

16 | Chapter 1: Node.js: Up and Running

 // timer to open file and read contents
 setTimeout(function() {

 console.log('opening ' + app);
 // open and read in file contents
 fs.readFile(app, 'utf8', function(err, data) {
 if (err)
 res.write('Could not find or open file for reading\n');
 else {
 res.write(data);
 }
 // response is done
 res.end();
 });
 },2000);
}).listen(8124);

console.log('Server running at 8124');

The loop to print out the numbers is used to delay the application, similar to what
could happen if you performed a computationally intensive process and then blocked
until the process was finished. The setTimeout function is another asynchronous func-
tion, which in turn invokes a second asynchronous function: readFile. The application
combines both asynchronous and synchronous processes.

Create a text file named main.txt, containing any text you want. Running the applica-
tion and accessing the page from Chrome with a query string of file=main generates
the following console output:

Server running at 8124/
opening main.txt
opening undefined.txt

The first two lines are expected. The first is the result of running console.log at the end
of the application, and the second is a printout of the file being opened. But what’s
undefined.txt in the third line?

When processing a web request from a browser, be aware that browsers may send more
than one request. For instance, a browser may also send a second request, looking for
a favicon.ico. Because of this, when you’re processing the query string, you must check
to see if the data you need is being provided, and ignore requests without the data.

The browser sending multiple requests can impact your application if
you’re expecting values via a query string. You must adjust your appli-
cation accordingly. And yes, you’ll still need to test your application
with several different browsers.

So far, all we’ve done is test our Node applications from a browser. This isn’t really
putting much stress on the asynchronous nature of the Node application.

Asynchronous Functions and the Node Event Loop | 17

Example 1-4 contains the code for a very simple test application. All it does is use the
HTTP module to request the example server several times in a loop. The requests aren’t
asynchronous. However, we’ll also be accessing the service using the browser as we
run the test program. Both, combined, asynchronously test the application.

I’ll cover creating asynchronous testing applications in Chapter 14.

Example 1-4. Simple application to call the new Node application 2,000 times

var http = require('http');

//The url we want, plus the path and options we need
var options = {
 host: 'localhost',
 port: 8124,
 path: '/?file=secondary',
 method: 'GET'
};

var processPublicTimeline = function(response) {
 // finished? ok, write the data to a file
 console.log('finished request');
};

for (var i = 0; i < 2000; i++) {
 // make the request, and then end it, to close the connection
 http.request(options, processPublicTimeline).end();
}

Create the second text file, named secondary.txt. Put whatever you wish in it, but make
the contents obviously different from main.txt.

After making sure the Node application is running, start the test application:

node test.js

As the test application is running, access the application using your browser. If you
look at the console messages being output by the application, you’ll see it process both
your manual and the test application’s automated requests. Yet the results are consis-
tent with what we would expect, a web page with:

• The numbers 1 through 100 printed out

• The contents of the text file—in this case, main.txt

Now, let’s mix things up a bit. In Example 1-3, make the counter global rather than
local to the loop function, and start the application again. Then run the test program
and access the page in the browser.

18 | Chapter 1: Node.js: Up and Running

The results have definitely changed. Rather than the numbers starting at 1 and going
to 100, they start at numbers like 2,601 and 26,301. They still print out the next se-
quential 99 numbers, but the starting value is different.

The reason is, of course, the use of the global counter. Since you’re accessing the same
application in the browser manually as the test program is doing automatically, you’re
both updating counter. Both the manual and automated application requests are pro-
cessed, in turn, so there’s no contention for the shared data (a major problem with
thread safety in a multithreaded environment), but if you’re expecting a consistent
beginning value, you might be surprised.

Now change the application again, but this time remove the var keyword in front of
the app variable—“accidentally” making it a global variable. We all have, from time to
time, forgotten the var keyword with our client-side JavaScript applications. The only
time we get bit by this mistake is if any libraries we’re using are using the same variable
name.

Run the test application and access the Node service in your browser a couple of times.
Chances are, you’ll end up with the text from the secondary.txt file in your browser
window, rather than the requested main.txt file. The reason is that in the time between
when you processed the query for the filename and when you actually opened the file,
the automatic application modified the app variable. The test application is able to do
so because you made an asynchronous function request, basically ceding program
control to another request while your request was still mid-process.

This example demonstrates how absolutely critical the use of var is with
Node.

Benefits of Node
By now you have a working Node installation—possibly even more than one.

You’ve also had a chance to create a couple of Node applications and test out the
differences between synchronous and asynchronous code (and what happens if you
accidentally forget the var keyword).

Node isn’t all asynchronous function calls. Some objects may provide both synchro-
nous and asynchronous versions of the same function. However, Node works best
when you use asynchronous coding as much as possible.

The Node event loop and callback functions have two major benefits.

First, the application can easily scale, since a single thread of execution doesn’t have
an enormous amount of overhead. If we were to create a PHP application similar to the
Node application in Example 1-3, the user would see the same page—but your system

Benefits of Node | 19

would definitely notice the difference. If you ran the PHP application in Apache with
the default prefork MPM, each time the application was requested, it would have to be
handled in a separate child process. Chances are, unless you have a significantly loaded
system, you’ll only be able to run—at most—a couple of hundred child processes in
parallel. More than that number of requests means that a client needs to wait for a
response.

A second benefit to Node is that you minimize resource usage, but without having to
resort to multithreaded development. In other words, you don’t have to create a thread-
safe application. If you’ve ever developed a thread-safe application previously, you’re
probably feeling profoundly glad at this statement.

However, as was demonstrated in the last example application, you aren’t developing
JavaScript applications for single users to run in the browser, either. When you work
with asynchronous applications, you need to make sure that you don’t build in de-
pendencies on one asynchronous function call finishing ahead of another, because there
are no guarantees—not unless you call the second function call within the code of the
first. In addition, global variables are extremely hazardous in Node, as is forgetting the
var keyword.

Still, these are issues we can work with—especially considering the benefits of Node’s
low resource requirements and not having to worry about threads.

A final reason for liking Node? You can code in JavaScript without hav-
ing to worry about IE6.

20 | Chapter 1: Node.js: Up and Running

CHAPTER 2

Interactive Node with REPL

While you’re exploring the use of Node and figuring out the code for your custom
module or Node application, you don’t have to type JavaScript into a file and run it
with Node to test your code. Node also comes with an interactive component known
as REPL, or read-eval-print loop, which is the subject of this chapter.

REPL (pronounced “repple”) supports a simplified Emacs style of line editing and a
small set of basic commands. Whatever you type into REPL is processed no differently
than if you had typed the JavaScript into a file and run the file using Node. You can
actually use REPL to code your entire application—literally testing the application on
the fly.

In this chapter, I’ll also cover some interesting quirks of REPL, along with some ways
you can work around them. These workarounds include replacing the underlying
mechanism that persists commands, as well as using some command-line editing.

Lastly, if the built-in REPL doesn’t provide exactly what you need for an interactive
environment, there’s also an API to create your own custom REPL, which I’ll demon-
strate in the latter part of the chapter.

You’ll find a handy guide for using REPL at http://docs.nodejitsu.com/
articles/REPL/how-to-use-nodejs-repl. The Nodejitsu site also provides
a nice tutorial on how to create a custom REPL at http://docs.nodejitsu
.com/articles/REPL/how-to-create-a-custom-repl.

REPL: First Looks and Undefined Expressions
To begin REPL, simply type node without providing any Node application file, like so:

$ node

REPL then provides a command-line prompt—an angle bracket (>)—by default. Any-
thing you type from this point on is processed by the underlying V8 JavaScript engine.

REPL is very simple to use. Just start typing in your JavaScript, like you’d add it to a file:

21

http://docs.nodejitsu.com/articles/REPL/how-to-use-nodejs-repl
http://docs.nodejitsu.com/articles/REPL/how-to-use-nodejs-repl
http://docs.nodejitsu.com/articles/REPL/how-to-create-a-custom-repl
http://docs.nodejitsu.com/articles/REPL/how-to-create-a-custom-repl

> a = 2;
2

The tool prints out the result of whatever expression you just typed. In this session
excerpt, the value of the expression is 2. In the following, the expression result is an
array with three elements:

> b = ['a','b','c'];
['a', 'b', 'c']

To access the last expression, use the underscore/underline character (_). In the fol-
lowing, a is set to 2, and the resulting expression is incremented by 1, and then 1 again:

> a = 2;
2
> _ ++;
3
> _ ++;
4

You can even access properties or call methods on the underscored expression:

> ['apple','orange','lime']
['apple', 'orange', 'lime']
> _.length
3
> 3 + 4
7
> _.toString();
'7'

You can use the var keyword with REPL in order to access an expression or value at a
later time, but you might get an unexpected result. For instance, the following line in
REPL:

var a = 2;

doesn’t return the value 2, it returns a value of undefined. The reason is that the result
of the expression is undefined, since variable assignment doesn’t return a result when
evaluated.

Consider the following instead, which is what’s happening, more or less, under the
hood in REPL:

console.log(eval('a = 2'));
console.log(eval('var a = 2'));

Typing the preceding lines into a file and running that file using Node returns:

2
undefined

There is no result from the second call to eval, and hence the value returned is unde
fined. Remember, REPL is a read-eval-print loop, with emphasis on the eval.

Still, you can use the variable in REPL, just as you would in a Node application:

22 | Chapter 2: Interactive Node with REPL

> var a = 2;
undefined
> a++;
2
> a++;
3

The latter two command lines do have results, which are printed out by REPL.

I’ll demonstrate how to create your own custom REPL—one that
doesn’t output undefined—in the section “Custom REPL”
on page 29.

To end the REPL session, either press Ctrl-C twice, or Ctrl-D once. We’ll cover other
ways to end the session later, in “REPL Commands” on page 27.

Benefits of REPL: Getting a Closer Understanding of JavaScript
Under the Hood
Here’s a typical demonstration of REPL:

> 3 > 2 > 1;
false

This code snippet is a good example of how REPL can be useful. At first glance, we
might expect the expression we typed to evaluate to true, since 3 is greater than 2,
which is greater than 1. However, in JavaScript, expressions are evaluated left to right,
and each expression’s result is returned for the next evaluation.

A better way of looking at what’s happening with the preceding code snippet is this
REPL session:

> 3 > 2 > 1;
false
> 3 > 2;
true
> true > 1;
false

Now the result makes more sense. What’s happening is that the expression 3 > 2 is
evaluated, returning true. But then the value of true is compared to the numeric 1.
JavaScript provides automatic data type conversion, after which true and 1 are equiv-
alent values. Hence, true is not greater than 1, and the result is false.

REPL’s helpfulness is in enabling us to discover these little interesting quirks in Java-
Script. Hopefully, after testing our code in REPL, we don’t have unexpected side effects
in our applications (such as expecting a result of true but getting a result of false).

Benefits of REPL: Getting a Closer Understanding of JavaScript Under the Hood | 23

Multiline and More Complex JavaScript
You can type the same JavaScript into REPL just like you’d type it into a file, including
require statements to import modules. A session to try out the Query String (qs) module
is repeated in the following text:

$ node
> qs = require('querystring');
{ unescapeBuffer: [Function],
 unescape: [Function],
 escape: [Function],
 encode: [Function],
 stringify: [Function],
 decode: [Function],
 parse: [Function] }
> val = qs.parse('file=main&file=secondary&test=one').file;
['main', 'secondary']

Since you didn’t use the var keyword, the expression result is printed out—in this
instance, the interface for the querystring object. How’s that for a bonus? Not only are
you getting access to the object, but you’re also learning more about the object’s in-
terface while you’re at it. However, if you want to forgo the potentially lengthy output
of text, use the var keyword:

> var qs = require('querystring');

You’ll be able to access the querystring object with the qs variable with either approach.

In addition to being able to incorporate external modules, REPL gracefully handles
multiline expressions, providing a textual indicator of code that’s nested following an
opening curly brace ({):

> var test = function (x, y) {
... var val = x * y;
... return val;
... };
undefined
> test(3,4);
12

REPL provides repeating dots to indicate that everything that’s being typed follows an
open curly brace and hence the command isn’t finished yet. It does the same for an
open parenthesis, too:

> test(4,
... 5);
20

Increasing levels of nesting generates more dots; this is necessary in an interactive en-
vironment, where you might lose track of where you are, as you type:

> var test = function (x, y) {
... var test2 = function (x, y) {
..... return x * y;

24 | Chapter 2: Interactive Node with REPL

..... }

... return test2(x,y);

... }
undefined
> test(3,4);
12
>

You can type in, or copy and paste in, an entire Node application and run it from REPL:

> var http = require('http');
undefined
> http.createServer(function (req, res) {
...
... // content header
... res.writeHead(200, {'Content-Type': 'text/plain'});
...
... res.end("Hello person\n");
... }).listen(8124);
{ connections: 0,
 allowHalfOpen: true,
 _handle:
 { writeQueueSize: 0,
 onconnection: [Function: onconnection],
 socket: [Circular] },
 _events:
 { request: [Function],
 connection: [Function: connectionListener] },
 httpAllowHalfOpen: false }
>
undefined
> console.log('Server running at http://127.0.0.1:8124/');
Server running at http://127.0.0.1:8124/
Undefined

You can access this application from a browser no differently than if you had typed the
text into a file and run it using Node. And again, the responses back from REPL can
provide an interesting look at the code, as shown in the boldfaced text.

In fact, my favorite use of REPL is to get a quick look at objects. For instance, the Node
core object global is sparsely documented at the Node.js website. To get a better look,
I opened up a REPL session and passed the object to the console.log method like so:

> console.log(global)

I could have done the following, which has the same result:

> gl = global;

I’m not replicating what was displayed in REPL; I’ll leave that for you to try on your
own installation, since the interface for global is so large. The important point to take
away from this exercise is that we can, at any time, quickly and easily get a quick look
at an object’s interface. It’s a handy way of remembering what a method is called, or
what properties are available.

Multiline and More Complex JavaScript | 25

There’s more on global in Chapter 3.

You can use the up and down arrow keys to traverse through the commands you’ve
typed into REPL. This can be a handy way of reviewing what you’ve done, as well as a
way of editing what you’ve done, though in a somewhat limited capacity.

Consider the following session in REPL:

> var myFruit = function(fruitArray,pickOne) {
... return fruitArray[pickOne - 1];
... }
undefined
> fruit = ['apples','oranges','limes','cherries'];
['apples',
 'oranges',
 'limes',
 'cherries']
> myFruit(fruit,2);
'oranges'
> myFruit(fruit,0);
undefined
> var myFruit = function(fruitArray,pickOne) {
... if (pickOne <= 0) return 'invalid number';
... return fruitArray[pickOne - 1];
... };
undefined
> myFruit(fruit,0);
'invalid number'
> myFruit(fruit,1);
'apples'

Though it’s not demonstrated in this printout, when I modified the function to check
the input value, I actually arrowed up through the content to the beginning function
declaration, and then hit Enter to restart the function. I added the new line, and then
again used the arrow keys to repeat previously typed entries until the function was
finished. I also used the up arrow key to repeat the function call that resulted in an
undefined result.

It seems like a lot of work just to avoid retyping something so simple, but consider
working with regular expressions, such as the following:

> var ssRe = /^\d{3}-\d{2}-\d{4}$/;
undefined
> ssRe.test('555-55-5555');
true
> var decRe = /^\s*(\+|-)?((\d+(\.\d+)?)|(\.\d+))\s*$/;
undefined
> decRe.test(56.5);
true

26 | Chapter 2: Interactive Node with REPL

I’m absolutely useless when it comes to regular expressions, and have to tweak them
several times before they’re just right. Using REPL to test regular expressions is very
attractive. However, retyping long regular expressions would be a monstrous amount
of work.

Luckily, all we have to do with REPL is arrow up to find the line where the regular
expression was created, tweak it, hit Enter, and continue with the next test.

In addition to the arrow keys, you can also use the Tab key to autocomplete text. As an
example, type va at the command line and then press Tab; REPL will autocomplete
var. You can also use the Tab key to autocomplete any global or local vari-
able. Table 2-1 offers a quick summary of keyboard commands that work with REPL.

Table 2-1. Keyboard control in REPL

Keyboard entry What it does

Ctrl-C Terminates current command. Pressing Ctrl-C twice forces an exit.

Ctrl-D Exits REPL.

Tab Autocompletes global or local variable.

Up arrow Traverses up through command history.

Down arrow Traverses down through command history.

Underscore (_) References result of last expression.

If you’re concerned about spending a lot of time coding in REPL with nothing to show
for it when you’re done, no worries: you can save the results of the current context with
the .save command. It and the other REPL commands are covered in the next section.

REPL Commands
REPL has a simple interface with a small set of useful commands. In the preceding
section, I mentioned .save. The .save command saves your inputs in the current object
context into a file. Unless you specifically created a new object context or used
the .clear command, the context should comprise all of the input in the current REPL
session:

> .save ./dir/session/save.js

Only your inputs are saved, as if you had typed them directly into a file using a text
editor.

Here is the complete list of REPL commands and their purposes:

.break
If you get lost during a multiline entry, typing .break will start you over again.
You’ll lose the multiline content, though.

Multiline and More Complex JavaScript | 27

.clear
Resets the context object and clears any multiline expression. This command ba-
sically starts you over again.

.exit
Exits REPL.

.help
Displays all available REPL commands.

.save
Saves the current REPL session to a file.

.load
Loads a file into the current session (.load /path/to/file.js).

If you’re working on an application using REPL as an editor, here’s a hint: save your
work often using .save. Though current commands are persisted to history, trying to
recreate your code from history would be a painful exercise.

Speaking of persistence and history, now let’s go over how to customize both with
REPL.

REPL and rlwrap
The Node.js website documentation for REPL mentions setting up an environmental
variable so you can use REPL with rlwrap. What is rlwrap, and why would you use it
with REPL?

The rlwrap utility is a wrapper that adds GNU readline library functionality to com-
mand lines that allow increased flexibility with keyboard input. It intercepts keyboard
input and provides additional functionality, such as enhanced line editing, as well as a
persistent history of commands.

You’ll need to install rlwrap and readline to use this facility with REPL, though most
flavors of Unix provide an easy package installation. For instance, in my own Ubuntu
system, installing rlwrap was this simple:

apt-get install rlwrap

Mac users should use the appropriate installer for these applications. Windows users
have to use a Unix environmental emulator, such as Cygwin.

Here’s a quick and visual demonstration of using REPL with rlwrap to change the REPL
prompt to purple:

env NODE_NO_READLINE=1 rlwrap -ppurple node

If I always want my REPL prompt to be purple, I can add an alias to my bashrc file:

alias node="env NODE_NO_READLINE=1 rlwrap -ppurple node"

To change both the prompt and the color, I’d use the following:

28 | Chapter 2: Interactive Node with REPL

env NODE_NO_READLINE=1 rlwrap -ppurple -S "::>" node

Now my prompt would be:

::>

in purple.

The especially useful component of rlwrap is its ability to persist history across REPL
sessions. By default, we have access to command-line history only within a REPL ses-
sion. By using rlwrap, the next time we access REPL, not only will we have access to a
history of commands within the current session, but also a history of commands in past
sessions (and other command-line entries). In the following session output, the com-
mands shown were not typed in, but were instead pulled from history with the up arrow
key:

env NODE_NO_READLINE=1 rlwrap -ppurple -S "::>" node
::>e = ['a','b'];
['a', 'b']
::>3 > 2 > 1;
false

As helpful as rlwrap is, we still end up with undefined every time we type in an expres-
sion that doesn’t return a value. However, we can adjust this, and other functionality,
just by creating our own custom REPL, discussed next.

Custom REPL
Node provides us access to creating our own custom REPL. To do so, first we need to
include the REPL module (repl):

var repl = require("repl");

To create a new REPL, we call the start method on the repl object. The syntax for this
method is:

repl.start([prompt], [stream], [eval], [useGlobal], [ignoreUndefined]);

All of the parameters are optional. If not provided, default values will be used for each
as follows:

prompt
Default is >.

stream
Default is process.stdin.

eval
Default is the async wrapper for eval.

useGlobal
Default is false to start a new context rather than use the global object.

Multiline and More Complex JavaScript | 29

ignoreUndefined
Default is false; don’t ignore the undefined responses.

I find the undefined expression result in REPL to be unedifying, so I created my own
REPL. It took exactly two lines of code (not including the comment):

repl = require("repl");

// start REPL with ignoreUndefined set to true
repl.start("node via stdin> ", null, null, null, true);

I ran the file, repl.js, using Node:

node repl.js

Then I used the custom REPL just like I use the built-in version, except now I have a
different prompt and no longer get the annoying undefined after the first variable
assignment. I do still get the other responses that aren’t undefined:

node via stdin> var ct = 0;
node via stdin> ct++;
0
node via stdin> console.log(ct);
1
node via stdin> ++ct;
2
node via stdin> console.log(ct);
2

In my code, I wanted the defaults for all but prompt and ignoreUndefined. Setting the
other parameters to null triggers Node to use the default values for each.

You can replace the eval function with your custom REPL. The only requirement is
that it has a specific format:

function eval(cmd, callback) {
 callback(null, result);
}

The stream option is interesting. You can run multiple versions of REPL, taking input
from both the standard input (the default), as well as sockets. The documentation for
REPL at the Node.js site provides an example of a REPL listening in on a TCP socket,
using code similar to the following:

var repl = require("repl"),
 net = require("net");

// start REPL with ignoreUndefined set to true
repl.start("node via stdin> ", null, null, null, true);

net.createServer(function (socket) {
 repl.start("node via TCP socket> ", socket);

}).listen(8124);

30 | Chapter 2: Interactive Node with REPL

When you run the application, you get the standard input prompt where the Node
application is running. However, you can also access REPL via TCP. I used PuTTY as
a Telnet client to access this TCP-enabled version of REPL. It does work...to a point. I
had to issue a .clear first, the formatting is off, and when I tried to use the underscore
to reference the last expression, Node didn’t know what I was talking about, as shown
in Figure 2-1.

Figure 2-1. PuTTY and REPL via TCP don’t exactly like each other

I also tried with the Windows 7 Telnet client, and the response was even worse. How-
ever, using my Linux Telnet client worked without a hitch.

The problem here, as you might expect, is Telnet client settings. However, I didn’t
pursue it further, because running REPL from an exposed Telnet socket is not some-
thing I plan to implement, and not something I would recommend, either—at least,
not without heavy security. It’s like using eval() in your client-side code, and not
scrubbing the text your users send you to run—but worse.

You could keep a running REPL and communicate via a Unix socket with something
like the GNU Netcat utility:

nc -U /tmp/node-repl-sock

You can type in commands no differently than typing them in using stdin. Be aware,
though, if you’re using either a TCP or Unix socket, that any console.log commands
are printed out to the server console, not to the client:

console.log(someVariable); // actually printed out to server

Multiline and More Complex JavaScript | 31

An application option that I consider to be more useful is to create a REPL application
that preloads modules. In the application in Example 2-1, after the REPL is started, the
http, os, and util modules are loaded and assigned to context properties.

Example 2-1. Creating a custom REPL that preloads modules

var repl = require('repl');
var context = repl.start(">>", null, null, null, true).context;

// preload in modules
context.http = require('http');
context.util = require('util');
context.os = require('os');

Running the application with Node brings up the REPL prompt, where we can then
access the modules:

>>os.hostname();
'einstein'
>>util.log('message');
5 Feb 11:33:15 - message
>>

If you want to run the REPL application like an executable in Linux, add the following
line as the first line in the application:

#!/usr/local/bin/node

Modify the file to be an executable and run it:

chmod u+x replcontext.js
./replcontext.js
>>

Stuff Happens—Save Often
Node’s REPL is a handy interactive tool that can make our development tasks a little
easier. REPL allows us not only to try out JavaScript before including it in our files, but
also to actually create our applications interactively and then save the results when
we’re finished.

Another useful REPL feature is that it enables us to create a custom REPL so that we
can eliminate the unhelpful undefined responses, preload modules, change the prompt
or the eval routine we use, and more.

I also strongly recommend that you look into using REPL with rlwrap in order to persist
commands across sessions. This could end up being a major time saver. Plus, who
among us doesn’t like additional editing capability?

As you explore REPL further, there’s one very important thing to keep in mind from
this chapter:

Stuff happens. Save often.

32 | Chapter 2: Interactive Node with REPL

www.allitebooks.com

http://www.allitebooks.org

If you’ll be spending a lot of time developing in REPL, even with the use of rlwrap to
persist history, you’re going to want to frequently save your work. Working in REPL
is no different than working in other editing environments, so I’ll repeat: stuff happens
—save often.

REPL has had a major facelift in Node 0.8. For instance, just typing the
built-in module name, such as fs, loads the module now. Other im-
provements are noted in the new REPL documentation at the primary
Node.js website.

Stuff Happens—Save Often | 33

CHAPTER 3

The Node Core

Chapter 1 provided a first look at a Node application with the traditional (and always
entertaining) Hello, World application. The examples in the chapter made use of a
couple of modules from what is known as the Node core: the API providing much of
the functionality necessary for building Node applications.

In this chapter, I’m going to provide more detail on the Node core system. It’s not an
exhaustive overview, since the API is quite large and dynamic in nature. Instead, we’ll
focus on key elements of the API, and take a closer look at those that we’ll use in later
chapters and/or are complex enough to need a more in-depth review.

Topics covered in this chapter include:

• Node global objects, such as global, process, and Buffer

• The timer methods, such as setTimeout

• A quick overview of socket and stream modules and functionality

• The Utilities object, especially the part it plays in Node inheritance

• The EventEmitter object and events

Node.js documentation for the current stable release is available at http:
//nodejs.org/api/.

Globals: global, process, and Buffer
There are several objects available to all Node applications without the user having to
incorporate any module. The Node.js website groups these items under the descriptive
label of globals.

We’ve been using one global, require, to include modules into our applications. We’ve
also made extensive use of another global, console, to log messages to the console.
Other globals are essential to the underlying implementation of Node, but aren’t

35

http://nodejs.org/api/
http://nodejs.org/api/

necessarily anything we’d access or need to know about directly. Some, though, are
important enough for us to take a closer look at, because they help define key aspects
of how Node works.

In particular, we’re going to explore:

• The global object—that is, the global namespace

• The process object, which provides essential functionality, such as wrappers for
the three STDIO (Standard IO) streams, and functionality to transform a synchro-
nous function into an asynchronous callback

• The Buffer class, a global object that provides raw data storage and manipulation

• Child processes

• Modules useful for domain resolution and URL processing

global
global is the global namespace object. In some ways, it’s similar to windows in a browser
environment, in that it provides access to global properties and methods and doesn’t
have to be explicitly referenced by name.

From REPL, you can print out the global object to the console like so:

> console.log(global)

What prints out is the interface for all of the other global objects, as well as a good deal
of information about the system in which you’re running.

I mentioned that global is like the windows object in a browser, but there are key dif-
ferences—and not just the methods and properties available. The windows object in a
browser is truly global in nature. If you define a global variable in client-side JavaScript,
it’s accessible by the web page and by every single library. However, if you create a
variable at the top-level scope in a Node module (a variable outside a function), it only
becomes global to the module, not to all of the modules.

You can actually see what happens to the global object when you define a module/
global variable in REPL. First, define the top-level variable:

> var test = "This really isn't global, as we know global";

Then print out global:

> console.log(global);

You should see your variable, as a new property of global, at the bottom. For another
interesting perspective, assign global to a variable, but don’t use the var keyword:

gl = global;

The global object interface is printed out to the console, and at the bottom you’ll see
the local variable assigned as a circular reference:

36 | Chapter 3: The Node Core

> gl = global;
...
 gl: [Circular],
 _: [Circular] }

Any other global object or method, including require, is part of the global object’s
interface.

When Node developers discuss context, they’re really referring to the global object. In
Example 2-1 in Chapter 2, the code accessed the context object when creating a custom
REPL object. The context object is a global object. When an application creates a
custom REPL, it exists within a new context, which in this case means it has its own
global object. The way to override this and use the existing global object is to create a
custom REPL and set the useGlobal flag to true, rather than the default of false.

Modules exist in their own global namespace, which means that if you define a top-
level variable in one module, it is not available in other modules. More importantly, it
means that only what is explicitly exported from the module becomes part of whatever
application includes the module. In fact, you can’t access a top-level module variable
in an application or other module, even if you deliberately try.

To demonstrate, the following code contains a very simple module that has a top-level
variable named globalValue, and functions to set and return the value. In the function
that returns the value, the global object is printed out using a console.log method call.

var globalValue;

exports.setGlobal = function(val) {
 globalValue = val;
};

exports.returnGlobal = function() {
 console.log(global);
 return globalValue;
};

We might expect that in the printout of the global object we’ll see globalValue, as we
do when we set a variable in our applications. This doesn’t happen, though.

Start a REPL session and issue a require call to include the new module:

> var mod1 = require('./mod1.js');

Set the value and then ask for the value back:

> mod1.setGlobal(34);
> var val = mod1.returnGlobal();

The console.log method prints out the global object before returning its globally de-
fined value. We can see at the bottom the new variable holding a reference to the
imported module, but val is undefined because the variable hasn’t yet been set. In
addition, the output includes no reference to that module’s own top-level globalValue:

Globals: global, process, and Buffer | 37

 mod1: { setGlobal: [Function], returnGlobal: [Function] },
 _: undefined,
 val: undefined }

If we ran the command again, then the outer application variable would be set, but we
still wouldn’t see globalValue:

 mod1: { setGlobal: [Function], returnGlobal: [Function] },
 _: undefined,
 val: 34 }

The only access we have to the module data is by whatever means the module provides.
For JavaScript developers, this means no more unexpected and harmful data collisions
because of accidental or intentional global variables in libraries.

process
Each Node application is an instance of a Node process object, and as such, comes
with certain built-in functionality.

Many of the process object’s methods and properties provide identification or infor-
mation about the application and its environment. The process.execPath method re-
turns the execution path for the Node application; process.version provides the Node
version; and process.platform identifies the server platform:

console.log(process.execPath);
console.log(process.version);
console.log(process.platform);

This code returns the following in my system (at the time of this writing):

/usr/local/bin/node
v0.6.9
linux

The process object also wraps the STDIO streams stdin, stdout, and stderr. Both
stdin and stdout are asynchronous, and are readable and writable, respectively.
stderr, however, is a synchronous, blocking stream.

To demonstrate how to read and write data from stdin and stdout, in Example 3-1 the
Node application listens for data in stdin, and repeats the data to stdout. The stdin
stream is paused by default, so we have to issue a resume call before sending data.

Example 3-1. Reading and writing data to stdin and stdout, respectively

process.stdin.resume();

process.stdin.on('data', function (chunk) {
 process.stdout.write('data: ' + chunk);
});

Run the application using Node, and then start typing into the terminal. Every time
you type something and press Enter, what you typed is reflected back to you.

38 | Chapter 3: The Node Core

Another useful process method is memoryUsage, which tells us how much memory the
Node application is using. This could be helpful for performance tuning, or just to
satisfy your general curiosity about the application. The response has the following
structure:

{ rss: 7450624, heapTotal: 2783520, heapUsed: 1375720 }

The heapTotal and heapUsed properties refer to the V8 engine’s memory usage.

The last process method I’m going to cover is process.nextTick. This method attaches
a callback function that’s fired during the next tick (loop) in the Node event loop.

You would use process.nextTick if you wanted to delay a function for some reason,
but you wanted to delay it asynchronously. A good example would be if you’re creating
a new function that has a callback function as a parameter and you want to ensure that
the callback is truly asynchronous. The following code is a demonstration:

function asynchFunction = function (data, callback) {
 process.nextTick(function() {
 callback(val);
 });
);

If we just called the callback function, then the action would be synchronous. Now,
the callback function won’t be called until the next tick in the event loop, rather than
right away.

You could use setTimeout with a zero (0) millisecond delay instead of process.nextTick:

setTimeout(function() {
 callback(val);
}, 0);

However, setTimeout isn’t as efficient as process.nextTick. When they were tested
against each other, process.nextTick was called far more quickly than setTimeout with
a zero-millisecond delay. You might also use process.nextTick if you’re running an
application that has a function performing some computationally complex, and time-
consuming, operation. You could break the process into sections, each called via pro
cess.nextTick, to allow other requests to the Node application to be processed without
waiting for the time-consuming process to finish.

Of course, the converse of this is that you don’t want to break up a process that you
need to ensure executes sequentially, because you may end up with unexpected results.

Buffer
The Buffer class, also a global object, is a way of handling binary data in Node. In the
section “Servers, Streams, and Sockets” on page 41 later in the chapter, I’ll cover the
fact that streams are often binary data rather than strings. To convert the binary data
to a string, the data encoding for the stream socket is changed using setEncoding.

As a demonstration, you can create a new buffer with the following:

Globals: global, process, and Buffer | 39

var buf = new Buffer(string);

If the buffer holds a string, you can pass in an optional second parameter with the
encoding. Possible encodings are:

ascii
Seven-bit ASCII

utf8
Multibyte encoded Unicode characters

usc2
Two bytes, little-endian-encoded Unicode characters

base64
Base64 encoding

hex
Encodes each byte as two hexadecimal characters

You can also write a string to an existing buffer, providing an optional offset,
length, and encoding:

buf.write(string); // offset defaults to 0, length defaults to
 buffer.length - offset, encoding is utf8

Data sent between sockets is transmitted as a buffer (in binary format) by default. To
send a string instead, you either need to call setEncoding directly on the socket, or
specify the encoding in the function that writes to the socket. By default, the TCP
(Transmission Control Protocol) socket.write method sets the second parameter to
utf8, but the socket returned in the connectionListener callback to the TCP create
Server function sends the data as a buffer, not a string.

The Timers: setTimeout, clearTimeout, setInterval, and
clearInterval
The timer functions in client-side JavaScript are part of the global windows object.
They’re not part of JavaScript, but have become such a ubiquitous part of JavaScript
development that the Node developers incorporated them into the Node core API.

The timer functions operate in Node just like they operate in the browser. In fact, they
operate in Node exactly the same as they would in Chrome, since Node is based on
Chrome’s V8 JavaScript engine.

The Node setTimeout function takes a callback function as first parameter, the delay
time (in milliseconds) as second parameter, and an optional list of arguments:

// timer to open file and read contents to HTTP response object
function on_OpenAndReadFile(filename, res) {

 console.log('opening ' + filename);

40 | Chapter 3: The Node Core

 // open and read in file contents
 fs.readFile(filename, 'utf8', function(err, data) {
 if (err)
 res.write('Could not find or open file for reading\n');
 else {
 res.write(data);
 }
 // reponse is done
 res.end();
}

setTimeout(openAndReadFile, 2000, filename, res);

In the code, the callback function on_OpenAndReadFile opens and reads a file to the
HTTP response when the function is called after approximately 2,000 milliseconds
have passed.

As the Node documentation carefully notes, there’s no guarantee that
the callback function will be invoked in exactly n milliseconds (whatever
n is). This is no different than the use of setTimeout in a browser—we
don’t have absolute control over the environment, and factors could
slightly delay the timer.

The function clearTimeout clears a preset setTimeout. If you need to have a repeating
timer, you can use setInterval to call a function every n milliseconds—n being the
second parameter passed to the function. Clear the interval with clearInterval.

Servers, Streams, and Sockets
Much of the Node core API has to do with creating services that listen to specific types
of communications. In the examples in Chapter 1, we used the HTTP module to create
an HTTP web server. Other methods can create a TCP server, a TLS (Transport Layer
Security) server, and a UDP (User Datagram Protocol)/datagram socket. I’ll cover TLS
in Chapter 15, but in this section I want to introduce the TCP and UDP Node core
functionality. First, though, I’ll offer a brief introduction to the terms used in this
section.

A socket is an endpoint in a communication, and a network socket is an endpoint in a
communication between applications running on two different computers on the net-
work. The data flows between the sockets in what’s known as a stream. The data in
the stream can be transmitted as binary data in a buffer, or in Unicode as a string. Both
types of data are transmitted as packets: parts of the data split off into specifically sized
pieces. There is a special kind of packet, a finish packet (FIN), that is sent by a socket
to signal that the transmission is done. How the communication is managed, and how
reliable the stream is, depends on the type of socket created.

Servers, Streams, and Sockets | 41

TCP Sockets and Servers
We can create a basic TCP server and client with the Node Net module. TCP forms the
basis for most Internet applications, such as web service and email. It provides a way
of reliably transmitting data between client and server sockets.

Creating the TCP server is a little different than creating the HTTP server in Exam-
ple 1-1 in Chapter 1. We create the server, passing in a callback function. The TCP
server differs from the HTTP server in that, rather than passing a requestListener, the
TCP callback function’s sole argument is an instance of a socket listening for incoming
connections.

Example 3-2 contains the code to create a TCP server. Once the server socket is created,
it listens for two events: when data is received, and when the client closes the
connection.

Example 3-2. A simple TCP server, with a socket listening for client communication on port 8124

var net = require('net');

var server = net.createServer(function(conn) {
 console.log('connected');

 conn.on('data', function (data) {
 console.log(data + ' from ' + conn.remoteAddress + ' ' +
 conn.remotePort);
 conn.write('Repeating: ' + data);
 });

 conn.on('close', function() {
 console.log('client closed connection');
 });

}).listen(8124);

console.log('listening on port 8124');

There is an optional parameter for createServer: allowHalfOpen. Setting this parameter
to true instructs the socket not to send a FIN when it receives a FIN packet from the
client. Doing this keeps the socket open for writing (not reading). To close the socket,
you’d then need to explicitly use the end method. By default, allowHalfOpen is false.

Notice how a callback function is attached to the two events via the on method. Many
objects in Node that emit events provide a way to attach a function as an event listener
by using the on method. This method takes the name of the event as first parameter,
and the function listener as the second.

Node objects that inherit from a special object, the EventEmitter, expose
the on method event handling, as discussed later in this chapter.

42 | Chapter 3: The Node Core

The TCP client is just as simple to create as the server, as shown in Example 3-3. The
call to the setEncoding method on the client changes the encoding for the received data.
As discussed earlier in the section “Buffer” on page 39, data is transmitted as a buffer,
but we can use setEncoding to read it as a utf8 string. The socket’s write method is
used to transmit the data. It also attaches listener functions to two events: data, for
received data, and close, in case the server closes the connection.

Example 3-3. The client socket sending data to the TCP server

 var net = require('net');

var client = new net.Socket();
client.setEncoding('utf8');

// connect to server
client.connect ('8124','localhost', function () {
 console.log('connected to server');
 client.write('Who needs a browser to communicate?');
});

// prepare for input from terminal
process.stdin.resume();

// when receive data, send to server
process.stdin.on('data', function (data) {
 client.write(data);
});

// when receive data back, print to console
client.on('data',function(data) {
 console.log(data);
});

// when server closed
client.on('close',function() {
 console.log('connection is closed');
});

The data being transmitted between the two sockets is typed in at the terminal, and
transmitted when you press Enter. The client application first sends the string you just
typed, which the TCP server writes out to the console. The server repeats the message
back to the client, which in turn writes the message out to the console. The server also
prints out the IP address and port for the client using the socket’s remoteAddress and
remotePort properties. Following is the console output for the server after several strings
were sent from the client (with the IP address edited out for security):

Hey, hey, hey, hey-now.
 from #ipaddress 57251
Don't be mean, we don't have to be mean.
 from #ipaddress 57251
Cuz remember, no matter where you go,
 from #ipaddress 57251

Servers, Streams, and Sockets | 43

there you are.
 from #ipaddress 57251

The connection between the client and server is maintained until you kill one or the
other using Ctrl-C. Whichever socket is still open receives a close event that’s printed
out to the console. The server can also serve more than one connection from more than
one client, since all the relevant functions are asynchronous.

As I mentioned earlier, TCP is the underlying transport mechanism for much of the
functionality we use on the Internet today, including HTTP, which we’ll cover next.

HTTP
You had a chance to work with the HTTP module in Chapter 1. We created servers
using the createServer method, passing in the function that will act as the requestLis
tener. Requests are processed as they come, asynchronously.

In a network, TCP is the transportation layer and HTTP is the application layer. If you
scratch around in the modules included with Node, you’ll see that when you create an
HTTP server, you’re inheriting functionality from the TCP-based net.Server.

For the HTTP server, the requestListener is a socket, while the http.ServerRequest
object is a readable stream and the http.ServerResponse is a writable stream. HTTP
adds another level of complexity because of the chunked transfer encoding it supports.
The chunked transfer encoding allows transfer of data when the exact size of the re-
sponse isn’t known until it’s fully processed. Instead, a zero-sized chunk is sent to
indicate the end of a query. This type of encoding is useful when you’re processing a
request such as a large database query output to an HTML table: writing the data can
begin before the rest of the query data has been received.

More on streams in the upcoming section titled, appropriately enough,
“Streams, Pipes, and Readline” on page 48.

The TCP examples earlier in this chapter, and the HTTP examples in Chapter 1, were
both coded to work with network sockets. However, all of the server/socket modules
can also connect to a Unix socket, rather than a specific network port. Unlike a network
socket, a Unix or IPC (interprocess communication) socket enables communication
between processes within the same system.

To demonstrate Unix socket communication, I duplicated Example 1-3’s code, but
instead of binding to a port, the new server binds to a Unix socket, as shown in Ex-
ample 3-4. The application also makes use of readFileSync, the synchronous version
of the function to open a file and read its contents.

44 | Chapter 3: The Node Core

Example 3-4. HTTP server bound to a Unix socket

// create server
// and callback function
var http = require('http');
var fs = require('fs');

http.createServer(function (req, res) {

 var query = require('url').parse(req.url).query;
 console.log(query);
 file = require('querystring').parse(query).file;

 // content header
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // increment global, write to client
 for (var i = 0; i<100; i++) {
 res.write(i + '\n');
 }

 // open and read in file contents
 var data = fs.readFileSync(file, 'utf8');
 res.write(data);
 res.end();
}).listen('/tmp/node-server-sock');

The client is based on a code sample provided in the Node core documentation for the
http.request object at the Node.js site. The http.request object, by default, makes use
of http.globalAgent, which supports pooled sockets. The size of this pool is five sockets
by default, but you can adjust it by changing the agent.maxSockets value.

The client accepts the chunked data returned from the server, printing out to the con-
sole. It also triggers a response on the server with a couple of minor writes, as shown
in Example 3-5.

Example 3-5. Connecting to the Unix socket and printing out received data

var http = require('http');

var options = {
 method: 'GET',
 socketPath: '/tmp/node-server-sock',
 path: "/?file=main.txt"
};

var req = http.request(options, function(res) {
 console.log('STATUS: ' + res.statusCode);
 console.log('HEADERS: ' + JSON.stringify(res.headers));
 res.setEncoding('utf8');
 res.on('data', function (chunk) {
 console.log('chunk o\' data: ' + chunk);
 });
});

Servers, Streams, and Sockets | 45

req.on('error', function(e) {
 console.log('problem with request: ' + e.message);
});

// write data to request body
req.write('data\n');
req.write('data\n');
req.end();

I didn’t use the asynchronous file read function with the http.request object because
the connection is already closed when the asynchronous function is called and no file
contents are returned.

Before leaving this section on the HTTP module, be aware that much of the behavior
you’ve come to expect with Apache or other web servers isn’t built into a Node HTTP
server. For instance, if you password-protect your website, Apache will pop up a win-
dow asking for your username and password; a Node HTTP server will not. If you want
this functionality, you’re going to have to code for it.

Chapter 15 covers the SSL version of HTTP, HTTPS, along with Crypto
and TLS/SSL.

UDP/Datagram Socket
TCP requires a dedicated connection between the two endpoints of the communica-
tion. UDP is a connectionless protocol, which means there’s no guarantee of a con-
nection between the two endpoints. For this reason, UDP is less reliable and robust
than TCP. On the other hand, UDP is generally faster than TCP, which makes it more
popular for real-time uses, as well as technologies such as VoIP (Voice over Internet
Protocol), where the TCP connection requirements could adversely impact the quality
of the signal.

Node core supports both types of sockets. In the last couple of sections, I demonstrated
the TCP functionality. Now, it’s UDP’s turn.

The UDP module identifier is dgram:

require ('dgram');

To create a UDP socket, use the createSocket method, passing in the type of socket—
either udp4 or udp6. You can also pass in a callback function to listen for events. Unlike
messages sent with TCP, messages sent using UDP must be sent as buffers, not strings.

Example 3-6 contains the code for a demonstration UDP client. In it, data is accessed
via process.stdin, and then sent, as is, via the UDP socket. Note that we don’t have to
set the encoding for the string, since the UDP socket accepts only a buffer, and the
process.stdin data is a buffer. We do, however, have to convert the buffer to a string,

46 | Chapter 3: The Node Core

using the buffer’s toString method, in order to get a meaningful string for the
console.log method call that echoes the input.

Example 3-6. A datagram client that sends messages typed into the terminal

var dgram = require('dgram');

var client = dgram.createSocket("udp4");

// prepare for input from terminal
process.stdin.resume();

process.stdin.on('data', function (data) {
 console.log(data.toString('utf8'));
 client.send(data, 0, data.length, 8124, "examples.burningbird.net",
 function (err, bytes) {
 if (err)
 console.log('error: ' + err);
 else
 console.log('successful');
 });
});

The UDP server, shown in Example 3-7, is even simpler than the client. All the server
application does is create the socket, bind it to a specific port (8124), and listen for the
message event. When a message arrives, the application prints it out using
console.log, along with the IP address and port of the sender. Note especially that no
encoding is necessary to print out the message—it’s automatically converted from a
buffer to a string.

We didn’t have to bind the socket to a port. However, without the binding, the socket
would attempt to listen in on every port.

Example 3-7. A UDP socket server, bound to port 8124, listening for messages

var dgram = require('dgram');

var server = dgram.createSocket("udp4");

server.on ("message", function(msg, rinfo) {
 console.log("Message: " + msg + " from " + rinfo.address + ":"
 + rinfo.port);
});

server.bind(8124);

I didn’t call the close method on either the client or the server after sending/receiving
the message. However, no connection is being maintained between the client and server
—just the sockets capable of sending a message and receiving communication.

Servers, Streams, and Sockets | 47

Streams, Pipes, and Readline
The communication stream between the sockets discussed in the previous sections is
an implementation of the underlying abstract stream interface. Streams can be readable,
writable, or both, and all streams are instances of EventEmitter, discussed in the up-
coming section “Events and EventEmitter” on page 59.

It’s important to take away from this section that all of these communication streams,
including process.stdin and process.stdout, are implementations of the abstract
stream interface. Because of this underlying interface, there is basic functionality avail-
able in all streams in Node:

• You can change the encoding for the stream data with setEncoding.

• You can check whether the stream is readable, writable, or both.

• You can capture stream events, such as data received or connection closed, and
attach callback functions for each.

• You can pause and resume the stream.

• You can pipe data from a readable stream to a writable stream.

The last capability is one we haven’t covered yet. A simple way to demonstrate a pipe
is to open a REPL session and type in the following:

> process.stdin.resume();
> process.stdin.pipe(process.stdout);

...and then enjoy the fact that everything you type from that point on is echoed back
to you.

If you want to keep the output stream open for continued data, pass an option, { end:
false }, to the output stream:

process.stdin.pipe(process.stdout, { end : false });

There is one additional object that provides a specific functionality to readable streams:
readline. You include the Readline module with code like the following:

var readline = require('readline');

The Readline module allows line-by-line reading of a stream. Be aware, though, that
once you include this module, the Node program doesn’t terminate until you close the
interface and the stdin stream. The Node site documentation contains an example of
how to begin and terminate a Readline interface, which I adapted in Example 3-8. The
application asks a question as soon as you run it, and then outputs the answer. It also
listens for any “command,” which is really any line that terminates with \n. If the com-
mand is .leave, it leaves the application; otherwise, it just repeats the command and
prompts the user for more. A Ctrl-C or Ctrl-D key combination also causes the appli-
cation to terminate.

48 | Chapter 3: The Node Core

Example 3-8. Using Readline to create a simple, command-driven user interface

var readline = require('readline');

// create a new interface
var interface = readline.createInterface(process.stdin, process.stdout, null);

// ask question
interface.question(">>What is the meaning of life? ", function(answer) {
 console.log("About the meaning of life, you said " + answer);
 interface.setPrompt(">>");
 interface.prompt();
});

// function to close interface
function closeInterface() {
 console.log('Leaving interface...');
 process.exit();
}
// listen for .leave
interface.on('line', function(cmd) {
 if (cmd.trim() == '.leave') {
 closeInterface();
 return;
 } else {
 console.log("repeating command: " + cmd);
 }
 interface.setPrompt(">>");
 interface.prompt();
});

interface.on('close', function() {
 closeInterface();
});

Here’s an example session:

>>What is the meaning of life? ===
About the meaning of life, you said ===
>>This could be a command
repeating command: This could be a command
>>We could add eval in here and actually run this thing
repeating command: We could add eval in here and actually run this thing
>>And now you know where REPL comes from
repeating command: And now you know where REPL comes from
>>And that using rlwrap replaces this Readline functionality
repeating command: And that using rlwrap replaces this Readline functionality
>>Time to go
repeating command: Time to go
>>.leave
Leaving interface...

This should look familiar. Remember from Chapter 2 that we can use rlwrap to override
the command-line functionality for REPL. We use the following to trigger its use:

env NODE_NO_READLINE=1 rlwrap node

Servers, Streams, and Sockets | 49

And now we know what the flag is triggering—it’s instructing REPL not to use Node’s
Readline module for command-line processing, but to use rlwrap instead.

This is a quick introduction to the Node stream modules. Now it’s time to change
course, and check out Node’s child processes.

Child Processes
Operating systems provide access to a great deal of functionality, but much of it is only
accessible via the command line. It would be nice to be able to access this functionality
from a Node application. That’s where child processes come in.

Node enables us to run a system command within a new child process, and listen in
on its input/output. This includes being able to pass arguments to the command, and
even pipe the results of one command to another. The next several sections explore
this functionality in more detail.

All but the last example demonstrated in this section use Unix com-
mands. They work on a Linux system, and should work in a Mac. They
won’t, however, work in a Windows Command window.

child_process.spawn
There are four different techniques you can use to create a child process. The most
common one is using the spawn method. This launches a command in a new process,
passing in any arguments. In the following, we create a child process to call the Unix
pwd command to print the current directory. The command takes no arguments:

var spawn = require('child_process').spawn,
 pwd = spawn('pwd');

pwd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

pwd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

pwd.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

Notice the events that are captured on the child process’s stdout and stderr. If no error
occurs, any output from the command is transmitted to the child process’s stdout,
triggering a data event on the process. If an error occurs, such as in the following where
we’re passing an invalid option to the command:

var spawn = require('child_process').spawn,
 pwd = spawn('pwd', ['-g']);

50 | Chapter 3: The Node Core

Then the error gets sent to stderr, which prints out the error to the console:

stderr: pwd: invalid option -- 'g'
Try `pwd --help' for more information.

child process exited with code 1

The process exited with a code of 1, which signifies that an error occurred. The exit
code varies depending on the operating system and error. When no error occurs, the
child process exits with a code of 0.

The earlier code demonstrated sending output to the child process’s stdout and
stderr, but what about stdin? The Node documentation for child processes includes
an example of directing data to stdin. It’s used to emulate a Unix pipe (|) whereby the
result of one command is immediately directed as input to another command. I adapted
the example in order to demonstrate one of my favorite uses of the Unix pipe—being
able to look through all subdirectories, starting in the local directory, for a file with a
specific word (in this case, test) in its name:

find . -ls | grep test

Example 3-9 implements this functionality as child processes. Note that the first com-
mand, which performs the find, takes two arguments, while the second one takes just
one: a term passed in via user input from stdin. Also note that, unlike the example in
the Node documentation, the grep child process’s stdout encoding is changed via
setEncoding. Otherwise, when the data is printed out, it would be printed out as a
buffer.

Example 3-9. Using child processes to find files in subdirectories with a given search term, “test”

var spawn = require('child_process').spawn,
 find = spawn('find',['.','-ls']),
 grep = spawn('grep',['test']);

grep.stdout.setEncoding('utf8');

// direct results of find to grep
find.stdout.on('data', function(data) {
 grep.stdin.write(data);
});

// now run grep and output results
grep.stdout.on('data', function (data) {
 console.log(data);
});

// error handling for both
find.stderr.on('data', function (data) {
 console.log('grep stderr: ' + data);
});
grep.stderr.on('data', function (data) {
 console.log('grep stderr: ' + data);
});

Child Processes | 51

// and exit handling for both
find.on('exit', function (code) {
 if (code !== 0) {
 console.log('find process exited with code ' + code);
 }

 // go ahead and end grep process
 grep.stdin.end();
});

grep.on('exit', function (code) {
 if (code !== 0) {
 console.log('grep process exited with code ' + code);
 }
});

When you run the application, you’ll get a listing of all files in the current directory
and any subdirectories that contain test in their filename.

All of the example applications up to this point work the same in Node 0.8 as in Node
0.6. Example 3-9 is an exception because of a change in the underlying API.

In Node 0.6, the exit event would not be emitted until the child process exits and all
STDIO pipes are closed. In Node 0.8, the event is emitted as soon as the child process
finishes. This causes the application to crash, because the grep child process’s STDIO
pipe is closed when it tries to process its data. For the application to work in Node 0.8,
the application needs to listen for the close event on the find child process, rather than
the exit event:

// and exit handling for both
find.on('close', function (code) {
 if (code !== 0) {
 console.log('find process exited with code ' + code);
 }

 // go ahead and end grep process
 grep.stdin.end();
});

In Node 0.8, the close event is emitted when the child process exits and all STDIO
pipes are closed.

child_process.exec and child_process.execFile
In addition to spawning a child process, you can also use child_process.exec and
child_process.execFile to run a command in a shell and buffer the results. The only
difference between child_process.exec and child_process.execFile is that execFile
runs an application in a file, rather than running a command.

The first parameter in the two methods is either the command or the file and its location;
the second parameter is options for the command; and the third is a callback function.

52 | Chapter 3: The Node Core

The callback function takes three arguments: error, stdout, and stderr. The data is
buffered to stdout if no error occurs.

If the executable file contains:

#!/usr/local/bin/node

console.log(global);

the following application prints out the buffered results:

var execfile = require('child_process').execFile,
 child;

child = execfile('./app.js', function(error, stdout, stderr) {
 if (error == null) {
 console.log('stdout: ' + stdout);
 }
});

child_process.fork
The last child process method is child_process.fork. This variation of spawn is for
spawning Node processes.

What sets the child_process.fork process apart from the others is that there’s an actual
communication channel established to the child process. Note, though, that each pro-
cess requires a whole new instance of V8, which takes both time and memory.

The Node documentation for fork provides several good examples of
its use.

Running a Child Process Application in Windows
Earlier I warned you that child processes that invoke Unix system commands won’t
work with Windows, and vice versa. I know this sounds obvious, but not everyone
knows that, unlike with JavaScript in browsers, Node applications can behave differ-
ently in different environments.

It wasn’t until recently that the Windows binary installation of Node even provided
access to child processes. You also need to invoke whatever command you want to run
via the Windows command interpreter, cmd.exe.

Example 3-10 demonstrates running a Windows command. In the application, Win-
dows cmd.exe is used to create a directory listing, which is then printed out to the
console via the data event handler.

Child Processes | 53

Example 3-10. Running a child process application in Windows

var cmd = require('child_process').spawn('cmd', ['/c', 'dir\n']);

cmd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

cmd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

cmd.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

The /c flag passed as the first argument to cmd.exe instructs it to carry out the command
and then terminate. The application doesn’t work without this flag. You especially
don’t want to pass in the /K flag, which tells cmd.exe to execute the application and
then remain because your application won’t terminate.

I provide more demonstrations of child processes in Chapter 9 and
Chapter 12.

Domain Resolution and URL Processing
The DNS module provides DNS resolution using c-ares, a C library that provides asyn-
chronous DNS requests. It’s used by Node with some of its other modules, and can be
useful for applications that need to discover domains or IP addresses.

To discover the IP address given a domain, use the dns.lookup method and print out
the returned IP address:

var dns = require('dns');
dns.lookup('burningbird.net',function(err,ip) {
 if (err) throw err;
 console.log(ip);
});

The dns.reverse method returns an array of domain names for a given IP address:

dns.reverse('173.255.206.103', function(err,domains) {
domains.forEach(function(domain) {
 console.log(domain);
 });
});

The dns.resolve method returns an array of record types by a given type, such as A, MX,
NS, and so on. In the following code, I’m looking for the name server domains for my
domain name, burningbird.net:

54 | Chapter 3: The Node Core

var dns = require('dns');
dns.resolve('burningbird.net', 'NS', function(err,domains) {
domains.forEach(function(domain) {
 console.log(domain);
 });
});

This returns:

ns1.linode.com
ns3.linode.com
ns5.linode.com
ns4.linode.com

We used the URL module in Example 1-3 in Chapter 1. This simple module provides
a way of parsing a URL and returning an object with all of the URL components. Passing
in the following URL:

var url = require('url');
var urlObj = url.parse('http://examples.burningbird.net:8124/?file=main');

returns the following JavaScript object:

{ protocol: 'http:',
 slashes: true,
 host: 'examples.burningbird.net:8124',
 port: '8124',
 hostname: 'examples.burningbird.net',
 href: 'http://examples.burningbird.net:8124/?file=main',
 search: '?file=main',
 query: 'file=main',
 pathname: '/',
 path: '/?file=main' }

Each of the components can then be discretely accessed like so:

var qs = urlObj.query; // get the query string

Calling the URL.format method performs the reverse operation:

console.log(url.format(urlObj)); // returns original URL

The URL module is often used with the Query String module. The latter module is a
simple utility module that provides functionality to parse a received query string, or
prepare a string for use as a query string.

To chunk out the key/value pairs in the query string, use the querystring.parse
method. The following:

var vals = querystring.parse('file=main&file=secondary&type=html");

results in a JavaScript object that allows for easy access of the individual query string
values:

{ file: ['main', 'secondary'], type: 'html' }

Since file is given twice in the query string, both values are grouped into an array, each
of which can be accessed individually:

Domain Resolution and URL Processing | 55

console.log(vals.file[0]); // returns main

You can also convert an object into a query string, using querystring.stringify:

var qryString = querystring.stringify(vals)

The Utilities Module and Object Inheritance
The Utilities module provides several useful functions. You include this module with:

var util = require('util');

You can use Utilities to test if an object is an array (util.isArray) or regular expression
(util.isRegExp), and to format a string (util.format). A new experimental addition to
the module provides functionality to pump data from a readable stream to a writable
stream (util.pump):

util.pump(process.stdin, process.stdout);

However, I wouldn’t type this into REPL, as anything you type from that point on is
echoed as soon as you type it—making the session a little awkward.

I make extensive use of util.inspect to get a string representation of an object. I find
it’s a great way to discover more about an object. The first required argument is the
object; the second optional argument is whether to display the nonenumerable prop-
erties; the third optional argument is the number of times the object is recursed (depth);
and the fourth, also optional, is whether to style the output in ANSI colors. If you assign
a value of null to the depth, it recurses indefinitely (the default is two times)—as much
as necessary to exhaustively inspect the object. From experience, I’d caution you to be
careful using null for the depth because you’re going to get a large output.

You can use util.inspect in REPL, but I recommend a simple application, such as the
following:

var util = require('util');
var jsdom = require('jsdom');

console.log(util.inspect(jsdom, true, null, true));

When you run it, pipe the result to a file:

node inspectjsdom.js > jsdom.txt

Now you can inspect and reinspect the object interface at your leisure. Again, if you
use null for depth, expect a large output file.

The Utilities module provides several other methods, but the one you’re most likely to
use is util.inherits. The util.inherits function takes two parameters, constructor
and superConstructor. The result is that the constructor will inherit the functionality
from the superconstructor.

Example 3-11 demonstrates all the nuances associated with using util.inherits. The
explanation of the code follows.

56 | Chapter 3: The Node Core

Example 3-11 and its explanation cover some core JavaScript function-
ality you might already be familiar with. However, it’s important that
all readers come away from this section with the same understanding of
what’s happening.

Example 3-11. Enabling object inheritance via the util.inherits method

var util = require('util');

// define original object
function first() {
 var self = this;
 this.name = 'first';
 this.test = function() {
 console.log(self.name);
 };
}

first.prototype.output = function() {
 console.log(this.name);
}

// inherit from first
function second() {
 second.super_.call(this);
 this.name = 'second';
}
util.inherits(second,first);

var two = new second();

function third(func) {
 this.name = 'third';
 this.callMethod = func;
}

var three = new third(two.test);

// all three should output "second"
two.output();
two.test();
three.callMethod();

The application creates three objects named first, second, and third, respectively.

The first object has two methods: test and output. The test method is defined directly
in the object, while the output method is added later via the prototype object. The
reason I used both techniques for defining a method on the object is to demonstrate
an important aspect of inheritance with util.inherits (well, of JavaScript, but enabled
by util.inherits).

The second object contains the following line:

The Utilities Module and Object Inheritance | 57

 second.super_.call(this);

If we eliminate this line from the second object constructor, any call to output on the
second object would succeed, but a call to test would generate an error and force the
Node application to terminate with a message about test being undefined.

The call method chains the constructors between the two objects, ensuring that the
superconstructor is invoked as well as the constructor. The superconstructor is the
constructor for the inherited object.

We need to invoke the superconstructor since the test method doesn’t exist until
first is created. However, we didn’t need the call method for the output method,
because it’s defined directly on the first object’s prototype object. When the second
object inherits properties from the first, it also inherits the newly added method.

If we look under the hood of util.inherits, we see where super_ is defined:

exports.inherits = function(ctor, superCtor) {
 ctor.super_ = superCtor;
 ctor.prototype = Object.create(superCtor.prototype, {
 constructor: {
 value: ctor,
 enumerable: false,
 writable: true,
 configurable: true
 }
 });
};

super_ is assigned as a property to the second object when util.inherits is called:

util.inherits (second, first);

The third object in the application, third, also has a name property. It doesn’t inherit
from either first or second, but does expect a function passed to it when it’s instanti-
ated. This function is assigned to its own callMethod property. When the code creates
an instance of this object, the two object instance’s test method is passed to the
constructor:

var three = new third(two.test);

When three.callMethod is called, “second” is output, not “third” as you might expect
at first glance. And that’s where the self reference in the first object comes in.

In JavaScript, this is the object context, which can change as a method is passed
around, or passed to an event handler. The only way you can preserve data for an
object’s method is to assign this to an object variable—in this case, self—and then
use the variable within any functions in the object.

Running this application results in the following output:

second
second
second

58 | Chapter 3: The Node Core

Much of this is most likely familiar to you from client-side JavaScript development,
though it’s important to understand the Utilities part in the inheritance. The next sec-
tion, which provides an overview of Node’s EventEmitter, features functionality that
is heavily dependent on the inheritance behavior just described.

Events and EventEmitter
Scratch underneath the surface of many of the Node core objects, and you’ll find
EventEmitter. Anytime you see an object emit an event, and an event handled with
on, you’re seeing EventEmitter in action. Understanding how EventEmitter works and
how to use it are two of the more important components of Node development.

The EventEmitter object is what provides the asynchronous event handling to objects
in Node. To demonstrate its core functionality, we’ll try a quick test application.

First, include the Events module:

var events = require('events');

Next, create an instance of EventEmitter:

var em = new events.EventEmitter();

Use the newly created EventEmitter instance to do two essential tasks: attach an event
handler to an event, and emit the actual event. The on event handler is triggered when
a specific event is emitted. The first parameter to the method is the name of the event,
the second a function to process the event:

em.on('someevent', function(data) { ... });

The event is emitted on the object, based on some criteria, via the emit method:

if (somecriteria) {
 en.emit('data');
}

In Example 3-12, we create an EventEmitter instance that emits an event, timed, every
three seconds. In the event handler function for this event, a message with a counter is
output to the console.

Example 3-12. Very basic test of the EventEmitter functionality

var eventEmitter = require('events').EventEmitter;
var counter = 0;

var em = new eventEmitter();

setInterval(function() { em.emit('timed', counter++); }, 3000);

em.on('timed', function(data) {
 console.log('timed ' + data);
});

Events and EventEmitter | 59

Running the application outputs timed event messages to the console until the appli-
cation is terminated.

This is an interesting example, but not particularly helpful. What we need is the ability
to add EventEmitter functionality to our existing objects—not use instances of
EventEmitter throughout our applications.

To add this necessary EventEmitter functionality to an object, use the util.inherits
method, described in the preceding section:

util.inherits(someobj, EventEmitter);

By using util.inherits with the object, you can call the emit method within the object’s
methods, and code event handlers on the object instances:

someobj.prototype.somemethod = function() { this.emit('event'); };
...
someobjinstance.on('event', function() { });

Rather than attempt to decipher how EventEmitter works in the abstract sense, let’s
move on to Example 3-13, which shows a working example of an object inheriting
EventEmitter’s functionality. In the application, a new object, inputChecker, is created.
The constructor takes two values, a person’s name and a filename. It assigns the per-
son’s name to an object variable, and also creates a reference to a writable stream using
the File System module’s createWriteStream method (for more on the File System
module, see the sidebar “Readable and Writable Stream” on page 60).

Readable and Writable Stream
The Node File System module (fs) enables us to open a file for reading and writing, to
watch specific files for new activity, and to manipulate directories. It also provides us
with readable and writable stream capability.

You create a readable stream using fs.createReadStream, passing in the name and path
for the file and other options. You create a writable stream with fs.createWrite
Stream, also passing in a filename and path.

