
www.allitebooks.com

http://www.allitebooks.org

JavaScript at Scale

Build enduring JavaScript applications with scaling
insights from the front-line of JavaScript development

Adam Boduch

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript at Scale

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1270715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-215-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Adam Boduch

Reviewers
August N. Marcello III

Yogesh Singh

Nikolay Sokolov

Serkan Yersen

Commissioning Editor
Edward Gordon

Acquisition Editors
Kevin Colaco

Owen Roberts

Content Development Editor
Divij Kotian

Technical Editor
Ryan Kochery

Copy Editor
Angad Singh

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=60154aaa-da19-3f8d-a6af-545b59c3a4d0
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=71cd86ce-ac0f-971d-187f-53db866c5adf
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=71cd86ce-ac0f-971d-187f-53db866c5adf
http://www.allitebooks.org

About the Author

Adam Boduch has been involved with large-scale JavaScript development for
nearly 10 years. Before moving to the frontend, he worked on several large-scale
cloud computing products using Python and Linux. No stranger to complexity,
Adam has practical experience with real-world software systems and the scaling
challenges they pose. He is the author of several JavaScript books, including
Lo-Dash Essentials, and is passionate about innovative user experiences and
high performance.

Adam lives in Toronto and is a senior software engineer at Virtustream.

I'd like to thank my mom and dad.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

August N. Marcello III is a highly passionate software engineer with
nearly 2 decades of experience in the design, implementation, and deployment of
modern client-side web application architectures in the enterprise. An exclusive
focus on delivering compelling SaaS based user experiences throughout the web
ecosystem has proven both personally and professionally rewarding for him. His
passion for emerging technologies in general, combined with a particular focus on
forward-thinking JavaScript platforms, has been a primary driver in his pursuit
of technical excellence. When he's not coding, he can be found trail running,
mountain biking, and spending time with family and friends. Visit him online
at www.augustmarcello.com.

Many thanks to Chuck, Mark, Eric, and Adam, with whom I had the
privilege to work and learn. Gratitude to my family, friends, and the
experiences I have been blessed to be a part of.

Yogesh Singh graduated in computer science and engineering from JSS Academy
of Technical Education, India. He is a full-stack web developer with experience in
major server-side web development stack (ASP.NET and Node.js) and advanced
knowledge of HTML, CSS and JavaScript.

Yogesh is enthusiastic about JavaScript, and its library and framework (Backbone,
AngularJS, jQuery, and Underscore).

He started his career in data mining and data warehousing, with expert level
knowledge in database development. He is a Microsoft Certified Solutions Associate
(MCSA) in MSSQL.

www.allitebooks.com

www.augustmarcello.com
http://www.allitebooks.org

He is a self-learner and enjoys learning algorithms and data structure. He achieved a
statement of accomplishment from Standford University (Coursera) for algorithms.

Currently, he is working at Gainsight as a full-stack developer. Previously, he worked
at OLX India and MAQ Software.

In his spare time, he likes to blog at http://mylearning.in. His LinkedIn profile
can be found at https://www.linkedin.com/in/yogesh21

I would like to thank my family, friends, and colleagues for
their support.

Nikolay Sokolov is a software engineer with vast experience in cloud computing,
deployment automation, and enterprise software development. Currently, he
is working on core platform development at Tonomi (http://tonomi.com/),
delivering the autonomic management of cloud applications based on the flexible
component model.

Feel free to contact him at https://twitter.com/chemikadze

Serkan Yersen is a software developer from San Francisco. He is the author of
open source libraries such as ifvisible.js, underscore.py, and kwargs.js. Serkan has
specialized in building large-scale JavaScript applications and creating UIs that
will be used by a large variety of users. From 2006 to 2012, Serkan worked for
http://www.jotform.com/ and built a complex form builder, which is being
used by millions of users. Right now, he is building web applications for Home
Depot and Redbeacon (http://www.redbeacon.com/). You can reach him at
http://serkan.io/.

www.allitebooks.com

http://mylearning.in
https://www.linkedin.com/in/yogesh21
http://tonomi.com/
https://twitter.com/chemikadze
http://www.jotform.com/
http://www.redbeacon.com/
http://serkan.io/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is for Melissa, Jason, and Simon. Thanks for all the love and support.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Scale from a JavaScript Perspective 1

Scaling influencers 2
The need for scale 2
Growing user base 3
Building new features 4
Hiring more developers 5

Architectural perspectives 6
The browser is a unique environment 6

Component design 8
Component communication 9
Load time 10
Responsiveness 10
Addressability 11
Configurability 12

Making architectural trade-offs 13
Defining your constants 13
Performance for ease of development 13
Configurability for performance 14
Performance for substitutability 14
Ease of development for addressability 15
Maintainability for performance 15
Less features for maintainability 16
Leveraging frameworks 17

Frameworks versus libraries 18
Implementing patterns consistently 18
Performance is built in 18

Table of Contents

[ii]

Leverage community wisdom 19
Frameworks don't scale out-of-the-box 19

Summary 19
Chapter 2: Influencers of Scale 21

Scaling users 22
License fees 22
Subscription fees 23
Consumption fees 23
Ad-supported 24
Open source 24
Communicating users 26
Support mechanisms 26
Feedback mechanisms 27
Notifying users 28
User metrics 29
Scaling users example 30

Scaling features 30
Application value 31
Killer features versus features that kill 31
Data-driven features 32
Competing with other products 33
Modifying existing features 34
Supporting user groups and roles 35
Introducing new services 35
Consuming real-time data 36
Scaling features example 37

Scaling development 38
Finding development resources 39
Development responsibilities 39
Too many resources 40
Scaling development example 41

Influencer checklist 41
User checklist 41

What's the business model of our software? 42
Does our application have different user roles? 42
Do our users communicate with each other using our software? 42
How do we support our application? 42
How do we collect feedback from users? 42
How do we notify users with relevant information? 43
What type of user metrics should we collect? 43

Table of Contents

[iii]

Feature checklist 43
What's the core value proposition of our software? 43
How do we determine the feasibility of a feature? 43
Can we make informed decisions about our features? 44
Who's our competition? 44
How do we make what we have better? 44
How do we integrate user management into our features? 44
Are our features tightly coupled to backend services? 45
How does the frontend stay synchronized with backend data? 45

Developer checklist 45
How do we find the right development resources? 45
How do we allocate development responsibilities? 45
Can we avoid hiring too many resources? 46

Summary 46
Chapter 3: Component Composition 47

Generic component types 48
Modules 48
Routers 50
Models/Collections 55
Controllers/Views 57
Templates 60
Application-specific components 61

Extending generic components 61
Identifying common data and functionality 61
Extending router components 63
Extending models/collections 63
Extending controllers/views 65

Mapping features to components 66
Generic features 66
Specific features 67

Decomposing components 67
Maintaining and debugging components 68
Re-factoring complex components 70

Pluggable business logic 70
Extending versus configuring 70
Stateless business logic 71

Organizing component code 71
Summary 73

Table of Contents

[iv]

Chapter 4: Component Communication and Responsibilities 75
Communication models 76

Message-passing models 76
Event models 77

Communication data schema 78
Naming conventions 78
Data format 78
Common data 79

Traceable component communication 80
Subscribing to events 81
Globally-logging events 81
Event lifecycle 83

Communication overhead 84
Event frequency 85
Callback execution time 87
Callback complexity 88

Areas of communication responsibility 90
Backend API 90
Web socket updates 91
DOM updates 93

Loosely-coupled communication 94
Substituting components 94
Handling unexpected events 95

Component layers 98
Event flow direction 98
Mapping to developer responsibilities 99
Mentally mapping the code 100

Summary 100
Chapter 5: Addressability and Navigation 101

Approaches to routing 101
Hash URIs 102
Traditional URIs 102

How routers work 103
Router responsibilities 103
Router events 104

URI parts and patterns 105
Encoding information 105
Designing URIs 106

Table of Contents

[v]

Mapping resources to URIs 107
Building URIs manually 108
Automating resource URIs 108

Triggering routes 112
User actions 112
Redirecting users 113

Router configuration 113
Static route declarations 114
Registration events 114
Deactivating routes 115

Troubleshooting routers 117
Conflicting routes 117
Logging initial configuration 119
Logging route events 119
Handling invalid resource states 120

Summary 120
Chapter 6: User Preferences and Defaults 121

Preference types 121
Locales 121
Behavior 122
Appearance 123

Supporting locales 123
Deciding on locales to support 124
Maintaining locales 124

Setting the locale 125
Choosing locales 125
Storing locale preferences 126
Locales in URIs 126

Generic component configuration 127
Deciding on configuration values 127
Stored and hard-coded default values 128
Backend implications 129
Loading configuration values 130

Configuring behavior 131
Enabling and disabling components 131
Changing quantities 132
Changing order 133
Configuring notifications 135
Inline options 136

Table of Contents

[vi]

Changing the look and feel 136
Theme tools 136
Selecting a theme 137
Individual style preferences 137

Performance implications 138
Configurable locale performance 138
Configurable behavior performance 138
Configurable theme performance 141

Summary 142
Chapter 7: Load Time and Responsiveness 143

Component artifacts 143
Component dependencies 144
Building components 145

Loading components 146
Loading modules 146
Lazy module loading 147
Module load latency 148

Communication bottlenecks 149
Reducing indirection 150
Profiling code 152

Component optimization 154
Components that maintain state 154
Dealing with side-effects 155
DOM rendering techniques 157

API data 159
Load latency 160
Working with large data sets 161

Optimizing components at runtime 162
Summary 162

Chapter 8: Portability and Testing 165
Decoupling the backend 165

Mocking the backend API 166
Frontend entry points 167
Mocking tools 168
Generating mock data sets 169
Performing actions 169

Feature design process 170
Designing the API 170
Implementing the mock 171

Table of Contents

[vii]

Implementing the feature 172
Reconciling mock data with API data 173

Unit testing tools 174
Tools built into frameworks 175
Standalone unit testing tools 176
Toolchains and automation 177

Testing mock scenarios 178
Mock APIs and test fixtures 178
Scenario generation tools 179

End-to-end tests and continuous integration 180
Summary 182

Chapter 9: Scaling Down 183
Scaling constraints 183

JavaScript artifact size 184
Network bandwidth 185
Memory consumption 187
CPU consumption 190
Backend capabilities 192

Conflicting features 193
Overlapping functionality 193
Irrelevant features 195
Customer demand 196

Design failures 196
Unnecessary components 197
Inefficient data processing 200
Excessively creative markup 203

Application composition 204
Feature enablement 205
New feature impact 205
Essential libraries 206

Summary 207
Chapter 10: Coping With Failure 209

Failing fast 209
Using quality constraints 210
Providing meaningful feedback 210
When we can't fail fast... 212

Table of Contents

[viii]

Fault tolerance 212
Classifying critical behavior 213
Detecting and containing errant behavior 213
Disabling defective components 217
Gracefully degrading functionality 218

Failure recovery 219
Retrying failed operations 219
Restarting components 222
Manual user intervention 223
When we can't recover from failures... 224

Performance and complexity 225
Exception handling 225
State checking 226
Notifying other components 227

Logging and debugging 228
Meaningful error logs 228
Warning about potential failures 229
Informing and instructing users 230

Improving the architecture 231
Documenting failure scenarios 231
Improving component classification 232
Complexity promotes failure 232

Summary 233
Index 235

Preface

[ix]

Preface
Some applications just get it right. These are the exceptions rather than the rule.
Lots of JavaScript applications get one or two things right, and other things very
wrong. The things we get wrong are a side effect of the scaling influencers that we
never considered. This is a book about scaling our frontend architectures to meet the
quality requirements asked of us. Scaling JavaScript applications is an interesting
and fun problem. There're so many moving parts—the users, the developers, the
deployment environments, the browser environments, and the task of bringing all
of these factors together to form a meaningful user experience. What are we scaling,
and why? The aim of this book is to help us answer these questions.

What this book covers
Chapter 1, Scale from a JavaScript Perspective, introduces the idea of scalable JavaScript
applications and what makes them different from other applications that scale.

Chapter 2, Influencers of Scale, helps us understand that the need to scale helps us
design better architectures.

Chapter 3, Component Composition, explains how the patterns that form the core of our
architecture serve as blueprints for assembling components.

Chapter 4, Component Communication and Responsibilities, explains how components
that communicate with one another are a scaling constraint. It tells us how features
are the result of component communication patterns.

Chapter 5, Addressability and Navigation, elaborates on large-scale web applications
with URIs that point to resources, and how designs that scale can handle a growing
number of URIs.

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

Chapter 6, User Preferences and Defaults, tells us why users need control over certain
aspects of our software. And it also explains that scalable application components
are configurable.

Chapter 7, Load Time and Responsiveness, explains how more moving parts means
performance degradation across the application. This includes making trade-offs
that keep our UI responsive, while adding new features.

Chapter 8, Portability and Testing, covers writing JavaScript code that's not tightly
coupled with a single environment. This includes creating portable mock data and
portable tests.

Chapter 9, Scaling Down, explains how removing unused or buggy components from
applications is essential, if we want to scale up in other areas.

Chapter 10, Coping with Failure, explains that large-scale JavaScript architectures can't
fall over as a result of a bug in one component. This includes how designing with
failure in mind is the key to achieving scale in a broad number of scenarios.

What you need for this book
• NodeJS
• Code Editor/IDE
• A modern Web browser

Who this book is for
This book is intended for a senior JavaScript developer who is curious about
architectural issues in the frontend. There's no prerequisite framework knowledge
required, however, most of the concepts presented throughout the book are
adaptations of components found in frameworks such as Backbone, Angular, or
Ember. Strong JavaScript language skills are required, and all code examples are
presented using ECMAScript 6 syntax.

Preface

[xi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
For example, users/31729. Here, the router will need to find a pattern that matches
this string, and the pattern will also specify how to extract the 31729 variable."

A block of code is set as follows:

// Renders the sections of the view. Each section
 // either has a renderer, or it doesn't. Either way,
 // content is returned.
 render() {

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Scale from a JavaScript
Perspective

JavaScript applications are getting bigger. That's because we can do more with the
language—more than most thought possible. After all, JavaScript was conceived
as a means to activate otherwise static web pages. A means by which to fill gaps
in HTML, as it were. Year after year, more and more web sites started developing
JavaScript code to improve the functionality of their pages.

Despite the frustrations of certain language idiosyncrasies, JavaScript popularity
gained critical mass—today it's the most popular programming language on GitHub
(http://githut.info/). From then onward, web sites started looking more like
applications that a user would install on their desktop. Libraries and frameworks
started popping up left right and center. Why? Because frontend JavaScript
applications are large and complex.

In the present day frontend development profession, there's a lot of tools at our
disposal. The JavaScript language has evolved into something that's usable on its own;
it's becoming less dependent on libraries to perform the most fundamental and basic
programming tasks. This is especially true of the next iteration of the ECMAScript
specification, where problems that have plagued developers for years are at least
partially addressed by constructs added to the language. This, of course, doesn't negate
the need for application frameworks. The frontend development environment and its
supporting web standards are far from perfect, but they're improving.

http://githut.info/

Scale from a JavaScript Perspective

[2]

Something that's been missing from the frontend development picture for a long time
is architecture. Frontend architectures have become prevalent in recent years due
to the complexity of what's being implemented. Sophisticated tools, allow frontend
developers to design an architecture that's able to scale with the problems we're
trying to solve. And that's the crux of this book—JavaScript architectures that scale.
But scale to what exactly? It's not your traditional scaling problem in computing,
where you need to handle more load in a distributed server environment. Scaling in
the frontend presents its own unique challenges and constraints. This chapter will
define some of the scaling issues faced by JavaScript architectures.

Scaling influencers
We don't scale our software systems just because we can. While it's common to tout
scalability, these claims need to be put into practice. In order to do so, there has to be
a reason for scalable software. If there's no need to scale, then it's much easier, not to
mention cost-effective, to simply build a system that doesn't scale. Putting something
that was built to handle a wide variety of scaling issues into a context where scale
isn't warranted just feels clunky. Especially to the end user.

So we, as JavaScript developers and architects, need to acknowledge and understand
the influences that necessitate scalability. While it's true that not all JavaScript
applications need to scale, it may not always be the case. For example, it's difficult
to say that we know this system isn't going to need to scale in any meaningful way,
so let's not invest the time and effort to make it scalable. Unless we're developing a
throw-away system, there's always going to be expectations of growth and success.

At the opposite end of the spectrum, JavaScript applications aren't born as mature
scalable systems. They grow up, accumulating scalable properties along the way.
Scaling influencers are an effective tool for those of us working on JavaScript projects.
We don't want to over-engineer something straight from inception, and we don't want
to build something that's tied-down by early decisions, limiting its ability to scale.

The need for scale
Scaling software is a reactive event. Thinking about scaling influencers helps us
proactively prepare for these scaling events. In other systems, such as web application
backends, these scaling events may be brief spikes, and are generally handled
automatically. For example, there's an increased load due to more users issuing more
requests. The load balancer kicks in and distributes the load evenly across backend
servers. In the extreme case, the system may automatically provision new backend
resources when needed, and destroy them when they're no longer of use.

Chapter 1

[3]

Scaling events in the frontend aren't like that. Rather, the scaling events that take
place generally happen over longer periods of time, and are more complex. The
unique aspect of JavaScript applications is that the only hardware resources available
to them are those available to the browser in which they run. They get their data
from the backend, and this may scale up perfectly fine, but that's not what we're
concerned with. As our software grows, a necessary side-effect of doing something
successfully, is that we need to pay attention to the influencers of scale.

Users

Features

Developers

Have a need for...

Influence the team of...

The preceding figure shows us a top-down flow chart of scaling influencers,
starting with users, who require that our software implements features. Depending
on various aspects of the features, such as their size and how they relate to other
features, this influences the team of developers working on features. As we move
down through the scaling influencers, this grows.

Growing user base
We're not building an application for just one user. If we were, there would be no
need to scale our efforts. While what we build might be based on the requirements
of one user representative, our software serves the needs of many users. We need
to anticipate a growing user base as our application evolves. There's no exact target
user count, although, depending on the nature of our application, we may set goals
for the number of active users, possibly by benchmarking similar applications using
a tool such as http://www.alexa.com/. For example, if our application is exposed
on the public internet, we want lots of registered users. On the other hand, we might
target private installations, and there, the number of users joining the system is a
little slower. But even in the latter case, we still want the number of deployments
to go up, increasing the total number of people using our software.

The number of users interacting with our frontend is the largest influencer of scale.
With each user added, along with the various architectural perspectives, growth
happens exponentially. If you look at it from a top-down point of view, users call
the shots. At the end of the day, our application exists to serve them. The better
we're able to scale our JavaScript code, the more users we'll please.

http://www.alexa.com/

Scale from a JavaScript Perspective

[4]

Building new features
Perhaps the most obvious side-effect of successful software with a strong user base is
the features necessary to keep those users happy. The feature set grows along with the
users of the system. This is often overlooked by projects, despite the obviousness of
new features. We know they're coming, yet, little thought goes into how the endless
stream of features going into our code impedes our ability to scale up our efforts.

This is especially tricky when the software is in its infancy. The organization
developing the software will bend over backwards to reel in new users. And there's
little consequence of doing so in the beginning because the side-effects are limited.
There's not a lot of mature features, there's not a huge development team, and there's
less chance of annoying existing users by breaking something that they've come to rely
on. When these factors aren't there, it's easier for us to nimbly crank out the features
and dazzle existing/prospective users. But how do we force ourselves to be mindful of
these early design decisions? How do we make sure that we don't unnecessarily limit
our ability to scale the software up, in terms of supporting more features?

As we'll see throughout this book, new feature development, as well as enhancing
existing features, is an ongoing issue with scalable JavaScript architecture. It's not
just the number of features listed in the marketing literature of our software that
we need to be concerned about . There's also the complexity of a given feature, how
common our features are with one another, and how many moving parts each of
these features has. If the user is the first level when looking at JavaScript architecture
from a top-down perspective, each feature is the next level, and from there, it
expands out into enormous complexity.

It's not just the individual users who make a given feature complex. Instead, it's a
group of users that all need the same feature in order to use our software effectively.
And from there, we have to start thinking about personas, or roles, and which
features are available for which roles. The need for this type of organizational
structure isn't made apparent till much later on in the game; after we've made
decisions that make it difficult to introduce role-based feature delivery. And
depending on how our software is deployed, we may have to support a variety
of unique use cases. For example, if we have several large organizations as our
customers, each with their own deployments, they'll likely have their own unique
constraints on how users are structured. This is challenging, and our architecture
needs to support the disparate needs of many organizations, if we're going to scale.

Chapter 1

[5]

Hiring more developers
Making these features a reality requires solid JavaScript developers who know what
they're doing, and if we're lucky, we'll be able to hire a team of them. The team part
doesn't happen automatically. There's a level of trust and respect that needs to be
established before the team members begin to actively rely on one another to crank
out some awesome code. Once that starts happening, we're in good shape. Turning
once again to the top-down perspective of our scaling influencers, the features we
deliver can directly impact the health of our team. There's a balance that's essentially
impossible to maintain, but we can at least get close. Too many features and not
enough developers lead to a sense of perpetual inadequacy among team members.
When there's no chance of delivering what's expected, there's not much sense in
trying. On the other hand, if you have too many developers, and there's too much
communication overhead due to a limited number of features, it's tough to define
responsibilities. When there's no shared understanding of responsibilities, things
start to break down.

It's actually easier to deal with not enough developers for the features we're trying to
develop, than having too many developers. When there's a large burden of feature
development, it's a good opportunity to step back and think—"what would we do
differently if we had more developers?" This question usually gets skipped. We go
hire more developers, and when they arrive, it's to everyone's surprise that there's no
immediate improvement in feature throughput. This is why it's best to have an open
development culture where there are no stupid questions, and where responsibilities
are defined.

There's no one correct team structure or development methodology. The
development team needs to apply itself to the issues faced by the software we're
trying to deliver. The biggest hurdle is for sure the number, size, and complexity of
features. So that's something we need to consider when forming our team initially, as
well as when growing the team. This latter point is especially true because the team
structure we used way back when the software was new isn't going to fit what we
face when the features scale up.

Scale from a JavaScript Perspective

[6]

Architectural perspectives
The preceding section was a sampling of the factors that influence scale in JavaScript
applications. Starting from the top, each of these influencers affects the influencer
below it. The number and nature of our users is the first and foremost influencer,
and this has a direct impact on the number and nature of the features we develop.
Further more, the size of the development team, and the structure of that team,
are influenced by these features. Our job is to take these influencers of scale, and
translate them into factors to consider from an architectural perspective:

Scaling Influencers

Architectural Perspectives

Influencer 1 Influencer 2

Perspective 2 Perspective 1

Scaling influences the perspectives of our architecture. Our architecture, in turn,
determines responses to scaling influencers. The process is iterative and never-
ending throughout the lifetime of our software.

The browser is a unique environment
Scaling up in the traditional sense doesn't really work in a browser environment.
When backend services are overwhelmed by demand, it's common to "throw more
hardware" at the problem. Easier said than done of course, but it's a lot easier to scale
up our data services these days, compared to 20 years ago. Today's software systems
are designed with scalability in mind. It's helpful to our frontend application if the
backend services are always available and always responsive, but that's just a small
portion of the issues we face.

We can't throw more hardware at the web browsers running our code; given
that; the time and space complexities of our algorithms are important. Desktop
applications generally have a set of system requirements for running the software,
such as OS version, minimum memory, minimum CPU, and so on. If we were to
advertise requirements such as these in our JavaScript applications, our user base
would shrink dramatically, and possibly generate some hate mail.

Chapter 1

[7]

The expectation that browser-based web applications be lean and fast is an emergent
phenomenon. Perhaps, that's due in part to the competition we face. There are a lot of
bloated applications out there, and whether they're used in the browser or natively on
the desktop, users know what bloat feels like, and generally run the other way:

Requests application resources from...

JavaScript Application

Web Browser

HTML CSSJavaScript

Web Server

JavaScript applications require many resources, all of different types; these are all fetched by the browser, on
the application's behalf.

Adding to our trouble is the fact that we're using a platform that was designed as a
means to download and display hypertext, to click on a link, and repeat. Now we're
doing the same thing, except with full-sized applications. Multi-page applications
are slowly being set aside in favor of single-page applications. That being said, the
application is still treated as though it were a web page. Despite all that, we're in
the midst of big changes. The browser is a fully viable web platform, the JavaScript
language is maturing, and there are numerous W3C specifications in progress; they
assist with treating our JavaScript more like an application and less like a document.
Take a look at the following diagram:

HTML5

Web Workers

CSS3

Web Storage

ECMAScript 6

Web Sockets

Service Workers

Browser Platform

A sampling of the technologies found in the growing web platform

www.allitebooks.com

http://www.allitebooks.org

Scale from a JavaScript Perspective

[8]

We use architectural perspectives to assess any architectural design we come up
with. It's a powerful technique to examine our design through a different lens.
JavaScript architecture is no different, especially for those that scale. The difference
between JavaScript architecture and architecture for other environments is that
ours have unique perspectives. The browser environment requires that we think
differently about how we design, build, and deploy applications. Anything that runs
in the browser is transient by nature, and this changes software design practices that
we've taken for granted over the years. Additionally, we spend more time coding
our architectures than diagramming them. By the time we sketch anything out, it's
been superseded by another specification or another tool.

Component design
At an architectural level, components are the main building blocks we work with.
These may be very high-level components with several levels of abstraction. Or, they
could be something exposed by a framework we're using, as many of these tools
provide their own idea of "components". For our purposes in this book, components
sit somewhere in the middle—not too abstract, and not too implementation-specific.
The idea being that we need to be thoughtful of our application composition, without
worrying too much about the specifics.

When we first set out to build a JavaScript application with scale in mind, the
composition of our components began to take shape. How our components are
composed is a huge limiting factor in how we scale, because they set the standard.
Components implement patterns for the sake of consistency, and it's important to get
those patterns right:

API

Events

Template

Components have an internal structure. The complexity of this composition depends on the type of component
under consideration

Chapter 1

[9]

As we'll see, the design of our various components is closely-tied to the trade-offs we
make in other perspectives. And that's a good thing, because it means that if we're
paying attention to the scalable qualities we're after, we can go back and adjust the
design of our components in order to meet those qualities.

Component communication
Components don't sit in the browser on their own. Components communicate with
one another all the time. There's a wide variety of communication techniques at our
disposal here. Component communication could be as simple as method invocation,
or as complex as an asynchronous publish-subscribe event system. The approach we
take with our architecture depends on our more specific goals. The challenge with
components is that we often don't know what the ideal communication mechanism
will be, till after we've started implementing our application. We have to make sure
that we can adjust the chosen communication path:

Component1 Component2

Event Bus
Receives events from...Sends events to...

The component communication mechanism decouples components, enabling scalable structures

Seldom will we implement our own communication mechanism for our components.
Not when so many tools exist, that solve at least part of the problem for us. Most likely,
we'll end up with a concoction of an existing tool for communication and our own
implementation specifics. What's important is that the component communication
mechanism is its own perspective, which can be designed independently of the
components themselves.

Scale from a JavaScript Perspective

[10]

Load time
JavaScript applications are always loading something. The biggest challenge is the
application itself, loading all the static resources it needs to run, before the user is
allowed to do anything. Then there's the application data. This needs to be loaded at
some point, often on demand, and contributes to the overall latency experienced by
the user. Load time is an important perspective, because it hugely contributes to the
overall perception of our product quality.

Application

Launches

Waits for...

Load Time

API2

API1

Component2

Component1

The initial load is the user's first impression and this is where most components are initialized; it's tough to get
the initial load to be fast without sacrificing performance in other areas

There's lots we can do here to offset the negative user experience of waiting for
things to load. This includes utilizing web specifications that allow us to treat
applications and the services they use as installable components in the web browser
platform. Of course, these are all nascent ideas, but worth considering as they mature
alongside our application.

Responsiveness
The second part of the performance perspective of our architecture is concerned with
responsiveness. That is, after everything has loaded, how long does it take for us
to respond to user input? Although this is a separate problem from that of loading
resources from the backend, they're still closely-related. Often, user actions trigger
API requests, and the techniques we employ to handle these workflows impact
user-perceived responsiveness.

Chapter 1

[11]

Component

Handles events from...

DOM

User

Responds to...

User-perceived responsiveness is affected by the time taken by our components to respond to DOM events; a
lot can happen in between the initial DOM event and when we finally notify the user by updating the DOM.

Because of this necessary API interaction, user-perceived responsiveness is
important. While we can't make the API go any faster, we can take steps to ensure
that the user always has feedback from the UI and that feedback is immediate. Then,
there's the responsiveness of simply navigating around the UI, using cached data
that's already been loaded, for example. Every other architectural perspective is
closely-tied to the performance of our JavaScript code, and ultimately, to the user-
perceived responsiveness. This perspective is a subtle sanity-check for the design of
our components and their chosen communication paths.

Addressability
Just because we're building a single-page application doesn't mean we no longer
care about addressable URIs. This is perhaps the crowning achievement of the
web— unique identifiers that point to the resource we want. We paste them in to our
browser address bar and watch the magic happen. Our application most certainly
has addressable resources, we just point to them differently. Instead of a URI that's
parsed by the backend web server, where the page is constructed and sent back to
the browser, it's our local JavaScript code that understands the URI:

URI

Router
Component

Routes

Components listen to routers for route events and respond accordingly. A changing browser URI triggers these
events.