You’d use a writable and readable stream over the more traditional read and write
methods in situations when you’re reading and writing from a file based on events
where the reads and writes can occur frequently. The streams are opened in the back-
ground, and reads (and writes) are queued.

The object also has a method, check, that checks incoming data for specific commands.
One command (wr:) triggers a write event, another (en:) an end event. If no command
is present, then an echo event is triggered. The object instance provides event handlers
for all three events. It writes to the output file for the write event, it echoes the input
for the commandless input, and it terminates the application with an end event, using
the process.exit method.

All input comes from standard input (process.stdin).

60 | Chapter 3: The Node Core

Example 3-13. Creating an event-based object that inherits from EventEmitter

var util = require('util');
var eventEmitter = require('events').EventEmitter;
var fs = require('fs');

function inputChecker (name, file) {
 this.name = name;
 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});
};

util.inherits(inputChecker,eventEmitter);

inputChecker.prototype.check = function check(input) {
 var command = input.toString().trim().substr(0,3);
 if (command == 'wr:') {
 this.emit('write',input.substr(3,input.length));
 } else if (command == 'en:') {
 this.emit('end');
 } else {
 this.emit('echo',input);
 }
};
// testing new object and event handling
var ic = new inputChecker('Shelley','output');

ic.on('write', function(data) {
 this.writeStream.write(data, 'utf8');
});

ic.on('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

ic.on('end', function() {
 process.exit();
});

process.stdin.resume();
process.stdin.setEncoding('utf8');
process.stdin.on('data', function(input) {
 ic.check(input);
});

The EventEmitter functionality is bolded in the example. Note that the functionality
also includes the process.stdin.on event handler method, since process.stdin is one
of the many Node objects that inherit from EventEmitter.

We don’t have to chain the constructors from the new object to EventEmitter, as
demonstrated in the earlier example covering util.inherits, because the functionality
we need—on and emit—consists of prototype methods, not object instance properties.

Events and EventEmitter | 61

The on method is really a shortcut for the EventEmitter.addListener method, which
takes the same parameters. So this:

ic.addListener('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

is exactly equivalent to:

ic.on('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

You can listen only to the first event with:

ic.once(event, function);

When you exceed 10 listeners for an event, you’ll get a warning by default. Use setMax
Listeners, passing in a number, to change the number of listeners. Use a value of zero
(0) for an unlimited amount of listeners.

Many of the core Node objects, as well as third-party modules, make use of EventEmit
ter. In Chapter 4, I’ll demonstrate how to convert the code in Example 3-13 into a
module.

62 | Chapter 3: The Node Core

CHAPTER 4

The Node Module System

Node’s basic implementation is kept as streamlined as possible. Rather than incorpo-
rate every possible component of use directly into Node, developers offer additional
functionality via Node’s modules.

Node’s module system is patterned after the CommonJS module system, a way of cre-
ating modules so that they’re interoperable. The core of the system is a contract that
developers adhere to in order to ensure that their modules play well with others.

Among the CommonJS module system requirements implemented with Node are:

• Support is included for a require function that takes the module identifier and
returns the exported API.

• The module name is a string of characters, and may include forward slashes (for
identification of path).

• The module must specifically export that which is to be exposed outside the
module.

• Variables are private to the module.

In the next several sections, we’ll see how Node adheres to these requirements.

Loading a Module with require and Default Paths
Node supports a simple module loading system: there is a one-to-one correspondence
between the file and module.

To include a module within a Node application, use the require statement, passing in
a string with the identifier for the module:

var http = require ('http');

You can also just include a specific object, rather than all objects, from a module:

var spawn = require('child_process').spawn;

63

You can load core modules—i.e., those native to Node—or modules from the
node_modules folder just by providing the module identifier, such as http for the HTTP
module. Modules not part of core, or not included in the node_modules folder, should
include forward slashes to indicate the path. As an example, Node expects to find the
module named mymodule.js in the same directory as the Node application in the fol-
lowing require statement:

require ('./mymodule');

Or you can use the full path:

require ('/home/myname/myapp/mymodule.js');

Module files can have either a .js, .node, or .json file extension. The .node extension
assumes that the file is a compiled binary, not a text file containing JavaScript.

Node core modules have higher priority than external modules. If you’re trying to load
a custom module named http, Node loads the core version of the HTTP module. You’ll
have to provide either a different module identifier, or you’ll need to provide the full
path.

Earlier I mentioned the node_modules folder. If you specify the node identifier without
providing a path, and the module isn’t a core module, Node first looks for a node_mod-
ules folder local to the application, and searches for the module in this folder. If it
doesn’t find the module, Node then looks in the parent subdirectory for a node_mod-
ules folder and the node, and so on.

If the module is named mymodule, and the application is located in a subdirectory with
the following path:

/home/myname/myprojects/myapp

then Node looks for the module using the following searches, in turn:

• /home/myname/myprojects/myapp/node_modules/mymodule.js

• /home/myname/myprojects/node_modules/mymodule.js

• /home/myname/node_modules/mymodule.js

• /node_modules/mymodule.js

Node can optimize the search depending on where the file issuing the require statement
resides. For instance, if the file making the require statement is itself a module in a
subdirectory of the node_modules folder, Node begins the search for the required mod-
ule in the topmost node_modules folder.

There are two additional variations of require: require.resolve and require.cache.
The require.resolve method performs the lookup for the given module but, rather
than load the module, just returns the resolved filename. The resolve.cache object
contains a cached version of all loaded modules. When you try to load the module
again in the same context, it’s loaded from the cache. If you want to force a new load,
delete the item from the cache.

64 | Chapter 4: The Node Module System

If the item’s path is:

var circle = require('./circle.js');

delete it with:

delete require.cache('./circle.js');

This code forces a reload of the module the next time a require is called on it.

External Modules and the Node Package Manager
As mentioned earlier, much of the rich functionality associated with Node comes in
via third-party modules. There are router modules, modules for working with relational
or document database systems, template modules, testing modules, and even modules
for payment gateways.

Though there is no formal Node module developer system, developers are encouraged
to upload their modules to GitHub. Following are good resources for finding Node
modules:

• npm registry (http://search.npmjs.org/)

• Node module wiki (https://github.com/joyent/node/wiki/modules)

• The node-toolbox (http://toolbox.no.de/)

• Nipster! (http://eirikb.github.com/nipster/)

The modules are roughly categorized into different types such as the aforementioned
routers, database, templating, payment gateway, and so on.

To use a module, you can download the source from GitHub (or wherever the source
is located), and then install it manually into your application environment. Most mod-
ules provide basic installation instructions, or, at a minimum, you can deduce the in-
stallation requirements by examining the files and directories included in the module.
However, there is a far easier way to install a Node module: using the Node Package
Manager (npm).

The npm site is at http://npmjs.org/. You can find basic instructions on
npm at http://npmjs.org/doc/README.html. Essential reading for Node
module developers is the Developers section of the npm manual, found
at http://npmjs.org/doc/developers.html. For a useful post explaining the
differences between local and global installation, see http://blog.nodejs
.org/2011/03/23/npm-1-0-global-vs-local-installation/.

Modern installations include npm, but you can double-check for its existence by typing
npm at the command line in the same environment that you use to access Node.

External Modules and the Node Package Manager | 65

http://search.npmjs.org/
https://github.com/joyent/node/wiki/modules
http://toolbox.no.de/
http://eirikb.github.com/nipster/
http://npmjs.org/
http://npmjs.org/doc/README.html
http://npmjs.org/doc/developers.html
http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/
http://blog.nodejs.org/2011/03/23/npm-1-0-global-vs-local-installation/

To get an overview of npm commands, use the following:

$ npm help npm

Modules can be installed globally or locally. The local installation is the best approach
if you’re working on a project and not everyone sharing the system needs access to this
module. A local installation, which is the default, installs the module in the current
location in the node_modules directory.

$ npm install modulename

As an example, to install Connect, a very popular middleware framework, use the
following:

$ npm install connect

npm not only installs Connect, it also discovers its module dependencies and installs
them, too, as shown in Figure 4-1.

Once it’s installed, you can find the module in your local directory’s node_modules
directory. Any dependencies are installed in that module’s node_modules directory.

If you want to install the package globally, use the -g or --global option:

$ npm -g install connect

These examples install packages that are registered at the npm site. You can also install
a module that’s in a folder on the filesystem, or a tarball that’s either local or fetched
via a URL:

npm install http://somecompany.com/somemodule.tgz

If the package has versions, you can install a specific version:

npm install modulename@0.1

npm can also work with Git, as demonstrated in the Appendix.

You can even install an old friend, jQuery:

npm install jquery

Now you can make use of a familiar syntax in your Node application development.

If you’re no longer using a module, you can uninstall it:

npm uninstall modulename

The following command tells npm to check for new modules, and perform an update
if any are found:

66 | Chapter 4: The Node Module System

npm update

Or you can update a single module:

npm update modulename

If you just want to check to see if any packages are outdated, use the following:

npm outdated

Again, you can run this command against a single module.

List installed packages and dependencies with list, ls, la, or ll:

npm ls

The la and ll options provide extended descriptions. The following is the text I get
running npm ll in my Windows 7 machine:

C:\Users\Shelley>npm ls ll
npm WARN jsdom >= 0.2.0 Unmet dependency in C:\Users\Shelley\node_modules\html5
C:\Users\Shelley
├── async@0.1.15
├── colors@0.6.0-1
├── commander@0.5.2
├─┬ connect@1.8.5
│ ├── formidable@1.0.8
│ ├── mime@1.2.4
│ └── qs@0.4.1
├─┬ html5@v0.3.5
│ ├── UNMET DEPENDENCY jsdom >= 0.2.0
│ ├── opts@1.2.2
│ └─┬ tap@0.0.13
│ ├── inherits@1.0.0
│ ├── tap-assert@0.0.10
│ ├── tap-consumer@0.0.1
│ ├── tap-global-harness@0.0.1
│ ├── tap-harness@0.0.3
│ ├── tap-producer@0.0.1
│ ├── tap-results@0.0.2
│ ├─┬ tap-runner@0.0.7
│ │ ├── inherits@1.0.0
│ │ ├── slide@1.1.3
│ │ ├── tap-assert@0.0.10
│ │ ├── tap-consumer@0.0.1
│ │ ├── tap-producer@0.0.1
│ │ ├── tap-results@0.0.2
│ │ └── yamlish@0.0.3
│ ├── tap-test@0.0.2
│ └── yamlish@0.0.2
└─┬ optimist@0.3.1
 └── wordwrap@0.0.2

External Modules and the Node Package Manager | 67

Figure 4-1. Installing Connect in Windows 7 using npm

Note the warning about an unmet dependency for the HTML5 module. The HTML5
module requires an older version of the JSDOM library. To correct this, I installed the
necessary version of the module:

npm install jsdom@0.2.0

You can also directly install all dependencies with the -d flag. For instance, in the di-
rectory for the module, type the following:

npm install -d

If you want to install a version of the module that hasn’t yet been uploaded to the npm
registry, you can install directly from the Git repository:

npm install https://github.com/visionmedia/express/tarball/master

Use caution, though, as I’ve found that when you install a not-yet-released version of
a module, and you do an npm update, the npm registry version can overwrite the version
you’re using.

To see which modules are installed globally, use:

npm ls -g

You can learn more about your npm installation using the config command. The fol-
lowing lists the npm configuration settings:

npm config list

You can get a more in-depth look at all configuration settings with:

npm config ls -l

You can modify or remove configuration settings either by using a command line:

68 | Chapter 4: The Node Module System

npm config delete keyname
npm config set keyname value

or by directly editing the configuration file:

$ npm config edit

I would strongly recommend you leave your npm configuration settings
alone, unless you’re very sure of a change’s effect.

You can also search for a module using whatever terms you think might return the best
selection:

npm search html5 parser

The first time you do a search, npm builds an index, which can take a few minutes.
When it’s finished, though, you’ll get a list of possible modules that match the term or
terms you provided. The search terms html5 and parser returned just two modules:
HTML5, an HTML parser that includes support for SVG and MathML; and Fabric, an
object model with support for HTML5 Canvas and an SVG-to-Canvas parser.

The npm website provides a registry of modules you can browse through, and an up-
to-date listing of modules most depended on—that is, modules most used by other
modules or by Node applications. In the next section, I’ll cover a sampling of these
modules.

I’ll cover other npm commands later in this chapter, in the section
“Creating Your Own Custom Module” on page 74.

Finding Modules
Though Node.js has been active only for a few years, it’s already attracted a large body
of work. When you look at the Node.js modules wiki page, you’ll find a significant
number of modules. The good thing is, you can find a lot of useful modules that im-
plement the functionality you need. The bad news is, it’s difficult to determine which
module to use—in other words, which modules are “best of breed.”

Using a search tool like Google can give you a fair idea of which modules are popular.
For example, it quickly became apparent when I was exploring middleware and frame-
work modules that Connect and Express were very popular.

In addition, when you look at the GitHub registry for the item, you can see if it’s actively
supported and up to date with the current Node installation. As another example, I
was checking out a tool named Apricot, which does HTML parsing and is recom-
mended in the Node documentation, but then I noticed it hadn’t been updated for

Finding Modules | 69

some time, and when I tried to use the module, I found it didn’t work with my instal-
lation of Node (at least, not when this book was written).

Many of the modules provide example applications, and a quick test of
these will let you know if you can use the module in your current
environment.

As mentioned, the Node documentation site does provide a listing of recommended
third-party modules, starting with the npm, which is now incorporated into the Node
installation. However, the npm website and its module registry provide us with a better
view of what modules are used in most applications.

At the npm registry page, you can search for modules, but you can also review a list of
the “most depended on” modules, which are modules used either in other modules or
in Node applications. At the time of this writing, the top modules were:

Underscore
Provides general JavaScript utility functions

Coffee-script
Enables use of CoffeeScript, a language that compiles to JavaScript

Request
A simplified HTTP request client

Express
A framework

Optimist
Offers lightweight option parsing

Async
Provides functions and patterns for asynchronous code

Connect
Middleware

Colors
Adds colors to the console

Uglify-js
A parser and compressor/beautifier

Socket.IO
Enables real-time client/server communication

Redis
A Redis client

Jade
A templating engine

70 | Chapter 4: The Node Module System

Commander
For command-line programs

Mime
Offers support for file extensions and MIME mapping

JSDOM
Implements the W3C DOM

I’ll cover several of these modules in future chapters, but I want to cover three now—
both because they give us a chance to better understand how Node works, and because
they are especially useful. They are:

• Colors

• Optimist

• Underscore

Colors: Simple Is Best
Colors is one of the simpler modules. You can use it to provide different color and style
effects to the console.log output, and that’s it. However, it’s also a good demonstration
of an effective module because it is simple to use, focuses on providing one service, and
does a good job with that one service.

Testing how a module works is a great reason for using REPL. To try Colors, install it
using npm like so:

$ npm install colors

Open a new REPL session and include the colors library:

> var colors = require('colors');

Because the Colors module is included in the current location’s node_modules subdir-
ectory, Node is able to find it rather quickly.

Now try something out, such as the following:

console.log('This Node kicks it!'.rainbow.underline);

The result is a colorful, underlined rendering of your message. The style applies only
for the one message—you’ll need to apply another style for another message.

If you’ve worked with jQuery, you recognize the chaining used to combine effects. The
example makes use of two: a font effect, underlined, and a font color, rainbow.

Try another, this time zebra and bold:

console.log('We be Nodin'.zebra.bold);

You can change the style for sections of the console message:

console.log('rainbow'.rainbow, 'zebra'.zebra);

Finding Modules | 71

Why would something like Colors be useful? One reason is that it enables us to specify
formatting for various events, such as displaying one color for errors in one module,
another color or effect for warnings in a second module, and so on. To do this, you can
use the Colors presets or create a custom theme:

> colors.setTheme({
....... mod1_warn: 'cyan',
....... mod1_error: 'red',
....... mod2_note: 'yellow'
....... });
> console.log("This is a helpful message".mod2_note);
This is a helpful message
> console.log("This is a bad message".mod1_error);
This is a bad message

Find more on Colors at https://github.com/Marak/colors.js.

Optimist: Another Short and Simple Module
Optimist is another module focused on solving a specific problem: parsing command
options. That’s it, that’s all it does—but it does it very well.

As an example, this simple application uses the Optimist module to print command-
line options to the console.

#!/usr/local/bin/node
var argv = require('optimist').argv;
console.log(argv.o + " " + argv.t);

You can run the application with short options. The following prints the values of 1
and 2 out to the console:

./app.js -o 1 -t 2

You can also process long options:

#!/usr/local/bin/node
var argv = require('optimist').argv;
console.log(argv.one + " " + argv.two);

and test with the following, resulting in a printout of My Name:

./app2.js --one="My" --two="Name"

You can also use the Optimist module to process Boolean and unhyphenated options.

Read more about Optimist at https://github.com/substack/node-optimist.

72 | Chapter 4: The Node Module System

https://github.com/Marak/colors.js
https://github.com/substack/node-optimist

Running a Node App as a Standalone Application
Most of the examples in this book are run using the following syntax:

node appname.js

However, you can also run the Node application as a standalone application with a
couple of modifications.

First, add the following as the first line in the application:

#!/usr/local/bin/node

The location should be the location of your Node installation.

Next, change the permissions on the file:

chmod a+x appname.js

Now you can run the application with:

./appname.js

Underscore
Install the Underscore module with:

npm install underscore

According to the developers, Underscore is a utility-belt library for Node. It provides
a lot of extended JavaScript functionality we’re used to with third-party libraries, such
as jQuery or Prototype.js.

Underscore is so named because, traditionally, its functionality is accessed with an
underscore (_), similar to jQuery’s $. Here’s an example:

var _ = require('underscore');
_.each(['apple','cherry'], function (fruit) { console.log(fruit); });

Of course, the problem with the underscore is that this character has a specific meaning
in REPL. No worries, though—we can just use another variable, us:

var us = require('underscore');
us.each(['apple','cherry'], function(fruit) { console.log(fruit); });

Underscore provides expanded functionality for arrays, collections, functions, objects,
chaining, and general utility. Fortunately, there’s also excellent documentation for all
of its functionality, so I’ll forgo detailing any of it here.

However, I do want to mention one nice capability: a controlled way to extend Un-
derscore with your own utility functions, via the mixin function. We can quickly try
this method, and the others, in a REPL session:

> var us = require('underscore');
undefined
> us.mixin({

Finding Modules | 73

... betterWithNode: function(str) {

..... return str + ' is better with Node';

..... }

... });
> console.log(us.betterWithNode('chocolate'));
chocolate is better with Node

You’ll see the term mixin used in several Node modules. It’s based on a
pattern where properties of one object are added (“mixed in”) to an-
other.

Of course, it makes more sense to extend Underscore from a module that we can reuse
in our applications, which leads us to our next topic—creating our own custom
modules.

Creating Your Own Custom Module
Just as you do for your client-side JavaScript, you’ll want to split off reusable JavaScript
into its own libraries. The only difference is that you need to take a couple of extra steps
to convert your JavaScript library into a module for use with Node.

Let’s say you have a JavaScript library function, concatArray, that takes a string and an
array of strings, and concatenates the first string to each string in the array:

function concatArray(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
}

You want to use this function, as well as others, in your Node applications.

To convert your JavaScript library for use in Node, you’ll need to export all of your
exposed functions using the exports object, as shown in the following code:

exports.concatArray = function(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
};

To use concatArray in a Node application, import the library using require, assigning
the library to a variable name. Once the library is assigned, you can call any of the
exposed functions in your code:

var newArray = require ('./arrayfunctions.js');

console.log(newArray.concatArray('hello', ['test1','test2']));

It’s not very complicated, as long as you remember two things:

74 | Chapter 4: The Node Module System

• Use the exports object to export the function.

• Treat the library as a single imported object, assigned to a variable, in order to
access the functions.

Packaging an Entire Directory
You can split your module into separate JavaScript files, all located within a directory.
Node can load the directory contents, as long as you organize the contents in one of
two ways.

The first way is to provide a JSON file named package.json with information about the
directory. The structure can contain other information, but the only entries relevant to
Node are:

{ "name" : "mylibrary",
 "main" : "./mymodule/mylibrary.js" }

The first property, name, is the name of the module. The second, main, indicates the
entry point for the module.

The second way is to include either an index.js or index.node file in the directory to
serve as the main module entry point.

Why would you provide a directory rather than just a single module? The most likely
reason is that you’re making use of existing JavaScript libraries, and just providing a
“wrapper” file that wraps the exposed functions with exports statements. Another rea-
son is that your library is so large that you want to break it down to make it easier to
modify.

Regardless of the reason, be aware that all of the exported objects must be in the one
main file that Node loads.

Preparing Your Module for Publication
If you want to make your package available to others, you can promote it on your
website, but you’ll be missing out on a significant audience. When you’re ready to
publish a module, you’re going to want to add it to the list of modules at the Node.js
website, and you’ll also want to publish it to the npm registry.

Earlier I mentioned the package.json file. It’s actually based on the CommonJS module
system recommendations, which you can find at http://wiki.commonjs.org/wiki/Pack
ages/1.0#Package_Descriptor_File (though check to see if there’s a more up-to-date
version).

Among the required fields for the package.json file are:

name
The name of the package

Creating Your Own Custom Module | 75

http://wiki.commonjs.org/wiki/Packages/1.0#Package_Descriptor_File
http://wiki.commonjs.org/wiki/Packages/1.0#Package_Descriptor_File

description
The package description

version
The current version conforming to semantic version requirements

keywords
An array of search terms

maintainers
An array of package maintainers (includes name, email, and website)

contributors
An array of package contributors (includes name, email, and website)

bugs
The URL where bugs can be submitted

licenses
An array of licenses

repositories
An array of repositories where the package can be found

dependencies
Prerequisite packages and their version numbers

The other fields are optional. Still, that’s a lot of fields. Thankfully, npm makes it easier
to create this file. If you type the following at the command line:

npm init

the tool will run through the required fields, prompting you for each. When it’s done,
it generates a package.json file.

In Chapter 3, Example 3-13, I started an object called inputChecker that checks in-
coming data for commands and then processes the command. The example demon-
strated how to incorporate EventEmitter. Now we’re going to modify this simple object
to make it usable by other applications and modules.

First, we’ll create a subdirectory in node_modules and name it inputcheck, and then
move the existing inputChecker code file to it. We need to rename the file to index.js.
Next, we need to modify the code to pull out the part that implements the new object.
We’ll save it for a future test file. The last modification we’ll do is add the exports
object, resulting in the code shown in Example 4-1.

Example 4-1. Application from Example 3-13 modified to be a module object

var util = require('util');
var eventEmitter = require('events').EventEmitter;
var fs = require('fs');

exports.inputChecker = inputChecker;

function inputChecker(name, file) {

76 | Chapter 4: The Node Module System

 this.name = name;
 this.writeStream = fs.createWriteStream('./' + file + '.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});
};

util.inherits(inputChecker,eventEmitter);
inputChecker.prototype.check = function check(input) {
 var self = this;
 var command = input.toString().trim().substr(0,3);
 if (command == 'wr:') {
 self.emit('write',input.substr(3,input.length));
 } else if (command == 'en:') {
 self.emit('end');
 } else {
 self.emit('echo',input);
 }
};

We can’t export the object function directly, because util.inherits expects an object
to exist in the file named inputChecker. We’re also modifying the inputChecker object’s
prototype later in the file. We could have changed these code references to use
exports.inputChecker, but that’s kludgy. It’s just as easy to assign the object in a sep-
arate statement.

To create the package.json file, I ran npm init and answered each of the prompts. The
resulting file is shown in Example 4-2.

Example 4-2. Generated package.json for inputChecker module

{
 "author": "Shelley Powers <shelleyp@burningbird.net> (http://burningbird.net)",
 "name": "inputcheck",
 "description": "Looks for commands within the string and implements the commands",
 "version": "0.0.1",
 "homepage": "http://inputcheck.burningbird.net",
 "repository": {
 "url": "
 },
 "main": "inputcheck.js",
 "engines": {
 "node": "~0.6.10"
 },
 "dependencies": {},
 "devDependencies": {},
 "optionalDependencies": {}
}

The npm init command doesn’t prompt for dependencies, so we need to add them
directly to the file. However, the inputChecker module isn’t dependent on any external
modules, so we can leave these fields blank in this case.

Creating Your Own Custom Module | 77

Chapter 16 has a more in-depth look at the package.json file.

At this point, we can test the new module to make sure it actually works as a module.
Example 4-3 is the portion of the previously existing inputChecker application that
tested the new object, now pulled out into a separate test application.

Example 4-3. InputChecker test application

var inputChecker = require('inputcheck').inputChecker;

// testing new object and event handling
var ic = new inputChecker('Shelley','output');

ic.on('write', function(data) {
 this.writeStream.write(data, 'utf8');
});

ic.addListener('echo', function(data) {
 console.log(this.name + ' wrote ' + data);
});

ic.on('end', function() {
 process.exit();
});

process.stdin.resume();
process.stdin.setEncoding('utf8');
process.stdin.on('data', function(input) {
 ic.check(input);
});

We can now move the test application into a new examples subdirectory within the
module directory to be packaged with the module as an example. Good practice de-
mands that we also provide a test directory with one or more testing applications, as
well as a doc directory with documentation. For a module this small, a README file
should be sufficient. Lastly, we create a gzipped tarball of the module.

Once we’ve provided all we need to provide, we can publish the module.

Publishing the Module
The folks who brought us npm also provide a really great source for Node developers:
the Developer Guide. It outlines everything we need to know about how to publish our
modules.

78 | Chapter 4: The Node Module System

The Guide specifies some additional requirements for the package.json file. In addition
to the fields already created, we also need to add in a directories field with a hash of
folders, such as the previously mentioned test and doc:

 "directories" : {
 "doc" : ".",
 "test" : "test",
 "example" : "examples"
 }

Before publishing, the Guide recommends we test that the module can cleanly install.
To test for this, type the following in the root directory for the module:

npm install . -g

At this point, we’ve tested the inputChecker module, modified the package.json package
to add directories, and confirmed that the package successfully installs.

Next, we need to add ourselves as npm users if we haven’t done so already. We do this
by typing:

npm adduser

and following the prompts to add a username, a password, and an email address.

There’s one last thing to do:

npm publish

We can provide the path to the tarball or the directory. As the Guide warns us, every-
thing in the directory is exposed unless we use a .npmignore list in the package.json file
to ignore material. It’s better, though, just to remove anything that’s not needed before
publishing the module.

Once published—and once the source is also uploaded to GitHub (if that’s the repos-
itory you’re using)—the module is now officially ready for others to use. Promote the
module on Twitter, Google+, Facebook, your website, and wherever else you think
people would want to know about the module. This type of promotion isn’t
bragging—it’s sharing.

Creating Your Own Custom Module | 79

CHAPTER 5

Control Flow, Asynchronous Patterns,
and Exception Handling

Node might seem intimidating at times, with discussions about asynchronous events
and callbacks and new objects such as EventEmitter—not to mention all that new
server-side functionality we have to play with. If you’ve worked with any of the modern
JavaScript libraries, though, you’ve experienced much of the functionality that goes
into Node, at least when it comes to asynchronous development.

For instance, if you’ve used a timer in JavaScript, you’ve used an asynchronous func-
tion. If you’ve ever developed in Ajax, you’ve used an asynchronous function. Even the
plain old onclick event handler is an asynchronous function, since we never know when
the user is going to click that mouse or tap that keyboard.

Any method that doesn’t block the control thread while waiting for some event or result
is an asynchronous function. When it comes to the onclick handling, the application
doesn’t block all other application processing, waiting for that user’s mouse click—
just as it doesn’t block all functionality while the timer is in effect, or while waiting for
the server to return from an Ajax call.

In this chapter, we’re going to look more closely at exactly what we mean by the term
asynchronous control. In particular, we’re going to look at some asynchronous design
patterns, as well as explore some of the Node modules that provide finer control over
program flow when we’re working in this new environment. And since asynchronous
control can add some new and interesting twists when it comes to error handling, we’re
also going to take a closer look at exception handling within an asynchronous Node
environment.

Promises, No Promises, Callback Instead
In the earlier days of Node, asynchronous functionality was facilitated through the use
of promises, a concept that arose in the 1970s. A promise is an object that represents

81

the result of an asynchronous action. It’s also known as a future, a delay, or simply
deferred. The CommonJS design model embraced the concept of the promise.

In the earlier Node implementation, a promise was an object that emitted exactly two
events: success and error. Its use was simple: if an asynchronous operation succeeded,
the success event was emitted; otherwise, the error event was emitted. No other events
were emitted, and the object would emit one or the other, but not both, and no more
than once. Example 5-1 incorporates a previously implemented promise into a function
that opens and reads in a file.

Example 5-1. Using a previously implemented Node promise

function test_and_load(filename) {
 var promise = new process.Promise();
 fs.stat(filename).addCallback(function (stat) {

 // Filter out non-files
 if (!stat.isFile()) { promise.emitSuccess(); return; }

 // Otherwise read the file in
 fs.readFile(filename).addCallback(function (data) {
 promise.emitSuccess(data);
 }).addErrback(function (error) {
 promise.emitError(error);
 });

 }).addErrback(function (error) {
 promise.emitError(error);
 });
 return promise;
}

Each object would return the promise object. The code to process a successful result
would be passed as a function to the promise object’s addCallback method, which had
one parameter, the data. The code to process the error would be passed as a function
to the promise object’s addErrback method, which received the error as its one and only
parameter:

var File = require('file');
var promise = File.read('mydata.txt');
promise.addCallback(function (data) {
 // process data
});
promise.addErrback(function (err) {
 // deal with error
})

The promise object ensured that the proper functionality was performed whenever the
event finished—either the results could be manipulated, or the error processed.

82 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

www.allitebooks.com

http://www.allitebooks.org

The code for Example 5-1 is one of a number of examples of possible
asynchronous function techniques documented at http://groups.google
.com/group/nodejs/browse_thread/thread/8dab9f0a5ad753d5 as part of
the discussions about how Node would handle this concept in the fu-
ture.

The promise object was pulled from Node in version 0.1.30. As Ryan Dahl noted at
the time, the reasoning was:

Because many people (myself included) only want a low-level interface to file system
operations that does not necessitate creating an object, while many other people want
something like promises but different in one way or another. So instead of promises we’ll
use last argument callbacks and consign the task of building better abstraction layers to
user libraries.

Rather than the promise object, Node incorporated the last argument callbacks we’ve
used in previous chapters. All asynchronous methods feature a callback function as the
last argument. The first argument in this callback function is always an error object.

To demonstrate the fundamental structure of the callback functionality, Example 5-2
is a complete Node application that creates an object with one method, someMethod.
This method takes three arguments, the second of which must be a string, and the third
being the callback. In the method, if the second argument is missing or is not a string,
the object creates a new Error object, which is passed to the callback function. Other-
wise, whatever the result of the method is gets passed to the callback function.

Example 5-2. The fundamental structure of the last callback functionality

var obj =function() { };

obj.prototype.doSomething = function(arg1, arg2_) {
 var arg2 = typeof(arg2_) === 'string' ? arg2_ : null;

 var callback_ = arguments[arguments.length - 1];
 callback = (typeof(callback_) == 'function' ? callback_ : null);

 if (!arg2)
 return callback(new Error('second argument missing or not a string'));

 callback(arg1);
}
var test = new obj();

try {
 test.doSomething('test', 3.55, function(err,value) {
 if (err) throw err;

 console.log(value);
 });
} catch(err) {

Promises, No Promises, Callback Instead | 83

http://groups.google.com/group/nodejs/browse_thread/thread/8dab9f0a5ad753d5
http://groups.google.com/group/nodejs/browse_thread/thread/8dab9f0a5ad753d5

 console.error(err);
}

The key elements of the callback functionality are in boldface in the code.

The first key functionality is to ensure the last argument is a callback function. Well,
we can’t determine the user’s intent, but we can make sure the last argument is a func-
tion, and that will have to do. The second key functionality is to create the new Node
Error object if an error occurs, and return it as the result to the callback function. The
last critical functionality is to invoke the callback function, passing in the method’s
result if no error occurs. In short, everything else is changeable, as long as these three
key functionalities are present:

• Ensure the last argument is a function.

• Create a Node Error and return it if an error occurs.

• If no error occurs, invoke the callback function, passing the method’s result.

With the existing code in Example 5-1, the application output is the following error
message printed out to the console:

[Error: second argument missing or not a string]

Changing the method call in the code to the following:

 test.doSomething('test','this',function(err,value) {

results in test being printed out to the console. Changing it then to the following:

 test.doSomething('test',function(err,value) {

again results in an error, this time because the second argument is missing.

If you look through the code in the lib directory of the Node installation, you’ll see the
last callback pattern repeated throughout. Though the functionality may change, this
pattern remains the same.

This approach is quite simple and ensures consistent results from asynchronous meth-
ods. However, it also creates its own unique challenges, as we’ll cover in the next
section.

Sequential Functionality, Nested Callbacks, and Exception
Handling
It’s not unusual to find the following in a client-side JavaScript application:

val1 = callFunctionA();
val2 = callFunctionB(val1);
val3 = callFunctionC(val2);

84 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

The functions are called, in turn, passing the results from the earlier function to each
subsequent function. Since all the functions are synchronous, we don’t have to worry
about the function calls getting out of sequence—no unexpected results.

Example 5-3 shows a relatively common case of this type of sequential programming.
The application uses synchronous versions of Node’s File System methods to open a
file and get its data, modify the data by replacing all references to “apple” with “orange,”
and output the resulting string to a new file.

Example 5-3. A sequential synchronous application

var fs = require('fs');

try {
 var data = fs.readFileSync('./apples.txt','utf8');
 console.log(data);
 var adjData = data.replace(/[A|a]pple/g,'orange');

 fs.writeFileSync('./oranges.txt', adjData);
} catch(err) {
 console.error(err);
}

Since problems can occur and we can’t be sure errors are handled internally in any
module function, we wrap all of the function calls in a try block to allow for graceful
—or at least, more informative—exception handling. The following is an example of
what the error looks like when the application can’t find the file to read:

{ [Error: ENOENT, no such file or directory './apples.txt']
 errno: 34,
 code: 'ENOENT',
 path: './apples.txt',
 syscall: 'open' }

While perhaps not very user-friendly, at least it’s a lot better than the alternative:

node.js:201
 throw e; // process.nextTick error, or 'error' event on first tick
 ^
Error: ENOENT, no such file or directory './apples.txt'
 at Object.openSync (fs.js:230:18)
 at Object.readFileSync (fs.js:120:15)
 at Object.<anonymous> (/home/examples/public_html/node/read.js:3:18)
 at Module._compile (module.js:441:26)
 at Object..js (module.js:459:10)
 at Module.load (module.js:348:31)
 at Function._load (module.js:308:12)
 at Array.0 (module.js:479:10)
 at EventEmitter._tickCallback (node.js:192:40)

In the example, we’re going to have expected results because each function call is
performed in sequence.

Sequential Functionality, Nested Callbacks, and Exception Handling | 85

Converting this synchronous sequential application pattern to an asynchronous im-
plementation requires a couple of modifications. First, we have to replace all functions
with their asynchronous counterparts. However, we also have to account for the fact
that each function doesn’t block when called, which means we can’t guarantee the
proper sequence if the functions are called independently of each other. The only way
to ensure that each function is called in its proper sequence is to use nested callbacks.

Example 5-4 is an asynchronous version of the application from Example 5-3. All of
the File System function calls have been replaced by their asynchronous versions, and
the functions are called in the proper sequence via a nested callback.

Example 5-4. Application from Example 5-3 converted into asynchronous nested callbacks

var fs = require('fs');

try {
 fs.readFile('./apples2.txt','utf8', function(err,data) {

 if (err) throw err;

 var adjData = data.replace(/[A|a]pple/g,'orange');

 fs.writeFile('./oranges.txt', adjData, function(err) {

 if (err) throw err
 });
 });
} catch(err) {
 console.error(err);
}

In Example 5-4, the input file is opened and read, and only when both actions are
finished does the callback function passed as the last parameter get called. In this func-
tion, the error is checked to make sure it’s null. If not, the error is thrown for catching
in the outer exception-handling block.

Some style guides frown on throwing an error, and more complex
frameworks provide error-handling objects and functions to ensure that
all errors are resolved. My primary concern is that errors are handled.

If no error occurs, the data is processed and the asynchronous writeFile method is
called. Its callback function has only one parameter, the error object. If it’s not null,
it’s thrown for handling in the outer exception block.

If an error occurred, it would look similar to the following:

/home/examples/public_html/node/read2.js:11
 if (err) throw err;
 ^
Error: ENOENT, no such file or directory './boogabooga/oranges.txt'

86 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

If you want the stack trace of the error, you can print out the stack property of the
Node error object:

catch(err) {
 console.log(err.stack);
}

Including another sequential function call adds another level of callback nesting. In
Example 5-5, we access a listing of files for a directory. In each of the files, we replace
a generic domain name with a specific domain name using the string replace method,
and the result is written back to the original file. A log is maintained of each changed
file, using an open write stream.

Example 5-5. Retrieving directory listing for files to modify

var fs = require('fs');

var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});

try {
 // get list of files
 fs.readdir('./data/', function(err, files) {

 // for each file
 files.forEach(function(name) {

 // modify contents
 fs.readFile('./data/' + name,'utf8', function(err,data) {

 if (err) throw err;
 var adjData = data.replace(/somecompany\.com/g,'burningbird.net');

 // write to file
 fs.writeFile('./data/' + name, adjData, function(err) {

 if (err) throw err;

 // log write
 writeStream.write('changed ' + name + '\n', 'utf8', function(err) {

 if(err) throw err;
 });
 });
 });
 });
 });
} catch(err) {
 console.error(util.inspect(err));
}

Sequential Functionality, Nested Callbacks, and Exception Handling | 87

Though the application looks like it’s processing each file individually before moving
on to the next, remember that each of the methods used in this application is asyn-
chronous. If you run the application several times and check the log.txt file, you’ll see
that the files are processed in a different, seemingly random order. In my data subdir-
ectory I had five files. Running the application three times in a row resulted in the
following output to log.txt (blank lines inserted for clarity):

changed data1.txt
changed data3.txt
changed data5.txt
changed data2.txt
changed data4.txt

changed data3.txt
changed data1.txt
changed data5.txt
changed data2.txt
changed data4.txt

changed data1.txt
changed data3.txt
changed data5.txt
changed data4.txt
changed data2.txt

Another issue arises if you want to check when all of the files have been modified in
order to do something. The forEach method invokes the iterator callback functions
asynchronously, so it doesn’t block. Adding a statement following the use of forEach,
like the following:

console.log('all done');

doesn’t really mean the application is all finished, just that the forEach method didn’t
block. If you add a console.log statement at the same time you log the changed file:

 writeStream.write('changed ' + name + '\n', 'utf8', function(err) {

 if(err) throw err;
 console.log('finished ' + name);
 });

and add the following after the forEach method call:

console.log('all finished');

you’ll actually get the following console output:

all done
finished data3.txt
finished data1.txt
finished data5.txt
finished data2.txt
finished data4.txt

88 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

To solve this challenge, add a counter that is incremented with each log message and
then checked against the file array’s length to print out the “all done” message:

// before accessing directory
var counter = 0;
...
 writeStream.write('changed ' + name + '\n', 'utf8', function(err) {

 if(err) throw err;
 console.log('finished ' + name);
 counter++;
 if (counter >= files.length)
 console.log('all done');

 });

You’d then get the expected result: an “all done” message displays after all the files
have been updated.

The application works quite well—except if the directory we’re accessing has subdir-
ectories as well as files. If the application encounters a subdirectory, it spits out the
following error:

/home/examples/public_html/node/example5.js:20
 if (err) throw err;
 ^
Error: EISDIR, illegal operation on a directory

Example 5-6 prevents this type of error by using the fs.stats method to return an object
representing the data from a Unix stat command. This object contains information
about the object, including whether it’s a file or not. The fs.stats method is, of course,
another asynchronous method, requiring yet more callback nesting.

Example 5-6. Adding in a stats check of each directory object to make sure it’s a file

var fs = require('fs');

var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});

try {
 // get list of files
 fs.readdir('./data/', function(err, files) {

 // for each file
 files.forEach(function(name) {

 // check to see if object is file
 fs.stat('./data/' + name, function(err, stats) {

 if (err) throw err;

 if (stats.isFile())

Sequential Functionality, Nested Callbacks, and Exception Handling | 89

 // modify contents
 fs.readFile('./data/' + name,'utf8', function(err,data) {

 if (err) throw err;
 var adjData = data.replace(/somecompany\.com/g,'burningbird.net');

 // write to file
 fs.writeFile('./data/' + name, adjData, function(err) {

 if (err) throw err;

 // log write
 writeStream.write('changed ' + name + '\n', 'utf8',
 function(err) {
 if(err) throw err;
 });
 });
 });
 });
 });
 });
} catch(err) {
 console.error(err);
}

Again, the application performs its purpose, and performs it well—but how difficult it
is to read and maintain! I’ve heard this type of nested callback called callback
spaghetti and the even more colorful pyramid of doom, both of which are apt terms.

The nested callbacks continue to push against the right side of the document, making
it more difficult to ensure we have the right code in the right callback. However, we
can’t break the callback nesting apart because it’s essential that the methods be called
in turn:

1. Start the directory lookup.

2. Filter out subdirectories.

3. Read each file’s contents.

4. Modify the contents.

5. Write back to the original file.

What we’d like to do is find a way of implementing this series of method calls but
without having to depend on nested callbacks. For this, we need to look at third-party
modules that provide asynchronous control flow.

Another approach is to provide a named function as a callback function
for each method. This way, you can flatten the pyramid, and it can sim-
plify debugging. However, this approach doesn’t solve some of the other
problems, such as determining when all processes have finished. For
this, you still need the third-party libraries.

90 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

Asynchronous Patterns and Control Flow Modules
The application in Example 5-6 is an example of an asynchronous pattern, where each
function is called in turn and passes its results to the next function, and the entire chain
stops only if an error occurs. There are several such patterns, though some are variations
of others, and not everyone uses the exact same terminology.

One Node module, Async, provides names and support for the most extensive list of
asynchronous control flow patterns:

waterfall
Functions are called in turn, and results of all are passed as an array to the last
callback (also called series and sequence by others).

series
Functions are called in turn and, optionally, results are passed as an array to the
last callback.

parallel
Functions are run in parallel and when completed, results are passed to the last
callback (though the result array isn’t part of the pattern in some interpretations
of the parallel pattern).

whilst
Repeatedly calls one function, invoking the last callback only if a preliminary test
returns false or an error occurs.

queue
Calls functions in parallel up to a given limit of concurrency, and new functions
are queued until one of the functions finishes.

until
Repeatedly calls one function, invoking the last callback only if a post-process test
returns false or an error occurs.

auto
Functions are called based on requirements, each function receiving the results of
previous callbacks.

iterator
Each function calls the next, with the ability to individually access the next iterator.

apply
A continuation function with arguments already applied combined with other
control flow functions.

nextTick
Calls the callback in the next loop of an event loop—based on process.nextTick
in Node.

In the listing of modules provided at the Node.js website, there is a category titled
“Control Flow/Async Goodies.” In this list is the Async module, which provides the

Asynchronous Patterns and Control Flow Modules | 91

asynchronous control patterns I just listed. Though not every control flow module
provides the capability to handle all possible patterns, most provide functionality for
the most common patterns: series (also called sequence and sometimes referred to as
waterfall—as in the preceding list—though Async lists waterfall separately from
series) and parallel. In addition, some of the modules also reinstate the concept of
promises from earlier editions of Node, while others implement a concept called
fibers, which emulate threads.

In the next couple of sections, I’ll demonstrate two of the more popular of the actively
maintained control flow modules: Step and Async. Each offers its own unique per-
spective on asynchronous control flow management, though both provide a very
useful—and likely essential—service.

Step
Step is a focused utility module that enables simplified control flow for serial and par-
allel execution. It can be installed using npm as follows:

npm install step

The Step module exports exactly one object. To use the object for serial execution,
wrap your asynchronous function calls within functions that are then passed as pa-
rameters to the object. For instance, in Example 5-7, Step is used to read the contents
of a file, modify the contents, and write them back to the file.

Example 5-7. Using Step to perform serial asynchronous tasks

var fs = require('fs'),
 Step = require('step');

try {

 Step (
 function readData() {
 fs.readFile('./data/data1.txt', 'utf8', this);
 },
 function modify(err, text) {
 if (err) throw err;
 return text.replace(/somecompany\.com/g,'burningbird.net');
 },
 function writeData(err, text) {
 if (err) throw err;
 fs.writeFile('./data/data1.txt', text, this);
 }
);
} catch(err) {
 console.error(err);
}

The first function in the Step sequence, readData, reads a file’s contents into a string,
which is then passed to a second function. The second function modifies the string

92 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

using replacement, and the result is passed to a third function. In the third function,
the modified string is written back to the original file.

For more information, see the Step GitHub site at https://github.com/
creationix/step.

In more detail, the first function wraps the asynchronous fs.readFile. However, rather
than pass a callback function as the last parameter, the code passes the this context.
When the function is finished, its data and any possible error are sent to the next func-
tion, modify. The modify function isn’t an asynchronous function, as all it’s doing is
replacing one substring for another in the string. It doesn’t require the this context,
and just returns the result at the end of the function.

The last function gets the newly modified string and writes it back to the original file.
Again, since it’s an asynchronous function, it gets this in place of the callback function.
If we didn’t include this as the last parameter to the final function, any errors that occur
wouldn’t be thrown and caught in the outer loop. If the boogabooga subdirectory didn’t
exist with the following modified code:

 function writeFile(err, text) {
 if (err) throw err;
 fs.writeFile('./boogabooga/data/data1.txt');
 }

we’d never know that the write failed.

Even though the second function isn’t asynchronous, every function but the first in
Step requires the error object as the first parameter for consistency. It’s just null by
default in a synchronous function.

Example 5-7 performs part of the functionality of the application in Example 5-6. Could
it do the rest of the functionality, especially handling modification to multiple files?
The answer is yes, and no. Yes, it can do the work, but only if we throw in some kludgy
code.

In Example 5-8, I added in the readir asynchronous function to get a list of files in a
given subdirectory. The array of files is processed with a forEach command, like in
Example 5-6, but the end of the call to readFile isn’t a callback function or this. In
Step, the call to create the group object signals to reserve a parameter for a group result;
the call to the group object in the readFile asynchronous function results in each of the
callbacks being called in turn, and the results being grouped into an array for the next
function.

Example 5-8. Using Step’s group() capability to handle grouped asynchronous processes

var fs = require('fs'),
 Step = require('step'),

Asynchronous Patterns and Control Flow Modules | 93

https://github.com/creationix/step
https://github.com/creationix/step

 files,
 _dir = './data/';

try {

 Step (
 function readDir() {
 fs.readdir(_dir, this);
 },
 function readFile(err, results) {
 if (err) throw err;
 files = results;
 var group = this.group();
 results.forEach(function(name) {
 fs.readFile(_dir + name, 'utf8', group());
 });
 },
 function writeAll(err, data) {
 if (err) throw err;
 for (var i = 0; i < files.length; i++) {
 var adjdata = data[i].replace(/somecompany\.com/g,'burningbird.net');
 fs.writeFile(_dir + files[i], adjdata, 'utf8',this);
 }
 }
);
} catch(err) {
 console.log(err);
}

To preserve the filenames, the readdir result is assigned to a global variable, files. In
the last Step function, a regular for loop cycles through the data to modify it, and then
cycles through the files variable to get the filename. Both the filename and modified
data are used in the last asynchronous call to writeFile.

One other approach we could have used if we wanted to hardcode the change to each
file is to use the Step parallel feature. Example 5-9 performs a readFile on a couple
of different files, passing in this.parallel() as the last parameter. This results in a
parameter being passed to the next function for each readFile in the first function. The
parallel function call also has to be used in the writeFile function in the second func-
tion, to ensure that each callback is processed in turn.

Example 5-9. Reading and writing to a group of files using Step’s group functionality

var fs = require('fs'),
 Step = require('step'),
 files;

try {

 Step (
 function readFiles() {
 fs.readFile('./data/data1.txt', 'utf8',this.parallel());
 fs.readFile('./data/data2.txt', 'utf8',this.parallel());

94 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

 fs.readFile('./data/data3.txt', 'utf8',this.parallel());
 },
 function writeFiles(err, data1, data2, data3) {
 if (err) throw err;
 data1 = data1.replace(/somecompany\.com/g,'burningbird.net');
 data2 = data2.replace(/somecompany\.com/g,'burningbird.net');
 data3 = data3.replace(/somecompany\.com/g,'burningbird.net');

 fs.writeFile('./data/data1.txt', data1, 'utf8', this.parallel());
 fs.writeFile('./data/data2.txt', data2, 'utf8', this.parallel());
 fs.writeFile('./data/data3.txt', data3, 'utf8', this.parallel());
 }
);
} catch(err) {
 console.log(err);
}

It works, but it’s clumsy. It would be better to reserve the use of the parallel functionality
for a sequence of different asynchronous functions that can be implemented in parallel,
and the data processed post-callback.

As for our earlier application, rather than trying to force Step into contortions to fit our
use case, we can use another library that provides the additional flexibility we need:
Async.

Async
The Async module provides functionality for managing collections, such as its own
variation of forEach, map, and filter. It also provides some utility functions, including
ones for memoization. However, what we’re interested in here are its facilities for han-
dling control flow.

There is both an Async and an Async.js module, so be careful not to
confuse the two. The one covered in this section is Async, by Caolan
McMahon. Its GitHub site is https://github.com/caolan/async.

Install Async using npm like so:

npm install async

As mentioned earlier, Async provides control flow capability for a variety of asynchro-
nous patterns, including serial, parallel, and waterfall. Like Step, it gives us a tool
to tame the wild nested callback pyramid, but its approach is quite different. For one,
we don’t insert ourselves between each function and its callback. Instead, we incorpo-
rate the callback as part of the process.

As an example, we’ve already identified that the pattern of the earlier application
matches with Async’s waterfall, so we’ll be using the async.waterfall method. In
Example 5-10, I used async.waterfall to open and read a data file using fs.readFile,
perform the synchronous string substitution, and then write the string back to the file

Asynchronous Patterns and Control Flow Modules | 95

https://github.com/caolan/async

using fs.writeFile. Pay particular attention to the callback function used with each
step in the application.

Example 5-10. Using async.waterfall to read, modify, and write a file’s contents asynchronously

var fs = require('fs'),
 async = require('async');

try {
 async.waterfall([
 function readData(callback) {
 fs.readFile('./data/data1.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 function modify(text, callback) {
 var adjdata=text.replace(/somecompany\.com/g,'burningbird.net');
 callback(null, adjdata);
 },
 function writeData(text, callback) {
 fs.writeFile('./data/data1.txt', text, function(err) {
 callback(err,text);
 });
 }
], function (err, result) {
 if (err) throw err;
 console.log(result);
 });
} catch(err) {
 console.log(err);
}

The async.waterfall method takes two parameters: an array of tasks and an optional
final callback function. Each asynchronous task function is an element of the
async.waterfall method array, and each function requires a callback as the last of its
parameters. It is this callback function that allows us to chain the asynchronous call-
back results without having to physically nest the functions. However, as you can see
in the code, each function’s callback is handled as we would normally handle it if we
were using nested callbacks—other than the fact that we don’t have to test the errors
in each function. The callbacks look for an error object as first parameter. If we pass
an error object in the callback function, the process is ended at this point, and the final
callback routine is called. The final callback is when we can test for an error, and throw
the error to the outer exception handling block (or otherwise handle).

The readData function wraps our fs.readFile call, which checks for an error, first. If
an error is found, it throws the error, ending the process. If not, it issues a call to the
callback as its last operation. This is the trigger to tell Async to invoke the next function,
passing any relevant data. The next function isn’t asynchronous, so it does its process-
ing, passing null as the error object, and the modified data. The last function, write
Data, calls the asynchronous writeFile, using the passed-in data from the previous
callback and then testing for an error in its own callback routine.

96 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

Example 5-10 uses named functions, while the Async documentation
shows anonymous functions. However, named functions can simplify
debugging and error handling. Both work equally well.

The processing is very similar to what we had in Example 5-4, but without the nesting
(and having to test for an error in each function). It may seem more complicated than
what we had in Example 5-4, and I wouldn’t necessarily recommend its use for such
simple nesting, but look what it can do with a more complex nested callback. Exam-
ple 5-11 duplicates the exact functionality from Example 5-6, but without the callback
nesting and excessive indenting.

Example 5-11. Get objects from directory, test to look for files, read file test, modify, and write back
out log results

var fs = require('fs'),
 async = require('async'),
 _dir = './data/';

var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});
try {
 async.waterfall([
 function readDir(callback) {
 fs.readdir(_dir, function(err, files) {
 callback(err,files);
 });
 },
 function loopFiles(files, callback) {
 files.forEach(function (name) {
 callback (null, name);
 });
 },
 function checkFile(file, callback) {
 fs.stat(_dir + file, function(err, stats) {
 callback(err, stats, file);
 });
 },
 function readData(stats, file, callback) {
 if (stats.isFile())
 fs.readFile(_dir + file, 'utf8', function(err, data){
 callback(err,file,data);
 });
 },
 function modify(file, text, callback) {
 var adjdata=text.replace(/somecompany\.com/g,'burningbird.net');
 callback(null, file, adjdata);
 },
 function writeData(file, text, callback) {
 fs.writeFile(_dir + file, text, function(err) {
 callback(err,file);

Asynchronous Patterns and Control Flow Modules | 97

 });
 },
 function logChange(file, callback) {
 writeStream.write('changed ' + file + '\n', 'utf8', function(err) {
 callback(err, file);
 });
 }
], function (err, result) {
 if (err) throw err;
 console.log('modified ' + result);
 });
} catch(err) {
 console.log(err);
}

Every last bit of functionality is present from Example 5-6. The fs.readdir method is
used to get an array of directory objects. The Node forEach method (not the Async
forEach) is used to access each specific object. The fs.stats method is used to get the
stats for each object. stats is used to check for files, and when a file is found, it’s
opened and its data accessed. The data is then modified, and passed on to be written
back to the file via fs.writeFile. The operation is logged in the logfile and also echoed
to the console.

Note that there is more data passed in some of the callbacks. Most of the functions
need the filename as well as the text, so this is passed in the last several methods. Any
amount of data can be passed in the methods, as long as the first parameter is the error
object (or null, if no error object) and the last parameter in each function is the callback
function.

We don’t have to check for an error in each asynchronous task function either, because
Async tests the error object in each callback, and stops processing and calls the final
callback function if an error is found. And we don’t have to worry about using special
processing when handling an array of items, as we did when we used Step earlier in the
chapter.

The other Async control flow methods, such as async.parallel and async.serial, per-
form in a like manner, with an array of tasks as the first method parameter, and a final
optional callback as the second. How they process the asynchronous tasks differs,
though, as you would expect.

We use the async.serial method with a Redis application in Chap-
ter 9, in the section “Building a Game Leaderboard” on page 190.

The async.parallel method calls all of the asynchronous functions at once, and when
they are each finished, calls the optional final callback. Example 5-12 uses
async.parallel to read in the contents of three files in parallel. However, rather than

98 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

an array of functions, this example uses an alternative approach that Async supports:
passing in an object with each asynchronous task listed as a property of the object. The
results are then printed out to the console when all three tasks have finished.

Example 5-12. Opening three files in parallel and reading in their contents

var fs = require('fs'),
 async = require('async');

try {
 async.parallel({
 data1 : function (callback) {
 fs.readFile('./data/data1.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 data2 : function (callback) {
 fs.readFile('./data/data2.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },
 data3 : function readData3(callback) {
 fs.readFile('./data/data3.txt', 'utf8', function(err, data){
 callback(err,data);
 });
 },

 }, function (err, result) {
 if (err) throw err;
 console.log(result);
 });
} catch(err) {
 console.log(err);
}

The results are returned as an array of objects, with each result tied to each of the
properties. If the three data files in the example had the following content:

• data1.txt: apples

• data2.txt: oranges

• data3.txt: peaches

the result of running Example 5-12 is:

{ data1: 'apples\n', data2: 'oranges\n', data3: 'peaches\n' }

I’ll leave the testing of the other Async control flow methods as a reader exercise. Just
remember that when you’re working with the Async control flow methods, all you need
is to pass a callback to each asynchronous task and to call this callback when you’re
finished, passing in an error object (or null) and whatever data you need.

Asynchronous Patterns and Control Flow Modules | 99

Node Style
A couple of times in the chapter I mentioned people recommending certain restraints,
such as using named rather than anonymous functions in Node applications. Collec-
tively, these restraints are known as preferred Node style, though there is no one style
guide or definitive set of shared preferences. In fact, there are several different recom-
mendations for proper Node style.

One helpful Node.js style guide is Felix’s Node.js Style Guide, at http:
//nodeguide.com/style.html.

Here are some of the recommendations, and my own take on each:

Use asynchronous functions over synchronous.
Yes, this is essential for Node applications.

Use a two-space indentation.
My take: Sorry, I’m used to three spaces, and I’ll continue to use three spaces. I
think it’s more important to be consistent and not to use tabs; I’m not going to
split hairs on the number of spaces.

Use semicolons/don’t use semicolons.
Amazing how contentious this one is. I use semicolons, but follow your own
instincts.

Use single quotes.
I’m rather used to double quotes, but have managed to kick the habit (more or
less). Regardless, it’s better to use double quotes than to escape a single quote in
a string.

When defining several variables, use one var keyword/don’t use one var keyword.
Some of the applications in this book use the var keyword for each variable; some
don’t. Again, old habits are hard to break, but I don’t think this is as much an issue
as some people make it.

Constants should be uppercase.
I agree with this one.

Variables should be camel case.
I more or less agree with this, but not religiously.

Use the strict equality operator (===).
Sound advice, but I repeat, old habits are hard to break. I mean to use strict equality,
but frequently use just the regular equality (==). Don’t be bad like me.

Name your closures.
My bad, again. This really is sound advice, and I’m trying to improve, but most of
my code still uses anonymous functions.

100 | Chapter 5: Control Flow, Asynchronous Patterns, and Exception Handling

http://nodeguide.com/style.html
http://nodeguide.com/style.html

Line length should be fewer than 80 characters.
Again, sound advice.

Curly braces begin on the same line as what necessitates them.
I do follow this religiously.

The most important rule to remember out of all of these is to use asynchronous func-
tions whenever and wherever possible. After all, asynchronous functionality is the heart
of Node.

Node Style | 101

CHAPTER 6

Routing Traffic, Serving Files, and
Middleware

Click a link in a web page, and you expect something to happen. That something is
typically a page being loaded. However, there’s actually a lot that goes on before that
web resource loads—some of which is mostly out of our control (such as packet rout-
ing), and some of which is dependent on us having software installed that understands
how to respond based on the link’s contents.

Of course, when we use web servers such as Apache, and software such as Drupal,
much of the mechanics of serving a file or a resource are handled behind the scenes.
However, when we’re creating our own server-side applications in Node and bypassing
our usual technology, we have to get more involved in ensuring that the right resource
gets delivered at the right time.

This chapter focuses on the technology available to Node developers for providing the
very basic routing and middleware functionality we need to ensure that resource A gets
delivered to user B correctly and quickly.

Building a Simple Static File Server from Scratch
We have all the functionality we need to build a simple router or to serve static files
built directly into Node. But being able to do so and doing so easily are two different
things.

When thinking of what’s necessary to build a simple but functional static file server,
we might come up with the following set of steps:

1. Create an HTTP server and listen for requests.

2. When a request arrives, parse the request URL to determine the location for the file.

3. Check to make sure the file exists.

4. If the file doesn’t exist, respond accordingly.

103

5. If the file does exist, open the file for reading.

6. Prepare a response header.

7. Write the file to the response.

8. Wait for the next request.

Creating an HTTP server and reading files requires the HTTP and File System modules.
The Path module will also come in handy, because it has a way of checking to make
sure a file exists before trying to open it for reading. In addition, we’ll want to define a
global variable for the base directory, or use the predefined __dirname (more on this in
the upcoming sidebar “Why Not Use __dirname?” on page 110).

The top of the application has the following code at this point:

var http = require('http'),
 path = require('path'),
 fs = require('fs'),
 base = '/home/examples/public_html';

Creating a server using the HTTP module isn’t anything new. And the application can
get the document requested by directly accessing the HTTP request object’s url prop-
erty. To double-check the response compared to requests, we’ll also throw in a con
sole.log of the requested file’s pathname. This is in addition to the console.log mes-
sage that’s written when the server is first started:

http.createServer(function (req, res) {

 pathname = base + req.url;
 console.log(pathname);

}).listen(8124);

console.log('Server running at 8124/');

Before attempting to open the file for reading and writing to the HTTP response, the
application needs to check that it exists. The path.exists function is a good choice at
this point. If the file doesn’t exist, write a brief message to this effect and set the status
code to 404: document not found.

path.exists(pathname, function(exists) {
 if (exists) {
 // insert code to process request
 } else {
 res.writeHead(404);
 res.write('Bad request 404\n');
 res.end();
}

Now we’re getting into the meat of the new application. In examples in previous chap-
ters, we used fs.readFile to read in a file. The problem with fs.readFile, though, is
that it wants to read the file completely into memory before making it available.

104 | Chapter 6: Routing Traffic, Serving Files, and Middleware

Documents served over the Web can be quite large. In addition, there can be many
requests for a document at any given time. Something like fs.readFile just won’t scale.

The path.exists method has been deprecated in Node 0.8. Instead, use
fs.exists. The examples file referenced in the preface include applica-
tions that support both environments.

Instead of using fs.readFile, the application creates a read stream via the fs.createR
eadStream method, using the default settings. Then it’s a simple matter to just pipe the
file contents directly to the HTTP response object. Since the stream sends an end signal
when it’s finished, we don’t need to use the end method call with the read stream:

 res.setHeader('Content-Type', 'test/html');

 // 200 status - found, no errors
 res.statusCode = 200;

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {
 file.pipe(res);
 });
 file.on("error", function(err) {
 console.log(err);
 });

The read stream has two events of interest: open and error. The open event is sent when
the stream is ready, and the error if a problem occurs. The application calls the pipe
method in the callback function for the open event.

At this point, the static file server looks like the application in Example 6-1.

Example 6-1. A simple static file web server

var http = require('http'),
 path = require('path'),
 fs = require('fs'),
 base = '/home/examples/public_html';

http.createServer(function (req, res) {

 pathname = base + req.url;
 console.log(pathname);

 path.exists(pathname, function(exists) {
 if (!exists) {
 res.writeHead(404);
 res.write('Bad request 404\n');
 res.end();
 } else {
 res.setHeader('Content-Type', 'text/html');

 // 200 status - found, no errors

Building a Simple Static File Server from Scratch | 105

 res.statusCode = 200;

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {
 file.pipe(res);
 });
 file.on("error", function(err) {
 console.log(err);
 });
 }
 });
}).listen(8124);

console.log('Server running at 8124/');

I tested it with a simple HTML file, which has nothing more than an img element, and
the file loaded and displayed properly:

<!DOCTYPE html>
<head>
 <title>Test</title>
 <meta charset="utf-8" />
</head>
<body>

</body>

I then tried it with another example file I had, which contained an HTML5 video
element:

<!DOCTYPE html>
<head>
 <title>Video</title>
 <meta charset="utf-8" />
</head>
<body>
 <video id="meadow" controls>
 <source src="videofile.mp4" />
 <source src="videofile.ogv" />
 <source src="videofile.webm" />
 </video>
</body>

Though the file would open and the video displayed when I tried the page with Chrome,
the video element did not work when I tested the page with Internet Explorer 10.
Looking at the console output provided the reason why:

Server running at 8124/
/home/examples/public_html/html5media/chapter1/example2.html
/home/examples/public_html/html5media/chapter1/videofile.mp4
/home/examples/public_html/html5media/chapter1/videofile.ogv
/home/examples/public_html/html5media/chapter1/videofile.webm

106 | Chapter 6: Routing Traffic, Serving Files, and Middleware

Though IE10 is capable of playing the MP4 video, it tests all three of the videos because
the content type of the response header is text/html for each. Though other browsers
will ignore the incorrect content type and display the media correctly, IE does not—
appropriately, in my opinion, because I may not have quickly found the error in the
application otherwise.

This application is a perfect example of why we have to test our server-
side applications in all target browsers, even though, seemingly, we
should be able to test the application with just one since the function-
ality we’re testing is on the server.

The application has to be modified to test for the file extension for each file and then
return the appropriate MIME type in the response header. We could code this func-
tionality ourselves, but I’d rather make use of an existing module: node-mime.

You can install node-mime using npm: npm install mime. The GitHub
site is at https://github.com/broofa/node-mime.

The node-mime module can return the proper MIME type given a filename (with or
without path), and can also return file extensions given a content type. The node-mime
module is added to the requirements list like so:

 mime = require('mime');

The returned content type is used in the response header, and also output to the con-
sole, so we can check the value as we test the application:

 // content type
 var type = mime.lookup(pathname);
 console.log(type);
 res.setHeader('Content-Type', type);

Now when we access the file with the video element in IE10, the video file works.

What doesn’t work, though, is when we access a directory instead of a file. When this
happens, an error is output to the console, and the web page remains blank for the user:

{ [Error: EISDIR, illegal operation on a directory] errno: 28, code: 'EISDIR' }

We not only need to check if the resource being accessed exists, but we also need to
check whether it’s a file or a directory. If it’s a directory being accessed, we can either
display its contents, or we can output an error—it’s the developer’s choice.

Building a Simple Static File Server from Scratch | 107

https://github.com/broofa/node-mime

The final version of a minimal static file server, in Example 6-2, uses fs.stats to check
for the existence of the requested object and whether it’s a file. If the resource doesn’t
exist, an HTTP status of 404 is returned. If the resource exists, but it’s a directory, an
HTTP error status code of 403—forbidden—is returned. In all cases, the request is
handled properly.

Example 6-2. Final version of minimal static file server

var http = require('http'),
 url = require('url'),
 fs = require('fs'),
 mime = require('mime');
 base = '/home/examples/public_html';

http.createServer(function (req, res) {

 pathname = base + req.url;
 console.log(pathname);

 fs.stat(pathname, function(err, stats) {
 if (err) {
 res.writeHead(404);
 res.write('Bad request 404\n');
 res.end();
 } else if (stats.isFile()) {
 // content type
 var type = mime.lookup(pathname);
 console.log(type);
 res.setHeader('Content-Type', type);

 // 200 status - found, no errors
 res.statusCode = 200;

 // create and pipe readable stream
 var file = fs.createReadStream(pathname);
 file.on("open", function() {

 file.pipe(res);
 });
 file.on("error", function(err) {
 console.log(err);
 });
 } else {
 res.writeHead(403);
 res.write('Directory access is forbidden');
 res.end();
 }
 });
}).listen(8124);
console.log('Server running at 8124/');

The following is the console output for accessing one web page that contains both
image and video file links:

108 | Chapter 6: Routing Traffic, Serving Files, and Middleware

/home/examples/public_html/html5media/chapter2/example16.html
text/html
/home/examples/public_html/html5media/chapter2/bigbuckposter.jpg
image/jpeg
/home/examples/public_html/html5media/chapter2/butterfly.png
image/png
/home/examples/public_html/favicon.ico
image/x-icon
/home/examples/public_html/html5media/chapter2/videofile.mp4
video/mp4
/home/examples/public_html/html5media/chapter2/videofile.mp4
video/mp4

Note the proper handling of the content types. Figure 6-1 shows one web page that
contains a video element loaded into Chrome, and the network access displayed in the
browser’s console.

Figure 6-1. Displaying the browser console while loading a web page served by the simple static file
server from Example 6-2

You get a better feel for how the read stream works when you load a page that has a
video element and begin to play it. The browser grabs the read stream output at a speed
it can manage, filling its own internal buffer, and then pauses the output. If you close
the server while the video content is playing, the video continues to play...up to the
point where it exhausts its current video buffer. The video element then goes blank
because the read stream is no longer available. It’s actually a little fascinating to see
how well everything works with so little effort on our part.

Building a Simple Static File Server from Scratch | 109

Why Not Use __dirname?
In some of the examples in this book, I hardcode the base location for web documents,
typically as /home/examples/public_html. You might be wondering why I’m not using
__dirname.

In Node, you can use the predefined __dirname as a way of specifying the current work-
ing directory for a Node application. Although in this chapter’s examples I’m accessing
files located separate from my Node application, you should be aware of __dirname,
and its usefulness with Node development, because it provides a way to test applica-
tions and then move them to production without having to change the value of a base
location variable.

You use __dirname in the following manner:

var pathname = __dirname + req.url;

Note the double underscore with __dirname.

Though the application works when tested with several different documents, it’s not
perfect. It doesn’t handle many other types of web requests, it doesn’t handle security
or caching, and it doesn’t properly handle the video requests. One web page application
I tested that uses HTML video also makes use of the HTML5 video element API to
output the state of the video load process. This application didn’t get the information
it needs to work as designed.

Chapter 12 revisits this application and covers what additional effort is
needed to create a fully functional HTML5 video server.

There are many little gotchas that can trip us when it comes to creating a static file
server. Another approach is to use an existing static file server. In the next section, we’ll
look at one included in the Connect middleware.

Middleware
What is middleware? That’s a good question, and one that, unfortunately, doesn’t have
a definitive answer.

Generally, middleware is software that exists between you, as the developer, and the
underlying system. By system, we can mean either the operating system, or the under-
lying technology, such as we get from Node. More specifically, middleware inserts itself
into the communication chain between your application and the underlying system—
hence its rather descriptive name.

110 | Chapter 6: Routing Traffic, Serving Files, and Middleware

For instance, rather than have to provide all the functionality necessary for serving static
files via a web server, you can use middleware to handle most of it. The middleware
then takes care of all the tedious bits, so you can focus on those aspects of your appli-
cation that are unique to your needs and requirements. However, middleware doesn’t
stop with just serving up static files. Some middleware provides authorization compo-
nents, proxies, routers, cookie and session management, and other necessary web
technologies.

Middleware isn’t a utility library or simple set of functions. What middleware you
choose defines how your application is both designed and developed. You have to be
comfortable with your choice of middleware before you begin incorporating it, because
you’d have a difficult time switching mid-development.

Currently, there are two major middleware applications used in Node applications:
JSGI (JavaScript Gateway Interface) and Connect. JSGI is a middleware technology for
JavaScript generally, not Node specifically. Its use is facilitated for Node with the JSGI-
node module. Connect, on the other hand, was developed for use with Node.

The JSGI site is at http://wiki.commonjs.org/wiki/JSGI/Level0/A/Draft2.
The JSGI-node GitHub site is at https://github.com/persvr/jsgi-node.

I’m covering only Connect in this book, for three reasons. One, it’s simpler to use. JSGI
would require us to spend too much time trying to understand how it works in general
(independent of its use with Node), whereas with Connect, we can jump right in. Two,
Connect provides middleware support for Express, a very popular framework (covered
in Chapter 7). Three, and perhaps most importantly, over time Connect has seemingly
floated to the top as best in breed. It’s the most used middleware if the npm registry is
any indication.

You will find an introduction to Connect 2.0 at http://tjholowaychuk
.com/post/18418627138/connect-2-0. The Connect source is at https://
github.com/senchalabs/Connect. (For more information on installation,
see the sidebar “Working with Alpha Modules” on page 112).

Connect Basics
You can install Connect using npm:

npm install connect

Connect is, in actuality, a framework in which you can use one or more middleware
applications. The documentation for Connect is sparse. However, it is relatively simple
to use once you’ve seen a couple of working examples.

Middleware | 111

http://wiki.commonjs.org/wiki/JSGI/Level0/A/Draft2
https://github.com/persvr/jsgi-node
http://tjholowaychuk.com/post/18418627138/connect-2-0
http://tjholowaychuk.com/post/18418627138/connect-2-0
https://github.com/senchalabs/Connect
https://github.com/senchalabs/Connect

Working with Alpha Modules
At the time I wrote the first draft of this chapter, the npm registry had the stable version
(1.8.5) of Connect, but I wanted to cover the development version, 2.x, since it will
most likely be the version you’ll be using.

I downloaded the source code for Connect 2.x directly from GitHub, and moved into
my development environment’s node_modules directory. I then changed to the Connect
directory and installed it using npm, but without specifying the module’s name, and
using the -d flag to install the dependencies:

npm install -d

You can use npm to install directly from the Git repository. You can also use Git directly
to clone the version and then use the technique I just described to install it.

Be aware that if you install a module directly from source, and you perform an npm
update, npm will overwrite the module with what it considers to be the “latest” module
—even if you are using a newer version of the module.

In Example 6-3, I created a simple server application using Connect, and using two of
the middleware1 bundled with Connect: connect.logger and connect.favicon. The
logger middleware logs all requests to a stream—in this case, the default STDIO.out
put stream—and the favicon middleware serves up the favicon.ico file. The application
includes the middleware using the use method on the Connect request listener, which
is then passed as a parameter to the HTTP object’s createServer method.

Example 6-3. Incorporating the logger and favicon middleware into a Connect-based application

var connect = require('connect');
var http = require('http');

var app = connect()
 .use(connect.favicon())
 .use(connect.logger())
 .use(function(req,res) {
 res.end('Hello World\n');
 });

http.createServer(app).listen(8124);

You can use any number of middleware—either built in with Connect or provided by
a third party—by just including additional use states.

Rather than create the Connect request listener first, we can also incorporate the Con-
nect middleware directly into the createServer method, as shown in Example 6-4.

1. Connect refers to the individual middleware options as just “middleware.” I follow its convention in this
chapter.

112 | Chapter 6: Routing Traffic, Serving Files, and Middleware

Example 6-4. Incorporating Connect bundled middleware into an application directly

var connect = require('connect');
var http = require('http');

http.createServer(connect()
 .use(connect.favicon())
 .use(connect.logger())
 .use(function(req,res) {
 res.end('Hello World\n');
 })).listen(8124);

Connect Middleware
Connect comes bundled with at least 20 middleware. I’m not going to cover them all
in this section, but I am going to demonstrate enough of them so that you have a good
understanding of how they work together.

Other examples of the Connect middleware are utilized in the Express
applications created in Chapter 7.

connect.static

Earlier, we created a simplified static file server from scratch. Connect provides mid-
dleware that implements the functionality of that server, and more. It is extremely easy
to use—you just specify the connect.static middleware option, passing in the root
directory for all requests. The following implements most of what we created in Ex-
ample 6-2, but with far less code:

var connect = require('connect'),
 http = require('http'),
 __dirname = '/home/examples';

http.createServer(connect()
 .use(connect.logger())
 .use(connect.static(_dirname + '/public_html'), {redirect: true})
).listen(8124);

The connect.static middleware takes the root path as the first parameter, and an op-
tional object as the second. Among the options supported in the second object are:

maxAge
Browser cache in milliseconds: defaults to 0

hidden
Set to true to allow transfer of hidden files; default is false

redirect
Set to true to redirect to trailing / when the pathname is a directory

Middleware | 113

This short Connect middleware application represents a big difference in behavior from
the earlier scratch application. The Connect solution handles the browser cache, pro-
tects against malformed URLs, and more properly handles HTTP HTML5 video, which
the server built from scratch could not. Its only shortcoming when compared to the
scratch server is that we have more control over error handling with the scratch server.
However, the connect.static middleware does provide the appropriate response and
status code to the browser.

The code just shown, and the earlier examples in the section, also demonstrate another
Connect middleware: connect.logger. We’ll discuss it next.

connect.logger

The logger middleware module logs incoming requests to a stream, set to stdout by
default. You can change the stream, as well as other options including buffer duration,
format, and an immediate flag that signals whether to write the log immediately or on
response.

There are several tokens with which you can build the format string, in addition to four
predefined formats you can use:

default
':remote-addr - - [:date] ":method :url HTTP/:http-version" :status :res[con
tent-length] ":referrer" ":user-agent"'

short
':remote-addr - :method :url HTTP/:http-version :status :res[content-
length] - :response-time ms'

tiny
':method :url :status :res[content-length] - :response-time ms'

dev
Concise output colored by response status for development use

The default format generates log entries like the following:

99.28.217.189 - - [Sat, 25 Feb 2012 02:18:22 GMT] "GET /example1.html HTTP/1.1" 304
- "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)
 Chrome/17.0.963.56 Safari/535.11"
99.28.217.189 - - [Sat, 25 Feb 2012 02:18:22 GMT] "GET /phoenix5a.png HTTP/1.1" 304
 - "http://examples.burningbird.net:8124/example1.html"
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)
Chrome/17.0.963.56 Safari/535.11"
99.28.217.189 - - [Sat, 25 Feb 2012 02:18:22 GMT] "GET /favicon.ico HTTP/1.1"
304 - "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)
 Chrome/17.0.963.56 Safari/535.11"
99.28.217.189 - - [Sat, 25 Feb 2012 02:18:28 GMT]
"GET /html5media/chapter2/example16.html HTTP/1.1" 304 - "-"
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)
Chrome/17.0.963.56 Safari/535.11"

114 | Chapter 6: Routing Traffic, Serving Files, and Middleware

This is very informative, but also very verbose. It’s also very familiar, resembling the
default log format we get with a server such as Apache. You can change the format,
and you can also direct the output to a file. Example 6-5 makes use of connect.log
ger, directing the log entries to a file and setting the format to the dev predefined format.

Example 6-5. Setting logging to a file and changing logger format

var connect = require('connect'),
 http = require('http'),
 fs = require('fs'),
 __dirname = '/home/examples';

var writeStream = fs.createWriteStream('./log.txt',
 {'flags' : 'a',
 'encoding' : 'utf8',
 'mode' : 0666});

http.createServer(connect()
 .use(connect.logger({format : 'dev', stream : writeStream }))
 .use(connect.static(__dirname + '/public_html'))
).listen(8124);

Now the logging output looks like:

GET /example1.html 304 4ms
GET /phoenix5a.png 304 1ms
GET /favicon.ico 304 1ms
GET /html5media/chapter2/example16.html 304 2ms
GET /html5media/chapter2/bigbuckposter.jpg 304 1ms
GET /html5media/chapter2/butterfly.png 304 1ms
GET /html5media/chapter2/example1.html 304 1ms
GET /html5media/chapter2/bigbuckposter.png 304 0ms
GET /html5media/chapter2/videofile.mp4 304 0ms

While not as informative, this is a handy way of checking request state and load times.

connect.parseCookie and connect.cookieSession

The scratch file server didn’t provide any functionality to work with HTTP cookies,
nor did it handle session state. Luckily for us, both are handled with Connect middle-
ware.

Chances are, one of your first JavaScript client applications was to create an HTTP
request cookie. The connect.parseCookie middleware provides the functionality that
allows us to access the cookie data on the server. It parses the cookie header, populating
req.cookies with the cookie/data pairs. Example 6-6 shows a simple web server that
extracts the cookie for a key value of username and writes a somewhat creepy but rele-
vant message to stdout.

Example 6-6. Accessing an HTTP request cookie, and using it for a console message

var connect = require('connect')
 , http = require('http');

Middleware | 115

var app = connect()
 .use(connect.logger('dev'))
 .use(connect.cookieParser())
 .use(function(req, res, next) {
 console.log('tracking ' + req.cookies.username);
 next();
 })
 .use(connect.static('/home/examples/public_html'));

http.createServer(app).listen(8124);
console.log('Server listening on port 8124');

I’ll get into the use of the anonymous function, and especially the purpose of next, in
the section “Custom Connect Middleware” on page 118. Focusing for now on con
nect.cookieParser, we see that this middleware intercepts the incoming request, pulls
the cookie data out of the header, and stores the data in the request object. The anony-
mous function then accesses the username data from the cookies object, outputting it
to the console.

To create an HTTP response cookie, we pair connect.parseCookie with connect.cook
ieSession, which provides secure session persistence. Text is passed as a string to the
connect.cookieParser function, providing a secret key for session data. The data is
added directly to the session object. To clear the session data, set the session object to
null.

Example 6-7 creates two functions—one to clear the session data, and one to output a
tracking message—that are used as middleware for incoming requests. They’re added
as middleware in addition to logger, parseCookie, cookieSession, and static. The user
is prompted for his or her username in the client page, which is then used to set a request
cookie. On the server, the username and the number of resources the person has ac-
cessed in the current session are persisted via an encrypted response cookie.

Example 6-7. Using a session cookie to track resource accesses

var connect = require('connect')
 , http = require('http');

// clear all session data
function clearSession(req, res, next) {
 if ('/clear' == req.url) {
 req.session = null;
 res.statusCode = 302;
 res.setHeader('Location', '/');
 res.end();
 } else {
 next();
 }
}

// track user
function trackUser(req, res, next) {

116 | Chapter 6: Routing Traffic, Serving Files, and Middleware

 req.session.ct = req.session.ct || 0;
 req.session.username = req.session.username || req.cookies.username;
 console.log(req.cookies.username + ' requested ' +
 req.session.ct++ + ' resources this session');
 next();
}

// cookie and session
var app = connect()
 .use(connect.logger('dev'))
 .use(connect.cookieParser('mumble'))
 .use(connect.cookieSession({key : 'tracking'}))
 .use(clearSession)
 .use(trackUser);

// static server
app.use(connect.static('/home/examples/public_html'));
// start server and listen
http.createServer(app).listen(8124);
console.log('Server listening on port 8124');

Figure 6-2 shows a web page accessed through the server application in Example 6-8.
The JavaScript console is open to display both cookies. Note that the response cookie,
unlike the request, is encrypted.

Figure 6-2. JavaScript console open in Chrome, displaying request and response cookies

Middleware | 117

The number of documents the user accesses is tracked, either until the user accesses
the /clear URL (in which case the session object is set to null) or closes the browser,
ending the session.

Example 6-7 also made use of a couple of custom middleware functions. In the next
(and final) section on Connect, we’ll discuss how these work with Connect, and how
to create a third-party middleware.

Custom Connect Middleware
In Example 6-7 in the previous section, we created two functions as Connect middle-
ware in order to process incoming requests before the final static server. The three
parameters passed to the functions are the HTTP request and response objects, and
next, a callback function. These three form the signature for a Connect middleware
function.

To get a closer look at how Connect middleware works, let’s examine one used in earlier
code, connect.favicon. This is nothing more than a simple function to either serve the
default favicon.ico or provide a custom path:

connect()
.use (connect.favicon('someotherloc/favicon.ico'))

The reason I cover connect.favicon, other than its usefulness, is that it’s one of the
simplest middleware, and therefore easy to reverse engineer.

The source code for connect.favicon, especially when compared with other source
codes, shows that all exported middleware return a function with the following mini-
mum signature or profile:

return function(req, res, next)

The next callback, passed as the last parameter to the function, is called if the middle-
ware does not process the current request, or doesn’t process it completely. The next
callback is also called if the middleware has an error, and an error object is returned
as the parameter, as shown in Example 6-8.

Example 6-8. The favicon Connect middleware

module.exports = function favicon(path, options){
 var options = options || {}
 , path = path || __dirname + '/../public/favicon.ico'
 , maxAge = options.maxAge || 86400000;

 return function favicon(req, res, next){
 if ('/favicon.ico' == req.url) {
 if (icon) {
 res.writeHead(200, icon.headers);
 res.end(icon.body);
 } else {
 fs.readFile(path, function(err, buf){
 if (err) return next(err);

118 | Chapter 6: Routing Traffic, Serving Files, and Middleware

 icon = {
 headers: {
 'Content-Type': 'image/x-icon'
 , 'Content-Length': buf.length
 , 'ETag': '"' + utils.md5(buf) + '"'
 , 'Cache-Control': 'public, max-age=' + (maxAge / 1000)
 },
 body: buf
 };
 res.writeHead(200, icon.headers);
 res.end(icon.body);
 });
 }
 } else {
 next();
 }
 };
};

The next callback is, of course, how the chained functions are called, in sequence. In
an incoming request, if the middleware can completely handle the request, such as the
request favicon.ico request, no further middleware are invoked. This is why you would
include the connect.favicon middleware before connect.logger in your applications—
to prevent requests for favicon.ico from cluttering up the logs:

http.createServer(connect()
 .use(connect.favicon('/public_html/favicon.ico'))
 .use(connect.logger())
 .use(connect.static(_dirname + '/public_html'))
).listen(8124);

You’ve seen how you can create a custom Connect middleware directly in the appli-
cation, and how a bundled Connect middleware looks, but how would you create a
third-party middleware that’s not going to be embedded directly in the application?

To create an external Connect middleware, create the module as you would any other
module, but make sure it has all the pieces that Connect requires—specifying the three
parameters (req, res, and next), and that it calls next if it doesn’t completely handle
the request.

Example 6-9 creates a Connect middleware that checks to see if the requested file exists
and that it is a file (not a directory). If the request is a directory, it returns a 403 status
code and a custom message. If the file doesn’t exist, it returns a 404 status code and,
again, a custom message. If neither happens, then it calls next to trigger the Connect
middleware into invoking the next function (in this case, connect.static).

Example 6-9. Creating a custom error handler middleware module

var fs = require('fs');

module.exports = function customHandler(path, missingmsg, directorymsg) {
 if (arguments.length < 3) throw new Error('missing parameter in customHandler');

Middleware | 119

 return function customHandler(req, res, next) {
 var pathname = path + req.url;
 console.log(pathname);
 fs.stat(pathname, function(err, stats) {
 if (err) {
 res.writeHead(404);
 res.write(missingmsg);
 res.end();
 } else if (!stats.isFile()) {
 res.writeHead(403);
 res.write(directorymsg);
 res.end();
 } else {
 next();
 }
 });
 }
}

The custom Connect middleware throws an error when one occurs, but if an error
occurs within the returned function, next is called with an error object:

next(err);

The following code shows how we can use this custom middleware in an application:

var connect = require('connect'),
 http = require('http'),
 fs = require('fs'),
 custom = require('./custom'),
 base = '/home/examples/public_html';

http.createServer(connect()
 .use(connect.favicon(base + '/favicon.ico'))
 .use(connect.logger())
 .use(custom(base + '/public_html', '404 File Not Found',
 '403 Directory Access Forbidden'))
 .use(connect.static(base))
).listen(8124);

Connect does have an errorHandler function, but it doesn’t serve the purpose we’re
trying to achieve. Rather, its purpose is to provide a formatted output of an exception.
You’ll see it in use with an Express application in Chapter 7.

There are several other bundled middleware, as well as a significant number of third-
party middleware you can use with Connect. In addition, Connect forms the middle-
ware layer for the Express application framework, discussed in Chapter 7. First, though,
let’s take a quick look at two other types of services necessary for many Node
applications: routers and proxies.

120 | Chapter 6: Routing Traffic, Serving Files, and Middleware

Routers
Routers accept something from one source and forward it to another. Typically what’s
forwarded is a data packet, but at the application level, it can also be a resource request.

If you’ve used Drupal or WordPress, you’ve seen a router in action. Without any URL
redirection, rather than your readers accessing an article with a URL like:

http://yourplace.org/article/your-title

they’d use:

http://yourplace.org/node/174

The latter URL is an example of a router in action. The URL provides information about
what the web application should do, in this case:

• Access the node database (node in this case being a Drupal node).

• Find and display the node identified by 174.

Another variation is:

http://yourplace.org/user/3

Again, access the user database, and find and display the user identified by 3.

In Node, the primary use for a router is to extract the information we need from a URI
—usually using some pattern—and to use that information to trigger the right process,
passing the extracted information to the process.

There are several routers available for Node developers, including one built into Ex-
press, but I’m going to demonstrate one of the more popular: Crossroads.

The primary Crossroads site is at http://millermedeiros.github.com/cross
roads.js/.

We can install the Crossroad router module with npm:

npm install crossroads

The module provides an extensive and well-documented API, but I’m going to focus
only on three different methods:

addRoute
Defines a new route pattern listener

parse
Parses a string and dispatches a match to the appropriate route

matched.add
Maps a route handler to a route match

Routers | 121

http://yourplace.org/article/your-title
http://yourplace.org/node/174
http://yourplace.org/user/3
http://millermedeiros.github.com/crossroads.js/
http://millermedeiros.github.com/crossroads.js/

We define a route using a regular expression that can contain curly brackets ({}) de-
limiting named variables that will be passed to the route handler function. For instance,
both of the following route patterns:

{type}/{id}
node/{id}

will match:

http://something.org/node/174

The difference is that a type parameter is passed to the route handler for the first pattern,
but not the second.

You can also use a colon (:) to denote optional segments. The following:

category/:type:/:id:

will match:

category/
category/tech/
category/history/143

To trigger the route handler, you parse the request:

parse(request);

If the request matches any of the existing route handler functions, that function is called.

In Example 6-10, I created a simple application that looks for any given category, and
an optional publication and publication item. It prints out to the console, the action
specified in the request.

Example 6-10. Using Crossroads to route URL request into specific actions

var crossroads = require('crossroads'),
 http = require('http');

crossroads.addRoute('/category/{type}/:pub:/:id:', function(type,pub,id) {
 if (!id && !pub) {
 console.log('Accessing all entries of category ' + type);
 return;
 } else if (!id) {
 console.log('Accessing all entries of category ' + type +
 ' and pub ' + pub);
 return;
 } else {
 console.log('Accessing item ' + id + ' of pub ' + pub +
 ' of category ' + type);
 }
});
http.createServer(function(req,res) {

 crossroads.parse(req.url);

122 | Chapter 6: Routing Traffic, Serving Files, and Middleware

http://something.org/node/174

 res.end('and that\'s all\n');
}).listen(8124);

The following requests:

http://examples.burningbird.net:8124/category/history
http://examples.burningbird.net:8124/category/history/journal
http://examples.burningbird.net:8124/category/history/journal/174

Generate the following console messages:

Accessing all entries of category history
Accessing all entries of category history and pub journal
Accessing item 174 of pub journal of category history

To match how something like Drupal works, with its combination of type of object
and identifier, Example 6-11 uses another Crossroads method, matched.add, to map a
route handler to a specific route.

Example 6-11. Mapping a route handler to a given route

var crossroads = require('crossroads'),
 http = require('http');

var typeRoute = crossroads.addRoute('/{type}/{id}');

function onTypeAccess(type,id) {
 console.log('access ' + type + ' ' + id);
};

typeRoute.matched.add(onTypeAccess);

http.createServer(function(req,res) {

 crossroads.parse(req.url);
 res.end('processing');
}).listen(8124);

This application would match either of the following:

/node/174
/user/3

Routing is typically used with database access to generate the returned page content.
It can also be used with middleware or framework modules in order to process incoming
requests, though these applications may also provide their own routing software. I’ll
demonstrate using Crossroads with Connect and a proxy in the next section.

Proxies
A proxy is a way of routing requests from several different sources through one server
for whatever reason: caching, security, even obscuring the originator of the request. As
an example, publicly accessible proxies have been used to restrict some people’s access

Proxies | 123

to certain web content by making it seem that a request originates from someplace
other than its actual origin. This type of proxy is also called a forward proxy.

A reverse proxy is a way of controlling how requests are sent to a server. As an example,
you may have five servers, but you don’t want people directly accessing four of them.
Instead, you direct all traffic through the fifth server, which proxies the requests to the
other servers. Reverse proxies can also be used for load balancing, and to improve the
overall performance of a system by caching requests as they are made.

Another proxy use is to expose a local service to a cloud-based service.
An example of this type of proxy is reddish-proxy, which exposes a local
Redis instance to the new Reddish service at https://reddi.sh/.

In Node, the most popular proxy module is http-proxy. This module provides all of
the proxy uses I could think of, and some I couldn’t. It provides forward and reverse
proxying, can be used with WebSockets, supports HTTPS, and can incorporate latency.
It’s used at the popular nodejitsu.com website, so, as the creators claim, it’s battle
hardened.

The http-proxy GitHub page is at https://github.com/nodejitsu/node-http
-proxy.

Install http-proxy using npm:

npm install http-proxy

The simplest use of http-proxy is to create a standalone proxy server that listens for
incoming requests on one port, and proxies them to a web server listening on another:

var http = require('http'),
 httpProxy = require('http-proxy');

httpProxy.createServer(8124, 'localhost').listen(8000);

http.createServer(function (req, res) {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.write('request successfully proxied!' + '\n' + JSON.stringify(req.headers, true,
 2));
 res.end();
}).listen(8124);

All this simple application does is listen for requests on port 8000 and proxy them to
the HTTP server listening on port 8124.

The output to the browser from running this application on my system was:

124 | Chapter 6: Routing Traffic, Serving Files, and Middleware

https://reddi.sh/
http://nodejitsu.com
https://github.com/nodejitsu/node-http-proxy
https://github.com/nodejitsu/node-http-proxy

request successfully proxied!
{
 "host": "examples.burningbird.net:8000",
 "connection": "keep-alive",
 "user-agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11
 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "accept-encoding": "gzip,deflate,sdch",
 "accept-language": "en-US,en;q=0.8",
 "accept-charset": "ISO-8859-1,utf-8;q=0.7,*;q=0.3",
 "cookie": "username=Shelley",
 "x-forwarded-for": "99.190.71.234",
 "x-forwarded-port": "54344",
 "x-forwarded-proto": "http"
}

The bits related to the use of the proxy are in bold text in the output. Notice the request
cookie still hanging around from an earlier example?

You can also use http-proxy from the command line. In the bin directory, there is a
command-line application, which takes port, target, a configuration file, a flag to in-
dicate silencing the proxy log output, or -h (for help). To listen for requests in port
8000 and proxy to port 8124 on the localhost, use:

 ./node-http-proxy --port 8000 --target localhost:8124

It can’t get much simpler than this. If you want to run the proxy in the background,
attach the ampersand (&) to the end.

I’ll demonstrate some of the http-proxy capabilities with WebSockets and HTTPS later
in the book, but for now, we’ll pull together the technologies demonstrated in this
chapter—a static file server, the Connect middleware, the Crossroads router, and the
http-proxy proxy—to create one last example, so you can try a working application
that combines all these pieces.

In Example 6-12, I’m using the http-proxy to test for a dynamic incoming request (the
request URL starts with /node/). If a match is found, the router proxies the request to
one server, which uses the Crossroads router to parse out the relevant data. If the re-
quest isn’t for a dynamic resource, the proxy then routes the request to a static file
server that’s utilizing several Connect middleware, including logger, favicon, and
static.

Example 6-12. Combining Connect, Crossroads, and http-proxy to handle dynamic and static content
requests

var connect = require('connect'),
 http = require('http'),
 fs = require('fs'),
 crossroads = require('crossroads'),
 httpProxy = require('http-proxy'),
 base = '/home/examples/public_html';

// create the proxy that listens for all requests

Proxies | 125

httpProxy.createServer(function(req,res,proxy) {

 if (req.url.match(/^\/node\//))
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 8000
 });
 else
 proxy.proxyRequest(req,res, {
 host: 'localhost',
 port: 8124
 });
}).listen(9000);

// add route for request for dynamic resource
crossroads.addRoute('/node/{id}/', function(id) {
 console.log('accessed node ' + id);
});

// dynamic file server
http.createServer(function(req,res) {
 crossroads.parse(req.url);
 res.end('that\'s all!');
}).listen(8000);

// static file server
http.createServer(connect()
 .use(connect.favicon())
 .use(connect.logger('dev'))
 .use(connect.static(base))
).listen(8124);

Trying the server out with the following URL requests:

/node/345
/example1.html
/node/800
/html5media/chapter2/example14.html

results in the following console entries, as well as the proper response being returned
to the browser:

accessed node 345
GET /example1.html 304 3ms
GET /phoenix5a.png 304 1ms
accessed node 800
GET /html5media/chapter2/example14.html 304 1ms
GET /html5media/chapter2/bigbuckposter.jpg 304 1ms

I wouldn’t say we’re halfway to our own CMS (content management system), but we’re
getting the tools we need if we wanted to build one. But then, why build our own when
we can use Node-enabled frameworks (covered in the next chapter)?

126 | Chapter 6: Routing Traffic, Serving Files, and Middleware

CHAPTER 7

The Express Framework

Framework software provides infrastructure support that allows us to create websites
and applications more quickly. It provides a skeleton on which to build, handling many
of the mundane and ubiquitous aspects of development so we can focus on creating
the functionality unique to our application or site. It also provides cohesiveness to our
code, which can make the code easier to manage and maintain.

The terms frameworks and libraries have been used interchangeably, because both
provide reusable functionality that can be utilized by developers in a variety of appli-
cations. They both offer discrete capabilities as well, but they differ in that frameworks
usually also provide an infrastructure that can impact the overall design of your
application.

There are some very sound frameworks in Node.js, including Connect (covered in
Chapter 6), though I see Connect more as middleware than a framework. Two Node
frameworks that stand out—because of support, capability, and popularity—are Ex-
press and Geddy. If you ask people about the differences between the two, they’ll say
Express is more Sinatra-like, while Geddy is more like Rails. What this means in non-
Ruby terms is that Geddy is MVC (Model-View-Controller)–based, while Express is,
well, more RESTful (more on what that means later in the chapter).

There’s also a new kid in town, Flatiron, which previously existed as independent
components but is now pulled together into a comprehensive product. Another frame-
work popular at the node-toolbox website is Ember.js, formerly known as SproutCore
2.0. This in addition to CoreJS, which is also MVC-based.

I debated how much to cover of each in this chapter, and knew I’d have a hard time
covering one framework in a single chapter, much less several, so I decided to focus on
Express. Though the other frameworks are excellent, I like the openness and extensi-
bility of Express, and it is, currently, the most popular of the frameworks.

127

The Geddy.js site is at http://geddyjs.org/. Flatiron can be found at http:
//flatironjs.org/, the Ember.js Github page is at https://github.com/em
berjs/ember.js, and the primary CoreJS site is at http://echo.nextapp.com/
site/corejs. The Express GitHub page is at https://github.com/visionme
dia/express. You can find the Express documentation at http://expressjs
.com/.

Express: Up and Running
We can easily install Express with npm:

npm install express

To get a feel for Express, the best first step is to use the command-line version of the
tool to generate an application. Since you’re never sure what an application will do,
you’ll want to run this application in a clean directory—not a directory where you have
all sorts of valuable stuff.

I named my new application site, which is simple enough:

express site

The application generates several directories:

 create : site
 create : site/package.json
 create : site/app.js
 create : site/public
 create : site/public/javascripts
 create : site/public/images
 create : site/routes
 create : site/routes/index.js
 create : site/public/stylesheets
 create : site/public/stylesheets/style.css
 create : site/views
 create : site/views/layout.jade
 create : site/views/index.jade

It also provides a helpful message to change to the site directory and run npm install:

npm install -d

Once the new application is installed, run the generated app.js file with node:

node app.js

It starts a server at port 3000. Accessing the application shows a web page with the
words:

Express

Welcome to Express

You’ve created your first Express application. Now let’s see what we need to do to make
it do something more interesting.

128 | Chapter 7: The Express Framework

http://geddyjs.org/
http://flatironjs.org/
http://flatironjs.org/
https://github.com/emberjs/ember.js
https://github.com/emberjs/ember.js
http://echo.nextapp.com/site/corejs
http://echo.nextapp.com/site/corejs
https://github.com/visionmedia/express
https://github.com/visionmedia/express
http://expressjs.com/
http://expressjs.com/

The app.js File in More Detail
Example 7-1 shows the source code for the app.js file we just ran.

Example 7-1. Source code for the app.js file

/*
 * Module dependencies.
 */

var express = require('express')
 , routes = require('./routes')
 , http = require('http');

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

app.get('/', routes.index);

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

From the top, the application includes three modules: Express, Node’s HTTP, and a
module just generated, routes. In the routes subdirectory, an index.js file has the fol-
lowing code:

/*
 * GET home page.
 */

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

A little digging in the code shows us that the Express response object’s render method
renders a given view with a set of options—in this case, a title of “Express.” I’ll cover
this more later in this chapter, in the section “Routing” on page 134.

The app.js File in More Detail | 129

Now let’s return to app.js. After we’ve included all the necessary modules, we
create an Express object instance, and then configure it with a set of options via the
configure method. (For more information on configure, see the upcoming sidebar
“Setting the Application Mode” on page 130.) An optional first parameter to
configure is a string identifying whether the application is of a specific environment
(such as development or production). When an environment is not provided, the appli-
cation is run in every environment. A second call to configure in app.js is specific only
for the development environment. You can call configure for every possible environ-
ment, if you wish. The one that matches the environment is the one that will be
processed.

Setting the Application Mode
In Express applications, we can define which middleware, settings, and options to apply
for any given mode using the configure method. In the following example, the method
applies the enclosed settings and options to all modes:

app.config(function() { ... }

while the next configure call ensures that the settings apply only in a development
environment:

app.config('development', function() { ... }

This mode can be any that you designate, and is controlled by an environmental vari-
able, NODE_ENV:

$ export NODE_ENV=production

or:

$ export NODE_ENV=ourproduction

You can use any term you want. By default, the environment is development.

To ensure that your application always runs in a specific mode, add a NODE_ENV export
to the user profile file.

The second function to configure is an anonymous function enclosing several middle-
ware references. Some of this is familiar (for instance, the use method) from our work
with the Connect middleware in Chapter 6; this is not unexpected, since the same
person, TJ Holowaychuk, is the primary author of both applications. What isn’t fa-
miliar are the two app.set method calls.

The app.set method is used to define various settings, such as the location for appli-
cation views:

 app.set('views', __dirname + '/views');

and the view engine (in this case, Jade):

 app.set('view engine', 'jade');

130 | Chapter 7: The Express Framework

What follows in app.js is a call to the Express encapsulated favicon, logger, and
static file server middleware, which should need no further explanation:

 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));

We can also call the middleware as methods when we create the server:

var app = express.createServer(
 express.logger(),
 express.bodyParts()
);

It doesn’t matter which approach you use.

The next three middleware/framework components included in the generated appli-
cation are:

 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);

The bodyParser middleware, like the other middleware, comes directly from Connect.
All Express does is re-export it.

I covered logger, favicon, and static in the previous chapter, but not bodyParse. This
middleware parses the incoming request body, converting it into request object prop-
erties. The methodOverride option also comes to Express via Connect, and allows Ex-
press applications to emulate full REST capability via a hidden form field named
_method.

Full REST (Representational State Transfer) support means support for
HTTP PUT and DELETE, as well as GET and POST. We’ll discuss this more
in the upcoming section “Routing and HTTP Verbs” on page 139.

The last configuration item is app.router. This optional middleware contains all the
defined routes and performs the lookup for any given route. If omitted, the first call to
app.get—app.post, etc.—mounts the routes instead.

Just as with Connect, the order of middleware is important. The favicon middleware
is called before logger, because we don’t want favicon.ico accesses cluttering the log.
The static middleware is included before bodyParser and methodOverride, because
neither of these is useful with the static pages—form processing occurs dynamically in
the Express application, not via a static page.

There’s more on Express/Connect in the section “A Closer Look at the
Express/Connect Partnership” on page 133, later in the chapter.

The app.js File in More Detail | 131

The second call to configure, specific to development mode, adds support for the Ex-
press errorHandler. I’ll cover it and other error handling techniques next.

Error Handling
Express provides its own error handling, as well as access to the Connect errorHandler.

The Connect errorHandler provides a way of handling exceptions. It’s a development
tool that gives us a better idea of what’s happening when an exception occurs. You can
include it like you’d include other middleware:

app.use(express.errorHandler());

You can direct exceptions to stderr using the dumpExceptions flag:

app.use(express.errorHandler({dumpExceptions : true }));

You can also generate HTML for an exception using the showStack flag:

app.use(express.errorHandler({showStack : true; dumpExceptions : true}));

To reiterate: this type of error handling is for development only—we definitely don’t
want our users to see exceptions. We do, however, want to provide more effective
handling for when pages aren’t found, or when a user tries to access a restricted
subdirectory.

One approach we can use is to add a custom anonymous function as the last middleware
in the middleware list. If none of the other middleware can process the request, it should
fall gracefully to this last function:

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(function(req, res, next){
 res.send('Sorry ' + req.url + ' does not exist');
 });
});

In the next chapter, we’ll fine-tune the response by using a template to generate a nice
404 page.

We can use another form of error handling to capture thrown errors and process them
accordingly. In the Express documentation, this type of error handler is named
app.error, but it didn’t seem to exist at the time this book was written. However, the
function signature does work—a function with four parameters: error, request,
response, and next.

I added a second error handler middleware function and adjusted the 404 middleware
function to throw an error rather than process the error directly:

132 | Chapter 7: The Express Framework

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(function(req, res, next){
 throw new Error(req.url + ' not found');
 });
 app.use(function(err, req, res, next) {
 console.log(err);
 res.send(err.message);
 });
});

Now I can process the 404 error, as well as other errors, within the same function. And
again, I can use templates to generate a more attractive page.

A Closer Look at the Express/Connect Partnership
Throughout this chapter so far, we’ve seen the Express/Connect partnership in action.
It’s through Connect that Express gets much of its basic functionality.

For instance, you can use Connect’s session support middleware—cookieParser, cook
ieSession, and session—to provide session support. You just have to remember to use
the Express version of the middleware:

 app.use(express.cookieParser('mumble'))
 app.use(express.cookieSession({key : 'tracking'}))

You can also enable static caching with the staticCache middleware:

 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.staticCache());
 app.use(express.static(__dirname + '/public'));

By default, the cache maintains a maximum of 128 objects, with a maximum of
256 KB each, for a total of about 32 MB. You can adjust these with the options
maxObjects and maxLength:

 app.use(express.staticCache({maxObjects: 100, maxLength: 512}));

Prettify a directory listing with directory:

 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.staticCache({maxObjects: 100, maxLength: 512}));
 app.use(express.directory(__dirname + '/public'));
 app.use(express.static(__dirname + '/public'));

If you’re using express.directory with routing, though, make sure that the directory
middleware follows the app.router middleware, or it could conflict with the routing.

A Closer Look at the Express/Connect Partnership | 133

A good rule of thumb: place express.directory after the other middleware, but before
any error handling.

The express.directory options include whether to display hidden files (false by de-
fault), whether to display icons (false by default), and a filter.

You can also use third-party Connect middleware with Express. Use
caution, though, when combining it with routing.

Now it’s time to return to the key component of Express: routing.

Routing
The core of all the Node frameworks—in fact, many modern frameworks—is the con-
cept of routing. I covered a standalone routing module in Chapter 6, and demonstrated
how you can use it to extract a service request from a URL.

Express routing is managed using the HTTP verbs GET, PUT, DELETE, and POST. The
methods are named accordingly, such as app.get for GET and app.post for POST. In the
generated application, shown in Example 7-1, app.get is used to access the application
root ('/'), and is passed a request listener—in this instance, the routes index function
—to process the data request.

The routes.index function is simple:

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

It makes a call to the render method on the resource object. The render method takes
the name of file that provides the template. Since the application has already identified
the view engine:

 app.set('view engine', 'jade');

it’s not necessary to provide an extension for the file. However, you could also use:

res.render('index.jade', { title: 'Express' });

You can find the template file in another generated directory named views. It has two
files: index.jade and layout.jade. index.jade is the file the template file referenced in the
render method, and has the following contents:

extends layout

block content
 h1= title
 p Welcome to #{title}

134 | Chapter 7: The Express Framework

The content of the document is an H1 element with the title, and a paragraph element
with a greeting to the title value. The layout.jade template provides the overall layout
for the document, including a title and link in the head element, and the body contents
in the body element:

!!!
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

The index.jade file is what provides the content for the body defined in layout.jade.

I cover the use of Jade templates and CSS with Express applications in
Chapter 8.

To recap what’s happening in this application:

1. The main Express application uses app.get to associate a request listener function
(routes.index) with an HTTP GET request.

2. The routes.index function calls res.render to render the response to the GET
request.

3. The res.render function invokes the application object’s render function.

4. The application render function renders the specified view, with whatever op-
tions—in this case, the title.

5. The rendered content is then written to the response object and back to the user’s
browser.

The last step in the process is when the generated content is written back to the response
to the browser. Snooping around the source code shows us that the render method
takes a third argument, a callback function that’s called with any error and the gener-
ated text.

Wanting to take a closer look at the generated content, I modified the route.index file
to add in the function and intercept the generated text. I output the text to the console.
Since I’m overriding the default functionality, I also sent the generated text back to the
browser using res.write—just like we have with other applications in previous chap-
ters—and then called res.end to signal the finish:

exports.index = function(req, res){
 res.render('index', { title: 'Express' }, function(err, stuff) {
 if (!err) {
 console.log(stuff);
 res.write(stuff);

Routing | 135

 res.end();
 }
 });
};

Just as we hoped, the application now writes the content to the console as well as the
browser. This just demonstrates that, though we’re using an unfamiliar framework, it’s
all based on Node and functionality we’ve used previously. Of course, since this is a
framework, we know there has to be a better method than using res.write and
res.end. There is, and it’s discussed in the next section, which looks a little more closely
at routing paths.

Routing Path
The route, or route path, given in Example 7-1 is just a simple / (forward slash) signi-
fying the root address. Express compiles all routes to a regular expression object inter-
nally, so you can use strings with special characters, or just use regular expressions
directly in the path strings.

To demonstrate, I created a bare-bones routing path application in Example 7-2 that
listens for three different routes. If a request is made to the server for one of these routes,
the parameters from the request are returned to the sender using the Express response
object’s send method.

Example 7-2. Simple application to test different routing path patterns

var express = require('express')
 , http = require('http');

var app = express();

app.configure(function(){
});

app.get(/^\/node?(?:\/(\d+)(?:\.\.(\d+))?)?/, function(req, res){
 console.log(req.params);
 res.send(req.params);
});

app.get('/content/*',function(req,res) {
 res.send(req.params);
});

app.get("/products/:id/:operation?", function(req,res) {
 console.log(req);
 res.send(req.params.operation + ' ' + req.params.id);
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

136 | Chapter 7: The Express Framework

We’re not doing any routing to views or handling any static content, so we didn’t need
to provide middleware in the app.configure method. However, we do need to call the
app.configure method if we want to gracefully handle requests that don’t match any
of the routes. The application is also using the default environment (development).

The first of the app.get method calls is using a regular expression for the path. This
regular expression is adapted from one provided in the Express Guide, and listens for
any request for a node. If the request also provides a unique identifier or range of iden-
tifiers, this is captured in the request object’s params array, which is sent back as a
response. The following requests:

node
nodes
 /node/566
/node/1..10
/node/50..100/something

return the following params array values:

[null, null]
[null, null]
["566", null]
["1", "10"]
["50", "100"]

The regular expression is looking for a single identifier or a range of identifiers, given
as two values with a range indicator (..) between them. Anything after the identifier
or range is ignored. If no identifier or range is provided, the parameters are null.

The code to process the request doesn’t use the underlying HTTP response object’s
write and end methods to send the parameters back to the requester; instead, it uses
the Express send method. The send method determines the proper headers for the re-
sponse (given the data type of what’s being sent) and then sends the content using the
underlying HTTP end method.

The next app.get is using a string to define the routing path pattern. In this case, we’re
looking for any content item. This pattern will match anything that begins with /con-
tent/. The following requests:

/content/156
/content/this_is_a_story
/content/apples/oranges

result in the following params values:

["156"]
["this_is_a_story"]
["apples/oranges"]

The asterisk (*) is liberal in what it accepts, and everything after content/ is returned.

The last app.get method is looking for a product request. If a product identifier is given,
it can be accessed directly via params.id. If an operation is given, it can be accessed

Routing | 137

directly via params.operation. Any combination of the two values is allowed, except not
providing at least one identifier or one operation.

The following URLs:

/products/laptopJK3444445/edit
/products/fordfocus/add
/products/add
/products/tablet89/delete
/products/

result in the following returned values:

edit laptopJK3444445
add fordfocus
undefined add
delete tablet89
Cannot GET /products/

The application outputs the request object to the console. When running the applica-
tion, I directed the output to an output.txt file so I could examine the request object
more closely:

node app.js > output.txt

The request object is a socket, of course, and we’ll recognize much of the object from
our previous work exploring the Node HTTP request object. What we’re mainly in-
terested in is the route object added via Express. Following is the output for the
route object for one of the requests:

 route:
 { path: '/products/:id/:operation?',
 method: 'get',
 callbacks: [[Function]],
 keys: [[Object], [Object]],
 regexp: /^\/products\/(?:([^\/]+?))(?:\/([^\/]+?))?\/?$/i,
 params: [id: 'laptopJK3444445', operation: 'edit'] },

Note the generated regular expression object, which converts my use of the optional
indicator (:) in the path string into something meaningful for the underlying JavaScript
engine (thankfully, too, since I’m lousy at regular expressions).

Now that we have a better idea of how the routing paths work, let’s look more closely
at the use of the HTTP verbs.

Any request that doesn’t match one of the three given path patterns just
generates a generic 404 response: Cannot GET /whatever.

138 | Chapter 7: The Express Framework

Routing and HTTP Verbs
In the previous examples, we used app.get to process incoming requests. This method
is based on the HTTP GET method and is useful if we’re looking for data, but not if we
want to process new incoming data or edit or delete existing data. We need to make
use of the other HTTP verbs to create an application that maintains as well as retrieves
data. In other words, we need to make our application RESTful.

As noted earlier, REST means Representational State Transfer. REST-
ful is a term used to describe any web application that applies HTTP
and REST principles: directory-structured URLs, statelessness, data
transferred in an Internet media type (such as JSON), and the use of
HTTP methods (GET, POST, DELETE, and PUT).

Let’s say our application is managing that most infamous of products, the widget. To
create a new widget, we’ll need to create a web page providing a form that gets the
information about the new widget. We can generate this form with the application,
and I’ll demonstrate this approach in Chapter 8, but for now we’ll use a static web
page, shown in Example 7-3.

Example 7-3. Sample HTML form to post widget data to the Express application

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Widgets</title>
</head>
<body>
<form method="POST" action="/widgets/add"
enctype="application/x-www-form-urlencoded">

 <p>Widget name: <input type="text" name="widgetname" id="widgetname"
size="25" required/></p>

 <p>Widget Price: <input type="text"
pattern="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
name="widgetprice" id="widgetprice" size="25" required/></p>

 <p>Widget Description:
<textarea name="widgetdesc" id="widgetdesc"
cols="20" rows="5">No Description</textarea>
 <p>

 <input type="submit" name="submit" id="submit" value="Submit"/>
 <input type="reset" name="reset" id="reset" value="Reset"/>
 </p>
 </form>
</body>

Routing | 139

The page takes advantage of the new HTML5 attributes required and pattern to pro-
vide validation of data. Of course, this works only with browsers that support HTML5,
but for now, I’ll assume you’re using a modern HTML5-capable browser.

The widget form requires a widget name, price (with an associated regular expression
to validate the data structure in the pattern attribute), and description. Browser-based
validation should ensure we get the three values, and that the price is properly formatted
as US currency.

In the Express application, we’re just going to persist new widgets in memory, as we
want to focus purely on the Express technology at this time. As each new widget is
posted to the application, it’s added to an array of widgets via the app.post method.
Each widget can be accessed by its application-generated identifier via the app.get
method. Example 7-4 shows the entire application.

Example 7-4. Express application to add and display widgets

var express = require('express')
 , http = require('http')
 , app = express();

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(app.router);
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

// in memory data store
var widgets = [
 { id : 1,
 name : 'My Special Widget',
 price : 100.00,
 descr : 'A widget beyond price'
 }
]

// add widget
app.post('/widgets/add', function(req, res) {
 var indx = widgets.length + 1;
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 descr : req.body.widgetdesc };
 console.log('added ' + widgets[indx-1]);
 res.send('Widget ' + req.body.widgetname + ' added with id ' + indx);
});

140 | Chapter 7: The Express Framework

// show widget
app.get('/widgets/:id', function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 if (!widgets[indx])
 res.send('There is no widget with id of ' + req.params.id);
 else
 res.send(widgets[indx]);
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

The first widget is seeded into the widget array, so we have existing data if we want to
immediately query for a widget without adding one first. Note the conditional test in
app.get to respond to a request for a nonexistent or removed widget.

Running the application (example4.js in the examples), and accessing the application
using / or /index.html (or /example3.html, in the examples) serves up the static HTML
page with the form. Submitting the form generates a page displaying a message about
the widget being added, as well as its identifier. We can then use the identifier to display
the widget—in effect, a dump of the widget object instance:

http://whateverdomain.com:3000/widgets/2

It works...but there’s a problem with this simple application.

First, it’s easy to make a typo in the widget fields. You can’t put in data formatted as
anything other than currency in the price field, but you can put in the wrong price. You
can also easily type in the wrong name or description. What we need is a way to update
a widget, as well as a way to remove a widget we no longer need.

The application needs to incorporate support for two other RESTful verbs: PUT and
DELETE. PUT is used to update the widget, while DELETE is used to remove it.

To update the widget, we’ll need a form that comes prepopulated with the widget data
in order to edit it. To delete the widget, we’ll need a form that confirms whether we
truly want to delete the widget. In an application, these are generated dynamically using
a template, but for now, since we’re focusing on the HTTP verbs, I created static web
pages that edit and then delete the already created widget, widget 1.

The form for updating widget 1 is shown in the following code. Other than being
populated with the information for widget 1, there is just one other difference between
this form and the form to add a new widget: the addition of a hidden field named
_method, shown in bold text:

<form method="POST" action="/widgets/1/update"
enctype="application/x-www-form-urlencoded">

 <p>Widget name: <input type="text" name="widgetname"
 id="widgetname" size="25" value="My Special Widget" required/></p>

Routing | 141

 <p>Widget Price: <input type="text"
 pattern="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 name="widgetprice" id="widgetprice" size="25" value="100.00" required/></p>

 <p>Widget Description:

 <textarea name="widgetdesc" id="widgetdesc" cols="20"
 rows="5">A widget beyond price</textarea>
 <p>

 <input type="hidden" value="put" name="_method" />

 <input type="submit" name="submit" id="submit" value="Submit"/>
 <input type="reset" name="reset" id="reset" value="Reset"/>
 </p>
 </form>

Since PUT and DELETE are not supported in the form method attribute, we have to add
them using a hidden field with a specific name, _method, and give them a value of either
put, for PUT, or delete for DELETE.

The form to delete the widget is simple: it contains the hidden _method field, and a
button to confirm the deletion of widget 1:

<p>Are you sure you want to delete Widget 1?</p>
<form method="POST" action="/widgets/1/delete"
 enctype="application/x-www-form-urlencoded">

 <input type="hidden" value="delete" name="_method" />

 <p>
 <input type="submit" name="submit" id="submit" value="Delete Widget 1"/>
 </p>
</form>

To ensure that the HTTP verbs are handled properly, we need to add another middle-
ware, express.methodOverride, following express.bodyParser in the app.configure
method call. The express.methodOverride middleware alters the HTTP method to
whatever is given as value in this hidden field:

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
});

Next, we’ll need to add functionality to process these two new verbs. The update re-
quest replaces the widget object’s contents with the new contents, while the delete
request deletes the widget array entry in place, deliberately leaving a null value since
we do not want to reorder the array because of the widget removal.

142 | Chapter 7: The Express Framework

To complete our widget application, we’ll also add in an index page for accessing
widgets without any identifier or operation. All the index page does is list all the widgets
currently in the memory store.

Example 7-5 shows the complete widget application with all the new functionality
shown in bold text.

Example 7-5. Widget application, modified to include the ability to edit and delete a widget and list
all widgets

var express = require('express')
 , http = require('http')
 , app = express();

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
});

app.configure('development', function(){
 app.use(express.errorHandler());
});
// in memory data store
var widgets = [
 { id : 1,
 name : 'My Special Widget',
 price : 100.00,
 descr : 'A widget beyond price'
 }
]

// index for /widgets/
app.get('/widgets', function(req, res) {
 res.send(widgets);
});

// show a specific widget
app.get('/widgets/:id', function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 if (!widgets[indx])
 res.send('There is no widget with id of ' + req.params.id);
 else
 res.send(widgets[indx]);
});

// add a widget
app.post('/widgets/add', function(req, res) {
 var indx = widgets.length + 1;
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,

Routing | 143

 price : parseFloat(req.body.widgetprice),
 descr : req.body.widgetdesc };
 console.log(widgets[indx-1]);
 res.send('Widget ' + req.body.widgetname + ' added with id ' + indx);
});

// delete a widget
app.del('/widgets/:id/delete', function(req,res) {
 var indx = req.params.id - 1;
 delete widgets[indx];

 console.log('deleted ' + req.params.id);
 res.send('deleted ' + req.params.id);
});

// update/edit a widget
app.put('/widgets/:id/update', function(req,res) {
 var indx = parseInt(req.params.id) - 1;
 widgets[indx] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 descr : req.body.widgetdesc };
 console.log(widgets[indx]);
 res.send ('Updated ' + req.params.id);
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

After running the application, I add a new widget, list the widgets out, update widget
1’s price, delete the widget, and then list the widgets out again. The console.log mes-
sages for this activity are:

Express server listening on port 3000
{ id: 2,
 name: 'This is my Baby',
 price: 4.55,
 descr: 'baby widget' }
POST /widgets/add 200 4ms
GET /widgets 200 2ms
GET /edit.html 304 2ms
{ id: 0,
 name: 'My Special Widget',
 price: 200,
 descr: 'A widget beyond price' }
PUT /widgets/1/update 200 2ms
GET /del.html 304 2ms
deleted 1
DELETE /widgets/1/delete 200 3ms
GET /widgets 200 2ms

Notice the HTTP PUT and DELETE verbs in bold text in the output. When I list the widgets
out the second time, the values returned are:

144 | Chapter 7: The Express Framework

[
 null,
 {
 "id": 2,
 "name": "This is my Baby",
 "price": 4.55,
 "descr": "baby widget"
 }
]

We now have a RESTful Express application. But we also have another problem.

If our application managed only one object, it might be OK to cram all the functionality
into one file. Most applications, however, manage more than one object, and the func-
tionality for all of those applications isn’t as simple as our little example. What we need
is to convert this RESTful Express application into a RESTful MVC Express application.

Cue the MVC
Handling all the functionality your application needs in one file would work for a very
tiny application, but most applications need better organization. MVC is a popular
software architecture, and we want to be able to incorporate the advantages of this
architecture and still be able to use Express. This effort isn’t as intimidating as it seems,
because we have existing functionality we can emulate: Ruby on Rails.

Ruby on Rails has inspired much of the fundamental nature of Node, providing an
underlying design we can use to incorporate support for MVC into our Express appli-
cation. Express has already incorporated the use of routes (fundamental to Rails), so
we’re halfway there. Now we need to provide the second component—the separation
of model, view, and controller. For the controller component, we’re going to need a
set of defined actions for each object we maintain.

Rails supports several different actions that map a route (verb and path) to a data action.
The mapping is based on another concept, CRUD (create, read, update, and delete—
the four fundamental persistent storage functions). The Rails website provides a guide
that supplies an excellent table showing the mapping we need to create in our appli-
cation. I extrapolated from the Rails table to create Table 7-1, which shows the mapping
for maintaining widgets.

Table 7-1. REST/route/CRUD mapping for maintaining widgets

HTTP verb Path Action Used for

GET /widgets index Displaying widgets

GET /widgets/new new Returning the HTML form for creating a new widget

POST /widgets create Creating a new widget

GET /widgets/:id show Displaying a specific widget

GET /widgets/:id/edit edit Returning the HTML for editing a specific widget

Cue the MVC | 145

HTTP verb Path Action Used for

PUT /widgets/:id update Updating a specific widget

DELETE /widgets/:id destroy Deleting a specific widget

We’re already there for most of the functionality—we just need to clean it up a bit.

Just a reminder: you also might have issues with existing middleware
when implementing the MVC change. For instance, the use of the direc
tory middleware, which provides a pretty directory printout, conflicts
with the create action, since they work on the same route. Solution?
Place the express.directory middleware after the app.router in the
configure method call.

First, we’re going to create a controllers subdirectory and create a new file in it named
widgets.js. Then we’re going to copy all of our apt.get and apt.put method calls into
this new file.

Next, we need to convert the method calls into the appropriate MVC format. This
means converting the routing method call into a function for each, which is then ex-
ported. For instance, the function to create a new widget:

// add a widget
app.post('/widgets/add', function(req, res) {
 var indx = widgets.length + 1;
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice)};
 console.log(widgets[indx-1]);
 res.send('Widget ' + req.body.widgetname + ' added with id ' + indx);
});

is converted into widgets.create:

// add a widget
exports.create = function(req, res) {
 var indx = widgets.length + 1;
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice)},
 console.log(widgets[indx-1]);
 res.send('Widget ' + req.body.widgetname + ' added with id ' + indx);
};

Each function still receives the request and resource object. The only difference is that
there isn’t a direct route-to-function mapping.

Example 7-6 shows the new widgets.js file in the controllers subdirectory. Two of the
methods, new and edit, are placeholders for now, to be addressed in Chapter 8. We’re

146 | Chapter 7: The Express Framework

still using an in-memory data store, and I simplified the widget object, removing the
description field to make the application easier for testing.

Example 7-6. The widgets controller

var widgets = [
 { id : 1,
 name : "The Great Widget",
 price : 1000.00
 }
]

// index listing of widgets at /widgets/
exports.index = function(req, res) {
 res.send(widgets);
};

// display new widget form
exports.new = function(req, res) {
 res.send('displaying new widget form');
};

// add a widget
exports.create = function(req, res) {
 var indx = widgets.length + 1;
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice) };
 console.log(widgets[indx-1]);
 res.send('Widget ' + req.body.widgetname + ' added with id ' + indx);
};

// show a widget
exports.show = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 if (!widgets[indx])
 res.send('There is no widget with id of ' + req.params.id);
 else
 res.send(widgets[indx]);
};

// delete a widget
exports.destroy = function(req, res) {
 var indx = req.params.id - 1;
 delete widgets[indx];

 console.log('deleted ' + req.params.id);
 res.send('deleted ' + req.params.id);
};

// display edit form
exports.edit = function(req, res) {
 res.send('displaying edit form');
};

Cue the MVC | 147

// update a widget
exports.update = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 widgets[indx] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice)}
 console.log(widgets[indx]);
 res.send ('Updated ' + req.params.id);
};

Notice that edit and new are both GET methods, as their only purpose is to serve a form.
It’s the associated create and update methods that actually change the data: the former
is served as POST, the latter as PUT.

To map the routes to the new functions, I created a second module, maproutecontrol
ler, with one exported function, mapRoute. It has two parameters—the Express app
object and a prefix representing the mapped controller object (in this case, widgets).
It uses the prefix to access the widgets controller object, and then maps the methods it
knows are in this object (because the object is a controller and has a fixed set of required
methods) to the appropriate route. Example 7-7 has the code for this new module.

Example 7-7. Function to map routes to controller object methods

exports.mapRoute = function(app, prefix) {

 prefix = '/' + prefix;

 var prefixObj = require('./controllers/' + prefix);

 // index
 app.get(prefix, prefixObj.index);

 // add
 app.get(prefix + '/new', prefixObj.new);

 // show
 app.get(prefix + '/:id', prefixObj.show);

 // create
 app.post(prefix + '/create', prefixObj.create);

 // edit
 app.get(prefix + '/:id/edit', prefixObj.edit);

 // update
 app.put(prefix + '/:id', prefixObj.update);

 // destroy
 app.del(prefix + '/:id', prefixObj.destroy);

};

148 | Chapter 7: The Express Framework

The mapRoute method is a very simple function, and should be recognizable when you
compare the routes given to those in Table 7-1.

Last, we finish the main application that pulls all these pieces together. Thankfully, it’s
a lot cleaner now that we don’t have all the routing method calls. To handle a possibly
growing number of objects, I use an array to contain the prefix name for each. If we
add a new object, we add a new prefix to the array.

Express comes with an MVC application in the examples subdirectory.
It uses a routine that accesses the controllers directory and infers the
prefix names from the filenames it finds. With this approach, we don’t
have to change the application file to add a new object.

Example 7-8 shows the finished application. I added back in the original
routes.index view, except I changed the title value in the routes/index.js file from
“Express” to “Widget Factory.”

Example 7-8. Application that makes use of the new MVC infrastructure to maintain widgets

var express = require('express')
 , routes = require('./routes')
 , map = require('./maproutecontroller')
 , http = require('http')
 , app = express();

app.configure(function(){
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.staticCache({maxObjects: 100, maxLength: 512}));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.directory(__dirname + '/public'));
 app.use(function(req, res, next){
 throw new Error(req.url + ' not found');
 });
 app.use(function(err, req, res, next) {
 console.log(err);
 res.send(err.message);
 });
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

app.get('/', routes.index);
var prefixes = ['widgets'];

// map route to controller

Cue the MVC | 149

prefixes.forEach(function(prefix) {
 map.mapRoute(app, prefix);
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

Cleaner, simpler, extensible. We still don’t have the view part of the MVC, but I’ll cover
that in the next chapter.

Testing the Express Application with cURL
Instead of testing with a browser, we’ll test the application with cURL. This Unix utility
is extremely helpful when it comes to testing a RESTful application without having to
create all the forms.

To test the widgets index, use the following cURL command (based on running the
application from my examples site, and on port 3000—adjust the command accord-
ingly for your setup):

curl --request GET http://examples.burningbird.net:3000/widgets

Following the request option, specify the method (in this case, GET), and then the re-
quest URL. You should get back a dump of all widgets currently in the data store.

To test creating a new widget, first issue a request for the new object:

curl --request GET http://examples.burningbird.net:3000/widgets/new

A message is returned about retrieving the new widget form. Next, test adding a new
widget, passing the data for the widget in the cURL request, and changing the method
to POST:

curl --request POST http://examples.burningbird.net:3000/widgets/create
 --data 'widgetname=Smallwidget&widgetprice=10.00'

Run the index test again to make sure the new widget is displayed:

 curl --request GET http://examples.burningbird.net:3000/widgets

The result should be:

[
 {
 "id": 1,
 "name": "The Great Widget",
 "price": 1000
 },
 {
 "id": 2,
 "name": "Smallwidget",
 "price": 10
 }

150 | Chapter 7: The Express Framework

Next, update the new widget, setting its price to 75.00. The method is now PUT:

 curl --request PUT http://examples.burningbird.net:3000/widgets/2
 --data 'widgetname=Smallwidget&widgetprice=75.00'

Once you’ve verified the data was changed, go ahead and delete the new record, chang-
ing the HTTP method to DELETE:

 curl --request DELETE http://examples.burningbird.net:3000/widgets/2

Now that we have the controller component of the MVC, we need to add the view
components, which I cover in Chapter 8. Before moving on, though, read the sidebar
“Beyond Basic Express” on page 151 for some final tips.