Scale from a JavaScript Perspective

[12]

Typically, these URIs will map to an API resource. When the user hits one of these
URIs in our application, we'll translate the URI into another URI that's used to request
backend data. The component we use to manage these application URIs is called a
router, and there's lots of frameworks and libraries with a base implementation of a
router. We'll likely use one of these.

The addressability perspective plays a major role in our architecture, because ensuring
that the various aspects of our application have an addressable URI complicates our
design. However, it can also make things easier if we're clever about it. We can have
our components utilize the URIs in the same way a user utilizes links.

Configurability
Rarely does software do what you need it to straight out of the box. Highly-
configurable software systems are touted as being good software systems.
Configuration in the frontend is a challenge because there's several dimensions
of configuration, not to mention the issue of where we store these configuration
options. Default values for configurable components are problematic too—where
do they come from? For example, is there a default language setting that's set until
the user changes it? As is often the case, different deployments of our frontend will
require different default values for these settings:

Server

Browser

Value

Value

Configuration

Component

Component configuration values can come from the backend server, or from the web browser. Defaults must
reside somewhere

Every configurable aspect of our software complicates its design. Not to mention the
performance overhead and potential bugs. So, configurability is a large issue, and
it's worth the time spent up-front discussing with various stakeholders what they
value in terms of configurability. Depending on the nature of our deployment, users
may value portability with their configuration. This means that their values need
to be stored in the backend, under their account settings. Obviously decisions like
these have backend design implications, and sometimes it's better to get away with
approaches that don't require a modified backend service.

Chapter 1

[13]

Making architectural trade-offs
There's a lot to consider from the various perspectives of our architecture, if we're
going to build something that scales. We'll never get everything that we need out of
every perspective simultaneously. This is why we make architectural trade-offs—we
trade one aspect of our design for another more desirable aspect.

Defining your constants
Before we start making trade-offs, it's important to state explicitly what cannot be
traded. What aspects of our design are so crucial to achieving scale that they must
remain constant? For instance, a constant might be the number of entities rendered
on a given page, or a maximum level of function call indirection. There shouldn't
be a ton of these architectural constants, but they do exist. It's best if we keep them
narrow in scope and limited in number. If we have too many strict design principles
that cannot be violated or otherwise changed to fit our needs, we won't be able to
easily adapt to changing influencers of scale.

Does it make sense to have constant design principles that never change, given the
unpredictability of scaling influencers? It does, but only once they emerge and are
obvious. So this may not be an up-front principle, though we'll often have at least
one or two up-front principles to follow. The discovery of these principles may result
from the early refactoring of code or the later success of our software. In any case,
the constants we use going forward must be made explicit and be agreed upon by all
those involved.

Performance for ease of development
Performance bottlenecks need to be fixed, or avoided in the first place where
possible. Some performance bottlenecks are obvious and have an observable impact
on the user experience. These need to be fixed immediately, because it means our
code isn't scaling for some reason, and might even point to a larger design issue.

Other performance issues are relatively small. These are generally noticed by
developers running benchmarks against code, trying by all means necessary to
improve the performance. This doesn't scale well, because these smaller performance
bottlenecks that aren't observable by the end user are time-consuming to fix. If our
application is of a reasonable size, with more than a few developers working on it,
we're not going to be able to keep up with feature development if everyone's fixing
minor performance problems.

Scale from a JavaScript Perspective

[14]

These micro-optimizations introduce specialized solutions into our code, and they're
not exactly easy reading for other developers. On the other hand, if we let these
minor inefficiencies go, we will manage to keep our code cleaner and thus easier to
work with. Where possible, trade off optimized performance for better code quality.
This improves our ability to scale from a number of perspectives.

Configurability for performance
It's nice to have generic components where nearly every aspect is configurable.
However, this approach to component design comes at a performance cost. It's
not noticeable at first, when there are few components, but as our software scales
in feature count, the number of components grows, and so does the number of
configuration options. Depending on the size of each component (its complexity,
number of configuration options, and so forth) the potential for performance
degradation increases exponentially. Take a look at the following diagram:

Component1 Component2
Option OptionOption

Option OptionOption

Option OptionOption

Option OptionOption

The component on the left has twice as many configuration options as the component on the right. It's also
twice as difficult to use and maintain.

We can keep our configuration options around as long as there're no performance
issues affecting our users. Just keep in mind that we may have to remove
certain options in an effort to remove performance bottlenecks. It's unlikely that
configurability is going to be our main source of performance issues. It's also easy
to get carried away as we scale and add features. We'll find, retrospectively, that we
created configuration options at design time that we thought would be helpful, but
turned out to be nothing but overhead. Trade off configurability for performance
when there's no tangible benefit to having the configuration option.

Performance for substitutability
A related problem to that of configurability is substitutability. Our user interface
performs well, but as our user base grows and more features are added, we discover
that certain components cannot be easily substituted with another. This can be a
developmental problem, where we want to design a new component to replace
something pre-existing. Or perhaps we need to substitute components at runtime.

Chapter 1

[15]

Our ability to substitute components lies mostly with the component communication
model. If the new component is able to send/receive messages/events the same as
the existing component, then it's a fairly straightforward substitution. However, not
all aspects of our software are substitutable. In the interest of performance, there may
not even be a component to replace.

As we scale, we may need to re-factor larger components into smaller components
that are replaceable. By doing so, we're introducing a new level of indirection, and a
performance hit. Trade off minor performance penalties to gain substitutability that
aids in other aspects of scaling our architecture.

Ease of development for addressability
Assigning addressable URIs to resources in our application certainly makes
implementing features more difficult. Do we actually need URIs for every resource
exposed by our application? Probably not. For the sake of consistency though, it
would make sense to have URIs for almost every resource. If we don't have a router
and URI generation scheme that's consistent and easy to follow, we're more likely to
skip implementing URIs for certain resources.

It's almost always better to have the added burden of assigning URIs to every
resource in our application than to skip out on URIs. Or worse still, not supporting
addressable resources at all. URIs make our application behave like the rest of the
Web; the training ground for all our users. For example, perhaps URI generation
and routes are a constant for anything in our application—a trade-off that cannot
happen. Trade off ease of development for addressability in almost every case. The
ease of development problem with regard to URIs can be tackled in more depth as
the software matures.

Maintainability for performance
The ease with which features are developed in our software boils down to the
development team and it's scaling influencers. For example, we could face pressure
to hire entry-level developers for budgetary reasons. How well this approach scales
depends on our code. When we're concerned with performance, we're likely to
introduce all kinds of intimidating code that relatively inexperienced developers
will have trouble swallowing. Obviously, this impedes the ease of developing new
features, and if it's difficult, it takes longer. This obviously does not scale with respect
to customer demand.

Scale from a JavaScript Perspective

[16]

Developers don't always have to struggle with understanding the unorthodox
approaches we've taken to tackle performance bottlenecks in specific areas
of the code. We can certainly help the situation by writing quality code that's
understandable. Maybe even documentation. But we won't get all of this for free;
if we're to support the team as a whole as it scales, we need to pay the productivity
penalty in the short term for having to coach and mentor.

Trade off ease of development for performance in critical code paths that are heavily
utilized and not modified often. We can't always escape the ugliness required for
performance purposes, but if it's well-hidden, we'll gain the benefit of the more
common code being comprehensible and self-explanatory. For example, low-level
JavaScript libraries perform well and have a cohesive API that's easy to use. But
if you look at some of the underlying code, it isn't pretty. That's our gain—having
someone else maintain code that's ugly for performance reasons.

Component

Component

Component

Application

High Performance
Library

Our components on the left follow coding styles that are consistent and easy to read; they all utilize the
high-performance library on the right, giving our application performance while isolating optimized code

that's difficult to read and understand.

Less features for maintainability
When all else fails, we need to take a step back and look holistically at the featureset
of our application. Can our architecture support them all? Is there a better
alternative? Scrapping an architecture that we've sunk many hours into almost never
makes sense—but it does happen. The majority of the time, however, we'll be asked
to introduce a challenging set of features that violate one or more of our architectural
constants.

When that happens, we're disrupting stable features that already exist, or we're
introducing something of poor quality into the application. Neither case is good, and
it's worth the time, the headache, and the cursing to work with the stakeholders to
figure out what has to go.

Chapter 1

[17]

If we've taken the time to figure out our architecture by making trade-offs, we should
have a sound argument for why our software can't support hundreds of features.

Architecture

Doesn't fit into...

Feature

Feature

Feature

FeatureFeature

When an architecture is full, we can't continue to scale. The key is understanding where that breaking threshold
lies, so we can better understand and communicate it to stakeholders.

Leveraging frameworks
Frameworks exist to help us implement our architecture using a cohesive set of
patterns. There's a lot of variety out there, and choosing which framework is a
combination of personal taste, and fitness based on our design. For example, one
JavaScript application framework will do a lot for us out-of-the-box, while another
has even more features, but a lot of them we don't need.

JavaScript application frameworks vary in size and sophistication. Some come with
batteries included, and some tend toward mechanism over policy. None of these
frameworks were specifically designed for our application. Any purported ability
of a framework needs to be taken with a grain of salt. The features advertised by
frameworks are applied to a general case, and a simple one at that. Applied in the
context of our architecture is something else entirely.

That being said, we can certainly use a given framework of our liking as input to the
design process. If we really like the tool, and our team has experience using it, we can
let it influence our design decisions. Just as long as we understand that the framework
does not automatically respond to scaling influencers—that part is up to us.

www.allitebooks.com

http://www.allitebooks.org

Scale from a JavaScript Perspective

[18]

It's worth the time investigating the framework to use for our
project because choosing the wrong framework is a costly mistake.
The realization that we should have gone with something else
usually comes after we've implemented lots of functionality.
The end result is lots of re-writing, re-planning, re-training,
and re-documenting. Not to mention the time lost on the first
implementation. Choose your frameworks wisely, and be cautious
about being framework-coupling.

Frameworks versus libraries
Why use a mash-up of smaller libraries when there's a monolithic framework out
there with everything that we need? Libraries are our tools, and if they fulfill a need
in our architecture, by all means use them. Some developers shy away from low-
level tools because of the dependency-chaos that ensues. In practice, this happens
anyway, even if we're leveraging an all-encompassing framework.

At the end of the day, the distinction between frameworks and libraries doesn't
really matter to us. Creating a third-party dependency nightmare doesn't scale
well. Neither does sticking with one tool exclusively and maintaining a lot of code
ourselves. It's about finding the right fit between depending heavily on other projects
and reinventing the wheel ourselves.

Implementing patterns consistently
The tools we use to help implement our architecture do so by exposing patterns
common throughout JavaScript applications. And they do so consistently. As
our application scales in size due to a growing featureset, we can apply the same
framework components over and over. Frameworks also promote consistency in
the patterns we implement ourselves. If we look at the internals of any framework,
we will see that it has its own generic components; these are extended to provide us
with usable components.

Performance is built in
Open source frameworks have the most developers looking at the code, and the
most projects using the framework in production. They get lots of feedback from the
community of users, and these include performance enhancements. Third-party tools
are the right place to focus on performance, because they're likely the most utilized
code in a given application. Leaving all performance outcomes up to browser
vendors and JavaScript libraries isn't smart. Leveraging the performance behind
components we use all the time is smart.

Chapter 1

[19]

Leverage community wisdom
Successful JavaScript frameworks have strong communities surrounding them. This
is more powerful than having robust documentation because we can ask questions as
they arise. Odds are, someone else is trying to do something similar in their project,
using the same framework as us. Open source projects are like a knowledge engine;
even if the exact answer we need isn't out there, we can often find enough through
the wisdom of the community to figure it out ourselves.

Frameworks don't scale out-of-the-box
Saying one framework scales better than another isn't justified. Writing a TODO
application as a benchmark for how well the framework scales is hardly useful. We
write TODO applications to get a feel for the framework, and how it compares to
others. If we're unsure about which framework fits our style, a TODO application is a
good start.

Our goal is to implement something that scales well in response to influencers. These
are unique and unknown upfront. The best we can do is make predictions about
what scaling influencers we'll likely be hit with in the future. Based on these likely
influencers, and the nature of the application we're building, some frameworks are
better candidates than others. Frameworks help us scale, but they don't scale for us.

Summary
Scaling a JavaScript application isn't the same as scaling other types of applications.
Although we can use JavaScript to create large-scale backend services, our concern
is with scaling the applications our users interact with in the browser. And there're
a number of influencers that guide our decision making process on producing an
architecture that scales.

We reviewed some of these influencers, and how they flow in a top-down fashion,
creating challenges unique to frontend JavaScript development. We examined the
effect of more users, more features, and more developers; we can see that there's a lot
to think about. While the browser is becoming a powerful platform, onto which we're
delivering our applications, it still has constraints not found on other platforms.

Designing and implementing a scalable JavaScript application requires having an
architecture. What the software must ultimately do is just one input to that design.
The scaling influencers are key as well. From there, we address different perspectives
of the architecture under consideration. Things such as component composition
and responsiveness come into play when we talk about scale. These are observable
aspects of our architecture that are impacted by influencers of scale.

Scale from a JavaScript Perspective

[20]

As these scaling factors change over time, we use architectural perspectives as tools
to modify our design, or the product to align with scaling challenges. The focus
of the next chapter will be to look into these scaling influencers in more detail.
Understanding them and putting together a checklist will empower us to implement
a JavaScript that scales in response to these events.

Chapter 2

[21]

Influencers of Scale
Influencers of scale start with the users of our software. They're the number one
influencer because they're the reason we've set out to build an application. As we
saw in the preceding chapter, users influence features that ultimately influence the
code we write and the development personnel who implement it. When we pause
and think about these scaling influencers, we recognize that a sound JavaScript
architecture that can handle them is a prudent cause. We can then take our findings
and look at our code from different architectural perspectives. We'll dig into each of
these perspectives throughout this book, starting with the next chapter.

But before we do that, let's go into more detail on these influencers of scale. We want
to pay close attention to these because with every decision we make about our design,
how it actually scales depends largely on the influences we've anticipated. Perhaps
more importantly, we need to design our architecture in such a way that it enables us
to handle scaling scenarios we haven't anticipated.

We'll start with a closer look at the users of our software. Why are they using it? How
does our software make them happy? What's in it for us? These questions, believe it or
not, are pertinent to the way we write our JavaScript. From users, we then move down
to features, the outward-facing personality of our application. Some features aren't a
good fit for our application, but sometimes that doesn't matter—we don't have a say.
If we're going to scale up, to please our users, sometimes we have to make the best of
these features.

The development resources, ultimately responsible for implementing these
features, are a scaling influencer that can make or break a product. We'll look at
the challenges faced by the development team, and how they're constrained by the
feature influences. We'll close the chapter with a generic checklist for each of these
influencers; to help ensure we've thought of the most pressing issues concerning our
ability to scale.

Influencers of Scale

[22]

Scaling users
The most important user is us—the development organization. While our mission
is to keep our users happy by delivering software that scales, we need to keep
ourselves happy too. And that requires a viable business model. The reason we care
about this is because different models mean different approaches to acquire new
users, and manage existing users. From there, the complexities of scaling our user
base get deeper. We need to consider how our users are organized, how they use
our software to communicate with one another, how to provide support, collect
feedback, and collect user metrics.

Viable business models for JavaScript applications range from deploying a free service
that's ad-supported, to a private, on-premise deployment of our software, where we
collect license fees. Deciding which approach is right for the organization is likely
out of our hands. However, it's our responsibility to understand the chosen business
model and relate it to the current and future users of our software.

The business model can grow quite complex. For instance, organizations will often
start off with one approach that's clear cut and keeps users happy, while meeting
business expectations. However, as the organization grows and matures, the once
coherent business model is obscured into something that's less approachable, and has
unpredictable results for our architecture. Let's take a look at some of these business
models and how each impacts the scalability of our user base.

License fees
Software licensing is a complex topic, one that we're not going to explore in depth
here. What's important is simply whether or not we're relying on licensed software
as our business model. If we are, then we likely have other organizations deploying
our JavaScript applications on-premise. It's unlikely that we'll have individuals
purchasing licenses. Not impossible though—it depends on the nature of the
software. The likely case with selling licenses is that our software will be privately
deployed by multiple organizations.

There are two interesting scaling properties to consider with this business model.
Firstly, there's a fundamental limit on the number of users within a given organization.
While organizations can be large, and we can sell to multiple large organizations,
the common case is to have fewer users overall with a licensed model. Secondly,
each organization has different needs in terms of customizations. This involves
configurability, user organization, and so on. We're more likely to experience requests
for these types of changes or enhancements using a licensed model.

Chapter 2

[23]

So, while there're not as many users to support, the nature of supporting them is
more complex due to the structure of the organization using our software, and hence
difficult to scale. Dependency management in these environments can be challenging
as well, due to restrictions that determine how our software is able to scale. In other
environments, these restrictions are more lax.

Subscription fees
Subscriptions are recurring fees we collect for the use of our software. This approach
costs our users less, most of the time. It's also a more flexible business model in
that it can easily apply to software that's deployed on-premise, and software that's
deployed publicly.

Since it's cheaper for organizations to deploy subscription-based software rather than
license-based ones, we're more likely to reach more organizations. Mind you, these are
organizations divided into departments, each with their own budgetary constraints.

In terms of scale, however, the challenge with subscriptions is similar to the challenge
faced with licenses, that is, complex customization requests. If subscriptions are likely
to get us more on-premise deployments and likely more arcane feature requests.
Another scaling problem facing the subscription approach is customer retention. Users
aren't going to continue paying subscription fees if value isn't continuously delivered.

So if we go the subscription route, we need to scale up our efforts in delivering new
features that justify the recurring subscription costs for our users.

Consumption fees
Another business model for software is consumption, or, pay-as-you-go. This is an
appealing model for users since they're not paying for resources they don't use. Of
course, this doesn't suit every application. What if there are no meaningful resources
for users to consume? What if we're running our application in a way that resource
consumption is of no concern to us?

In other cases, the resource usage is glaringly obvious. Maybe the user performs
some computationally-expensive task, or stores a lot of data for a period of time.
In these cases, the consumption model makes perfect sense, for both us and the
user. Users that consume less, pay less. User behavior can be erratic, with spikes of
consumption. However, these events are brief, relative to the rest of the time they're
using our application.

Influencers of Scale

[24]

The scaling challenge we face with this business model is that we need good tools in
addition to the core aspects of our application. First, we need a tool that measures and
records consumption. Second, we need tools to accurately portray these consumption
metrics, often visually. Depending on what users are consuming, and what level of
integration we're expecting, there might be a third-party component to consider.

Ad-supported
Another option is to deploy our application to the public internet and use display
advertisements for revenue. These are free applications, and hence more likely to be
used. On the other hand, advertisements are a big turn-off to many people, which
counteracts the appeal of "free".

Perhaps the goal when using this approach, rather than ad revenue, is generating
mass usage. The two go hand-in-hand actually, more users means more ad revenue.
However, mass adoption of an online JavaScript application can catch the attention
of investors. So lots of user accounts, by itself, has merit.

These types of applications are different from those that follow other business
models, in how they scale. Applications that gain mass appeal on the internet solve
different problems for different user personas. Following this model means we need
to have reach, and to scale our reach means lowering the barrier to entry. Our focus,
while using this business model, is on ease-of-use and social validity.

Open source
The final business model for us to consider is open source. Don't laugh; open source
software is vital to the functioning of the web. It's highly unlikely that our JavaScript
application doesn't use any open source components. It's more likely that we're
only using open source components. But why do people spend their valuable time
developing tools for everyone else to use, even their competition?

The first misconception here is that folks are just sitting around, unemployed,
building open source software for the rest of us to use. The fact is, most of the tools
we'll use are built by people in strong positions at companies that use the same
technologies we do. They may have even started the open source project to solve a
problem for the company—to provide a missing tool in their development process.

The second misconception is that we're helping out our competitors by starting up,
or contributing to, open source projects. It's not possible for us to single-handedly
put ourselves in a worse position than our competition via open source software.
By other measures, yes, it's absolutely possible to help out our competition by
hurting ourselves.

Chapter 2

[25]

On the other hand, open source projects can be good for an organization. They have
to be effective projects; something that's usable and generic. If it grows legs, we're
creating new stakeholders in technology that we rely on, and that's a good thing. The
community that surrounds an open source project is invaluable. While open source
by itself can't support an organization, there's no escaping the fact that it's an integral
part of any JavaScript application business model.

Groups and rolesGroups allow us to classify our users. Think of the role as a user
type. This is a powerful abstraction, because it allows us to generalize aspects of
features by role type. For example, instead of checking conditions based on user
properties, we check them based on role properties. It's a lot easier to move a user
from one role to another, than to modify our logic.

Figuring out user roles and how they translate into group implementations is
a tricky subject. The only thing we can count on is having to shuffle around the
organizational structure of our users. So, making the grouping mechanism as generic
as possible is our first goal. This has trade-offs too—anything that's completely
generic has negative performance implications.

Some grouping decisions will be obvious up front. Like whether users are aware
of other users in the system or not. If they are, we can start drilling into the specific
questions around how users communicate with one another using our application.
Again, this may be obvious based on the types of features our application has.
The business model we're following influences our user management design as
well. If we're selling software licenses and likely to be deployed on-premise, then
we can expect lots of varying needs for user roles, and the subsequent grouping
implementation. If we're deployed publicly on the internet, grouping is less of a
concern—we can probably choose a simple approach in favor of performance,
for example.

As our software grows more complex, as we add more features and bring on more
customers, we'll start to see the need to segregate parts of our application. That is,
we'll need to tie-down certain features based on access control permissions. Rather
than having different user roles, install separate software systems; it's easier for them
to have a single system with users, groups, and access control.

This has implications for us as JavaScript architects because once we start down the
access control path, there's no turning back. From that point forward, we have to be
consistent—every feature needs to check for the appropriate permissions. Further
complicating matters, is that if we're grouping users this way, we're probably going
to have to group other entities of our system in a similar fashion at some point.
Which only makes sense, especially to the end user – this group of things is accessed
and used by that group of users.

Influencers of Scale

[26]

Communicating users
Another aspect to consider with regard to users, and their relationships with one
another, is the communication channels available to these users. Do they explicitly
pick and choose other users to communicate with? Or is the communication more
implicit? An example of the latter might be a user from the same group as us,
looking at a chart. This chart is generated based on data that's put into the system by
other members of the group. Is it worthwhile to think about these sorts of implicit
communication channels in addition to the explicit ones?

The nature of our application determines which communication channels are open
to our users. It might also depend on the users themselves. Some applications have
users that need to get in there, and expertly perform a task—communicating with
other users is unnecessary. On the other hand, we might find ourselves developing
something that's a little more social-minded. In fact, we might even depend on the
services of an external social network.

If we're going to rely on third-party user management, social networks or otherwise,
we have to be careful how tightly coupled we become with these services. In terms
of scale, using third-party authentication mechanisms may have social bonus
features we want—especially considering that most users will love the fact that
they don't need yet another account to use our application. Scaling this approach
to user management becomes a problem from other perspectives once we start
implementing new features, where third-party integration is complex. For example,
a photo editing application might scale better using a Facebook login, since that's
where most users' photos originate.

Users are going to find a way to communicate with one another if our application is
useful or fun to use. We can fight it, or we can leverage user communication as a tool
to help us scale. That is, scale the transparency with which our users can point their
peers to something useful, that they would otherwise have to go and dig-around for.

Support mechanisms
It's great to have our JavaScript application just work. Even when everything's going
according to plan, we've deployed and there are no bugs, we have to support the
cases where the users have no idea how to use something. Or they've performed
some action they probably shouldn't have. Or where one of the other ten million
usability issues are relevant, and swift rescue is in order.

Our support mechanism not scaling can grind our business to a halt. So, in addition
to our software scaling well, we need to think about how the user support systems
are going to scale alongside it. Support can be tightly integrated, or farmed out to
third-party software and personnel.

Chapter 2

[27]

It's better if users don't need support to use our software. That's why we design with
usability in mind. We walk through the various user experiences, often with experts
and/or actual users, and integrate design for them in our software. This is the most
obvious thing we can tackle when it comes to supporting our users. Because if we
can do this, through usability design, then we can eliminate a large portion of the
likely support issues we'll face as we scale.

Regardless, we still have to assume that we're not thinking of the support cases that
will inevitably pop up after deployment. Users are inquisitive. Even if everything is
going fine, they still might have questions. So we can't really say, "we've designed a
great user experience for you and everything's working, so go away". We need to be
responsive with our users' questions and concerns. Because the second we're being
dismissive about inquiries, we're failing to scale our application.

Can our JavaScript components help with supporting our users? If that's what we
want, absolutely! In fact, contextual help is probably the most effective. If a user
has a question about a particular component, and they see a help button, right there
within the problematic component, then they can use that to submit their question.
On the receiving end of the support question, there's less confusion. We know
exactly what the user is trying to do, and spending time creating the context around
the issue is no longer necessary.

This is definitely easier said than done and has other scaling implications for us.
These contextual help systems aren't effort-free. And should we decide to go that
route, we' would have to consider contextual help with every feature we implement.
Can this scale alongside everything else we're doing?

Another approach we might want to consider is a knowledge base with information
from the organization creating the software, and also from those that use it. Those
using it for a particular purpose are apt to have better answers than us, and these
answers are super-valuable. Not only to users looking for answers, but also to us.

Feedback mechanisms
Is feedback really worth differentiating from support? Support is definitely
feedback. If we pay attention to the various support issues we encounter over time,
we can transform it into feedback and use this information as feedback. However, it's
still worth differentiating the two forms, because the user is in a different frame of
mind. While experiencing a support issue, there's frustration, ranging from mild to
intense. This user doesn't care about improving the product now—they need to get
their job done.

www.allitebooks.com

http://www.allitebooks.org

Influencers of Scale

[28]

On the other hand, users who've used our software for a while grow acutely aware
of the inefficiencies of their workflow. Collecting this type of feedback is crucial.
How do we get it? One option is supplying a feedback button in the application, as
we would with a contextual support button. Another option is to let a third-party
handle feedback collection. As with support, automating the context is always
better for us when it comes to understanding what the user is talking about without
spending too much time on it.

The key with feedback is keeping customers engaged. Not everyone who uses our
software is going to share their thoughts with us. But some no doubt will—even if
they're just venting frustration. We have to respond to these in order to establish a
dialog. Users who supply feedback like this want us to respond to them. And it's in
the ongoing conversation with these users where the product improvements emerge,
not in the brilliant ideas initially submitted by users.

As our user base grows, can we keep up and stay responsive to user feedback?
Obviously this is a challenge, given everything else that's on our plate, dealing with
our application's growth. It's one thing to create dialog around a given piece of user
data, but it's another to act on that feedback. Suppose we've enabled great feedback
mechanisms, embedded in our software. We will have to turn this into actionable
work at some point. So, we need to think about how our process of generating
requirements based on user feedback scales. If it doesn't, and user feedback is never
acted upon, they'll bail and we will have failed to scale.

Notifying users
JavaScript applications need to display notifications to its users. These can be fairly
straightforward to implement, especially if we're mainly concerned with responding
to user actions. For example, when users do something, it results in an API request
to the back-end. We will want to display a notification to the user, indicating that
the action has succeeded or failed. These notifications look the same across the
application—we can use the same tool for most, if not all, notifications.

Notifications are easy to forget about in terms of designing a scalable JavaScript
architecture. It's a big topic—there are contextual notifications, general notifications,
and notifications that take place when the user is offline. The latter generally means
that something has been emailed to the user, prompting them to log in and take
action if need be.

The contextual notifications are probably the most important, as they supply
feedback to the user on something they're currently doing. This is challenging to
scale because we have to ensure that these types of notifications remain consistent
across the user interface, for all types of entities. The more general notifications take
place as a result of something happening in the background.

Chapter 2

[29]

Some resource that belongs to a user may have changed state, either expectedly
or unexpectedly. Regardless, the user probably wants to know about these events.
Ideally, if they're logged in and using the system, then a generic notification will reveal
itself. However, we may want these types of notifications emailed to users as well.

The challenge with any notification system is volume. If there are a lot of users, and
they're fairly active, a lot of notifications will need to be generated and delivered.
This will no doubt interfere with the performance of other components in our
code. We're also faced with the configurability that comes with notifications. We'll
never get the notifications right for all of our users, so we'll need some degree of
notification tuning. The right level that scales our application is up to us JavaScript
architects and developers.

User metrics
The best way to approach the question of how users interact with our software is
through data. Certain data points cannot be guessed at or manually collected. This is
where we need to rely on tools that automatically collect user metrics as they interact
with our software. With the raw data in place, we're well-equipped to analyze what
we see, and make decisions.

While it makes sense to automate this task, the task may not be necessary in the first
place. It may only be worthwhile to collect user metrics when we're really unsure
about the future direction of a given feature, or when we want further insight on
what work to prioritize. A lot of the time, we can get these answers without much
effort, and 'there'll certainly be no need for analytical tools. We may not even be
permitted to collect such data if we've deployed on-premise somewhere.