Beyond Basic Express
Express is a framework, but it’s a very basic framework. If you want to do something
like creating a content management system, you’ll have quite a bit of work to do.

There are third-party applications that are built on Express and that provide both types
of functionality. One, Calipso, is a full content management system (CMS) built on
Express and using MongoDB for persistent storage.

Express-Resource is a lower-level framework that provides simplified MVC function-
ality to Express so you don’t have to create your own.

Tower.js is another web framework that provides a higher level of abstraction and is
modeled after Ruby on Rails, with full MVC support. RailwayJS is also a MVC frame-
work, built on Express and modeled after Ruby on Rails.

Another higher-level framework is Strata, which takes a different tack from Tower.js
and RailwayJS. Rather than a Rails model, it follows the module established by WSGI
(Python) and Rack (Ruby). It’s a lower-level abstraction, which can be simpler to work
with if you’ve not programmed in Ruby and Rails.

Testing the Express Application with cURL | 151

CHAPTER 8

Express, Template Systems, and CSS

Frameworks such as Express provide a great deal of useful functionality, but one thing
they don’t provide is a way of separating the data from the presentation. You can use
JavaScript to generate HTML to process the result of a query or update, but the effort
can quickly become tedious—especially if you have to generate every part of the page,
including sidebars, headers, and footers. Sure, you can use functions, but the work can
still verge on overwhelming.

Luckily for us, as framework systems have developed, so have template systems, and
the same holds true for Node and Express. In Chapter 7, we briefly used Jade, the
template system installed by default with Express, to generate an index page. Express
also supports other compatible template systems, including another popular choice,
EJS (embedded JavaScript). Jade and EJS take a completely different approach, but
both deliver the expected results.

In addition, though you can manually create CSS files for your website or application,
you can also use a CSS engine that can simplify this aspect of your web design and
development. Rather than having to remember to add in all of the curly braces and
semicolons, you use a simplified structure that can be cleaner to maintain. One such
CSS engine that works quite nicely with Express and other Node applications is Stylus.

In this chapter I’ll primarily focus on Jade, since it is installed by default with Express.
However, I’m going to briefly cover EJS, so you can see two different types of template
systems and how they work. I’ll also introduce the use of Stylus to manage the CSS to
ensure that the pages display nicely.

The Embedded JavaScript (EJS) Template System
Embedded JavaScript is a good name for EJS, because it best describes how it works:
JavaScript embedded into HTML markup handles the melding of data and document
structure. It’s a very simple template system based on Ruby’s ERB (embedded Ruby).

153

The EJS GitHub page can be found at https://github.com/visionmedia/ejs.

Learning the Basic Syntax
If you’ve worked with most content management systems (CMS), you’ll quickly grasp
the fundamentals of EJS. The following is an example of an EJS template:

<% if (names.length) { %>

 <% names.forEach(function(name){ %>
 <%= name %>
 <% }) %>

<% } %>

In the code, the EJS is embedded directly into HTML, in this example providing the
data for the individual list items for an unordered list. The angle brackets and percent-
age sign pairs (<%, %>) are used to delimit EJS instructions: a conditional test ensures
that an array has been provided, and then the JavaScript processes the array, outputting
the individual array values.

EJS is based on the Ruby ERB templating system, which is why you’ll
frequently see “erb-like” used to describe its format.

The values themselves are output with the equals sign (=), which is a shortcut for “print
this value here”:

<%= name %>

The value is escaped when it’s printed out. To print out an unescaped value, use a dash
(-), like so:

<%- name %>

If for some reason you don’t want to use the standard open and closing EJS tags (<%,
%>), you can define custom ones using the EJS object’s open and close methods:

ejs.open('<<');
ejs.close('>>');

You can then use these custom tags instead of the default ones:

<h1><<=title >></h1>

Unless you have a solid reason for doing so, though, I’d stick with the default.

154 | Chapter 8: Express, Template Systems, and CSS

https://github.com/visionmedia/ejs

Though blended with HTML, EJS is JavaScript, so you have to provide the open and
closing curly braces, as well as the proper format when using the array object’s
forEach method.

For the finished product, the HTML is then rendered via an EJS function call, either
returning a JavaScript function that generates a result, or generating the finished result.
I’ll demonstrate this once we get EJS for Node installed. Let’s do that now.

Using EJS with Node
The module that’s installed is a version of EJS capable of being used with Node. It’s
not the same thing you’ll get if you go to the EJS site and directly download EJS. EJS
for Node can be used with client-side JavaScript, but I’m going to focus on its use with
Node applications.

Install the template system using npm:

npm install ejs

Once EJS is installed, you can use it directly in a simple Node application—you don’t
have to use it with a framework like Express. As a demonstration, render HTML from
a given template file as follows:

<html>
<head>
<title><%= title %></title>
</head>
<body>
<% if (names.length) { %>

 <% names.forEach(function(name){ %>
 <%= name %>
 <% }) %>

<% } %>
</body>

Call the EJS object’s renderFile method directly. Doing so opens the template and uses
the data provided as an option to generate the HTML.

Example 8-1 uses the standard HTTP server that comes with Node to listen for a request
on port 8124. When a request is received, the application calls the EJS renderFile
method, passing in the path for the template file, as well as a names array and a document
title. The last parameter is a callback function that either provides an error (and a
fairly readable error, at that) or the resulting generated HTML. In the example, the
result is sent back via the response object if there’s no error. If there is an error, an error
message is sent in the result, and the error object is output to the console.

The Embedded JavaScript (EJS) Template System | 155

Example 8-1. Generating HTML from data and an EJS template

var http = require('http')
 , ejs = require('ejs')
;

// create http server
http.createServer(function (req, res) {

 res.writeHead(200, {'content-type': 'text/html'});

 // data to render
 var names = ['Joe', 'Mary', 'Sue', 'Mark'];
 var title = 'Testing EJS';

 // render or error
 ejs.renderFile(__dirname + '/views/test.ejs',
 {title : 'testing', names : names},
 function(err, result) {
 if (!err) {
 res.end(result);
 } else {
 res.end('An error occurred accessing page');
 console.log(err);
 }
 });

}).listen(8124);

console.log('Server running on 8124/');

One variation of the rendering method is render, which takes the EJS template as a
string and then returns the formatted HTML:

 var str = fs.readFileSync(__dirname + '/views/test.ejs', 'utf8');

 var html = ejs.render(str, {names : names, title: title });

 res.end(html);

A third rendering method, which I won’t demonstrate, is compile, which takes an EJS
template string and returns a JavaScript function that can be invoked to render HTML
each time it’s called. You can also use this method to enable EJS for Node in client-side
applications.

The use of compile is demonstrated in Chapter 9, in the section “Building
a Game Leaderboard” on page 190.

156 | Chapter 8: Express, Template Systems, and CSS

Using the EJS for Node Filters
In addition to support for rendering EJS templates, EJS for Node also provides a set of
predefined filters, which can further simplify the HTML generation. One filter, first,
extracts out the first value in a supplied array of values. Another filter, downcase, takes
the result of the first filter and lowercases the text:

 var names = ['Joe Brown', 'Mary Smith', 'Tom Thumb', 'Cinder Ella'];

 var str = '<p><%=: users | first | downcase %></p>';

 var html = ejs.render(str, {users : names });

The result is the following:

<p>joe brown</p>

The filters can be chained together, with the result of one being piped to the next. The
use of the filter is triggered by the colon (:) following the equals sign (=), which is then
followed by the data object. The following example of the use of filters takes a set of
people objects, maps a new object consisting solely of their names, sorts the names,
and then prints out a concatenated string of the names:

 var people = [
 {name : 'Joe Brown', age : 32},
 {name : 'Mary Smith', age : 54},
 {name : 'Tom Thumb', age : 21},
 {name : 'Cinder Ella', age : 16}];

 var str = "<p><%=: people | map:'name' | sort | join %></p>";
 var html = ejs.render(str, {people : people });

Here is the result of that filter combination:

Cinder Ella, Joe Brown, Mary Smith, Tom Thumb

The filters aren’t documented in the EJS for Node documentation, and you have to be
careful using them interchangeably because some of the filters want a string, not an
array of objects. Table 8-1 contains a list of the filters, and a brief description of what
type of data they work with and what they do.

Table 8-1. EJS for Node filters

Filter Type of data Purpose

first Accepts and returns array Returns first element of array

last Accepts and returns array Returns last element of array

capitalize Accepts and returns string Capitalizes first character in string

downcase Accepts and returns string Lowercases all characters in string

upcase Accepts and returns string Capitalizes all characters in string

sort Accepts and returns array Applies Array.sort to array

The Embedded JavaScript (EJS) Template System | 157

Filter Type of data Purpose

sort_by:'prop' Accepts array and property name; returns
array

Creates custom sort function to sort array of objects
by property

size Accepts array; returns numeric Returns Array.length

plus:n Accepts two numbers or strings; returns
number

Returns a + b

minus:n Accepts two numbers or strings; returns
number

Returns b − a

times:n Accepts two numbers or strings; returns
number

Returns a * b

divided_by:n Accepts two numbers or strings; returns
number

Returns a / b

join:'val' Accepts array; returns string Applies Array.join with given value, or , by
default

truncate:n Accepts string and length; returns string Applies String.substr

truncate_words:n Accepts string and word length; returns
string

Applies String.split and then
String.splice

replace:pattern,
substitution

Accepts string, pattern, and substitution;
returns string

Applies String.replace

prepend:value Accepts string and string value; returns
string

Prepends value to string

append:value Accepts string and string value; returns
string

Appends value to string

map:'prop' Accepts array and property; returns array Creates new array consisting of given object prop-
erties using Array.map

reverse Accepts array or string If array, applies Array.reverse; if string, splits
words, reverses, rejoins

get Accepts object and property Returns property of given object

json Accepts object Converts to JSON string

Using a Template System (EJS) with Express
The template system provides the missing piece we need to complete the views portion
of the MVC (Model-View-Controller) application architecture introduced in Chapter 7.

The model portion of the MVC architecture is added in Chapter 10.

158 | Chapter 8: Express, Template Systems, and CSS

In Chapter 7, I provided a quick introduction for using a template system in Exam-
ple 7-1. The example used Jade, but we can easily convert it to use EJS. How easily?
Example 8-2 is an exact duplicate of the application in Example 7-1, except now using
EJS rather than Jade. Exactly one line is changed, shown in bold.

Example 8-2. Using EJS as a template system for an application

var express = require('express')
 , routes = require('./routes')
 , http = require('http');

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'ejs');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

app.get('/', routes.index);

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

The index.js route doesn’t require any change at all, because it’s not using anything
that’s specific to any template system; it’s using the Express resource object’s render
method, which works regardless of template system (as long as the system is compatible
with Express):

exports.index = function(req, res){
 res.render('index', { title: 'Express' }, function(err, stuff) {
 if (!err) {
 console.log(stuff);
 res.write(stuff);
 res.end();
 }
 });
};

In the views directory, the index.ejs file (note the extension) uses EJS for Node anno-
tation rather than the Jade we saw in Chapter 7:

<html>
<head>

Using a Template System (EJS) with Express | 159

<title><%= title %></title>
</head>
<body>
<h1><%= title %></title>
<p>Welcome to <%= title %></p>
</body>

This demonstrates the beauty of working with an application that separates the model
from the controller from the view: you can swap technology in and out, such as using
a different template system, without impacting the application logic or data access.

To recap what’s happening with this application:

1. The main Express application uses app.get to associate a request listener function
(routes.index) with an HTTP GET request.

2. The routes.index function calls res.render to render the response to the GET
request.

3. The res.render function invokes the application object’s render function.

4. The application render function renders the specified view, with whatever options
—in this case, the title.

5. The rendered content is then written to the response object, and back to the user’s
browser.

In Chapter 7, we focused on the routing aspects of the application, and now we’ll focus
on the view. We’ll take the application we created at the end of Chapter 7, in Exam-
ple 7-6 through Example 7-8, and add in the views capability. First, though, we need
to do a little restructuring of the environment to ensure that the application can grow
as needed.

Restructuring for a Multiple Object Environment
Though the application is the Widget Factory, widgets aren’t going to be the only
objects the system maintains. We need to restructure the environment so that we can
add objects as needed.

Currently, the environment is as follows:

/application directory
 /routes - home directory controller
 /controllers - object controllers
 /public - static files
 /views - template files

The routes and the controllers directories can stay as they are, but the views and the
public directory need to be modified to allow for different objects. Instead of placing
all widget views directly in views, we add them to a new subdirectory of views named,
appropriately enough, widgets:

160 | Chapter 8: Express, Template Systems, and CSS

/application directory
 / views
 /widgets

Instead of placing all widget static files directly in the public directory, we also place
them in a widgets subdirectory:

/application directory
 /public
 /widgets

Now, we can add new objects by adding new directories, and we’ll be able to use
filenames of new.html and edit.ejs for each, without worrying about overwriting existing
files.

Note that this structure assumes we may have static files for our application. The next
step is to figure out how to integrate the static files into the newly dynamic environment.

Routing to Static Files
The first component of the application to refine is adding a new widget. This consists
of two parts: displaying a form to get the new widget’s information, and storing the
new widget into the existing widget data store.

We can create an EJS template for the form, though it won’t have any dynamic com-
ponents—or at least, it won’t at this time with the way the page is designed. However,
it makes no sense to serve something through the template system that doesn’t need
the system’s capability.

We could also just change how the form is accessed—instead of accessing the form
using /widgets/new, we’d access it as /widgets/new.html. However, this introduces an
inconsistency into the application routing. In addition, if we add dynamic components
later to the form page, then we’ll have to change the references to the new form.

A better approach is to handle the routing request and serve the static page as if it were
dynamic, but without using the template system.

The Express resource object has a redirect method we could use to redirect the request
to the new.html file, but new.html is what’s going to show up in the address bar on the
browser when finished. It also returns a 302 status code, which we don’t want. Instead,
we’ll use the resource object’s sendfile method. This method takes as parameters a file
path, possible options, and an optional callback function with an error as its only pa-
rameter. The widget controller is using only the first parameter.

The filepath is:

__dirname + "/../public/widgets/widget.html"

We used the relative indicator .. since the public directory is located off the control-
lers directory’s parent. However, we can’t use this path in sendfile as is, because it

Using a Template System (EJS) with Express | 161

generates a 403 forbidden error. Instead, we use the path module’s normalize method
to convert the path’s use of relative indicators into the equivalent absolute path:

// display new widget form
exports.new = function(req, res) {
 var filePath = require('path').normalize(__dirname +
 "/../public/widgets/new.html");
 res.sendfile(filePath);
};

The HTML page with the form is nothing to get excited about—just a simple form, as
shown in Example 8-3. However, we did add the description field back in to make the
data a little more interesting.

Example 8-3. HTML new widget form

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Widgets</title>
</head>
<body>
<h1>Add Widget:</h1>

<form method="POST" action="/widgets/create"
enctype="application/x-www-form-urlencoded">

 <p>Widget name: <input type="text" name="widgetname"
 id="widgetname" size="25" required/></p>
 <p>Widget Price: <input type="text"
 pattern="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 name="widgetprice" id="widgetprice" size="25" required/></p>

 <p>Widget Description:

 <textarea name="widgetdesc" id="widgetdesc" cols="20"
 rows="5"></textarea>
 <p>

 <input type="submit" name="submit" id="submit" value="Submit"/>
 <input type="reset" name="reset" id="reset" value="Reset"/>
 </p>
 </form>
</body>

The form is POSTed, of course.

Now that the application can display the new widget form, we need to modify the
widget controller to process the form posting.

There’s also an Express extension module, express-rewrite, that pro-
vides URL rewrite capability. Install it with npm like so:

npm install express-rewrite

162 | Chapter 8: Express, Template Systems, and CSS

Processing a New Object Post
Prior to adding in the new template support, we need to make changes to the main
application file to incorporate the use of the EJS template system. I won’t repeat the
app.js file completely from Example 7-8 in Chapter 7, because the only change is to the
configure method call to include the EJS template engine and views directory:

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'ejs');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.staticCache({maxObjects: 100, maxLength: 512}));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.directory(__dirname + '/public'));
 app.use(function(req, res, next){
 throw new Error(req.url + ' not found');
 });
 app.use(function(err, req, res, next) {
 console.log(err);
 res.send(err.message);
 });
});

Now we’re ready to convert the widget controller so it uses templates, starting with the
code to add a new widget.

The actual processing of the data in the widget controller for the new widget doesn’t
change. We still pull the data from the request body, and add it to the in-memory widget
store. However, now that we have access to a template system, we’re going to change
how we respond to the successful addition of a new widget.

I created a new EJS template, named added.ejs, shown in Example 8-4. All it does is
provide a listing of the widget’s properties, and a message consisting of the title sent
with the widget object.

Example 8-4. “Widget added” confirmation view template

<head>
<title><%= title %></title>
</head>
<body>
<h1><%= title %> | <%= widget.name %></h1>

ID: <%= widget.id %>
Name: <%= widget.name %>
Price: <%= widget.price.toFixed(2) %>
Desc: <%= widget.desc %>

</body>

Using a Template System (EJS) with Express | 163

The code to process the update is little different from that shown in Chapter 7, other
than the fact that we’re now rendering a view rather than sending a message back to
the user (the part that changes is in bold text):

// add a widget
exports.create = function(req, res) {

 // generate widget id
 var indx = widgets.length + 1;

 // add widget
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc };

 //print out to console and confirm addition to user
 console.log(widgets[indx-1]);
 res.render('widgets/added', {title: 'Widget Added', widget : widgets[indx-1]});
};

The two options sent to the view are the page title and the widget object. Figure 8-1
shows the informative, though plain, result.

The code to process a new widget doesn’t do any validation of the data
or check for authority or SQL injection hacks. Data validation, security,
and authorization are covered in Chapter 15.

Figure 8-1. Confirmation of the added widget

The next two processes to convert to templates, update and deletion, require a way of
specifying which widget to perform the action on. In addition, we also need to convert

164 | Chapter 8: Express, Template Systems, and CSS

the index display of all widgets. For all three processes, we’re going to use a view to
create both the widgets index page and a picklist, covered next.

Working with the Widgets Index and Generating a Picklist
A picklist is nothing more than a list of choices from which one can choose. For the
widget application, a picklist could be a selection or drop-down list incorporated into
an update or delete page, using Ajax and client-side scripting, but we’re going to in-
corporate the functionality into the widget application’s index page.

Right now, the widget application index page just has a data dump of the widget data
store. It’s informative, but ugly and not all that useful. To improve the result, we’re
going to add a view to display all of the widgets in a table—one widget per row, with
the widget properties in columns. We’re also going to add two more columns: one with
a link to edit the widget, and one with a link to delete the widget. These provide the
missing piece to the application: a way to edit or delete a widget without having to
remember or know its identifier.

Example 8-5 has the contents of the template for this new view, named index.ejs. Since
the file is located in the widgets subdirectory, we don’t have to worry that it’s the same
name as the higher-level index.ejs file.

Example 8-5. Widgets index page with links to edit and delete the individual widgets

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title><%= title %></title>
</head>
<body>
<% if (widgets.length) { %>
 <table>
 <caption>Widgets</caption>
 <tr><th>ID</th><th>Name</th><th>Price</th><th>Description</th></tr>
 <% widgets.forEach(function(widget){ %>
 <tr>
 <td><%= widget.id %></td>
 <td><%= widget.name %></td>
 <td>$<%= widget.price.toFixed(2) %></td>
 <td><%= widget.desc %></td>
 <td><a href="/widgets/<%= widget.id %>/edit">Edit</td>
 <td><a href="/widgets/<%= widget.id %>">Delete</td>
 </tr>
 <% }) %>
 </table>
<% } %>
</body>

The controller code to trigger this new view is extremely simple: a call to render the
view, sending the entire array of widgets through as data:

Using a Template System (EJS) with Express | 165

// index listing of widgets at /widgets/
exports.index = function(req, res) {
 res.render('widgets/index', {title : 'Widgets', widgets : widgets});
};

In Example 8-5, if the object has a length property (is an array), its element objects are
traversed and their properties are printed out as table data, in addition to the links to
edit and delete the object. Figure 8-2 shows the table after several widgets have been
added to our in-memory data store.

Figure 8-2. Widget display table after the addition of several widgets

The link (route) to delete the object is actually the same as the link (route) to show
it: /widgets/:id. We’ll add a mostly hidden form to the Show Widget page that includes
a button to delete the widget if it’s no longer needed. This allows us to incorporate the
necessary trigger for the deletion without having to add a new route. It also provides
another level of protection to ensure that users know exactly which widget they’re
deleting.

Rather than incorporate the delete request into the Show Widget page,
it’s also perfectly acceptable to create another route, such as /widgets/:id/
delete, and generate an “Are you sure?” page from the index page link,
which then triggers the deletion.

Showing an Individual Object and Confirming an Object Deletion
To display an individual widget is as simple as providing a placeholder for all of its
properties, embedded into whatever HTML you want to use. In the widget application,
I’m using an unordered list (ul) for the widget properties.

Since we’re also encompassing into the page the trigger for deleting the object, at the
bottom I’ve added a form that displays a button reading “Delete Widget.” In the form

166 | Chapter 8: Express, Template Systems, and CSS

is the hidden _method field that is used to generate the HTTP DELETE verb that routes to
the application’s destroy method. The entire template is shown in Example 8-6.

Example 8-6. View to display a widget’s properties and a form to delete the widget

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title><%= title %></title>
</head>
<body>
<h1><%= widget.name %></h1>

ID: <%= widget.id %>
Name: <%= widget.name %>
Price: $<%= widget.price.toFixed(2) %>
Description: <%= widget.desc %>

<form method="POST" action="/widgets/<%= widget.id %>"
enctype="application/x-www-form-urlencoded">

 <input type="hidden" value="delete" name="_method" />

 <input type="submit" name="submit" id="submit" value="Delete Widget"/>
</form>

</body>

Very little modification is required in the controller code for either the show or the
destroy methods. I’ve left the destroy method as is for now. All it does is delete the
object from the in-memory store and send a message back to this effect:

exports.destroy = function(req, res) {
 var indx = req.params.id - 1;
 delete widgets[indx];

 console.log('deleted ' + req.params.id);
 res.send('deleted ' + req.params.id);
};

The show method required little change—simply replacing the send message with a call
to render the new view:

// show a widget
exports.show = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 if (!widgets[indx])
 res.send('There is no widget with id of ' + req.params.id);
 else
 res.render('widgets/show', {title : 'Show Widget', widget : widgets[indx]});
};

Figure 8-3 demonstrates what the Show Widget page looks like, complete with the
Delete Widget button at the bottom.

Using a Template System (EJS) with Express | 167

Figure 8-3. The Show Widget page with delete button

By now, you’ve seen how simple it is to incorporate views into the application. The
best thing of all about this system is that you can incorporate changes into the view
templates without having to stop the application: it uses the changed template the next
time the view is accessed.

One last view for the update widget, and we’re done converting the widget application
to use the EJS template system.

Providing an Update Form and Processing a PUT Request
The form to edit the widget is exactly the same as the form to add a widget, except for
the addition of one field: _method. In addition, the form is prepopulated with the data
for the widget being edited, so we need to incorporate the template tags and appropriate
values.

Example 8-7 contains the contents for the edit.ejs template file. Note the use of the
template tags with the value fields in the input elements. Also notice the addition of
the _method field.

Example 8-7. The Edit view template file, with data prepopulated

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title><%= title %></title>
</head>
<body>
<h1>Edit <%= widget.name %></h1>

168 | Chapter 8: Express, Template Systems, and CSS

<form method="POST" action="/widgets/<%= widget.id %>"
enctype="application/x-www-form-urlencoded">

 <p>Widget name: <input type="text" name="widgetname"
 id="widgetname" size="25" value="<%=widget.name %>" required /></p>

 <p>Widget Price: <input type="text"
 pattern="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 name="widgetprice" id="widgetprice" size="25" value="<%= widget.price %>" required/></p>
 <p>Widget Description:

 <textarea name="widgetdesc" id="widgetdesc" cols="20"
 rows="5"><%= widget.desc %></textarea>
 <p>

 <input type="hidden" value="put" name="_method" />

 <input type="submit" name="submit" id="submit" value="Submit"/>
 <input type="reset" name="reset" id="reset" value="Reset"/>
 </p>
 </form>
</body>

Figure 8-4 shows the page with a widget loaded. All you need to do is edit the field
values, and then click Submit to submit the changes.

Figure 8-4. The Edit widget view

The modification to the controller code is as simple as the other modifications have
been. The Edit view is accessed using res.render, and the widget object is passed as
data:

Using a Template System (EJS) with Express | 169

// display edit form
exports.edit = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 res.render('widgets/edit', {title : 'Edit Widget', widget : widgets[indx]});
};

The code to process the update is very close to what we had in Chapter 7, except that
instead of sending a message that the object is updated, we’re using a view. We’re not
creating a new view, though. Instead, we’re using the widgets/added.ejs view we used
earlier. Since both just display the object’s properties and can take a title passed in as
data, we can easily repurpose the view just by changing the title:

// update a widget
exports.update = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 widgets[indx] =
 { id : indx + 1,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc}
 console.log(widgets[indx]);
 res.render('widgets/added', {title: 'Widget Edited', widget : widgets[indx]})
};

Again, the view used doesn’t impact what route (URL) is shown, so it doesn’t matter
if we reuse a view. Being able to reuse a view can save us a lot of work as the application
increases in difficulty.

You’ve had a chance to see pieces of the controller code throughout these sections as
we convert it to use templates. Example 8-8 is an entire copy of the changed file, which
you can compare to Example 7-6 in Chapter 7 to see how easily views incorporate into
the code, and how much work they can save us.

Example 8-8. The widget controller implemented with views

var widgets = [
 { id : 1,
 name : "The Great Widget",
 price : 1000.00,
 desc: "A widget of great value"
 }
]

// index listing of widgets at /widgets/
exports.index = function(req, res) {
 res.render('widgets/index', {title : 'Widgets', widgets : widgets});
};

// display new widget form
exports.new = function(req, res) {
 var filePath = require('path').normalize(__dirname + "/../public/widgets/new.html");
 res.sendfile(filePath);
};

170 | Chapter 8: Express, Template Systems, and CSS

// add a widget
exports.create = function(req, res) {

 // generate widget id
 var indx = widgets.length + 1;

 // add widget
 widgets[widgets.length] =
 { id : indx,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc };

 //print out to console and confirm addition to user
 console.log(widgets[indx-1]);
 res.render('widgets/added', {title: 'Widget Added', widget : widgets[indx-1]});
};

// show a widget
exports.show = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 if (!widgets[indx])
 res.send('There is no widget with id of ' + req.params.id);
 else
 res.render('widgets/show', {title : 'Show Widget', widget : widgets[indx]});
};

// delete a widget
exports.destroy = function(req, res) {
 var indx = req.params.id - 1;
 delete widgets[indx];

 console.log('deleted ' + req.params.id);
 res.send('deleted ' + req.params.id);
};

// display edit form
exports.edit = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 res.render('widgets/edit', {title : 'Edit Widget', widget : widgets[indx]});
};

// update a widget
exports.update = function(req, res) {
 var indx = parseInt(req.params.id) - 1;
 widgets[indx] =
 { id : indx + 1,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc}
 console.log(widgets[indx]);
 res.render('widgets/added', {title: 'Widget Edited', widget : widgets[indx]})
};

Using a Template System (EJS) with Express | 171

This is the last time you’ll see the controller code for this chapter. Yet we’re about to
make a profound change to the application: we’re going to replace the template system.

The Jade Template System
Jade is the template system installed with Express by default. It is quite different from
EJS: rather than embed the template tags directly into HTML, you use a simplified
version of HTML.

The Jade website is at http://jade-lang.com/.

Taking the Nickel Tour of the Jade Syntax
In the Jade template system, HTML elements are given by their name, but you don’t
use any angle brackets. Nesting is indicated by indentation. So, rather than:

<html>
<head>
<title>This is the title</title>
</head>
<body>
<p>Say hi World</p>
</body>
</html>

You have:

html
 head
 title This is it
 body
 p Say Hi to the world

The contents of both the title and the paragraph elements are just included after the
element name. There are no ending tags—they’re assumed—and again, indentation
triggers nesting. Another example is the following, which also makes use of both class
name and identifier, as well as additional nesting:

 html
 head
 title This is it
 body
 div.content
 div#title
 p nested data

This generates:

172 | Chapter 8: Express, Template Systems, and CSS

http://jade-lang.com/

<html>
<head>
<title>This is it</title>
</head>
<body>
<div class="content">
<div id="title">
<p>nested data</p>
</div>
</div>
</body>
</html>

If you have large bodies of content, such as text for a paragraph, you can use the vertical
bar, or pipe (|), to concatenate the text:

p
 | some text
 | more text
 | and even more

This becomes:

<p>some text more text and even more</p>

Another approach is to end the paragraph element with a period (.) indicating that the
block contains only text and allowing us to omit the vertical bar:

p.
 some text
 more text
 and even more

If we want to include HTML as the text, we can; it ends up being treated as HTML in
the generated source:

body.
 <h1>A header</h1>
 <p>A paragraph</p>

Form elements generally have attributes, and they’re incorporated in Jade in paren-
theses, including setting their values (if any). The attributes need only be separated by
whitespace, but I list them each on a separate line to make the template more readable.

The following Jade template:

html
 head
 title This is it
 body
 form(method="POST"
 action="/widgets"
 enctype="application/x-www-form-urlencoded")
 input(type="text"
 name="widgetname"
 id="widgetname"
 size="25")

The Jade Template System | 173

 input(type="text"
 name="widgetprice"
 id="widgetprice"
 size="25")
 input(type="submit"
 name="submit"
 id="submit"
 value="Submit")

generates the following HTML:

<html>
<head>
<title>This is it</title>
</head>
<body>
<form method="POST" action="/widgets"
 enctype="application/x-www-form-urlencoded">
<input type="text" name="widgetname" id="widgetname" size="25"/>
<input type="text" name="widgetprice" id="widgetprice" size="25"/>
<input type="submit" name="submit" id="submit" value="Submit"/>
</form>
</body>
</html>

Using block and extends to Modularize the View Templates
Now we’re going to convert the widget application so it uses Jade rather than EJS. The
only change that we need to make to the widget application code is in app.js, to change
the template engine:

 app.set('view engine', 'jade');

No other change is necessary to the application. None. Zip.

All of the templates share the same page layout. The layout is rather plain; there are no
sidebars or footers, or any use of CSS. Because of the page’s plain nature, we haven’t
minded duplicating the same layout markup in each view in the prior examples. How-
ever, if we start to add more to the overall page structure—such as sidebars, a header,
and a footer—then having to maintain the same layout information in each file is going
to get cumbersome.

The first thing we’re going to do in our conversion, then, is create a layout template
that will be used by all the other templates.

Express 3.x completely changed its handling of views, including how it
implements partial views and uses layouts. You can use the Jade tem-
plates in this section with Express 2.x if you add the following in the
configure method call:

app.set('view options', {layout: false});

174 | Chapter 8: Express, Template Systems, and CSS

Example 8-9 contains the complete layout.jade file. It uses the HTML5 doctype, adds
a head element with title and meta elements, adds the body element, and then references
a block called content. That’s how you include blocks of content defined in other tem-
plate files.

Example 8-9. Simple layout template in Jade

doctype 5
html(lang="en")
 head
 title #{title}
 meta(charset="utf-8")
 body
 block content

Notice the use of the pound sign and curly braces (#{}) for the title. This is how we
embed data passed to the template in Jade. The use of the identifier doesn’t change
from EJS, just the syntax.

To use the new layout template, we start off each of the content templates with:

extends layout

The use of extends lets the template engine know where to find the layout template for
the page view, while the use of block instructs the template engine about where to place
the generated content.

You don’t have to use content for the block name, and you can use more than one
block. In addition, you can also include other template files if you want to break up the
layout template even further. I modified layout.jade to include a header rather than the
markup directly in the layout file:

doctype 5
html(lang="en")
 include header
 body
 block content

I then defined the header content in a file named header.jade, with the following:

head
 title #{title}
 meta(charset="utf-8")

There are two things to note in the new layout.jade and header.jade code.

First, the include directive is relative. If you split the views into the following subdir-
ectory structure:

/views
 /widgets
 layout.jade
 /standard
 header.jade

The Jade Template System | 175

you’d use the following to include the header template in the layout file:

include standard/header

The file doesn’t have to be Jade, either—it could be HTML, in which case you’ll need
to use the file extension:

include standard/header.html

Second, do not use indentation in the header.jade file. The indentation comes in from
the parent file and doesn’t need to be duplicated in the included template file. In fact,
if you do so, your template will generate an error.

Now that we’ve defined the layout template, it’s time to convert the EJS views into Jade.

Now is also the time you might consider swapping the static Add Widget
form file for a dynamic one so that it can also take advantage of the new
layout template.

Converting the Widget Views into Jade Templates
The first view to convert from EJS to Jade is the added.ejs template, which provides
feedback for the successful addition of a new widget. The template file is named
added.jade (the name must be the same, though the extension different, to work with
the existing controller code), and it makes use of the newly defined layout.jade file, as
shown in Example 8-10.

Example 8-10. The “Widget added” confirmation page converted to Jade

extends layout

block content
 h1 #{title} | #{widget.name}
 ul
 li id: #{widget.id}
 li Name: #{widget.name}
 li Price: $#{widget.price.toFixed()}
 li Desc: #{widget.desc}

Notice how we can still use the toFixed method to format the price output.

The block is named content, so it integrates with the expectations of the block name
set in the layout.jade file. The simplified HTML for an h1 header and an unordered list
is integrated with the data passed from the controller—in this case, the widget object.

Running the widget application and adding a new widget generates the same HTML
as generated with the EJS: a header and a list of widget properties for the newly added
widget—all without our changing any of the controller code.

176 | Chapter 8: Express, Template Systems, and CSS

Converting the main widgets display view

The next template to convert is the index template that lists all of the widgets in a table,
with options to edit or delete the widget as table columns. We’re going to try something
a little different with this template. We’re going to separate the table row generation
for each widget from the overall table generation.

First, we’ll create the row.jade template. It assumes that the data is an object named
widget, with the properties accessible off the object:

tr
 td #{widget.id}
 td #{widget.name}
 td $#{widget.price.toFixed(2)}
 td #{widget.desc}
 td
 a(href='/widgets/#{widget.id}/edit') Edit
 td
 a(href='/widgets/#{widget.id}') Delete

Each link must be included on a separate line; otherwise, we lose the nesting indication
with the indentation.

The main index.jade file that references the newly created row template is shown in
Example 8-11. This template introduces two new Jade constructs: a conditional test
and an iteration. The conditional is used to test for the length property on the
widgets object, assuring us we’re dealing with an array. The iteration construct uses an
abbreviated form of the Array.forEach method, where the array is traversed and each
instance is assigned to the new variable, widget.

Example 8-11. The index template for creating a table of widgets

extends layout

block content
 table
 caption Widgets
 if widgets.length
 tr
 th ID
 th Name
 th Price
 th Description
 th
 th
 each widget in widgets
 include row

This is a whole lot less work than having to manually enter all those angle brackets,
especially with the table headers (th). The results of the Jade template are identical to
those from the EJS template: an HTML table with widgets in each row, and the ability
to edit or delete each widget.

The Jade Template System | 177

Converting the edit and deletion forms

The next two conversions are working with forms.

First, we’ll convert the edit template into one using Jade. The only really tricky part of
the conversion is handling all the various attributes. Though you can separate them by
a space, I find it helps to list each on a separate line. This way, you can see that you’ve
properly included all the attributes and can easily double-check their values. Exam-
ple 8-12 contains the rather long template for the Edit Widget form.

Example 8-12. Jade template for the Edit Widget form

extends layout

block content
 h1 Edit #{widget.name}
 form(method="POST"
 action="/widgets/#{widget.id}"
 enctype="application/x-www-form-urlencoded")
 p Widget Name:
 input(type="text"
 name="widgetname"
 id="widgetname"
 size="25"
 value="#{widget.name}"
 required)
 p Widget Price:
 input(type="text"
 name="widgetprice"
 id="widgetprice"
 size="25"
 value="#{widget.price}"
 pattern="="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 required)
 p Widget Description:
 br
 textarea(name="widgetdesc"
 id="widgetdesc"
 cols="20"
 rows="5") #{widget.desc}
 p
 input(type="hidden"
 name="_method"
 id="_method"
 value="put")
 input(type="submit"
 name="submit"
 id="submit"
 value="Submit")
 input(type="reset"
 name="reset"
 id="reset"
 value="reset")

178 | Chapter 8: Express, Template Systems, and CSS

During the conversion of the Show Widget page, I noticed that the top of the page is
basically a repeat of what is displayed in the added.jade template from Example 8-10:
an unordered list with all of the widget’s properties. Another opportunity to simplify!

I created a new template, widget.jade, that just displays the widget information as an
unordered list:

ul
 li id: #{widget.id}
 li Name: #{widget.name}
 li Price: $#{widget.price.toFixed(2)}
 li Desc: #{widget.desc}

I then modified the added.jade file from Example 8-10 to use this new template:

extends layout

block content
 h1 #{title} | #{widget.name}
 include widget

The new Show Widget template also makes use of the new widget.jade template, as
demonstrated in Example 8-13.

Example 8-13. The new Show Widget template in Jade

extends layout

block content
 h1 #{widget.name}
 include widget
 form(method="POST"
 action="/widgets/#{widget.id}"
 enctype="application/x-www-form-urlencoded")
 input(type="hidden"
 name="_method"
 id="_method"
 value="delete")
 input(type="submit"
 name="submit"
 id="submit"
 value="Delete Widget")

You can see how modularizing the templates makes each template that much cleaner,
and thus easier to maintain.

With the newly modularized template, we can now show and delete a specific
widget...and that leads to a quirk where the Jade template differs from the EJS template.

In the widget application, when widgets are deleted, they are deleted in place. This
means the array element is basically set to null, so that the widget location in the array
is maintained relative to its identifier. This in-place maintenance doesn’t cause a prob-
lem when we add and delete widgets and display them in the index page in EJS, but it

The Jade Template System | 179

does cause a problem with Jade: we get an error about missing properties, because it
doesn’t filter out null array elements like the EJS template processing does.

This is trivially easy to fix. As shown in Example 8-11, just add another conditional test
to the Jade markup in the index.jade file to make sure the widget object exists (i.e., is
not null):

extends layout

block content
 table
 caption Widgets
 if widgets.length
 tr
 th ID
 th Name
 th Price
 th Description
 th
 th
 each widget in widgets
 if widget
 include row

And now, all of the template views have been converted to Jade, and the application is
complete. (Well, until we add in the data portion in Chapter 10.)

But while the application is complete, it’s not very attractive. Of course, it’s easy enough
to add a stylesheet into the header to modify the presentation of all the elements, but
we’ll also briefly take a look at another approach: using Stylus.

Incorporating Stylus for Simplified CSS
It’s a simple matter to include a stylesheet into any of the template files. In the Jade
template file, we can add one to the header.jade file:

head
 title #{title}
 meta(charset="utf-8")
 link(type="text/css"
 rel="stylesheet"
 href="/stylesheets/main.css"
 media="all")

The stylesheet is now immediately available to all of our application views because they
all use the layout template, which uses this header.

Now you can definitely see the value of converting the static new.html
file into a template view: making the change to the header doesn’t im-
pact it, and it has to be manually edited.

180 | Chapter 8: Express, Template Systems, and CSS

If you’ve grown fond of the syntax for Jade, though, you can use a variation of this
syntax for CSS by incorporating the use of Stylus into your application.

To use Stylus, first install it with npm:

npm install stylus

Stylus is not like the Jade template system. It doesn’t create dynamic CSS views. What
it does is generate static stylesheets from a Stylus template the first time the template
is accessed, or each time the template is modified.

Read more about Stylus at http://learnboost.github.com/stylus/docs/js
.html.

To incorporate Stylus into the widget application, we have to include the module within
the main application file’s (app.js) require section. Then we have to include the Stylus
middleware along with the others in the configure method call, passing in an option
with the source for the Stylus templates, and the destination where the compiled style-
sheets are to be placed. Example 8-14 shows the newly modified app.js file with these
changes in bold text.

Example 8-14. Adding Stylus CSS template support to the widget application

var express = require('express')
 , routes = require('./routes')
 , map = require('./maproutecontroller')
 , http = require('http')
 , stylus = require('stylus')
 , app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.staticCache({maxObjects: 100, maxLength: 512}));
 app.use(stylus.middleware({
 src: __dirname + '/views'
 , dest: __dirname + '/public'
 }));
 app.use(express.static(__dirname + '/public'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.directory(__dirname + '/public'));
 app.use(function(req, res, next){
 throw new Error(req.url + ' not found');
 });
 app.use(function(err, req, res, next) {
 console.log(err);

Incorporating Stylus for Simplified CSS | 181

http://learnboost.github.com/stylus/docs/js.html
http://learnboost.github.com/stylus/docs/js.html

 res.send(err.message);
 });
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

app.get('/', routes.index);

var prefixes = ['widgets'];

// map route to controller
prefixes.forEach(function(prefix) {
 map.mapRoute(app, prefix);
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

The first time you access the widget application after making this change, you may
notice a very brief hesitation. The reason is that the Stylus module is generating the
stylesheet—an event that happens when a new or modified stylesheet template is added
and the application is restarted. After the stylesheet has been generated, though, it’s
the generated copy that’s served up—it isn’t recompiled with every page access.

You will need to restart your Express application if you make changes
to the stylesheet template.

The Stylus stylesheet templates all have the same extension: .styl. The source directory
is set to views, but it expects the stylesheet templates to be in a stylesheets directory
under views. When it generates the static stylesheets, it places them in a stylesheets
directory under the destination directory (in this case, /public).

After working with Jade, you should find the Stylus syntax very familiar. Again, each
element that is being styled is listed, followed by the indented stylesheet setting. The
syntax strips away the need for curly braces, colons, and semicolons.

For example, to change the background color for the web page to yellow, and the text
color to red, use the following for the Stylus template:

body
 background-color yellow
 color red

If you want elements to share settings, list them on the same line with a comma between
them, just like you would with CSS:

182 | Chapter 8: Express, Template Systems, and CSS

p, tr
 background-color yellow
 color red

Or you can list the elements on separate lines:

p
tr
 background-color yellow
 color red

If you want to use a pseudoclass, such as :hover or :visited, use the following syntax:

textarea
input
 background-color #fff
 &:hover
 background-color cyan

The ampersand (&) represents the parent selector. All combined, the following Stylus
template:

Combined, the following:
p, tr
 background-color yellow
 color red

textarea
input
 background-color #fff
 &:hover
 background-color cyan

generates the following static CSS file:

p,
tr {
 background-color: #ff0;
 color: #f00;
}
textarea,
input {
 background-color: #fff;
}
textarea:hover,
input:hover {
 background-color: #0ff;
}

There’s more to working with Stylus, but I’ll leave that to you as an off-book exercise.
The Stylus website provides a good set of documentation for the syntax. Before leaving
this chapter, though, we’ll create a Stylus stylesheet that enhances the presentation of
the widget application.

Specifically, we’ll add a border and spacing to the HTML table element in the index
widget listing page. We’re also going to change the font for the headers and remove the

Incorporating Stylus for Simplified CSS | 183

bullet indicators for the unordered list. These are small changes, but they’ll be a start
in refining the appearance of the widget application.

The new stylesheet template is shown in Example 8-15. It’s not terribly big and doesn’t
use any involved CSS. It’s basic stuff, but it does improve—smooth out a bit—the
overall appearance of the application.

Example 8-15. Stylus template for widget application

body
 margin 50px
table
 width 90%
 border-collapse collapse
table, td, th, caption
 border 1px solid black
td
 padding 20px
caption
 font-size larger
 background-color yellow
 padding 10px
h1
 font 1.5em Georgia, serif
ul
 list-style-type none
form
 margin 20px
 padding 20px

Figure 8-5 shows the index page after several widgets have been added. Again, it’s
nothing fancy, but the data content is a lot easier to read with the new stylesheet.

184 | Chapter 8: Express, Template Systems, and CSS

Figure 8-5. Widget application index page with Stylus styling

Incorporating Stylus for Simplified CSS | 185

CHAPTER 9

Structured Data with Node and Redis

When it comes to data, there’s relational databases and Everything Else, otherwise
known as NoSQL. In the NoSQL category, a type of structured data is based on key/
value pairs, typically stored in memory for extremely fast access. The three most pop-
ular in-memory key/value stores are Memcached, Cassandra, and Redis. Happily for
Node developers, there is Node support for all three stores.

Memcached is primarily used as a way of caching data queries for quick access in
memory. It’s also quite good with distributed computing, but has limited support for
more complex data. It’s useful for applications that do a lot of queries, but less so for
applications doing a lot of data writing and reading. Redis is the superior data store for
the latter type of application. In addition, Redis can be persisted, and it provides more
flexibility than Memcached—especially in its support for different types of data. How-
ever, unlike Memcached, Redis works only on a single machine.

The same factors also come into play when comparing Redis and Cassandra. Like
Memcached, Cassandra has support for clusters. However, also like Memcached, it has
limited data structure support. It’s good for ad hoc queries—a use that does not favor
Redis. However, Redis is simple to use, uncomplicated, and typically faster than Cas-
sandra. For these reasons, and others, Redis has gained a greater following among Node
developers, which is why I picked it over Memcached and Cassandra to cover in this
chapter on key/value in-memory data stores.

I’m going to take a break from the more tutorial style of technology coverage in the
previous chapters and demonstrate Node and Redis by implementing three use cases
that typify the functionality these two technologies can provide:

• Building a game leaderboard

• Creating a message queue

• Tracking web page statistics

These applications also make use of modules and technologies covered in earlier chap-
ters, such as the Jade template system (covered in Chapter 8), the Async module (cov-
ered in Chapter 5), and Express (covered in Chapter 7 and Chapter 8).

187

The Redis site is at http://redis.io/. Read more on Memcached at http://
memcached.org/, and on Apache Cassandra at http://cassandra.apache
.org/.

Getting Started with Node and Redis
There are several modules supporting Redis, including Redback, which provides a
higher-level interface, but in this chapter we’ll focus on just one: node_redis, or just
redis (the convention we’ll use), by Matt Ranney. I like redis because it provides a simple
and elegant interface to directly access Redis commands, so you can leverage what you
know about the data store with minimal intervention.

The redis GitHub page is at https://github.com/mranney/node_redis.

You can install the redis module using npm:

npm install redis

I also recommend using the hiredis library, as it’s nonblocking and improves perfor-
mance. Install it using the following:

npm install hiredis redis

To use redis in your Node applications, you first include the module:

var redis = require('redis');

Then you’ll need to create a Redis client. The method used is createClient:

var client = redis.createClient();

The createClient method can take three optional parameters: port, host, and options
(outlined shortly). By default, the host is set to 127.0.0.1, and the port is set to 6379.
The port is the one used by default for a Redis server, so these default settings should
be fine if the Redis server is hosted on the same machine as the Node application.

The third parameter is an object that supports the following options:

parser
The Redis protocol reply parser; set by default to hiredis. You can also use java
script.

return_buffers
Defaults to false. If true, all replies are sent as Node buffer objects rather than
strings.

188 | Chapter 9: Structured Data with Node and Redis

http://redis.io/
http://memcached.org/
http://memcached.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://github.com/mranney/node_redis

detect_buffers
Defaults to false. If true, replies are sent as buffer objects if any input to the original
commands were buffers.

socket_nodelay
Defaults to true; specifies whether to call setNoDelay on TCP stream.

no_ready_check
Defaults to false. Set to true inhibits the “ready check” sent to server to check if
it is ready for more commands.

Use the default settings until you’re more comfortable with Node and Redis.

Once you have a client connection to the Redis data store, you can send commands to
the server until you call the client.quit method call, which closes the connection to
the Redis server. If you want to force a closure, you can use the client.end method
instead. However, the latter method doesn’t wait for all replies to be parsed. The
client.end method is a good one to call if your application is stuck or you want to start
over.

Issuing Redis commands through the client connection is a fairly intuitive process. All
commands are exposed as methods on the client object, and command arguments are
passed as parameters. Since this is Node, the last parameter is a callback function, which
returns an error and whatever data or reply is given in response to the Redis command.

In the following code, the client.hset method is used to set a hash property:

client.hset("hashid", "propname", "propvalue", function(err, reply) {
 // do something with error or reply
});

The hset command sets a value, so there’s no return data, only the Redis acknowledg-
ment. If you call a method that gets multiple values, such as client.hvals, the second
parameter in the callback function will be an array—either an array of single strings,
or an array of objects:

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

Because the Node callback is so ubiquitous, and because so many of the Redis com-
mands are operations that just reply with a confirmation of success, the redis module
provides a redis.print method you can pass as the last parameter:

client.set("somekey", "somevalue", redis.print);

Getting Started with Node and Redis | 189

The redis.print method prints either the error or the reply to the console and returns.

Now that you have an idea how the redis module works, it’s time to try it out with
actual applications.

Building a Game Leaderboard
One possible use for Redis is to create a game leaderboard. A leaderboard is a score-
keeping device for digital games on computers and handheld devices such as smart-
phones and tablets. A widely used one is OpenFeint, which allows game players to
create an online profile and then store scores for various games. Players can compete
among friends, or compete for the top score for any given game.

This is the type of application that can be served by a hybrid data solution. The profiles
could be stored in a relational data store, but the scores themselves could be stored in
a data store like Redis. The data needs for the scores are simple, and the score data is
accessed and modified frequently, and by large numbers of users. One game developer
for Facebook estimated it had 10,000 concurrent users, with 200,000 requests per mi-
nute during peak game times. However, the system to handle the requests doesn’t have
to be Herculean in nature, because the data isn’t complex, and transactional enforce-
ment really isn’t a necessity there. Frankly, a relational or document database is overkill.
A key/value data store like Redis is ideal.

The Redis hash and the sorted set are the most appropriate data structures for this type
of application. The hash is ideal because the information about each score is more than
just one or two fields. Typically, you’ll store a member ID, perhaps the player’s name
(to limit having to go back to the relational or document store that often), perhaps the
game name if the system provides leaderboards for more than one game, the last date
played, the score, and any other relevant information.

The sorted set is the best data structure for tracking just the scores and username, and
being able to quickly access the highest 10 or 100 scores.

To create the application that updates the Redis database, I converted the TCP client/
server application I created in Chapter 3 to send data from the TCP client to the server,
which then updates Redis. It wouldn’t be unusual for a gaming application to store the
data via TCP socket rather than HTTP or other means.

The TCP client takes whatever we type at the command line and sends it to the server.
The code is exactly the same as that shown in Example 3-3, so I won’t repeat it. When
I run the TCP client, unlike previous testing, instead of just sending through plain-text
messages, I send JSON representing the information being stored in the Redis database.
An example is the following:

{"member" : 400, "first_name" : "Ada", "last_name" : "Lovelace", "score" : 53455,
"date" : "10/10/1840"}

190 | Chapter 9: Structured Data with Node and Redis

The server is modified to convert the data string it receives into a JavaScript object, and
to access the individual members to store into a hash. The member identifier and score
are also added to a sorted set, with the game score used as the set score. Example 9-1
shows the modified TCP server application.

Example 9-1. TCP server that updates the Redis data store

var net = require('net');
var redis = require('redis');

var server = net.createServer(function(conn) {
 console.log('connected');

 // create Redis client
 var client = redis.createClient();

 client.on('error', function(err) {
 console.log('Error ' + err);
 });

 // fifth database is game score database
 client.select(5);
 conn.on('data', function(data) {
 console.log(data + ' from ' + conn.remoteAddress + ' ' +
 conn.remotePort);
 try {
 var obj = JSON.parse(data);

 // add or overwrite score
 client.hset(obj.member, "first_name", obj.first_name, redis.print);
 client.hset(obj.member, "last_name", obj.last_name, redis.print);
 client.hset(obj.member, "score", obj.score, redis.print);
 client.hset(obj.member, "date", obj.date, redis.print);

 // add to scores for Zowie!
 client.zadd("Zowie!", parseInt(obj.score), obj.member);
 } catch(err) {
 console.log(err);
 }
 });
 conn.on('close', function() {
 console.log('client closed connection');
 client.quit();
 });

}).listen(8124);

console.log('listening on port 8124');

The Redis connection is established when the server is created, and closed when the
server is closed. Another approach is to create a static client connection that persists
across requests, but this has disadvantages. For more on when to create the Redis client,
see the upcoming sidebar “When to Create the Redis Client” on page 200. The object

Building a Game Leaderboard | 191

conversion and persistence of the data to Redis is enclosed in exception handling to
prevent the server from failing if we fat-finger the input.

As mentioned earlier, two different data stores are being updated: the individual’s score
information (including name, score, and date) is stored in a hash, and the member ID
and score are stored in a sorted set. The member ID is used as the key in the hash, while
the game score is used as the score for the member ID in the sorted set. The critical
component to making the application work is the member ID appearing in both data
stores.

The next part of the application is a way of displaying the top five score holders of our
fictional game (named Zowie! in this exercise). In a sorted set, you can retrieve a range
of data by score using the Redis zrange command. However, this function returns the
range of values sorted from lowest to highest, which is the opposite of what we want.
What we want is to return the five highest scores, sorted by highest number first. The
Redis command to use is zrevrange.

To display the top five game players, this time we’ll create an HTTP server that will
return the results as a simple table list. To ensure a relatively decent display, we’re going
to use the Jade template system, but instead of using it with the Express framework—
since the gaming application isn’t based on Express—we’ll just use Jade by itself.

To use Jade outside of express, you read in the primary template file and then call the
compile method, passing in the template file string and options. The only option I’m
providing is filename, because in the template file I’m using the include directive, and
this requires filename. I’m actually using the template filename and location, but you’ll
want to use any filename that returns a directory location relative to the files included
in the Jade template.

As for the template itself, Example 9-2 has the contents of the Jade file. Note that I’m
using the include directive to embed the CSS directly in the file. Since I’m not utilizing
a static file server in this application, the application can’t serve up the CSS file if I just
embed a link to the CSS file. Also note the use of the pipe (|) with the style opening
and ending tags, which are in HTML rather than Jade syntax. That’s because Jade does
not process the include file if it’s listed within a style tag.

Example 9-2. Jade template file for displaying the five highest scores

doctype 5
html(lang="en")
 head
 title Zowie! Top Scores
 meta(charset="utf-8")
 | <style type="text/css">
 include main.css
 | </style>
 body
 table
 caption Zowie! Top Scorers!
 tr

192 | Chapter 9: Structured Data with Node and Redis

 th Score
 th Name
 th Date
 if scores.length
 each score in scores
 if score
 tr
 td #{score.score}
 td #{score.first_name} #{score.last_name}
 td #{score.date}

To render the template, the application reads in the template file (using a synchronous
file read, since this occurs only once, when the application is first started) and then uses
it to compile a template function:

var layout = require('fs').readFileSync(__dirname + '/score.jade', 'utf8');
var fn = jade.compile(layout, {filename: __dirname + '/score.jade'});

The compiled Jade function can then be used anytime you want to render the HTML
from the template, passing in whatever data the template is expecting:

 var str = fn({scores : result});
 res.end(str);

This will all make more sense when we see the complete server application, but for
now, let’s return to the Redis part of the application.

The top scores application is using two Redis calls: zrevrange to get a range of scores,
and hgetall to get all the hash fields for each member listed in the top scores. And this
is where things get a little tricky.

You can easily combine results from multiple tables when you’re using a relational
database, but the same doesn’t hold true when you’re accessing data from a key/value
data store such as Redis. It’s doable, but since this is a Node application, we have the
extra complexity of each Redis call being asynchronous.

This is where a library such as Async comes in handy. I covered Async in Chapter 5,
and demonstrated a couple of the Async methods (waterfall and parallel). One
method I didn’t demonstrate was series, which is the ideal function for our use here.
The Redis functions need to be called in order, so the data is returned in order, but
each interim step doesn’t need the data from previous steps. The Async parallel func-
tionality would run all the calls at once, which is fine, but then the results from each
are returned in a random order—not guaranteed to return highest score first. The
waterfall functionality isn’t necessary, because again, each step doesn’t need data from
the previous step. The Async series functionality ensures that each Redis hgetall call
is made in sequence and the data is returned in sequence, but takes into account that
each functional step doesn’t care about the others.

So we now have a way for the Redis commands to get called in order and ensure the
data is returned in proper sequence, but the code to do so is clumsy: we have to add a
separate step in the Async series for each hgetall Redis call and return the result once

Building a Game Leaderboard | 193

for each score returned. Working with 5 values isn’t a problem, but what if we want to
return 10? Or 100? Having to manually code each Redis call into the Async series is
going to become more than tedious—the code is error prone and difficult to maintain.

What the scores application does is loop through the array of values returned from the
zrevrange Redis call, passing each value as a parameter to a function named makeCall
backFunc. All this helper function does is return a callback function that invokes Redis
hgetall, using the parameter to get the data for a specific member, and then call the
callback function as the last line of its callback—an Async requirement for being able
to chain results. The callback function returned from makeCallbackFunc is pushed onto
an array, and it’s this array that gets sent as a parameter to the Async series method.
Additionally, since the redis module returns the hgetall result as an object, and the
Async series function inserts each object into an array as it finishes, when all of this
functionality is complete we can just take the final result and pass it into the template
engine to generate the text to return to the server.

Example 9-3 is the complete code for the top scores server application. Though it
sounds like a lot of work, there isn’t that much code, thanks to the elegance and usa-
bility of both the Redis and Async modules.

Example 9-3. The game top score service

var http = require('http');
var async = require('async');
var redis = require('redis');
var jade = require('jade');

// set up Jade template
var layout = require('fs').readFileSync(__dirname + '/score.jade', 'utf8');
var fn = jade.compile(layout, {filename: __dirname + '/score.jade'});

// start Redis client
var client = redis.createClient();

// select fifth database
client.select(5);

// helper function
function makeCallbackFunc(member) {
 return function(callback) {
 client.hgetall(member, function(err, obj) {
 callback(err,obj);
 });
 };
}
http.createServer(function(req,res) {

 // first filter out icon request
 if (req.url === '/favicon.ico') {
 res.writeHead(200, {'Content-Type': 'image/x-icon'});
 res.end();
 return;

194 | Chapter 9: Structured Data with Node and Redis

 }

 // get scores, reverse order, top five only
 client.zrevrange('Zowie!',0,4, function(err,result) {
 var scores;
 if (err) {
 console.log(err);
 res.end('Top scores not currently available, please check back');
 return;
 }

 // create array of callback functions for Async.series call
 var callFunctions = new Array();

 // process results with makeCallbackFunc, push newly returned
 // callback into array
 for (var i = 0; i < result.length; i++) {
 callFunctions.push(makeCallbackFunc(result[i]));
 }

 // using Async series to process each callback in turn and return
 // end result as array of objects
 async.series(
 callFunctions,
 function (err, result) {
 if (err) {
 console.log(err);
 res.end('Scores not available');
 return;
 }

 // pass object array to template engine
 var str = fn({scores : result});
 res.end(str);
 });
 });
}).listen(3000);

console.log('Server running on 3000/');

Before the HTTP server is created, we set up the Jade template function and also es-
tablish a running client to the Redis data store. When a new request is made of the
server, we filter out all requests for the favicon.ico file (no need to call Redis for a
favicon.ico request), and then access the top five scores using zrevrange. Once the ap-
plication has the scores, it uses the Async series method to process the Redis hash
requests one at a time and in sequence so it can get an ordered result back. This resulting
array is passed to the Jade template engine.

Figure 9-1 shows the application after I’ve added in several different scores for different
folks.

Building a Game Leaderboard | 195

Figure 9-1. The Zowie! game top scorers

Creating a Message Queue
A message queue is an application that takes as input some form of communication,
which is then stored into a queue. The messages are stored until they’re retrieved by
the message receiver, when they are popped off the queue and sent to the receiver (either
one at a time, or in bulk). The communication is asynchronous, because the application
that stores the messages doesn’t require that the receiver be connected, and the receiver
doesn’t require that the message-storing application be connected.

Redis is an ideal storage medium for this type of application. As the messages are re-
ceived by the application that stores them, they’re pushed on to the end of the message
queue. When the messages are retrieved by the application that receives them, they’re
popped off the front of the message queue.

For the message queue demonstration, I created a Node application to access the web
logfiles for several different subdomains. The application uses a Node child process
and the Unix tail -f command to access recent entries for the different logfiles. From
these log entries, the application uses two regular expression objects: one to extract the
resource accessed, and the second to test whether the resource is an image file. If the

196 | Chapter 9: Structured Data with Node and Redis

accessed resource is an image file, the application sends the resource URL in a TCP
message to the message queue application.

All the message queue application does is listen for incoming messages on port 3000,
and stores whatever is sent into a Redis data store.

The third part of the demonstration application is a web server that listens for requests
on port 8124. With each request, it accesses the Redis database and pops off the front
entry in the image data store, returning it via the response object. If the Redis database
returns a null for the image resource, it prints out a message that the application has
reached the end of the message queue.

The first part of the application, which processes the web log entries, is shown in
Example 9-4. The Unix tail command is a way of displaying the last few lines of a text
file (or piped data). When used with the -f flag, the utility displays a few lines of the
file and then sits, listening for new file entries. When one occurs, it returns the new
line. The tail -f command can be used on several different files at the same time, and
manages the content by labeling where the data comes from each time it comes from
a different source. The application isn’t concerned about which access log is generating
the latest tail response—it just wants the log entry.

Once the application has the log entry, it performs a couple of regular expression
matches on the data to look for image resource access (files with a .jpg, .gif, .svg,
or .png extension). If a pattern match is found, the application sends the resource URL
to the message queue application (a TCP server).

Example 9-4. Node application that processes web log entries, and sends image resource requests to
the message queue

var spawn = require('child_process').spawn;
var net = require('net');

var client = new net.Socket();
client.setEncoding('utf8');

// connect to TCP server
client.connect ('3000','examples.burningbird.net', function() {
 console.log('connected to server');
});

// start child process
var logs = spawn('tail', ['-f',
 '/home/main/logs/access.log',
 '/home/tech/logs/access.log',
 '/home/shelleypowers/logs/access.log',
 '/home/green/logs/access.log',
 '/home/puppies/logs/access.log']);

// process child process data
logs.stdout.setEncoding('utf8');
logs.stdout.on('data', function(data) {

Creating a Message Queue | 197

 // resource URL
 var re = /GET\s(\S+)\sHTTP/g;

 // graphics test
 var re2 = /\.gif|\.png|\.jpg|\.svg/;

 // extract URL, test for graphics
 // store in Redis if found
 var parts = re.exec(data);
 console.log(parts[1]);
 var tst = re2.test(parts[1]);
 if (tst) {
 client.write(parts[1]);
 }
});
logs.stderr.on('data', function(data) {
 console.log('stderr: ' + data);
});

logs.on('exit', function(code) {
 console.log('child process exited with code ' + code);
 client.end();
});

Typical console log entries for this application are given in the following block of code,
with the entries of interest (the image file accesses) in bold:

/robots.txt
/weblog
/writings/fiction?page=10
/images/kite.jpg
/node/145
/culture/book-reviews/silkworm
/feed/atom/
/images/visitmologo.jpg
/images/canvas.png
/sites/default/files/paws.png
/feeds/atom.xml

Example 9-5 contains the code for the message queue. It’s a simple application that
starts a TCP server and listens for incoming messages. When it receives a message, it
extracts the data from the message and stores it in the Redis database. The application
uses the Redis rpush command to push the data on the end of the images list (bolded
in the code).

Example 9-5. Message queue that takes incoming messages and pushes them onto a Redis list

var net = require('net');
var redis = require('redis');

var server = net.createServer(function(conn) {
 console.log('connected');

 // create Redis client
 var client = redis.createClient();

198 | Chapter 9: Structured Data with Node and Redis

 client.on('error', function(err) {
 console.log('Error ' + err);
 });

 // sixth database is image queue
 client.select(6);
 // listen for incoming data
 conn.on('data', function(data) {
 console.log(data + ' from ' + conn.remoteAddress + ' ' +
 conn.remotePort);

 // store data
 client.rpush('images',data);
 });

}).listen(3000);
server.on('close', function(err) {
 client.quit();
});

console.log('listening on port 3000');

The message queue application console log entries would typically look like the
following:

listening on port 3000
connected
/images/venus.png from 173.255.206.103 39519
/images/kite.jpg from 173.255.206.103 39519
/images/visitmologo.jpg from 173.255.206.103 39519
/images/canvas.png from 173.255.206.103 39519
/sites/default/files/paws.png from 173.255.206.103 39519

The last piece of the message queue demonstration application is the HTTP server that
listens on port 8124 for requests, shown in Example 9-6. As the HTTP server receives
each request, it accesses the Redis database, pops off the next entry in the images list,
and prints out the entry in the response. If there are no more entries in the list (i.e., if
Redis returns null as a reply), it prints out a message that the message queue is empty.

Example 9-6. HTTP server that pops off messages from the Redis list and returns to the user

var redis = require("redis"),
 http = require('http');

var messageServer = http.createServer();

// listen for incoming request
messageServer.on('request', function (req, res) {

 // first filter out icon request
 if (req.url === '/favicon.ico') {
 res.writeHead(200, {'Content-Type': 'image/x-icon'});
 res.end();
 return;

Creating a Message Queue | 199

 }

 // create Redis client
 var client = redis.createClient();

 client.on('error', function (err) {
 console.log('Error ' + err);
 });

 // set database to 1
 client.select(6);

 client.lpop('images', function(err, reply) {
 if(err) {
 return console.error('error response ' + err);
 }

 // if data
 if (reply) {
 res.write(reply + '\n');
 } else {
 res.write('End of queue\n');
 }
 res.end();
 });
 client.quit();

});

messageServer.listen(8124);

console.log('listening on 8124');

Accessing the HTTP server application with a web browser returns a URL for the image
resource on each request (browser refresh) until the message queue is empty.

When to Create the Redis Client
In the chapter examples, sometimes I create a Redis client and persist it for the life of
the application, while other times I create a Redis client and release it as soon as the
Redis command is finished. So when is it better to create a persistent Redis connection
versus create a connection and release it immediately?

Good question.

To test the impact of the two different approaches, I created a TCP server that listened
for requests and stored a simple hash in the Redis database. I then created another
application, as a TCP client, that did nothing more than send an object in a TCP mes-
sage to the server.

I used the ApacheBench application to run several concurrent iterations of the client
and tested how long it took for each run. I ran the first batch with the Redis client

200 | Chapter 9: Structured Data with Node and Redis

connection persisted for the life of the server, and ran the second batch where the client
connection was created for each request and immediately released.

What I expected to find was that the application that persisted the client connection
was faster, and I was right...to a point. About halfway through the test with the per-
sistent connection, the application slowed down dramatically for a brief period of time,
and then resumed its relatively fast pace.

Of course, what most likely happened is that the queued requests for the Redis database
eventually blocked the Node application, at least temporarily, until the queue was freed
up. I didn’t run into this same situation when opening and closing the connections with
each request, because the extra overhead required for this process slowed the applica-
tion just enough so that it didn’t hit the upper end of concurrent users.

I’ll have more on this test, as well as other tests with ApacheBench and other perfor-
mance and debugging tools, in Chapter 14 and Chapter 16.

Adding a Stats Middleware to an Express Application
The creator of Redis originally intended to use the technology to create a statistics
application. It’s an ideal use for Redis: a simple data store, quickly and frequently
written, and providing the ability to summarize an activity.

In this section, we’re going to use Redis to add statistics for the widget application we
started in earlier chapters. The statistics are limited to two collections: a set of all IP
addresses that have accessed pages from the widget application, and the number of
times different resources have been accessed. To create this functionality, we make use
of a Redis set and the ability to increment numeric strings. Our application also uses
the Redis transaction control, multi, to get the two separate data collections at the same
time.

The first step of the application is to add new middleware that records access infor-
mation to the Redis database. The middleware function uses a Redis set and the sadd
method to add each IP address, because a set ensures that an existing value isn’t re-
corded twice. We’re collecting a set of IP addresses for visitors, but we’re not keeping
track of each time the visitor accesses a resource. The function is also using one of the
Redis incremental functions, but not incr, which increments a string; instead, it uses
hincrby, because the resource URL and its associated access counter are stored as a
hash.

Example 9-7 displays the code for the middleware, located in a file named stats.js. The
second Redis database is used for the application, the IPs are stored in a set identified
by ip, and the URL/access counter hash is stored in a hash identified by myurls.

Example 9-7. The Redis stats middleware

var redis = require('redis');

Adding a Stats Middleware to an Express Application | 201

module.exports = function getStats() {

 return function getStats(req, res, next) {
 // create Redis client
 var client = redis.createClient();

 client.on('error', function (err) {
 console.log('Error ' + err);
 });

 // set database to 2
 client.select(2);

 // add IP to set
 client.sadd('ip',req.socket.remoteAddress);

 // increment resource count
 client.hincrby('myurls',req.url, 1);

 client.quit();
 next();
 }
}

The statistics interface is accessed at the top-level domain, so we’ll add the code for the
router to the index.js file in the routes subdirectory.

First, we need to add the route to the main application file, just after the route for the
top-level index:

app.get('/', routes.index);

app.get('/stats',routes.stats);

The controller code for the statistic application makes use of the Redis transaction
control, accessible via the multi function call. Two sets of data are accessed: the set of
unique IP addresses, returned by smembers, and the URL/count hash, returned with
hgetall. Both functions are invoked, in sequence, when the exec method is called, and
both sets of returned data are appended as array elements in the exec function’s callback
method, as shown in Example 9-8. Once the data is retrieved, it’s passed in a render
call to a new view, named stats. The new functionality for the index.js file appears in
bold text.

Example 9-8. The routes index file with the new controller code for the statistics application

var redis = require('redis');

// home page
exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

// stats

202 | Chapter 9: Structured Data with Node and Redis

exports.stats = function(req, res){

 var client = redis.createClient();

 client.select(2);

 // Redis transaction to gather data
 client.multi()
 .smembers('ip')
 .hgetall('myurls')
 .exec(function(err, results) {
 var ips = results[0];
 var urls = results[1];
 res.render('stats',{ title: 'Stats', ips : ips, urls : urls});
 client.quit();
 });
};

I mentioned that multi and exec are Redis transaction control commands. These aren’t
the same type of transaction controls you’re probably used to with a relational database.
All the multi command does is collect a set of Redis commands that are then processed
sequentially when the exec command is given. This type of functionality is useful in the
Node world because it provides a way of getting multiple collections of data that are
all returned at the exact same time—no need for nested callback functions or having
to use something like Step or Async to get all the data at once.

Having said that, don’t let the fact that the Redis commands are seemingly chained
together fool you into thinking that the data from one command is then available in
the next, as can happen with JavaScript functions that are chained together. Each Redis
command is processed in isolation, and the data is just added as an array element in
the result, and everything is returned at once.

There’s no locking the data down during the transaction, either, as
you’d also expect with a relational database transaction. So any changes
to the Redis database during the query can impact the results.

The last piece of the application is the view, created as a Jade template. The template
is very simple: the IP addresses displayed in an unordered list, and the URL/counter
statistics displayed in a table. The Jade for...in syntax is used to loop through the IP
array, while the each...in syntax is used to access the property names and values of
the object that’s returned with the Redis hgetall. The template is shown
in Example 9-9.

Adding a Stats Middleware to an Express Application | 203

Example 9-9. The Jade template for the stats application

extends layout

block content
 h1= title

 h2 Visitor IP Addresses
 ul
 for ip in ips
 li=ip

 table
 caption Page Visits
 each val, key in urls
 tr
 td #{key}
 td #{val}

Figure 9-2 shows the statistics page after several widget application resource pages have
been accessed from a couple of different IP addresses.

Figure 9-2. The statistics page enabled by Redis

We don’t have to first create the hash when using hincrby. If the hash key doesn’t exist,
Redis creates it automatically and sets the value to 0 before the value is incremented.

204 | Chapter 9: Structured Data with Node and Redis

The only time the functionality fails is if the field already exists and the value in the
field isn’t a numeric string (i.e., can’t be incremented).

Another approach to incrementing a counter for each resource is to use Redis strings,
and set the resource URL to be the key:

client.incr(url);

However, this approach means we would have to get all the keys (the URLs), and then
get the counters for each URL. We can’t necessarily accomplish all of this using
multi, and because of the asynchronous nature of accessing the data, we’d end up
having to use nested callbacks or some other approach to pull all this data together.

There’s no need to go through all of that extra effort when we have built-in functionality
via the Redis hash and the hincrby command.

Adding a Stats Middleware to an Express Application | 205

CHAPTER 10

Node and MongoDB: Document-
Centric Data

Chapter 9 covered one popular NoSQL database structure (key/value pairs via Redis),
and this chapter covers another: document-centric data stores via MongoDB.

Where MongoDB differs from relational database systems, such as MySQL, is in its
support for storing structured data as documents, rather than implementing the more
traditional tables. These documents are encoded as BSON, a binary form of JSON,
which probably explains its popularity among JavaScript developers. Instead of a table
row, you have a BSON document; instead of a table, you have a collection.

MongoDB isn’t the only document-centric database. Other popular versions of this
type of data store are CouchDB by Apache, SimpleDB by Amazon, RavenDB, and even
the venerable Lotus Notes. There is some Node support of varying degrees for most
modern document data stores, but MongoDB and CouchDB have the most. I decided
to cover MongoDB rather CouchDB for the same reasons I picked Express over other
frameworks: I feel it’s easier for a person with no exposure to the secondary technology
(in this case, the data store) to be able to grasp the Node examples without having to
focus overmuch on the non-Node technology. With MongoDB, we can query the data
directly, whereas with CouchDB, we work with the concept of views. This higher level
of abstraction does require more up-front time. In my opinion, you can hit the ground
running faster with MongoDB than CouchDB.

There are several modules that work with MongoDB, but I’m going to focus on two:
the MongoDB Native Node.js Driver (a driver written in JavaScript), and Mongoose,
an object modeling tool providing ORM (object-relational mapping) support.

Though I won’t get into too many details in this chapter about how
MongoDB works, you should be able to follow the examples even if you
have not worked with the database system previously. There’s more on
MongoDB, including installation help, at http://www.mongodb.org/.

207

http://www.mongodb.org/

The MongoDB Native Node.js Driver
The MongoDB Native Node.js Driver module is a native MongoDB driver for Node.
Using it to issue MongoDB instructions is little different from issuing these same in-
structions into the MongoDB client interface.

The node-mongodb-native GitHub page is at https://github.com/mon
godb/node-mongodb-native, and documentation is at http://mongodb.git
hub.com/node-mongodb-native/.

After you have installed MongoDB (following the instructions outlined at the Mon-
goDB website) and started a database, install the MongoDB Native Node.js Driver with
npm:

npm install mongodb

Before trying out any of the examples in the next several sections, make sure MongoDB
is installed locally, and is running.

If you’re already using MongoDB, make sure to back up your data before
trying out the examples in this chapter.

Getting Started with MongoDB
To use the MongoDB driver, you first have to require the module:

var mongodb = require('mongodb');

To establish a connection to MongoDB, use the mongodb.Server object constructor:

var server = new mongodb.Server('localhost',:27017, {auto_reconnect: true});

All communication with the MongoDB occurs over TCP. The server constructor
accepts the host and port as the first two parameters—in this case, the default
localhost and port 27017. The third parameter is a set of options. In the code, the
auto_reconnect option is set to true, which means the driver attempts to reestablish a
connection if it’s lost. Another option is poolSize, which determines how many TCP
connections are maintained in parallel.

MongoDB uses one thread per connection, which is why the database
creators recommend that developers use connection pooling.

208 | Chapter 10: Node and MongoDB: Document-Centric Data

https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
http://mongodb.github.com/node-mongodb-native/
http://mongodb.github.com/node-mongodb-native/

Once you have a connection to MongoDB, you can create a database or connect to an
existing one. To create a database, use the mongodb.Db object constructor:

var db = new mongdb.Db('mydb', server);

The first parameter is the database name, and the second is the MongoDB server con-
nection. A third parameter is an object with a set of options. The default option values
are sufficient for the work we’re doing in this chapter, and the MongoDB driver doc-
umentation covers the different values, so I’ll skip repeating them in this chapter.

If you’ve not worked with MongoDB in the past, you may notice that the code doesn’t
have to provide username and password authentication. By default, MongoDB runs
without authentication. When authentication isn’t enabled, the database has to run in
a trusted environment. This means that MongoDB allows connections only from trus-
ted hosts, typically only the localhost address.

Defining, Creating, and Dropping a MongoDB Collection
MongoDB collections are fundamentally equivalent to relational database tables, but
without anything that even closely resembles a relational database table.

When you define a MongoDB collection, you can specify if you want a collection object
to actually be created at that time, or only after the first row is added. Using the Mon-
goDB driver, the following code demonstrates the difference between the two; the first
statement doesn’t create the actual collection, and the second does:

db.collection('mycollection', function(err, collection{});
db.createCollection('mycollection', function(err, collection{});

You can pass an optional second parameter to both methods, {safe : true}, which
instructs the driver to issue an error if the collection does not exist when used with
db.collection, and an error if the collection already exists if used with db.cre
ateCollection:

db.collection('mycollection', {safe : true}, function (err, collection{});
db.createCollection('mycollection', {safe : true}, function(err, collection{});

If you use db.createCollection on an existing collection, you’ll just get access to the
collection—the driver won’t overwrite it. Both methods return a collection object in
the callback function, which you can then use to add, modify, or retrieve document
data.

If you want to completely drop the collection, use db.dropCollection:

db.dropCollection('mycollection', function(err, result){});

Note that all of these methods are asynchronous, and are dependent on nested callbacks
if you want to process the commands sequentially. This is demonstrated more fully in
the next section, where we’ll add data to a collection.

The MongoDB Native Node.js Driver | 209

Adding Data to a Collection
Before getting into the mechanics of adding data to a collection, and looking at fully
operational examples, I want to take a moment to discuss data types. More specifically,
I want to repeat what the MongoDB driver mentions about data types, because the use
of JavaScript has led to some interesting negotiations between the driver and the
MongoDB.

Table 10-1 shows the conversions between the data types supported by MongoDB and
their JavaScript equivalents. Note that most conversions occur cleanly—no potentially
unexpected effects. Some, though, do require some behind-the-scenes finagling that
you should be aware of. Additionally, some data types are provided by the MongoDB
Native Node.js Driver, but don’t have an equivalent value in MongoDB. The driver
converts the data we provide into data the MongoDB can accept.

Table 10-1. Node.js MongoDB driver to MongoDB data type mapping

MongoDB type JavaScript type Notes/examples

JSON array Array [1,2,3] [1,2,3].

string String utf8 encoded.

boolean Boolean true or false.

integer Number MongoDB supports 32- and 64-bit numbers; JavaScript numbers are 64-bit floats.
The MongoDB driver attempts to fit the value into 32 bits; if it fails, it promotes
to 64 bits; if this fails, it promotes to the Long class.

integer Long class The Long class provides full 64-bit integer support.

float Number

float Double class Special class representing a float value.

Date Date

Regular expression RegExp

null null

Object Object

Object id ObjectID class Special class that holds a MongoDB document identifier.

Binary data Binary class Class to store binary data.

 Code class Class to store the JavaScript function and score for the method to run in.

 DbRef class Class to store reference to another document.

 Symbol class Specify a symbol (not specific to JavaScript, for languages that use symbols).

Once you have a reference to a collection, you can add documents to it. The data is
structured as JSON, so you can create a JSON object and then insert it directly into the
collection.

210 | Chapter 10: Node and MongoDB: Document-Centric Data

To demonstrate all of the code to this point, in addition to adding data to a collection,
Example 10-1 creates a first collection (named Widgets) in MongoDB and then adds
two documents. Since you might want to run the example a couple of times, it first
removes the collection documents using the remove method. The remove method takes
three optional parameters:

• Selector for the document(s); if none is provided, all documents are removed

• An optional safe mode indicator, safe {true | {w:n, wtimeout:n} | {fsync:true},
default:false}

• A callback function (required if safe mode indicator is set to true)

In the example, the application is using a safe remove, passing in null for the first
parameter (as a parameter placeholder, ensuring that all documents are removed) and
providing a callback function. Once the documents are removed, the application inserts
two new documents, with the second insert using safe mode. The application prints to
the console the result of the second insert.

The insert method also takes three parameters: the document or documents being
inserted, an options parameter, and the callback function. You can insert multiple
documents by enclosing them in an array. The options for insert are:

Safe mode
safe {true | {w:n, wtimeout:n} | {fsync:true}, default:false}

keepGoing
Set to true to have application continue if one of the documents generates an error

serializeFunctions
Serialize functions on the document

The method calls are asynchronous, which means there’s no guarantee that the first
document is inserted before the second. However, it shouldn’t be a problem with the
widget application—at least not in this example. Later in the chapter, we’ll look more
closely at some of the challenges of working asynchronously with database
applications.

Example 10-1. Creating/opening a database, removing all documents, and adding two new documents

var mongodb = require('mongodb');

var server = new mongodb.Server('localhost', 27017, {auto_reconnect: true});
var db = new mongodb.Db('exampleDb', server);

// open database connection
db.open(function(err, db) {
 if(!err) {

 // access or create widgets collection
 db.collection('widgets', function(err, collection) {

 // remove all widgets documents

The MongoDB Native Node.js Driver | 211

 collection.remove(null,{safe : true}, function(err, result) {
 if (!err) {
 console.log('result of remove ' + result);

 // create two records
 var widget1 = {title : 'First Great widget',
 desc : 'greatest widget of all',
 price : 14.99};
 var widget2 = {title : 'Second Great widget',
 desc : 'second greatest widget of all',
 price : 29.99};

 collection.insert(widget1);

 collection.insert(widget2, {safe : true}, function(err, result) {
 if(err) {
 console.log(err);
 } else {
 console.log(result);

 //close database
 db.close();
 }
 });
 }
 });
 });
 }
});

The output to the console after the second insert is a variation on:

[{ title: 'Second Great widget',
 desc: 'second greatest widget of all',
 price: 29.99,
 _id: 4fc108e2f6b7a3e252000002 }]

The MongoDB generates a unique system identifier for each document. You can access
documents with this identifier at a future time, but you’re better off adding a more
meaningful identifier—one that can be determined easily by context of use—for each
document.

As mentioned earlier, we can insert multiple documents at the same time by providing
an array of documents rather than a single document. The following code demonstrates
how both widget records can be inserted in the same command. The code also incor-
porates an application identifier with the id field:

 // create two records
 var widget1 = {id: 1, title : 'First Great widget',
 desc : 'greatest widget of all',
 price : 14.99};
 var widget2 = {id: 2, title : 'Second Great widget',
 desc : 'second greatest widget of all',
 price : 29.99};

212 | Chapter 10: Node and MongoDB: Document-Centric Data

 collection.insert([widget1,widget2], {safe : true},
 function(err, result) {
 if(err) {
 console.log(err);
 } else {
 console.log(result);

 // close database
 db.close();
 }
 });

If you do batch your document inserts, you’ll need to set the keepGoing option to
true to be able to keep inserting documents even if one of the insertions fails. By default,
the application stops if an insert fails.

Querying the Data
There are four methods of finding data in the MongoDB Native Node.js Driver:

find
Returns a cursor with all the documents returned by the query

findOne
Returns a cursor with the first document found that matches the query

findAndRemove
Finds a document and then removes it

findAndModify
Finds a document and then performs an action (such as remove or upsert)

In this section, I’ll demonstrate collection.find and collection.findOne, and reserve
the other two methods for the next section, “Using Updates, Upserts, and Find and
Remove” on page 217.

Both collection.find and collection.findOne support three arguments: the query,
options, and a callback. The options object and the callback are optional, and the list
of possible options to use with both methods is quite extensive. Table 10-2 shows all
the options, their default setting, and a description of each.

Table 10-2. Find options

Option Default value Description

limit Number, default of 0 Limits the number of documents returned (0 is no limit).

sort Array of indexes Set to sort the documents returning from query.

fields Object Fields to return in the query. Use the property name and a value of 1 to include,
or 0 to exclude; that is, {'prop' : 1} or {'prop' : 0}, but not both.

skip Number, default of 0 Skip n documents (useful for pagination).

hint Object Tell the database to use specific indexes, {'_id' : 1}.

The MongoDB Native Node.js Driver | 213

Option Default value Description

explain Boolean, default is false Explain the query instead of returning data.

snapshot Boolean, default is false Snapshot query (MongoDB journaling must be enabled).

timeout Boolean, default is false Cursor can time out.

tailable Boolean, default is false Cursor is tailable (only on capped collections, allowing resumption of retrieval,
similar to Unix tail command).

batchSize Number, default is 0 batchSize for the getMoreCommand when iterating over results.

returnKey Boolean, default is false Only return the index key.

maxScan Number Limit the number of items that can be scanned.

min Number Set index bounds.

max Number Set index bounds.

showDiskLoc Boolean, default is false Show the disk location of results.

comment String Add a comment to the query for profiler logs.

raw Boolean, default is false Return BSON results as raw buffer documents.

read Boolean, default is false Direct the query to a secondary server.

The options allow for a great deal of flexibility with queries, though most queries will
most likely need only a few of them. I’ll cover some of the options in the examples, but
I recommend you try the others with your example MongoDB installation.

The simplest query for all documents in the collection is to use the find method without
any parameters. You immediately convert the results to an array using toArray, passing
in a callback function that takes an error and an array of documents. Example 10-2
shows the application that performs this functionality.

Example 10-2. Inserting four documents and then retrieving them with the find method

var mongodb = require('mongodb');

var server = new mongodb.Server('localhost', 27017, {auto_reconnect: true});
var db = new mongodb.Db('exampleDb', server);

// open database connection
db.open(function(err, db) {
 if(!err) {

 // access or create widgets collection
 db.collection('widgets', function(err, collection) {

 // remove all widgets documents
 collection.remove(null,{safe : true}, function(err, result) {
 if (!err) {
 // create four records
 var widget1 = {id: 1, title : 'First Great widget',
 desc : 'greatest widget of all',
 price : 14.99, type: 'A'};

214 | Chapter 10: Node and MongoDB: Document-Centric Data

 var widget2 = {id: 2, title : 'Second Great widget',
 desc : 'second greatest widget of all',
 price : 29.99, type: 'A'};
 var widget3 = {id: 3, title: 'third widget', desc: 'third widget',
 price : 45.00, type: 'B'};
 var widget4 = {id: 4, title: 'fourth widget', desc: 'fourth widget',
 price: 60.00, type: 'B'};

 collection.insert([widget1,widget2,widget3,widget4], {safe : true},
 function(err, result) {
 if(err) {
 console.log(err);
 } else {

 // return all documents
 collection.find().toArray(function(err, docs) {
 console.log(docs);

 //close database
 db.close();
 });
 }
 });
 }
 });
 });
 }
});

The result printed out to the console shows all four newly added documents, with their
system-generated identifiers:

[{ id: 1,
 title: 'First Great widget',
 desc: 'greatest widget of all',
 price: 14.99,
 type: 'A',
 _id: 4fc109ab0481b9f652000001 },
 { id: 2,
 title: 'Second Great widget',
 desc: 'second greatest widget of all',
 price: 29.99,
 type: 'A',
 _id: 4fc109ab0481b9f652000002 },
 { id: 3,
 title: 'third widget',
 desc: 'third widget',
 price: 45,
 type: 'B',
 _id: 4fc109ab0481b9f652000003 },
 { id: 4,
 title: 'fourth widget',
 desc: 'fourth widget',
 price: 60,

The MongoDB Native Node.js Driver | 215

 type: 'B',
 _id: 4fc109ab0481b9f652000004 }]

Rather than return all of the documents, we can provide a selector. In the following
code, we’re querying all documents that have a type of A, and returning all the fields
but the type field:

// return all documents
collection.find({type:'A'},{fields:{type:0}}).toArray(function(err, docs) {
 if(err) {
 console.log(err);
 } else {
 console.log(docs);

 //close database
 db.close();
 }
});

The result of this query is:

[{ id: 1,
 title: 'First Great widget',
 desc: 'greatest widget of all',
 price: 14.99,
 _id: 4f7ba035c4d2204c49000001 },
 { id: 2,
 title: 'Second Great widget',
 desc: 'second greatest widget of all',
 price: 29.99,
 _id: 4f7ba035c4d2204c49000002 }]

We can also access only one document using findOne. The result of this query does not
have to be converted to an array, and can be accessed directly. In the following, the
document with an ID of 1 is queried, and only the title is returned:

 // return one document
 collection.findOne({id:1},{fields:{title:1}}, function(err, doc) {
 if (err) {
 console.log(err);
 } else {
 console.log(doc);

 //close database
 db.close();
 }
 });

The result from this query is:

{ title: 'First Great widget', _id: 4f7ba0fcbfede06649000001 }

The system-generated identifier is always returned with the query results.

Even if I modified the query to return all documents with a type of A (there are two),
only one is returned with the collection.findOne method. Changing the limit in the

216 | Chapter 10: Node and MongoDB: Document-Centric Data

options object won’t make a difference: the method always returns one document if
the query is successful.

Using Updates, Upserts, and Find and Remove
The MongoDB Native Node.js Driver supports several different methods that either
modify or remove an existing document—or both, in the case of one method:

update
Either updates or upserts (adds if doesn’t exist) a document

remove
Removes a document

findAndModify
Finds and modifies or removes a document (returning the modified or removed
document)

findAndRemove
Finds and removes a document (returning the removed document)

The basic difference between update/remove and findAndModify/findAndRemove is that
the latter set of methods returns the affected document.

The functionality to use these methods is not very different from what we saw with the
inserts. You’ll have to open a database connection, get a reference to the collection
you’re interested in, and then perform the operations.

If the MongoDB currently contains the following document:

{ id : 4,
 title: 'fourth widget',
 desc: 'fourth widget'.
 price: 60.00,
 type: 'B'}

and you want to modify the title, you can use the update method to do so, as shown
in Example 10-3. You can supply all of the fields, and MongoDB does a replacement
of the document, but you’re better off using one of the MongoDB modifiers, such as
$set. The $set modifier instructs the database to just modify whatever fields are passed
as properties to the modifier.

Example 10-3. Updating a MongoDB document

var mongodb = require('mongodb');

var server = new mongodb.Server('localhost', 27017, {auto_reconnect: true});
var db = new mongodb.Db('exampleDb', server);

// open database connection
db.open(function(err, db) {
 if(!err) {

The MongoDB Native Node.js Driver | 217

 // access or create widgets collection
 db.collection('widgets',function(err, collection) {

 //update
 collection.update({id:4},
 {$set : {title: 'Super Bad Widget'}},
 {safe: true}, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 // query for updated record
 collection.findOne({id:4}, function(err, doc) {
 if(!err) {
 console.log(doc);

 //close database
 db.close();
 }
 });
 }
 });
 });
 }
});

The resulting document now displays the modified fields.

You can use $set with multiple fields.

There are additional modifiers that provide other atomic data updates of interest:

$inc
Increments a field’s value by a specified amount

$set
Sets a field, as demonstrated

$unset
Deletes a field

$push
Appends a value to the array if the field is an array (converts it to an array if it wasn’t)

$pushAll
Appends several values to an array

$addToSet
Adds to an array only if the field is an array

218 | Chapter 10: Node and MongoDB: Document-Centric Data

$pull
Removes a value from an array

$pullAll
Removes several values from an array

$rename
Renames a field

$bit
Performs a bitwise operation

So why don’t we just remove the document and insert a new one, rather than use a
modifier? Because although we had to provide all of the user-defined fields, we don’t
have to provide the system-generated identifier. This value remains constant with the
update. If the system-generated identifier is stored as a field in another document, say
a parent document, removing the document will leave the reference to the original
document orphaned in the parent.

Though I don’t cover the concept of trees (complex parent/child data
structures) in this chapter, the MongoDB website has documentation
on them.

More importantly, the use of modifiers ensures that the action is performed in place,
providing some assurance that one person’s update won’t overwrite another’s.

Though we used none in the example, the update method takes four options:

• safe for a safe update

• upsert, a Boolean set to true if an insert should be made if the document doesn’t
exist (default is false)

• multi, a Boolean set to true if all documents that match the selection criteria should
be updated

• serializeFunction to serialize functions on the document

If you’re unsure whether a document already exists in the database, set the upsert
option to true.

Example 10-3 did a find on the modified record to ensure that the changes took effect.
A better approach would be to use findAndModify. The parameters are close to what’s
used with the update, with the addition of a sort array as the second parameter. If
multiple documents are returned, updates are performed in sort order:

 //update
 collection.findAndModify({id:4}, [[ti]],
 {$set : {title: 'Super Widget', desc: 'A really great widget'}},
 {new: true}, function(err, doc) {
 if (err) {

The MongoDB Native Node.js Driver | 219

 console.log(err);
 } else {
 console.log(doc);DB
 }
 db.close();
 });

You can use the findAndModify method to remove a document if you use the remove
option. If you do, no document is returned in the callback function. You can also use
the remove and the findAndRemove methods to remove the document. Earlier examples
have used remove, without a selector, to remove all the documents before doing an
insert. To remove an individual document, provide a selector:

 collection.remove({id:4},
 {safe: true}, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }

The result is the number of documents removed (in this case, 1). To see the document
being removed, use findAndRemove:

 collection.findAndRemove({id:3}, [['id',1]],
 function(err, doc) {
 if (err) {
 console.log(err);
 } else {
 console.log(doc);
 }

I’ve covered the basic CRUD (create, read, update, delete) operations you can perform
from a Node application with the Native driver, but there are considerably more ca-
pabilities, including working with capped collections, indexes, and the other MongoDB
modifiers; sharding (partitioning data across machines); and more. The Native driver
documentation covers all of these and provides good examples.

The examples demonstrate some of the challenges associated with handling data access
in an asynchronous environment, discussed more fully in the sidebar “Challenges of
Asynchronous Data Access” on page 220.

Challenges of Asynchronous Data Access
One of the challenges with asynchronous development and data access is the level of
nesting necessary to ensure that one operation is finished before another is started. In
the last several sections, you had a chance to see how quickly the callback functions
nest, just by performing a few simple operations—access the MongoDB, get a reference
to a collection, perform an operation, and verify that it took place.

The MongoDB Native Node.js Driver documentation contains instances where the
example developers used a timer to make sure a previous function was finished before
performing the next. You’re not going to want to use this approach. To avoid the

220 | Chapter 10: Node and MongoDB: Document-Centric Data

problems with heavily nested callback functions, you can use either named functions,
or one of the asynchronous modules, such as Step and Async.

The best approach of all is to ensure that you’re doing the minimum functionality
necessary in each method that’s updating the MongoDB database. If you’re having a
hard time preventing nested callbacks and the application is difficult to convert using
a module like Async, chances are, you are doing too much. In that case, you need to
look for opportunities to break down a complex multiple database operation function
into manageable units.

Asynchronous programming rewards simplicity.

Implementing a Widget Model with Mongoose
The MongoDB Native Node.js Driver provides a binding to the MongoDB, but doesn’t
provide a higher-level abstraction. For this, you’ll need to use an ODM (object-
document mapping) like Mongoose.

The Mongoose website is at http://mongoosejs.com/.

To use Mongoose, install it with npm:

npm install mongoose

Instead of issuing commands directly against a MongoDB database, you define objects
using the Mongoose Schema object, and then sync it with the database using the
Mongoose model object:

var Widget = new Schema({
 sn : {type: String, require: true, trim: true, unique: true},
 name : {type: String, required: true, trim: true},
 desc : String,
 price : Number
});

var widget = mongoose.model('Widget', Widget);

When we define the object, we provide information that controls what happens to that
document field at a later time. In the code just provided, we define a Widget object with
four explicit fields: three of type String, and one of type Number. The sn and name fields
are both required and trimmed, and the sn field must be unique in the document
database.

The collection isn’t made at this point, and won’t be until at least one document is
created. When we do create it, though, it’s named widgets—the widget object name is
lowercased and pluralized.

Implementing a Widget Model with Mongoose | 221

http://mongoosejs.com/

Anytime you need to access the collection, you make the same call to the
mongoose.model.

This code is the first step in adding the final component to the Model-View-Controller
(MVC) widget implementation started in earlier chapters. In the next couple of sections,
we’ll finish the conversion from an in-memory data store to MongoDB. First, though,
we need to do a little refactoring on the widget application.

Refactoring the Widget Factory
Refactoring is the process of restructuring existing code in such a way as to clean up
the cruft behind the scenes with minimal or no impact on the user interface. Since we’re
converting the widget application over to a MongoDB database, now is a good time to
see what other changes we want to make.

Currently, the filesystem structure for the widget application is:

/application directory
 /routes - home directory controller
 /controllers - object controllers
 /public - static files
 /widgets
 /views - template files
 /widgets

The routes subdirectory provides top-level (non-business-object) functionality. The
name isn’t very meaningful, so I renamed it to main. This necessitated some minor
modifications to the primary app.js file as follows:

// top level
app.get('/', main.index);

app.get('/stats', main.stats);

Next, I added a new subdirectory named models. The MongoDB model definitions are
stored in this subdirectory, as the controller code is in the controllers subdirectory. The
directory structure now looks like the following:

/application directory
 /main - home directory controller
 /controllers - object controllers
 /public - static files
 /widgets
 /views - template files
 /widgets

The next change to the application is related to the structure of the data. Currently, the
application’s primary key is an ID field, system-generated but accessible by the user via
the routing system. To show a widget, you’d use a URL like the following:

http://localhost:3000/widgets/1

222 | Chapter 10: Node and MongoDB: Document-Centric Data

http://localhost:3000/widgets/1

This isn’t an uncommon approach. Drupal, a popular content management system
(CMS), uses this approach for accessing Drupal nodes (stories) and users, unless a
person uses a URL redirection module:

http://burningbird.net/node/78

The problem is that MongoDB generates an identifier for each object, and uses a format
that makes it unattractive for routing. There is a workaround—which requires creating
a third collection that contains an identifier, and then using it to take the place of the
identifier—but the approach is ugly, counter to MongoDB’s underlying structure, and
not especially doable with Mongoose.

The widget title field is unique, but has spaces and characters that make it unattractive
as a routing URL. Instead, we define a new field, sn, which is the new serial number
for the product. When a new widget object is created, the user assigns whatever serial
number she wants for the product, and the serial number is used when we access the
widget at a later time. If the widget serial number is 1A1A, for example, it’s accessed with:

http://localhost:3000/widgets/1A1A

The new data structure, from an application point of view, is:

sn: string
title: string
desc: string
price: number

This modification necessitates some changes to the user interface, but they’re worth-
while. The Jade templates also need to be changed, but the change is minor: basically
replacing references to id with references to sn, and adding a field for serial number to
any form.

Rather than duplicate all the code again to show minor changes, I’ve
made the examples available at O’Reilly’s catalog page for this book
(http://oreilly.com/catalog/9781449323073); you’ll find all of the new
widget application files in the chap12 subdirectory.

The more significant change is to the controller code in the widget.js file. The changes
to this file, and others related to adding a MongoDB backend, are covered in the next
section.

Adding the MongoDB Backend
The first necessary change is to add a connection to the MongoDB database. It’s added
to the primary app.js file, so the connection persists for the life of the application.

First, Mongoose is included into the file:

 var mongoose = require('mongoose');

Implementing a Widget Model with Mongoose | 223

http://burningbird.net/node/78
http://localhost:3000/widgets/1A1A
http://oreilly.com/catalog/9781449323073

Then the database connection is made:

// MongoDB
mongoose.connect('mongodb://127.0.0.1/WidgetDB');

mongoose.connection.on('open', function() {
 console.log('Connected to Mongoose');
});

Notice the URI for the MongoDB. The specific database is passed as the last part of the
URI.

This change and the aforementioned change converting routes to main are all the
changes necessary for app.js.

The next change is to maproutecontroller.js. The routes that reference id must be
changed to now reference sn. The modified routes are shown in the following code
block:

 // show
 app.get(prefix + '/:sn', prefixObj.show);

 // edit
 app.get(prefix + '/:sn/edit', prefixObj.edit);

 // update
 app.put(prefix + '/:sn', prefixObj.update);

 // destroy
 app.del(prefix + '/:sn', prefixObj.destroy);

If we don’t make this change, the controller code expects sn as a parameter but gets
id instead.

The next code is an addition, not a modification. In the models subdirectory, a new file
is created, named widgets.js. This is where the widget model is defined. To make the
model accessible outside the file, it’s exported, as shown in Example 10-4.

Example 10-4. The new widget model definition

var mongoose = require('mongoose');

var Schema = mongoose.Schema
 ,ObjectId = Schema.ObjectId;

// create Widget model
var Widget = new Schema({
 sn : {type: String, require: true, trim: true, unique: true},
 name : {type: String, required: true, trim: true},
 desc : String,
 price : Number
});

module.exports = mongoose.model('Widget', Widget);

224 | Chapter 10: Node and MongoDB: Document-Centric Data

The last change is to the widget controller code. We’re swapping out the in-memory
data store for MongoDB, using a Mongoose model. Though the change is significant
from a processing perspective, the code modification isn’t very extensive—just a few
tweaks, having as much to do with changing id to sn as anything else. Example 10-5
contains the complete code for the widget controller code.

Example 10-5. The newly modified widget controller code

var Widget = require('../models/widget.js');

// index listing of widgets at /widgets/
exports.index = function(req, res) {
 Widget.find({}, function(err, docs) {
 console.log(docs);
 res.render('widgets/index', {title : 'Widgets', widgets : docs});
 });
};

// display new widget form
exports.new = function(req, res) {
 console.log(req.url);
 var filePath = require('path').normalize(__dirname +
 "/../public/widgets/new.html");
 res.sendfile(filePath);
};

// add a widget
exports.create = function(req, res) {

 var widget = {
 sn : req.body.widgetsn,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc: req.body.widgetdesc};

 var widgetObj = new Widget(widget);

 widgetObj.save(function(err, data) {
 if (err) {
 res.send(err);
 } else {
 console.log(data);
 res.render('widgets/added', {title: 'Widget Added', widget: widget});
 }
 });
};

// show a widget
exports.show = function(req, res) {
 var sn = req.params.sn;
 Widget.findOne({sn : sn}, function(err, doc) {
 if (err)
 res.send('There is no widget with sn of ' + sn);
 else

Implementing a Widget Model with Mongoose | 225

 res.render('widgets/show', {title : 'Show Widget', widget : doc});
 });
};

// delete a widget
exports.destroy = function(req, res) {
 var sn = req.params.sn;

 Widget.remove({sn : sn}, function(err) {
 if (err) {
 res.send('There is no widget with sn of ' + sn);
 } else {
 console.log('deleted ' + sn);
 res.send('deleted ' + sn);
 }
 });
};

// display edit form
exports.edit = function(req, res) {
 var sn = req.params.sn;
 Widget.findOne({sn : sn}, function(err, doc) {
 console.log(doc);
 if(err)
 res.send('There is no widget with sn of ' + sn);
 else
 res.render('widgets/edit', {title : 'Edit Widget', widget : doc});
 });
};

// update a widget
exports.update = function(req, res) {
 var sn = req.params.sn;
 var widget = {
 sn : req.body.widgetsn,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc};

 Widget.update({sn : sn}, widget, function(err) {
 if (err)
 res.send('Problem occured with update' + err)
 else
 res.render('widgets/added', {title: 'Widget Edited', widget : widget})
 });
};

Now the widget application’s data is persisted to a database, rather than disappearing
every time the application is shut down. And the entire application is set up in such a
way that we can add support for new data entities with minimal impact on the stable
components of the application.

226 | Chapter 10: Node and MongoDB: Document-Centric Data

The widget application in the examples for this chapter builds on pre-
vious chapter work. This means you’ll need to start a Redis server, in
addition to MongoDB, for the application to work correctly.

Implementing a Widget Model with Mongoose | 227

CHAPTER 11

The Node Relational Database
Bindings

In traditional web development, relational databases are the most popular means of
data storage. Node, perhaps because of the type of applications it attracts, or perhaps
because it attracts uses that fit outside the traditional development box, doesn’t follow
this pattern: there is a lot more support for data applications such as Redis and Mon-
goDB than there is for relational databases.

There are some relational database modules you can use in your Node applications,
but they may not be as complete as you’re used to with database bindings in languages
such as PHP and Python. In my opinion, the Node modules for relational databases
are not yet production ready.

On the positive side, though, the modules that do support relational databases are quite
simple to use. In this chapter I’m going to demonstrate two different approaches to
integrating a relational database, MySQL, into Node applications. One approach uses
mysql (node-mysql), a popular JavaScript MySQL client. The other approach uses db-
mysql, which is part of the new node-db initiative to create a common framework for
database engines from Node applications. The db-mysql module is written in C++.

Neither of the modules mentioned currently supports transactions, but mysql-series
has added this type of functionality to node-mysql. I’ll provide a quick demonstration
on this, and also offer a brief introduction to Sequelize, an ORM (object-relational
mapping) library that works with MySQL.

There are a variety of relational databases, including SQL Server, Oracle, and SQLite.
I’m focusing on MySQL because there are installations available for Windows and Unix
environments, it’s free for noncommercial use, and it’s the most commonly used da-
tabase with applications most of us have used. It’s also the relational database with the
most support in Node.

The test database used in the chapter is named nodetest2, and it contains one table
with the following structure:

229

id - int(11), primary key, not null, autoincrement
title - varchar(255), unique key, not null
text - text, nulls allowed
created - datetime, nulls allowed

Getting Started with db-mysql
The db-mysql Node module is a native module, and requires installation of the MySQL
client libraries on your system. Check with http://nodejsdb.org/db-mysql/ for installation
and setup instructions.

Once your environment is set up, you can install db-mysql with npm:

npm install db-mysql

The db-mysql module provides two classes to interact with the MySQL database. The
first is the database class, which you use to connect and disconnect from the database
and do a query. The query class is what’s returned from the database query method.
You can use the query class to create a query either through chained methods repre-
senting each component of the query, or directly using a query string; db-mysql is very
flexible.

Results, including any error, are passed in the last callback function for any method.
You can use nested callbacks to chain actions together, or use the EventEmitter event
handling in order to process both errors and database command results.

When creating the database connection to a MySQL database, you can pass several
options that influence the created database. You’ll need to provide, at minimum, a
hostname or a port or a socket, and a user, password, and database name:

var db = new mysql.Database({
 hostname: 'localhost',
 user: 'username',
 password: 'userpass',
 database: 'databasenm'
});

The options are detailed in the db-mysql documentation, as well as in the MySQL
documentation.

Using Query String or Chained Methods
To demonstrate db-mysql’s flexibility, the application in Example 11-1 connects to a
database and runs the same query twice: the first using the query class chained methods,
the second using a string query. The first query processes the result in a nested callback
function, while the second listens for the success and error events and responds
accordingly. In both cases, the result is returned in the rows object, which returns an
array of objects representing each row of data.

230 | Chapter 11: The Node Relational Database Bindings

http://nodejsdb.org/db-mysql/

Example 11-1. Demonstrating db-mysql’s flexibility by showing two different query styles

var mysql = require('db-mysql');

// define database connection
var db = new mysql.Database({
 hostname: 'localhost',
 user: 'username',
 password: 'userpass',
 database: 'databasenm'
});

// connect
db.connect();

db.on('error', function(error) {
 console.log("CONNECTION ERROR: " + error);
});

// database connected
db.on('ready', function(server) {

 // query using chained methods and nested callback
 this.query()
 .select('*')
 .from('nodetest2')
 .where('id = 1')
 .execute(function(error, rows, columns) {
 if (error) {
 return console.log('ERROR: ' + error);
 }
 console.log(rows);
 console.log(columns);
 });

 // query using direct query string and event
 var qry = this.query();

 qry.execute('select * from nodetest2 where id = 1');

 qry.on('success', function(rows, columns) {
 console.log(rows); // print out returned rows
 console.log(columns); // print out returns columns
 });
 qry.on('error', function(error) {
 console.log('Error: ' + error);
 });
});

The database object emits a ready event once the database is connected, or error if
there’s a problem with making the connection. The server object passed as a parameter
for the callback function to the ready event contains the following properties:

hostname
The database hostname

Getting Started with db-mysql | 231

user
The user used for the database connection

database
The database connected to

version
Server software version

The first query in the examples makes use of the query class chained methods that form
each component of the query. The chained methods you can use for a SQL query are:

select
Contains the query’s selection criteria—such as a list of column names or asterisk
(*) for all columns—or the select string

from
Contains an array of table names, or the string used in the from statement

join
A join clause consisting of an options object looking for a type of join, a table to
join with, an alias for table (if any), joining conditions (if any), and whether to
escape the table and alias names (defaults to true)

where
Conditional statement, which may contain placeholders and other chained meth-
ods representing the and and or conditions

order
Appends an ORDER BY clause

limit
Appends a LIMIT clause

add
Adds a generic clause, such as a UNION

The chained methods provide a more database-neutral approach to performing the
same SQL statements. Right now, the Node.js database drivers support MySQL (db-
mysql), and Drizzle (db-drizzle). The chained methods handle any variations between
the two. The chained methods also automatically handle any escaping of the data in
the SQL statement that’s necessary for safe usage. Otherwise, if using a straight query,
you’ll have to use the query.escape method to properly escape the SQL.

The query object emits a success event if the query is successful, or an error. It also
emits an each event for each row returned from the query. If the success event is for a
query that returns rows, the callback function gets both a rows and a columns object.
Each row is an array, with each array element containing an object made up of column
name/value pairs. The columns object represents the columns that are part of the result,
and each column object contains the column name and type. If the test table in the

232 | Chapter 11: The Node Relational Database Bindings

example has a table with columns of id, title, text, and created, the rows object would
look like:

{ id: 1,
 title: 'this is a nice title',
 text: 'this is a nice text',
 created: Mon, 16 Aug 2010 09:00:23 GMT }

The columns object would look like:

[{ name: 'id', type: 2 },
 { name: 'title', type: 0 },
 { name: 'text', type: 1 },
 { name: 'created', type: 6 }]

If the success event is for a query that performs an update, delete, or insert, the success
event callback function receives a result object as a parameter. I’ll cover this object in
more detail in the next section.

Though the queries are each handled using different approaches, both have to be im-
plemented within the database’s success event callback function. Since db-mysql is
Node functionality, the methods are asynchronous. If you tried to do one of the queries
outside of the database connect callback function, it wouldn’t succeed because the
database connection won’t be established at that point.

Updating the Database with Direct Queries
As noted, the db-mysql module provides two different ways to update the data in the
relational database: a direct query, or using chained methods. We’ll first look at just
using a direct query.

When using a direct query, you can use the same SQL you’d use in a MySQL client:

 qry.execute('update nodetest2 set title = "This is a better title" where id = 1');

Or you can make use of placeholders:

qry.execute('update nodetest2 set title = ? where id = ?',
 ["This was a better title", 1]);

Placeholders can be used either with a direct query string or with the chained methods.
Placeholders are a way of creating the query string ahead of time and then just passing
in whatever values are needed. The placeholders are represented by question marks
(?) in the string, and each value is given as an array element in the second parameter to
the method.

The result of the operation being performed on the database is reflected in the parameter
returned in the callback for the success event. In Example 11-2, a new row is inserted
into the test database. Note that it makes use of the MySQL NOW function to set the
created field with the current date and time. When using a MySQL function, you’ll
need to place it directly into the query string—you can’t use a placeholder.

Getting Started with db-mysql | 233

Example 11-2. Using placeholders in the query string

var mysql = require('db-mysql');

// define database connection
var db = new mysql.Database({
 hostname: 'localhost',
 user: 'username',
 password: 'userpass',
 database: 'databasenm'
});

// connect
db.connect();

db.on('error', function(error) {
 console.log("CONNECTION ERROR: " + error);
});

// database connected
db.on('ready', function(server) {

 // query using direct query string and event
 var qry = this.query();

 qry.execute('insert into nodetest2 (title, text, created) values(?,?,NOW())',
 ['Third Entry','Third entry in series']);

 qry.on('success', function(result) {
 console.log(result);
 });

 qry.on('error', function(error) {
 console.log('Error: ' + error);
 });
});

If the operation is successful, the following result is returned as a parameter in the
callback function:

{ id: 3, affected: 1, warning: 0 }

The id is the generated identifier for the table row; the affected property shows the
number of rows affected by the change (1), and the warning displays how many warnings
the query generated for the rows (in this case, 0).

Database table row updates and deletions are handled in the same manner: either use
the exact syntax you’d use in a MySQL client, or use placeholders. Example 11-3 adds
a new record to the test database, updates the title, and then deletes the same record.
You’ll notice I created a different query object for each query. Though you can run the
same query multiple times, each query does have its own arguments—including the
number of arguments it expects each time the query is run. I used four replacement

234 | Chapter 11: The Node Relational Database Bindings

values in the insert, but if I tried to use only two in the update, I’d get an error. The
application also makes use of nested callbacks rather than event capturing.

Example 11-3. Inserting, updating, and deleting a record using nested callbacks

var mysql = require('db-mysql');

// define database connection
var db = new mysql.Database({
 hostname: 'localhost',
 user: 'username',
 password: 'password',
 database: 'databasenm'
});

// connect
db.connect();

db.on('error', function(error) {
 console.log("CONNECTION ERROR: " + error);
});

// database connected
db.on('ready', function(server) {

 // query using direct query string and nested callbacks
 var qry = this.query();

 qry.execute('insert into nodetest2 (title, text,created) values(?,?,NOW())',
 ['Fourth Entry','Fourth entry in series'], function(err,result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);

 var qry2 = db.query();
 qry2.execute('update nodetest2 set title = ? where id = ?',
 ['Better title',4], function(err,result) {
 if(err) {
 console.log(err);
 } else {
 console.log(result);
 var qry3 = db.query();
 qry3.execute('delete from nodetest2 where id = ?',[4],
 function(err, result) {
 if(err) {
 console.log(err);
 } else {
 console.log(result);
 }
 });
 }
 });
 }

Getting Started with db-mysql | 235

 });
});

One thing you might notice from the example is there’s no way to roll back previous
SQL statements if an error occurs in any of them. At this time, there is no transaction
management in db-mysql. If you need to ensure database consistency, you’ll have to
provide it yourself in your application. You can do this by checking for an error after
each SQL statement is executed, and then reversing previous successful operation(s) if
a failure occurs. It’s not an ideal situation, and you’ll have to be careful about the use
of any autoincrementing.

Transaction support of a kind is supported in another module, mysql-
queues, which is covered a little later in the chapter.

Updating the Database with Chained Methods
The db-mysql methods to insert, update, and delete a record are insert, update, and
delete, respectively. Both the update and delete chained methods can also make use
of the where method, which can in turn make use of the conditional chained methods
of and and or. The update method can also use another chained method, set, to set
values for the SQL statement.

Example 11-4 duplicates the functionality from Example 11-3, but uses chained meth-
ods for the insert and update methods. It does not use the chained method for the
delete, because at the time this book was written, the delete method did not work
correctly.

Example 11-4. Using chained methods to insert a new record and then update it

var mysql = require('db-mysql');

// define database connection
var db = new mysql.Database({
 hostname: 'localhost',
 user: 'username',
 password: 'password',
 database: 'databasenm'
});

// connect
db.connect();

db.on('error', function(error) {
 console.log("CONNECTION ERROR: " + error);
});

// database connected
db.on('ready', function(server) {

236 | Chapter 11: The Node Relational Database Bindings

 // query using direct query string and nested callbacks
 var qry = this.query();
 qry.insert('nodetest2',['title','text','created'],
 ['Fourth Entry', 'Fourth entry in series', 'NOW()'])
 .execute(function(err,result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);

 var qry2 = db.query();
 qry2.update('nodetest2')
 .set({title: 'Better title'})
 .where('id = ?',[4])
 .execute(function(err, result) {
 if(err) {
 console.log(err);
 } else {
 console.log(result);
 }
 });
 }
 });
});

I’m not overfond of the chained methods, though I think they’re handy if you’re bring-
ing in data from an application, or if your application may support multiple databases.

Native JavaScript MySQL Access with node-mysql
Unlike with db-mysql, you don’t need to install specialized MySQL client software to
work with node-mysql. You just need to install the module, and you’re good to go:

npm install mysql

The native driver is quite simple to use. You create a client connection to the MySQL
database, select the database to use, and use this same client to do all database opera-
tions via the query method. A callback function can be passed as the last parameter in
the query method, and provides information related to the last operation. If no callback
function is used, you can listen for events to determine when processes are finished.

Basic CRUD with node-mysql
As just stated, the node-mysql API is extremely simple: create the client, set the data-
base, and send SQL statements as queries on the client. The callback functions are
optional, and there is some minimal event support. When you’re using a callback, the
parameters are typically an error and a result, though in the case of a SELECT query, the
callback also has a fields parameter.

Native JavaScript MySQL Access with node-mysql | 237

Example 11-5 demonstrates how to use node-mysql to connect to the widget database,
create a new record, update it, and delete it. This example, as simple as it is, demon-
strates all the functionality that node-mysql supports.

Example 11-5. Demonstration of CRUD with node-mysql

var mysql = require('mysql');

var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

// create
client.query('INSERT INTO nodetest2 ' +
 'SET title = ?, text = ?, created = NOW()',
 ['A seventh item', 'This is a seventh item'], function(err, result) {
 if (err) {
 console.log(err);
 } else {
 var id = result.insertId;
 console.log(result.insertId);

 // update
 client.query('UPDATE nodetest2 SET ' +
 'title = ? WHERE ID = ?', ['New title', id], function (err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result.affectedRows);

 // delete
 client.query('DELETE FROM nodetest2 WHERE id = ?',
 [id], function(err, result) {
 if(err) {
 console.log(err);
 } else {

 console.log(result.affectedRows);

 // named function rather than nested callback
 getData();
 }
 });
 }
 });
 }
});

// retrieve data
function getData() {
 client.query('SELECT * FROM nodetest2 ORDER BY id', function(err, result,fields) {
 if(err) {

238 | Chapter 11: The Node Relational Database Bindings

 console.log(err);
 } else {
 console.log(result);
 console.log(fields);
 }
 client.end();
 });
}

The query results are what we’d expect: an array of objects, each representing one row
from the table. The following is an example of the output, representing the first returned
row:

[{ id: 1,
 title: 'This was a better title',
 text: 'this is a nice text',
 created: Mon, 16 Aug 2010 15:00:23 GMT },
 ...]

The fields parameter also matches our expectations, though the format can differ from
other modules. Rather than an array of objects, what’s returned is an object where each
table field is an object property, and its value is an object representing information
about the field. I won’t duplicate the entire output, but the following is the information
returned for the first field, id:

{ id:
 { length: 53,
 received: 53,
 number: 2,
 type: 4,
 catalog: 'def',
 db: 'nodetest2',
 table: 'nodetest2',
 originalTable: 'nodetest2',
 name: 'id',
 originalName: 'id',
 charsetNumber: 63,
 fieldLength: 11,
 fieldType: 3,
 flags: 16899,
 decimals: 0 }, ...

The module doesn’t support multiple SQL statements concatenated onto each other,
and it doesn’t support transactions. The only way to get a close approximation to
transaction support is with mysql-queues, discussed next.

MySQL Transactions with mysql-queues
The mysql-queues module wraps the node-mysql module and provides support for
multiple queries as well as database transaction support. Its use may be a little odd,
especially since it provides asynchronous support without seeming to do so.

Native JavaScript MySQL Access with node-mysql | 239

Typically, to ensure that asynchronous functions have finished, you’d use nested call-
backs, named functions, or a module like Async. In Example 11-6, though, mysql-
queues controls the flow of execution, ensuring that the SQL statements that are queued
—via the use of the queue—are finished before the final SELECT is processed. The SQL
statements are completed in order: insert, update, and then the final retrieve.

Example 11-6. Using a queue to control the flow of SQL statement execution

var mysql = require('mysql');
var queues = require('mysql-queues');

// connect to database
var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

//associated queues with query
// using debug
queues(client, true);

// create queue
q = client.createQueue();

// do insert
q.query('INSERT INTO nodetest2 (title, text, created) ' +
 'values(?,?,NOW())',
 ['Title for 8', 'Text for 8']);

// update
q.query('UPDATE nodetest2 SET title = ? WHERE title = ?',
 ['New Title for 8','Title for 8']);

q.execute();

// select won't work until previous queries finished
client.query('SELECT * FROM nodetest2 ORDER BY ID', function(err, result, fields) {
 if (err) {
 console.log(err);
 } else {

 // should show all records, including newest
 console.log(result);
 client.end();
 }
});

If you want transactional support, you’ll need to start a transaction rather than a queue.
And you’ll need to use a rollback when an error occurs, as well as a commit when you’re
finished with the transaction. Again, once you call execute on the transaction,
any queries following the method call are queued until the transaction is

240 | Chapter 11: The Node Relational Database Bindings

finished. Example 11-7 contains the same application as in Example 11-6, but this time
using a transaction.

Example 11-7. Using a transaction to provide greater control over SQL updates

var mysql = require('mysql');
var queues = require('mysql-queues');

// connect to database
var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

//associated queues with query
// using debug
queues(client, true);

// create transaction
var trans = client.startTransaction();
// do insert
trans.query('INSERT INTO nodetest2 (title, text, created) ' +
 'values(?,?,NOW())',
 ['Title for 8', 'Text for 8'], function(err,info) {

 if (err) {
 trans.rollback();
 } else {
 console.log(info);

 // update
 trans.query('UPDATE nodetest2 SET title = ? WHERE title = ?',
 ['Better Title for 8','Title for 8'], function(err,info) {
 if(err) {
 trans.rollback();
 } else {
 console.log(info);
 trans.commit();
 }
 });
 }
});
trans.execute();

// select won't work until transaction finished
client.query('SELECT * FROM nodetest2 ORDER BY ID', function(err, result, fields) {
 if (err) {
 console.log(err);
 } else {

 // should show all records, including newest
 console.log(result);
 client.end();

Native JavaScript MySQL Access with node-mysql | 241

 }
});

The mysql-queues adds two important components to the node-mysql module:

• Support for multiple queries without having to use a nested callback

• Transaction support

If you’re going to use node-mysql, I strongly recommend you incorporate the use of
mysql-queues.

ORM Support with Sequelize
The modules in the previous sections provide a database binding for MySQL, but they
don’t provide a higher level of abstraction. The Sequelize module does just that with
an ORM, though it doesn’t currently support transactions.

Defining a Model
To use Sequelize, you define the model, which is a mapping between the database
table(s) and JavaScript objects. In our previous examples, we worked with a simple
table, nodetest2, with the following structure:

id - int(11), primary key, not null
title - varchar(255), unique key, not null
text - text, nulls allowed,
created - datetime, nulls allowed

You create the model for this database table using the appropriate database and flags
for each field:

// define model
var Nodetest2 = sequelize.define('nodetest2',
 {id : {type: Sequelize.INTEGER, primaryKey: true},
 title : {type: Sequelize.STRING, allowNull: false, unique: true},
 text : Sequelize.TEXT,
 created : Sequelize.DATE
 });

The supported data types and their mappings are:

• Sequelize.STRING => VARCHAR(255)

• Sequelize.TEXT => TEXT

• Sequelize.INTEGER => INTEGER

• Sequelize.DATE => DATETIME

• Sequelize.FLOAT => FLOAT

• Sequelize.BOOLEAN => TINYINT(1)

242 | Chapter 11: The Node Relational Database Bindings

The options you can use to further refine the fields are:

type
Data type of field

allowNull
false to allow nulls; true by default

unique
true to prevent duplicate values; false by default

primaryKey
true to set primary key

autoIncrement
true to automatically increment field

The likelihood is that your application and database are new, so once you define the
model, you need to sync it with the database to create the database table:

// sync
Nodetest2.sync().error(function(err) {
 console.log(err);
});

When you do so, and examine the table in the database, you’ll find that the table and
the model are different because of changes Sequelize makes to the table. For one, it’s
now called nodetest2s, and for another, there are two new table fields:

id - int(11), primary key, autoincrement
title - varchar(255), unique key, nulls not allowed
text - text, nulls allowed
created - datetime, nulls allowed
createdAt - datetime, nulls not allowed
updatedAt - datetime, nulls not allowed

These are changes that Sequelize makes, and there’s no way to prevent it from making
them. You’ll want to adjust your expectations accordingly. For starters, you’ll want to
drop the column created, since you no longer need it. You can do this using Sequelize
by deleting the field from the class and then running the sync again:

// define model
var Nodetest2 = sequelize.define('nodetest2',
 {id : {type: Sequelize.INTEGER, primaryKey: true},
 title : {type: Sequelize.STRING, allowNull: false, unique: true},
 text : Sequelize.TEXT,
 });

// sync
Nodetest2.sync().error(function(err) {
 console.log(err);
});

Now you have a JavaScript object representing the model that also maps to a relational
database table. Next, you need to add some data to the table.

ORM Support with Sequelize | 243

Using CRUD, ORM Style
The differences between using a MySQL database binding and using an ORM continue.
You don’t insert a database row when using an ORM; rather, you build a new object
instance and save it. The same is true when you update: you don’t update via SQL; you
either modify a property directly or you use updateAttributes, passing in an object with
the changed properties. You also don’t delete a row from a database; you access an
object instance and then destroy it.

To demonstrate how all these work together, Example 11-8 creates the model, syncs
with the database (which creates the table if it doesn’t already exist), and then creates
a new instance and saves it. After the new instance is created, it’s updated twice. All
the objects are retrieved and the contents displayed before the recently added object
instance is destroyed.

Example 11-8. CRUD using Sequelize

var Sequelize = require('sequelize');

var sequelize = new Sequelize('databasenm',
 'username', 'password',
 { logging: false});

// define model
var Nodetest2 = sequelize.define('nodetest2',
 {id : {type: Sequelize.INTEGER, primaryKey: true},
 title : {type: Sequelize.STRING, allowNull: false, unique: true},
 text : Sequelize.TEXT,
 });

// sync
Nodetest2.sync().error(function(err) {
 console.log(err);
});

var test = Nodetest2.build(
 { title: 'New object',
 text: 'Newest object in the data store'});
// save record
test.save().success(function() {

 // first update
 Nodetest2.find({where : {title: 'New object'}}).success(function(test) {
 test.title = 'New object title';
 test.save().error(function(err) {
 console.log(err);
 });
 test.save().success(function() {

 // second update
 Nodetest2.find(
 {where : {title: 'New object title'}}).success(function(test) {
 test.updateAttributes(

244 | Chapter 11: The Node Relational Database Bindings

 {title: 'An even better title'}).success(function() {});
 test.save().success(function() {

 // find all
 Nodetest2.findAll().success(function(tests) {
 console.log(tests);

 // find new object and destroy
 Nodetest2.find({ where: {title: 'An even better title'}}).
 success(function(test) {
 test.destroy().on('success', function(info) {
 console.log(info);
 });
 });
 });
 });
 })
 });
 });
});

When printing out the results of the findAll, you might be surprised at how much data
you’re getting back. Yes, you can access the properties directly from the returned value,
first by accessing the array entry, and then accessing the value:

tests[0].id; // returns identifier

But the other data associated with this new object completes the demonstrations show-
ing that you’re not in the world of relational database bindings anymore. Here’s an
example of one returned object:

[{ attributes: ['id', 'title', 'text', 'createdAt', 'updatedAt'],
 validators: {},
 __factory:
 { options: [Object],
 name: 'nodetest2',
 tableName: 'nodetest2s',
 rawAttributes: [Object],
 daoFactoryManager: [Object],
 associations: {},
 validate: {},
 autoIncrementField: 'id' },
 __options:
 { underscored: false,
 hasPrimaryKeys: false,
 timestamps: true,
 paranoid: false,
 instanceMethods: {},
 classMethods: {},
 validate: {},
 freezeTableName: false,
 id: 'INTEGER NOT NULL auto_increment PRIMARY KEY',
 title: 'VARCHAR(255) NOT NULL UNIQUE',
 text: 'TEXT',

ORM Support with Sequelize | 245

 createdAt: 'DATETIME NOT NULL',
 updatedAt: 'DATETIME NOT NULL' },
 id: 14,
 title: 'A second object',
 text: 'second',
 createdAt: Sun, 08 Apr 2012 20:58:54 GMT,
 updatedAt: Sun, 08 Apr 2012 20:58:54 GMT,
 isNewRecord: false },...

Adding Several Objects Easily
Sequelize’s asynchronous nature is definitely obvious from Example 10-8. Normally,
the issue of nested callbacks won’t be a problem because you won’t be performing so
many operations in a row—except if you’re adding several new object instances. In that
case, you can run into problems with the nested callbacks.

Luckily, Sequelize provides a simple way of chaining queries so that you can do some-
thing such as creating many new object instances and saving them all at once. The
module provides a chainer helper where you can add EventEmitter tasks (such as a
query), one after the other, and they won’t be executed until you call run. Then the
results of all operations are returned, either as a success or an error.

Example 11-9 demonstrates the chainer helper by adding three new object instances
and then running a findAll on the database when the instances have been successfully
saved.

Example 11-9. Using a chainer to simplify adding multiple object instances

var Sequelize = require('sequelize');

var sequelize = new Sequelize('databasenm',
 'username', 'password',
 { logging: false});

// define model
var Nodetest2 = sequelize.define('nodetest2',
 {id : {type: Sequelize.INTEGER, primaryKey: true},
 title : {type: Sequelize.STRING, allowNull: false, unique: true},
 text : Sequelize.TEXT,
 });

// sync
Nodetest2.sync().error(function(err) {
 console.log(err);
});
var chainer = new Sequelize.Utils.QueryChainer;
chainer.add(Nodetest2.create({title: 'A second object',text: 'second'}))
 .add(Nodetest2.create({title: 'A third object', text: 'third'}));

chainer.run()
 .error(function(errors) {
 console.log(errors);
 })

246 | Chapter 11: The Node Relational Database Bindings

 .success(function() {
 Nodetest2.findAll().success(function(tests) {
 console.log(tests);
 });
 });

This is much simpler, and much easier to read, too. Plus the approach makes it simpler
to work with a user interface or an MVC application.

There is much more about Sequelize at the module’s documentation website, including
how to deal with associated objects (relations between tables).

Overcoming Issues Related to Going from Relational to ORM
When working with an ORM, you’ll need to keep in mind that it makes certain as-
sumptions about the data structure. One is that if the model object is named something
like Widget, the database table is widgets. Another is an assumption that the table con-
tains information about when a row is added or updated. However, many ORMs also
know that both assumptions may not be met by an existing database system being
converted from using a straight database binding to using an ORM.