There's a ton of good third-party metric collection tools available. These are especially
helpful because they ship with a lot of the reporting we need. And a lot that we
don't. There's also the question of how tightly integrated we want our third-party
components. There's always a chance that we would need to turn such a feature off.
Or, at least change where such data is stored.

There are a number of uses for this data other than just input for product direction
decisions. Our code can take user metric data and reflectively improve the experience.
This could be something as innocent as making suggestions on what to do next, based
on past events. Or we could get really fancy and make efficiency optimizations based
on this data. It all comes down to the common case of what our users want. Figuring
out what our users want is a scaling problem in and of itself, because as we grow, we
acquire more users who all want different things. User metrics could turn out to be a
helpful tool with which to combat this issue.

Influencers of Scale

[30]

Scaling users example
Our software firm is developing an online lending application. It's fairly
straightforward; there's not a lot of moving parts in the front end. The applicant first
creates an account, and then can apply for a new loan and manage existing loans.
The business model of this application is consumption-based. We earn revenue
through interest on the loans, so the more the loans consumed, the more we earn.

The obvious scaling influencers are user volume and ease of use. Part of our value
proposition is low interest on small loans. There should be very little overhead for
the users when applying for a new loan; minimal input required, and minimal wait
time for the loan application to succeed or fail. This is our highly focused vision for
delivering value, and some of more apparent scaling influencers we'll be up against.

Let's think about some of the more subtle implications of our application with regard
to scale. Given the type of application this is, we're unlikely to see requests for social
functions. For the most part, the user can be treated as a black box; they're in their
own little universe when using our application. Since ease of use is very important
to us, and our application has few moving parts, support and feedback are unlikely
factors when it comes to scale. We can't eliminate support and feedback, but our
focus on those areas can be minimal.

On the other hand, we need to market our service and we really have no idea what
our customers are getting loans for, what are the most popular repayment schedules,
and so on. For this, we can probably deliver a more effective market message, as well
as improve our overall user experience. The implication here being that collecting
meta data about our application is a big deal. Since we're after large user numbers,
the implication is that we'll need to store lots of meta data. We'll also have to design
each feature in such a way that we can collect metrics and store them for later use,
which complicates the design.

Scaling features
Now we'll turn our attention to scaling the features we implement in our software.
The users are the ultimate influence, and now that we have a rough idea of what's
required in terms of scaling them, we can put this knowledge to work with feature
development. When we think about scaling users, we're thinking about the why.
Why do we choose this business model over that business model? Why do we need
to enable things for one user role, and disable them for others? Once we get into
actually designing and implementing the feature in JavaScript, we start thinking of
the how. Not only are we concerned about correctness, but also scalability. As with
users, influencers are the determinant when it comes to scalable features.

Chapter 2

[31]

Application value
We'd like to think that we're doing a good job with the features we implement, and
that with each new feature we introduce, we're providing value to the user. It's
worthwhile for us to think about this, because in essence, that's what we're trying to
do—scale the value of our software to a broader audience. An example of not scaling,
in this regard, is when existing users who rely on existing features are neglected, and
feel disappointed with our software because we've focused on scaling new areas.

This happens when we forget about the problems we had originally set out to solve
with our software. It might sound like a ridiculous notion, but it's easy to move in
a completely different direction based on a number of factors. In some rare cases,
this change in direction has led to some of the most successful software the world
has seen. In the more common case, it leads to failed software, and it is indeed a
scaling problem. There's a core set of value propositions our software should always
deliver—this is the essence of our software and should never falter. We're often faced
with other scaling influencers, like the addition of new customers who want different
things from the core values offered by our software. The inability to handle this
means we're not able to scale the main value proposition of our application.

An indicator that we're headed down the wrong path when it comes to scaling value
is confusion with current value and ideal value. That is, what our software currently
does versus what we might like it to do someday. We have to be forward thinking,
there's no doubt about that. But future plans need to be continuously sanity-checked
against what's possible. And this often means backtracking to why we set out to
create the software in the first place.

If our application is really compelling, and we hope that it is, then we have to fight
against other scaling influencers to keep it that way. Maybe this means that part of
our process for evaluating new features involves ensuring the feature in some way
contributes to the core value proposition features of our software. Not all features
under consideration will be able to, and these deserve the most scrutiny. Is it really
worth the change in direction, and jeopardy to our ability to scale?

Killer features versus features that kill
We want our application to stand out from the crowd. It'd be nice if there were a
niche-enough market where we had little to no competition. Then it would be easy
to implement stable software that just works, without anything fancy, and everyone
would be happy. Given that this isn't reality, we have to differentiate—one such way
to do this is by implementing a killer feature—which is an aspect of our software that
nobody else has, and something users care deeply for.

Influencers of Scale

[32]

The challenge is that killer features are rarely planned. Instead, they're a side-effect
of something else going well in the delivery of our application. As we continuously
mature our application, refining and tweaking features, we'll stumble upon that one
"minor" change that evolves into a killer feature. It's no surprise that this is often
the way killer features come into being. By listening to our customers and meeting
scaling requirements, we're able to evolve our features. We add new features, take
some away, and modify existing features. If we do that successfully for long enough,
the killer features will reveal themselves.

Sometimes it's clear during the planning of a given feature that it's trying to be
a killer feature, for the sake of being a killer feature. That's not optimal. Nor is it
valuable to the user. They didn't choose our software because we had "lots of killer
features" on our product roadmap. They chose us because we do something they
need done. Possibly more efficiently than the alternatives. As we start thinking about
killer features for their own sake, we start gravitating away from the core values of
our application.

The best solution to this problem is an open environment, one that welcomes input
from all team members at feature inception time. The earlier we're able to kill a bad
idea, the more time we will save by not working on it. It's not always as clear-cut as
this, unfortunately, and we have to do some development on the feature in order to
discover that one or more aspects don't scale well. This could be for any number of
reasons, but it's not a total loss. If we're still willing to pull the plug on a feature after
development has commenced, then we can learn a valuable lesson.

When things don't scale and we decide to terminate the feature, we'll be doing our
software a favor. We're not compromising our architecture by forcing something
on it that doesn't work. We'll reach a point during the development of any
feature where we'll need to ask ourselves; "do we value this feature more than the
architecture we have in place, and if so, are we willing to change the architecture
to accommodate it?" Most of the time, our architecture is more valuable than the
feature. So putting a stop to developing something that doesn't fit can serve as a
valuable lesson. In the future, we'll have a better idea of what will scale and what
won't, based on this cancelled feature.

Data-driven features
It's one thing to have an application with a large and varied user base. It's another
to be able to make use of the ways they interact with our software by collecting data.
User metrics are a powerful tool for collecting information pertinent to making
decisions about our software, and the future direction it takes. We'll call these
data-driven features.

Chapter 2

[33]

In the beginning, when we have few or no users, we obviously can't collect user
metrics. We'll have to rely on other information, such as the collective wisdom of our
team. We've all likely worked on JavaScript projects in the past, so we have enough of
a rough idea to get the product off the ground. Once there, we need tools in place to
better support our decisions on features. In particular, which features we need versus
those that we do not? As our software matures, and we collect more user metrics, we
can further refine our features to match the reality of what our users need.

Having the necessary data to make a feature data-driven is a challenging feat to
scale, because we need the mechanism to collect and refine the data in the first place.
This requires development effort that we simply may not have. Additionally, we
have to actually make the decisions about features based on this data—the data alone
isn't going to turn itself into requirements for us.

We'll also want to predict the viability of features we've been asked to implement.
This task is difficult without data to support our hypotheses. For example, do we
have any data on the environments in which our application will run? Simple data
points can be enough to determine that a feature isn't worth implementing.

Data-driven features work from two angles, that is, the data we collect automatically,
and the data we supply. Both are difficult to scale, and yet both are necessary
to scale. The only real solution is to make sure that the number of features we
implement are small enough in number, so that we can handle the amount of data
generated by a given feature.

Competing with other products
Unless we're operating in a completely niche market, there's a good probability of
competing products. Even if we are in a somewhat niche market, there's still going
to be some overlap with other applications. There're a lot of software development
firms out there— so we're likely to face direct competition. We compete with similar
offerings by creating superior features. This means that not only do we have to keep
delivering top-notch software, but we need to be aware of what the competition is
up to, and what users of their software think. This is a limiting factor in our ability
to scale, because we have to spend time understanding how these competing
technologies work.

If we have a sales force out-selling our product, they're often a good source of
information on what the other guys are doing. They'll often be asked by prospective
customers if our software does such and such because this other application does it.
Perhaps the most compelling selling point is that we can deliver that feature, and we
can do it better.

Influencers of Scale

[34]

This is where we must be careful, as this is yet another scaling factor that limits
our ability to win customers. We have to scale to promises we make to existing
and prospective customers. Promise too much, and we won't be able to implement
the features, leading to disappointed users. Promise too little, or nothing at all,
and we won't win customers in the first place. The best way to combat this scaling
limitation is to ensure that those selling our product are kept well in touch with the
reality of our software. What it can and cannot do, what's a future possibility versus
impractical options.

To sell our product, there has to be some wiggle room for promising some things
without understanding the full implications of implementing such promises.
Otherwise, we won't get the customers we're after, because we're not generating any
excitement around our product. If we're going to scale this approach to selling to
new customers, we need a proven means to distill the promises into something that's
achievable. On the one hand, we can't compromise the architecture. On the other
hand, we have to meet somewhere in the middle to give the user what they need.

Modifying existing features
Long after we've successfully deployed our JavaScript application, we're still
constantly refining the design of our code and the overall architecture. The only
constant is change, or something to that effect. It takes a sizeable amount of
discipline to go back and modify existing features of our software in an effort to
improve the experience for users. The reason is that we feel more pressure from
stakeholders to add new features. This presents a long-term scaling problem for
our application because we can't add new features forever, without ever improving
what's already in place.

The unlikely scenario is that there's no need to change anything; all our existing
users are happy and they don't want us to touch anything. Some users are afraid of
change, which means they like aspects of our software because we did a good job
implementing them. We obviously want more features that are this good, by which,
users are generally happy and don't see a need to improve.

So how do we reach this point? We have to listen to user feedback, and base our
roadmap for modifying features on this feedback. To keep scaling along with our
users and their demands, we have to strike a balance between implementing new
features and modifying existing features. One way to check if we're moving in the
right direction with feature enhancements is to broadcast the proposed changes to our
user base. We can then gauge the feedback we get, if any. In fact, this might entice our
otherwise quiet users to give us some specific suggestions. It's a way of putting the ball
in the user's court—"here's what we're thinking, what do you think?"

Chapter 2

[35]

Beyond figuring out what features to improve and when to improve them relative
to implementing new features, there's the architectural risk. How tightly coupled
is our code? Can we isolate a feature to the extent that there's no chance of us
breaking other features? We're never going to completely eliminate this risk—we
can only reduce coupling. The scaling issue at play here is how much time do we
spend modifying a given feature due to re-factoring, fixing regressions, and so on?
We spend less time on these activities when our components are loosely-coupled,
consequently, we can scale our feature enhancements. From a management point of
view, we always run the risk of blocking other people in the organization, through
conflicts brought about by our changes.

Supporting user groups and roles
Depending on the type of business model we're following and the size of our user
base, user management becomes a scaling issue for us because it touches every feature
we implement. This is further complicated by the fact that the user management is
likely to change just as frequently as the feature requirements are. As our application
grows, we'll likely be dealing with roles, groups, and access control.

There are a lot of side-effects with complicated user management. The new feature
we've just implemented may work perfectly fine initially, but fail in a number of
other scenarios our production customers are likely to face. This means that we
need more time dedicated to testing features, and the quality assurance team is
probably already overwhelmed. Not to mention the additional security and privacy
implications that arise from complicated user management in each of our features.

We can't really do much about complex user management schemas, as they're often
symptomatic of the organization using the application, and its structure. We're more
likely to face these types of complexities with on-premise deployments.

Introducing new services
There comes a point where the current back-end services no longer suffice for new
features. We can scale our front-end development efforts better when there's very
little dependency on the back-end. If that sounds counter-intuitive, don't worry.
It's true that we need back-end services to carry out the requests of our users.
So the dependency will always be there. What we want to avoid is changing the
API unnecessarily.

If there's a way to implement the feature using existing APIs, we do it. This lets the
back-end team focus on stability and performance by fixing bugs. They can't do that
if the API constantly has to change in order to support our features.

Influencers of Scale

[36]

Sometimes there's no getting around adding new back-end services. In order to scale
our development process, we need to know when new services are necessary, and
how to go about implementing them.

The first question is the necessity of the new service. Sometimes this is easy—it's
not possible to implement the requested API. We'll have to make do with what's
there. The second question is the feasibility of the new service. We'll likely form the
shape of the new API since we're the ones who need it. Then we'll have to hear what
the back-end team thinks. If we're a team with full-stack developers, there's less
overhead because we're likely all on the same team and in closer communication
with one another.

Now that we've decided to go ahead with the new API, we have to synchronize
the implementation of our feature in the front-end, with the implementation of
the feature in the back-end. There's no cut-and-dry solution here for us to follow,
because the service could be easy or difficult to implement. Our feature could require
several new services. The trick is reaching an agreement on the API and having a
mocking mechanism in place. Once the real service is available, it's a time matter of
disabling the mock.

However, in terms of scaling our application as a whole, this is just one integration
point between the front-end features and back-end services. The implications of
introducing the new feature, for the system, aren't known. We can only guess so
much through testing and prior knowledge. It's not until production that we will see
the full implication of how well our new feature scales. Different features that use the
exact same service have different implications for request load, error rate, and so on.

Consuming real-time data
It's commonplace in JavaScript applications to have socketed connections to back-
end data, in order to keep any user sessions synchronized with the reality. This
simplifies some areas of our code while complicating others. The implications for
scaling are substantial. Sending real-time data over web socket connections is what's
called "pushing data". The prevailing technique prior to web socket connectivity
was long-polling HTTP requests. This basically meant that instead of the data being
delivered to clients when it changed, the client was responsible for checking if the
data had changed.

The same scaling issues surrounding real-time data still exist today. With web socket
technology, some of the burden has been shifted from our front-end code to the
back-end. It's up to the application services to push web socket messages when
relevant messages take place. There are a number of angles we need to look at
here though. For example, does our architecture as a whole rely on the delivery
of real-time data, or are we only considering real-time data for a single feature?

Chapter 2

[37]

If we're considering introducing web-socket connectivity for the first time, to better
support a new feature, we have to ask ourselves if it's something we want to fit into
our architecture moving forward. The challenge with real-time data only affecting one
or two features is a lack of clarity. Developers looking at one feature that has real-time
data fed into it, versus another that does not, will have a hard time addressing things
like consistency issues that arise over the course of developing our software.

It often makes more sense, and scales better from a number of perspectives, to properly
integrate real-time data into the code of our front-end architecture. Which essentially
means that any given component should have access to real-time data in the same
way as any other component. As always though, the scaling issues we face when
flowing top-down, from the user and their organization, ultimately determines the
type of features we implement. This in turn influences the rate at which real-time
data is published. Depending on the structure of our application, and how user data
is connected, the frequency with which real-time data is delivered to each browser
session can fluctuate dramatically. These types of considerations have to be made for
every feature we implement.

Scaling features example
Our video conference software is popular with large organizations. Mainly due to
it's stability, performance, and the fact that it's browser-based, without the need
for plugins. One of our customers has requested that we implement chat utilities
as well. They like our software so much that they'd rather use it for all real-time
communication, and not just video conferencing.

The actual implementation of chat utilities at the JavaScript level wouldn't be
too difficult. We would end up reusing several components that enable our web
video conferencing functionality. A little re-factoring and we've got the new chat
components that we need. But there're some subtle differences between text chat
and video chat with regard to scale.

The key difference is the longevity of the text chats versus video chats, where the
latter is generally a transient occurrence. This means that we need to figure out
policies for persisting chats. Our video chats don't require user accounts to join,
in case people want to invite people outside of the organization. This is different
with text chats because we can't exactly invite anonymous actors, and then blow
the chat away after they leave. We'll likely have other changes to make in our user
management components as well. For example, do chat groups now correspond to
video groups?

www.allitebooks.com

http://www.allitebooks.org

Influencers of Scale

[38]

Since this is just one customer who's asked for this capability, we'll probably want a
way to turn it off. Not only does this new feature have the potential to detract from
our core value—video conferencing—but it can cause problems in deployments for
other customers. With the new back-end services, the added interface complexity,
and the additional training and support that's required, it's understandable that
not all organizations would want this feature enabled. So if this isn't something we
already have in our architecture, that is, the ability to turn components on and off,
then that's something else that influences our ability to scale.

Scaling development
The last hurdle for us to overcome in terms of scaling influencers is that of actually
developing the software. Any sufficiently complex JavaScript application isn't going
to be written in isolation by just one developer. There's a team involved, even if it is
only ad-hoc and self-organized in an open source context. In other institutions, teams
and the roles within them are defined more concretely. Regardless of how the team
is put together, scaling that team is a direct consequence of how we react to the other
scaling influencers discussed so far in this chapter.

The first issue we'll address is the one we're most likely to run into first with a
nascent software project—finding development resources. A team isn't a static thing;
we'll have to add new resources as the software grows in code size and solution
scope. Like it or not, the best resources are the most likely to leave as they're the most
sought after. Ideally, we can hang on to a talented crew, but we will nonetheless
have to scale the process of acquiring new resources. How and when we hire
JavaScript programmers is influenced by the features we're implementing, and the
architecture we're putting together to to serve the functioning of those features.

From a day-to-day perspective, each team member should be responsible for
implementing a specific chunk of our application. This is a complicated matter, and
scaling influencers are to blame. We have to be careful about defining our roles for
the team; to not make them overly restrictive. When things change in response to
influencers, we need to pivot and deliver. Rigid role definitions don't help us much
here. Conversely, we need to at least make an attempt to put boundaries in place, if
there's going to be any level of autonomy in the way our components are developed.

Finally, we'll try to figure out if there's a sound approach to determine when we
potentially have too many development resources. To say it out loud almost sounds
like a bad thing. We've got all this talent, and all this work to do—it seems like those
two items go hand-in-hand, do they not? No, not always.

Chapter 2

[39]

Finding development resources
It's tempting, especially for product managers, to hire development resources not
for what we're currently working on, but for what we've planned to work on in the
future. But this doesn't scale well for a number of reasons. The first issue that new
hires are likely to face in this scenario is not being able to learn the code by working
on real features. Remember, they were hired to work on something on the roadmap
that we haven't started yet. So they end up trying to be useful, but there's no real
obligation for them yet. After a couple of weeks, they're fighting to stay out of the
way of folks who are trying to wrap up work.

It's often better to consider what we're working on now. Is there a clear gap in our
ability to deliver something that's expected in the next release of our software? If
there is no well-defined gap, there's nothing for a new programmer to fill, and that
just creates unnecessary communication overhead. The downside is that once we
have clearly-defined gaps in our ability to develop the features we need, we won't
be able to find the resources we need. This pressure can lead to hiring the wrong
people, who don't gel with the team, for one reason or another.

A better approach to scaling the growth of our development resources is to wait till
there's a gap. A gap doesn't necessary mean the world is on fire and you're going to
fail as a company. It just means we could do things better, development-wise. We
shouldn't try hiring more than one developer at a time if we can avoid it. If we take
the time needed to find the right resource, then they're likely to fill any gaps we've
identified with our process and some.

The quintessential resource on communication overhead during
the software development lifecycle is "The Mythical Man-Month",
by Fred Brooks.

Development responsibilities
The web browser platform is a complex space, with lots of technologies, and lots
of moving parts. Some components of the web platform are more greenfield than
others, but important nonetheless for us to understand. These emerging technologies
are the future of the web. So who on our team is going to take ownership of learning
these new technologies and socializing them throughout the organization? The
challenge with the web platform is that there's more to master than one person can
reasonably manage while simultaneously delivering product features. This is why
we need at least some level of development roles.

Influencers of Scale

[40]

How strict the boundaries are for these roles is dependent on the organization
and the culture therein. The nature of the application under development will
likely influence the types of development roles to setup too. There's no recipe, and
strictness should be avoided where possible. The reason being that we need to adapt
to changes brought on by scaling influencers. Strict roles essentially impede an
otherwise capable developer from putting out fires. We generally don't have time for
role boundary disputes as deadlines loom.

It's the architect of the front-end that's most likely to see the roles that make sense for
implementing a given application architecture. And these are likely transient roles,
guided by the architect but formed organically by the members themselves. This is
especially observable in open source projects where people do what they're good at,
and hence what they enjoy doing. While we can't always adopt this model exactly,
we can certainly take cues from it—shape roles around what people are good at
doing in the context of our feature requirements. Doing so will help developers
get mentorship where they need it. Being interested in some aspect of JavaScript
development doesn't mean they're proficient at the level they need to be. That's
where having a senior person show them the ropes, doing something they like doing,
has enormous payoffs for the product in the long term.

Too many resources
We've partially addressed the notion that it's easy to hire too many development
resources— tempting even. When there's a clear roadmap ahead of us defined by
product management, we want to take comfort in knowing we do in fact have the
development resources to fulfill our roadmap. Hiring people too fast inevitably leads
to too many development resources. We may already be there now, and the question
then becomes what to do about it.

If we're unhappy with members of our team, and it's clear that we have more resources
than are needed, the answer is straightforward. However, there's another way to
look at things, if we have too many good resources we don't want to lose. We have to
adjust the product roadmap to accommodate the development talent we've recruited.
This often means finding a channel in which we're able to flow product ideas up from
development to product management. This is more of an art than a science.

It's a challenging job, being a front-end architect and figuring out who's going
to build what. The best way to scale our development resources is to provide an
accurate map of our architecture to those that are currently implementing it. If there's
discrepancies, figure out the right path forward. For example, there could be gaps
and we need more JavaScript programmers, or there could be too many resources
and something needs to change in the product.

Chapter 2

[41]

Scaling development example
Our application has been around for a while, has seen some success, and is deployed
in a variety of contexts. One of our core developers, Ryan, touches many areas of the
code. He helps many other developers improve their code, providing suggestions
and so on. Our application has reached the point where it's large enough 'for us to
start noticing performance degradation across all features.

We need Ryan to implement some performance enhancements, which will involve
re-factoring certain sections of code, and basically occupy all his time. We still have
features to deliver, if we plan on scaling to meet customer demand. On the other
hand, we're seeing red flags with our ability to scale performance-wise.

We realize that we need to hire a new developer to help with new feature
development. This developer doesn't need Ryan-like chops. They need to have the
basics down for the technologies we're using. If we're lucky, we'll find someone that
grows into filling more responsibilities. But for now, the gap left by Ryan that we need
to fill is fairly narrow. And to scale, we don't need to find another Ryan right away.

Influencer checklist
We'll close out the chapter with a few checklists. These are simple questions for
which there's no one correct answer. Some answers will remain the same throughout
the lifetime of our software. For example, our business model will, hopefully,
'not change often. Others depend on the current state of things, and that's what
these lists are for. We can come back to them again and again, anytime something
changes. These could be requirements, users, new deployments, or changes to the
development environment. These questions are nothing more than subtle reminders
of the factors that influence scalable JavaScript applications. If reading them results
in more questions than answers, then they've served their purpose.

User checklist
The user is why we build software in the first place. This checklist covers the most
fundamental aspects of why we need to scale our application. These questions
will be relevant throughout the lifetime of the software. And not just when
something with the user management perspective is in question. Changes to
feature development should trigger a look at this list.

Influencers of Scale

[42]

What's the business model of our software?
• Is it license-based?
• Is it subscription-based?
• Is it consumption-based?
• Is it advertisement-based?
• Is it open source?

Does our application have different user roles?
• Are features hidden from one role while visible to others?
• Does every feature in our application have to be role-aware?
• How are roles defined and administered?
• How does our business model influence the use of roles in our application?

Do our users communicate with each other using
our software?

• Do users collaborate with each other to use our application effectively?
• Does user communication happen as a side-effect of our data model?
• How do the user roles in our application influence user communication?

How do we support our application?
• Is support built into the application, or handled externally?
• Can users support each other using a central knowledge repository?
• How do our business model and application user roles influence the type of

support we need to provide?

How do we collect feedback from users?
• Is feedback collection built into the application, or handled externally?
• How do we incentivize users to provide feedback?
• How does the type of support we provide influence the type of feedback we

want to collect?

Chapter 2

[43]

How do we notify users with relevant information?
• Does our application have a generic, context-independent notification

mechanism?
• How do we ensure that only relevant notifications take place at any

given time?
• Can users audit their notifications?

What type of user metrics should we collect?
• Do we use metrics to improve future versions of the product?
• Can our features use metrics at runtime to improve the user experience?
• How does the business model influence our need to collect metrics?

Feature checklist
Following the scaling influencers that originate from users of our software, are the
features of our software. This list covers some of the questions we should be asking
ourselves about any new feature, or implementing changes in an existing feature.
They'll help us address the common issues related to scalability on a per-feature basis.

What's the core value proposition of our software?
• Does the feature we're implementing or enhancing contribute to the overall

value proposition of our product?
• Is our current value proposition too broadly focused?
• How do the number of users and their roles influence our ability to focus on

features relevant to our application's value?

How do we determine the feasibility of a feature?
• Are we trying to implement killer features instead of letting them come

about naturally?
• Do we take the time to determine whether a proposed feature is feasible to

implement, rather than implementing it poorly?
• How does the value proposition of our software, and the feature requests from

our users, influence the feasibility of the features we ultimately implement?

Influencers of Scale

[44]

Can we make informed decisions about our
features?

• Do we have any user metric data on which we can base our decisions?
• Is there any historical data on similar features we've implemented in

the past?
• How does our business model influence the data we can collect and use for

decisions about the features of our application?

Who's our competition?
• Are we offering something similar to a competing product, done better?
• Are we in a niché market?
• What can we learn from competing products?
• How does our business model influence the amount of competition we face

and the types of features we need to implement?

How do we make what we have better?
• Given the rate at which we're adding features, do we have enough time to

maintain our existing features?
• Is it safe, architecturally, to modify a feature without breaking other features?
• How do our users influence the enhancements we make to existing features?
• How does our business model influence our ability to deploy

product enhancements?

How do we integrate user management into our
features?

• Are access control mechanisms generalized to the point that they're not a
day-to-day concern for feature development?

• Can we organize our features into groups?
• Can users turn features on or off?
• How does the type of application we're building, in conjunction with our

users and their roles, influence the complexity of our features?

Chapter 2

[45]

Are our features tightly coupled to backend
services?

• Are the existing services generic enough to handle the new feature
we're implementing?

• Are we able to mock back-end services, running entirely in the browser?
• How do our features influence the design and capabilities of

back-end services?

How does the frontend stay synchronized with
backend data?

• Can we utilize web socket connectivity for push notifications?
• Does high user activity cause more messages to be delivered to other users?
• How does consuming real-time data influence the complexity of our features?

Developer checklist
The final checklist we'll want to review throughout the course of our software is
concerned with development resources. This checklist won't be used as frequently
as the users or the features lists. Nonetheless, it's important to make sure we're
addressing the concerns that arise in terms of development resources.

How do we find the right development resources?
• Can we get by with the development resources we currently have?
• Do we need to revisit the features under development to accommodate the

resources we have?
• Do we have the right development resources for the product we're building?

How do we allocate development responsibilities?
• How much overlap should there be between areas of responsibility?
• Do our current areas of responsibility reflect what we're building?
• How do the various skill-sets of our team members influence

the responsibilities?

Influencers of Scale

[46]

Can we avoid hiring too many resources?
• Are we hiring people too far in advance of actually needing them?
• Are we experiencing communication overhead due to too many resources?
• How does the number of features under development in parallel, influence

the perception that more developers means more will be accomplished?

Summary
There are three main areas of concern when it comes to scaling influencers in
JavaScript applications. Each area influences the area directly beneath it, until we
ultimately hit the ground floor, where development takes place.

First and foremost are the users of our software. There are a number of user-related
factors that influence the need for our software to scale. For instance, the business
model our organization chooses subtly affects later decisions about our architecture.
License-based deployments are likely to be deployed on-premise somewhere, and
therefore more likely to require customizations. The combinations of complexities
are endless, and they all stem from the users of our software.

The next major area we looked at were the features themselves. We have to take
much of the insight gained from thinking about our users and their influence on
scale, and provide this as input to our feature design. For example, a lot may happen
in a short period of time, once people start using our software. How will this distract
us from the core value of our application? Believe it or not, focus is something that
needs to scale too.

Finally, there are the development activities. There's the team to build, and finding
the right people isn't easy. Even if we have a team of solid developers in place, the
responsibilities, and how they are influenced by the features and the people using
them, needs to be taken into consideration. Likewise, as the development of our
application progresses, we have to ensure that the right resources are in place.

Now that we've laid the foundation of what scaling is all about in the front-end,
we're ready to dive into the specifics. The remainder of this book will put the
concepts of the first two chapters into a JavaScript context. We know what scaling
influencers are, and now we get to make architectural trade-offs. This is the fun part,
because we get to write code.

Chapter 3

[47]

Component Composition
Large-scale JavaScript applications amount to a series of communicating components.
The focus of this chapter is on the composition of these components, while in the
next chapter we will look at how these components communicate with one another.
Composition is a big topic, and one that's relevant to scalable JavaScript code. When
we start thinking about the composition of our components, we start to notice certain
flaws in our design; limitations that prevent us from scaling in response to influencers.