One real issue with Sequelize is that it pluralizes the table names, no matter what you
do. So if you define a model for the table, it wants to pluralize the model name for the
table name. Even when you provide a table name, Sequelize wants to pluralize it. This
isn’t an issue when you don’t have the database table, because a call to sync automat-
ically creates the table. This is an issue if you’re using an existing relational database—
enough of an issue that I strongly recommend against using the module with anything
other than a brand-new application.

ORM Support with Sequelize | 247

CHAPTER 12

Graphics and HTML5 Video

Node provides numerous opportunities to work with several different graphics appli-
cations and libraries. Since it’s a server technology, your applications can make use of
any server-based graphics software, such as ImageMagick or GD. However, since it’s
also based on the same JavaScript engine that runs the Chrome browser, you can work
with client-side graphics applications, such as Canvas and WebGL, too.

Node also has some support for serving up audio and video files via the new HTML5
media capabilities present in all modern browsers. Though we have limited capabilities
with working directly with video and audio, we can serve files of both types, as we’ve
seen in previous chapters. We can also make use of server-based technologies, such as
FFmpeg.

No chapter on web graphics would be complete without mentioning PDFs at least once.
Happily for those of us who make use of PDF documents in our websites, we have
access to a very nice PDF generation Node module, as well as access to various helpful
PDF tools and libraries installed on the server.

I’m not going to exhaustively cover every form of graphics or media implementation
and management capability from Node. For one, I’m not familiar with all of them, and
for another, some of the support is still very primitive, or the technologies can be ex-
tremely resource intensive. Instead, I’ll focus on more stable technologies that make
sense for a Node application: basic photo manipulation with ImageMagick, HTML5
video, working with and creating PDFs, and creating/streaming images created with
Canvas.

Creating and Working with PDFs
Operating systems, versions of HTML, and development technologies may come and
go, but one constant is the ubiquitous PDF. Regardless of the type of application or
service you’re creating, there’s a good chance you’ll need to provide PDF documents.
And as Doctor Who would say, PDFs are cool.

249

You have a couple of options for working with PDFs from a Node application. One
approach is to use a Node child process to access an operating system tool, such as the
PDF Toolkit or wkhtmltopdf directly on Linux. Another approach is to use a module,
such as the popular PDFKit. Or you can use always use both.

Accessing PDF Tools with Child Processes
Though there are few command-line tools to manipulate PDFs in the Windows world,
there are several available for Linux and OS X. Fortunately, two I’ve worked with, PDF
Toolkit and wkhtmltopdf, can be installed and accessed in all three environments.

Taking page snapshots with wkhtmltopdf

The wkhtmltopdf utility is a way of converting HTML into a PDF file using the WebKit
rendering engine. It’s a particularly handy way of taking a snapshot of a website,
graphics and all. Some sites provide the ability to generate a PDF of content, but fre-
quently do so by stripping out all the graphics. The wkhtmltopdf tool preserves the
appearance of the page.

There are installation versions of this utility for OS X and Windows, and you can also
download the source code for building in a Unix environment. If you’re running the
application on your server, you’ll need to do some tweaks first, because of its X Win-
dows dependency.

To work with wkhtmltopdf in my system (Ubuntu), I had to install supporting libraries:

apt-get install openssl build-essential xorg libssl-dev

Then I had to install a tool (xvfb) that allows wkhtmltopdf to run headless in a virtual
X server (bypassing the X Windows dependency):

apt-get install xvfb

Next, I created a shell script, named wkhtmltopdf.sh, to wrap the wkhtmltopdf in xvfb.
It contains one line:

xvfb-run -a -s "-screen 0 640x480x16" wkhtmltopdf $*

I then moved the shell script to /usr/bin, and changed permissions with chmod a+x. Now
I’m ready to access wkhtmltopdf from my Node applications.

The wkhtmltopdf tool supports a large number of options, but I’m going to demon-
strate how to use the tool simply from a Node application. On the command line, the
following takes a URL to a remote web page and then generates a PDF using all default
settings (using the shell script version):

wkhtmltopdf.sh http://remoteweb.com/page1.html page1.pdf

To implement this in Node, we need to use a child process. For extensibility, the
application should also take the name of the input URL, as well as the output file. The
entire application is in Example 12-1.

250 | Chapter 12: Graphics and HTML5 Video

Example 12-1. Simple Node application that wraps wkhtmltopdf

var spawn = require('child_process').spawn;

// command line arguments
var url = process.argv[2];
var output = process.argv[3];

if (url && output) {
 var wkhtmltopdf = spawn('wkhtmltopdf.sh', [url, output]);

 wkhtmltopdf.stdout.setEncoding('utf8');
 wkhtmltopdf.stdout.on('data', function (data) {
 console.log(data);
 });

 wkhtmltopdf.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
 });

 wkhtmltopdf.on('exit', function (code) {
 console.log('child process exited with code ' + code);
 });
} else {
 console.log('You need to provide a URL and output file name');
}

You typically wouldn’t use wkhtmltopdf in a Node application by itself, but it can be
a handy addition to any website or application that wants to provide a way to create a
persistent PDF of a web page.

Accessing data about a PDF file with PDF Toolkit

PDF Toolkit, or pdftk, provides functionality to split apart (burst) a PDF document or
merge several documents into one. It can also be used to fill a PDF form, apply a wa-
termark, rotate a PDF document, apply or remove compression, or uncompress a PDF
stream for editing. There are installers for both Mac and Windows, and simple-to-
follow instructions for installing in most flavors of Unix.

PDF Toolkit can be accessed via Node child processes. As an example, the following
code creates a child process that invokes PDF Toolkit’s dump_data comment to discover
information about a PDF, such as how many pages it contains:

var spawn = require('child_process').spawn;

var pdftk = spawn('pdftk', [__dirname + '/pdfs/datasheet-node.pdf', 'dump_data']);

pdftk.stdout.on('data', function (data) {

 // convert results to an object
 var array = data.toString().split('\n');
 var obj = {};

Creating and Working with PDFs | 251

 array.forEach(function(line) {
 var tmp = line.split(':');
 obj[tmp[0]] = tmp[1];
 });

 // print out number of pages
 console.log(obj['NumberOfPages']);
});

pdftk.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

pdftk.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

The PDF Toolkit data_dump returns results similar to the following:

stdout: InfoKey: Creator
InfoValue: PrintServer150�
InfoKey: Title
InfoValue: �
InfoKey: Producer
InfoValue: Corel PDF Engine Version 15.0.0.431
InfoKey: ModDate
InfoValue: D:20110914223152Z
InfoKey: CreationDate
InfoValue: D:20110914223152Z
PdfID0: 7fbe73224e44cb152328ed693290b51a
PdfID1: 7fbe73224e44cb152328ed693290b51a
NumberOfPages: 3

The format is easily converted into an object for simpler access of the individual
properties.

PDF Toolkit is a reasonably responsive tool, but you’ll want to use caution when hold-
ing up a web response waiting for it to finish. To demonstrate how to access PDF Toolkit
from a Node web application, and how to deal with the expected lag time that working
with a computationally expensive graphics application can cause, we’ll build a simple
PDF uploader.

Creating a PDF uploader and dealing with graphics lag time

PDF Toolkit’s ability to burst a PDF or merge several PDFs into one is functionality
that can be helpful at a website that allows users to upload and download PDF docu-
ments, and then provides individual access of each PDF page. Think of Google Docs,
or a website such as Scribd, which allows PDF sharing.

The components to this type of application are:

• A form to select which PDF tool to upload

• A web service to receive the PDF document and then initiate the PDF processing

252 | Chapter 12: Graphics and HTML5 Video

• A child process wrapper around PDF Toolkit to burst the PDF document into
separate pages

• A response to the user providing links to the uploaded document and access to the
individual pages

The component that bursts the PDF must first create a location for the pages and then
determine what the pages will be named before it can perform the splitting action. This
will require accessing the Node File System module to create the directory for the split
files. Since larger files can take some time, rather than hold the web response waiting
for PDF Toolkit to finish, the application sends an email to the user with URLs for the
newly uploaded files. This requires the use of a module we’ve not used in previous
chapters, Emailjs. This module provides basic email functionality.

You can install the Emailjs module via npm:

npm install emailjs

The form to upload the PDF is basic, needing little explanation. It uses a file input field
in addition to a field for the person’s name and email address, and sets the method to
POST and the action to the web service. Since we’re uploading a file, the enctype
field must be set to multipart/form-data. The finished form page can be seen
in Example 12-2.

Example 12-2. Form to upload a PDF file

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Upload PDF</title>
 <script>
 window.onload=function() {
 document.getElementById('upload').onsubmit=function() {
 document.getElementById('submit').disabled=true;
 };
 }
 </script>
</head>
<body>
<form id="upload" method="POST" action="http://localhost:8124"
enctype="multipart/form-data">
 <p><label for="username">User Name:</label>
 <input id="username" name="username" type="text" size="20" required /></p>
 <p><label for="email">Email:</label>
 <input id="email" name="email" type="text" size="20" required /></p>
 <p><label for="pdffile">PDF File:</label>
 <input type="file" name="pdffile" id="pdffile" required /></p>
 <p>
 <p>
 <input type="submit" name="submit" id="submit" value="Submit"/>
 </p>

Creating and Working with PDFs | 253

 </form>
</body>

We have a chance to brush up on our client-side JavaScript skills by disabling the submit
button when the form is submitted. The form makes use of the HTML5 required at-
tribute, which ensures that the proper data is provided.

The web service application that processes both the request for the form and the PDF
upload uses the Connect middleware, this time without the Express framework.

In the service, the Connect static middleware is used to serve up static files, and the
directory middleware is used to pretty-print a directory listing when a directory is ac-
cessed. The only other functionality that’s needed is the process to parse out both the
PDF file and the form data from the upload. The application uses the Connect parse
Body method, which is capable of processing any type of posted data:

connect()
 .use(connect.bodyParser({uploadDir: __dirname + '/pdfs'}))
 .use(connect.static(__dirname + '/public'))
 .use(connect.directory(__dirname + '/public'))
 .listen(8124);

The data is then made available to a custom middleware named upload, which handles
both the data and the PDF—invoking a custom module to process the PDF file. The
bodyParser middleware makes the username and email available on the request.body
object, and the uploaded file on the request.files object. If a file is uploaded, it’s
uploaded as an object named pdffile because that’s the name of the file upload field.
You’ll need an additional test on the file type to ensure that the file uploaded is a PDF.

Example 12-3 has the complete code for the PDF service application.

Example 12-3. PDF upload web service application

var connect = require('connect');
var pdfprocess = require('./pdfprocess');

// if POST
// upload file, kick off PDF burst, respond with ack
function upload(req, res, next){
 if ('POST' != req.method) return next();

 res.setHeader('Content-Type', 'text/html');
 if (req.files.pdffile && req.files.pdffile.type === 'application/pdf') {
 res.write('<p>Thanks ' + req.body.username +
 ' for uploading ' + req.files.pdffile.name + '</p>');
 res.end("<p>You'll receive an email with file links when processed.</p>");

 // post upload processing
 pdfprocess.processFile(req.body.username, req.body.email,
 req.files.pdffile.path, req.files.pdffile.name);
 } else {
 res.end('The file you uploaded was not a PDF');
 }

254 | Chapter 12: Graphics and HTML5 Video

}
// in order
// static files
// POST - upload file
// otherwise, directory listing
connect()
 .use(connect.bodyParser({uploadDir: __dirname + '/pdfs'}))
 .use(connect.static(__dirname + '/public'))
 .use(upload)
 .use(connect.directory(__dirname + '/public'))
 .listen(8124);

console.log('Server started on port 8124');

The custom module pdfprocess is where the application performs the following steps
to process the PDF file:

1. A directory is created for the user under the public pdfs subdirectory if none exists.

2. A timestamp value is used with the file to create a unique name for the current
uploaded PDF.

3. The timestamp is used with the PDF filename to create a new subdirectory for the
PDFs under the user’s subdirectory.

4. The PDF is moved from the temporary upload directory to this new directory, and
renamed the original PDF filename.

5. The PDF Toolkit burst operation is performed on this file, with all the individual
PDFs placed in the pdfs directory.

6. An email is sent to the user providing a URL/link where he can access the new
directory containing the original uploaded PDF and the individual PDF pages.

The filesystem functionality is provided by the Node File System module, the email
functionality is handled by Emailjs, and the PDF Toolkit functionality is managed in a
child process. There is no data returned from this child process, so the only events
captured are child process exit and error events. Example 12-4 contains the code for
this final piece of the application.

Example 12-4. Module to process PDF file and send user email with location of processed files

var fs = require('fs');
var spawn = require('child_process').spawn;
var emailjs = require('emailjs');

module.exports.processFile = function(username, email, path, filename) {

 // first, create user directory if doesn't exist
 fs.mkdir(__dirname + '/public/users/' + username, function(err) {

 // next create file directory if doesn't exist
 var dt = Date.now();

 // url for message later

Creating and Working with PDFs | 255

 var url = 'http://examples.burningbird.net:8124/users/' +
 username + '/' + dt + filename;

 // directory for file
 var dir = __dirname + '/public/users/' + username + '/' +
 dt + filename;

 fs.mkdir(dir, function(err) {
 if (err)
 return console.log(err);

 // now, rename file to new location
 var newfile = dir + '/' + filename;

 fs.rename(path, newfile, function(err) {
 if (err)
 return console.log(err);

 //burst pdf
 var pdftk = spawn('pdftk', [newfile, 'burst', 'output',
 dir + '/page_%02d.pdf']);

 pdftk.on('exit', function (code) {
 console.log('child process ended with ' + code);
 if (code != 0)
 return;

 console.log('sending email');
 // send email

 var server = emailjs.server.connect({
 user : 'gmail.account.name',
 password : 'gmail.account.passwod',
 host : 'smtp.gmail.com',
 port : 587,
 tls : true
 });

 var headers = {
 text : 'You can find your split PDF at ' + url,
 from : 'youremail',
 to : email,
 subject: 'split pdf'
 };

 var message = emailjs.message.create(headers);

 message.attach({data:"<p>You can find your split PDF at " +
 "" + url + "</p>",
 alternative: true});

256 | Chapter 12: Graphics and HTML5 Video

 server.send(message, function(err, message) {
 console.log(err || message);
 });
 pdftk.kill();
 });

 pdftk.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
 });

 });
 });
 });
};

The actual child process call to PDF Toolkit is in bold text in the code. The command-
line syntax used is the following:

pdftk filename.pdf burst output /home/location/page_%02d.pdf

The filename is given first, then the operation, and then an output directive. The op-
eration is, as mentioned earlier, the burst operation, which splits the PDF into separate
pages. The output directive instructs PDF Toolkit to place the newly split PDF pages
in a specific directory, and provides formatting for the page names—the first page
would be page_01.pdf, the second page_02.pdf, and so on. I could have used Node’s
process.chdir to change the process to the directory, but it really wasn’t necessary since
I can make the PDF Toolkit operation place the files in a specified directory.

The email is sent using the Gmail SMTP server, which utilizes TLS (transport layer
security), over port 587 and with a given Gmail username and password. You could,
of course, use your own SMTP server. The message is sent both in plain text and with
a given HTML-formatted attachment (for those folks who use an email reader capable
of processing HTML).

The end result of the application is a link sent to the user that takes her to the directory
where she’ll find the uploaded PDF and the split pages. The Connect directory mid-
dleware ensures that the contents of the directory are attractively displayed. Fig-
ure 12-1 shows the results of uploading one very large PDF file on global warming.

With this approach—providing acknowledgment to the user in an email—the user
doesn’t have to wait around for (and the Node service isn’t hung up waiting on) the
PDF processing.

Of course, the user still has to spend time uploading the PDF file—this
application doesn’t touch on the issues associated with large file
uploads.

Creating and Working with PDFs | 257

Figure 12-1. End result of running PDF Toolkit burst on large uploaded PDF

Creating PDFs with PDFKit
If using a child process and command-line tools isn’t for you, or if you need to be able
to create a PDF as well as manipulate existing PDFs, there are Node modules that
provide PDF capability. Chief among them is PDFKit.

PDFKit is written in CoffeeScript, but you don’t have to know CoffeeScript to use the
module because the API is exposed to JavaScript. The module provides functionality
to create a PDF document, add pages to it, incorporate text and graphics, and embed
images. Future additions to the module should add other functionality, such as PDF
outlines, gradients, tables, and other nice features.

Install PDFKit using npm like so:

npm install pdfkit

In your application, you start by creating a new PDF document:

var doc = new PDFDocument();

You can then add a font, a new web page, and graphics, all with the exposed API. The
API methods can all be chained to simplify development.

258 | Chapter 12: Graphics and HTML5 Video

To demonstrate how to use the module from JavaScript, I converted one of the Cof-
feeScript examples from the module developer into JavaScript. From the top, after the
PDF document is created, a TrueType font is added to the document, the font size is
set to 25 pixels, and text is drawn at (x,y) coordinates of 100, 100:

doc.font('fonts/GoodDog-webfont.ttf')
 .fontSize(25)
 .text('Some text with an embedded font!', 100, 100);

The application then adds a new PDF page, again changes the font size to 25 pixels,
and draws new text at 100, 100:

doc.addPage()
 .fontSize(25)
 .text('Here is some vector graphics...', 100, 100);

The document coordinate system is saved, and the vector graphics functionality is used
to draw a red triangle:

doc.save()
 .moveTo(100, 150)
 .lineTo(100, 250)
 .lineTo(200, 250)
 .fill("#FF3300");

The next section of code scales the coordinate system to 0.6, translates the origin, draws
a path in the shape of a star, fills it with red, and then restores the document back to
the original coordinate system and scale:

 doc.scale(0.6)
 .translate(470, −380)
 .path('M 250,75 L 323,301 131,161 369,161 177,301 z')
 .fill('red', 'even-odd')
 .restore();

If you’ve worked with other vector graphics systems, such as Canvas, much of this
should seem familiar. If you haven’t, then you might want to check out the Canvas
examples later in the book and then return to this example.

Another page is added, the fill color is changed to blue, and a link is added to the page.
The document is then written out to a file named output.pdf:

doc.addPage()
 .fillColor("blue")
 .text('Here is a link!', 100, 100)
 .underline(100, 100, 160, 27, {color: "#0000FF"})
 .link(100, 100, 160, 27, 'http://google.com/');

doc.write('output.pdf');

It’s tedious to create a PDF document manually. However, we can easily program the
PDFKit API to take content from a data store and generate a PDF on the fly. We could
also use PDFKit to generate a PDF document of web page content on demand, or to
provide a persistent snapshot of data.

Creating and Working with PDFs | 259

Be aware, though, that many of the module’s methods are not asynchronous. You’ll
most likely be blocking as you’re building the PDF, so plan accordingly.

Accessing ImageMagick from a Child Process
ImageMagick is a powerful command-line graphics tool available in the Mac, Win-
dows, and Unix environments. It can be used to crop or resize an image, access image
metadata, animate a sequence of images, and add any number of special effects. It’s
also very resource intensive, and depending on the size of the image and what you’re
doing with it, can take a noticeable amount of time.

There are ImageMagick Node modules. One of the first is imagemagick, which provides
a wrapper for ImageMagick functionality. However, it hasn’t been updated for some
time. Another module is gm, which provides a set of predefined functions that work
with ImageMagick in the background. You may find, though, that it’s just as simple to
work with ImageMagick directly. All you need to work with ImageMagick directly from
a Node application is for ImageMagick to be installed, and a Node child process.

ImageMagick provides several different tools you can use to perform different
functions:

animate
Animates a sequence over an X server

compare
Provides a mathematical and visual annotation of differences between an image
and a reconstruction of the image after modification

composite
Overlaps two images

conjure
Executes scripts written in the Magick Scripting Language (MSL)

convert
Converts an image using any number of possible conversions such as cropping,
resizing, or adding an effect

display
Displays an image on an X server

identify
Describes the format and other characteristics of an image file or several image files

import
Creates a screenshot of any visible window on an X server and saves to a file

mogrify
Modifies an image in place (resizes, crops, dithers, etc.) and saves the effects in the
existing image

260 | Chapter 12: Graphics and HTML5 Video

montage
Creates a composite image from several

stream
Streams an image to storage, one pixel at a time

Several of the tools are related to an X server and make little sense from a Node appli-
cation perspective. However, the convert, mogrify, montage, identify, and stream tools
can have interesting uses in a Node application. In this section and the next, we’ll focus
on one: convert.

Though we’re focusing on convert, be aware that everything in this sec-
tion also applies to mogrify, except that mogrify overwrites the original
file.

The convert tool is the ImageMagick workhorse. With it, you can perform some pretty
amazing transformations on an image and then save the results to a separate file. You
can provide an adaptive blur, sharpen the image, annotate the image with text, position
it on a backdrop, crop it, resize it, and even replace every pixel in the image with its
color complement. There is little you can’t do to an image with ImageMagick. Of
course, not every operation is equal, especially if you’re concerned about how long it
will take. Some of the image conversions occur quickly, while others can take consid-
erable time.

To demonstrate how to use convert from a Node application, the small, self-contained
application in Example 12-5 specifies an image filename on the command line and
scales that image so it fits into a space no more than 150 pixels wide. The image is also
transformed into a PNG, regardless of its original type.

The command-line version of this process is:

convert photo.jpg -resize '150' photo.jpg.png

We’ll need to capture four command arguments in the array for the child process: the
original photo, the -resize flag, the value for the -resize flag, and the name of the new
image.

Example 12-5. Node application to use a child process to scale an image with the ImageMagick convert
tool

var spawn = require('child_process').spawn;

// get photo
var photo = process.argv[2];

// conversion array
var opts = [
photo,
'-resize',

Accessing ImageMagick from a Child Process | 261

'150',
photo + ".png"];

// convert
var im = spawn('convert', opts);

im.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

im.on('exit', function (code) {
 if (code === 0)
 console.log('photo has been converted and is accessible at '
 + photo + '.png');
});

The ImageMagick convert tool processes the image silently, so there is no child process
data event to process. The only events we’re interested in are the error and the exit,
when the image processing is finished.

Where an application like ImageMagick can get tricky is when you’re interested in
doing a much more involved process. One of the more popular effects people have
applied to images using ImageMagick is the Polaroid effect: rotating the image slightly
around its center and adding a border and a shadow to make the image look like a
Polaroid photo. The effect is now so popular that there’s a predefined setting for it, but
prior to this new setting, we had to use a command similar to the following (from the
ImageMagick usage examples):

convert thumbnail.gif \
 -bordercolor white -border 6 \
 -bordercolor grey60 -border 1 \
 -background none -rotate 6 \
 -background black \(+clone -shadow 60x4+4+4 \) +swap \
 -background none -flatten \
 polaroid.png

This is a lot of arguments, and the arguments are in a format you may not have seen
previously. So how does this get converted into a child process arguments array?

Minutely.

What looks like a single argument on the command line (\(+clone -shadow 60x4+4+4
\)) is anything but to the Node child process. Example 12-6 is a variation of the con-
version tool in Example 12-5, except now a Polaroid effect is being applied rather than
the image being scaled. Pay particular attention to the line in bold text.

Example 12-6. Applying a Polaroid effect to a photo using ImageMagick from a Node application

var spawn = require('child_process').spawn;

// get photo
var photo = process.argv[2];

262 | Chapter 12: Graphics and HTML5 Video

// conversion array
var opts = [
photo,
"-bordercolor", "snow",
"-border", "6",
"-background","grey60",
"-background", "none",
"-rotate", "6",
"-background", "black",
"(", "+clone", "-shadow", "60x4+4+4", ")",
"+swap",
"-background", "none",
"-flatten",
photo + ".png"];

var im = spawn('convert', opts);

The bolded code in the example demonstrates how what appears to be a single argu-
ment on the command line becomes five arguments to the child process. The end result
of running the application is shown in Figure 12-2.

Figure 12-2. Result of running Node application to apply a Polaroid effect to a photo

It’s unlikely that you’ll use the Node application with an ImageMagick child process
directly on the command line. After all, you can just run ImageMagick’s tools directly.
However, you can use the combined child process/ImageMagick tool to run several
different conversions on a single image, or to provide services from a website (such as

Accessing ImageMagick from a Child Process | 263

allowing a person to resize a photo to use as an avatar, or add annotations to uploaded
images at a shared resource site).

The key to creating a web application that uses ImageMagick is the same as with the
PDF demonstration applications from earlier in the chapter: if the process is going to
be slow (especially with a larger number of concurrent users), you need to consider
providing functionality that allows the individual to upload the image file and then
provide a link to the finished project (either at a site, or via email) rather than block,
waiting for everything to finish.

We can adapt the code in Example 12-3 and Example 12-4 to apply the Polaroid effect
to any uploaded image. In particular, we can convert Example 12-3 into a module that
can be applied for the same pattern of use: a file process that creates a new subdirectory
for an uploaded file, runs a process, and deposits the resulting files in the same directory.

Properly Serving HTML5 Video with HTTP
In Chapter 6, we created a simple HTTP server that served static files and provided
some basic directory and 404 handling. One of the web pages we tested with the server
included an embedded HTML5 video. The web page also had a custom toolbar that
allowed the user to click anywhere on a timeline to start the video at an intermediate
position.

The HTML5 video application worked with the Connect module’s static web server,
but not the homemade web server. The reason is that the homemade web server didn’t
handle the concept of HTTP ranges. HTTP servers such as Apache and IIS have support
for ranges, as does the Connect model; our static server did not.

In this section, we’ll add support for ranges to the minimal web server we created back
in Example 6-2.

Support for ranges extends beyond serving HTML5 video. Ranges can
also be used to download larger files.

Ranges are an HTTP header that provides a start and end position for loading a re-
source, such as a video file. Here are the steps we need to take to add support for HTTP
ranges:

1. Signal willingness to accept range requests with response header Accept-Ranges:
bytes.

2. Look for a range request in the request header.

3. If a range request is found, parse out the start and end values.

264 | Chapter 12: Graphics and HTML5 Video

4. Validate that the start and end values are numbers, and that neither exceeds the
length of the resource being accessed.

5. If no end value is provided, set it to the resource length; if no start value is provided,
set it to zero (0).

6. Create a Content-Range response header consisting of start, end, and resource
length values.

7. Create a Content-Length response header with a value calculated from subtracting
the start value from the end value.

8. Change the status code from 200 to 206 (Partial).

9. Pass an object consisting of the start and end values to the createReadStream
method.

When a web client accesses a resource from a web server, the web server can signal to
the client that it supports ranges, and provide a range unit, with the following header:

Accept-Ranges: bytes

The first modification necessary for the minimal web server is to add the new header:

res.setHeader('Accept-Ranges','bytes');

The client will then send through range requests of the following format:

bytes=startnum-endnum

Where the startnum/endnum values are the starting and end numbers for the range. Sev-
eral of these requests can be sent during playback. For example, the following are actual
range requests sent from the web page with the HTML5 video after starting the video
and then clicking around on the timeline during playback:

bytes=0-
bytes=7751445-53195861
bytes=18414853-53195861
bytes=15596601-18415615
bytes=29172188-53195861
bytes=39327650-53195861
bytes=4987620-7751679
bytes=17251881-18415615
bytes=17845749-18415615
bytes=24307069-29172735
bytes=33073712-39327743
bytes=52468462-53195861
bytes=35020844-39327743
bytes=42247622-52468735

The next addition to the minimal web server is to check to see if a range request has
been sent, and if so, to parse out the start and end values. The code to check for a range
request is:

if (req.headers.range) {...}

Properly Serving HTML5 Video with HTTP | 265

To parse the range start and end values, I created a function, processRange, that splits
the string on the dash (-) and then extracts the numbers out of the two returned strings.
The function also double-checks to ensure that a start value is provided and is a number,
and isn’t beyond the file length (returning a status code 416, Requested Range Not
Satisfiable, if it is). It also checks to ensure that the end value is a number, and sets it
to the video length if the value isn’t provided. An object containing both start and
end is returned by the function:

function processRange(res,ranges,len) {

 var start, end;

 // extract start and stop range
 var rangearray = ranges.split('-');

 start = parseInt(rangearray[0].substr(6));
 end = parseInt(rangearray[1]);

 if (isNaN(start)) start = 0;
 if (isNaN(end)) end = len −1;

 // start beyond end of file length
 if (start > len - 1) {
 res.setHeader('Content-Range', 'bytes */' + len);
 res.writeHead(416);
 res.end();
 }

 // end can't be beyond file length
 if (end > len - 1)
 end = len - 1;
 return {start:start, end:end};
}

The next component of the functionality is to prepare a Content-Range response header,
providing the start and end values for the range, as well as the length of the resource,
in the following format:

Content-Range bytes 44040192-44062881/44062882

The content length (Content-Length) response is also prepared, calculated as the end
value minus the start value. In addition, the HTTP status code is set to 206, for Partial
Content.

Last, the start and end values are also sent as an option to the createReadStream method
call. This ensures that the stream is properly repositioned for streaming.

Example 12-7 pulls all of these pieces together into a modified minimal web server that
can now serve HTML5 video (or other resource) ranges.

Example 12-7. The minimal web server, now with support for ranges

var http = require('http'),
 url = require('url'),

266 | Chapter 12: Graphics and HTML5 Video

 fs = require('fs'),
 mime = require('mime');

function processRange(res,ranges,len) {

 var start, end;

 // extract start and stop range
 var rangearray = ranges.split('-');

 start = parseInt(rangearray[0].substr(6));
 end = parseInt(rangearray[1]);

 if (isNaN(start)) start = 0;
 if (isNaN(end)) end = len −1;

 // start beyond end of file length
 if (start > len - 1) {
 res.setHeader('Content-Range', 'bytes */' + len);
 res.writeHead(416);
 res.end();
 }

 // end can't be beyond file length
 if (end > len - 1)
 end = len - 1;

 return {start:start, end:end};
}
http.createServer(function (req, res) {

 pathname = __dirname + '/public' + req.url;

 fs.stat(pathname, function(err, stats) {
 if (err) {
 res.writeHead(404);
 res.write('Bad request 404\n');
 res.end();
 } else if (stats.isFile()) {

 var opt={};

 // assume no range
 res.statusCode = 200;

 var len = stats.size;

 // we have a Range request
 if (req.headers.range) {
 opt = processRange(res,req.headers.range,len);

 // adjust length
 len = opt.end - opt.start + 1;

 // change status code to partial

Properly Serving HTML5 Video with HTTP | 267

 res.statusCode = 206;

 // set header
 var ctstr = 'bytes ' + opt.start + '-' +
 opt.end + '/' + stats.size;

 res.setHeader('Content-Range', ctstr);
 }

 console.log('len ' + len);
 res.setHeader('Content-Length', len);

 // content type
 var type = mime.lookup(pathname);
 res.setHeader('Content-Type', type);
 res.setHeader('Accept-Ranges','bytes');

 // create and pipe readable stream
 var file = fs.createReadStream(pathname,opt);
 file.on("open", function() {

 file.pipe(res);
 });
 file.on("error", function(err) {
 console.log(err);
 });

 } else {
 res.writeHead(403);
 res.write('Directory access is forbidden');
 res.end();
 }
 });
}).listen(8124);
console.log('Server running at 8124/');

Modifying the minimal web server demonstrates that HTTP and other network func-
tionality isn’t necessarily complicated—just tedious. The key is to break down each
task into separate tasks, and then add code to manage each subtask one at a time (testing
after each).

Now the web page (included in the examples) that allows the user to click around on
a timeline works correctly.

Creating and Streaming Canvas Content
The canvas element has become a favorite of game developers, graphic artists, and
statisticians because of the capability it provides for creating dynamic and interactive
graphics in client web pages. The canvas element is also supported in a Node environ-
ment via modules, such as the one covered in this section: node-canvas, or just plain

268 | Chapter 12: Graphics and HTML5 Video

canvas (we’ll use “node-canvas” here). The node-canvas module is based on Cairo, a
cross-platform vector graphics library that’s long been popular with developers.

To use node-canvas, install it via npm:

npm install canvas

All of the standard Canvas functionality you have in a client page is available via the
node-canvas module. You create a Canvas object and then a context, do all your drawing
in the context, and then either display the result or save the result in a file as a JPEG or
PNG.

Be aware that some of the functionality in Canvas, such as working with
an image, requires a version of Cairo greater than 1.10.

There are also a couple of additional methods available on the server that you wouldn’t
have on the client. These allow us to stream a Canvas object to a file (either as a PNG
or JPEG), persisting the results for later access (or serving in a web page). You can also
convert the Canvas object to a data URI and include an img element in a generated HTML
web page, or read an image from an external source (such as a file or a Redis database)
and use it directly in the Canvas object.

Jumping right in to demonstrate how to use the node-canvas module, Example 12-8
creates a canvas drawing and then streams it to a PNG file for later access. The example
uses a rotated graphic image from an example at the Mozilla Developer Network, and
adds a border and shadow to it. Once finished, it’s streamed to a PNG file for later
access. Most of the functionality could be used in a client application as well as the
Node application. The only real Node-specific component is persisting the graphic as
a file in the end.

Example 12-8. Creating a graphic using node-canvas and persisting the result to a PNG file

var Canvas = require('canvas');
var fs = require('fs');

 // new canvas and context
 var canvas = new Canvas(350,350);
 var ctx = canvas.getContext('2d');

 // create filled rectangle with shadow
 // save context for later restore
 ctx.save();
 ctx.shadowOffsetX = 10;
 ctx.shadowOffsetY = 10;
 ctx.shadowBlur = 5;
 ctx.shadowColor='rgba(0,0,0,0.4)';

 ctx.fillStyle = '#fff';
 ctx.fillRect(30,30,300,300);

Creating and Streaming Canvas Content | 269

 // done with shadow
 ctx.restore();
 ctx.strokeRect(30,30,300,300);

 // MDN example: pretty graphic, inserted offset into
 // previously created square
 ctx.translate(125,125);
 for (i=1;i<6;i++){
 ctx.save();
 ctx.fillStyle = 'rgb('+(51*i)+','+(255-51*i)+',255)';
 for (j=0;j<i*6;j++){
 ctx.rotate(Math.PI*2/(i*6));
 ctx.beginPath();
 ctx.arc(0,i*12.5,5,0,Math.PI*2,true);
 ctx.fill();
 }
 ctx.restore();
 }
 // stream to PNG file
 var out = fs.createWriteStream(__dirname + '/shadow.png');
 var stream = canvas.createPNGStream();

 stream.on('data', function(chunk){
 out.write(chunk);
 });

 stream.on('end', function(){
 console.log('saved png');
 });

Once you’ve run the Node application, access the shadow.png file from your favorite
browser. Figure 12-3 shows the generated image.

Figure 12-3. Image generated using node-canvas

270 | Chapter 12: Graphics and HTML5 Video

You’re not going to use the Canvas object in a Node application as you would a can
vas element in a web page. One of the examples included with node-canvas is a dynamic
clock that requires constant HTTP refreshes. If you want an active clock in the client,
you should use the canvas element in the client.

Where canvas makes sense on the server is as a way of providing a graphical represen-
tation of a server activity, such as a database query, data in a Redis database, a logfile,
or other data that originates on the server. By generating the graphic on the server, you
not only can persist the graphic for multiple accesses, but you can also limit how much
data flows to the client by being able to process a graphic on the server, rather than
having to send the data to the client and then create the graphic.

Using canvas in a Node application also makes sense if you’re generating game com-
ponents that may need to adapt to user actions, particularly if the graphics need to be
persisted for later access.

Creating and Streaming Canvas Content | 271

CHAPTER 13

WebSockets and Socket.IO

In this chapter, we’re working in both the client and server environments, because both
are necessary when it comes to WebSockets and Socket.IO.

WebSockets is a relatively new web technology that enables bidirectional, real-time
communication directly from within a client to a server application, and back again.
The communication occurs over TCP (Transmission Control Protocol), via sockets.
The Socket.IO libraries provide the support necessary to implement this technology.
Not only does Socket.IO provide a module to use in your Node application, but it also
provides a client-side JavaScript library to enable the client end of the communication
channel. For an added bonus, it also works as an Express middleware.

In this chapter I’ll introduce WebSockets more fully by demonstrating how Socket.IO
works, both in the client and in the server.

WebSockets
Before jumping into using Socket.IO, I want to provide a quick overview of WebSock-
ets. To do that, I also need to explain bidirectional full-duplex communication.

The term full duplex describes any form of data transmission that allows communica-
tion in both directions. The term bidirectional means that both endpoints of a trans-
mission can communicate, as opposed to unidirectional communication, when one end
of a data transmission is a sender and all other endpoints are receivers. WebSockets
provides the capability for a web client, such as a browser, to open up bidirectional
full-duplex communication with a server application. And it does so without having to
use HTTP, which adds unnecessary overhead to the communication process.

WebSockets is standardized as part of a specification called the WebSockets API at the
World Wide Web Consortium (W3C). The technology has had a bumpy start, because
no sooner had some browsers begun implementing WebSockets in 2009 than serious
security concerns led those same browsers to either pull their implementation, or enable
WebSockets only as an option.

273

The WebSockets protocol was revamped to address the security concerns, and Firefox,
Chrome, and Internet Explorer support the new protocol. At this time, Safari and Opera
support only the older versions of the technology, but you must enable WebSockets in
the configuration settings. In addition, most mobile browers have only limited support,
or support only the older WebSockets specification.

Socket.IO addresses the issue of uneven support for WebSockets by using several dif-
ferent mechanisms to enable the bidirectional communication. It attempts to use the
following, in order:

• WebSockets

• Adobe Flash Socket

• Ajax long polling

• Ajax multipart streaming

• Forever iFrame for IE

• JSONP Polling

The key point to take away from this list is that Socket.IO supports bidirectional com-
munication in most, if not all, browsers in use today—desktop and mobile.

Though technically WebSockets isn’t the mechanism used with all
browsers in the applications in this chapter, I’ll be using the name
“WebSockets” to describe the communication technique. It’s shorter
than typing bidirectional full-duplex communication.

An Introduction to Socket.IO
Before we jump into code that implements the WebSockets application, you’ll need to
install Socket.IO on your server. Use npm to install the module and supporting Java-
Script library:

npm install socket.io

A Socket.IO application requires two different components: a server and a client ap-
plication. In the examples in this section, the server application is a Node application,
and the client application is a JavaScript block in an HTML web page. Both are adap-
tions of example code provided at the Socket.IO website.

A Simple Communication Example
The client/server application demonstrated in this section sets up a communication
between client and server, sending a text string back and forth that’s published to the
web page. The client always echoes the recent string to the server, which modifies the
string and sends it back to the client.

274 | Chapter 13: WebSockets and Socket.IO

The client application creates a new WebSockets connection, using the Socket.IO cli-
ent-side library, and listens for any events labeled news. When an event is received, the
application takes the text sent with the event and outputs it to the web page. It also
echoes the text back to the server via an echo event. Example 13-1 shows the complete
code for the client web page.

Example 13-1. Client HTML page in the Socket.IO application

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>bi-directional communication</title>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var socket = io.connect('http://localhost:8124');
 socket.on('news', function (data) {
 var html = '<p>' + data.news + '</p>';
 document.getElementById("output").innerHTML=html;
 socket.emit('echo', { back: data.news });
 });
</script>
</head>
<body>
<div id="output"></div>
</body>
</html>

The server application uses HTTP to listen for incoming requests, and serves up only
one file: the client HTML file. When a new socket connection is made, it emits a mes-
sage to the client with the text of Counting... to an event labeled news.

When the server gets an echo event, it takes the text sent with the event and appends a
counter value to it. The counter is maintained in the application and incremented every
time the echo event is transmitted. When the counter gets to 50, the server no longer
transmits the data back to the client. Example 13-2 contains all the code for the server
application.

Example 13-2. Server application in the Socket.IO application

var app = require('http').createServer(handler)
 , io = require('socket.io').listen(app)
 , fs = require('fs')

var counter;

app.listen(8124);

function handler (req, res) {
 fs.readFile(__dirname + '/index.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);

An Introduction to Socket.IO | 275

 return res.end('Error loading index.html');
 }
 counter = 1;
 res.writeHead(200);
 res.end(data);
 });
}
io.sockets.on('connection', function (socket) {
 socket.emit('news', { news: 'world' });
 socket.on('echo', function (data) {
 if (counter <= 50) {
 counter++;
 data.back+=counter;
 socket.emit('news', {news: data.back});
 }
 });
});

After the client application is loaded into the server, you can watch the counter update
until it reaches the target end value. The web page doesn’t have to be reloaded, and the
user doesn’t have to do anything special for the application to execute. The application
exhibits the same behavior in all modern browsers, though the underlying technology
that implements the effect differs by browser.

Both news and echo are custom events. The only socket events Socket.IO supports out
of the box are connection, passed during the initial connection, and the following events
on the server socket:

message
Emitted whenever a message sent using socket.send is received

disconnect
Emitted when either the client or server disconnects

And the following events on the client socket:

connect
Emitted when the socket connection is made

connecting
Emitted when the socket connection is being attempted

disconnect
Emitted when the socket is disconnected

connect_failed
Emitted when the connection fails

error
Emitted when an error occurs

message
Emitted when message sent with socket.send is received

276 | Chapter 13: WebSockets and Socket.IO

reconnect_failed
Emitted when Socket.IO fails to reestablish the connection if it is dropped

reconnect
Emitted when a connection is reestablished after being dropped

reconnecting
Emitted when attempting a reconnection after the connection is dropped

If you want WebSockets behavior, rather than use the emit method, you can use the
send method and listen for the message. For instance, on the server, the application can
use send to send the message to the client, and then listen for a response via the
message event:

io.sockets.on('connection', function (socket) {
 socket.send("All the news that's fit to print");
 socket.on('message', function(msg) {
 console.log(msg);
 });
});

On the client, the application can also listen for the message event, and use send to
communicate back:

 socket.on('message', function (data) {
 var html = '<p>' + data + '</p>';
 document.getElementById("output").innerHTML=html;
 socket.send('OK, got the data');
 });

This example uses send to manually acknowledge receipt of the message. If we want
an automatic acknowledgment that the client received the event, we can pass a callback
function in as the last parameter of the emit method:

io.sockets.on('connection', function (socket) {
 socket.emit('news', { news: "All the news that's fit to print" },
 function(data) {
 console.log(data);
 });
});

In the client, we can then pass a message back using this callback function:

 socket.on('news', function (data, fn) {
 var html = '<p>' + data.news + '</p>';
 document.getElementById("output").innerHTML=html;
 fn('Got it! Thanks!');
 });

The socket passed as a parameter to the connection event handler is the unique con-
nection between the server and the client, and persists as long as the connection persists.
If the connection terminates, Socket.IO attempts to reconnect.

An Introduction to Socket.IO | 277

WebSockets in an Asynchronous World
The application works...to a point. Where it fails is in not taking into account Node’s
asynchronous nature. In the application, the counter used is one that’s global to the
application. If only one customer accesses the application at a time, it works fine.
However, if two users access the application at the same time, you get odd results: one
browser may end up with fewer numbers than the other, and neither is likely to get an
expected result. Add in more concurrent users, and the results are worse.

What we need is a way of attaching data so it persists beyond events to the socket itself.
Luckily, we have such a way—just by adding the data directly to the socket object that’s
created with each new connection. Example 13-3 is a modification of the code from
Example 13-2, where the counter is now attached to the socket object directly, rather
than floating about as a global variable. The changed code is bolded in the text.

Example 13-3. Modified server code incorporating the use of data persistence with the individual
sockets

var app = require('http').createServer(handler)
 , io = require('socket.io').listen(app)
 , fs = require('fs')

app.listen(8124);

function handler (req, res) {
 fs.readFile(__dirname + '/index.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}
io.sockets.on('connection', function (socket) {
 socket.counter = 1;
 socket.emit('news', { news: 'Counting...' });

 socket.on('echo', function (data) {
 if (socket.counter <= 50) {
 data.back+=socket.counter;
 socket.counter++;
 socket.emit('news', {news: data.back});
 }
 });
});

Now you can have several concurrent users, and they each get the exact same com-
munication. The socket object exists until the socket connection is closed and can’t be
reestablished.

278 | Chapter 13: WebSockets and Socket.IO

Each browser won’t have exactly the same behavior. The counter could
be faster or slower depending on the browser, because of the underlying
mechanism used to manage the communication.

About That Client Code
For Socket.IO to work, the client side of the application must have access to the
Socket.IO client-side JavaScript library. This library is included in the page with the
following script element:

 <script src="/socket.io/socket.io.js"></script>

You may be wondering if you have to specifically place this code in the top level of your
web server—you don’t.

In the server application, when the HTTP web server was created, it was passed to the
Socket.IO’s listen event:

var app = require('http').createServer(handler)
 , io = require('socket.io').listen(app)

What happens is that Socket.IO intercepts requests sent to the web server and listens
for requests for:

/socket.io/socket.io.js

Socket.IO does a clever bit of behind-the-scenes finagling that determines what’s re-
turned in the response. If the client supports WebSockets, the JavaScript file returned
is one that uses WebSockets to implement the client connection. If the client doesn’t
support WebSockets, but does support Forever iFrame (IE9), it returns that particular
JavaScript client code, and so on.

Don’t modify the relative URL used for a Socket.IO application—your
application won’t work if you do.

Configuring Socket.IO
Socket.IO comes with several default settings that we usually won’t need to change. In
the examples in the preceding section, I didn’t alter any of the default settings. If I
wanted to, though, I could by using Socket.IO’s configure method, which operates in
a manner similar to what we’ve used with Express and Connect. You can even specify
different configurations based on which environment the application is running.

Socket.IO contains a wiki page (at https://github.com/learnboost/socket.io/wiki/) that
lists all of the options, and I don’t want to repeat the rather extensive list here. Instead,
I want to demonstrate a couple that you may want to consider modifying as you’re
learning to work with Socket.IO.

Configuring Socket.IO | 279

https://github.com/learnboost/socket.io/wiki/

You can change the allowable transports by setting the transports option. By default,
the allowable transports, in order of priority, are:

• websocket

• htmlfile

• xhr-polling

• jsonp-polling

Another transport option is Flash Socket, which is not enabled by default. If we add
the following to Example 13-3, then when we access the application with Opera and
IE, the application uses Flash Socket (rather than Ajax long polling and Forever iFrame,
respectively):

io.configure('development', function() {
 io.set('transports', [
 'websocket',
 'flashsocket',
 'htmlfile',
 'xhr-polling',
 'jsonp-polling']);
});

You can also define different configurations for different environments, such as
production and development:

io.configure('production', function() {
 io.set('transports', [
 'websocket',
 'jsonp-polling']);

});
io.configure('development', function() {
 io.set('transports', [
 'websocket',
 'flashsocket',
 'htmlfile',
 'xhr-polling',
 'jsonp-polling']);

});

Another option controls the amount of detail output to the logger (you’ll notice the
logger output as debug statements to the console on the server). If you want to turn off
the logger output, you can set the log level option to 1:

io.configure('development', function() {
 io.set('log level', 1);
});

Some of the options—such as store, which determines where client data is persisted
—have requirements other than just having an option in a configuration method call.

280 | Chapter 13: WebSockets and Socket.IO

However, other than setting log level and transports, you should find the default
settings sufficient as you’re learning to work with Socket.IO.

Chat: The WebSockets “Hello, World”
Every technology has its own version of Hello, World—the first application people
typically create when learning the technology—and the one for WebSockets and
Socket.IO seems to be a chat client. The Socket.IO GitHub site provides a chat client
(as well as an IRC, or Internet relay chat, client); searching on “Socket.IO and chat”
lists several nice examples.

In this section, I’ll demonstrate the code for a very simple chat client. It has no bells
and whistles, and uses only Socket.IO (and no other library on the client or server), but
it demonstrates how nicely Socket.IO facilitates an application that would be quite
difficult to implement otherwise.

The application makes use of a couple of new methods to handle communication. In
the earlier examples, the applications used either send or emit to send a communication
between client and server. This type of communication is restricted to the socket, and
is visible only to the user receiving the message, no matter how many other people are
connected to the server.

To broadcast to every person connected to the server, you can use the emit method on
the Socket.IO framework object:

io.sockets.emit();

Now anyone who has a socket connection to the server gets the message.

You can also broadcast a message to everyone but a specific individual by issuing a
broadcast.emit on the socket of the person you don’t want to see the message:

socket.broadcast.emit();

In the simple chat application, when a new client connects, the client application
prompts for a name and then broadcasts to other connected clients that this person has
now entered the chat room. The client application also provides a text field and button
to send messages, and provides a place where new messages from all participants are
printed. Example 13-4 shows the client application code.

Example 13-4. Client chat application

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>bi-directional communication</title>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var socket = io.connect('http://localhost:8124');
 socket.on('connect', function() {

Chat: The WebSockets “Hello, World” | 281

 socket.emit('addme', prompt('Who are you?'));
 });

 socket.on('chat',function(username, data) {
 var p = document.createElement('p');
 p.innerHTML = username + ': ' + data;
 document.getElementById('output').appendChild(p);
 });
 window.addEventListener('load',function() {
 document.getElementById('sendtext').addEventListener('click',
 function() {
 var text = document.getElementById('data').value;
 socket.emit('sendchat', text);
 }, false);
 }, false);
</script>
</head>
<body>
<div id="output"></div>
<div id="send">
 <input type="text" id="data" size="100" />

 <input type="button" id="sendtext" value="Send Text" />
</div>
</body>
</html>

Other than the addition of basic JavaScript functionality to capture the click event on
the button, and the prompt to get the person’s name, the functionality isn’t much
different than earlier examples.

In the server, the new person’s username is attached as data to the socket. The server
acknowledges the person directly, and then broadcasts the person’s name to other chat
room participants. When the server receives any new chat message, it attaches the
username to the message so everyone can see who sent it. Finally, when a client dis-
connects from the chat room, another message is broadcast to all connected users in-
dicating that the person is no longer participating. Example 13-5 has the complete code
for the server application.

Example 13-5. Server chat application

var app = require('http').createServer(handler)
 , io = require('socket.io').listen(app)
 , fs = require('fs');

app.listen(8124);

function handler (req, res) {
 fs.readFile(__dirname + '/chat.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading chat.html');
 }

282 | Chapter 13: WebSockets and Socket.IO

 res.writeHead(200);
 res.end(data);
 });
}

io.sockets.on('connection', function (socket) {

 socket.on('addme',function(username) {
 socket.username = username;
 socket.emit('chat', 'SERVER', 'You have connected');
 socket.broadcast.emit('chat', 'SERVER', username + ' is on deck');
 });

 socket.on('sendchat', function(data) {
 io.sockets.emit('chat', socket.username, data);
 });

 socket.on('disconnect', function() {
 io.sockets.emit('chat', 'SERVER', socket.username + ' has left the building');
 });

});

Figure 13-1 shows the results of the application when I tested it from four different
browsers (Chrome, Firefox, Opera, and IE).

Figure 13-1. Trying out the chat application enabled by Socket.IO in several different browsers

Chat: The WebSockets “Hello, World” | 283

An additional modification to the application might add a list of people currently con-
nected so newcomers could see who is in the room when they enter. This could be a
global array, since it, unlike the username, is accessible by all clients. I’ll leave this last
bit of code to you as an off-book exercise.

Using Socket.IO with Express
The examples up to this point used Node’s HTTP as the web server. You can also easily
incorporate Express into a Socket.IO application (or Socket.IO into an Express appli-
cation). The key thing to remember is that Socket.IO must be able to listen for requests
before they’re processed by Express.

Example 13-6 converts the server component of the chat application from the last sec-
tion into using Express to handle all web service requests. The line in the code that’s
essential to the integration of Socket.IO and Express is in bold. The actual communi-
cation components are not changed at all from the code in Example 13-5.

Example 13-6. Porting the chat server to Express

var express = require('express'),
 sio = require('socket.io'),
 http = require('http'),
 app = express();

var server = http.createServer(app);

app.configure(function () {
 app.use(express.static(__dirname + '/public'));
 app.use(app.router);
});

app.get('/', function (req, res) {
 res.send('hello');
});

var io = sio.listen(server);

server.listen(8124);

io.sockets.on('connection', function (socket) {

 socket.on('addme',function(username) {
 socket.username = username;
 socket.emit('chat', 'SERVER', 'You have connected');
 socket.broadcast.emit('chat', 'SERVER', username + ' is on deck');
 });

 socket.on('sendchat', function(data) {
 io.sockets.emit('chat', socket.username, data);
 });

 socket.on('disconnect', function() {

284 | Chapter 13: WebSockets and Socket.IO

 io.sockets.emit('chat', 'SERVER', socket.username + ' has left the building');
 });

});

As the Express application is passed to the HTTP server, the HTTP server is in turn
passed to Socket.IO. All three modules work together to ensure that all requests—
whether web service or chat—are handled properly.

Though the chat client is a static page, it would be a simple matter to incorporate a
template. The only issues are ensuring the integrity of the scripting block where the
client application code resides, and remembering to include a link to the Socket.IO
library.

Using Socket.IO with Express | 285

CHAPTER 14

Testing and Debugging Node
Applications

In previous chapters, the only debugging aid used in the examples was printing infor-
mation to the console. For smaller and less complex applications that are still in
development, this is sufficient. However, as your application grows and gets more
complicated, you’ll need to use other, more sophisticated tools for debugging.

You’re also going to want to incorporate more formal testing, including the use of test-
creation tools that can be used by others to test your module or application in their
environments.

Debugging
Frankly, console.log will always remain my debugger of choice, but its usefulness does
degrade as your application increases in size and complexity. Once you’ve moved be-
yond a simple application, you’re going to want to consider using more sophisticated
debugging tools. We’ll go over some options in the sections that follow.

The Node.js Debugger
The V8 engine comes with a built-in debugger we can use with our Node applications,
and Node provides a client that makes it simple to use. We start by adding debugger
statements into our code anywhere we want a breakpoint:

// create the proxy that listens for all requests
httpProxy.createServer(function(req,res,proxy) {

 debugger;
 if (req.url.match(/^\/node\//))
 proxy.proxyRequest(req, res, {
 host: 'localhost',
 port: 8000
 });

287

 else
 proxy.proxyRequest(req,res, {
 host: 'localhost',
 port: 8124
 });
}).listen(9000);

We then run the application in debug mode:

node debug debugger.js

In debug mode, the application stops at the beginning of the file. To go to the first
breakpoint, type cont, or its abbreviation, c. This causes the debugger to stop at the
first breakpoint; the application then sits, waiting for input from the user (such as a
web request):

< debugger listening on port 5858
connecting... ok
break in app2.js:1
 1 var connect = require('connect'),
 2 http = require('http'),
 3 fs = require('fs'),
debug> cont (--> note it is just waiting at this point for a web request)
break in app2.js:11
 9 httpProxy.createServer(function(req,res,proxy) {
 10
 11 debugger;
 12 if (req.url.match(/^\/node\//))
 13 proxy.proxyRequest(req, res, {
debug>

You have several options at this point. You can step through the code using the next
(n) command, step into a function using step (s), or step out of a function using out
(o). In the following code, the debugger stops at the breakpoint, and the next few lines
are stepped over with next until line 13, which has a function call. I use step at this
point to step into the function. I can then traverse the function code using next, and
return to the application using out:

debug> cont
break in app2.js:11
 9 httpProxy.createServer(function(req,res,proxy) {
 10
 11 debugger;
 12 if (req.url.match(/^\/node\//))
 13 proxy.proxyRequest(req, res, {
debug> next
break in app2.js:12
 10
 11 debugger;
 12 if (req.url.match(/^\/node\//))
 13 proxy.proxyRequest(req, res, {
 14 host: 'localhost',
debug> next
break in app2.js:13
 11 debugger;

288 | Chapter 14: Testing and Debugging Node Applications

 12 if (req.url.match(/^\/node\//))
 13 proxy.proxyRequest(req, res, {
 14 host: 'localhost',
 15 port: 8000
debug> step
break in /home/examples/public_html/node/node_modules/http-proxy/lib/
node-http-proxy/routing-proxy.js:144
 142 //
 143 RoutingProxy.prototype.proxyRequest = function (req, res, options) {
 144 options = options || {};
 145
 146 //
debug> next
break in /home/examples/public_html/node/node_modules/http-proxy/lib/
node-http-proxy/routing-proxy.js:152
 150 // arguments are supplied to `proxyRequest`.
 151 //
 152 if (this.proxyTable && !options.host) {
 153 location = this.proxyTable.getProxyLocation(req);
 154
debug> out
break in app2.js:22
 20 port: 8124
 21 });
 22 }).listen(9000);
 23
 24 // add route for request for dynamic resource

You can also set a new breakpoint, either on the current line setBreakpoint (sb), or the
first line in a named function or script file:

break in app2.js:22
 20 port: 8124
 21 });
 22 }).listen(9000);
 23
 24 // add route for request for dynamic resource
debug> sb()
 17 else
 18 proxy.proxyRequest(req,res, {
 19 host: 'localhost',
 20 port: 8124
 21 });
*22 }).listen(9000);
 23
 24 // add route for request for dynamic resource
 25 crossroads.addRoute('/node/{id}/', function(id) {
 26 debugger;
 27 });

Clear a breakpoint with clearBreakpoint (cb).

You can add an expression to a watch list and list out current watches, in addition to
using REPL to examine variables:

Debugging | 289

break in app2.js:11
 9 httpProxy.createServer(function(req,res,proxy) {
 10
 11 debugger;
 12 if (req.url.match(/^\/node\//))
 13 proxy.proxyRequest(req, res, {
debug> repl
Press Ctrl + C to leave debug repl
> req.url
'/node/174'
debug>

The backtrace command is helpful for printing a backtrace (a list of currently active
function calls) of the current execution frame:

debug> backtrace
#0 app2.js:22:1
#1 exports.createServer.handler node-http-proxy.js:174:39

Anytime you want to see which commands are available to you, type help:

debug> help
Commands: run (r), cont (c), next (n), step (s), out (o), backtrace (bt),
setBreakpoint (sb), clearBreakpoint (cb), watch, unwatch, watchers, repl, restart,
kill, list, scripts, breakpoints, version

The built-in debugger is very helpful, but sometimes you want a little bit more. You
have other options, including accessing the V8 debugger directly by using the
--debug command-line flag:

node --debug app.js

This starts up a TCP connection to the debugger, and you enter the V8 debug com-
mands at the prompt. This is an interesting option, but does require a great deal of
understanding of how the V8 debugger works (and what the commands are).

Another option is to use debugging via a WebKit browser—through an application
such as Node Inspector, covered next.

Client-Side Debugging with Node Inspector
Node Inspector requires a little more setup to begin debugging, but the extra effort is
worth it.

First, install Node Inspector globally using npm:

npm install -g node-inspector

To use the functionality, you’ll first need to start the application using the V8 debugger
flag:

node --debug app.js

Then you’ll need to start the Node Inspector, in either the background or foreground:

node-inspector

290 | Chapter 14: Testing and Debugging Node Applications

When you start the application, you’ll get the following message:

node-inspector
 info - socket.io started
visit http://0.0.0.0:8080/debug?port=5858 to start debugging

Using a WebKit-based browser (Safari or Chrome), access the debugging page. My
example is running on my server, so I use the following URL:

http://examples.burningbird.net:8080/debug?port=5858

In the browser, the client-side debugger (part of the developer toolset) opens, and stops
at the first breakpoint. Now you can use the tools you’re probably already familiar with
from your client-side JavaScript development efforts, such as stepping over a couple of
lines of code and examining an object’s properties, as shown in Figure 14-1.

Figure 14-1. Running Node Inspector in Chrome on a Node application running on a remote server

Node Inspector is, by far, a superior approach to debugging the server application.
Using the command line is OK, but being able to see all the code at once, and to use a
toolset we’re familiar with, more than compensates for the little extra effort necessary
to enable the Node Inspector setup.

If you eventually end up hosting your Node application in a cloud ser-
vice, the service will usually provide its own form of development tools,
including debuggers.

Debugging | 291

http://examples.burningbird.net:8080/debug?port=5858

Unit Testing
Unit testing is a way of isolating specific components of an application for testing. Many
of the tests that are provided in the tests subdirectory of Node modules are unit tests.
The tests in the test subdirectory of the Node installation are all unit tests.

You can run a module’s test scripts using npm. In the module subdirectory, type:

npm test

This command runs a module test script if one is provided. When I ran the test script
in the subdirectory for node-redis (covered in Chapter 9), the resulting output displayed
successful test results, such as the portion displayed here:

Connected to 127.0.0.1:6379, Redis server version 2.4.11

Using reply parser hiredis
- flushdb: 1 ms
- multi_1: 3 ms
- multi_2: 9 ms
- multi_3: 2 ms
- multi_4: 1 ms
- multi_5: 0 ms
- multi_6: 7 ms
- eval_1:Skipping EVAL_1 because server version isn't new enough.
 0 ms
- watch_multi: 0 ms

Many of these unit tests are built using the Assert module, which we’ll go over next.

Unit Testing with Assert
Assertion tests evaluate expressions, the end result of which is a value of either true or
false. If you’re testing the return from a function call, you might first test that the return
is an array (first assertion). If the array contents should be a certain length, you perform
a conditional test on the length (second assertion), and so on. There’s one Node built-
in module that facilitates this form of assertion testing: Assert.

You include the Assert module in an application with the following:

var assert = require('assert');

To see how to use Assert, let’s look at how existing modules use it. The following test
is in the test.js script found with the node-redis installation:

 var name = "FLUSHDB";
 client.select(test_db_num, require_string("OK", name));

The test uses a function, require_string, which returns a function that uses the Assert
module methods assert.equal and assert.stringEqual:

 function require_string(str, label) {
 return function (err, results) {
 assert.strictEqual(null, err, "result sent back unexpected error: " + err);

292 | Chapter 14: Testing and Debugging Node Applications

 assert.equal(str, results, label + " " + str + " does not match " + results);
 return true;
 };
}

The first test, assert.stringEqual, fails if the err object returned in the Redis test isn’t
null. The second test using assert.equal fails if results are not equal to the expected
string. Only if both tests are successful (i.e., neither test fails) does the code fall through
to the return true statement.

What is actually tested is whether the Redis select command succeeds. If an error
occurs, the error is output. If the result of the selection isn’t what’s expected (a return
value of OK), a message is output to that effect, including the test label where the test
failed.

The Node application also makes use of the Assert module in its module unit tests. For
instance, there’s a test application called test-util.js that tests the Utilities module. The
following code is the section that tests the isArray method:

// isArray
assert.equal(true, util.isArray([]));
assert.equal(true, util.isArray(Array()));
assert.equal(true, util.isArray(new Array()));
assert.equal(true, util.isArray(new Array(5)));
assert.equal(true, util.isArray(new Array('with', 'some', 'entries')));
assert.equal(true, util.isArray(context('Array')()));
assert.equal(false, util.isArray({}));
assert.equal(false, util.isArray({ push: function() {} }));
assert.equal(false, util.isArray(/regexp/));
assert.equal(false, util.isArray(new Error));
assert.equal(false, util.isArray(Object.create(Array.prototype)));

Both the assert.equal and the assert.strictEqual methods have two mandatory pa-
rameters: an expected response and an expression that evaluates to a response. In the
earlier Redis test, the assert.strictEqual test expects a result of null for the err argu-
ment. If this expectation fails, the test fails. In the assert.equal isArray test in the
Node source, if the expression evaluates to true, and the expected response is true, the
assert.equal method succeeds and produces no output—the result is silent.

If, however, the expression evaluates to a response other than what’s expected, the
assert.equal method responds with an exception. If I take the first statement in the
isArray test in the Node source and modify it to:

assert.equal(false, util.isArray([]));

then the result is:

node.js:201
 throw e; // process.nextTick error, or 'error' event on first tick
 ^
AssertionError: false == true
 at Object.<anonymous> (/home/examples/public_html/node/chap14/testassert.js:5:8)
 at Module._compile (module.js:441:26)
 at Object..js (module.js:459:10)

Unit Testing | 293

 at Module.load (module.js:348:31)
 at Function._load (module.js:308:12)
 at Array.0 (module.js:479:10)
 at EventEmitter._tickCallback (node.js:192:40)

The assert.equal and assert.strictEqual methods also have a third optional param-
eter, a message that’s displayed rather than the default in case of a failure:

assert.equal(false, util.isArray([]), 'Test 1Ab failed');

This can be a useful way of identifying exactly which test failed if you’re running several
in a test script. You can see the use of a message (a label) in the node-redis test code:

assert.equal(str, results, label + " " + str + " does not match " + results);

The message is what’s displayed when you catch the exception and print out the
message.

The following Assert module methods all take the same three parameters, though how
the test value and expression relate to each other varies, as the name of the test implies:

assert.equal
Fails if the expression results and given value are not equal

assert.strictEqual
Fails if the expression results and given value are not strictly equal

assert.notEqual
Fails if the expression results and given value are equal

assert.notStrictEqual
Fails if the expression results and given value are strictly equal

assert.deepEqual
Fails if the expression results and given value are not equal

assert.notDeepEqual
Fails if the expression results and given value are equal

The latter two methods, assert.deepEqual and assert.notDeepEqual, work with com-
plex objects, such as arrays or objects. The following succeeds with assert.deepEqual:

assert.deepEqual([1,2,3],[1,2,3]);

but would not succeed with assert.equal.

The remaining assert methods take differing parameters. Calling assert as a method,
passing in a value and a message, is equivalent to calling assert.isEqual, passing in
true as the first parameter, an expression, and a message. The following:

var val = 3;
assert(val == 3, 'Equal');

is equivalent to:

assert.equal(true, val == 3, 'Equal');

294 | Chapter 14: Testing and Debugging Node Applications

Another variation of the exact same method is assert.ok:

assert.ok(val == 3, 'Equal');

The assert.fail method throws an exception. It takes four parameters: a value, an
expression, a message, and an operator, which is used to separate the value and ex-
pression in the message when an exception is thrown. In the following code snippet:

try {
 var val = 3;
 assert.fail(3, 4, 'Fails Not Equal', '==');
} catch(e) {
 console.log(e);
}

the console message is:

{ name: 'AssertionError',
 message: 'Fails Not Equal',
 actual: 3,
 expected: 4,
 operator: '==' }

The assert.ifError function takes a value and throws an exception only if the value
resolves to anything but false. As the Node documentation states, it’s a good test for
the error object as the first argument in a callback function:

assert.ifError(err); //throws only if true value

The last assert methods are assert.throws and assert.doesNotThrow. The first expects
an exception to get thrown; the second doesn’t. Both methods take a code block as the
first required parameter, and an optional error and message as the second and third
parameters. The error object can be a constructor, regular expression, or validation
function. In the following code snippet, the error message is printed out because the
error regular expression as the second parameter doesn’t match the error message:

assert.throws(
 function() {
 throw new Error("Wrong value");
 },
 /something/
)
} catch(e) {
 console.log(e.message);
}

You can create sophisticated tests using the Assert module. The one major limitation
with the module, though, is the fact that you have to do a lot of wrapping of the tests
so that the entire testing script doesn’t fail if one test fails. That’s where using a higher-
level unit testing framework, such as Nodeunit (discussed next), comes in handy.

Unit Testing | 295

Unit Testing with Nodeunit
Nodeunit provides a way to script several tests. Once scripted, each test is run serially,
and the results are reported in a coordinated fashion. To use Nodeunit, you’re going
to want to install it globally with npm:

npm install nodeunit -g

Nodeunit provides a way to easily run a series of tests without having to wrap everything
in try/catch blocks. It supports all of the Assert module tests, and provides a couple of
methods of its own in order to control the tests. Tests are organized as test cases, each
of which is exported as an object method in the test script. Each test case gets a control
object, typically named test. The first method call in the test case is to the test ele-
ment’s expect method, to tell Nodeunit how many tests to expect in the test case. The
last method call in the test case is to the test element’s done method, to tell Nodeunit
the test case is finished. Everything in between composes the actual test unit:

module.exports = {
 'Test 1' : function(test) {
 test.expect(3); // three tests
 ... // the tests
 test.done();
 },
 'Test 2' : function (test) {
 test.expect(1); // only one test
 ... // the test
 test.done();
 }
};

To run the tests, type nodeunit, followed by the name of the test script:

nodeunit thetest.js

Example 14-1 has a small but complete testing script with six assertions (tests). It con-
sists of two test units, labeled Test 1 and Test 2. The first test unit runs four separate
tests, while the second test unit runs two. The expect method call reflects the number
of tests being run in the unit.

Example 14-1. Nodeunit test script, with two test units, running a total of six tests

var util = require('util');

module.exports = {
 'Test 1' : function(test) {
 test.expect(4);
 test.equal(true, util.isArray([]));
 test.equal(true, util.isArray(new Array(3)));
 test.equal(true, util.isArray([1,2,3]));
 test.notEqual(true, (1 > 2));
 test.done();
 },
 'Test 2' : function(test) {
 test.expect(2);

296 | Chapter 14: Testing and Debugging Node Applications

 test.deepEqual([1,2,3], [1,2,3]);
 test.ok('str' === 'str', 'equal');
 test.done();
 }
};

The result of running the Example 14-1 test script with Nodeunit is:

example1.js
✔ Test 1
✔ Test 2

OK: 6 assertions (3ms)

Symbols in front of the tests indicate success or failure: a check for success, and an x
for failure. None of the tests in this script fails, so there’s no error script or stack trace
output.

For CoffeeScript fans, the newest version of Nodeunit supports Coffee-
Script applications.

Other Testing Frameworks
In addition to Nodeunit, covered in the preceding section, there are several other testing
frameworks available for Node developers. Some of the tools are simpler to use than
others, and each has its own advantages and disadvantages. Next, I’ll briefly cover three
frameworks: Mocha, Jasmine, and Vows.

Mocha

Install Mocha with npm:

npm install mocha -g

Mocha is considered the successor to another popular testing framework, Espresso.

Mocha works in both browsers and Node applications. It allows for asynchronous
testing via the done function, though the function can be omitted for synchronous test-
ing. Mocha can be used with any assertion library.

The following is an example of a Mocha test, which makes use of the should.js assertion
library:

should = require('should')
describe('MyTest', function() {
 describe('First', function() {
 it('sample test', function() {
 "Hello".should.equal("Hello");
 });

Unit Testing | 297

 });
});

You need to install the should.js library before running the test:

npm install should

Then run the test with the following command line:

mocha testcase.js

The test should succeed:

 ✔ 1 test complete (2ms)

Jasmine

Jasmine is a behavior-driven development (BDD) framework that can be used with
many different technologies, including Node with the node-jasmine module. The node-
jasmine module can be installed with npm:

npm install jasmine-node -g

Note the module name: jasmine-node, rather than the format of node-
modulename (or the shortened form, modulename) that you’ve seen so far
in the book.

The jasmine-node GitHub repository includes examples in the specs subdirectory. As
with most other testing frameworks, the Jasmine Node module also accepts a done
function as a callback in order to allow asynchronous testing.

There are some environmental requirements to using jasmine-node. First, the tests must
be in a specs subdirectory. The jasmine-node module is a command-line application,
and you’ll be able to specify the root directory, but it does expect the tests to be in specs.

Next, the tests must be named in a specific format. If the test is written in JavaScript,
the test filename must end in .spec.js. If the test is written in CoffeeScript, the name of
the file must end in .spec.coffee. You can use subdirectories in the specs directory. When
you run jasmine-node, it runs all tests in all directories.

To demonstrate, I created a simple test script that uses Zombie (discussed later) to
make a request against a web server and access the page contents. I named the file
tst.spec.js and placed it in the specs directory in my development environment:

var zombie = require('zombie');

describe('jasmine-node', function(){

 it("should respond with Hello, World!", function(done) {
 zombie.visit("http://examples.burningbird.net:8124",
 function(error, browser, status){
 expect(browser.text()).toEqual("Hello, World!\n");

298 | Chapter 14: Testing and Debugging Node Applications

 done();
 });
 });
});

The web server is from Chapter 1, and all it does is return the “Hello, World!” message.
Note the use of the newline character—the test will fail if you don’t include it.

I ran the test with the following command line:

jasmine-node --test-dir /home/examples/public_html/node

The result was the following output:

Finished in 0.133 seconds
1 test, 1 assertion, 0 failures

A successful test.

Jasmine uses path.existsSync, which is deprecated in favor of js.exist
sSync in Node 0.8. Again, hopefully a fix will be in soon.

If the script had been in CoffeeScript, I would have added the --coffee parameter:

jasmine-node --test-dir /home/examples/public_html/node --coffee

Vows

Vows is another BDD testing framework, and has one advantage over others: more
comprehensive documentation. Testing is composed of testing suites, themselves made
up of batches of sequentially executed tests. A batch consists of one or more contexts,
executed in parallel, and each consisting of a topic, which is when we finally get to the
executable code. The test within the code is known as a vow. Where Vows prides itself
on being different from the other testing frameworks is by providing a clear separation
between that which is being tested (topic) and the test (vow).

I know those are some strange uses of familiar words, so let’s look at a simple example
to get a better idea of how a Vows test works. First, though, we have to install Vows:

npm install vows

To try out Vows, I’m using the simple circle module I created earlier in the book, now
edited to set precision:

var PI = Math.PI;

exports.area = function (r) {
 return (PI * r * r).toFixed(4);
};

exports.circumference = function (r) {
 return (2 * PI * r).toFixed(4);
};

Unit Testing | 299

I needed to change the precision on the result because I’m going to be doing an equality
assertion test on the results in the Vows application.

In the Vows test application, the circle object is the topic, and the area and circumfer-
ence methods are the vows. Both are encapsulated as a Vows context. The suite is the
overall test application, and the batch is the test instance (circle and two methods).
Example 14-2 shows the entire test.

Example 14-2. Vows test application with one batch, one context, one topic, and two vows

var vows = require('vows'),
 assert = require('assert');

var circle = require('./circle');

var suite = vows.describe('Test Circle');

suite.addBatch({
 'An instance of Circle': {
 topic: circle,
 'should be able to calculate circumference': function (topic) {
 assert.equal (topic.circumference(3.0), 18.8496);
 },
 'should be able to calculate area': function(topic) {
 assert.equal (topic.area(3.0), 28.2743);
 }
 }
}).run();

Running the application with Node runs the test because of the addition of the run
method at the end of the addBatch method:

node example2.js

The results should be two successful tests:

·· ✓ OK » 2 honored (0.003s)

The topic is always an asynchronous function or a value. Instead of using circle as the
topic, I could have directly referenced the object methods as topics—with a little help
from function closures:

var vows = require('vows'),
 assert = require('assert');

var circle = require('./circle');

var suite = vows.describe('Test Circle');

suite.addBatch({
 'Testing Circle Circumference': {
 topic: function() { return circle.circumference;},
 'should be able to calculate circumference': function (topic) {
 assert.equal (topic(3.0), 18.8496);
 },

300 | Chapter 14: Testing and Debugging Node Applications

 },
 'Testing Circle Area': {
 topic: function() { return circle.area;},
 'should be able to calculate area': function(topic) {
 assert.equal (topic(3.0), 28.2743);
 }
 }
}).run();

In this version of the example, each context is the object given a title: Testing Circle
Circumference and Testing Circle Area. Within each context, there’s one topic and
one vow.

You can incorporate multiple batches, each with multiple contexts, which can in turn
have multiple topics and multiple vows.

Acceptance Testing
Acceptance testing differs from unit testing in that the former’s primary purpose is to
determine if the application meets user requirements. Unit tests ensure that the appli-
cation is robust, while acceptance tests ensure that the application is useful.

Acceptance testing can be accomplished through the use of predefined scripts that users
actually design and implement in a coordinated setting. Acceptance testing can also be
automated—again through the use of scripts, but scripts that are implemented by tools
rather than people. These tools don’t completely satisfy all aspects of acceptance testing
because they can’t measure subjective perspectives (“This web page form is awkward
to use”), nor can they pinpoint those difficult-to-find bugs that users always seem to
drive out, but they can make sure program requirements are met.

Selenium Testing with Soda
If you want a higher level of sophistication in your testing, using actual browsers rather
than emulators, and you’re willing to pay for a subscription to a testing service, then
you might want to check out Selenium, Sauce Labs, and the Node module Soda.

Selenium emerged out of a desire to automate testing tools. It consists of a core library,
a Selenium remote control (RC), and a Selenium integrated development environment
(IDE). The Selenium IDE is a Firefox plug-in, while the RC is a Java .jar file. The first
version of Selenium (Selenium 1) is based in JavaScript, which was also one of the
problems with the tool suite: whatever limitations JavaScript had, Selenium shared.
Another effort to provide an automated test suite is WebDriver, a project that came
about because of an interest in working around Selenium’s limitations. Work is cur-
rently under way for Selenium 2 (Selenium WebDriver), which is a merge of Selenium
1 and WebDriver.

Sauce Labs provides a host for Selenium 1 testing. It offers a way of testing your appli-
cation with various web browsers in various environments, such as Opera on Linux,

Acceptance Testing | 301

or IE9 on Windows 7. It does have two major limitations: no Mac OS X support, and
no mobile test environment. However, it is a way of testing an application with multiple
versions of browsers, such as IE, which is difficult (if not impossible) if you have only
one machine.

Sauce Labs provides various subscription plans, including a basic, free subscription
plan for trying out the service. The basic plan allows for two concurrent users, and
provides 200 OnDemand minutes a month and 45 Scout minutes a month—more than
sufficient for a developer trying things out. The site is geared toward Ruby developers,
but there is a Node module, Soda, that you can use.

Soda provides a Node wrapper for Selenium testing. An example of using Soda, in-
cluded in the module documentation, is the following:

var soda = require('soda');

var browser = soda.createClient({
 host: 'localhost'
 , port: 4444
 , url: 'http://www.google.com'
 , browser: 'firefox'
});

browser.on('command', function(cmd, args){
 console.log(' \x1b[33m%s\x1b[0m: %s', cmd, args.join(', '));
});

browser
 .chain
 .session()
 .open('/')
 .type('q', 'Hello World')
 .end(function(err){
 browser.testComplete(function() {
 console.log('done');
 if(err) throw err;
 });
 });

The code is actually quite intuitive. First, you create a browser object, specifying which
browser to open, the name of the host and port, and what website is being accessed.
Start a new browser session, load a web page ('/'), and type a phrase into an input
field with a given identifier of q. When finished, print done to the console.log, and
throw any error that occurs.

To run a Soda application, you’ll need to ensure that Java is installed. Then, copy the
Selenium RC Java .jar file to your system and run it:

 java -jar selenium.jar

The application expects Firefox to be installed, since this is the browser specified in the
application. While I didn’t have it on my Linux box, I did on my Windows laptop and
was able to easily get the application running. It’s rather fascinating but a little

302 | Chapter 14: Testing and Debugging Node Applications

disconcerting to see windows pop up and suddenly disappear as the Selenium RC does
its thing.

Another approach is to use Sauce Labs as a remote testing environment, specifying
which browser to use for a given test. You’ll need to create an account first, and then
find your account username and application programming interface (API) key. The
username is displayed in the top toolbar, and you can find the API key under the Ac-
count tab, after clicking the “View my API Key” link. This is also where you can track
your remaining OnDemand and Scout minutes (the testing applications we’re creating
use OnDemand minutes).

To try the remote testing out, I created a simple test for a login form that we’ll build in
Chapter 15. The login form has two text fields and two buttons. The text field values
are username and password, and one of the buttons has a value of Submit. The test script
is testing failure, not success, so the testing script (scenario) would be:

1. Access web application (http://examples.burningbird.net:3000).

2. Open login (/login).

3. Type Sally into the username field.

4. Type badpassword into the password field.

5. The page should display “Invalid Password.”

These are the steps encoded into Example 14-3.

Example 14-3. Test case for the login form with bad password

var soda = require('soda');

var browser = soda.createSauceClient({
 'url': 'http://examples.burningbird.net:3000/'
 , 'username': 'your username'
 , 'access-key': 'your access key'
 , 'os': 'Linux'
 , 'browser': 'firefox'
 , 'browser-version': '3.'
 , 'max-duration': 300 // 5 minutes
});

// Log commands as they are fired
browser.on('command', function(cmd, args){
 console.log(' \x1b[33m%s\x1b[0m: %s', cmd, args.join(', '));
});

browser
 .chain
 .session()
 .setTimeout(8000)
 .open('/login')
 .waitForPageToLoad(5000)
 .type('username', 'Sally')
 .type('password', 'badpassword')

Acceptance Testing | 303

http://examples.burningbird.net:3000

 .clickAndWait('//input[@value="Submit"]')
 .assertTextPresent('Invalid password')
 .end(function(err){
 browser.setContext('sauce:job-info={"passed": ' + (err === null) + '}', function(){
 browser.testComplete(function(){
 console.log(browser.jobUrl);
 console.log(browser.videoUrl);
 console.log(browser.logUrl);
 if (err) throw err;
 });
 });
 });

In the test application, a browser object is created with a given browser, browser ver-
sion, and operating system—in this case, Firefox 3.x on Linux. Note also the different
browser client: soda.createSauceClient, not soda.createClient. In the browser object,
I’m restricting testing time to no more than five minutes; the site accessed is http://
examples.burningbird.net:3000; and we’ve just covered where to get the username and
API key.

As each command is issued, it’s logged. We want to have a log so we can check
responses and look for failures and abnormalities:

// Log commands as they are fired
browser.on('command', function(cmd, args){
 console.log(' \x1b[33m%s\x1b[0m: %s', cmd, args.join(', '));
});

Last is the actual test. Typically, the tests would have to be nested callbacks (since this
is an asynchronous environment), but Soda provides a chain getter that greatly simpli-
fies adding tasks. The very first task is to start a new session, and then each separate
item in the testing script is encoded. In the end, the application prints out the URLs for
the job, log, and video of the test.

The output from running the application is:

 setTimeout: 8000
 open: /login
 waitForPageToLoad: 5000
 type: username, Sally
 type: password, badpassword
 clickAndWait: //input[@value="Submit"]
 assertTextPresent: Invalid password
 setContext: sauce:job-info={"passed": true}
 testComplete:
https://saucelabs.com/jobs/d709199180674dc68ec6338f8b86f5d6
https://saucelabs.com/rest/shelleyjust/jobs/d709199180674dc68ec6338f8b86f5d6/
results/video.flv
https://saucelabs.com/rest/shelleyjust/jobs/d709199180674dc68ec6338f8b86f5d6/
results/selenium-server.log

You can access the results directly, or you can log into Sauce Labs and see the results
of all your tests, as shown in Figure 14-2.

304 | Chapter 14: Testing and Debugging Node Applications

http://examples.burningbird.net:3000
http://examples.burningbird.net:3000

Figure 14-2. Results of running Soda test against Sauce Labs Selenium core

As mentioned earlier, Soda is a Selenium wrapper, so there’s little documentation of
the Selenium commands in the module. You’ll need to find these at the Selenium web-
site and extrapolate how they’d work with Soda.

Access the Selenium website at http://seleniumhq.org/.

Emulating a Browser with Tobi and Zombie
Rather than using any specific browser, you can do acceptance testing with Node mod-
ules that emulate a browser. Both Tobi and Zombie provide this capability. The primary
advantage to these modules is that you can run the applications in an environment that
doesn’t have a browser installed. In this section, I’ll briefly demonstrate how you can
use Zombie for acceptance testing.

First, install Zombie using npm:

npm install zombie

Zombie resembles Soda in that you create a browser and then run tests that emulate
the actions of a user at a browser. It even supports chained methods to circumvent the
issues with nested callbacks.

I converted the test case against the login form in Example 14-3 to Zombie, except this
time the test uses the proper password and tests for success rather than failure (the user
is redirected to the /admin page). Example 14-4 has the code for this acceptance test.

Acceptance Testing | 305

http://seleniumhq.org/

Example 14-4. Testing the login form with Zombie

var Browser = require('zombie');
var assert = require('assert');

var browser = new Browser();

browser.visit('http://examples.burningbird.net:3000/login', function() {
 browser.
 fill('username', 'Sally').
 fill('password', 'apple').
 pressButton('Submit', function() {
 assert.equal(browser.location.pathname, '/admin');
 });
});

The test is silent, since the assert at the end is successful—the browser location
is /admin, which is the page that should open if the login works, signaling a successful
test.

Several of the examples are dependent on the popular Node module
jsdom. Again, this module had some problems with the 0.7.10 unstable
Node build, but should, hopefully, be quickly compatible with Node
0.8.x.

Performance Testing: Benchmarks and Load Tests
A robust application that meets all the user’s needs is going to have a short life if its
performance is atrocious. We need the ability to performance test our Node applica-
tions, especially when we make tweaks as part of the process to improve performance.
We can’t just tweak the application, put it out for production use, and let our users
drive out performance issues.

Performance testing consists of benchmark testing and load testing. Benchmark test-
ing, also known as comparison testing, is running multiple versions or variations of an
application and then determining which is better. It’s an effective tool to use when
you’re tweaking an application to improve its efficiency and scalability. You create a
standardized test, run it against the variations, and then analyze the results.

Load testing, on the other hand, is basically stress testing your application. You’re trying
to see at what point your application begins to fail or bog down because of too many
demands on resources, or too many concurrent users. You basically want to drive the
application until it fails. Failure is a success with load testing.

There are existing tools that handle both kinds of performance testing, and a popular
one is ApacheBench. It’s popular because it’s available by default on any server where
Apache is installed—and few servers don’t have Apache installed. It’s also an easy-to-
use, powerful little testing tool. When I was trying to determine whether it’s better to

306 | Chapter 14: Testing and Debugging Node Applications

create a static database connection for reuse or to create a connection and discard it
with each use, I used ApacheBench to run tests.

ApacheBench works against web applications, which means you provide a URL rather
than an application name. If we prefer a Node solution, or an application that can run
applications (not just query websites), there’s another combination command-line
tool/module: Nodeload. Nodeload can interact with a stats module, output graphics
of results, and provide real-time monitoring. It also supports distributed load testing.

In the next couple of sections, the test applications are working with
Redis, so if you haven’t read Chapter 9, you may want to do that now.

Benchmark Testing with ApacheBench
ApacheBench is commonly called ab, and I’ll use that name from this point forward.
ab is a command-line tool that allows us to specify the number of times an application
is run, and by how many concurrent users. If we want to emulate 20 concurrent users
accessing a web application a total of 100 times, we’d use a command like the following:

ab -n 100 -c 20 http://somewebsite.com/

It’s important to provide the final slash, as ab expects a full URL, including path.

ab provides a rather rich output of information. An example is the following output
(excluding the tool identification) from one test:

Concurrency Level: 10
Time taken for tests: 20.769 seconds
Complete requests: 15000
Failed requests: 0
Write errors: 0
Total transferred: 915000 bytes
HTML transferred: 345000 bytes
Requests per second: 722.22 [#/sec] (mean)
Time per request: 13.846 [ms] (mean)
Time per request: 1.385 [ms] (mean, across all concurrent requests)
Transfer rate: 43.02 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.1 0 4
Processing: 1 14 15.7 12 283
Waiting: 1 14 15.7 12 283
Total: 1 14 15.7 12 283

Percentage of the requests served within a certain time (ms)
 50% 12
 66% 14
 75% 15
 80% 16

Performance Testing: Benchmarks and Load Tests | 307

 90% 18
 95% 20
 98% 24
 99% 40
 100% 283 (longest request)

The test ran 15,000 times, with 10 concurrent users.

The lines we’re most interested in (in bold text) are those having to do with how long
each test took, and the cumulative distribution at the end of the test (based on percen-
tages). According to this output, the average time per request (the first value with this
label) is 13.846 milliseconds. This is how long the average user could expect to wait
for a response. The second line has to do with throughput, and is probably not as useful
as the first.

The cumulative distribution provides a good look into the percentage of requests han-
dled within a certain time frame. Again, this indicates what we can expect for an average
user: response times between 12 and 283 milliseconds, with the vast majority of re-
sponses handled in 20 milliseconds or less.

The last value we’re looking at is the requests per second—in this case, 722.22. This
value can somewhat predict how well the application will scale, because it gives us an
idea of the maximum requests per second—that is, the upper boundaries of application
access. However, you’ll need to run the test at different times, and under different
ancillary loads, especially if you’re running the test on a system that serves other uses.

The application tested consists of a web server listening for requests. Each request
triggers a query to a Redis data store. The application creates a persistent connection
to the Redis data store that it maintains throughout the lifetime of the Node application.
The test application is shown in Example 14-5.

Example 14-5. Simple Redis access application used to test persistent Redis connection

var redis = require("redis"),
 http = require('http');

// create Redis client
var client = redis.createClient();

client.on('error', function (err) {
 console.log('Error ' + err);
});

// set database to 1
client.select(1);

var scoreServer = http.createServer();

// listen for incoming request
scoreServer.on('request', function (req, res) {

 console.time('test');

308 | Chapter 14: Testing and Debugging Node Applications

 req.addListener("end", function() {

 var obj = {
 member : 2366,
 game : 'debiggame',
 first_name : 'Sally',
 last_name : 'Smith',
 email : 'sally@smith.com',
 score : 50000 };

 // add or overwrite score
 client.hset(obj.member, "game", obj.game, redis.print);
 client.hset(obj.member, "first_name", obj.first_name, redis.print);
 client.hset(obj.member, "last_name", obj.last_name, redis.print);
 client.hset(obj.member, "email", obj.email, redis.print);
 client.hset(obj.member, "score", obj.score, redis.print);

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

 res.end(obj.member + ' set score of ' + obj.score);
 console.timeEnd('test');
 });
});

scoreServer.listen(8124);

// HTTP server closes, close client connection
scoreServer.on('close', function() {
 client.quit();
});

console.log('listening on 8124');

I was curious about performance if I changed one parameter in the application: from
maintaining a persistent connection to Redis to grabbing a connection when the web
service was accessed, and releasing it as soon as the request was finished. That led to
the second version of the application, shown in Example 14-6. The changes from the
first are in bold text.

Example 14-6. Modified application with nonpersistent Redis connections

var redis = require("redis"),
 http = require('http');

Performance Testing: Benchmarks and Load Tests | 309

var scoreServer = http.createServer();

// listen for incoming request
scoreServer.on('request', function (req, res) {

 console.time('test');

 // create Redis client
 var client = redis.createClient();

 client.on('error', function (err) {
 console.log('Error ' + err);
 });

 // set database to 1
 client.select(1);

 req.addListener("end", function() {

 var obj = {
 member : 2366,
 game : 'debiggame',
 first_name : 'Sally',
 last_name : 'Smith',
 email : 'sally@smith.com',
 score : 50000 };

 // add or overwrite score
 client.hset(obj.member, "game", obj.game, redis.print);
 client.hset(obj.member, "first_name", obj.first_name, redis.print);
 client.hset(obj.member, "last_name", obj.last_name, redis.print);
 client.hset(obj.member, "email", obj.email, redis.print);
 client.hset(obj.member, "score", obj.score, redis.print);

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

 res.end(obj.member + ' set score of ' + obj.score);
 client.quit();
 console.timeEnd('test');
 });
});

scoreServer.listen(8124);

console.log('listening on 8124');

310 | Chapter 14: Testing and Debugging Node Applications

I ran the ab test against this second application, and the relevant test results are as
follows:

Requests per second: 515.40 [#/sec] (mean)
Time per request: 19.402 [ms] (mean)
...
Percentage of the requests served within a certain time (ms)
 50% 18
 66% 20
 75% 21
 80% 22
 90% 24
 95% 27
 98% 33
 99% 40
 100% 341 (longest request)

The tests give us a fairly good indication that maintaining a persistent connection en-
hances performance. This is further borne out, in rather dramatic fashion, with a second
test.

When I ran the test 100,000 times, with 1,000 concurrent users, the Node application
that maintained a persistent connection to Redis finished the test, while the other op-
tion actually failed; too many concurrent users backed up at Redis, and it started re-
jecting connections. Exactly 67,985 tests completed before the application went toes
up.

Load Testing with Nodeload
Nodeload provides a command-line tool that performs the same type of testing as ab,
but with the addition of some nice graphics of the results. It also provides a module
you can use to develop your own performance testing applications.

Another application also goes by the name Nodeload, and is responsible
for building and delivering Git repositories as .zip files. To ensure that
you’re accessing the correct Nodeload, install it with the following:

npm install nodeload -g

When Nodeload is installed globally, you can access the command-line version (nl.js)
of the module application anywhere. The command-line arguments it takes are similar
to what we’ve used with ab:

nl.js -c 10 -n 10000 -i 2 http://examples.burningbird.net:8124

The application accesses the website 10,000 times, emulating 10 concurrent users. The
-i flag alters how frequently the statistics are reported (every 2 seconds rather than the
default 10 seconds). Here is the complete set of flags:

-n --number
Number of requests to make

Performance Testing: Benchmarks and Load Tests | 311

-c --concurrency
Number of concurrent users

-t --time-limit
Time limit for the test

-m --method
HTTP method to use

-d --data
Data to send with PUT or POST request

-r --request-generator
Path to module for getRequest function (if a custom one is provided)

-q --quiet
Suppress display of progress

-h --help
Help

What’s fun about Nodeload is the live graphics that are displayed while the test is
running. If you access port 8000 of the test server (http://localhost:8000 or via domain),
you can see a graphic display of the results as they are happening. Figure 14-3 shows a
snapshot of the display during one test.

Figure 14-3. Live graphics of ongoing Nodeload test

The graphics file is also persisted for later access, as is a logfile of the test results. At the
end of the test, summary results are given that are very close to ab in nature. An example
of one output is the following:

312 | Chapter 14: Testing and Debugging Node Applications

http://localhost:8000

Server: examples.burningbird.net:8124
HTTP Method: GET
Document Path: /
Concurrency Level: 100
Number of requests: 10000
Body bytes transferred: 969977
Elapsed time (s): 19.59
Requests per second: 510.41
Mean time per request (ms): 192.74
Time per request standard deviation: 47.75

Percentages of requests served within a certain time (ms)
 Min: 23
 Avg: 192.7
 50%: 191
 95%: 261
 99%: 372
 Max: 452

If you want to provide your own custom test, you can use the Nodeload module to
develop a testing application. The module provides live monitoring, graphics capabil-
ity, statistics, as well as distributed testing capability.

Nodeload currently uses http.createClient, which is deprecated in fa-
vor of http.request in Node 0.8.x. Although it still seemed to work, it
should be upgraded shortly.

Refreshing Code with Nodemon
Before leaving this chapter, I want to introduce one more module: Nodemon. Though
not technically related to either testing or debugging, it is a handy development tool.

First, install it with npm:

npm install nodemon

Nodemon wraps your application. Instead of using Node to start the application, use
Nodemon:

nodemon app.js

Nodemon sits quietly monitoring the directory (and any contained directories) where
you ran the application, checking for file changes. If it finds a change, it restarts the
application so that it picks up the recent changes.

You can pass parameters to the application:

nodemon app.js param1 param2

You can also use the module with CoffeeScript:

nodemon someapp.coffee

Refreshing Code with Nodemon | 313

If you want Nodemon to monitor some directory other than the current one, use the
--watch flag:

nodemon --watch dir1 --watch libs app.js

There are other flags, documented with the module. The module can be found at https:
//github.com/remy/nodemon/.

Chapter 16 demonstrates how to use Nodemon with Forever, which
restarts your application if it shuts down for some reason.

314 | Chapter 14: Testing and Debugging Node Applications

https://github.com/remy/nodemon/
https://github.com/remy/nodemon/

CHAPTER 15

Guards at the Gate

Security in web applications goes beyond ensuring that people don’t have access to the
application server. Security can be complex, and even a little intimidating. Luckily,
when it comes to Node applications, most of the components we need for security have
already been created. We just need to plug them in, in the right place and at the right
time.

In this chapter, I break down security into four major components: encryption,
authentication and authorization, attack prevention, and sandboxing:

Encryption
Ensures that data transmitted over the Internet is safe, even if it is intercepted
midroute. The only receiver that can actually decrypt the data is the system that
has the proper credentials (typically a key). Encryption is also used for data that
must be stored confidentially.

Authentication and authorization
Consist of the logins we get whenever we need to access protected areas of an
application. Not only do these logins ensure that a person has access to a section
of an application (authorization), they also ensure the person is who she says she
is (authentication).

Attack prevention
Ensures that someone who is submitting data via a form isn’t trying to tack on text
that can attack the server or the database you’re using.

Sandboxing
Barricades script so it doesn’t have access to the system resources—it operates only
within a limited context.

315

Encrypting Data
We send a lot of data over the Internet. Most of it isn’t anything essential: Twitter
updates, web page history, comments on a blog post. Much of the data, though, is
private, including credit card data, confidential email messages, or login information
to our servers. The only way to ensure that these types of data transmissions are kept
private, and aren’t hacked in any way during transit, is to use encryption with the
communication.

Setting Up TSL/SSL
Secure, tamper-resistant communication between a client and a server occurs over SSL
(Secure Sockets Layer), and its upgrade, TLS (Transport Layer Security). TSL/SSL pro-
vides the underlying encryption for HTTPS, which I cover in the next section. However,
before we can develop for HTTPS, we have to do some environment setup.

A TSL/SSL connection requires a handshake between client and server. During the
handshake, the client (typically a browser) lets the server know what kind of security
functions it supports. The server picks a function and then sends through an SSL cer-
tificate, which includes a public key. The client confirms the certificate and generates
a random number using the server’s key, sending it back to the server. The server then
uses its private key to decrypt the number, which in turn is used to enable the secure
communication.

For all this to work, you’ll need to generate both the public and private key, as well as
the certificate. For a production system, the certificate would be signed by a trusted
authority, such as our domain registrars, but for development purposes you can make
use of a self-signed certificate. Doing so generates a rather significant warning in the
browser, but since the development site isn’t being accessed by users, there won’t be
an issue.

The tool used to generate the necessary files is OpenSSL. If you’re using Linux, it should
already be installed. There’s a binary installation for Windows, and Apple is pursuing
its own Crypto library. In this section, I’m just covering setting up a Linux environment.

To start, type the following at the command line:

openssl genrsa -des3 -out site.key 1024

The command generates the private key, encrypted with Triple-DES and stored in PEM
(privacy-enhanced mail) format, making it ASCII readable.

You’ll be prompted for a password, and you’ll need it for the next task, creating a
certificate-signing request (CSR).

When generating the CSR, you’ll be prompted for the password you just created. You’ll
also be asked a lot of questions, including the country designation (such as US for
United States), your state or province, city name, company name and organization, and

316 | Chapter 15: Guards at the Gate

email address. The question of most importance is the one asking for the Common
Name. This is asking for the hostname of the site—for example, burningbird.net or
yourcompany.com. Provide the hostname where the application is being served. In my
example code, I created a certificate for examples.burningbird.net.

openssl req -new -key site.key -out site.csr

The private key wants a passphrase. The problem is, every time you start up the server,
you’ll have to provide this passphrase, which is an issue in a production system. In the
next step, you’ll remove the passphrase from the key. First, rename the key:

mv site.key site.key.org

Then type:

openssl rsa -in site.key.org -out site.key

If you do remove the passphrase, make sure your server is secure by ensuring that the
file is readable only by root.

The next task is to generate the self-signed certificate. The following command creates
one that’s good only for 365 days:

openssl x509 -req -days 365 -in site.csr -signkey site.key -out final.crt

Now you have all the components you need in order to use TLS/SSL and HTTPS.

Working with HTTPS
Web pages that ask for user login or credit card information had better be served as
HTTPS, or we should give the site a pass. HTTPS is a variation of the HTTP protocol,
except that it’s also combined with SSL to ensure that the website is who and what we
think it is, that the data is encrypted during transit, and the data arrives intact and
without any tampering.

Adding support for HTTPS is similar to adding support for HTTP, with the addition
of an options object that provides the public encryption key, and the signed certificate.
The default port for an HTTPS server differs, too: HTTP is served via port 80 by default,
while HTTPS is served via port 443.

Example 15-1 demonstrates a very basic HTTPS server. It does little beyond sending a
variation of our traditional Hello, World message to the browser.

Example 15-1. Creating a very simple HTTPS server

var fs = require("fs"),
 https = require("https");

var privateKey = fs.readFileSync('site.key').toString();
var certificate = fs.readFileSync('final.crt').toString();

Encrypting Data | 317

var options = {
 key: privateKey,
 cert: certificate
};

https.createServer(options, function(req,res) {
 res.writeHead(200);
 res.end("Hello Secure World\n");
}).listen(443);

The public key and certificate are opened, and their contents are read syn-
chronously. The data is attached to the options object, passed as the first parameter in
the https.createServer method. The callback function for the same method is the one
we’re used to, with the server request and response object passed as parameters.

Accessing the page demonstrates what happens when we use a self-signed certificate,
as shown in Figure 15-1. It’s easy to see why a self-signed certificate should be used
only during testing.

Figure 15-1. What happens when you use Chrome to access a website using HTTPS with a self-signed
certificate

The browser address bar demonstrates another way that the browser signals that the
site’s certificate can’t be trusted, as shown in Figure 15-2. Rather than displaying a lock
indicating that the site is being accessed via HTTPS, it displays a lock with a red x
showing that the certificate can’t be trusted. Clicking the icon opens an information
window with more details about the certificate.

318 | Chapter 15: Guards at the Gate

Figure 15-2. More information about the certificate is displayed when the lock icon is clicked

Encrypting communication isn’t the only time we use encryption in a web application.
We also use it to store user passwords and other sensitive data.

Safely Storing Passwords
Node provides a module used for encryption: Crypto. According to the module’s
documentation:

The crypto module requires OpenSSL to be available on the underlying platform. It offers
a way of encapsulating secure credentials to be used as part of a secure HTTPS net or
http connection.

It also offers a set of wrappers for OpenSSL’s hash, hmac, cipher, decipher, sign, and
verify methods.

The functionality we’re interested in is the module’s OpenSSL hash support.

One of the most common tasks a web application has to support is also one of the most
vulnerable: storing a user’s login information, including password. It probably only
took five minutes after the first username and password were stored in plain text in a
web application database before someone came along, cracked the site, got the login
information, and had his merry way with it.

You do not store passwords in plain text. Luckily, you don’t need to store passwords
in plain text with Node’s Crypto module.

Encrypting Data | 319

You can use the Crypto module’s createHash method to encrypt the password. An
example is the following, which creates the hash using the sha1 algorithm, uses the
hash to encode a password, and then extracts the digest of the encrypted data to store
in the database:

var hashpassword = crypto.createHash('sha1')
 .update(password)
 .digest('hex');

The digest encoding is set to hexadecimal. By default, encoding is binary, and base64
can also be used.

Many applications use a hash for this purpose. However, there’s a problem with storing
plain hashed passwords in a database, a problem that goes by the innocuous name of
rainbow table.

Put simply, a rainbow table is basically a table of precomputed hash values for every
possible combination of characters. So, even if you have a password that you’re sure
can’t be cracked—and let’s be honest, most of us rarely do—chances are, the sequence
of characters has a place somewhere in a rainbow table, which makes it much simpler
to determine what your password is.

The way around the rainbow table is with salt (no, not the crystalline variety), a unique
generated value that is concatenated to the password before encryption. It can be a
single value that is used with all the passwords and stored securely on the server. A
better option, though, is to generate a unique salt for each user password, and then
store it with the password. True, the salt can also be stolen at the same time as the
password, but it would still require the person attempting to crack the password to
generate a rainbow table specifically for the one and only password—adding immensely
to the complexity of cracking any individual password.

Example 15-2 is a simple application that takes a username and a password passed as
command-line arguments, encrypts the password, and then stores both as a new user
in a MySQL database table. The table is created with the following SQL:

CREATE TABLE user (userid INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(userid),
username VARCHAR(400) NOT NULL, password VARCHAR(400) NOT NULL);

The salt consists of a date value multiplied by a random number and rounded. It’s
concatenated to the password before the resulting string is encrypted. All the user data
is then inserted into the MySQL user table.

Example 15-2. Using Crypto’s createHash method and a salt to encrypt a password

var mysql = require('mysql'),
 crypto = require('crypto');

var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

320 | Chapter 15: Guards at the Gate

client.query('USE databasenm');

var username = process.argv[2];
var password = process.argv[3];

var salt = Math.round((new Date().valueOf() * Math.random())) + '';

var hashpassword = crypto.createHash('sha512')
 .update(salt + password)
 .digest('hex');
// create user record
client.query('INSERT INTO user ' +
 'SET username = ?, password = ?, salt = ?',
 [username, hashpassword, salt], function(err, result) {
 if (err) console.log(err);
 client.end();
});

The application to test a username and password, shown in Example 15-3, queries the
database for the password and salt based on the username. It uses the salt to, again,
encrypt the password. Once the password has been encrypted, it’s compared to the
password stored in the database. If the two don’t match, the user isn’t validated. If they
match, then the user’s in.

Example 15-3. Checking a username and a password that has been encrypted

var mysql = require('mysql'),
 crypto = require('crypto');

var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

var username = process.argv[2];
var password = process.argv[3];

client.query('SELECT password, salt FROM user WHERE username = ?',
 [username], function(err, result, fields) {
 if (err) return console.log(err);

 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 if (result[0].password === newhash) {
 console.log("OK, you're cool");
 } else {
 console.log("Your password is wrong. Try again.");
 }

Encrypting Data | 321

 client.end();
});

Trying out the applications, we first pass in a username of Michael, with a password of
applef*rk13*:

node password.js Michael apple*frk13*

We then check the same username and password:

node check.js Michael apple*frk13*

and get back the expected result:

OK, you're cool

Trying it again, but with a different password:

node check.js Michael badstuff

we get back the expected result again:

Your password is wrong. Try again

Of course, we don’t expect our users to log in via the command line. Neither do
we always use a local password system to authenticate people. We’ll go over the
authentication process next.

Authentication/Authorization with Passport
Are you the person you say you are? Do you have the authority to do this action? Can
this action cause harm? Answering these questions is the work of two different technical
components: authentication and authorization.

Authentication is concerned with ensuring that you are who you say you are. When
Twitter attaches a verification flag to an account, it’s signaling that the person flagged
is the genuine article. Authorization, on the other hand, is related to ensuring that you
have access only to what you need to access. Of a dozen users at a Drupal site, half may
have only the ability to post comments, five others can post articles and comments, but
only one has control over everything. The site may not care who user Big Daddy is,
only that he can post comments but not delete posts.

It’s not unusual for both authorization and authentication to be combined into the
same function. Typically, when attempting to do some action, you’re challenged to
provide some means of authenticating who you are. You’re probably going to be asked
to provide a username and a password. Then, once you’ve proved who you are, your
actions are further limited by the application: the person identified by your username
can access only certain pages or perform only certain operations.

Sometimes the authentication is done through a third party. An example of third-party
authentication is the use of OpenID. Rather than have your users create a username

322 | Chapter 15: Guards at the Gate

and password at your site, you authenticate them with OpenID and then give them
application access.

Other times, both authentication and authorization occur at a third-party site. For
instance, if an application wants to access a Twitter or Facebook account, either to post
messages or to get information, the users have to authenticate with these sites, and then
your application has to be authorized for the access. This authorization occurs via
another strategy, OAuth.

The functionality for all of these scenarios can be met with the Passport module and
one or more Passport strategies.

Passport isn’t the only module that provides authentication and au-
thorization, but I found it to be the easiest to use.

Authorization/Authentication Strategies: OAuth, OpenID, Username/
Password Verification
Let’s take a closer look at our three different types of authorization/authentication
strategies.

When you’re accessing the administrative section of a content management system
(CMS) such as Drupal or an online site such as Amazon, you’re using basic credential
verification. You’re supplying a username and a password, both of which are verified
by the site before you’re given access. This is still the most widely implemented au-
thorization/authentication strategy. And for the most part, it’s an effective one.

Earlier in the chapter, I demonstrated how user passwords can be protected in the
database. Even if the user system is compromised, the data thieves won’t have access
to your password in plain text. Of course, they could crack your password, but if you
used a combination of letters, symbols, and numbers in a relatively meaningless way,
it would take a lot of time and CPU power to crack the password.

OAuth is a way of accessing data, such as a person’s Twitter account data, without the
person having to give direct access to the account password. It’s a way of authorizing
data access without the person’s credentials having to be stored in various locations—
which increases the likelihood of the person’s credentials eventually being compro-
mised. It also gives the user greater control, because she can usually rescind the au-
thorization from her primary account at any time.

OAuth is involved almost exclusively with authorization—of data access. OpenID is
different in that its primary focus is on authentication, though authorization does come
along for the ride.

Authentication/Authorization with Passport | 323

OpenID is not as widely used as OAuth, and is used primarily in comment systems and
in user registration at various media sites. One of the problems with comment systems
is that individuals may say they’re a person, but there’s no way to verify they are who
they say they are. With OpenID, a person can sign into a comment system or register
as a user, and the OpenID system ensures that the person authenticates, at least within
the OpenID system.

OpenID is also a way of registering at different locations without having to create a
different username and password with each. You just provide your OpenID, it’s veri-
fied, the information the system needs is pulled from the OpenID provider, and you’re
done.

None of these three strategies precludes the use of the other two. Many applications
incorporate support for all three: local credential verification for administrative tasks,
OAuth to share data or post to sites such as Facebook and Twitter, and OpenID to
allow user registration and comments.

There are several modules that can provide all forms of authentication and authoriza-
tion, but I’m going to focus on one: Passport. Passport is middleware that works with
both Connect and Express to provide both authentication and authorization. You can
install it with npm:

npm install passport

Passport utilizes strategies that are installed independently from the framework. All
Passport strategies have the same basic requirements:

• The strategy must be installed.

• The strategy must be configured in the application.

• As part of the configuration, the strategy incorporates a callback function, used to
verify the user’s credentials.

• All strategies require additional work depending on the authority vetting the cre-
dentials: Facebook and Twitter require an account and account key, while the local
strategy requires a database with usernames and passwords.

• All strategies require a local data store that maps the authority’s username with an
application username.

• Passport-provided functionality is used to persist the user login session.

In this chapter, we’re looking at two Passport strategies: local authentication/authori-
zation, and authentication through Twitter using OAuth.

The Local Passport Strategy
We can install the local Passport strategy module (passport-local) with npm:

npm install passport-local

324 | Chapter 15: Guards at the Gate

Passport is middleware, and must be instantiated like middleware within the Express
application. After including both the passport and passport-local modules, like so:

var express = require('express');
var passport = require('passport');
var localStrategy = require('passport-local').Strategy;

initiate the Passport middleware as follows:

var app = express();

app.configure(function(){
 ...
 app.use(passport.initialize());
 app.use(passport.session());
 ...
});

Then configure the local strategy. The format for configuring the local strategy is the
same as that for configuring all other strategies: a new instance of the strategy is passed
to Passport via the use method, similar to the approach utilized by Express:

passport.use(new localStrategy(function (user, password, done) { ... }

The passport-local module expects that the username and password are passed to the
web application via a posted form, and that the values are contained in fields named
username and password. If you want to use two other field names, pass them as an option
when creating the new strategy instance:

var options =
 { usernameField : 'appuser',
 passwordField : 'userpass'
 };
passport.use(new localStrategy(options, function(user, password, done) { ... }

The callback function passed to the strategy construction is called after the username
and password have been extracted from the request body. The function performs the
actual authentication, returning:

• An error, if an error occurs

• A message that the user doesn’t authenticate if he fails authentication

• The user object, if the user does authenticate

Whenever a user tries to access a protected site, Passport is queried to see if he is au-
thorized. In the following code, when the user tries to access the restricted admin page,
a function named ensureAuthenticated is called to determine whether he is authorized:

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

The ensureAuthenticated function checks the result of the req.isAuthenticated
method that Passport has added as an extension to the request object. If the response
is false, the user is redirected to the login page:

Authentication/Authorization with Passport | 325

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/login')
}

To persist the login for the session, Passport provides two methods, serializeUser and
deserializeUser. We have to provide the functionality in the callback function that is
passed to these two methods. Basically, passport.serializeUser serializes the user’s
identifier, while passport.deserializeUser uses this identifier to find the user in what-
ever data store we’re using, and return an object with all the user information:

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
 ...
});

Serialization to the session isn’t a requirement for Passport. If you don’t want to serialize
the user, don’t include the passport.session middleware:

app.use(passport.session());

If you do decide to serialize the user to the session (and you should; otherwise, you’ll
have a very annoyed user, as he’ll keep getting login requests), you must ensure that
the Passport middleware is included after the Express session middleware:

 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());
 app.use(passport.initialize());
 app.use(passport.session());

If you don’t maintain the proper order, the user never authenticates.

The last chunk of functionality is handling what happens when the person doesn’t
validate. During the authentication, if a user’s username isn’t found in the data store,
an error message is generated. If the username is found, but the password doesn’t match
what’s stored, an error is generated. We need to communicate these error messages
back to the user.

Passport uses the Express 2.x req.flash method to queue error messages for display
back to the user. I didn’t cover req.flash in earlier chapters because the functionality
was deprecated in Express 3.x. However, to ensure that Passport works with Express
2.x and 3.x, the Passport developer created a new module, connect-flash, that adds this
functionality back in.

The connect-flash module can be installed with npm:

npm install connect-flash

used in the application:

var flash = require('connect-flash');

326 | Chapter 15: Guards at the Gate

and then integrated as middleware with Express:

app.use(flash());

Now, in the POST login route, if the user doesn’t authenticate, he’s redirected to the
login form and given a notification that an error occurred:

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login', failureFlash: true }),
 function(req, res) {
 res.redirect('/admin');
});

The error message(s) generated via the authentication process can be passed on to the
views engine via req.flash when the login form is rendered:

app.get('/login', function(req, res){
 var username = req.user ? req.user.username : '';
 res.render('login', { title: 'authenticate', username: username,
 message: req.flash('error') });
});

The views engine can then display the error message in addition to the login form
elements, as this Jade template demonstrates:

extends layout

block content
 h1 Login
 if message
 p= message
 form(method="POST"
 action="/login"
 enctype="application/x-www-form-urlencoded")
 p Username:
 input(type="text"
 name="username"
 id="username"
 size="25"
 value="#{username}"
 required)
 p Password:
 input(type="password"
 name="password"
 id="password"
 size="25"
 required)
 input(type="submit"
 name="submit"
 id="submit"
 value="Submit")
 input(type="reset"
 name="reset"
 id="reset"
 value="reset")

Authentication/Authorization with Passport | 327

To demonstrate all of these pieces, I incorporated the command-line authentication
application from Example 15-3 into an Express application, shown in Example 15-4,
with authentication provided by Passport. The only routes the application supports are
the login route for the login form display and authentication, and access to a restricted
admin page and the top-level index page.

The MySQL code from Example 15-3 is incorporated directly into the authentication
routine (though normally this would be split out in a more formal application). Addi-
tional MySQL access code is used to find the user information given an identifier, when
the user is deserialized.

Example 15-4. Combining password hash, MySQL user table, and Passport authentication into one
Express application

// modules
var express = require('express')
 , flash = require('connect-flash')
 , passport = require('passport')
 , LocalStrategy = require('passport-local').Strategy
 , http = require('http');

var mysql = require('mysql')
 , crypto = require('crypto');

// check user authentication

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/login')
}

// serialize user to session
passport.serializeUser(function(user, done) {
 done(null, user.id);
});

// find user in MySQL database
passport.deserializeUser(function(id, done) {

 var client = mysql.createClient({
 user : 'username',
 password: 'password'
 });

 client.query('USE databasenm');

 client.query('SELECT username, password FROM user WHERE userid = ?',
 [id], function(err, result, fields) {
 var user = {
 id : id,
 username : result[0].username,
 password : result[0].password};
 done(err, user);
 client.end();

328 | Chapter 15: Guards at the Gate

 });
});

// configure local strategy
// authenticate user against MySQL user entry
passport.use(new LocalStrategy(
 function(username, password, done) {

 var client = mysql.createClient({
 user : 'username',
 password: 'password'
 });

 client.query('USE nodetest2');

 client.query('SELECT userid, password, salt FROM user WHERE username = ?',
 [username], function(err, result, fields) {

 // database error
 if (err) {
 return done(err);

 // username not found
 } else if (result.length == 0) {
 return done(null, false, {message: 'Unknown user ' + username});

 // check password
 } else {
 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 // if passwords match
 if (result[0].password === newhash) {
 var user = {id : result[0].userid,
 username : username,
 password : newhash };
 return done(null, user);

 // else if passwords don't match
 } else {
 return done(null, false, {message: 'Invalid password'});
 }
 }
 client.end();
 });
}));

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));

Authentication/Authorization with Passport | 329

 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());
 app.use(passport.initialize());
 app.use(passport.session());
 app.use(flash());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

app.get('/', function(req, res){
 res.render('index', { title: 'authenticate', user: req.user });
});

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

app.get('/login', function(req, res){
 var username = req.user ? req.user.username : '';
 res.render('login', { title: 'authenticate', username: username,
 message: req.flash('error') });
});

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login', failureFlash: true }),
 function(req, res) {
 res.redirect('/admin');
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

Example 15-4 is a longer example than I normally like to include in a book, but stubbing
in the data source portions of the example wouldn’t give you a real feel for how the
Passport component works with the password hashing component, discussed earlier.

Let’s take a closer look at the authentication method. Once the application has queried
for the user record given the username, it invokes the callback function with the data-
base error, if an error occurs. If an error does not occur, but the username isn’t found,
the application invokes the callback function with the username set to false to signal
that the username wasn’t found, and provides an appropriate message. If the user is
found, but the passwords don’t match, the same thing happens: a value of false is
returned for the user and a message is generated.

Only when no database error occurred, the user exists in the user table, and the pass-
words match is a user object created and returned via the callback function:

 // database error
 if (err) {
 return done(err);

330 | Chapter 15: Guards at the Gate

 // username not found
 } else if (result.length == 0) {
 return done(null, false, {message: 'Unknown user ' + username});

 // check password
 } else {
 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 // if passwords match
 if (result[0].password === newhash) {
 var user = {id : result[0].userid,
 username : username,
 password : newhash };
 return done(null, user);

 // else if passwords don't match
 } else {
 return done(null, false, {message: 'Invalid password'});
 }
 }

This user object is then serialized to the session, and the user is given access to the
admin page. He’ll continue to have access without challenge to the admin page as long
as the session is alive.

The Twitter Passport Strategy (OAuth)
Rather than store usernames and passwords locally and perform our own authentica-
tion, we can use another service, such as Twitter. This is also a way to integrate a site
more closely with Twitter (or Facebook, Google+, or another third-party site).

Passport authentication using Twitter is supported through the passport-twitter mod-
ule. It can be installed with npm:

npm install passport-twitter

To use OAuth to authenticate a user through Twitter, you need to set up a developer’s
account at Twitter, and get a consumer key and a consumer secret. These are used in
the application to form part of the OAuth request.

Once you have your consumer key and secret, use these, in addition to the callback
URL, to create the Twitter strategy:

passport.use(new TwitterStrategy(
 { consumerKey: TWITTER_CONSUMER_KEY,
 consumerSecret: TWITTER_CONSUMER_SECRET,
 callbackURL: "http://examples.burningbird.net:3000/auth/twitter/callback"},
 function(token, tokenSecret,profile,done) {
 findUser(profile.id, function(err,user) {
 console.log(user);
 if (err) return done(err);
 if (user) return done(null, user);

Authentication/Authorization with Passport | 331

 createUser(profile, token, tokenSecret, function(err, user) {
 return done(err,user);
 });
 })
 })
);

Though Twitter provides authentication, you’re still most likely going to need a way
to store information about the user. In the Twitter strategy code block, notice that the
callback function passed lists several parameters: token, tokenSecret, profile, and then
the last callback function. Twitter provides the token and tokenSecret parameters when
it responds to the request for authentication. The token and tokenSecret values can
then be used to interact with the individual’s Twitter account—for example, to repub-
lish recent tweets, tweet to her account, or discover information about her lists and
followers. The Twitter API exposes all the information the user herself sees when she
interacts with Twitter directly.

The profile object, though, is the object we’re interested in here. It contains a wealth
of information about the person: her Twitter screen name, full name, description, lo-
cation, avatar image, number of followers, number of people followed, number of
tweets, and so on. It’s this data that we’re going to mine in order to store some relevant
information about the user in our local database. We’re not storing a password; OAuth
doesn’t expose the individual’s authentication information. Rather, we’re just storing
information we may want to use in our web applications to personalize the individual’s
experience at our sites.

When the person first authenticates, the application does a lookup on her Twitter
identifier in the local database. If the identifier is found, an object is returned with the
information stored about the person locally. If it’s not found, a new database record is
created for the person. Two functions are created for this process: findUser and crea
teUser. The findUser function is also used when Passport deserializes the user from the
session:

passport.deserializeUser(function(id, done) {
 findUser(id, function(err, user) {
 done(err,user);
 });
});

There is no longer a login page, because Twitter provides the login form. In the appli-
cation, the only login provided is a link to authenticate via Twitter:

extends layout

block content
 h1= title
 p
 a(href='/auth/twitter') Login with Twitter

If the person isn’t logged into Twitter, she’s presented a login page like the one shown
in Figure 15-3.

332 | Chapter 15: Guards at the Gate

Figure 15-3. Twitter login and authorization page for the Node application

Once the user is logged in, the web page is then redirected to the application, which
then displays the administrative page for the user. Now, however, the page is person-
alized with data drawn directly from Twitter, including the person’s display name and
avatar:

extends layout

block content
 h1 #{title} Administration
 p Welcome to #{user.name}
 p
 img(src='#{user.img}',alt='avatar')

This data is some of what’s stored when the person first authenticates. If you look into
your Twitter account settings page and then click through to the Apps, you’ll see the
application among those listed, as shown in Figure 15-4.

Authentication/Authorization with Passport | 333

Figure 15-4. Twitter Apps Settings displaying the entry for our Node application

Example 15-5 has the complete application code for authenticating the user via Twitter
and storing her data in a MySQL database. You can, of course, also store the data in
MongoDB, or even Redis, if you persist your Redis data. The Crypto module is no
longer needed, because we’re no longer storing passwords—a distinct advantage to
authenticating via a third-party service.

Example 15-5. Complete application authenticating a user via Twitter

var express = require('express')
 , flash = require('connect-flash')
 , passport = require('passport')
 , TwitterStrategy = require('passport-twitter').Strategy
 , http = require('http');

var mysql = require('mysql');

var TWITTER_CONSUMER_KEY = "yourkey";
var TWITTER_CONSUMER_SECRET = "yoursecret";

var client = mysql.createClient({
 user : 'username',
 password : 'password'
});

client.query('USE nodetest2');

function findUser(id, callback) {
 var user;

 client.query('SELECT * FROM twitteruser WHERE id = ?',
 [id], function(err, result, fields) {
 if (err) return callback(err);
 user = result[0];
 console.log(user);
 return callback(null,user);
 });
};

334 | Chapter 15: Guards at the Gate

function createUser(profile, token, tokenSecret, callback) {

 var qryString = 'INSERT INTO twitteruser ' +
 '(id, name, screenname, location, description,' +
 'url, img, token, tokensecret)' +
 ' values (?,?,?,?,?,?,?,?,?)';
 client.query(qryString, [
 profile.id,
 profile.displayName,
 profile.username,
 profile._json.location,
 profile._json.description,
 profile._json.url,
 profile._json.profile_image_url,
 token,
 tokenSecret], function(err, result) {
 if (err) return callback(err);
 var user = {
 id : profile.id,
 name : profile.displayName,
 screenname : profile.screen_name,
 location : profile._json.location,
 description: profile._json.description,
 url : profile._json.url,
 img : profile._json.profile_image_url,
 token : token,
 tokensecret : tokenSecret};
 console.log(user);
 return callback(null,user);
 });
};

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/auth/twitter')
}

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
 findUser(id, function(err, user) {
 done(err,user);
 });
});

passport.use(new TwitterStrategy(
 { consumerKey: TWITTER_CONSUMER_KEY,
 consumerSecret: TWITTER_CONSUMER_SECRET,
 callbackURL: "http://examples.burningbird.net:3000/auth/twitter/callback"},
 function(token, tokenSecret,profile,done) {
 findUser(profile.id, function(err,user) {
 console.log(user);
 if (err) return done(err);

Authentication/Authorization with Passport | 335

 if (user) return done(null, user);
 createUser(profile, token, tokenSecret, function(err, user) {
 return done(err,user);
 });
 })
 })
);

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());
 app.use(passport.initialize());
 app.use(passport.session());
 app.use(flash());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

app.get('/', function(req, res){
 res.render('index', { title: 'authenticate', user: req.user });
});

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

app.get('/auth', function(req,res) {
 res.render('auth', { title: 'authenticate' });
});

app.get('/auth/twitter',
 passport.authenticate('twitter'),
 function(req, res){
 });

app.get('/auth/twitter/callback',
 passport.authenticate('twitter', { failureRedirect: '/login' }),
 function(req, res) {
 res.redirect('/admin');
 });

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

336 | Chapter 15: Guards at the Gate

You can use the same steps you took with the Twitter Passport strategy with other
OAuth services. As an example, you can use the exact same code to authenticate the
user with Facebook that you used with the Twitter application. The only difference is
that you have to supply a Facebook key and secret, rather than the one Twitter provides.
Because of the similarity in code and processing, many applications today let you au-
thenticate with a variety of OAuth services.

Passport does its best to reformat the data returned by the different services so that the
functionality to process the profile has to change very little. However, you’ll need to
investigate the profile returned by each service in order to determine what’s consistently
provided before deciding what you do, and don’t, want to store.

Then there’s the issue of the user revoking application access in the service. Of course,
the only time this impacts the web application is if the person decides to authenticate
with the same application using another service—in which case, her new information
is stored, and the application continues on its merry way. The only negative conse-
quence is a now-defunct database record containing the previous authentication
information for the person, and it wouldn’t be that much extra work to modify the
application to generate an application-specific identifier for her, and update the record
if she changes authentication servers. I’ll leave this for an off-book exercise. Now it’s
time to look at another aspect of application security: cleaning form data.

Protecting Applications and Preventing Attacks
As a JavaScript developer, you quickly learned about the hazards of accepting input
from the user and passing it directly to an eval statement call. As a web developer, you
also learned about the hazards of taking text from users and appending it directly as a
where clause in a SQL statement.

Node applications have all the vulnerability of client-side JavaScript applications, as
well as the additional vulnerabilities associated with server-side applications that use
database systems, especially relational database systems.

To ensure that your applications are safe, you need to provide good authorization and
authentication systems, as described in the last section. But you also need to protect
your application against injection attacks and other attempts to use openings in your
system to gain access to your important, and confidential, data.

Earlier, the login form accepted text directly from the user and pasted it into a SQL
query. This isn’t the wisest thing to do, because the person could attach text that can
cause harm in a SQL database. For instance, if the text is forming the data in a WHERE
clause, and is appended directly to a WHERE clause string:

var whereString = "WHERE name = " + name;

Protecting Applications and Preventing Attacks | 337

and the name string contains the following:

'johnsmith; drop table users'

You could have a problem.

The same occurs when processing text or JSON from the user or source in a JavaScript
eval statement—the incoming string could be more harmful than helpful.

Both types of vulnerabilities demand that we scrub input before using it in circum-
stances that can cause harm. Both also require that we make use of tools and techniques
to ensure the safest possible applications.

Don’t Use eval
One simple rule can make a difference in your JavaScript applications, regardless of
whether they’re Node or not: don’t use eval. The eval function is the least restrictive,
most permissive component of JavaScript, and we should view its use with fear and
trepidation.

In most cases, we don’t need to use eval. The one instance where we might be tempted
to use it is when we’re converting a JSON string into an object. However, a simple
approach to protect against a JavaScript injection attack when converting a string into
an object is to use JSON.parse, rather than eval, to process incoming JSON. An eval
statement isn’t discriminatory about what’s included in the text, while JSON.parse
validates that the JSON is only JSON:

var someObj = JSON.parse(jsonString);

Since Node is using the V8 engine, we know that we have access to the JSON object,
so we don’t have to worry about cross-browser workarounds.

Do Use Checkboxes, Radio Buttons, and Drop-Down Selections
A second simple rule for developing web applications is to minimize the opportunities
for writing free text in a web form. Provide drop-down selections and checkboxes or
radio buttons rather than open text fields. You’ll not only ensure safer data, but you’ll
most likely ensure more consistent and reliable data, too.

Years ago, I was cleaning up a database table where all the data came from a form that
the client (aeronautical engineers) used. All the inputs in the form were open text. One
field required part identifiers, if this data was applicable. The “if applicable” part was
the application’s downfall.

The engineers decided to use the field for “notes and whatever,” because the form didn’t
have such a field designated. I ended up finding data ranging from part identifiers to a
reminder from one engineer about a lunch reservation with a vendor. It was entertaining
reading, but not particularly helpful to the company. And it was extremely difficult to

338 | Chapter 15: Guards at the Gate

clean, because part numbers from different vendors weren’t similar enough that we
could use regular expressions to clean up the data.

This is an example of unintentional harm. An example of intentional harm was described
in the last section, where a SQL statement to drop a database table was attached to the
user’s login name.

If you must require free text from a user for fields, such as his username when he’s
logging into a system, then you’re going to want to scrub the data before using it in a
data update or query.

Scrub Your Data and Sanitize It with node-validator
If you must support text input fields, scrub the data before you use it. The node-mysql
module provides a method, client.escape, that escapes the incoming text and protects
against potential SQL injection attacks. You can also disable potentially destructive
functionality. In Chapter 10’s discussion on MongoDB, I mentioned how you can flag
that a JavaScript function should be serialized when stored.

You can also use a validation tool that not only ensures that incoming data is safe, but
also that it’s consistent. One such validation tool that stands out is node-validator.

Install node-validator using npm:

npm install node-validator

The module exports two objects, check and sanitize:

var check = require('validator').check,
 sanitize = require('validator').sanitize;

You can check that the incoming data is of a format consistent with its use, such as
checking to ensure that incoming text is an email:

try {
 check(email).isEmail();
} catch (err) {
 console.log(err.message); // Invalid email
}

The node-validator application throws an error whenever the data doesn’t check out.
If you want a better error message, you can provide it as an optional second parameter
in the check method:

try {
 check(email, "Please enter a proper email").isEmail();
} catch (err) {
 console.log(err.message); // Please enter a proper email
}

The sanitize filter ensures that the string is sanitized according to whatever method
you use:

var newstr = sanitize(str).xss(); // prevent XSS attack

Protecting Applications and Preventing Attacks | 339

Example 15-6 uses both objects to check and sanitize three different strings.