The composition of a component isn't random—there's a handful of prevalent
patterns for JavaScript components. We'll begin the chapter with a look at some of
these generic component types that encapsulate common patterns found in every
web application. Understanding that components implement patterns is crucial for
extending these generic components in a way that scales.

It's one thing to get our component composition right from a purely technical
standpoint, it's another to easily map these components to features. The same
challenge holds true for components we've already implemented. The way we
compose our code needs to provide a level of transparency, so that it's feasible to
decompose our components and understand what they're doing, both at runtime
and at design time.

Finally, we'll take a look at the idea of decoupling business logic from our components.
This is nothing new—the idea of separation-of-concerns has been around for a
long time. The challenge with JavaScript applications is that it touches on so many
things—it's difficult to clearly separate business logic from other implementation
concerns. The way in which we organize our source code (relative to the components
that use them) can have a dramatic effect on our ability to scale.

www.allitebooks.com

http://www.allitebooks.org

Component Composition

[48]

Generic component types
It's exceedingly unlikely that anyone, in this day and age, would set out to build a
large scale JavaScript application without the help of libraries, a framework, or both.
Let's refer to these collectively as tools, since we're more interested in using the tools
that help us scale, and not necessarily which tools are better than other tools. At the
end of the day, it's up to the development team to decide which tool is best for the
application we're building, personal preferences aside.

Guiding factors in choosing the tools we use are the type of components they provide,
and what these are capable of. For example, a larger web framework may have all the
generic components we need. On the other hand, a functional programming utility
library might provide a lot of the low-level functionality we need. How these things
are composed into a cohesive feature that scales, is for us to figure out.

The idea is to find tools that expose generic implementations of the components we
need. Often, we'll extend these components, building specific functionality that's
unique to our application. This section walks through the most typical components
we'd want in a large-scale JavaScript application.

Modules
Modules exist, in one form or another, in almost every programming language. Except
in JavaScript. That's almost untrue though—ECMAScript 6, in its final draft status at
the time of this writing, introduces the notion of modules. However, there are tools out
there today that allow us to modularize our code, without relying on the script tag.
Large-scale JavaScript code is still a relatively new thing. Things such as the script tag
weren't meant to address issues like modular code and dependency management.

RequireJS is probably the most popular module loader and dependency resolver.
The fact that we need a library just to load modules into our front-end application
speaks of the complexities involved. For example, module dependencies aren't a
trivial matter when there's network latency and race conditions to consider.

Another option is to use a transpiler like Browserify. This approach is gaining traction
because it lets us declare our modules using the CommonJS format. This format is
used by NodeJS, and the upcoming ECMAScript module specification is a lot closer
to CommonJS than to AMD. The advantage is that the code we write today has better
compatibility with back-end JavaScript code, and with the future.

Some frameworks, such as Angular or Marionette, have their own ideas of what
modules are- albeit, more abstract ideas.

Chapter 3

[49]

These modules are more about organizing our code, than they are about tactfully
delivering code from the server to the browser. These types of modules might even
map better to other features of the framework. For example, if there's a centralized
application instance that's used to manage our modules, the framework might
provide a mean to manage modules from the application. Take a look at the
following diagram:

Search

Cart Application

Checkout

Start Stop

Start StartStop Stop

Start Stop

A global application component using modules as it's building blocks. Modules can be small, containing only
one feature, or large, containing several features

This lets us perform higher-level tasks at the module level (things such as disabling
modules or configuring them with arguments). Essentially, modules speak for features.
They're a packaging mechanism that allow us to encapsulate things about a given
feature that the rest of the application doesn't care about. Modules help us scale our
application by adding high-level operations to our features, by treating our features
as the building blocks. Without modules, we'd have no meaningful way to do this.

The composition of modules look different depending on the mechanism used to
declare the module. A module could be straightforward, providing a namespace
from which objects can be exported. Or if we're using a specific framework module
flavor, there could be much more to it. Like automatic event life cycles, or methods
for performing boilerplate setup tasks.

Component Composition

[50]

However we slice it, modules in the context of scalable JavaScript are a means to
create larger building blocks, and a means to handling complex dependencies:

// main.js
// Imports a log() function from the util.js model.
import log from 'util.js';
log('Initializing...');

// util.js
// Exports a basic console.log() wrapper function.
'use strict';

export default function log(message) {
 if (console) {
 console.log(message);
 }
}

While it's easier to build large-scale applications with module-sized building blocks,
it's also easier to tear a module out of an application and work with it in isolation.
If our application is monolithic or our modules are too plentiful and fine-grained,
it's very difficult for us to excise problem-spots from our code, or to test work in
progress. Our component may function perfectly well on its own. It could have
negative side-effects somewhere else in the system, however. If we can remove
pieces of the puzzle, one at a time and without too much effort, we can scale the
trouble-shooting process.

Routers
Any large-scale JavaScript application has a significant number of possible URIs.
The URI is the address of the page that the user is looking at. They can navigate to
this resource by clicking links, or they may be taken to a new URI automatically by
our code, perhaps in response to some user action. The web has always relied on
URIs, long before the advent of large-scale JavaScript applications. URIs point to
resources, and resources can be just about anything. The larger the application, the
more resources, and the more potential URIs.

Router components are tools that we use in the front-end, to listen for these URI
change events and respond to them accordingly. There's less reliance on the back-end
web servers parsing the URI, and returning the new content. Most web sites still
do this, but there are several disadvantages with this approach when it comes to
building applications:

Chapter 3

[51]

Browser

Hash

History
Router

The browser triggers events when the URI changes, and the router component responds to these changes.
The URI changes can be triggered from the history API, or from location.hash

The main problem is that we want the UI to be portable, as in, we want to be able to
deploy it against any back-end and things should work. Since we're not assembling
markup for the URI in the back-end, it doesn't make sense to parse the URI in the
back-end either.

We declaratively specify all the URI patterns in our router components. We generally
refer to these as, routes. Think of a route as a blueprint, and a URI as an instance of
that blueprint. This means that when the router receives a URI, it can correlate it to
a route. That, in essence, is the responsibility of router components. Which is easy
with smaller applications, but when we're talking about scale, further deliberation
on router design is in order.

As a starting point, we have to consider the URI mechanism we want to use. The
two choices are basically listening to hash change events, or utilizing the history
API. Using hash-bang URIs is probably the simplest approach. The history API
available in every modern browser, on the other hand, lets us format URI's without
the hash-bang—they look like real URIs. The router component in the framework
we're using may support only one or the other, thus simplifying the decision. Some
support both URI approaches, in which case we need to decide which one works
best for our application.

The next thing to consider about routing in our architecture is how to react to route
changes. There are generally two approaches to this. The first is to declaratively
bind a route to a callback function. This is ideal when the router doesn't have a
lot of routes. The second approach is to trigger events when routes are activated.
This means that there's nothing directly bound to the router. Instead, some other
component listens for such an event. This approach is beneficial when there are lots
of routes, because the router has no knowledge of the components, just the routes.

Component Composition

[52]

Here's an example that shows a router component listening to route events:

// router.js

import Events from 'events.js'

// A router is a type of event broker, it
// can trigger routes, and listen to route
// changes.
export default class Router extends Events {

 // If a route configuration object is passed,
 // then we iterate over it, calling listen()
 // on each route name. This is translating from
 // route specs to event listeners.
 constructor(routes) {
 super();

 if (routes != null) {
 for (let key of Object.keys(routes)) {
 this.listen(key, routes[key]);
 }
 }
 }

 // This is called when the caller is ready to start
 // responding to route events. We listen to the
 // "onhashchange" window event. We manually call
 // our handler here to process the current route.
 start() {
 window.addEventListener('hashchange',
 this.onHashChange.bind(this));

 this.onHashChange();
 }

 // When there's a route change, we translate this into
 // a triggered event. Remember, this router is also an
 // event broker. The event name is the current URI.
 onHashChange() {
 this.trigger(location.hash, location.hash);
 }

};

Chapter 3

[53]

// Creates a router instance, and uses two different
// approaches to listening to routes.
//
// The first is by passing configuration to the Router.
// The key is the actual route, and the value is the
// callback function.
//
// The second uses the listen() method of the router,
// where the event name is the actual route, and the
// callback function is called when the route is activated.
//
// Nothing is triggered until the start() method is called,
// which gives us an opportunity to set everything up. For
// example, the callback functions that respond to routes
// might require something to be configured before they can
// run.

import Router from 'router.js'

function logRoute(route) {
 console.log('${route} activated');
}

var router = new Router({
 '#route1': logRoute
});

router.listen('#route2', logRoute);

router.start();

Some of the code required to run these examples is omitted from the
listings. For example, the events.js module is included in the code
bundle that comes with this book, it's just not that relevant to the example.
Also in the interest of space, the code examples avoid using specific
frameworks and libraries. In practice, we're not going to write our own
router or events API—our frameworks do that already. We're instead
using vanillaES6 JavaScript, to illustrate points pertinent to scaling our
applications.

Component Composition

[54]

Another architectural consideration we'll want to make when it comes to routing is
whether we want a global, monolithic router, a router per module, or some other
component. The downside to having a monolithic router is that it becomes difficult
to scale when it grows sufficiently large, as we keep adding features and routes.
The advantage is that the routes are all declared in one place. Monolithic routers
can still trigger events that all our components can listen to.

The per-module approach to routing involves multiple router instances. For example,
if our application has five components, each would have their own router. The
advantage here is that the module is completely self-contained. Anyone working with
this module doesn't need to look elsewhere to figure out which routes it responds
to. Using this approach, we can also have a tighter coupling between the route
definitions and the functions that respond to them, which could mean simpler code.
The downside to this approach is that we lose the consolidated aspect of having all our
routes declared in a central place. Take a look at the following diagram:

Router

Module

Router

Module

Router

Module Module

The router to the left is global—all modules use the same instance to respond to URI events. The modules to
the right have their own routers. These instances contain configuration specific to the module, not the entire

application

Depending on the capabilities of the framework we're using, the router components
may or may not support multiple router instances. It may only be possible to have
one callback function per route. There may be subtle nuances to the router events
we're not yet aware of.

Models/Collections
The API our application interacts with exposes entities. Once these entities have been
transferred to the browser, we will store a model of those entities. Collections are a
bunch of related entities, usually of the same type.

Chapter 3

[55]

The tools we're using may or may not provide a generic model and/or collection
components, or they may have something similar but named differently. The goal
of modeling API data is a rough approximation of the API entity. This could be as
simple as storing models as plain JavaScript objects and collections as arrays.

The challenge with simply storing our API entities as plain objects in arrays is that
some other component is then responsible for talking to the API, triggering events
when the data changes, and for performing data transformations. We want other
components to be able to transform collections and models where needed, in order
to fulfill their duties. But we don't want repetitive code, and it's best if we're able to
encapsulate the common things like transformations, API calls, and event life cycles.
Take a look at the next diagram:

Model

Caller

API

Model Data

Events

Models encapsulate interaction with APIs, parsing data, and triggering events when data changes.
This leads to simpler code outside of the models

Hiding the details of how the API data is loaded into the browser, or how we issue
commands, helps us scale our application as we grow. As we add more entities to
the API, the complexity of our code grows too. We can throttle this complexity by
constraining the API interactions to our model and collection components.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Component Composition

[56]

Another scalability issue we'll face with our models and collections is where they fit
in the big picture. That is, our application is really just one big component, composed
of smaller components. Our models and collections map well to our API, but not
necessarily to features. API entities are more generic than specific features, and are
often used by several features. Which leaves us with an open question—where do
our models and collections fit into components?

Here's an example that shows specific views extending generic views. The same
model can be passed to both:

// A super simple model class.
class Model {
 constructor(first, last, age) {
 this.first = first;
 this.last = last;
 this.age = age;
 }
}

// The base view, with a name method that
// generates some output.
class BaseView {
 name() {
 return '${this.model.first} ${this.model.last}';
 }
}

// Extends BaseView with a constructor that accepts
// a model and stores a reference to it.
class GenericModelView extends BaseView {
 constructor(model) {
 super();
 this.model = model;
 }
}

// Extends GenericModelView with specific constructor
// arguments.
class SpecificModelView extends BaseView {
 constructor(first, last, age) {
 super();
 this.model = new Model(...arguments);
 }
}

Chapter 3

[57]

var properties = ['Terri', 'Hodges', 41];

// Make sure the data is the same in both views.
// The name() method should return the same result...
console.log('generic view',
 new GenericModelView(new Model(...properties)).name());
console.log('specific view',
 new SpecificModelView(...properties).name());

On one hand, components can be completely generic with regard to the models and
collections they use. On the other hand, some components are specific with their
requirements—they can directly instantiate their collections. Configuring generic
components with specific models and collections at runtime only benefits us when
the component truly is generic, and is used in several places. Otherwise, we might
as well encapsulate the models within the components that use them. Choosing
the right approach helps us scale. Because, not all our components will be entirely
generic or entirely specific.

Controllers/Views
Depending on the framework we're using, and the design patterns our team is
following, controllers and views can represent different things. There's simply too
many MV* pattern and style variations to provide a meaningful distinction in terms
of scale. The minute differences have trade-offs relative to similar but different MV*
approaches. For our purpose of discussing large scale JavaScript code, we'll treat
them as the same type of component. If we decide to separate the two concepts in
our implementation, the ideas in this section will be relevant to both types.

Let's stick with the term views for now, knowing that we're covering both views and
controllers, conceptually. These components interact with several other component
types, including routers, models or collections, and templates, which are discussed
in the next section. When something happens, the user needs to be notified about it.
The view's job is to update the DOM.

Component Composition

[58]

This could be as simple as changing an attribute on a DOM element, or as involved
as rendering a new template:

Router Model

View

DOM

A view component updating the DOM in response to router and model events

A view can update the DOM in response to several types of events. A route could
have changed. A model could have been updated. Or something more direct, like a
method call on the view component. Updating the DOM is not as straightforward as
one might think. There's the performance to think about—what happens when our
view is flooded with events? There's the latency to think about—how long will this
JavaScript call stack run, before stopping and actually allowing the DOM to render?

Another responsibility of our views is responding to DOM events. These are usually
triggered by the user interacting with our UI. The interaction may start and end with
our view. For example, depending on the state of something like user input or one of
our models, we might update the DOM with a message. Or we might do nothing, if
the event handler is debounced, for instance.

A debounced function groups multiple calls into one. For example, calling foo()
20 times in 10 milliseconds may only result in the implementation of foo() being
called once. For a more detailed explanation, look at: http://drupalmotion.com/
article/debounce-and-throttle-visual-explanation. Most of the time, the
DOM events get translated into something else, either a method call or another
event. For example, we might call a method on a model, or transform a collection.
The end result, most of the time, is that we provide feedback by updating the DOM.

This can be done either directly, or indirectly. In the case of direct DOM updates,
it's simple to scale. In the case of indirect updates, or updates through side-effects,
scaling becomes more of a challenge. This is because as the application acquires more
moving parts, the more difficult it becomes to form a mental map of cause and effect.

http://drupalmotion.com/article/debounce-and-throttle-visual-explanation
http://drupalmotion.com/article/debounce-and-throttle-visual-explanation

Chapter 3

[59]

Here's an example that shows a view listening to DOM events and model events.

import Events from 'events.js';

// A basic model. It extending "Events" so it
// can listen to events triggered by other components.
class Model extends Events {
 constructor(enabled) {
 super();
 this.enabled = !!enabled;
 }

 // Setters and getters for the "enabled" property.
 // Setting it also triggers an event. So other components
 // can listen to the "enabled" event.
 set enabled(enabled) {
 this._enabled = enabled;
 this.trigger('enabled', enabled);
 }

 get enabled() {
 return this._enabled;
 }
}

// A view component that takes a model and a DOM element
// as arguments.
class View {
 constructor(element, model) {

 // When the model triggers the "enabled" event,
 // we adjust the DOM.
 model.listen('enabled', (enabled) => {
 element.setAttribute('disabled', !enabled);
 });

 // Set the state of the model when the element is
 // clicked. This will trigger the listener above.
 element.addEventListener('click', () => {
 model.enabled = false;

Component Composition

[60]

 });
 }
}

new View(document.getElementById('set'), new Model());

On the plus side to all this complexity, we actually get some reusable code. The view
is agnostic as to how the model or router it's listening to is updated. All it cares about
is specific events on specific components. This is actually helpful to us because it
reduces the amount of special-case handling we need to implement.

The DOM structure that's generated at runtime, as a result of rendering all our views,
needs to be taken into consideration as well. For example, if we look at some of the
top-level DOM nodes, they have nested structure within them. It's these top-level
nodes that form the skeleton of our layout. Perhaps this is rendered by the main
application view, and each of our views has a child-relationship to it. Or perhaps the
hierarchy extends further down than that. The tools we're using most likely have
mechanisms for dealing with these parent-child relationships. However, bear in mind
that vast view hierarchies are difficult to scale.

Templates
Template engines used to reside mostly in the back-end framework. That's less true
today, thanks largely to the sophisticated template rendering libraries available in the
front-end. With large-scale JavaScript applications, we rarely talk to back-end services
about UI-specific things. We don't say, "here's a URL, render the HTML for me". The
trend is to give our JavaScript components a certain level autonomy—letting them
render their own markup.

Having component markup coupled with the components that render them is a
good thing. It means that we can easily discern where the markup in the DOM is
being generated. We can then diagnose issues and tweak the design of a large
scale application.

Templates help establish a separation of concerns with each of our components. The
markup that's rendered in the browser mostly comes from the template. This keeps
markup-specific code out of our JavaScript. Front-end template engines aren't just
tools for string replacement; they often have other tools to help reduce the amount
of boilerplate JavaScript code to write. For example, we can embed things like
conditionals and for-each loops in our markup, where they're suited.

Chapter 3

[61]

Application-specific components
The component types we've discussed so far are very useful for implementing scalable
JavaScript code, but they're also very generic. Inevitably, during implementation we're
going to hit a road block—the component composition patterns we've been following
will not work for certain features. This is when it's time to step back and think about
possibly adding a new type of component to our architecture.

For example, consider the idea of widgets. These are generic components that are
mainly focused on presentation and user interactions. Let's say that many of our
views are using the exact same DOM elements, and the exact same event handlers.
There's no point in repeating them in every view throughout our application. Might
it not be better if we were to factor it into a common component? A view might be
overkill, so perhaps we need a new type of widget component?

Sometimes we'll create components for the sole purpose of composition. For
example, we might have a component that glues together router, view, model/
collection, and template components together to form a cohesive unit. Modules
partially solve this problem but they aren't always enough. Sometimes we're missing
that added bit of orchestration that our components need in order to communicate.
We'll cover communicating components in the next chapter.

Extending generic components
We often discover, late in the development process, that the components we rely on
are lacking something we need. If the base component we're using is designed well,
then we can extend it, plugging in the new properties or functionality we need. In
this section, we'll walk through some scenarios where we might need to extend the
common generic components used throughout our application.

If we're going to scale our code, we need to leverage these base components where
we can. We'll probably want to start extending our own base components at some
point too. Some tools are better than others at facilitating the extension mechanism
through which we implement this specialized behavior.

Identifying common data and functionality
Before we look at extending the specific component types, it's worthwhile to consider
the common properties and functionality that's common across all component types.
Some of these things will be obvious up-front, while others are less pronounced.
Our ability to scale depends, in part, on our ability to identify commonality across
our components.

Component Composition

[62]

If we have a global application instance, quite common in large JavaScript
applications, global values and functionality can live there. This can grow unruly
down the line though, as more common things are discovered. Another approach
might be to have several global modules, instead of just a single application instance.
Or both. But this doesn't scale from an understandability perspective:

Framework

Application

Router

BaseRouter

SpecificRouter

Model

BaseModel

SpecificModel

View

BaseView

SpecificView

The ideal component hierarchy doesn't extend beyond three levels. The top level is usually found in a
framework our application depends on

As a rule-of-thumb, we should, for any given component, avoid extending it more
than three levels down. For example, a generic view component from the tools we're
using could be extended by our generic version of it. This would include properties
and functionality that every view instance in our application requires. This is only
a two-level hierarchy, and easy to manage. This means that if any given component
needs to extend our generic view, it can do so without complicating things. Three-
levels should be the maximum extension hierarchy depth for any given type. This
is just enough to avoid unnecessary global data, going beyond this presents scaling
issues because the hierarchy isn't easily grasped.

Extending router components
Our application may only require a single router instance. Even in this case, we
may still need to override certain extension points of the generic router. In case of
multiple router instances, there's bound to be common properties and functionality
that we don't want to repeat. For example, if every route in our application follows
the same pattern, with only subtle differences, we can implement the tools in our
base router to avoid repetitious code.

Chapter 3

[63]

In addition to declaring routes, events take place when a given route is activated.
Depending on the architecture of our application, different things need to happen.
Maybe certain things always need to happen, no matter which route has been
activated. This is where extending the router to provide our own functionality comes
in handy. For example, we have to validate permission for a given route. It wouldn't
make much sense for us to handle this through individual components, as this would
not scale well with complex access control rules and a lot of routes.

Extending models/collections
Our models and collections, no matter what their specific implementation look like,
will share some common properties with one another- especially if they're targeting
the same API, which is the common case. The specifics of a given model or collection
revolve around the API endpoint, the data returned, and the possible actions taken.
It's likely that we'll target the same base API path for all entities, and that all entities
have a handful of shared properties. Rather than repeat ourselves in every model or
collection instance, it's better to abstract the common data.

In addition to sharing properties among our models and collections, we can share
common behavior. For instance, it's quite likely that a given model isn't going to have
sufficient data for a given feature. Perhaps that data can be derived by transforming
the model. These types of transformations can be common, and abstracted in a base
model or collection. It really depends on the types of features we're implementing
and how consistent they are with one another. If we're growing fast and getting lots
of requests for "outside-the-box" features, then we're more likely to implement data
transformations inside the views that require these one-off changes to the models or
collections they're using.

Most frameworks take care of the nuances for performing XHR requests to fetch
our data or perform actions. That's not the whole story unfortunately, because
our features will rarely map one-to-one with a single API entity. More likely, we
will have a feature that requires several collections that are related to one another
somehow, and a transformed collection. This type of operation can grow complex
quickly, because we have to work with multiple XHR requests.

Component Composition

[64]

We'll likely use promises to synchronize the fetching of these requests, and then
perform the data transformation once we have all the necessary sources.

Here's an example that shows a specific model extending a generic model, to provide
new fetching behavior:

// The base fetch() implementation of a model, sets
// some property values, and resolves the promise.
class BaseModel {
 fetch() {
 return new Promise((resolve, reject) => {
 this.id = 1;
 this.name = 'foo';
 resolve(this);
 });
 }
}

// Extends BaseModel with a specific implementation
// of fetch().
class SpecificModel extends BaseModel {

 // Overrides the base fetch() method. Returns
 // a promise with combines the original
 // implementation and result of calling fetchSettings().
 fetch() {
 return Promise.all([
 super.fetch(),
 this.fetchSettings()
]);
 }

 // Returns a new Promise instance. Also sets a new
 // model property.
 fetchSettings() {
 return new Promise((resolve, reject) => {
 this.enabled = true;
 resolve(this);
 });
 }
}

Chapter 3

[65]

// Make sure the properties are all in place, as expected,
// after the fetch() call completes.
new SpecificModel().fetch().then((result) => {
 var [model] = result;
 console.assert(model.id === 1, 'id');
 console.assert(model.name === 'foo');
 console.assert(model.enabled, 'enabled');
 console.log('fetched');
});

Extending controllers/views
When we have a base model or base collection, there are often properties shared
between our controllers or views. That's because the job of a controller or a view is to
render model or collection data. For example, if the same view is rendering the same
model properties over and over, we can probably move that bit to a base view, and
extend from that. Perhaps the repetitive parts are in the templates themselves. This
means that we might want to consider having a base template inside a base view,
as shown in the following diagram. Views that extend this base view, inherit this
base template.

Depending on the library or framework at our disposal, extending templates in this
way may not be feasible. Or the nature of our features may make this difficult to
achieve. For example, there may not be a common base template, but there might be
a lot of smaller views and templates that can plug-into larger components:

View

BaseView

Template

Slot

Slot

Slot

Slot

A view that extends a base view can populate the template of the base view, as well as inherit other base view
functionalities

Component Composition

[66]

Our views also need to respond to user interactions. They may respond directly, or
forward the events up the component hierarchy. In either case, if our features are at all
consistent, there will be some common DOM event handling that we'll want to abstract
into a common base view. This is a huge help in scaling our application, because as we
add more features, the DOM event handling code additions is minimized.

Mapping features to components
Now that we have a handle on the most common JavaScript components, and the
ways we'll want to extend them for use in our application, it's time to think about
how to glue those components together. A router on it's own isn't very useful.
Nor is a standalone model, template, or controller. Instead, we want these things to
work together, to form a cohesive unit that realizes a feature in our application.

To do that, we have to map our features to components. We can't do this
haphazardly either—we need to think about what's generic about our feature, and
about what makes it unique. These feature properties will guide our design decisions
on producing something that scales.

Generic features
Perhaps the most important aspects of component composition are consistency and
reusability. While considering the scaling influences our application faces, we'll
come up with a list of traits that all our components must carry: things such as user
management, access control, and other traits unique to our application. This is along
with the other architectural perspectives (explored in more depth throughout the
remainder of the book), which form the core of our generic features:

Generic Feature

Router

View

Template

A generic component, composed of other generic components from our framework

Chapter 3

[67]

The generic aspects of every feature in our application serve as a blueprint. They
inform us in composing larger building blocks. These generic features account for the
architectural factors that help us scale. And if we can encode these factors as parts of
an aggregate component, we'll have an easier time scaling our application.

What makes this design task challenging is that we have to look at these generic
components not only from a scalable architecture perspective, but also from a
feature-complete perspective. If every feature behaved the same way, we'd be all set.
If only every feature followed an identical pattern, the sky's the limit when it comes
time to scale.

But 100% consistent feature functionality is an illusion, more visible to JavaScript
programmers than to users. The pattern breaks out of necessity. It's responding
to this breakage in a scalable way that matters. This is why successful JavaScript
applications will continuously revisit the generic aspects of our features to ensure
they reflect reality.

Specific features
When it's time to implement something that doesn't fit the pattern, we're faced with
a scaling challenge. We have to pivot, and consider the consequences of introducing
such a feature into our architecture. When patterns are broken, our architecture needs
to change. This isn't a bad thing—it's a necessity. The limiting factor in our ability
to scale in response to these new features, lies with generic aspects of our existing
features. This means that we can't be too rigid with our generic feature components.
If we're too demanding, we're setting ourselves up for failure.

Before making any brash architectural decisions stemming from offbeat features,
think about the specific scaling consequences. For example, does it really matter that
the new feature uses a different layout and requires a template that's different from
all other feature components? The state of the JavaScript scaling art revolves around
finding the handful of essential blueprints to follow for our component composition.
Everything else is up for discussion on how to proceed.

Decomposing components
Component composition is an activity that creates order; larger behavior out of
smaller parts. We often need to move in the opposite direction during development.
Even after development, we can learn how a component works by tearing the code
apart and watching it run in different contexts. Component decomposition means
that we're able to take the system apart and examine individual parts in a somewhat
structured approach.

Component Composition

[68]

Maintaining and debugging components
Over the course of application development, our components accumulate abstractions.
We do this to support a feature's requirement better, while simultaneously supporting
some architectural property that helps us scale. The problem is that as the abstractions
accumulate, we lose transparency into the functioning of our components. This is not
only essential for diagnosing and fixing issues, but also in terms of how easy the code
is to learn.

For example, if there's a lot of indirection, it takes longer for a programmer to trace
cause to effect. Time wasted on tracing code, reduces our ability to scale from a
developmental point of view. We're faced with two opposing problems. First, we need
abstractions to address real world feature requirements and architectural constraints.
Second, is our inability to master our own code due to a lack of transparency.

Following is an example that shows a renderer component and a feature component.
Renderers used by the feature are easily substitutable:

// A Renderer instance takes a renderer function
// as an argument. The render() method returns the
// result of calling the function.
class Renderer {
 constructor(renderer) {
 this.renderer = renderer;
 }

 render() {
 return this.renderer ? this.renderer(this) : '';
 }
}

// A feature defines an output pattern. It accepts
// header, content, and footer arguments. These are
// Renderer instances.
class Feature {
 constructor(header, content, footer) {
 this.header = header;
 this.content = content;
 this.footer = footer;
 }

 // Renders the sections of the view. Each section
 // either has a renderer, or it doesn't. Either way,
 // content is returned.
 render() {

Chapter 3

[69]

 var header = this.header ?
 '${this.header.render()}\n' : '',
 content = this.content ?
 '${this.content.render()}\n' : '',
 footer = this.footer ?
 this.footer.render() : '';

 return '${header}${content}${footer}';
 }
}

// Constructs a new feature with renderers for three sections.
var feature = new Feature(
 new Renderer(() => { return 'Header'; }),
 new Renderer(() => { return 'Content'; }),
 new Renderer(() => { return 'Footer'; })
);

console.log(feature.render());

// Remove the header section completely, replace the footer
// section with a new renderer, and check the result.
delete feature.header;
feature.footer = new Renderer(() => { return 'Test Footer'; });

console.log(feature.render());

A tactic that can help us cope with these two opposing scaling influencers is
substitutability. In particular, the ease with which one of our components, or
sub-components, can be replaced with something else. This should be really easy
to do. So before we go introducing layers of abstraction, we need to consider how
easy it's going to be to replace a complex component with a simple one. This can
help programmers learn the code, and also help with debugging.

For example, if we're able to take a complex component out of the system and
replace it with a dummy component, we can simplify the debugging process. If the
error goes away after the component is replaced, we have found the problematic
component. Otherwise, we can rule out a component and keep digging elsewhere.

Component Composition

[70]

Re-factoring complex components
It's of course easier said than done to implement substitutability with our components,
especially in the face of deadlines. Once it becomes impractical to easily replace
components with others, it's time to consider re-factoring our code. Or at least the
parts that make substitutability infeasible. It's a balancing act, getting the right level
of encapsulation, and the right level of transparency.

Substitution can also be helpful at a more granular level. For example, let's say a view
method is long and complex. If there are several stages during the execution of that
method, where we would like to run something custom, we can't. It's better to re-factor
the single method into a handful of methods, each of which can be overridden.

Pluggable business logic
Not all of our business logic needs to live inside our components, encapsulated from
the outside world. Instead, it would be ideal if we could write our business logic
as a set of functions. In theory, this provides us with a clear separation of concerns.
The components are there to deal with the specific architectural concerns that help
us scale, and the business logic can be plugged into any component. In practice,
excising business logic from components isn't trivial.

Extending versus configuring
There are two approaches we can take when it comes to building our components.
As a starting point, we have the tools provided by our libraries and frameworks.
From there, we can keep extending these tools, getting more specific as we drill
deeper and deeper into our features. Alternatively, we can provide our component
instances with configuration values. These instruct the component on how to behave.

The advantage of extending things that would otherwise need to be configured is
that the caller doesn't need to worry about them. And if we can get by, using this
approach, all the better, because it leads to simpler code- especially the code that's
using the component. On the other hand, we could have generic feature components
that can be used for a specific purpose, if only they support this configuration or that
configuration option. This approach has the advantage of using simpler component
hierarchies, and less overall components.

Sometimes it's better to keep components as generic as possible, within the realm
of understandability. That way, when we need a generic component for a specific
feature, we can use it without having to re-define our hierarchy. Of course, there's
more complexity involved for the caller of that component, because they need to
supply it with the configuration values.

Chapter 3

[71]

This is all a trade-off that's up to us, the JavaScript architects of our application.
Do we want to encapsulate everything, configure everything, or do we want to
strike a balance between the two?

Stateless business logic
With functional programming, functions don't have side effects. In some languages,
this property is enforced, in JavaScript it isn't. However, we can still implement
side-effect-free functions in JavaScript. If a function takes arguments, and always
returns the same output based on those arguments, then the function can be said to
be stateless. It doesn't depend on the state of a component, and it doesn't change the
state of a component. It just computes a value.

If we can establish a library of business logic that's implemented this way, we can
design some super flexible components. Rather than implement this logic directly
in a component, we pass the behavior into the component. That way, different
components can utilize the same stateless business logic functions.

The tricky part is finding the right functions that can be implemented this way as
it's not a good idea to implement these up-front. Instead, as the iterations of our
application development progress, we can use this strategy to re-factor code into
generic stateless functions that are shared by any component capable of using them.
This leads to business logic that's implemented in a focused way, and components
that are small, generic, and reusable in a variety of contexts.

Organizing component code
In addition to composing our components in such a way that helps our application
scale, we need to consider the structure of our source code modules too. When we
first start off with a given project, our source code files tend to map well to what's
running in the client's browser. Over time, as we accumulate more features and
components, earlier decisions on how to organize our source tree can dilute this
strong mapping.

Component Composition

[72]

When tracing runtime behavior to our source code, the less mental effort involved,
the better. We can scale to more stable features this way because our efforts are
focused more on the design problems of the day—the things that directly provide
customer value:

Component

Router

Model

View

router.js

model.js

view.js

The diagram shows the mapping component parts to their implementation artifacts

There's another dimension to code organization in the context of our architecture,
and that's our ability to isolate specific code. We should treat our code just like our
runtime components, which are self-sustained units that we can turn on or off. That
is, we should be able to find all the source code files required for a given component,
without having to hunt them down. If a component requires, say, 10 source code
files—JavaScript, HTML, and CSS—then ideally these should all be found in the
same directory.

The exception, of course, is generic base functionality that's shared by all components.
These should be as close to the surface as possible, then it's easy to trace our
component dependencies; they all point to the top of the hierarchy. It's a challenge to
scale the dependency graph when our component dependencies are all over the place.

Chapter 3

[73]

Summary
This chapter introduced us to the concept of component composition. Components
are the building blocks of a scalable JavaScript application. The common components
we're likely to encounter include things like modules, models/collections,
controllers/views, and templates. While these patterns help us achieve a level of
consistency, they're not enough on their own to make our code work well under
various scaling influencers. This is why we need to extend these components,
providing our own generic implementations that specific features of our application
can further extend and use.

Depending on the various scaling factors our application encounters, different
approaches may be taken in getting generic functionality into our components.
One approach is to keep extending the component hierarchy, and keep everything
encapsulated and hidden away from the outside world. Another approach is to
plug logic and properties into components when they're created. The cost is more
complexity for the code that's using the components.

We ended the chapter with a look at how we might go about organizing our source
code; so that it's structure better reflects that of our logical component design. This
helps us scale our development effort, and helps isolate one component's code
from others'. In the next chapter, we'll look in more detail at the space in between
our components. It's one thing to have well crafted components that stand by
themselves. It's quite another to implement scalable component communication.

Component Communication
and Responsibilities

The preceding chapter focused on the what of components—what are they composed
of and why. This chapter focuses on the glue in between our JavaScript components
—the how. If our components are designed with a particular purpose in mind, then
they need to communicate with other components to realize larger behavior. For
example, a router component is unlikely to update the DOM or talk to the API. We
have components that are good at those tasks, so other components can ask them to
perform them, by communicating with them.

We'll start the chapter off with a look at communication models prevalent in frontend
development. It's highly unlikely that we'll develop our own framework for inter-
component communication since there are lots of robust libraries that already do this.
What we're more interested in, from a JavaScript scaling perspective, is how the chosen
communication model in our application prevents us from scaling, and what can be
done about it.

The responsibilities of a given component influence how it communicates with our
own components, as well as services beyond our control, like backend APIs and
DOM APIs. Once we start implementing the components of our application, layers
start to reveal themselves, and if stated explicitly, these are useful for visualizing
communication flows. This allows us to anticipate future component communication
scaling issues.

Component Communication and Responsibilities

[76]

Communication models
There are various communication models we can use to enable inter-component
communication. The simplest would be method invocations, or function calls. This
approach is the most direct and the easiest to implement. However, there's also a
deep coupling between one component that directly invokes method of another.
This can't scale beyond a couple components.

Instead, we need a level of indirection between our components; something that
mediates the communication from one component to another. This helps us to scale
our inter-component communication because we're no longer communicating directly
with other components. Instead, we're relying on our communication mechanism
to fulfill message delivery. The two prevalent models for such a communication
mechanism are message passing and event triggering. Let's compare the two
approaches.

Message-passing models
Message-passing communication models are commonplace in JavaScript applications.
For example, messages can be passed from one process to another on a local machine;
they can be passed from one host to another, or they can be passed around in the same
process. Although message-passing is somewhat abstract, it's still a fairly low-level
idea—there's much room for interpretation. It's the mechanism that sits in between two
communicating components that provide high-level abstractions.

For example, publish-subscribe is a more specific type of message-passing
communication model. The mechanism that fulfills these messages is usually called
a broker. A component will subscribe to messages of a particular topic, while other
components will publish messages on that topic. The key design feature is that the
components are unaware of one another. This promotes loose coupling between
components, and helps us scale when there are lots of components.

Publisher Broker Subscriber

This shows a publish-subscribe model, using a broker to deliver published messages to subscribers

Another type of message passing abstraction is command-response. Here, one
component issues a command to another component and gets a response. The
coupling in this scenario is a little tighter, because the caller is targeting a specific
component to fulfill the command.

Chapter 4

[77]

However, this is still preferred over direct command invocation because we can still
substitute both the caller and the receiver easily.

Event models
We often hear that user interface code is event-driven, that is, some event takes
place, causing the UI to re-render a section. Or, the user performs some action
in the UI, triggering an event that our code must interpret and act upon. From a
communication perspective, UIs are just a bunch of declarative visual elements;
events that are triggered, and the callback functions that respond to those events.

This is why the publish-subscribe model fits well with UI development. Most
components we develop will trigger one or more event types, while other
components will subscribe to this type of event and run code in response to it's
triggering. This, at a high level, is how most of our components will communicate
with one another—through events, which is really just publish-subscribe.

Speaking in terms of events and triggering, instead of messages and publish-subscribe,
makes sense because it's the more familiar terminology with JavaScript developers.
For example, there's the DOM and it's whole event system found there. They are the
asynchronous events associated with Ajax calls and Promise objects, then there's the
homegrown event system used by the framework our application leverages.

Broker

Callback

Component Component

Event

Events are triggered by one component while another component listening for that event executes a callback;
this process is orchestrated by an event-broker mechanism

Needless to say, separate event systems that all trigger events through our
application components make it difficult to mentally grasp what's actually happening
in response to a given action. This is indeed a scaling problem, and the various
sections throughout this chapter will dig into solutions that enable us to scale our
component communication.

Component Communication and Responsibilities

[78]

Communication data schema
Event data isn't opaque—it has meaning that our callback functions use to make
decisions on how to react. Sometimes, this data is unneeded and can be safely ignored
by the callback function. However, we don't want to decide, early on, that some
callback added later on isn't going to need this data. And that's something that helps
our communication mechanism scale—providing the right data in the right place.

Not only does the data need to be there, readily available for consumption by each
callback function, but it also needs to have a predictable structure. We'll look at
approaches to establish naming conventions for the event names themselves, as well
as the data that's passed along to the handler functions. We can make inter-component
communication a little more transparent, and thus more scalable, by making sure that
the required event data is present and unlikely to be misinterpreted.

Naming conventions
Coming up with meaningful names is hard, especially when there are a lot of things
to name, as is the case with events. On the one hand, we want the event name to carry
meaning. This helps us scale because by just looking at the event name and nothing
else, there's meaning to be found. On the other hand, if try to overload the event name
with too much meaning, the benefit of quickly deciphering event names is lost.

The primary focus of having good, short, and meaningful event names is on the
developers who work with these events. The idea is that as their code is reacting to
events, they can quickly put together a mental map of event flow. Mind you, this is
just one small practice that contributes to the overall scalable event architecture, but
nonetheless it is an important one.

For example, we might have a base event type, and a more specific version of that
event. We could have several of these base event types, and several more specific
instances of them to cover the more direct scenarios. If we have too much specificity
with our event-names and types, it means we can't really reuse them. It also means
there are more events for developers to reason with.

Data format
Apart from the event name itself, there's the event payload. This should always
contain data about the event that's triggered, and possibly data about the
components that trigger them. The most important thing to keep in mind about
event data is that it should always have data that's pertinent to the handlers that
subscribe to these types of events. Often, a callback function may decide to do
nothing and ignore the event, based on the state of a property in the event data.

Chapter 4

[79]

For example, it's not really scalable if in every callback function we have to perform
lookups on components, just to get the data we need to make a decision or perform
further actions. It's not easy, of course, to guess what data is going to be required. If
we knew this, we would just call the function directly, and save the hassle of having
an event triggering mechanism to begin with. The idea is to loosen coupling, but at
the same time, provide data that's predictable.

Here's a simplified example of what event data might look like:

var eventData = {
 type: 'app.click',
 timestamp: new Date(),
 target: 'button.next'
};

A useful exercise for trying to figure out which data is relevant for a given event when
it's triggered, is to think about what can be derived from within the handler, and what
the handler almost never needs. For example, it's not advised to compute event data,
and then pass it around. If the handler can compute it, it should probably bear that
responsibility. If we start seeing repetitive code, then that's a different story and it's
time to start thinking about common event data.

Common data
Event data will always contain data from the component that triggered the event
—possibly a reference to the component itself. That's always a good bet, since all
we know today is that the event was triggered—we have no idea what callbacks
are going to want to do in response to this event later on. So it's good to give our
callback functions lots of data, so long as it's not confusing or misleading.

So if we know that the same type of component will always trigger the same types
of events, we can design our callbacks accordingly with the expectation that the
same data will always be there. We can get even more generic with our event data,
and supply the callbacks with data about the event itself. For example, there are
things like time stamps, event-state, and so on—these have nothing to do with the
component, and more to do with the event.

Here's an example that shows a base event that defines the common data for all
events that extend it with additional properties:

// click-event.js
// All instances will have "type" and "timestamp"
// properties, plus any passed-in properties. What's
// important is that anything using "ClickEvent"
// knows that "type" and "timestamp" will always be

Component Communication and Responsibilities

[80]

// there.
export default class ClickEvent {

 constructor(properties) {
 this.type = 'app.click';
 this.timestamp = new Date();
 Object.assign(this, properties);
 }

};

// main.js
import ClickEvent from 'click-event.js';

// Create a new "ClickEvent" and pass it some properties.
// We can override some of the standard properties,
// and pass it new ones.
var clickEvent = new ClickEvent({
 type: 'app.button.click',
 target: 'button.next',
 moduleState: 'enabled'
});

console.log(clickEvent);

Again, don't try to be clever about data reuse upfront. Let the repetitiveness happen,
and then deal with it. The better approach would be to create a base event structure,
so that it's easy to move repetitive properties into the common structure once they've
been 'found.

Traceable component communication
Perhaps the biggest challenge with large-scale JavaScript applications is keeping a
mental-model of where events start and where they end, in other words, tracing the
event as it flows through our components. Untraceable code puts the scalability of
our software at risk because we cannot predict what will happen in response to a
given event.

There are a number of tactics we can use during development to ease the pain of
figuring out our event flow, perhaps even modifying the design to simplify things.
Simplicity scales, and we can't simplify what we don't understand.

Chapter 4

[81]

Subscribing to events
One nice aspect of the publish-subscribe messaging model is that we can jump in
and add a new subscription. This means that if we're not sure about how something
works, we can throw event callback functions at the problem from various angles,
until we have a better idea of what's actually happening. This is a hacker tool, and
tools that support hacking our software help us scale because we're empowering
developers to take matters into their own hands. If something isn't clear, they're
more likely to figure it out on their own when the code is easy to hack.

Event Subscriber Subscriber Subscriber

Subscribing to events at specific points, or in a specific order, can alter the lifecycle of the event. It's important to
have this ability, but if it is overused, it can lead to unnecessary complexity

In drastic cases, we might even need to use this subscriber approach to fix something
that's broken in a production system. For example, say that a callback function is able
to stop an event from executing, canceling any further handlers from running. It's good
to have these types of entry points in the events that trigger throughout our code.

Globally-logging events
The callback functions that execute in response to triggered events can log messages
from within. There are times, however, when we need logging from the perspective
of the event mechanism itself. For example, if we're dealing with some tricky code,
and we need to know when our callback function is being called, relative to other
callback functions. The event triggering mechanism should have an option to handle
lifecycle logging.

This means that for any given event that's triggered, we can see information logged
about the event, independent of the code that runs in response to the event. We'll
call these meta-events—events about events. For example, the trigger time before
the callback runs, after the callback runs, and when there are no more callbacks.
This gives the logging we implement in our callbacks some much-needed context
for tracing our code.

Following is an example that shows an event broker with logging enabled:

// events.js
// A simple event broker.
export default class Events {

 // Accepts a "log()" function when created,

Component Communication and Responsibilities

[82]

 // used when triggering events.
 constructor(log) {
 this.log = log;
 this.listeners = {};
 }

 // Calls all functions listening to event "name", passing
 // "data" to each. If the "log()" function was provided to
 // the broker when created, then it logs BEFORE each callback
 // is called, and AFTER.
 trigger(name, data) {
 if (name in this.listeners) {
 var log = this.log;
 return this.listeners[name].map(function(callback) {
 log && console.log('BEFORE', name);

 var result = callback(Object.assign({
 name: name
 }, data));

 log && console.log('AFTER', name);

 return result;
 });
 }
 }
};

// main.js
import Events from 'events.js';

// Two event callback functions that log
// data. The second one is async because it
// uses "setTimeout()".
function callbackFirst(data) {
 console.log('CALLBACK', data.name);
}

function callbackLast(data) {
 setTimeout(function() {
 console.log('CALLBACK', data.name);
 }, 500);
}

Chapter 4

[83]

var broker = new Events(true);

broker.listen('first', callbackFirst);
broker.listen('last', callbackLast);

broker.trigger('first');
broker.trigger('last');

//
// BEFORE first
// CALLBACK first
// AFTER first
// BEFORE last
// AFTER last
// CALLBACK last
//
// Notice how we can trace the event broker
// invocation? Also note that "CALLBACK last"
// is obviously async because it's not in between
// "BEFORE last" and "AFTER last".

Event lifecycle
Different event triggering mechanisms have different lifecycles for their events, and
it's worthwhile trying to understand how each works, and how they can be controlled.
We'll start by looking at DOM events. The DOM nodes in our UI form a tree structure,
and any one of those nodes can trigger a DOM event. If there are handler functions for
this event attached directly to the triggering node, they'll be executed. Then, the event
will propagate upward, repeating the process of looking for handler functions, and
then continuing up the tree until the document node is reached.

Our handler functions can actually change the default propagation behavior of
DOM events.

Component Communication and Responsibilities

[84]

For example, if we don't want handlers further up in the DOM tree to run, handlers
in lower tree nodes can stop the event from propagating.

DOM Node

DOM Node

DOM Node

Event

Event

Subscription

Handler

Handler

Handler

Handler

Contrasting the event processing approaches of the component event systems from various frameworks,
and the DOM events as handled by the browser

The other major event triggering mechanism we'll want to pay attention to is that of
the framework we're using. JavaScript, as a language, has no general purpose event
triggering system, only specialized ones for DOM trees, Ajax calls, and Promise
objects. Internally, these are all using the same task queues; they're just exposed in
ways that make them seem as though they're separate systems. This is where the
framework we're using steps in and provides the necessary abstraction. These types
of event dispatchers are quite simple; subscribers for a given event are executed in
FIFO order. Some of these event systems support more advanced lifecycle options
discussed in this section, such as global event logging and early event termination.

Communication overhead
One advantage of directly invoking a method on a component is that there's very
little overhead involved. When all inter-component communication is brokered
through an event triggering mechanism, there's no way to escape at least a little
overhead. In fact, overhead associated with this indirection is hardly noticeable;
it's other overhead factors that can cause scalability issues.

In this section we'll look at event triggering frequency, callback execution, and
callback complexity. Each of these has the potential to degrade the performance
of our software to the point where it is unusable.

Chapter 4

[85]

Event frequency
When our software has only a handful of components, there's a fundamental limit
on the frequency of events. Where event frequency can quickly turn into a problem
is when there are lots of components, some of which trigger events in response to
events. This means that if the user is doing something quickly and efficiently, or if
there are several Ajax responses arriving all at once, we need a way to prevent these
events from blocking the DOM.

One challenge with JavaScript is that it's single-threaded. There are web workers,
but those go way beyond the scope of this book because they introduce a whole new
category of architectural issues. Let's say that the user has clicked something four
times in under one second. Under normal circumstances, this is no big deal for our
event system to process. But let's say they're doing this while there's an expensive
Ajax response handler running. Eventually, the UI will become unresponsive.

To avoid unresponsive UIs, we can throttle our events. This means putting a cap on
the callback execution frequency. So, instead of done, onto the next one, it's done, rest
for a few milliseconds, then onto the next one. The advantage of throttling our callback
functions like this is it gives pending DOM updates or pending DOM event callback
functions a chance to run. The disadvantage is that our event lifecycle could be
negatively impacted due to long-running updates, or other code.

Following is an example that shows an event broker that throttles triggered events to
a specific time frequency:

// events.js
// The event broker. Sets sets the threshold
// for event triggering frequency to 100
// milliseconds.
export default class Events {

 constructor() {
 this.last = null;
 this.threshold = 100;
 this.size = 0;
 this.listeners = {};
 }

 // Triggers the event, but only if the it meets the

Component Communication and Responsibilities

[86]

 // frequency threshold.
 trigger(name, data) {
 var now = +new Date();

 // If we're passed the wait threshold, or we've never
 // triggered an event, we can call "_trigger()", where
 // the event callback functions are processed.
 if (this.last === null || now - this.last > this.threshold) {
 this._trigger(name, data);
 this.last = now;
 // Otherwise, we've triggered something recently, and we
 // need to set a timeout. The "size" multiplier is
 // for spreading out the lineup of triggers.
 } else {
 this.size ++;
 setTimeout(() => {
 this._trigger(name, data);
 this.size --;
 }, this.threshold * this.size || 1);
 }
 }

 // This is the actual triggering mechanism, called by
 // "trigger()" after it checks the frequency threshold.
 _trigger(name, data) {
 if (name in this.listeners) {
 return this.listeners[name].map(function(callback) {
 return callback(Object.assign({
 name: name
 }, data));
 return result;
 });
 }
 }

};

//main.js
import Events from 'events.js';

function callback(data) {
 console.log('CALLBACK', new Date().getTime());
}

Chapter 4

[87]

var broker = new Events(true);

broker.listen('throttled', callback);

var counter = 5;

// Trigger events in a tight loop. This will
// cause the broker to throttle the callback
// processing.
while (counter--) {
 broker.trigger('throttled');
}
//
// CALLBACK 1427840290681
// CALLBACK 1427840290786
// CALLBACK 1427840290886
// CALLBACK 1427840290987
// CALLBACK 1427840291086
//
// Notice how the logged timestamps in each
// callback are spread out?

Callback execution time
While the event triggering mechanism has some level of control over when callback
functions are executed, we don't necessarily control how long the callbacks will
take to finish. From the event system's perspective, each callback function is a little
black box that runs to completion, due to the single-threaded nature of JavaScript.
If a disruptive callback function is thrown at the event mechanism, how do we
know which callback is at fault, so that we can diagnose and fix it?

There are two techniques that can be used to address this problem. As mentioned
earlier in the chapter, the event triggering mechanism should probably have an easy
means to turn on global event logging. From there, we can deduce the duration of any
given callback that's running, assuming we have the start and complete timestamps.
But this isn't exactly the most efficient way to enforce callback duration times.

Another technique is to set a timeout function, once a given callback function starts
running. When the timeout function runs, say after 1 second, it checks if the same
callback is still running. If so, it can explicitly raise an exception. That way, the
system explicitly fails when a callback takes too long.

Component Communication and Responsibilities

[88]

There's still a problem with this approach—what if the callback is stuck in a tight
loop? Our monitoring callback will never get an opportunity to run.

Callback

Callback

Callback

Callback

Callback

Subscription Subscription

Time

Comparing short callbacks that don't take long to execute with longer callbacks, which don't provide much
flexibility for updating the DOM, or processing queued DOM events

Callback complexity
When all else fails, it's up to us, the architects of the large-scale JavaScript application,
to make sure that the complexity of event handlers is at an appropriate level. Too
much complexity means the potential for performance bottlenecks and the freezing
of the UI—a bad user experience. If the callback functions are too fine-grained, or the
events themselves for that matter, we still face a performance problem because of the
added overhead of the event triggering mechanism itself—more callbacks to process
mean more overhead.

What's nice about the event systems that are found in most JavaScript frameworks
that support inter-component communications is that they're flexible. The frameworks
will, by default, trigger events that it feels are important. These can be ignored at no
observable performance cost to us. However, they also allow us to trigger our own
events as need be. So if we find that after a while, we've gotten carried away with the
granularity of our events, we can scale them back a little.

Once we have a grasp of what the right level of event granularity is for our
application, we can adjust our callback functions to reflect it. We can even start
writing our smaller callback functions in such a way that they can be used to
compose higher-level functions that provide more course-grained functionality.

Chapter 4

[89]

Here's an example that shows callback functions that trigger other events, and other
more focused functions listening to these events:

import Events from 'events.js';

// These callbacks trigger "logic" events. This
// small indirection keeps our logic decoupled
// from event handlers that might have to perform
// other boilerplate activities.
function callbackFirst(data) {
 data.broker.trigger('logic', {
 value: 'from first callback'
 });
}

function callbackSecond(data) {
 data.broker.trigger('logic', {
 value: 'from second callback'
 });
}

var broker = new Events();

broker.listen('click', callbackFirst);
broker.listen('click', callbackSecond);

// The "logic" callback is small, and focused. It
// doesn't have to worry about things like DOM
// access or fetching network resources.
broker.listen('logic', (data) => {
 console.log(data.name, data.value);
});

broker.trigger('click');
//
// logic from first callback
// logic from second callback

Component Communication and Responsibilities

[90]

Areas of communication responsibility
When thinking about JavaScript component communication, it's helpful to look
at the outside world, and the edges from which our application touches it. We've
mostly been focused on inter-component communication thus far—how do our
components talk to other components within the same JavaScript application?
This inter-component communication doesn't initiate itself, nor does it end here.
Scalable JavaScript code needs to consider the events that flow into and out of
the application.

Backend API
The obvious starting point is the backend API, since it defines the domain of our
application. The frontend is really just a facade for the ultimate truth of the API.
Of course, it's more than that, but the API data does ultimately constrain what we
can and cannot do with our application.

In terms of components and responsibilities, it's helpful to think about which ones
are responsible for communicating directly with the backend. When the application
needs data, it's these components that will initiate the API conversation, fetch
this data, and let me know when it has arrived so that I can hand it off to another
component. So there's actually quite a bit of inter-component communication that's
indirectly related to components that talk to the API.

For example, let's say we have a collection component, and to populate it, we have to
call a method. Does the collection know that it needs to populate itself, or create itself
for that matter? It's more likely that some other component kicked-off the creation of
the collection, then asked it to fetch some data from the API. While we know that this
initiating component doesn't directly talk to the API, we also know that it plays an
important role in the communication.

Chapter 4

[91]

This is important to think about when scaling to lots of components because they
should all follow a predictable pattern.

API

Response

Broker

Event

Component

An event broker in the frontend, directly or indirectly, translates API responses and their data into events our
components can subscribe to

Web socket updates
Web socket connections alleviate the need for long-polling in web applications.
They're used more frequently now because there's strong browser support for the
technology. There are a lot of libraries for backend servers to support web socket
connections too. The challenging part is the book-keeping that allows us to detect
a change and notify the relevant sessions by sending a message.

Backend complexities aside, web sockets do solve a lot of soft real time update
problems in the frontend. Web sockets are a bi-directional communication channel
with the backend, but where they really shine is in receiving updates, that some
model has changed state.

Component Communication and Responsibilities

[92]

This allows any of our components that might be displaying data from this model to
re-render itself.

The challenging part is that in any given frontend session, we're only allowed one
web socket connection. This means that our handler function that responds to these
messages needs to figure out what to do with them. You may recall that, earlier in
the chapter when we went over event data, and the meaningfulness of event names
and the structure of their data. Web socket message events are a good example of
why this matters. We need to figure out what to do with it, and there would be a lot
of variation in the type of web socket messages we get.

Since web socket connections are stateful, they can be dropped. This
means that we will have to face the additional challenge of implementing
code that reconnects dropped socket connections.

It would be a bad idea to let a single callback function handle all the processing of
these web socket messages, right down to the DOM. One approach might be to have
several handlers, one for each specific type of web socket update. This would get out
of hand quickly because lots of callback functions would have to run, and in terms
of responsibility, lots of components would have to be tightly coupled to the web
socket connection.

What if the component doesn't care that the updated data came from a web socket
connection? All it cares about is that the data changed. Perhaps we need to introduce
a new type of event for the components that care about data changes. Then, our web
socket handler will just need to translate the message to those types of events. This
is a scalable approach to web socket communication, because we could rip out web
sockets entirely and it wouldn't actually touch a lot of the system.

Event EventEvent

Component ComponentComponent

Broker

Web Socket
Message

An event translates one type of web socket message into entity-specific events, so only the interested
components need to subscribe

Chapter 4

[93]

DOM updates
Our components need to interact with the DOM. This goes without saying—it's
a web application that runs in the browser. It's definitely worth thinking about
components that touch the DOM, and those that don't. These are often the view
components, since they translate the data of our application into something that
is viewable by the user in their browser window.

These types of components are actually more of a challenge to scale, mostly due to
the bi-directional nature of their event flows. Adding to this challenge is the fact that
when there's any doubt about where some new piece of code should go, it's usually
the view. Then, when our views get overloaded, we start putting code in controllers,
or utilities, and who knows where else. There has to be a better way.

Let's think about view event communication for a minute. First there are the
incoming events. These tell the view that something has happened with our data and
it should update the DOM. Obligingly, it does just that. This approach is actually
really solid, and works well when the view listens to one component for events.
As we scale our application to accommodate more features and enhancements, our
views have to start figuring things out. Views work better when they're stupid.