Example 15-6. Checking out node-validator’s methods

var check = require('validator').check,
 sanitize = require('validator').sanitize;

var email = 'shelleyp@burningbird.net';
var email2 = 'this is a test';

var str = '<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>';
try {
 check(email).isEmail();
 check(email2).isEmail();
} catch (err) {
 console.log(err.message);
}

var newstr = sanitize(str).xss();
console.log(newstr);

The result of running this application is:

Invalid email
[removed][removed]

There’s also Express middleware support for node-validator: express-validator. When
you include this in your Express application:

var expressValidator = require('express-validator');
...
app.use(expressValidator);

You can access the check, sanitize, and other provided methods directly on the request
object:

app.get('/somepage', function (req, rest) {
 ...
 req.check('zip', 'Please enter zip code').isInt(6);
 req.sanitize('newdata').xss();
 ...
});

Sandboxed Code
The vm Node module provides a way to safely sandbox JavaScript. It provides access
to a new V8 virtual machine in which you can run JavaScript passed as a parameter.

Sandboxing typically means isolating code from anything it can use to
do harm.

340 | Chapter 15: Guards at the Gate

There are a couple of approaches to using vm. The first is using vm.createScript with
the script passed as a parameter to the method. The vm module compiles it and returns
a script object representing the script:

var vm = require('vm');
var script_obj = vm.createScript(js_text);

You can then run the script in a separate context, passing in any data it might need as
an optional object:

script_obj.runInNewContext(sandbox);

Example 15-7 has a small but complete example of using vm to compile a JavaScript
statement, utilizing two sandbox object properties, and creating a third.

Example 15-7. Simple example of using Node’s vm module to sandbox a script

var vm = require('vm');
var util = require('util');

var obj = { name: 'Shelley', domain: 'burningbird.net'};

// compile script
var script_obj = vm.createScript("var str = 'My name is ' + name + ' at ' + domain",
 'test.vm');

// run in new context
script_obj.runInNewContext(obj);

// inspect sandbox object
console.log(util.inspect(obj));

Running the application returns the following output:

{ name: 'Shelley',
 domain: 'burningbird.net',
 str: 'My name is Shelley at burningbird.net' }

The object passed to the new context is the point of connection between the calling
application and the sandboxed script. The script has no other access to the parent
context. If you tried to use a global object, such as console, in your sandboxed Java-
Script, you’d get an error.

To demonstrate, Example 15-8 modifies the Example 15-7 to load a script in from a
file and run it. The script being loaded is nothing but a slight variation of what we had
in the preceding example, with the addition of a console.log request:

 var str = 'My name is ' + name + ' from ' + domain;
 console.log(str):

The vm.createScript can’t read in the file directly. The second (optional) parameter
isn’t an actual file, but a name used as a label in a stack trace—it’s for debugging
purposes only. We’ll need to use the filesystem’s readFile to read in the script file
contents.

Sandboxed Code | 341

Example 15-8. Modification of code to use vm to sandbox script read in from a file

var vm = require('vm');
var util = require('util');
var fs = require('fs');

fs.readFile('suspicious.js', 'utf8', function(err, data) {
 if (err) return console.log(err);

 try {

 console.log(data);
 var obj = { name: 'Shelley', domain: 'burningbird.net'};

 // compile script
 var script_obj = vm.createScript(data, 'test.vm');

 // run in new context
 script_obj.runInNewContext(obj);

 // inspect sandbox object
 console.log(util.inspect(obj));
 } catch(e) {
 console.log(e);
 }
});

Running the application returns the following:

[SyntaxError: Unexpected token :]

The error occurs—and rightly so—because there is no console object within the virtual
machine; it’s a V8 virtual machine, not a Node virtual machine. We’ve seen how we
can implement any process with child processes in a Node application. We certainly
don’t want to expose that kind of power to sandboxed code.

We can run the script within a V8 context, which means it has access to the global
object. Example 15-9 re-creates the application from Example 15-8, except this time
the runInContext method is used, with a context object passed to the method. The
context object is seeded with the object that has the parameters the script is expecting.
Printing out the inspection results on the object after the script execution, though,
shows that the newly defined property, str, is no longer present. We need to inspect
the context to see the object as it exists both in the current context and the sandbox
context.

Example 15-9. Running the code in context, with context object passed to vm

var vm = require('vm');
var util = require('util');
var fs = require('fs');

fs.readFile('suspicious.js', 'utf8', function(err, data) {
 if (err) return console.log(err);

342 | Chapter 15: Guards at the Gate

 try {

 var obj = { name: 'Shelley', domain: 'burningbird.net' };

 // compile script
 var script_obj = vm.createScript(data, 'test.vm');

 // create context
 var ctx = vm.createContext(obj);

 // run in new context
 script_obj.runInContext(ctx);

 // inspect object
 console.log(util.inspect(obj));

 // inspect context
 console.log(util.inspect(ctx));

 } catch(e) {
 console.log(e);
 }
});

The examples used a precompiled script block, which is handy if you’re going to run
the script multiple times. If you want to run it just once, though, you can access both
the runInContext and runInThisContext methods directly off the virtual machine. The
difference is that you have to pass in the script as the first parameter:

 var obj = { name: 'Shelley', domain: 'burningbird.net' };

 // create context
 var ctx = vm.createContext(obj);

 // run in new context
 vm.runInContext(data,ctx,'test.vm');

 // inspect context
 console.log(util.inspect(ctx));

Again, within a supplied context, the sandbox script does have access to a global object
defined via createContext, seeded with any data the sandboxed code needs. And any
resulting data can be pulled from this context after the script is run.

Sandboxed Code | 343

CHAPTER 16

Scaling and Deploying Node
Applications

At some point in time, you’re going to want to take your Node application from de-
velopment and testing to production. Depending on what your application does and
what services it provides (or needs), the process can be simple, or it can be very complex.

I’m going to briefly touch on the possible combinations and issues related to production
deployment of a Node application. Some require only minimal effort on your part, such
as installing Forever to ensure that your Node application runs, well, forever. Others,
though, such as deploying your application to a cloud server, can take considerable
time and advance planning.

Deploying Your Node Application to Your Server
Taking your application from development to production isn’t overly complicated, but
you do need to prepare for the move, and make sure that your application is staged in
such a way as to maximize its performance and minimize any potential downtimes.

Deploying a Node application has several prerequisites:

• Your application must be well tested by users as well as developers.

• You need to be able to deploy your application safely, and ensure well-coordinated
changes and fixes.

• Your application must be secure.

• You need to ensure that your application restarts if some event causes a failure.

• You may need to integrate your Node applications with other servers, such as
Apache.

• You must monitor your application’s performance, and be ready to adjust appli-
cation parameters if the performance begins to degrade.

• You need to take the fullest advantage of your server’s resources.

345

Chapter 14 covered unit, acceptance, and performance testing, and Chapter 15 covered
security. Here, we’ll look at implementing the other necessary components of deploying
a Node application to production on your own server.

Writing That package.json File
Each Node module has a package.json file that contains information about the module,
as well as code dependencies the module might have. I briefly touched on the
package.json file with the discussion of modules in Chapter 4. Now I want to take a
closer look at this file, especially as you can use it to deploy your application.

As its name implies, package.json must be proper JSON. You can jump-start the pack-
age.json process by running npm init and answering the questions. When I ran npm
init in Chapter 4, I didn’t provide any dependencies, but most Node applications will
have them.

As a case in point, the widget application we built over several chapters in the book is
an example of an application, albeit a small one, that we might consider deploying.
What would its package.json look like?

I’m not covering all the possible data values in package.json, only those
meaningful for a Node application.

To start, we need to provide the application’s basic information, including its name,
version, and primary author:

{
 "name": "WidgetFactory",
 "preferGlobal": "false",
 "version": "1.0.0",
 "author": "Shelley Powers <shelley.just@gmail.com> (http://burningbird.net)",
 "description": "World's best Widget Factory",

Note that the name property value cannot have any whitespace.

The author values could also be split out, as follows:

 "author": { "name": "Shelley Powers",
 "email": "shelley.just@gmail.com",
 "url": "http://burningbird.net"},

though it is simpler to use the single value format.

If there are other contributors to the application, you can list them out in an array with
the contributors keyword, with each person identified in the same manner as the
author.

346 | Chapter 16: Scaling and Deploying Node Applications

If the Widget Factory had a binary application, you could list it with the bin property.
An example of the use of bin is in the Nodeload (covered in Chapter 14) package.json:

 "bin": {
 "nodeload.js": "./nodeload.js",
 "nl.js": "./nl.js"
 },

What this setting tells me is that when the module is installed globally, I can run the
Nodeload application just by typing nl.js.

The widget application doesn’t have a command-line tool. It also doesn’t have any
scripts. The scripts keyword identifies any scripts that are run during the package life
cycle. There are several events that can happen during the life cycle, including prein
stall, install, publish, start, test, update, and so on, and scripts can be run with each.

If you issue the following npm command in a Node application or module directory:

npm test

the script test.js is run:

 "scripts": {
 "test": "node ./test.js"
 },

You should include any unit test script for the widget application in scripts, in addition
to any other script necessary for installation (such as scripts to set up the environment
for the application). Though the Widget Factory doesn’t have a start script yet, your
application should, especially if it is going to be hosted in a cloud service (discussed
later in the chapter).

If you don’t provide a script for some values, npm provides defaults. For the start script,
the default is to run the application with Node:

node server.js

if the application has a server.js file in the root of the package.

The repository property provides information about the tool used to manage the
source code control for the application, and the url property provides the location of
the source, if it is published online:

"repository": {
 "type": "git",
 "url": "https://github.com/yourname/yourapp.git"
 },

The repository property isn’t essential unless you’re publishing your application
source (though you can restrict source access to a specific group of people). One of the
advantages of providing this information is that users can access your documentation
with npm docs:

npm docs packagename

Deploying Your Node Application to Your Server | 347

On my Ubuntu system, I first set the browser configuration option to Lynx:

npm config set browser lynx

Then I opened the docs for Passport, the authentication module covered in Chapter 15:

npm docs passport

The repository setting helps npm find the documentation.

One of the more important designations in the package.json file is what version of Node
your application can run in. You specify this with the engine property. In the case of
the Widget Factory, it’s been tested in stable release 0.6.x and 0.8.2, which means it
should work with future versions of 0.8, too. Being ever hopeful, I set the engine option
to:

 "engines": {
 "node": ">= 0.6.0 < 0.9.0"
 },

The widget application has several different dependencies, for both production and
development environments. These are listed individually—the former in devDependen
cies, the latter in dependencies. Each module dependency is listed as the property, and
the version needed as the value:

 "dependencies": {
 "express": "3.0",
 "jade": "*",
 "stylus": "*",
 "redis": "*",
 "mongoose": "*"
 },
 "devDependencies": {
 "nodeunit": "*"
 }

If there are any operating system or CPU dependencies, we can also list these:

"cpu" : ["x64", "ia32"],
"os": ["darwin","linux"]

There are some publishing values, including private, to ensure that the application
isn’t accidentally published:

"private": true,

And publishConfig is used for setting npm configuration values.

By the time we’re done, the Widget Factory package.json file looks like Example 16-1.

Example 16-1. The package.json file for the Widget Factory application

{
 "name": "WidgetFactory",
 "version": "1.0.0",
 "author": "Shelley Powers <shelley.just@gmail.com> (http://burningbird.net)",
 "description": "World's best Widget Factory",

348 | Chapter 16: Scaling and Deploying Node Applications

 "engines": {
 "node": ">= 0.6.0"
 },
 "dependencies": {
 "express": "3.0",
 "jade": "*",
 "stylus": "*",
 "redis": "*",
 "mongoose": "*"
 },
 "devDependencies": {
 "nodeunit": "*"
 },
 "private": true
}

We can test the package.json file by copying the Widget Factory’s code to a new location
and then typing npm install -d to see if all the dependencies are installed and the
application runs.

Keeping Your Application Alive with Forever
You do the best you can with your application. You test it thoroughly, and you add
error handling so that errors are managed gracefully. Still, there can be gotchas that
come along—things you didn’t plan for that can take your application down. If this
happens, you need to have a way to ensure that your application can start again, even
if you’re not around to restart it.

Forever is just such a tool—it ensures that your application restarts if it crashes. It’s
also a way of starting your application as a daemon that persists beyond the current
terminal session. Forever can be used from the command line or incorporated as part
of the application. If you use it from the command line, you’ll want to install it globally:

npm install forever -g

Rather than start an application with Node directly, start it with Forever:

 forever start -a -l forever.log -o out.log -e err.log httpserver.js

The preceding command starts a script, httpserver.js, and specifies the names for the
Forever log, the output log, and the error log. It also instructs the application to append
the log entries if the logfiles already exist.

If something happens to the script to cause it to crash, Forever restarts it. Forever also
ensures that a Node application continues running, even if you terminate the terminal
window used to start the application.

Forever has both options and actions. The start value in the command line just shown
is an example of an action. All available actions are:

Deploying Your Node Application to Your Server | 349

start
Starts a script

stop
Stops a script

stopall
Stops all scripts

restart
Restarts the script

restartall
Restarts all running Forever scripts

cleanlogs
Deletes all log entries

logs
Lists all logfiles for all Forever processes

list
Lists all running scripts

config
Lists user configurations

set <key> <val>
Sets configuration key value

clear <key>
Clears configuration key value

logs <script|index>
Tails the logs for <script|index>

columns add <col>
Adds a column to the Forever list output

columns rm <col>
Removes a column from the Forever list output

columns set <cols>
Sets all columns for the Forever list output

An example of the list output is the following, after httpserver.js is started as a Forever
daemon:

info: Forever processes running
data: uid command script forever pid logfile uptime
data: [0] ZRYB node httpserver.js 2854 2855 /home/examples/.forever/forever.log
 0:0:9:38.72

There are also a significant number of options, including the logfile settings just
demonstrated, as well as running the script (-s or --silent), turning on Forever’s

350 | Chapter 16: Scaling and Deploying Node Applications

verbosity (-v or --verbose), setting the script’s source directory (--sourceDir), and
others, all of which you can find just by typing:

forever --help

You can incorporate the use of Forever directly in your code, as demonstrated in the
documentation for the application:

var forever = require('forever');

 var child = new (forever.Monitor)('your-filename.js', {
 max: 3,
 silent: true,
 options: []
 });

 child.on('exit', this.callback);
 child.start();

Additionally, you can use Forever with Nodemon (introduced in Chapter 14), not only
to restart the application if it unexpectedly fails, but also to ensure that the application
is refreshed if the source is updated. You simply wrap Nodemon within Forever and
specify the --exitcrash option to ensure that if the application crashes, Nodemon exits
cleanly, passing control to Forever:

forever nodemon --exitcrash httpserver.js

If the application does crash, Forever starts Nodemon, which in turn starts the Node
script, ensuring that not only is the running script refreshed if the source is changed,
but also that an unexpected failure doesn’t take your application permanently offline.

If you want your application to start when your system is rebooted, you need to set it
up as a daemon. Among the examples provided for Forever is one labeled initd-
example. This example is the basis of a script that starts your application with Forever
when the system is rebooted. You’ll need to modify the script to suit your environment
and also move it to /etc/init.d, but once you’ve done so, even if the system is restarted,
your application restarts without your intervention.

Using Node and Apache Together
All the examples in this book start as a port other than 80, the default web service port.
Some start at port 3000, others at port 8124. In my system, I have to use another port
because Apache processes web requests on port 80. People are not going to want to
have to specify a port, though, when they access a website. What we need is a way for
Node applications to coexist with another web service, be it Apache, Nginx, or another
web server.

If the system is running Apache, and you aren’t able to change the Apache port, you
can use an .htaccess file to rewrite the web requests for Node, redirecting the applica-
tions to the proper port without the user being aware of the redirection:

Deploying Your Node Application to Your Server | 351

 <IfModule mod_rewrite.c>

 RewriteEngine on

 # Redirect a whole subdirectory:
 RewriteRule ^node/(.+) http://examples.burningbird.net:8124/$1 [P]

 </IfModule>

If you have the proper permissions, you can also create a subdomain specifically for
your Node application and have Apache proxy all requests to the Node application.
This is an approach used in other environments of this type, such as running Apache
and Tomcat together:

<VirtualHost someipaddress:80>
 ServerAdmin admin@server.com
 ServerName examples.burningbird.net
 ServerAlias www.examples.burningbird.net

 ProxyRequests off

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 <Location />
 ProxyPass http://localhost:8124/
 ProxyPassReverse http://localhost:8124/
 </Location>
</VirtualHost>

These will work, and the performance should be more than acceptable if you don’t
expect your Node application to be accessed frequently. The problem with both ap-
proaches, though, is that all requests are channeled through Apache, which spins off a
process to handle each. The whole point of Node is to avoid this costly overhead. If
you expect your Node application to get heavy use, another approach—but one that’s
dependent on your having root control of your system—is to modify the Apache
ports.conf file and change which port Apache listens to, from:

Listen 80

to whatever your preferred port is, such as 78:

Listen 78

Then use a Node proxy, like http-proxy, to listen for and proxy requests to the appro-
priate port. As an example, if Apache is to handle all requests to subdirectory public,
and Node handles all requests to node, you could create a standalone proxy server that
takes incoming requests and routes them accordingly:

var httpProxy = require('http-proxy');

var options = {

352 | Chapter 16: Scaling and Deploying Node Applications

 router: {
 'burningbird.net/public_html' : '127.0.0.1:78',
 'burningbird.net/node' : '127.0.0.1:3000'
 }
};

var proxyServer = httpProxy.createServer(options);
proxyServer.listen(80);

The user never sees any of the port magic that is happening behind the scenes. The
http-proxy module also works with WebSocket requests, as well as HTTPS.

Why continue to use Apache? Because applications such as Drupal and others
use .htaccess files to control access to their contents. In addition, several subdomains
at my site use .htpasswd to password-protect the contents. These are all examples of
Apache constructs that have no equivalence in Node server applications.

We have a long-established history with Apache. Tossing it aside in favor of Node
applications is more complicated than just creating a static server using Express.

Improving Performance
There are additional steps you can take to boost the performance of your Node appli-
cation, depending on your system’s resources. Most are not trivial, and all are beyond
the scope of this book.

If your system is multicore, and you’re willing to use experimental technology, you can
use Node clustering. The Node.js documentation contains an example of clustering,
whereby each process is spawned on a different CPU, though all are listening for in-
coming requests on the same port.

In some future version of Node, we’ll be able to automatically take advantage of a
multicore environment just by passing a parameter of --balance when starting the
application.

You can also take advantage of a distributed computing architecture, utilizing a module
such as hook.io.

There are tricks and techniques to improve your Node application’s performance. Most
will take a considerable amount of work. Instead, you can host your application on a
cloud service and take advantage of whatever performance improvements the host
provides. We’ll go over that option next.

Deployment to a Cloud Service
An increasingly popular choice for running an application is deploying the application
to a cloud service rather than hosting it on your own servers. The reasons for doing so
are many and include:

Deployment to a Cloud Service | 353

• Enhanced security (it’s like having your own personal security team)

• 24-hour monitoring (so you can go to bed)

• Immediate scalability (if your application suddenly peaks in popularity, your server
doesn’t crash)

• Cost (it frequently can be cheaper to host in a cloud service rather than your own
server)

• Deployment tools (clouds provide tools that can simplify Node app deployment)

• Being cool (the only reason on this list not to deploy your Node application to a
cloud service)

Of course, there are disadvantages, too. One is the necessary limitations on what you
can do with your application. For instance, if your application wants to use a tool like
ImageMagick, most clouds won’t have this installed or allow you to install it. In addi-
tion, if your application is based in Node 6.x (or 8.x, or whatever), the cloud service
may only be set up for another version (such as 4.x).

It can also be cumbersome to set up your application on a cloud. Some cloud services
provide tools so that deployment basically consists of typing in a location and pushing
a button. Others, though, can require a great deal of preparation—preparation, I should
add, that may or may not be well documented.

In this last section, I’m going to briefly introduce some of the more commonly used
cloud services that provide hosting for Node applications, and touch on any aspect that
makes one unique from the others.

Deploying to Windows Azure via Cloud9 IDE
If your environment is Windows-based, and you’ve used Windows functionality pre-
viously (such as developing applications with .NET), then you’re definitely going to
want to explore hosting a Node application in Windows Azure. To make it simpler to
post Node applications to Azure, you can use the Cloud9 IDE (integrated development
environment) in order to post a project.

Cloud9 is a web-based IDE that can, among other things, interface with your GitHub
account. When you open the application, you’re presented with the project manage-
ment interface, as shown in Figure 16-1.

From the project management page, clicking on a project opens it into a separate page,
where you can select any of the project files for editing, as shown in Figure 16-2. You
can clone an existing project in GitHub directly from the IDE.

354 | Chapter 16: Scaling and Deploying Node Applications

Figure 16-1. Cloud9 IDE project management page

Figure 16-2. Cloud9 IDE project editing page

You can add and edit files, and then run the application directly in the IDE. Cloud9
also supports debugging.

The Cloud9 IDE is free to start working with an application, but you’ll need to sign up
for premium service if you want to deploy. It supports a variety of languages, though
it’s primarily focused on HTML and Node applications. It also supports multiple re-
positories, including GitHub, Bitbucket, Mercurial repositories, Git repositories, and
FTP servers.

Deployment to a Cloud Service | 355

The Cloud9 IDE interface simplifies moving an application to Azure (and other ser-
vices—more on this a little later). If you have an Azure account, moving a Node ap-
plication to Azure is as simple as clicking the Deploy button and providing information
in the dialogs that open. Be forewarned: you should be familiar with Azure first. There
is a 90-day free trial to try out the service before committing.

How much Azure costs is dependent on the number of compute instances, the size of
the SQL Server database instance, the blob storage amount, and bandwidth. The service
also provides a decent set of documents to get you started, including a nice tutorial on
creating an Express application on Azure.

I mentioned a few paragraphs back that Cloud9 IDE can deploy to multiple clouds. It
supports three at this time:

• Windows Azure

• Heroku

• Joyent

I’ll introduce you to the Joyent Development SmartMachine and Heroku next.

Joyent Development SmartMachines
Joyent SmartMachines are virtual machines, running either Linux or Windows, that
come prebuilt and optimized for running a Node application. The folks at Joyent also
provide a Node.js Development SmartMachine that lets Node developers host an ap-
plication in a cloud service without any charge. If you’re ready to go to production,
then you can upgrade to the production environment.

Joyent provides a detailed how-to on getting started with a Node.js Development
SmartMachine. It includes the following steps:

1. Create a Joyent cloud account.

2. Create an SSH (secure shell) key if you don’t already have one.

3. Update the ~/.ssh/config file to reflect the unique port number for your machine.

4. Deploy the application to the SmartMachine with Git.

5. Ensure that the application has a package.json file, and identify a start script.

Again, the Node.js Development SmartMachine is for development purposes only.

So, what does the Joyent Development SmartMachine provide? Well, for a start, no
upfront cost. This is actually a smart move—it gives developers a chance to try cloud
hosting without significant cost.

Joyent also provides for simplified Git deployment to multiple machines at the same
time, as well as npm support to manage application dependencies.

356 | Chapter 16: Scaling and Deploying Node Applications

Heroku
I like cloud services where you don’t have to pay anything in order to try them out, and
a Heroku account is both free and instant. If you decide to use the service for your
production system, it’s configurable, just like Azure. The cloud server also has very
good documentation, and tools you can install in your development environment to
simplify deploying the application to Heroku (if you’re not using Cloud9 IDE).

The cloud service comes with prepackaged add-ons you can add to your account, in-
cluding support for one of my favorite data stores, Redis. The concept of the add-on
in Heroku is very well managed, and many of the add-ons are also free while you’re
trying them out.

The Heroku documentation, as mentioned, is some of the best among the cloud servers,
and the development tools really simplify deployment. You create the application, write
the package.json file listing out dependencies, declare a process type via a simple Procfile
(which usually has something like web: node app.js), and then start the application
with one of the tools supplied as part of the Heroku toolkit.

To deploy, commit the application to Git, and then deploy the application using Git.
Simple.

Amazon EC2
Amazon Elastic Compute Cloud, or EC2, has some history behind it now, which makes
it an attractive option. It also doesn’t impose a lot of requirements on the Node devel-
oper looking to host an application in this cloud service.

Setting up on Amazon EC2 is little different than setting up on a more traditional VPN
(virtual private network). You specify your preferred operating system, update it with
the necessary software to run Node, deploy the application using Git, and then use a
tool like Forever to ensure that the application persists.

The Amazon EC2 service has a website that can make it simple to set up the instance.
It doesn’t provide a free service like Joyent does, but the charges are reasonable—about
0.02 an hour while you’re trying out the service.

If your application is using MongoDB, the MongoDB website provides very detailed
Amazon EC2 setup instructions.

Nodejitsu
Nodejitsu is currently in beta, and is offering beta accounts. Like many of the other
excellent cloud services, it lets you try out the service for free.

Like Heroku, Nodejitsu provides a tool, jitsu, to simplify the deployment process. You
install it using npm. Log into Nodejitsu with jitsu, and deploy simply by typing:

jitsu deploy

Deployment to a Cloud Service | 357

The tool gets what it needs from the package.json file and asks a couple of minor ques-
tions, and then you’re good to go.

Nodejitsu also provides its own web-based IDE, though I haven’t had a chance to try
it out. It does seem to be much simpler than Cloud9 IDE.

358 | Chapter 16: Scaling and Deploying Node Applications

APPENDIX

Node, Git, and GitHub

Git is a version control system, similar to CVS (Concurrent Versioning System) or Sub-
version. Where Git differs from the other, more conventional version control systems
is how it maintains the source as you make modifications. A version control system like
CVS stores version changes as differences from a base file. Git, on the other hand, stores
snapshots of the code at a specific point in time. If a file isn’t changed, Git just links to
the previous snapshot.

To begin using Git, you first need to install it on your system. There are binaries for
Windows and Mac OS X, as well as source code for various flavors of Unix. Installing
it on my Linux (Ubuntu 10.04) server required only one command:

sudo apt-get install git

All dependencies are automatically downloaded and installed.

The commands from this point on assume you’re using a Unix-based
terminal to enter them. There is a graphical interface for Git on Win-
dows. You’ll need to follow the documentation that comes with the
interface to set up your system, but the general procedures are the same
in all environments.

Once Git is installed, it needs to be configured. You’ll need to provide a Git username
(typically, your first and last name) and an email address. These form the two compo-
nents of the commit author, used to mark your edits:

git config --global user.name "your name"
git config --global user.email "your email"

Since you’re going to be working with GitHub, the hosting service that houses most (if
not all) Node modules, you’re also going to need to set up a GitHub account. You can
use whatever GitHub username you want—it doesn’t have to match the username you
just specified. You’ll also need to generate an SSH (secure shell) key to provide GitHub,
following the documentation outlined in the GitHub help documentation.

359

Most Git tutorials start you out by creating a simple repository (or repo to use common
terminology) of your own work. Since we’re interested mainly in Git with Node, we’ll
start out by cloning an existing repository rather than creating our own. Before you can
clone the source, though, you must first fork (obtain a working snapshot) the repository
at the GitHub website by clicking the Fork button located on the upper-right side of
the repository’s main GitHub web page, as shown in Figure A-1.

Figure A-1. Forking an existing Node module in GitHub

Then you can access the forked repository in your profile. You’ll also access the
Git URL in the newly forked repository web page. For instance, when I forked
the node-canvas module (covered in Chapter 12), the URL was
git@github.com:shelleyp/node-canvas.git. The command to clone the forked repository
is git clone URL:

git clone git@github.com:shelleyp/node-canvas.git

You can also clone over HTTP, though the GitHub folks don’t recommend it. However,
it is a good approach to use if you want a read-only copy of the repository source because
you want examples and other material that may not be included when you install the
module with npm (or if you want to access a copy of the module in work that hasn’t
yet been pushed out to npm).

Access the HTTP read-only URL from each repository’s web page, such as the following
for node-canvas:

git clone https://github.com/username/node-whatever.git

You can also install a module by specifying a Git URL:

npm install git://github.com/username/node-whatever.git

Now you have a copy of the node-canvas repository (or whatever repository you want
to access). You can make changes in any of the source files if you wish. You add new
or changed files by issuing the command git add, and then commit those changes by

360 | Appendix: Node, Git, and GitHub

mailto:git@github.com:shelleyp/node-canvas.git

issuing git commit (using the –m flag to provide a brief comment about the change
made):

git add somefile.js
git commit -m 'note about what this change is'

If you want to see if the file is staged and ready to commit, you can type the git
status command:

git status

If you want to submit the changes to be included back as part of the original repository,
you’ll issue a pull request. To do so, open the forked repository on which you want to
issue the request in your browser, and look for the button labeled Pull Request, as
shown in Figure A-2.

Figure A-2. Click the Pull Request button at GitHub to initiate a pull request

Clicking the Pull Request link opens up a Pull Request preview pane, where you can
enter your name and a description of the change, as well as preview exactly what’s going
to be committed. You can change the commit range and destination repository at this
time.

Once satisfied, send the request. This puts the item in the Pull Request queue for the
repository owner to merge. The repository owner can review the change; have a dis-
cussion about the change; and, if he decides to merge the request, do a fetch and merge
of the change, a patch and apply, or an automerge.

GitHub has documentation on how to merge in changes, as well as other
aspects of using Git with the hosting site.

Node, Git, and GitHub | 361

If you create your own Node module and want to share it with others, you’ll want to
create a repository. You can do this through GitHub, too, by clicking the New Repos-
itory button from your main GitHub web page and providing information about the
module, including whether it is private or public.

Initialize an empty repository using the git init command:

mkdir ~/mybeautiful-module
cd ~/mybeautiful-module
git init

Provide a README for the repository, using your favorite text editor. This is the file
that is displayed when a user clicks Read More in a module page at GitHub. Once the
file is created, add it and commit it:

git add README
git commit -m 'readme commit'

To connect your repository to GitHub, you’ll need to establish a remote repository for
the module and push the commits to it:

git remote add origin git@github.com:username/MyBeautiful-Module.git
git push -u origin master

Once you’ve pushed your new module to GitHub, you can begin the fun of promoting
it by ensuring that it gets listed in the Node module listings as well as the npm registry.

This is a quick run-through of the documentation that you can find at the GitHub
website, under the Help link.

362 | Appendix: Node, Git, and GitHub

Index

Symbols
" (double quotes), 100
$set modifier, 217, 218
& (ampersand), 11
' (single quotes), 100
* (asterisk), 137
--balance parameter, 353
--debug flag, 290
--exitcrash option, 351
--global option, 66
-d flag, 68, 112
-g option, 66
-m flag, 360
-s option, 350
-v option, 351
/c flag, 54
/K flag, 54
=== (strict equality operator), 100
> prompt, 29
\n, 48
_ (underscore), 22, 73
__dirname variable, 104, 110
{} (curly braces), 24, 101

A
A record, 54
acceptance testing, 301–306

with Soda module, 301–305
with Tobi module, 305–306
with Zombie module, 305–306

addCallback method, 82
addErrback method, 82
addListener method, 62
Advanced Packaging Tool (APT), 2

allowHalfOpen parameter, 42
Amazon EC2 (Elastic Compute Cloud), 357
Apache web server, 1
ApacheBench module, 307–311
app.js file, 8, 129–132
Apricot tool, 69
APT (Advanced Packaging Tool), 2
arrow keys in REPL, 26
Assert module, 292–295
Async module, 70, 95–99
asynchronous functionality, 13–19

and MongoDB, 220–221
and program flow, 16–19
and WebSockets, 278–279
asynchronous I/O, ix
benefits of, 19
defined, 13
patterns for, 91–99
reading files, 14–16

attacks, 337–340
avoiding eval function, 338
avoiding open text fields, 338–339
sanitizing data, 339–340

audience for this book, x
authentication

defined, 322
with Passport module, 322–337

locally stored, 324–331
using OAuth, 323–324, 331–337
using OpenID, 323–324

authorization
defined, 322
with Passport module, 322–337

locally stored, 324–331
using OAuth, 323–324, 331–337

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

363

using OpenID, 323–324
autocomplete text in REPL, 27
auto_reconnect option, 208

B
backtrace, 290
--balance parameter, 353
batchSize option, 214
battle hardened, 124
benchmark testing, 307–311
benefits of using Node, 19–20
bidirectional, 273
Bitbucket, 330
block keyword, 175
bodyParser middleware module, 131, 142,

254
.break command, 27
browsers, testing in multiple, 107
BSON format, 207
Buffer class, 39–40
built-in debugging, 287–290
burst, 251

C
c-ares library, 54
cache object, 64
Cairo library, 268
Calipso framework, 151
callback functions, 13

naming, 90
vs. promises, 81–84

callback spaghetti, 90
camel case, 100
canvas element, 268–271
Cascading Style Sheets (CSS) engines, 153
Cassandra key/value store, 187
certificate-signing request (CSR), 316
chain getter, 304
chained methods, 236–237
chainer helper, 246
changing colors in log, 71
check method, 339, 340
child processes, 50–54

exec method, 52–53
execFile method, 52–53
fork method, 53
running in Windows, 53–54
spawn method, 50–52

using ImageMagick from, 260–264
chunked transfer encoding, 44
cipher method, 319
.clear command, 27, 31
clearBreakpoint command, 289
clearInterval function, 41
clearTimeout function, 41
client side requirements for WebSockets, 279
client-side debugging, 290–291
close event, 43, 44, 52
close method, 47, 154
cloud services, deploying to, 353–358

Amazon EC2 (Elastic Compute Cloud),
357

Heroku, 357
Joyent SmartMachines, 356
Nodejitsu, 357–358
Windows Azure, 354–356

Cloud9 IDE deployment options, 330
clustering, 325
cmd.exe, 53, 54
CMS (content management system), 126, 323
Coffee-script module, 70
CoffeeScript, ix, 313
collections in MongoDB, 209–213
Colors module, 71–72
colors, changing in log, 71
command-line prompt for REPL, 21
Commander, 70
commands for REPL (read-eval-print loop), 27–

28
commit author, 359
commit command, 360
commit method, 240
CommonJS module system, 63, 75
compile method, 156, 192
Concurrent Versioning System (CVS), 359
config command, 68
configure method, 130, 132, 137, 142, 163,

174, 181, 279
Connect framework

and Express, 133–134
cookieSession middleware module, 115–

118
creating custom middleware, 118–120
lack of errorHandler function for, 120
logger middleware module, 114–115
next callback function for, 119, 120
overview, 111–112

364 | Index

parseCookie middleware module, 115–118
req parameter for, 119
res parameter for, 119
static middleware module, 113–114

connect method, 230
Connect module, 70
connectionListener callback, 40
console object, 13
constructor argument, 56
content management system (CMS), 126, 323
Content-Length response header, 12, 265
Content-Range response header, 265, 266
content-type, 12
context, 37
control flow modules

Async module, 95–99
Step module, 92–95

convert tool (ImageMagick), 261–262
cookieParser middleware module, 116, 133
cookieSession middleware module, 115–118,

133
core

Buffer class, 39–40
child processes, 50–54

exec method, 52–53
execFile method, 52–53
fork method, 53
running in Windows, 53–54
spawn method, 50–52

DNS module, 54–56
EventEmitter object, 59–62
global namespace object, 36–38
HTTP module, 44–46
Net module, 42–44
process object, 38–39
stream interface, 48–50
timer functions, 40–41
UDP module, 46–47
Utilities module, 56–59

CoreJS framework, 127
CouchDB, 207
crashes, application, 322
create, read, update and delete (CRUD) (see

CRUD (create, read, update and
delete))

createClient method, 188
createHash method, 320
createReadStream method, 60, 105, 265, 266
createServer method, 12, 13, 40, 44, 112, 318

createSocket method, 46
createWriteStream method, 60
Crossroads method, 123
CRUD (create, read, update and delete)

with node-mysql module, 237–239
with Sequelize module, 244–245

Crypto module, 319–322
CSR (certificate-signing request), 316
CSS (Cascading Style Sheets) engines, 153
cURL command, 150–151
custom middleware, 118–120
custom modules, 74–79

package.json file for, 75–78
packaging directory for, 75
publishing, 78–79

custom REPL (read-eval-print loop), 29–32,
30

CVS (Concurrent Versioning System), 359
Cygwin, 28

D
-d flag, 68, 112
Dahl, Ryan, 83
data event, 43, 50
data type mapping

for MongoDB, 210
for Sequelize module, 242–243

db-mysql module, 230–237
chained methods, 236–237
direct queries, 233–236
overview, 230–233

--debug flag, 290
debugging, 287–291

built-in, 287–290
client-side, 290–291

decipher method, 319
deepEqual method, 294
deferred, defined, 82
delays, 82
delete method, 236
DELETE verb, 134, 139, 141, 142, 167
dependencies for modules, listing, 67
deploying applications

to cloud service, 353–358
Amazon EC2 (Elastic Compute Cloud),

357
Heroku, 357
Joyent SmartMachines, 356
Nodejitsu, 357–358

Index | 365

Windows Azure, 354–356
to server, 345–353

alongside another web server, 351–353
improving performance of, 353
package.json file, 346–349
using Forever module, 349–351

deserializeUser method, 326
dev format, 115
development environment, 2–10

installing
on Linux (Ubuntu), 2–4
on Windows 7, 4–9

updating, 9–10
direct queries, 233–236
directories field, 79
directory middleware module, 133, 134, 146,

257
disconnect method, 230
DNS module, 54–56
done method, 296–298
double quotes, 100
downcase filter, 157
Drizzle, 232
Drupal, 223
dumpExceptions flag, 132

E
each event, 232
each...in statement, 203
echo event, 60
ECMAScript, ix
EJS (embedded JavaScript) template system,

153–172
filters for, 157–158
for Node, 155–156
syntax for, 154–155
using with Express, 158–172

displaying individual object, 166–168
generating picklist, 165–166
multiple object environment for, 160–

161
processing object post, 163–165
processing PUT request, 168–172
routing to static files, 161–162

Emailjs module, 253
embedded Ruby (ERB), 153
Ember.js framework, 127
emit method, 59, 60, 281
encoding parameter, 40

encodings for strings, 40
encrypting data, 316–322

storing passwords, 319–322
with HTTPS, 317–319
with TLS/SSL, 316–317

enctype field, 253
end method, 12, 42, 105, 135–137, 189
equal method, 292–294
ERB (embedded Ruby), 153
error event, 105, 231, 232, 255, 262
error handling in Express framework, 132–

133
Error object, 83, 84
error parameter, 53, 132
errorHandler function, 120, 132
escape method, 232
eval function, 337

avoiding, 338
for custom REPL, 30

event loop, 1, 13–19
event-driven I/O (input/output), 1
EventEmitter event, 230
EventEmitter object, 42, 48, 59–62
exception handling, 84–90
exec method, 52–53, 202, 203
execFile method, 52–53
execPath method, 38
execute method, 240
exists method, 104, 105
exit event, 52, 255, 262
--exitcrash option, 351
expect method, 296
exports statement, 74, 75
Express framework

and Connect, 133–134
app.js file, 129–132
error handling in, 132–133
installing, 128
module for, 70
MVC structure with, 145–150
routing, 134–145

and HTTP verbs, 139–145
path, 136–138

testing with cURL, 150–151
using EJS template system with, 158–172

displaying individual object, 166–168
generating picklist, 165–166
multiple object environment for, 160–

161

366 | Index

processing object post, 163–165
processing PUT request, 168–172
routing to static files, 161–162

using Socket.IO with, 284–285
extends keyword, 175
external modules, 65–69

F
fail method, 295
favicon middleware module, 112, 118, 119,

131
Fedora system, 11
FFmpeg, 249
fibers, 92
file servers, 103–110
File System module, 15, 60
files, reading asynchronously, 14–16
filter function, 95
filters for EJS template system, 157–158
FIN (finish packet), 41
find command, 51
find method, 213, 214
find options for MongoDB, 213–214
findAndModify method, 217–221
findAndRemove method, 217–221
finding modules, 69–71
findOne method, 213, 216
finish packet (FIN), 41
first filter, 157
flash method, 326, 327
Flatiron framework, 127
for loop, 94
for...in statement, 203
forEach method, 88, 93, 95, 98
Forever iFrame, 279
Forever module, 349–351

--exitcrash option for, 351
options for, 322–320
-s option for, 350
-v option for, 351

fork method, 53
fork, defined, 360
format method, 55
forward proxy, 124
frameworks, defined, 127
fs (File System) module, 15
future, defined, 82

G
-g option, 66
game leaderboard example, 190–195
GD, 249
Geddy framework, 127
get method, 134, 135, 137–141, 146, 160
GET verb, 134, 135, 139, 160
Git, 330, 359–362
GitHub, 65, 330, 359–362
global installation of modules, 66
global namespace object, 35–38

for modules, 24
in REPL, 25, 26

--global option, 66
globalAgent, 45
Google V8 JavaScript engine, ix, 1
grep command, 51
group object, 93

H
handshake, 316
hash, 190
hash method, 319
headers object, 12
heapTotal property, 39
heapUsed property, 39
Hello, World example, 10–11

explained, 11–13
for WebSockets, 281–284

Heroku, 357
hgetall method, 193, 194, 202, 203
hincrby method, 201, 204, 205
hmac method, 319
Holowaychuk, TJ, 130
host parameter, 188
hset method, 189
HTML5

canvas content, 268–271
serving HTML5 video, 264–268

HTTP module, 32, 44–46
HTTP verbs, 139–145
http-proxy module, 124
HTTPS, encrypting data with, 317–319

I
IDE (integrated development environment),

354
iisnode, 5

Index | 367

ImageMagick, 260–264
img element, 106, 269
immediate flag, 114
include directive, 175, 192
incr method, 201
indenting code, 100
index function, 134, 135
index.js file, 159
inherits method, 56–58, 60, 61, 77
injection attacks, 337–338
insert method, 211, 235, 236, 240
inspect method, 56
install event, 347
installing

development environment
on Linux (Ubuntu), 2–4
on Mac, 1
on Windows 7, 4–9

Express framework, 128
libraries, 2
Redis module, 188–190

integrated development environment (IDE),
354

IPC (interprocess communication), 44
isAuthenticated method, 325
isEqual method, 294

J
Jade file, 192
Jade module, 70
Jade template system, 172–180

modularizing views in, 174–180
syntax for, 172–174

Janczuk, Tomasz, 5
Jasmine framework, 298–299
JavaScript as basis for Node, ix, 1
JavaScript Gateway Interface (JSGI), 111
journaling option, 214
Joyent SmartMachines, 356
.js files for modules, 64
JSDOM module, 71
JSGI (JavaScript Gateway Interface), 111
.json files for modules, 64

K
keepGoing option, 213
keyboard shortcuts in REPL, 27

L
la option, 67
last argument callbacks, 83
.leave command, 48
length parameter, 40
length property, 166, 177
libraries

defined, 127
installing, 2
requirements, 2

libssl-dev, 2
limit option, and findOne method, 216
Linux

installing development environment on, 2–
4

making REPL executable, 32
list option, 67
listen method, 11–13, 15
listening event, 13, 15
ll option, 67
load

balancing using reverse proxy, 124
testing with Nodeload module, 311–313

loading modules, 63–65
local installation of modules, 66
log method, 25, 31, 37, 47, 88
log, changing colors in, 71
logger middleware module, 114–115, 116, 119,

131
lookup method, 54
ls option, 67

M
-m flag, 360
Mac, installing on, 1
main property, 75
map function, 95
maxLength option, 133
maxObjects option, 133
maxSockets property, 45
McMahon, Caolan, 95
Memcached key/value store, 187
memoization, 95
memoryUsage method, 39
Mercurial repositories, 330
message event, 47
message queue

defined, 196

368 | Index

example using Redis, 196–201
methodOverride option, 131, 142
Microsoft Visual C++ 2010 Redistributable

Package, 5
Microsoft Web Platform Installer, 5
middleware, 110–120

cookieSession middleware module, 115–
118

creating custom middleware, 118–120
logger middleware module, 114–115
overview, 111–112
parseCookie middleware module, 115–118
static middleware module, 113–114

Mime module, 71
MIME type, 107
minimal static file server, 103–110
mixin function, 73, 74
Mocha framework, 297–298
Model-View-Controller (MVC) framework and

Express (see MVC (Model-View-
Controller) framework)

modules
Colors module, 71–72
custom, 74–79

package.json file for, 75–78
packaging directory, 75
publishing, 78–79

defined, 12
dependencies for, 67
external, 65–69
finding, 69–71
global installation of, 66
global namespace for, 24
loading with require statement, 63–65
local installation of, 66
Optimist module, 72–73
Underscore module, 73–74

MongoDB
and asynchronous functionality, 220–221
data type mapping for, 210
find options for, 213–214
Mongoose with, 221–227

adding database connection, 223–227
refactoring widget for, 222–223

native driver for, 208–221
collections in, 209–213
findAndModify method, 217–221
findAndRemove method, 217–221
overview, 208–209

querying data, 213–217
remove method, 217–221
update method, 217–221

update modifiers for, 218–219
Mongoose, 221–227

adding database connection, 223–227
refactoring widget for, 222–223

multi method, 201, 203
multi parameter, 219
multiline code in REPL, 24–32
multipart/form-data content type, 253
multiple object environment, 160–161
multiple requests, and string values, 17
MVC (Model-View-Controller) framework and

Express, xi, 145–150
MX record, 54
MySQL databases

db-mysql module, 230–237
chained methods, 236–237
direct queries, 233–236
overview, 230–233

node-mysql module, 237–242
CRUD with, 237–239
transactions with, 239–242

mysql-queues module, 239–242
mysql-series module, 229

N
name property, 75
naming callback functions, 90
nested callbacks, 84–90, 209
Net module, 42–44
next callback function, 118–120
next command, 288
next parameter, 132
nextTick method, 39, 91
node command, 11
.node files for modules, 64
Node Inspector, 290–291
Node Package Manager (npm), xi
Node Style, 100–101
Node Version Manager (Nvm), 9
node-mysql module, 237–242

CRUD with, 237–239
transactions with, 239–242

node-validator module, 339–340
Nodejitsu, 357–358
Nodeload module

flags for, 311–312

Index | 369

load testing with, 311–313
Nodemon module, 313–314
Nodeunit module, 296–297
NODE_ENV variable, 130
node_modules folder, 64
normalize method, 162
NoSQL databases, 187, 207
npm (Node Package Manager), xi, 65
.npmignore list, 79
NS record, 54
Nvm (Node Version Manager), 9

O
OAuth, 323–324, 331–337
object-relational mapping (ORM), 229
ODM (object-document mapping), 221
offset parameter, 40
on method, 42, 59, 61, 62
onclick event handler, 81
open event, 105
open method, 154
open text fields, avoiding, 338–339
OpenFeint, 190
OpenID, 323–324
OpenSSL, 316
Optimist module, 70, 72–73
ORM (object-relational mapping), 229
os module, 32
out command, 288
output stream, 112
overhead of single thread process, 19

P
package.json files

deploying to servers, 346–349
for custom modules, 75–78
generating, 76
required fields in, 75

packaging directory, 75
parallel method, 95, 98, 193
parse method, 55, 338
parseBody method, 254
parseCookie middleware module, 115–118
passphrase, 317
Passport module, 322–337

storing locally with, 324–331
using OAuth with, 323–324, 331–337
using OpenID with, 323–324

passwords, encrypting, 319–322
PATH environment variable, 3
path routing in Express framework, 136–138
pattern attribute, 140
PDF files, 249–260

using PDF Toolkit
accessing data about file with, 251–252
creating files with, 258–260
creating page to upload files, 252–257

wkhtmltopdf utility, 250–251
PEM (privacy-enhanced mail) format, 316
performance

benchmark testing with ApacheBench
module, 307–311

improving, 353
load testing with Nodeload module, 311–

313
picklist

defined, 165
generating, 165–166

pipe
defined, 48
method, 105

placeholders, 233
platform method, 38
Polaroid effect, 262
poolSize option, 208
port parameter, 188
post method, 134, 140
POST verb, 134, 139
prefix configuration option, 3
prefork MPM (prefork multiprocessing model),

13
preinstall event, 347
print method, 189, 190
privacy-enhanced mail (PEM) format, 316
private keys, 316
process method, 39
process object, 38–39
Procfile, 337
profile parameter, 332
program flow and asynchronous functionality,

16–19
promises vs. callback functions, 81–84
proxies, 123–126, 123
public keys, 316
publish event, 347
pull request, 361
put method, 146

370 | Index

PUT verb, 134, 141, 142
PuTTY, 31
pwd command, 50
pyramid of doom, 90
Python, 2

Q
qs variable, 24
query method, 230, 237
Query String module, 55
querying in MongoDB, 213–217
querystring object in REPL, 24
quit method, 189

R
RailwayJS framework, 151
rainbow table, 320
Ranney, Matt, 188
RavenDB, 207
read-eval-print loop (REPL) (see REPL (read-

eval-print loop))
readFile method, 15, 17, 93–96, 104, 105, 341
readFileSync function, 44
reading files asynchronously, 14–16
Readline module, 48
README file, 362
ready event, 231
reasonPhrase method, 12
reddish-proxy, 124
redirect method, 161
Redis key/value store, 187
Redis module, 70, 201
Redis support

game leaderboard example, 190–195
installing module for, 188–190
message queue example, 196–201
stats middleware using, 201–205

refactoring, 222
refreshing code changes, 313–314
regular expressions in routes, 122, 136
relational database bindings

db-mysql module, 230–237
chained methods, 236–237
direct queries, 233–236
overview, 230–233

node-mysql module, 237–242
CRUD with, 237–239
transactions with, 239–242

Sequelize module, 242–247
adding several objects at once, 246–247
CRUD with, 244–245
defining model, 242–243
issues with, 247

remoteAddress property, 43
remotePort property, 43
remove method, 217–221
remove option, 220
render method, 134, 135, 156, 159, 160, 167,

169, 202
renderFile method, 155
REPL (read-eval-print loop)

> prompt in, 29
arrow keys in, 26
autocomplete text in, 27
benefits of, 23
.break command in, 27
.clear command in, 27, 31
command-line prompt for, 21
commands for, 27–28
{} (curly braces) in, 24
global object in, 25, 26
http module in, 32
keyboard shortcuts in, 27
log command in, 31
log method in, 25
making executable in Linux, 32
multiline code in, 24–32
os module in, 32
overview, 21–23
process.stdin in, 29
qs variable in, 24
querystring object in, 24
require statements in, 24
rlwrap utility in, 28–29, 32, 33
.save command in, 27, 28
saving in, 32–33
start method in, 29
stream option in, 30
using custom, 29–32
util module in, 32
var keyword in, 22, 24
_ (underscore) in, 22

repl object, 29
replace method, 87
repository, 360
Representational State Transfer (REST), 131
req parameter, 119

Index | 371

Request module, 70
request object, 45, 46
request parameter, 132
requestListener method, 12, 44
require statements

in REPL, 24
loading modules using, 63–65, 74
section in file, 181

required attribute, 140, 254
requirements

libraries, 2
Python, 2

res parameter, 119
resolve method, 54, 64
response headers, 12
response parameter, 132
REST (Representational State Transfer), 131
resume method, 38
reverse method, 54
reverse proxy, 124
rewriting web requests, 324
rlwrap utility, 28–29, 32, 33, 49, 50
rollback method, 240
router middleware module, 131, 133, 146
routing, 121–123

* (asterisk) in, 137
in Express framework, 134–145

and HTTP verbs, 139–145
path, 136–138

regular expressions in, 122, 136
to static files, 161–162

rpush method, 198
Ruby on Rails, 145
runInContext method, 342, 343
runInThisContext methods, 343

S
-s option, 350
sadd method, 201
safe parameter, 219
salt, 320
sandboxing, 340–343, 340
Sanderson, Steve, 7
sanitizing data

sanitize method, 339, 340
with node-validator module, 339–340

Sauce Labs, 301
.save command, 27, 28
script element, 279

secure shell (SSH) (see SSH (secure shell))
Secure Sockets Layer (SSL), 316–317
security

authentication/authorization with Passport
module, 322–337

locally stored, 324–331
using OAuth, 323–324, 331–337
using OpenID, 323–324

encrypting data, 316–322
storing passwords, 319–322
with HTTPS, 317–319
with TLS/SSL, 316–317

protecting against attacks, 337–340
avoiding eval function, 338
avoiding open text fields, 338–339
sanitizing data with node-validator

module, 339–340
sandboxing code, 340–343

Selenium, 301
self-signed certificates, 316
semicolons, 100
send method, 136, 137, 167, 281
sendfile method, 161
Sequelize module, 242–247

adding several objects at once, 246–247
CRUD with, 244–245
defining model, 242–243
issues with, 247

sequence, 91, 92
sequential functionality, 84–90
sequential programming, 85
serial method, 95, 98
serializeFunction parameter, 219
serializeUser method, 326
series

defined, 91, 92
method, 193, 194, 195

Server constructor, 208
ServerRequest object, 44
ServerResponse object, 12, 44
servers

deploying to, 345–353
alongside another web server, 351–353
improving performance of, 353
package.json file, 346–349
using Forever module, 349–351

minimal static file server, 103–110
session middleware module, 326
set method, 130, 201, 236

372 | Index

setBreakpoint command, 289
setEncoding method, 39, 40, 43, 48, 51
setInterval function, 41
setMaxListeners method, 62
setTimeout function, 17, 39, 40, 41
sha1 algorithm, 320
shared hosting, 4
showStack flag, 132
sign method, 319
SimpleDB, 207
single quotes, 100
single thread

for Node, ix
overhead of, 19

Socket.IO module, 70
and WebSockets, 274–279
configuring, 279–281
using with Express, 284–285

sockets, 41
Soda module, 301–305
sorted set, 190
spawn method, 50–52, 50
SSH (secure shell), 356, 359
SSL (Secure Sockets Layer), 316–317
stack property, 87
Standard IO (STDIO), 36
start event, 347
start method, 29
startnum/endnum values, 265
stat command, 89
static files

routing to, 161–162
server for, 103–110

static middleware module, 113–114, 131
static middleware option, 113, 114
staticCache middleware module, 133
stats method, 89, 98
stats middleware module, 201–205
stderr stream, 38, 50, 51, 132
stdin stream, 38, 46, 48, 51, 61
STDIO (Standard IO), 36
stdout stream, 38, 48, 50, 51, 114
step command, 288
Step module, 92–95
Strata framework, 151
stream interface, 48–50
stream option, 30
strict equality operator, 100
strictEqual method, 293, 294

stringEqual method, 293
strings, encodings for, 40
.styl files, 182
style tag, 192
Stylus

in template systems, 180–184
no dynamic CSS views in, 181

Subversion, 359–362
success event, 232, 233
sudo command, 4
superConstructor argument, 56
superuser privileges, 4
syntax for EJS template system, 154–155

T
tail command, 197
TCP (Transmission Control Protocol), 40, 273
template systems

EJS (embedded JavaScript) template system,
153–172

filters for, 157–158
for Node, 155–156
syntax for, 154–155
using with Express, 158–172

Jade template system, 172–180
modularizing views in, 174–180
syntax for, 172–174

Stylus in, 180–184
test event, 347
testing

acceptance testing, 301–306
with Soda module, 301–305
with Tobi module, 305–306
with Zombie module, 305–306

in all browsers, 107
performance testing, 306–313

benchmark testing with ApacheBench
module, 307–311

load testing with Nodeload module,
311–313

unit testing, 292–301
with Assert module, 292–295
with Jasmine framework, 298–299
with Mocha framework, 297–298
with Nodeunit module, 296–297
with Vows framework, 299–301

text/html content type, 107
third-party authentication/authorization, 322
this context keyword, 58, 93

Index | 373

V413HAV
Typewritten Text
V413HAV

time-consuming operations, 15
timer functions, 40–41
TLS (Transport Layer Security), 41, 257, 316–

317
Tobi module, 305–306
token parameter, 332
tokenSecret parameter, 332
toString method, 47
Tower.js framework, 151
transactions support, 239–242
Transmission Control Protocol (TCP) (see TCP

(Transmission Control Protocol))
Transport Layer Security (TLS) (see TLS

(Transport Layer Security))
transports option, 280
Triple-DES encryption, 316
trusted authorities, 316
try blocks, 85
Twitter, 331
type parameter, 122

U
Ubuntu, 2–4
UDP (User Datagram Protocol), 41, 46–47
Uglify-js module, 70
Underscore module, 70, 73–74
unidirectional, 273
unit testing, 292–301

with Assert module, 292–295
with Jasmine framework, 298–299
with Mocha framework, 297–298
with Nodeunit module, 296–297
with Vows framework, 299–301

update event, 347
update method, 217–221, 235, 236, 240
update modifiers for MongoDB, 218–219
upload files page, 252–257
uppercase, use of, 100
upserts

defined, 217
parameter, 219

URL module, 55
url property, 104
use method, 112
useGlobal flag, 37
User Datagram Protocol (UDP) (see UDP (User

Datagram Protocol))
Utilities module, 32, 56–59

V
-v option, 351
var keyword, 19, 20, 22, 24, 100
verify method, 319
version method, 38
video element, 106, 264–268
virtual private network (VPN), 357
VOIP (Voice over Internet Protocol), 46
Vows framework, 299–301
VPN (virtual private network), 357

W
W3C (World Wide Web Consortium), 273
waterfall method, 92, 95, 96, 193
WebDriver, 301
WebGL, 249
WebSockets protocol, 273–274

and Socket.IO, 274–279
browser support for, 274
client side requirements, 279
Hello, World example, 281–284
in asynchronous application, 278–279
simple example using, 274–277

where method, 236
Widget Factory, 337
Windows 7

child processes in, 53–54
installing development environment on, 4–

9
Windows Azure, 354–356
wkhtmltopdf utility, 250–251
worker MPM (prefork multiprocessing model),

13
World Wide Web Consortium (W3C), 273
write method, 40, 43, 136, 137
writeFile method, 94, 96, 98
writeHead method, 12

Z
zero-sized chunk, 44
Zombie module, 305–306
zrange method, 192

374 | Index

About the Author
Shelley Powers has been working with, and writing about, web technologies—from the
first release of JavaScript to the latest graphics and design tools—for more than 12
years. Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and
web graphics. She’s an avid amateur photographer and web development aficionado,
who enjoys applying her latest experiments on her many websites.

Colophon
The animal on the cover of Learning Node is a hamster rat (Beamys). There are two
species of hamster rats: the greater hamster rat (Beamys major) and the lesser hamster
rat (Beamys hindei).

The hamster rat inhabits the African forests from Kenya to Tanzania. This large rodent
prefers to make its home in moist environments: along riverbanks and in thickly-for-
ested areas. It thrives in coastal or mountainous regions, although deforestation threat-
ens its natural habitat. Hamster rats live in multichambered burrows and are excellent
climbers.

This rodent has a very distinct appearance: it can be 7 to 12 inches long and weigh up
to a third of a pound. It has a short head and gray fur overall, with a white belly and a
mottled black and white tail. The hamster rat, like other rodents, has a variable diet; it
possesses cheek pouches for food storage.

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Not Your Ordinary JavaScript
	Why Node?
	This Book’s Intended Audience
	How to Best Use This Book
	The Technology
	The Examples
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Node.js: Up and Running
	Setting Up a Node Development Environment
	Installing Node on Linux (Ubuntu)
	Partnering Node with WebMatrix on Windows 7
	Updating Node

	Node: Jumping In
	Hello, World in Node
	Hello, World from the Top

	Asynchronous Functions and the Node Event Loop
	Reading a File Asynchronously
	Taking a Closer Look at Asynchronous Program Flow

	Benefits of Node

	Chapter 2. Interactive Node with REPL
	REPL: First Looks and Undefined Expressions
	Benefits of REPL: Getting a Closer Understanding of JavaScript Under the Hood
	Multiline and More Complex JavaScript
	REPL Commands
	REPL and rlwrap
	Custom REPL

	Stuff Happens—Save Often

	Chapter 3. The Node Core
	Globals: global, process, and Buffer
	global
	process
	Buffer

	The Timers: setTimeout, clearTimeout, setInterval, and clearInterval
	Servers, Streams, and Sockets
	TCP Sockets and Servers
	HTTP
	UDP/Datagram Socket
	Streams, Pipes, and Readline

	Child Processes
	child_process.spawn
	child_process.exec and child_process.execFile
	child_process.fork
	Running a Child Process Application in Windows

	Domain Resolution and URL Processing
	The Utilities Module and Object Inheritance
	Events and EventEmitter

	Chapter 4. The Node Module System
	Loading a Module with require and Default Paths
	External Modules and the Node Package Manager
	Finding Modules
	Colors: Simple Is Best
	Optimist: Another Short and Simple Module
	Underscore

	Creating Your Own Custom Module
	Packaging an Entire Directory
	Preparing Your Module for Publication
	Publishing the Module

	Chapter 5. Control Flow, Asynchronous Patterns, and Exception Handling
	Promises, No Promises, Callback Instead
	Sequential Functionality, Nested Callbacks, and Exception Handling
	Asynchronous Patterns and Control Flow Modules
	Step
	Async

	Node Style

	Chapter 6. Routing Traffic, Serving Files, and Middleware
	Building a Simple Static File Server from Scratch
	Middleware
	Connect Basics
	Connect Middleware
	connect.static
	connect.logger
	connect.parseCookie and connect.cookieSession

	Custom Connect Middleware

	Routers
	Proxies

	Chapter 7. The Express Framework
	Express: Up and Running
	The app.js File in More Detail
	Error Handling
	A Closer Look at the Express/Connect Partnership
	Routing
	Routing Path
	Routing and HTTP Verbs

	Cue the MVC
	Testing the Express Application with cURL

	Chapter 8. Express, Template Systems, and CSS
	The Embedded JavaScript (EJS) Template System
	Learning the Basic Syntax
	Using EJS with Node
	Using the EJS for Node Filters

	Using a Template System (EJS) with Express
	Restructuring for a Multiple Object Environment
	Routing to Static Files
	Processing a New Object Post
	Working with the Widgets Index and Generating a Picklist
	Showing an Individual Object and Confirming an Object Deletion
	Providing an Update Form and Processing a PUT Request

	The Jade Template System
	Taking the Nickel Tour of the Jade Syntax
	Using block and extends to Modularize the View Templates
	Converting the Widget Views into Jade Templates
	Converting the main widgets display view
	Converting the edit and deletion forms

	Incorporating Stylus for Simplified CSS

	Chapter 9. Structured Data with Node and Redis
	Getting Started with Node and Redis
	Building a Game Leaderboard
	Creating a Message Queue
	Adding a Stats Middleware to an Express Application

	Chapter 10. Node and MongoDB: Document-Centric Data
	The MongoDB Native Node.js Driver
	Getting Started with MongoDB
	Defining, Creating, and Dropping a MongoDB Collection
	Adding Data to a Collection
	Querying the Data
	Using Updates, Upserts, and Find and Remove

	Implementing a Widget Model with Mongoose
	Refactoring the Widget Factory
	Adding the MongoDB Backend

	Chapter 11. The Node Relational Database Bindings
	Getting Started with db-mysql
	Using Query String or Chained Methods
	Updating the Database with Direct Queries
	Updating the Database with Chained Methods

	Native JavaScript MySQL Access with node-mysql
	Basic CRUD with node-mysql
	MySQL Transactions with mysql-queues

	ORM Support with Sequelize
	Defining a Model
	Using CRUD, ORM Style
	Adding Several Objects Easily
	Overcoming Issues Related to Going from Relational to ORM

	Chapter 12. Graphics and HTML5 Video
	Creating and Working with PDFs
	Accessing PDF Tools with Child Processes
	Taking page snapshots with wkhtmltopdf
	Accessing data about a PDF file with PDF Toolkit
	Creating a PDF uploader and dealing with graphics lag time

	Creating PDFs with PDFKit

	Accessing ImageMagick from a Child Process
	Properly Serving HTML5 Video with HTTP
	Creating and Streaming Canvas Content

	Chapter 13. WebSockets and Socket.IO
	WebSockets
	An Introduction to Socket.IO
	A Simple Communication Example
	WebSockets in an Asynchronous World
	About That Client Code

	Configuring Socket.IO
	Chat: The WebSockets “Hello, World”
	Using Socket.IO with Express

	Chapter 14. Testing and Debugging Node Applications
	Debugging
	The Node.js Debugger
	Client-Side Debugging with Node Inspector

	Unit Testing
	Unit Testing with Assert
	Unit Testing with Nodeunit
	Other Testing Frameworks
	Mocha
	Jasmine
	Vows

	Acceptance Testing
	Selenium Testing with Soda
	Emulating a Browser with Tobi and Zombie

	Performance Testing: Benchmarks and Load Tests
	Benchmark Testing with ApacheBench
	Load Testing with Nodeload

	Refreshing Code with Nodemon

	Chapter 15. Guards at the Gate
	Encrypting Data
	Setting Up TSL/SSL
	Working with HTTPS
	Safely Storing Passwords

	Authentication/Authorization with Passport
	Authorization/Authentication Strategies: OAuth, OpenID, Username/Password Verification
	The Local Passport Strategy
	The Twitter Passport Strategy (OAuth)

	Protecting Applications and Preventing Attacks
	Don’t Use eval
	Do Use Checkboxes, Radio Buttons, and Drop-Down Selections
	Scrub Your Data and Sanitize It with node-validator

	Sandboxed Code

	Chapter 16. Scaling and Deploying Node Applications
	Deploying Your Node Application to Your Server
	Writing That package.json File
	Keeping Your Application Alive with Forever
	Using Node and Apache Together
	Improving Performance

	Deployment to a Cloud Service
	Deploying to Windows Azure via Cloud9 IDE
	Joyent Development SmartMachines
	Heroku
	Amazon EC2
	Nodejitsu

	Appendix. Node, Git, and GitHub
	Index