For example, the view that initially had the responsibility of rendering one element
in response to a data event, now has to do much more. After it's finished with this,
it needs to compute some derived value, and update another element. This process
of making views "smarter" spirals out of control until we can no longer scale.

From a communication perspective, we want to think of views as a simple one-to-one
binding of data to DOM. If that principle is never violated, then it's a lot easier for us to
predict what will happen when data changes, because we know which views will be
listening to this data, and the DOM elements they're bound to.

Now for binding in the other direction—listening for changes in the DOM. The
challenge here, again, is that we tend to lean toward making our views smart. When
there's an issue with our input data, we overload the view event handler that's
triggered in response to a DOM event with responsibilities that should be fulfilled
elsewhere. Views work better when they're stupid. They should translate DOM events
into application-specific events that any other component can listen to, just like we do
with web socket message events. Our "smarter" components that actually initiate some
business process don't necessarily care that the cause for action was from the DOM.
This helps us scale by creating a smaller number of generic components, that really
don't do much.

Component Communication and Responsibilities

[94]

Loosely-coupled communication
When inter-component communication is loosely coupled, we can more easily adapt
to scaling influencers when they arise. First and foremost, a good inter-component
communication design that's event-driven allows us to move components around.
We can take a faulty or under-performing component out, and replace it with
another. Not being able to substitute components this way means that we would
have to fix the component in-place; a larger risk for delivering software and a scaling
bottleneck from a development perspective.

Another beneficial side-effect of loosely coupled inter-component communication is
that we can isolate problematic components when something goes wrong. We can
prevent exceptions that occur in one component from leaving other components in a
bad state, which just leads to further problems when the user tries to do something
else. Isolating problems like this helps us scale our responses to fix faulty components.

Substituting components
Based on the events a given component triggers and responds to, we should have an
easy time substituting a component with a different version. We still need to figure
out the inner workings of the component, because it's unlikely we want to change it
completely. But that's the easier part—the difficult part of implementing components
is wiring them together. Scalable component implementation means making this
wiring as approachable and coherent as possible.

But why is it so important that components be substitutable? We would think that
stable code, consisting of a handful of wired-together components wouldn't have
to change all that often, if at all. From this point of view, of course substitutability
is devalued—why worry about it if you don't use it? The only problem with this
mindset is that if we take scaling our JavaScript code seriously, we can't apply
principles to some components while neglecting others.

In fact, the reluctance to re-factor stable code isn't necessarily a good thing. For
example, it could actually hold us back if we have some new ideas that would require
us to re-factor stable components. What substitutability across all our components
buys us is scalability in implementing new ideas. If it's easy to experiment by pulling
out stable components and putting in new implementations, then we're more likely to
put improved design ideas into the product.

Substituting components isn't just a design-time activity. We can introduce variability,
where there will be a number of possible components that could fill a gap, and the
right component will be chosen at runtime. This flexibility means that we can easily
extend features to account for scaling influencers, such as new user roles.

Chapter 4

[95]

Some roles get one component, others get a different but compatible component,
or no component at all. The key is to support this flexibility.

Stable

Experimental
Event

Event

Component

As long as components follow the same communication protocols, usually with event triggering and handling,
developing experimental technology is easier

Handling unexpected events
Loosely coupled components help us scale our ability to address defective
components, mainly because when we're able to isolate the problem root to a single
component, we can quickly pinpoint the problem and fix it. Additionally, in the case
where the defective component is running in a production environment, we can limit
the negative impact while we implement and deliver the fix.

Defects happen—we need to accept this and design for it. We want to learn from
defects when they happen so that we don't repeat them in the future. Given that
we're on a tight schedule, releasing early and often, bugs will slip through the cracks.
These are edge cases that we haven't tested for, or unique programming errors that
slipped through our unit tests. Regardless, we need to design our component failure
modes to account for these circumstances.

One approach to isolating defective components might be to wrap any event callback
functions in a try/catch. If any unexpected exception happens, our callback simply
notifies the event system about the component being in an error state. This gives the
other handlers a chance to restore their states. If there's a faulty component in the
event callback pipeline, we can safely display an error to the user about that particular
action not working. Since the other components are all in a good state, thanks to the
notification from the bad component, the user can safely use other features.

Component Communication and Responsibilities

[96]

Following is an example that shows an event broker capable of catching callback
function errors:

// events.js
export default class Events {

 constructor() {
 this.listeners = {};
 }

 // Triggers an event...
 trigger(name, data) {
 if (!(name in this.listeners)) {
 return;
 }

 // We need this to keep track of the error state.
 var error = false,
 mapped;

 mapped = this.listeners[name].map((callback) => {
 // If the previous callback caused an error,
 // we don't run any more callbacks. The values
 // in the mapped output will be "undefined".
 if (error) {
 return;
 }

 var result;

 // Catch any exceptions thrown by the callback function,
 // and the result object sets "error" to true.
 try {
 result = callback(Object.assign({
 name: name,
 broker: this
 }, data));
 } catch (err) {
 result = { error: true };
 }

 // The callbacks can throw an exception, or just return
 // an object with the "error" property set to true. The
 // outcome is the same - we stop processing callbacks.

Chapter 4

[97]

 if (result && result.error) {
 error = true;
 }

 return result;
 });

 // Something went wrong, so we let other components know
 // by triggering an error variant of the event.
 if (error) {
 this.trigger('${name}:error');
 }
 }

}

// main.js
import Events from 'events.js';

// Callback fails by returning an error object.
function callbackError(data) {
 console.log('callback:', 'going to return an error');
 return { error: true };
}

// Callback fails by throwing an exception.
function callbackException(data) {
 console.log('callback:', 'going to raise an exception');
 throw Error;
}

var broker = new Events();

// Listens to both the regular events (the happy path),
// and the error variants.
broker.listen('shouldFail', callbackError);
broker.listen('shouldFail:error', () => {
 console.error('error returned from callback');
});

broker.listen('shouldThrow', callbackException);
broker.listen('shouldThrow:error', () => {
 console.error('exception thrown from callback');
});

Component Communication and Responsibilities

[98]

broker.trigger('shouldFail');
broker.trigger('shouldThrow');
// callback: going to return an error
// error returned from callback
// callback: going to raise an exception
// exception thrown from callback

Component layers
There's a threshold within any sufficiently large JavaScript application, where
the number of communicating components presents a scaling problem. The main
bottleneck is the complexity we create, and our inability to understand it. To fight
against this complexity, we can introduce layers. These are abstract categorical
notions that help us visually understand what's happening at runtime.

Event flow direction
One of the first things designing with layers will reveal about our code, is the
complexity of our inter-component communication in terms of event flow direction.
For example, let's say our application has three layers. The top layer is concerned
with routing, and other entry points into the UI. The middle layer has data and
business logic spread throughout. The bottom layer is where our views are found.
It's not about how many components are in these layers; while that's a factor, it's a
minor one. What's important from this perspective is the types of arrows that cross
into other layers.

For example, given the three-layered architecture described above, we would
probably notice that the most straightforward layer connections are between the
routers and the data/business logic layer. That's because the events flow mostly
in one direction: top down, from router to the layer directly beneath it. From there,
there's likely some communication that happens between some model and controller
components, but then ultimately, the event flow keeps moving downward.

Between the data/logic layer and the view layer, the communication arrows start
to look bi-directional and confusing. That's because the event flows in the code are
also bi-directional and confusing. This isn't scalable because we can't easily grasp
the effects of the events we're triggering. What's helpful for using the layered design
approach is figuring out a way to remove bi-directional event flows. This probably
means introducing a level of indirection, something that's responsible for brokering
the event between a source and a target.

Chapter 4

[99]

If we do this in a clever way, the additional moving part brings clarity instead of
clutter to our layer diagram, and the performance impact is negligible.

RouterRouter

Router

Logic

Data

View

Controller Controller

Model Model

ViewView

A discernible event flow direction between component layers has a huge impact on scalability

Mapping to developer responsibilities
Layers are an aid, not a formal architecture specification artifact. This means that we
can use them for whatever they might be helpful with. Different groups of people
might have their own layers that they use for purposes that suit their needs in
understanding complexity. However, it's more useful if the development team as a
whole follows the same layers, and that they're kept extremely simple. Going beyond
four or five layers defeats the purpose of using them.

Developers can use layers as a means of self-organization. They understand the
architecture, and they have work to do for the upcoming sprint. Let's say we
have two developers working on the same feature. They can use the layers of our
component architecture to plan their implementation, and avoid interfering with
each other's work. Things just come together seamlessly when there's a point of
reference in the bigger picture, such as a layer.

Component Communication and Responsibilities

[100]

Mentally mapping the code
Even without diagrams, just knowing that the component code we're looking at
belongs in a specific layer, helps us to mentally map what it's doing, and it's effect on
the rest of the system. Knowing the layer we're working in gives us a subconscious
context while we're coding—we know which components are our neighbors, and
when our events cross layer boundaries.

Framed in the context of a layer, new components will have glaringly obvious design
problems, relative to existing components, and their communication patterns between
layers. The existence of these layers, and the fact that they're frequently used as an
informal aid by all developers, might be enough to squash design issues early on. Or
maybe there's not really an issue, but the layers are enough to promote discussion on
design. Some of the team might learn something, and some might walk away with
self-assurance that the design is solid.

Summary
The building blocks of our JavaScript applications are components. The glue that holds
them together is the communication model used. At a low level, inter-component
communication consists of one component passing a message to another, through
a broker mechanism of some sort. This is often abstracted and simplified as an
event system.

We looked at what actually gets passed around from one component to the next in
the form of event data. This data needs to be consistent, predictable, and meaningful.
We also looked at traceable events. That is, can we globally log events as they're
triggered from the event triggering mechanism?

The boundaries of our JavaScript code are communication endpoints. We looked at the
various components with responsibilities of communication with external systems, like
the DOM, Ajax calls, or local storage. We need to insulate our smart components from
the edges of our system.

Substitutability and layers are crucial concepts for scaling. Replacing components
helps us scale by quickly developing new code with little risk. Layers help in a number
of areas by keeping the bigger picture within reach. Incorrect design assumptions are
exposed earlier on with layers.

Now it's time for us to think about scaling the addressability of our application, and
we'll see if the lessons from the last two chapters are of any value there.

Chapter 5

[101]

Addressability and Navigation
Applications that live on the web rely on addressable resources. The URI is an
essential internet technology. It eliminates a whole class of complexity, because we
can encode bits of information about resources into URI strings. That's the policy
part. The mechanism part is up to the browser, or our JavaScript code—looking up
the requested resource and displaying it.

In the past, processing URIs took place in the backend. The browser's responsibility,
when the user passed it a URI, was to send this request to the backend and display
the response. With large-scale JavaScript applications, this responsibility has shifted
mostly to the frontend. We have the tools to implement sophisticated routing in the
browser, and with that, there's less reliance on backend-technologies.

The benefits of frontend routing do come at a cost, however, once our software
packs on features. This chapter takes a deep look into the routing scenarios that
we're likely to encounter as our application architecture grows and matures. Most
low-level implementation specifics of router components from frameworks, aren't
important. We're more concerned with how well our router components adapt to
scaling influencers.

Approaches to routing
There are two approaches to routing in JavaScript. The first is using hash-based
URIs. These are the URIs that begin with the # character and this is the more popular
approach. The other less popular approach is to use the history API of the browser to
generate more traditional URIs the web population is used to. This technique is more
involved, and has only recently gained enough browser support to make it viable.

Addressability and Navigation

[102]

Hash URIs
The hash portion of the URI was originally intended to point to a specific location in
the document. So the browser would look at everything to the left of the # character,
and send this information to the backend, asking for some page content. Only when
the page arrived and was rendered did the right side of the # character become
relevant. This is when the browser used the hash portion of the URI to find the
locally relevant spot within the page.

Today, the hash portion of the URI is used differently. It's still used to avoid passing
irrelevant data to the backend when the URI changes. The main difference is that
today we're dealing with applications and features instead of web sites and static
content. Since most of the application is already loaded into the browser when the
address changes, it doesn't make sense to send unnecessary requests to backend. We
only want the data that we need for the new URI, and that's usually accomplished
with an API request in the background.

When we talk about using the hash approach to URIs in JavaScript applications and
changing the URI, it's usually only the hash portion that changes. This means that
the relevant browser events will fire, notifying our code that the URI changed. But
it won't automatically issue a request to the backend for new page content, and this
is key. We can actually get a lot of performance and efficiency gains out of frontend
routing like this, and that's one of the reasons we use this approach.

Not only does it work well, but it's easy to implement. There's not a lot of moving
parts in implementing a hash change event listener that executes logic to fetch the
relevant data, and then updates the page with the relevant content. Further, the
browser history changes are automatically handled for us.

Traditional URIs
For some users and developers, the hash approach just feels like a hack. Not to
mention the SEO challenges presented in a public internet setting. They prefer the
look and feel of the more traditional slash-separated resource name format. That's
generally possible to achieve now in all modern browsers, thanks to enhancements to
the history API. Essentially, the routing mechanism can listen for states being pushed
onto the history stack, and when that happens, it prevents the request from being
sent to the backend, and instead processes it locally.

Chapter 5

[103]

There's obviously more code required for this approach to work, and more edge
cases to think about. For example, the backend needs to support all the URIs that the
frontend router does, because the user can feed any valid URI into the application.
One technique to deal with this is a rewrite rule on the server that redirects 404
errors back to the application index page, where our real route processing lives.

That said, the router components found in most JavaScript application frameworks
abstract the differences in approach and provide a means to seamlessly go in
one direction or another. Does it matter which one is used, either for enhanced
functionality or improved scalability? Not really. But in terms of scalability, it's
important to acknowledge that there are in fact two main approaches, and that
we don't want to commit ourselves entirely to one over the other.

How routers work
Now it's time for us to dig a little deeper into routers. We want to know the
responsibilities of a router, and what it's lifecycle looks like when the URI changes.
Essentially, this amounts to the router taking the new URI and figuring out if it's
something the router is interested in. If it is, then it triggers the appropriate route
events with the parsed URI data as arguments.

Understanding the role of routers at a low-level is important for scaling our
application because the more URIs we have, and the more components we have
responding to these route events, the more potential for scaling issues. When we
know what's happening with the router lifecycle, we can make the appropriate
scaling trade-offs in response to scaling influencers.

Router responsibilities
A simplistic view of a router is just a map—there's routes, string or regular
expression pattern definitions, which map to callback functions. What's important
is that this process is fast, predictable, and stable. This is challenging to get
right, especially as the number of URIs in our application grow. Here's a rough
approximation of what any router component needs to handle:

• Storing a mapping of route patterns to their corresponding event names
• Listening to URI change events—hash change or pop state
• Performing the route pattern lookup, comparing the new URI to each

mapped pattern

Addressability and Navigation

[104]

• When a match is found, to parse the new URI according to the pattern
• Triggering the mapped route event, passing any parsed data

The route lookup process involves a linear search through
the route map to find a match. This can mean significant
performance degradation when there's lots of routes defined.
When the route mapping is an array of objects, it can also lead to
inconsistent router performance. For example, if a route is at the
end of the array, it means it's checked last and performs slowly.
If it's at the beginning of the array, it performs better.
To avoid performance degradation in frequently accessed URIs,
we could extend the router so that it sorts the route map array
by a priority property. Another approach would involve using a
trie structure, to avoid linear lookups. Of course, only consider
optimizations like these if there are so many routes that the
router performance is measurably poor.

The router has a lot to do when the URI changes, which is why it's important to
understand the lifecycle of a given route, from the time the URI changes in the
address bar, to the completion of all it's event handler functions. From a performance
perspective, lots of routes can negatively impact our application. From a composition
perspective, it's challenging to keep track of what components create and react to
which routes. This is a little easier to handle when we know what the lifecycle of any
given route looks like.

Router events
Once the router has found a match for the changed URI, and once it has parsed
the URI according to its matching pattern, its final job is to trigger the route event.
The event that's triggered is supplied as part of the mapping. The URI may encode
variables, and these get parsed and passed to each router event handler as data.

Router

Route EventRoute Event

Component

Component

Route events provide an abstraction layer, which means that components
that aren't routers can trigger route events

Chapter 5

[105]

Most frameworks ship with router components that can directly call a function
in response to a route change, instead of triggering a route event. This is actually
easier, and is a more direct approach that makes sense with smaller applications.
The indirection we get by triggering events from the router through the event
triggering mechanism is that our components are loosely coupled to the router.

This is beneficial because different components that have no knowledge of one
another can listen to the same route event. As we scale, the same routes that have
been in place for a while will need to take on new responsibilities, and it's easier to
add new handlers than it is to keep building upon the same function code. There's
also the abstraction benefit—the components that listen to route events don't care
that the event is actually triggered by a router instance. This is useful when we need
a component to trigger router-like behavior, without actually having to depend on
the router.

URI parts and patterns
With large scale JavaScript applications, a lot of thought goes into the router
component. We also need to put a lot of thought into the URIs themselves. What
are they composed of? Are they consistent throughout the application? What makes
a bad URI? Veering in the wrong direction on any of these considerations makes
scaling the addressability of our application difficult.

Encoding information
The point of a URI is that a client can just pass it to our application, and it contains
enough information that something useful can be done with it. The simplest URI
just points to a resource type, or a static location within an app—/users or /home
are respective examples of these types of URIs. Using this information, our router
can trigger a route event, and a callback function is triggered. These callbacks
wouldn't even require any arguments—they just know what to do because there's
no variability.

On the other hand, router callback functions may need a bit of context. This is when
encoding information within a URI becomes important. The most common use for
this is when the client asks for a specific instance of some resource, using a unique
identifier. For example, users/31729. Here, the router will need to find a pattern
that matches this string, and the pattern will also specify how to extract the 31729
variable. This is then passed to the callback function, which now has enough context
information to perform it's task.

Addressability and Navigation

[106]

URIs can grow large and complex if we try to encode lots of information in them.
An example of this would be encoding query parameters for a page that displays a
grid of resources. Trying to specify all the possibilities in the route pattern is difficult
and error-prone. There are bound to be changes, and unanticipated edge-cases
concerning the combinations used with the variables. Some will likely be optional.

When a given URI has this much potential for complexity, it's best to keep the
encoding options out of the URI pattern that's passed to the router. Instead, have
the callback function look at the URI and perform further parsing to figure out the
context. That keeps the route specifications neat and tidy, and the odd complex
handler isolated from everything else.

For common queries, we may want to provide a simple URI for our users, especially if
it's presented as a link. For example, recent posts would link to /posts/recent. The
handler for this URI has a few things that it needs to figure out that would otherwise
need to be encoded in the URI—such as ordering and the number of resources to fetch.
Sometimes these things don't need to be included in the URI, and decisions like these
can benefit both the user experience and the scalability of our code.

Designing URIs
Resource names are a good inspiration for the URIs we create. If the URI links
to a page that displays events, it should probably start with events. Sometimes,
however, the resources exposed by the backend have anything but intuitive names.
Or, as an organization or an industry, we like to abbreviate certain terms. These
should be avoided as well, except in the case where the context of the application
provides meaning.

The inverse is true as well—adding too much meaning in the URI can actually cause
confusion, if it's too verbose. This can be too verbose from the individual word point
of view, or from the number of URI components point of view. To help convey
structure and make it easier for human eyes to parse, URIs are usually broken down
into parts. For example, the type of thing, followed by the identifier of the thing. It's
not really helpful to the user to encode categorical or other tangential information in
the URI—it can certainly be displayed in the UI though.

Where we can, we should be consistent. If we're limiting the number of characters
for a resource name, they should all follow the same limit. If we're using slashes to
separate URI parts, it should be done the same everywhere. The whole idea behind
this is that it scales nicely for our users when there are a lot of URIs, as they can
eventually guess what a URI for something is, without having to click on a link.

Chapter 5

[107]

While being consistent, we sometimes want certain types of URIs to stand out. For
example, when we visit a page that puts a resource in a different state, or requires
input from the user, we should prefix the action with a different symbol. Let's say
we're editing a task—the URI might be /tasks/131:edit. We're being consistent
everywhere in our application, separating our URI components with slashes. So we
could have done something like /tasks/131/edit. However, this makes it seem
as though it's a different resource when really, it's the same resource as tasks/131.
Only now, the UI controls are in a different state.

Following is an example that shows some regular expressions used to test routes:

// Wildcards are used to match against parameters in URIs...
console.log('second', (/^user\/(.*)/i).exec('user/123'));
// ['user/123', '123']

// Matches against the same URI, only more restrictively...
console.log('third', (/^user\/(\d+)/i).exec('user/123'));
// ['user/123', '123']

// Doesn't match, looking for characters and we got numbers...
console.log('fourth', (/^user\/([a-z])/i).test('user/123'));
// false

// Matches, we got a range of characters...
console.log('fifth', (/^user\/([a-z]+)/i).exec('user/abc'));
// ['user/abc', 'abc']

Mapping resources to URIs
It's time to look at URIs in action. The most common form we'll find URIs in, are as
links inside our application. At least, that's the idea; to have an application that's well
connected. While the router understands what to do with URIs, we are yet to look at
all the places where these links need to be generated and inserted into the DOM.

There are two approaches to generate links. The first is a somewhat manual process
that requires the help of template engines and utility functions. The second takes a
more automated approach in an attempt to scale the manageability of many URIs.

Addressability and Navigation

[108]

Building URIs manually
If a component renders content in the DOM, it potentially builds URI strings and
adds them to link elements. This is easy enough to do when there's only a handful of
pages and URIs. The scaling issue here is that the page count and URI count found
in JavaScript applications are complimentary—lots of URIs means lots of pages and
vice-versa.

We can use the router pattern mapping configuration, the structure that specifies
what URIs look like and what happens when they're activated, as a reference
when implementing our views. With the help of a template engine, which most
frameworks use in one form or another, we can use the template features to
dynamically render links as required. Or, lacking template sophistication, we'll need
a standalone utility that can generate these URI strings for us.

This gets to be challenging when there are a lot of URIs to link, and a lot of templates.
We have at least some help from the template syntax, which makes building these
links a little less painful. But it's still time consuming and error-prone. Additionally,
we'll start to see duplicative template content, thanks to the static nature of how
we build links in the templates. We need to hard-code, at the very least, the type of
resource we're linking to.

Automating resource URIs
The vast majority of the resources we link to are actual resources from the API, and
are represented by a model or collection in our code. That being the case, it would
be nice if instead of leveraging template tools to build URIs for these resources, we
could use the same function on every model or collection to build the URI. That way,
any duplication in our templates associated with building URIs goes away because
we only care about the abstract uri() function.

This approach, while simplifying the templates, introduces a challenge with
synchronizing the model with the router. For example, the URI string that's
generated by the model needs to match the pattern that the router is expecting to
see. So either, the implementer needs to be disciplined enough to keep the URI
generation of the model in sync with the router, or the model somehow needs to
base how it generates the URI string on the pattern.

Chapter 5

[109]

If the router uses some kind of simplified regular expression syntax for building
URI patterns, it's possible to keep the uri() function implemented by the model
automatically synced by the route definition. The challenge there is that the model
needs to know about the router—which can present a dependency scaling issue—we
sometimes want models and not necessarily the router. What if our model stored
the URI pattern that gets registered with the router? Then it could use this pattern to
generate URI strings, and it's still only ever changed in one place. Another component
would then register the pattern with the router, so there's no tight coupling with
the model.

Following is an example that shows how the URI strings can be encapsulated in
models, away from other components:

// router.js
import events from 'events.js';

// The router is also an event broker...
export default class Router {

 constructor() {
 this.routes = [];
 }

 // Adds a given "pattern" and triggers event "name"
 // when activated.
 add(pattern, name) {
 this.routes.push({
 pattern: new RegExp('^' +
 pattern.replace(/:\w+/g, '(.*)')),
 name: name
 });
 }

 // Adds any configured routes, and starts listening
 // for navigation events.
 start() {
 var onHashChange = () => {
 for (let route of this.routes) {
 let result = route.pattern.exec(
 location.hash.substr(1));
 if (result) {
 events.trigger('route:' + route.name, {
 values: result.splice(1)

Addressability and Navigation

[110]

 });
 break;
 }
 }
 };

 window.addEventListener('hashchange', onHashChange);
 onHashChange();
 }

}

// model.js
export default class Model {

 constructor(pattern, id) {
 this.pattern = pattern;
 this.id = id;
 }

 // Generates the URI string for this model. The pattern is
 // passed in as a constructor argument. This means that code
 // that needs to generate URI strings, like DOM manipulation
 // code, can just ask the model for the URI.
 get uri() {
 return '#' + this.pattern.replace(/:\w+/, this.id);
 }

}

// user.js
import Model from 'model.js';

export default class User extends Model {

 // The URI pattern for instances of this model is
 // encapsulated in this static method.
 static pattern() {
 return 'user/:id';
 }

 constructor(id) {
 super(User.pattern(), id);

Chapter 5

[111]

 }

}

// group.js
import Model from 'model.js';

export default class Group extends Model {

 // The "pattern()" method is static because
 // all instances of "Group" models will use the
 // same route pattern.
 static pattern() {
 return 'group/:id';
 }

 constructor(id) {
 super(Group.pattern(), id);
 }

}

// main.js
import Router from 'router.js';
import events from 'events.js';
import User from 'user.js';
import Group from 'group.js';

var router = new Router()

// Add routes using the "pattern()" static method. There's
// no need to hard-code any routes here.
router.add(User.pattern(), 'user');
router.add(Group.pattern(), 'group');

// Setup functions that respond to routes...
events.listen('route:user', (data) => {
 console.log(`User ${data.values[0]} activated`);
});

events.listen('route:group', (data) => {
 console.log(`Group ${data.values[0]} activated`);

Addressability and Navigation

[112]

});

// Construct new models, and user their "uri" property
// in the DOM. Again, nothing related to routing patterns
// need to be hard-coded here.
var user = new User(1);
document.querySelector('.user').href = user.uri;

var group = new Group(1);
document.querySelector('.group').href = group.uri;

router.start();

Triggering routes
The most common route trigger is in the form of a user clicking a link within our
application. As discussed in the preceding section, we need to equip our link
generating mechanism to handle many pages, and many URIs. Another dimension
of this scaling influencer is the actual triggering actions themselves. For instance,
with smaller applications, there are obviously fewer links. So this also translates
to fewer click events from the user—more navigation choices means higher event
triggering frequency.

It's also important to consider the lesser known navigation actors. These include
redirecting the user in response to some backend task completing, or just a
straight-up work-around, to get from point A to point B.

User actions
When the user clicks a link in our application, the browser picks this up and changes
the URI. This includes the entry point into our application—maybe from another
web site or from a bookmark. This is what makes links and URIs so flexible, they can
come from anywhere and point to anything. It makes sense to utilize links where we
can because it means that our application is well connected, and processing a URI
change is something our router excels at and can handle with ease.

But there're other ways to trigger URI changes and the subsequent router workflow.
For example, let's say we're on a create event form. We submit the form, and the
response comes back successful—do we want to leave the user at the create event
page? Or do we want to take them to the page that shows the list of events, so they
can see the event they just added? In the latter case, manually changing the URI
makes sense and is very easy to implement.

Chapter 5

[113]

Browser Address

Link Location API

Component

The different ways our application can change the address bar

Redirecting users
Redirecting users to a new route as the result of a successful API response is a good
example of manually triggering the router. There are several other scenarios where
we would want to redirect the user from where they currently are to a new page
that coincides with the activity they're performing, or to make sure they're simply
observing the correct information.

Not all heavy processing need happen in the backend—we could be faced with a
local JavaScript component that runs a process, and upon completion, we want to
take the user to another page within our app.

The key idea here is that the effect is more important than the cause—we don't
care so much about what causes the URI change. What really matters is the ability
to use the router in unforeseen ways. As our application scales, we'll be faced with
scenarios where the way out is usually by a quick and simple router hack. Having
total control over the navigation of our application gives us much more control over
the way our application scales.

Router configuration
The mapping of our routes to their events is often lager than the router implementation
itself. That's because as our application grows and acquires more route patterns, the list
of possibilities gets bigger. A lot of the time, this is an unavoidable consequence of an
application that's meeting its scaling demands. The trick is to not let a large number of
route declarations collapse under their own weight, and this can happen in a number
of ways.

There's more than one approach to configuring the routes that a given router instance
responds to. Depending on the framework we're using, the router component may
have more flexibility in how they're configured than others. Generally speaking,
there's the static route approach, or the event registration approach. We'll also want
to consider the router's ability to disable a given route at any given time.

Addressability and Navigation

[114]

Static route declarations
Simple applications usually configure their routers with a static declaration.
This usually means a mapping of route patterns to callback functions, all at router
creation time. What's nice about this approach is the relative locality of all the route
patterns. At a glance, we can see what's happening with our route configuration,
and we don't have to go hunting for specific route. However, this doesn't work is
when there are lots of routes because we have to search for them. Also, there's no
separation of concerns, and this doesn't play well with developers trying to do their
thing independently of each other.

Registration events
When there are a lot of routes to define, the focus should be on encapsulated
routes—which components need these routes, and how do they tell the router about
them? Well, most routers will allow us to simply call a method that lets us add a new
route configuration. Then we just need to include the router and add the routes from
the component.

This is definitely a step in the right direction; it allows us to keep the route
declarations in the components that need them, rather than kludging together an
entire applications' worth of route configurations into a single object. However, we
can take this scalability a step further.

Rather than having our components directly depend on a router instance, why not
trigger an add route event? This will get picked up by any router that's listening for
the event. Perhaps our application is using multiple router instances, each of which
have their own specializations—logging, say—and they can all listen for added
routes based on specific criteria. The point is, our components shouldn't have to care
about the router instance, only that something is going to trigger route events when
a given pattern matches against a URI change.

Router

Broker

Component

Trigger RouteRegister Route

How to keep components isolated from routers by using events

Chapter 5

[115]

Deactivating routes
After we've configured a given route, do we assume that it'll always be a viable route
throughout the duration of the session? Or, should the router have some means
to deactivate a given route? It depends on how we look at specific cases from a
responsibility perspective.

For example, if something has happened, and some route should no longer be
accessible—trying it just results in a user-friendly error—the route handler function
can check whether the route is accessible or not. However, this adds complexity to
the callback functions themselves, and this complexity will be sprinkled throughout
the application in callbacks, rather than being self-contained in one place.

An alternative approach would be to have some sanity-checking component that
deactivates routes when components enter states that warrant doing so. This same
component would also enable routes when the state changes into something the
route can handle.

A third approach would be to add a guard function as an option when the route
is first registered. When the route is matched, it runs through this function, and if
it passes the guard, then it is activated normally, otherwise, it fails. This approach
scales best because the state that's checked; is tightly coupled with the relevant route,
and there's no need to toggle between enabled/disabled states for routes. Think of a
guard function as part of the matching criteria for routes.

Following is an example that shows a router that accepts guard condition functions.
Route events aren't triggered if this guard function exists and returns false:

// router.js
import events from 'events.js';

// The router triggers events in response to
// route changes.
export default class Router {

 constructor() {
 this.routes = [];
 }

 // Adds a new route, with an optional
 // guard function.
 add(pattern, name, guard) {
 this.routes.push({
 pattern: new RegExp('^' +

Addressability and Navigation

[116]

 pattern.replace(/:\w+/g, '(.*)')),
 name: name,
 guard: guard
 });
 }

 start() {
 var onHashChange = () => {
 for (let route of this.routes) {
 let guard = route.guard;
 let result = route.pattern.exec(
 location.hash.substr(1));

 // If a match is found, and there's a guard
 // condition, evaluate it. The event is only
 // triggered if this passes.
 if (result) {
 if (typeof guard === 'function' && guard()) {
 events.trigger('route:' + route.name, {
 values: result.splice(1)
 });
 }
 break;
 }
 }
 };

 window.addEventListener('hashchange', onHashChange);
 onHashChange();
 }

}

// main.js
import Router from 'router.js';
import events from 'events.js';

var router = new Router()

// Function that can be used as a guard condition
// with any route we declare. It's returning a random
// value to demonstrate the various outcomes, but this

Chapter 5

[117]

// could be anything that we want applied to all our routes.
function isAuthorized() {
 return !!Math.round(Math.random());
}

// The first route doesn't have a guard condition,
// and will always trigger a route event. The second
// route will only trigger a route event if the given
// callback function returns true.
router.add('open', 'open');
router.add('guarded', 'guarded', isAuthorized);

events.listen('route:open', () => {
 console.log('open route is always accessible');
});

events.listen('route:guarded', (data) => {
 console.log('made it past the guard function!');
});

router.start();

Troubleshooting routers
Once our routers grow to a sufficiently large size, we'll have to troubleshoot complex
scenarios. If we know what the likely issues are beforehand, we'll be better equipped
to deal with them. We can also build troubleshooting tools into our router instances
to aid in the process. Scaling the addressability of our architecture means responding
to issues quickly and predictably.

Conflicting routes
Conflicting routes can cause a massive headache because they can be really tricky
to track down. A conflicting pattern is a general or similar version of more specific
patterns added to the router later on. The more general pattern conflicts, because
it's matched against the most specific URIs, which should have been matched by
the more specific patterns. However, they're never tested because the general route
is executed first.

Addressability and Navigation

[118]

When this happens, it may not be apparent at all that there's an issue with the
routing because the incorrect route handler will run perfectly fine, and in the UI,
everything will seem normal—except for one thing that's slightly off. If routes
are processed in FIFO order, specificity matters. That is, if the more general route
patterns are added first, then they'll always match against the more specific URI
strings, as they're activated.

The challenge with ordering URIs like this when there's lots of them, is that it's
time-consuming work. We have to compare the ordering of any new routes we may
add to the patterns of existing routes. There's also the potential for conflicts between
developer commitments if they're all being added to the same place. This is another
advantage of separating routes by component. It makes potentially conflicting routes
a lot easier to spot and deal with, because the component likely has a small number
of similar URI patterns.

Following is an example that shows a router component with two conflicting routes:

// Finds the first matching route in "routes" - tested
// against "uri".
function match() {
 for (let route of routes) {
 if (route.route.test(uri)) {
 console.log('match', route.name);
 break;
 }
 }
}

var uri = 'users/abc';

var routes = [
 { route: /^users/, name: 'users' },
 { route: /^users\/(\w+)/, name: 'user' }
];

match();
// match users
// Note that this probably isn't expected behavior
// if we look closely at the "uri". This illustrates
// the importance of order, when testing against a
// collection of URIs specs.

routes.reverse();

match();
// match user

Chapter 5

[119]

Logging initial configuration
Routers shouldn't start listening to URI change events until they're configured with
all the relevant routes. For example, if individual components configure the router
with the routes required by that component, we wouldn't want the router to start
listening for URI change events until the component has a chance to configure
its routes.

The main application component that initializes its subordinate components would
probably bootstrap this process, and when completed, tell the router to start. When
individual components have their own routes encapsulated within, it can be difficult,
during development, to grasp the router configuration in its entirety. For this, we
need an option in our router that will log its entire configuration—the patterns,
and the events they trigger. This helps us scale because we don't have to sacrifice
modular routes to get the big picture.

Logging route events
In addition to logging the initial route configuration, it's helpful if the router can log
the lifecycle that takes place when a URI change event is triggered. This is different
from the event mechanism logging that we discussed in the preceding chapter—
these events will log after the router triggers a route event.

If we're building a large-scale JavaScript architecture with lots of routes, we'll want
to know everything about our router, and how it behaves at runtime. The router is
so fundamental to the scalability of our application that we'll want to invest in the
minute details here.

For example, it can be useful to get an idea of what the router is doing as it's
walking through the available routes, looking for a match. It's also useful to see
the result of what's parsed out of the URI string by the router, so that we can
compare that to what's seen by the route event handlers downstream. Not all router
components will support this level of logging. If it turns out that we need it, some
frameworks will provide sufficient entry points into their components, along with
good extension mechanisms.

Addressability and Navigation

[120]

Handling invalid resource states
Sometimes, we forget that the router is stateless; it takes a URI string as input, and
triggers events based on pattern-matching criteria. A scaling problem related to
addressability isn't with the router state, but the state of components that listen
to routes.

For example, imagine we navigate away from one resource to another. While we're
visiting this new resource, a lot can happen with that first resource. Well, it's easy for
it to change in ways that make it illegal for this particular user to visit, meanwhile,
it's in their history and all they need to do is hit the back button.

It's edge cases like these that routers and addressability can introduce into our
application. It's not, however, the responsibility of the router to handle these edge
cases. They happen due to a combination of lots of URIs, lots of components, and
complex business rules that tie them all together. The router is just a mechanism
to help us cope with large-scale policies, not a place to implement policies.

Summary
This chapter went into detail on addressability, and how to achieve this architectural
property as our application scales.

We began our discussion of routing and addressability with a look at the different
approaches to routing—the hash change event and utilizing the history API available
in modern browsers. Most frameworks abstract the differences away for us. Next,
we looked at the responsibilities of routers, and how they should be decoupled from
other components through triggering events.

The design of URIs themselves also plays a role in the scalability of our software,
because they need to be consistent and predictable. Even the users can use this
predictability to help themselves scale the use of our software. URIs encode
information which is then relayed to our handlers that respond to routes; this also
needs to be taken into consideration.

We then looked at the various ways in which routes are triggered. The standard
approach here is to click a link. If our application is well connected, it's going
to have links all over the place. To help us scale lots of links, we need a way to
generate URI strings automatically. Next, we're going to look at the metadata our
components need in order to function. These are the user preferences and default
values for our components.

Chapter 6

[121]

User Preferences and
Defaults

Any sufficiently large JavaScript application needs to configure its components.
The scope and nature of our component configuration varies on an application-by-
application basis. There are a number of scaling factors that need to be considered
when configuring our components, and we'll address these throughout the chapter.

We'll start of by identifying the types of preferences we'll have to deal with, and the
remainder of the chapter will walk through specific scaling issues concerning these
preferences and how to work around them.

Preference types
There're three main types of preferences we're concerned with when designing
large-scale JavaScript architectures. These are locales, behavior, and appearance.
In this section we'll provide a definition for each of the preference categories.

Locales
Applications today can't support just a single locale, if they're going to succeed on
a global scale. Because of globalization and the internet, demand for applications
created in another part of the world is the new norm. Therefore, we have to design
our JavaScript architectures in a way that accommodates many locales, seamlessly.
Users in one locale should be able to use our application with the same ease and
confidence as users in any other locale.

User Preferences and Defaults

[122]

The process of enabling components to use any locale is called
internationalization. Then, the process of creating locale-specific
data for our application is called localization.

What makes internationalization/localization so difficult is that it touches every visual
aspect of the user interface. This can amount to quite a lot, despite the fact that there
are many components that don't care about locales—like controllers or collections.
For example, any string labels that would otherwise be hard-coded in a template
somewhere, now need to pass through a locale-aware translation mechanism.

The language translations are hard enough on their own. But locale data consists of
anything and everything that's pertinent to a given culture that's using our software.
For example, the formats used for date/time or currency values. These are just the
most common and straightforward elements. Things can vary right down to how
quantities are measured, or right up to the layout of the entire page.

Behavior
Most behavioral aspects of our components reside in the code, and are unchanging.
Behavioral changes that happen in response to different preferences are subtle, yet
important. When there're many interacting components, there's bound to be an
incompatible combination that causes issues.

For example, a function found within the implementation of our component might get
a value it uses to compute something from a configuration value. This could be a user
preference, or it could be something we've put in place for the sake of maintainability.

Throughout the remainder of the chapter, we'll refer to individual
configuration values as preferences. We'll refer to the aggregate effect
of all preferences within a given component as configuration.

Behavioral preferences can have varied effects on what the user sees. A simple
example would be turning the component off, or, disabling it. This preference would
result in the component no longer rendering in the UI. Another preference would
determine how many elements are displayed. A common example here would be a
user telling the application how many search results they want to see per page.

These types of preferences don't always map directly to the end user. That is, a
component may have certain preferences that aren't directly exposed to the user.
It could be there for the sole purpose of developer flexibility, to reduce the amount
of code we write. Configurable components take many forms, and it's from this
perspective that we need to make sure we address them accordingly, to help scale
our software.

Chapter 6

[123]

It's not just the frontend components we need to think about either, as a given
preference may change backend behavior. This could be as simple as a query
parameter preference, or another preference that results in a different API endpoint
being used. All these seemingly innocuous preferences add up to far-reaching
consequences, across the application, possibly impacting other users of the system.

Appearance
If a modern JavaScript application is going to scale across audience demographics,
its appearance needs to be configurable. This requirement can range anywhere from
a configurable logo, to interchangeable themes that have the potential to drastically
alter the look and feel of the UI.

Generally speaking, changes in appearance are centered around CSS properties like
fonts, colors, widths, border radiuses, and so on. While it's true that the majority of
the CSS implementation isn't touched by the majority of JavaScript developers, we
still need to be conscious of theme boundaries.

For instance, if we're flexible with our appearance and how it's configured, we may
let our users select their own theme at runtime. So we'll need to implement a theme-
switching mechanism with which the user interacts. Further, themed UIs mean that
the preference will need to be stored and loaded somewhere.

So that's coarse-grained themes—what about fine-grained appearance configuration?
The former is more prevalent however, configuring specific styles of individual
components isn't out of the question. The appearance granularity level coincides
with other scaling influencers, like where our software is deployed, and the
capabilities of our configuration APIs.

Supporting locales
Having internationalization support throughout all our components is a good idea.
In fact, there're a lot of JavaScript tools out there to aid with this task. Some are more
stand-alone, and some are more tailored for specific frameworks. Using these tools is
easy, but there's a lot more to localization that needs to be taken into consideration,
especially in a scaling context.

Deciding on locales to support
Once we have software with internationalization support that's in production use,
the next step is to decide which locales to support. When we go through the first
step of ensuring that all our components are internationalized, we do so with just
one locale—the default locale. And that's fine at first, it may be years before our first
secondary locale support requirement.

This is generally what happens with newer software projects. We know that
internationalization should be up there on our list of priorities, but it's easy to get
sidetracked with everything else going on. The leading argument in favor of not
spending effort on locale support is that it's not needed right away. The argument
against this mindset is that internationalization is exceedingly difficult to implement
after-the-fact, as our components grow. So it's yet another scale-related trade off to
make. Do we want our application to scale across cultures, or is immediate time-to-
market more important?

Exceptional cases aside, we'll assume that internationalization is a must-have—we
need to prioritize which locales we'll support, versus those that can wait. For example,
it's a bad idea to aim for mass locale support before it's actually required. Locales
occupy physical space, and someone needs to maintain these locales. So without a
customer to pay the cost of this added scaling complexity, it's not worthwhile.

Instead, the chosen locales should be based solely on customer demand. If we have
hundreds of people looking for support in one locale, with less than a dozen people
asking about another, the priority should be obvious. It can be helpful if we prioritize
locale support the same as we would feature support.

Maintaining locales
First and foremost, if we support a given locale, we'll need to translate the string
messages that are displayed throughout the UI. Some of these are statically coded in
template files while other strings are found in our JavaScript modules. If only it were
a matter of locating these strings, and translating them once. But rarely do strings
stay the same forever—there are often subtle tweaks to be had. Also, as our software
grows and more components are added, so too are strings to be translated.

The scaling factor for just string translations alone is the number of locales we
support—which is why we need to be conscientiously supporting only a limited
number of locales while we can get away with it. The complexity doesn't end there.
For example, some message strings are straightforward to map from source language
to target language. Things like grammar inflection—how words take on different
meanings based modifications—aren't so straightforward. In fact, these usages
sometimes require specialized use of the internationalization library.

Other localizable data, like date/time formats, don't require much maintenance.
There're one or two formats used throughout the application for a given locale. For
formats like these, customers will likely be happy with the standard format used
for their culture. Luckily, there's Common Locale Data Repository (CLDR) data we
can use in our projects—a downloadable repository of common locale data. This is a
good starting point, because this data is good enough most of the time, and is easy to
override upon request.

Setting the locale
Once we have our internationalization library in place, and a couple of locales, we can
start testing how our application behaves from the perspective of different cultures.
There are a number of items to consider for this behavior. For example, we need to
facilitate the locale selection for the user and we need to keep track of that selection.

Choosing locales
There are two common approaches to locale selection in JavaScript applications. The
first approach is using the accept-language request header. The second approach is
a selector widget on a user settings page.

The nice thing about the accept-language approach is that there's no user input
involved. Our application is sent to the user's browser preference for language,
and from there, we can set the locale. The challenge is that this approach can be too
restrictive from a usability perspective, and from an implementation perspective.
For example, users may not have control over their browser language preferences,
or the browser may not have preferences for locales our application supports.

Another technical challenge with the accept-language request
header approach is that there's no easy means to pass request headers
from the browser to the JavaScript code—which is kind of insane since
there're both in the browser! For example, if our JavaScript code needs
to know the locale preference so it can load the appropriate locale data,
it'll need access to the accept-language header. To do this, we need
backend hacks.

The more flexible approach is to present the user with a locale selector widget, and
from there, it's made explicit which locale the user would like activated. However,
we'll need to figure out a way to store this locale selection so that the user doesn't
have to repeatedly select their locale.

Storing locale preferences
The locale preference, once selected by the user, can be stored as a cookie value. The
next time the application loads in the browser, we'll have the locale preference ready
to go. Then we can mark the selector with the appropriate selection, as well as load
the relevant locale data.

The problem with storing the locale preference in a cookie is that if the user moves
to another browser, the same selection process will need to be repeated. This can be
a real problem these days as users are more mobile than ever—changes made on
one device should be reflected anywhere the application is used. And that's just not
possible with cookies.

If we use a backend API to store the locale preference, it'll be available everywhere
for the user. The next challenge is loading the relevant locale data so that it's
available for the rest of our components to use. Generally, we want this data ready
before we start rendering data, so it's one of the first requests we'll make to the
backend. Sometimes, all locales are served together, as one resource. This can be
a problem if we support lots of locales, because of the up-front cost to load it.

On the other hand, once we load the locale preference, we can load only the
immediately required locale. This will boost the initial load-time, but the trade-off
is that it's slower to switch to a new locale. This is unlikely to happen often, so it's
probably best to not load locale data that's never used.

Locale Preference Locale Data

Application

Back-end

The JavaScript application first loads the locale preference, then uses that to load the local data

Locales in URIs
In addition to storing the local preference in the backend or as a cookie value, locales
can be encoded as part of the URI. Often, they're expressed as a two character code—
such as en or fr—and found at the beginning of the URI. The advantage of using this
approach is that there's no storage required for the preference. We'd still likely want
a selector for the user to choose their preferred locale, but this would result in a new
URI instead of a preference value being stored somewhere.

Encoding the preferred locale in URIs like this has the same drawbacks as the
cookie-based approach. While we can bookmark a URI, or pass a URI along to
someone else—they'll see the same locale we do—the problem is that this isn't a
permanent preference. Mind you, we could always store the preference and update
the URI when the application is loaded. But this won't scale well due to the added
complexities around routing and URI generation.

Generic component configuration
As we saw in the preceding section on locale preferences, we need to load a
preference value, which can then be used by each of our components. Or maybe just
one component in the case of locales, but this preference value indirectly impacts
all components. Looking beyond locales, there're a lot of other things we'll want
to configure in our components. This section looks at the problem from a generic
perspective. First we need to decide on which aspects of a given component are
configurable, and then there are the mechanics of getting those preferences into the
components at runtime.

Deciding on configuration values
The first step with component configuration is deciding on preferences—which
aspects of the component need to be configurable, and which aspects can stay
static? It's far from an exact science, as more often than not, we realize later on that
something static should have been configurable. Trial and error is the best process
for finding configurable preferences, especially as our software is just getting off the
ground. Too much initial configurability deliberation is a scaling bottleneck.

When something isn't configurable, it has the advantage of simplicity. It's more
structural, and less of a moving part. This removes potential edge cases and
performance issues. Up-front justification for making the value configurable
doesn't happen all that often. As our software matures though, we'll have a better
perspective, having put some preferences in place, and we'll have a better idea of
what to expect.

For instance, we'll start seeing duplication across several of our components. They'll
be largely the same, with only subtle variations. If we keep adding new types of
components that differ minutely from one another, we're in for scaling trouble. Our
code base will grow to an unmanageable size, and we'll confuse developers because
the responsibilities of a given component will be blurred.

This is where we leverage configurability to achieve scale. This is done by introducing
preferences in favor of new component types. For example, say we need a new view
that is identical to another view that's used in several places already, aside from the
way it handles a DOM event. Rather than implement a new view type, we would
enhance the existing view, to accept a new function value that overrides the default
for this event.

On the flipside, we can't just go introducing component preferences willy-nilly. When
we do that, we replace old scaling bottlenecks with new ones. There's performance to
take into consideration, because it takes a hit with every new configurable preference
we add. There's the code complexity—it's not as straightforward to use preferences
as it is static values. There's the possibility of introducing preferences that are
inconsistent with other preferences introduced during the same development cycle by
other developers. Finally, there's the matter of keeping track and documenting all the
various preferences available to a given component.

Stored and hard-coded default values
As far as components are concerned, preferences should be treated as closely to regular
JavaScript variables as possible. This keeps our code flexible—replacing a preference
with a static value shouldn't have a big impact. Regular variables are usually declared
with an initial value, and preferences should be declared with a default value as well.
That way, if we can't get at the preference that's stored in the backend for some reason,
the software will continue to function using a sane default value.

There should always be a fallback default value for any preference, and these
values should be documented somewhere. Ideally the default values used serve the
common case, so not every preference needs to be tinkered with just in order to use
the software. If for some reason we can't access the stored configuration values from
the backend, the hard-coded default values keep the software running, albeit, using
a less than ideal configuration.

Sometimes, not having access to the configuration values is a non-
starter and the software should fail-fast instead of using the hard-coded
default values. While the software is fully-functional using the defaults,
depending on our customers and their deployment, this mode may be
worse than the software being unavailable. Something to consider when
deploying large-scale JavaScript applications.

Default preference values make it safe to delete modified preference values in the
backend. Think of it as a reset to the factory settings action. In other words, if we
introduce problems into the software by adjusting preference values, we can just
remove our stored values. If there's no need to store default values in the backend,
then there's no risk of overriding the defaults.

Configuration Store

Value

Component

Default Value

Defaults are always there, but can easily be overridden by preference values from the backend

Backend implications
If we're storing our preference values in the backend to provide portability for our
users, then we need some mechanism that allows us to put new value preferences
in the configuration store, as well as retrieve our preferences. Ideally, this would be
an API that lets us define arbitrary key-value preferences, and lets us retrieve all our
configuration with one request.

The reason this is so valuable to frontend development is that we can define new
preferences for our components as we develop them, without being disruptive to
the backend team. As far as the backend API is concerned, frontend configuration
is arbitrary—the API works the same with or without a UI.

Sometimes, this can actually be more of a headache than it's worth. What if there's
very little variation—only a handful of configuration values required throughout
the application? If that's the case, we might consider maintaining a static JSON file
that serves as our frontend configuration. It's arbitrary enough that we can define
preferences ad-hoc, and it works the same as an API, as far as fetching the preference
values goes.

Where this doesn't work so well is when there are user-defined preferences.
For example, the user's preferred locale. Our application might have a default
locale specified, until the user changes it. They're changing the preference for
themselves, not every user in the system. This is where we need the aforementioned
configuration API. The way it stores these values, in a database most likely, needs to
be user-sensitive. This isn't true of every preference value though; some are set by
the deployment operators and users can't touch these.

Application

Configuration Store

System Preference

User Preference

Session

The current user session can be used to load preferences specific to that user; these are different
from system settings, which don't vary by user

Loading configuration values
There're two approaches to loading configuration required by the frontend. The
first approach is to load all configuration because anything is rendered in the UI.
This means that before the router starts to process anything, we would wait for
the configuration to be available. This generally means waiting on a promise that
loads the configuration data. The obvious downside here is that the initial load time
suffers. The upside is that we have everything we need going forward—no more
configuration requests.

We can use local storage in the browser to cache preference values. They seldom
change, and this tactic has the potential to boost initial-load performance. On the
other hand, it adds complexity—so only consider this if there're a lot of configuration
values and the time taken to load them is noticeable.

Instead of loading all our configuration up-front, preference values can be loaded
on demand. That is, when a component is about to be instantiated, a request is made
for its configuration. This has the appeal of being efficient, but again, how much
configuration could there possibly be to warrant such complexity? Strive toward
loading all application configuration up-front where possible.

Component Component

Configuration

Back-end

A configuration component that communicates with the backend provides an abstraction for
any components that get or set preference values

Configuring behavior
The behavior of our components is largely self-contained, if implemented well. What
they expose to the outside world are preferences that make subtle adjustments to
their behavior. This could be something that's internally-focused—such as the type
of model that's used, or the preferred algorithm. It could be something that's user-
facing, such as enabling components, or setting display modes. It's these preferences
that help us scale our components to work in a variety of contexts.

Enabling and disabling components
Once our software reaches a certain critical mass, not all features will be relevant
to all users. The simple ability to toggle components between an enabled/disabled
state is a powerful tool. Both for us, as a software vendor, and for our customers.
For example, we know that some features are required by certain user roles in our
software, but they're not the common case. To better optimize for the common user,
we may choose to disable certain advanced features that aren't used as often. This
can clean up the layout, improve performance, and so on.

On the other hand, we may have all our features turned on by default, but if
components have the ability to be turned off, then that lets the user decide what's
relevant to them. If they can arrange the UI to their liking, removing elements that
are of no particular use to them, then it makes for a better user experience.

In either case, there're implications as far as the layout as a whole is concerned. If we
don't take the time to design our layouts in a scalable way, then toggling components
really doesn't add any value. During the design of our layout, we need to walk
through the various configuration scenarios that the user might use, or that we
ourselves might use.

Page Page

Component Component

Component

Component

Component

Component

Component

Disabling components on a page has the potential to update the layout; our styles
need to by able to handle this

Changing quantities
The quantity of something displayed in the UI is something that's at best a guess
made at design time. We hope that the number of items displayed in a list is the
optimal number, and the user doesn't have to fuss with changing these types of
preferences. The problem is that quantities are very subjective. It's more about the
individual that's using our application to perform a task, and depending on what
they're used to, what they're doing in conjunction with using our software, and a
host of other factors, the quantity preference default may not be optimal.

A common quantity question is how many entities do I want displayed on my
screen? The entities can be common grid widgets that're used throughout the
application, a search results page, or anything else that renders a collection of
things. We can opt for the efficient default of a smaller quantity to display,
while allowing for larger quantities that suit the user's needs.

It's always a good idea to sanity-check the user provided preferences.
One safeguard is to put a selection of allowable values in place, rather
than accepting arbitrary user input. We shouldn't allow for 1,000 entities
to be rendered in a grid, for instance. Although, the API that returns this
data should sanity-check and cap quantity arguments as well.

Another quantity consideration is which entity properties do we need displayed?
In the case of grids, we may want to see certain columns while hiding others.
Something like this is a preference that ought to be persistent, because if we go
through the effort of setting up the data we want to see, we won't want to repeat
that effort.

When we change quantity preferences, there're backend implications. In the case of
how many entities to render, we probably want to pass this constraint along to the
API when we're fetching the data—there's no point in fetching something we're not
going to display. There may be model or collection implications as well. In the case
of figuring out which data we want displayed in a particular UI region, we might
ask the model or collection for only a subset of what they have.

Changing order
The order in which a collection is rendered in the UI is another common behavioral
preference, one that we'll most likely want to support. The biggest impact here is
configuring the default order of something. For example, ordering every collection
by the modified date, so that the most recent entities appear first, is a good default.

Many grid components will let the user toggle the ordering of a given column
between ascending and descending. These are actions, not necessarily preferences.
However, they can grow to be annoying actions if the default order is never what
we want. So we may want to introduce a means for the user to provide a default
ordering preference for any given grid, while retaining the ability click column
headers to sort ad-hoc.

More complex ordering preferences are possible, and clickable column headers don't
always help here. For instance, what if we want to order by something that's not
actually rendered in the UI, like relevance or best selling? There's probably a control
we can use for this, but it's another potential preference—since it could help provide
a better experience.

// users.js
export default class Users {

 // Accepts a "collection" array, and an "order"
 // string.
 constructor(collection, order) {
 this.collection = collection;
 this.order = order;

 // Creates an iterator so we can iterate over

 // the "collection" array without having to
 // directly access it.
 this[Symbol.iterator] = function*() {
 for (let user of this.collection) {
 yield user;
 }
 };
 }

 set order(order) {

 // When the order break it down into it's parts,
 // the "key" and the "direction".
 var [key, direction] = order.split(' ');

 // Sorts the collection. If the property value can be
 // converted to lower case, they it's converted to avoid
 // case inconsistencies.
 this.collection.sort((a, b) => {
 var aValue = typeof a[key].toLowerCase === 'function' ?
 a[key].toLowerCase() : a[key];

 var bValue = typeof b[key].toLowerCase === 'function' ?
 b[key].toLowerCase() : b[key];

 if (aValue < bValue) {
 return -1;
 } else if (aValue > bValue) {
 return 1;
 } else {
 return 0;
 }
 });

 // If the direction is "desc", we need to reverse the sort.
 if (direction === 'desc') {
 this.collection.reverse();
 }
 }

}

// main.js

import Users from 'users.js';

var users = new Users([
 { name: 'Albert' },
 { name: 'Craig' },
 { name: 'Beth' }
], 'name');

console.log('Ascending order...');
for (let user of users) {
 console.log(user.name);
}
//
// Albert
// Beth
// Craig

users.order = 'name desc';

console.log('Descending order...');
for (let user of users) {
 console.log(user.name);
}
//
// Craig
// Beth
// Albert

Configuring notifications
When users perform some action in our application, like turning something on or off,
we need to provide feedback on the state of that action. Did it succeed? Did it fail?
Is it running? These are generally done through notifications, rendered as transient
popups in the corner of the screen, or in a panel somewhere.

The user may want to control certain aspects about how they're notified—there's
nothing more irritating than getting spammed with information we don't care about.
So one preference related to notifications might be a selection of notification topics.
For example, we might want to opt out of notifications for irrelevant entity types.

Another potential preference might be the duration that a given notification stays
active on the screen. For example, should it stay where it is till we acknowledge it, or
should it go away after three seconds? In the extreme case, the user may want to turn
off notifications altogether if there's no other way to make them less annoying. There
are always the action logs for convenient browsing later on if need be.

Inline options
How do we collect user preference input? For the less active, global application
preferences, a settings page divided into categories probably makes sense. However,
having to configure things specific to individual widgets on a settings page is kind of
annoying. It's sometimes better to have inline options.

Inline means that the user can set their preference using elements that are part of
the UI in question. For example, choosing specific columns to display in a grid. It
wouldn't make much sense to bury such a preference in a settings page somewhere.
When preference controls are positioned relative to the thing they control, it requires
less explanation. The user can generally figure out the meaning a lot easier when the
control is contextual.

The downside to contextual preference controls is that they have potential
to clutter the UI. If there're a lot of components on the page, each of which
has preferences controls on it, then we're most likely creating confusion
instead of convenience.

Changing the look and feel
Today, it's less common for the look and feel of an application to be a static,
unchanging aspect. Instead, they ship with a handful of themes the user can choose
from. Or, the support to easily create themes is built into the software. This allows
our customers to decide how our software should look for their users. In addition to
packaged themes that update the look and feel of our application, individual style
preferences may be set.

Theme tools
If we want our application to have the ability to change themes upon request, we
have to put a lot of design and architecture into our CSS and the markup that uses
it. While this topic goes way beyond the scope of this book, it's worth looking at the
tools available for assisting in generating themes.

The first tool at our disposal in this area is a CSS framework. Like JavaScript
frameworks, CSS frameworks define consistent patterns and conventions. It's then
up to us, the component authors, to figure out how to apply these CSS patterns to
our components, and the markup they generate. Think of a theme as a bunch of style
preferences. When the configuration is changed, the appearance is changed because
of new preference values. What makes a CSS module a theme, is having the same
properties defined as all the other themes used by the application—it's only the
values of these properties that change.

Another tool we can use is part of the backend build process—CSS compilers. These
tools take in files that use a dialect of CSS, and preprocess them. What's nice about
these types of preprocessor languages is that we have much greater control of how
style preferences are specified. For example, there's no such thing as variables in CSS,
but preprocessors have them, and this is a really handy configurability feature to have.

Selecting a theme
Once we have a theme-able user interface, we need a way to load a specific theme
instance. Even if we don't allow users to select a theme of their choice, it's still nice
to be able to change the design by changing a preference value. When we decide
to implement a new design, this certainly makes deployment into a production
environment that much simpler.

Down the road, we may decide that we do want to let users select their own theme.
For example, we might have acquired lots of users and there's now a demand for this
ability. We can create the theme selector like any other preference value that's used
in the system. We'd need to have some kind of theme selection widget in place, and
the selection made by the user can map to a path, since this is likely all that's needed
to swap one theme for another.

Another possibility is to have different themes set as the default, based on the role
of the user. For example, if an administrator logs in, it's helpful to have a different
visual cue that you are in fact logged in as a specific type of user. This type of thing
can help in scenarios where there're screenshots, and so on.

Individual style preferences
The look and feel of an application can change at an individual element level. That
is, if we want to change the width of something, we can change it on the screen. Or
maybe we don't like the font face that's in use and we want to change that as well,
but nothing else.

These types of fine-grained style preferences should be avoided because they do
not scale well. Our components have to be aware of specific style considerations,
and that degrades the true purpose of the component in most cases. In some cases,
picking a different layout for a screen doesn't hurt, because that usually means
swapping one CSS class for another.

Another possibility is using drag and drop interactions to set the size of something.
But, it's best if these are kept as transient interactions, and not as persistent preferences.
We want to optimize for the common configuration values, and there's nothing
common about the resizing of elements to individual tastes.

Performance implications
We'll close the chapter out with an overview of the performance implications
introduced by the various configuration areas discussed thus far. If we really need
configuration values in one area because they add value, they may hurt performance
overall—so we need to offset this cost somehow.

Configurable locale performance
By far the most noticeable performance bottleneck concerning locales is the initial
load. That's because we have to load all the locale data before anything is actually
rendered for the user. This includes string message translations, as well as all the
other data necessary for localization. The performance during initialization is
constrained further when there's more than one locale loaded up-front.

The best way to improve the load performance is to only load the locale that the
user actually wants. Once they've set this preference, they're unlikely to change it
frequently, so there's no real benefit to having other locale data nearby and ready.

There's an unavoidable slow-down in rendering views, because much data needs to
pass through the localization mechanism we're using. This alone isn't likely to cause
performance issues because most operations are small and efficient—simple lookups,
and string formatting. The additional overhead is there though, and needs to be
accounted for.

Configurable behavior performance
Configuration that alters the behavior of a component also has minimal performance
impact. In fact, the performance characteristics of configurable behavior are similar
to those of configurable locales. The biggest challenge is the initial configuration
load. After that, it's just a matter of performing lookups, which are fast.

The thing to look out for, is when we have lots of components we need to configure.
While individual lookups are fast, performance takes a hit when there're lots of
lookups. It'll take quite a while to reach this point, but the risk is there nonetheless.

The following is an example that shows how we can configure when a collection is
sorted, impacting the performance of other operations that are order-dependent and
are called frequently:

// users.js
export default class Users {

 // The users collection excepts data, and an
 // "order" property name.
 constructor(collection, order) {
 this.collection = collection;
 this.order = order;
 this.ordered = !!order;
 }

 // Whenever the "order" property is set, we need
 // to sort the internal "collection" array.
 set order(key) {
 this.collection.sort((a, b) => {
 if (a[key] < b[key]) {
 return -1;
 } else if (a[key] > b[key]) {
 return 1;
 } else {
 return 0;
 }
 });
 }

 // Finds the smallest item of the collection. If the
 // collection is ordered, then we can just return the
 // first collection item. Otherwise, we need to iterate
 // over the collection to find the smallest item.
 min(key) {
 if (this.ordered) {
 return this.collection[0];
 } else {
 var result = {};
 result[key] = Number.POSITIVE_INFINITY;

 for (let item of this.collection) {

 if (item[key] < result[key]) {
 result = item;
 }
 }

 return result;
 }
 }

 // The inverse of the "min()" function, returns the
 // last collection item if ordered. Otherwise, it looks
 // for the largest item.
 max(key) {
 if (this.ordered) {
 return this.collection[this.collection.length - 1];
 } else {
 var result = {};
 result[key] = Number.NEGATIVE_INFINITY;

 for (let item of this.collection) {
 if (item[key] > result[key]) {
 result = item;
 }
 }

 return result;
 }
 }

}

// main.js
import Users from 'users.js';

var users;

// Creates an "ordered" users collection.
users = new Users([
 { age: 23 },
 { age: 19 },
 { age: 51 },
 { age: 39 }
], 'age');

// Calling "min()" and "max()" doesn't result in

// two iterations over the collection because they're
// already ordered.
console.log('ordered min', users.min());
console.log('ordered max', users.max());
//
// ordered min {age: 19}
// ordered max {age: 51}

// Creates an "unordered" users collection.
users = new Users([
 { age: 23 },
 { age: 19 },
 { age: 51 },
 { age: 39 }
]);

// Every time "min()" or "max()" is called, we
// have to iterate over the collection to find
// the smallest or largest item.
console.log('unordered min', users.min('age'));
console.log('unordered max', users.max('age'));
//
// unordered min {age: 19}
// unordered max {age: 51}

Behavioral preferences may be used to completely swap one function for another.
They may have the same interface, but with different implementations. Deciding
which function to use at runtime isn't expensive, but there's also the memory
consumption to consider. For example, if there're many preferences throughout
our application that support different functions, we'll have to store the default
implementation, in addition to the function stored as a preference value.

Configurable theme performance
The only real latency we can expect from configurable themes is the initial cost of
figuring out which theme to use. Then there's the process of downloading it, and
applying the styles to the markup—which isn't any different from an application
with a single set of static styles. If we allow the user to switch themes, there's
the additional latency of waiting for the new CSS and related static resources to
download and render.

Summary
This chapter introduced the concept of configurability in large-scale JavaScript
applications. The major configuration categories are locales, behavior, and appearance.
Locales are a big part of web applications today because there's nothing stopping
people, anywhere in the world, from using our application. There are scaling
challenges associated with internationalization though. It adds complexity to our
development lifecycle and there's the cost of maintaining locales.

Preferences need to be stored somewhere. Storing them in the browser works,
but there's no portability with this approach. It's much more appropriate to store
preferences in the backend and load them when the application initializes. There're
many challenges to scaling lots of preferences, including differentiating between
user-defined and system preferences. It shouldn't matter if we've included sane
hard-coded default values.

The styles of our application are another configurable dimension. There're frameworks
and build-tools that help us build themes for the look and feel. Configurable
components have minor performance considerations—the next chapter will look at
performance challenges that crop up as we scale our software.

Chapter 7

[143]

Load Time and
Responsiveness

JavaScript scalability includes the load time of the application, and the responsiveness
of the application when the user interacts with it. Collectively, we refer to these two
architectural qualities as performance. Performance is the prominent indicator of
quality in the eyes of a user—it's important to get it right.

As our applications acquire new features and as the user base grows, we must find a
way to avoid the associated performance degradation. The initial load is affected by
things such as the JavaScript artifact payload size. The responsiveness of our UI has
more to do with the runtime characteristics of our code.

Throughout this chapter, we'll address these two dimensions of performance, and
how the various trade-offs we'll make will impact other areas of the system.

Component artifacts
Earlier on in the book, we had emphasized that large-scale JavaScript applications
are just collections of components. These components communicate with one another
in complex and intricate ways—these communications are what realize the behavior
of our system. Before components can communicate, they have to be delivered to the
browser. It's helpful in understanding what these components are made of, and how
they're actually delivered to the browser. Then we can reason about the initial load
time of our application.

Load Time and Responsiveness

[144]

Component dependencies
Components are the bedrocks of our application; that means we need to deliver
them to the browser, and execute them in some coherent manner. The components
themselves can range from being monolithic JavaScript files, to something that's
spread out over several modules. All the puzzle pieces are put together through the
dependency graph. We start off with an application component, as this is the entry
point into our application. It finds all the components it needs by requiring them. For
example, there may only be a handful of top-level components, which map to the
key features of our software. This is the first level of the dependency tree, and unless
all our feature components are composed monolithically, there'll probably further
module dependencies to resolve.

The module loading mechanism progresses through the tree until it has everything
it needs. What's nice about modules and dependencies, broken down to a reasonable
level of granularity, is that a lot of complexity is masked. We don't have to hold the
entire dependency graph in our heads, an unreasonable goal for even medium-scale
applications.

With this modular structure, and the mechanism used to load and process
dependencies, comes performance implications. Namely, the initial load time is
impacted since the module loader needs to walk through the dependency graph, and
ask the backend for each resource. While the requests are asynchronous, the network
overhead exists nonetheless—that's what hurts us the most during the initial load.

However, just because we want a modular structure, doesn't mean we have to suffer
the consequences of network overhead. Especially as we start scaling to lots of features
and lots of users. There's more to deliver to each client session, and there's more
resource contention in the backend as more users ask for the same thing. Module
dependencies are traceable, which give our build tools a number of options.

Application

Server

Module AModule B Module C

How JavaScript application modules are loaded; dependencies are automatically loaded

Chapter 7

[145]

Building components
When our components reach a certain level of complexity, they'll likely require more
than just a few modules to realize all their functionality. Multiply this by a growing
number of components, and we've got ourselves a network request overhead issue.
Even if the modules carry a small payload, there's still the network overhead to
consider.

We should actually strive for smaller modules, as they're more easily consumed by
other developers—if they're small, they likely have less moving parts. As we saw in
the preceding section, modules and the dependencies amongst them, enable us to
divide and conquer. That's because the module loader traces the dependency graph
and pulls in the modules as they're needed.

If we want to avoid hitting the backend with so many requests, we can build larger
component artifacts as part of our build toolchain. There are many tools out there,
that directly leverage the module loader to trace the dependencies, and build the
corresponding components, like RequireJS and Browserify. This is important because
it means that we can choose a level of module granularity that suits our application,
and still be able to build larger component artifacts. Or we can switch back to
loading smaller modules into the browser on the fly.

The scaling implications in terms of network request overhead make big difference.
The more components, and the larger these components are, the more this build
process matters. Especially since uglification, the process of shrinking down the file
size, is often part of the process. Being able to turn these build steps off, on the other
hand, has scaling implications for the development team as well. If we can switch
back and forth between the types of component artifacts delivered to the browser,
the development process can move forward much quicker.

Component Component

ApplicationModule

Module

Module Build

Building components results in fewer requested artifacts, and fewer network requests

Load Time and Responsiveness

[146]

Loading components
In this section, we'll take a look at the mechanisms responsible for actually loading our
source modules and built components into the browser. There are many third-party
tools in use today for structuring our modules and declaring their dependencies, but
the trend is moving toward using newer browser standards for these tasks. We'll also
look at lazily loading our modules, and the usability implications for load latency.

Loading modules
Many large-scale applications in production today use technologies such as
RequireJS and Browserify. RequireJS is a pure JavaScript module loader and
has tools that can build larger components. The aim with Browserify is to build
components that run in the browser, using code that was written for Node.js.
While both these technologies solve many of the issues discussed so far in this
chapter, the new ECMAScript 6 module approach is the way forward.

The main argument in favor of using the browser-based approach to module loading
and dependency management is that there's no longer a need for another third-party
tool. If the language has a feature to solve a scaling issue, it's always better to go that
route, because there's less work for us. It's certainly not a silver bullet, but it does
have a lot of the functionality we require.

For example, we no longer have to rely on sending Ajax requests, and evaluating
the JavaScript code when it arrives—that's all up to the browser now. The syntax
itself is actually more aligned with the standard import export keywords found
in other programming languages. On the other hand, native JavaScript modules are
still new hotness, and that's not really justification enough to throw away code that's
using a different module loader. For new projects, it's worth looking at ES6 transpiler
technologies that allow us to start using these new module constructs from the start.

A portion of the network overhead our application experiences, and
the user ultimately pays for, has to do with the HTTP specification. The
latest draft Version of the spec, 2.0, addresses a lot of overhead and
performance issues. What does this mean for loading modules? Well,
if we can get reasonable network performance with minimal overhead,
we might be able to simplify our artifacts. The need to compile larger
components can be de-prioritized in favor of focusing on a solid
modular architecture.

Chapter 7

[147]

Lazy module loading
One advantage we lose with monolithically compiled components is the opportunity
to defer loading of certain modules till they're actually required. With compiled
components, it's all or nothing—which is especially true if our entire frontend is
compiled into a single JavaScript artifact. On the plus side, everything is there when
it's needed. If the user decides to interact with a feature five minutes after the initial
load, the code is already in the browser, ready to go.

Lazy loading, on the other hand, is the default mode. This simply means that the
module isn't loaded into the browser till some other component explicitly asks for
it. This could mean either a require() call or an import statement. Until these calls
are made, they're not fetched from the backend. The advantage being, the initial page
load should be a lot faster, it's only pulling in the modules it needs for the features
displayed to the user initially.

On the other hand, when the user goes to use some feature, five minutes after the
initial load, our application will be requiring or importing some modules for the first
time. This means that there's some latency involved after the initial load. Mind you,
the modules that are loaded on demand, later on in the session, should be small in
number. Because there're bound to be some shared modules loaded up-front by the
initial page presented to the user.

We have to put some thought into the dependencies throughout our system. While
we may think we're deferring the loading of certain modules, there could be some
indirect dependencies that inadvertently load modules for the home screen, when
they're not actually needed. The network panel in the developer tools is ideal for
this, as it's usually obvious that we're loading things we don't actually need. If our
application has lots of features, lazy loading is especially helpful. The savings on
initial load time are big, and there are likely to be features that the user never uses,
and hence never needs to load.

Next is an example that shows the concept of not loading modules until they're
actually needed:

// stuff.js
// Export something we can call from another module...
export default function doStuff() {
 console.log('doing stuff');
}

// main.js
// Don't import "doStuff()" till the link

Load Time and Responsiveness

[148]

// is clicked.
document.getElementById('do-link')
 .addEventListener('click', function(e) {
 e.preventDefault();

 // In ES6, it's just "System.import()" - which isn't easy
 // to do across environments yet.
 var loader = new traceur.runtime.BrowserTraceurLoader();
 loader.import('stuff.js').then(function(stuff) {
 stuff.default();
 });
 });

Module load latency
Modules load in response to events, and these are almost always user events. The
application is launched. A tab is selected. These types of events have the potential to
load new modules if they haven't been loaded already. The challenge is what can we
do for the user while these code modules are in transit, or being evaluated? Because
it's the code we're waiting on, we can't exactly execute code that makes for a better
loading experience.

For example, until we have a module loaded, and until all its dependencies have
been loaded, we can't do things that are critical to the user-perceived responsiveness
of our UI. These are things like making API calls, and manipulating the DOM to
provide user feedback. Without data from the API, all we can tell the user is, sit
tight, stuff is loading! If the user is frustrated enough, because our modules are taking
a while and the loading indicator isn't going away, they'll start randomly clicking
elements that look clickable. If we don't have any event handlers setup for these,
then the UI will feel unresponsive.

'Following is an example that shows how an imported module that runs expensive
code, can block code in the importing module from running:

// delay.js

var i = 10000000;

// Eat some CPU cycles, causing a delay in any
// modules that import this one.
console.log('delay', 'active');
while (i--) {

Chapter 7

[149]

 for (let c = 0; c < 1000; c++) {

 }
}
console.log('delay', 'complete');

// main.js

// Importing this module will block, because
// it runs some expensive code.
import 'delay.js';

// The link is displayed, and it looks clickable,
// but nothing happens. Because there's no event
// handler setup yet.
document.getElementById('do-link')
 .addEventListener('click', function(e) {
 e.preventDefault();
 console.log('clicked');
 });

Networks aren't predictable, nor are the scaling influencers our application is facing
in the backend. Lot's of users means there's a potential for high latency with loading
our modules. We have to account for these circumstances if we want to scale.
This involves the use of tactics. The first module we need to load, after the main
application, is something that's capable of notifying the user.

For example, our UI has a default loader element, but when our first module loads,
it proceeds to render more detailed information on what's loading and how long
it might take, or, it just might have to deliver the bad news that there's something
wrong with the network or the backend. As we scale, these types of unpleasant
events will happen. If we want to keep scaling up, we have to account for them early
on, and make the UI always feel responsive, even when it isn't.

Communication bottlenecks
When our application acquires more moving parts, it acquires more communication
overhead. That's because our components need to communicate with one another
in order to realize the larger behavior of our features. We could reduce the inter-
component communication overhead to essentially zero, if we were so inclined,
but then we would face the issue of monolithic and repetitive code. If we want
modular components, communication has to happen, but that comes at a cost.

Load Time and Responsiveness

[150]

This section looks at some issues we'll face as we scale our software in terms
of communication bottlenecks. We need to look for the trade-offs that improve
communication performance, without sacrificing modularity. One of the most
effective ways to do that is by using the profiling tools available in our web
browsers. They can reveal the same responsiveness issues that the user
experiences while interacting with our UI.

Reducing indirection
The primary abstraction, by which our components communicate with one another,
is an event broker. It's the job of the broker to maintain the list of subscribers for any
given event type. Our JavaScript applications scale in two respects—the number
of subscribers for a given event type, and the number of event types. In terms of
performance bottlenecks, this can get out of control quickly.

The first thing we'll want to pay close attention to is the composition of our features.
To implement a feature, we'll follow the same pattern of existing features. This
means that we'll use the same component types, the same events, and so on. There
are subtle variations, but the over-arching pattern is the same across features. This
is a good practice: following the same pattern from feature to feature. The patterns
used are a good starting point to figure out how to reduce overhead.

For example, say the pattern we're using throughout our application requires 8-10
components to realize a given feature. That's too much overhead. Any one of these
components communicates with several others, and some of the abstractions just
aren't all that valuable. They looked good in our heads and on paper, as we designed
the architecture where the pattern originated. Now that we've implemented the
pattern, that initial value has diluted a bit, and is now a performance issue.

Next is an example that shows how simply adding new components is enough to
increase communication overhead costs exponentially:

// component.js
import events from 'events.js';

// A generic component...
export default class Component {

 // When created, this component triggers an
 // event. It also adds a listener for that
 // same event, and does some expensive work.
 constructor() {
 events.trigger('CreateComponent');

Chapter 7

[151]

 events.listen('CreateComponent', () => {
 var i = 100000;
 while (--i) {
 for (let c = 0; c < 100; c++) {}
 }
 });
 }

};

// main.js
import Component from 'component.js';

// A place to hold our created components...
var components = [];

// Any time the add button is clicked, a new
// component is created. As more and more components
// are added, we can see a noticeable impact on
// the overall latency of the system.
// Click this button for long enough, and the browser
// tab crashes.
document.getElementById('add')
 .addEventListener('click', function() {
 console.clear();
 console.time('event overhead');
 components.push(new Component());
 console.timeEnd('event overhead');
 console.log('components', components.length);
 });

Loosely coupled components are a good thing, as they separate concerns, and give us
more implementation freedoms with less risk of breaking other components. The way
we couple our components establishes a repeatable pattern. At some point after initial
implementation, as our software matures, we will realize that the pattern that once
served us well is now too heavy. The concerns of our components are well understood,
and we have no need for the implementation freedoms we thought we might need.
The solution to this is changing the pattern. The pattern is what's followed, so it's the
ultimate indicator of what our code will look like in future components. It's the best
place to fix communication bottlenecks, by removing unnecessary components.

Load Time and Responsiveness

[152]

Profiling code
We can get an intuitive sense, just by looking at our code; that there's a lot more
going on than there needs to be. As we saw in the preceding section, the inter-
component communication patterns we use throughout the application are quite
telling. We can see the excessive components at a logical design level, but what
about the physical level during runtime?

Before we go and start re-factoring our code, changing patterns, removing
components, and so on, we need to profile our code. This will give us an idea of the
runtime performance characteristics of our code, and not just how it appears. Profiles
give us the information we need to make useful decisions on optimizations. Most
importantly, by profiling our code, we can avoid micro-optimizations that have
little or no impact on the end user's experience. At the very least, we can prioritize
the performance issues we need to tackle. Communication overhead between our
components is likely to take top priority, as it has the most tangible impact on the
user, and is a huge scaling obstacle.

The first tool available to us is the built-in profiling tools of the browser. We can
manually use the developer tools UI to profile the entire application as we interact
with it. This is useful for diagnosing specific responsiveness issues in the UI. We can
also write code that uses the same in-browser profiling mechanism to target smaller
pieces of code, like individual functions, and get the same output. The resulting
profile is essentially a call stack, with a breakdown of how much CPU time is spent
where. This points us in the right direction, so we can focus our efforts on optimizing
expensive code.

We're only scratching the surface of profiling JavaScript
application performance. This is a huge topic, and you can
Google "Profiling JavaScript code"—there are a ton of good
resources out there. Here's a great resource to get you started:
https://developer.chrome.com/devtools/docs/
cpu-profiling

Next is an example that shows how to use the browser developer tools to create a
profile that compares several functions:

// Eat some CPU cycles, and call other functions
// to establish a profilable call stack...
function whileLoop() {
 var i = 100000;

 while (--i) {

https://developer.chrome.com/devtools/docs/cpu-profiling
https://developer.chrome.com/devtools/docs/cpu-profiling

Chapter 7

[153]

 forLoop1(i);
 forLoop2(i);
 }
}

// Eat some CPU cycles...
function forLoop1(max) {
 for (var i = 0; i < max; i++) {
 i * i;
 }
}

// Eat less CPU cycles...
function forLoop2(max) {
 max /= 2;
 for (var i = 0; i < max; i ++) {
 i * i;
 }
}

// Creates the profile in the "profile" tab
// of dev tools.
console.profile('main');
whileLoop();
console.profileEnd('main');
// 1177.9ms 1.73% forLoop1
// 1343.2ms 1.98% forLoop2

Other tools that profile JavaScript code exist outside of the browser. We use
these for different purposes. For example, benchmark.js and tools similar to it,
are used to measure the raw performance of our code. The output tells us how
many operations per second our code is running at. The really useful aspect of
this approach is comparing two or more function implementations. The profile
can give as a breakdown of which function is the fastest, and by what margin.
At the end of the day, that's the most important profiling information we need.

Load Time and Responsiveness

[154]

Component optimization
Now that we've fixed our component communication performance bottlenecks,
it's time to look inside our components, at the implementation specifics and
the performance issues they may present. For example, maintaining state is a
common requirement of JavaScript components, however, this does not scale well
performance-wise because of all the book-keeping code required. We also need to be
aware of side effects introduced by functions that mutate data that other components
use. Finally, the DOM itself, and the way our code interacts with it, has much
potential for unresponsiveness.

Components that maintain state
Most components in our code need to maintain state, and this is unavoidable for
the most part. For example, if our component is composed of a model and a view,
the view needs to know when to render itself, based on the state of the model. The
view also holds a reference to a DOM element—either directly or through a selector
string—and any given element has state, at all times.

So state is a fact of life in our components—what's the big deal? There isn't one,
really. In fact, we get to write some really nice event-driven code that reacts to these
changes in state, resulting in a change to what the user is looking at. The problem
comes when we scale, of course; our components, on an individual basis, acquire
more state to maintain, our data model served up by the backend grows more
complex, and the DOM elements grow as well. All these things with state depend on
one another. There's a multitude of complexity as systems like these grow, and can
really hurt performance.

Thankfully, the frameworks we use, handle a lot of this complexity for us. Not only
that—they're also heavily optimized for these types of state change operations, since
they're so fundamental to the applications using them. Different frameworks take
different approaches to handling the changing states of components. For example,
some take a more automated approach, requiring more overhead in monitoring for
changes in state. Others are more explicit in that the state is explicitly changed, and
as a direct result, events are fired. The latter approach requires more discipline on
the part of the programmer, but also requires less overhead.

There are two things we can do to avoid performance issues that might occur as we
scale up the number of our components and their complexity. First, we can make
sure that we're only maintaining state for things that matter. For example, if we set
up handlers for changes in state that never happen, it's wasteful. Likewise, if we
have components that change state and fire events that never result in a UI update,
it's also wasteful. Though difficult to spot, if these hidden gems can be avoided,
we'll also avoid future scaling issues related to responsiveness.

Chapter 7

[155]

DOM DOM

View View

Model Model

Property A Property BAll Properties

Views can react the same to any model property change; or, they can have specialized responses to specific
property changes. Virtual DOMs attempt to automate this process for us.

Dealing with side-effects
In the preceding section, we looked at the states that components maintain, and
how they can hurt performance if we're not careful. So how do these changes in
state come about? They don't happen spontaneously—something explicitly has to
change the value of a variable. This is called a side effect, something else that has
the potential to hurt performance, and is unavoidable. Side effects are what cause
the changes in state we covered in the previous section, and they too can hurt
performance if not treated with care.

The opposite of a function with side effects is a pure function. These take input
and return output. Nothing changes state in between. Functions such as these have
what's known as referential transparency—which means that for a given input,
we're guaranteed the same output, no matter how many times we call the function.
This property is important for things like optimization and concurrency. For
example, if we're always going to get the same result for a given input, the temporal
location of the function call really doesn't matter.

Think about generic components that our application shares with components that
are specific to features. These are less likely to maintain state—the state is more
likely to be in components that are closer to the DOM. Functions in these top-level
components are good candidates for implementations free of side effects. Even our
feature components could potentially implement side-effect-free functions. As a rule
of thumb, we should push our state and side effects as close to the DOM as possible.

Load Time and Responsiveness

[156]

As we saw in Chapter 4, Component Communication and Responsibilities, it's difficult to
mentally trace what's happening in a convoluted publish/subscribe event system.
With events, we don't really need to trace these paths, but with functions, it's a
different story. The challenge is that if our function changes the state of something,
and that causes a problem elsewhere in the system, it's very difficult to track that
sort of issue down. Additionally, the more side-effect-free functions we use, the less
sanity checking code that's needed. We often come across bits of code that check the
state of something, seemingly for no reason. The reason—that's what made it work.
This approach can only get one so far with scaling up the development effort.

Following is an example that shows a function with side effects, versus a function
without side effects:

// This function mutates the object that's
// passed in as an argument.
function withSideEffects(model) {
 if (model.state === 'running') {
 model.state = 'off';
 }

 return model;
}

// This function, on the other hand, does not
// introduce side-effects because instead of
// mutating the "model", it returns a new
// instance.
function withoutSideEffects(model) {
 return Object.assign({}, model, model.state === 'off' ?
 { state: 'running' } : {});
}

var first = { state: 'running' },
 second = { state: 'off' },
 result;

// We can see that "withSideEffects()" causes
// some unexpected side-effects because it
// changes the state of something that's used
// elsewhere.
result = withSideEffects(first);
console.log('with side effects...');

Chapter 7

[157]

console.log('original', first.state);
console.log('result', result.state);

// By creating a new object, "withoutSideEffects()",
// doesn't change the state of anything. It can't
// possibly introduce side-effects somewhere else in
// our code.
result = withoutSideEffects(second);
console.log('without side effects...');
console.log('original', second.state);
console.log('result', result.state);

DOM rendering techniques
Updating the DOM is expensive. The best way to optimize DOM updates is to
not update them. In other words, as infrequently as possible. The challenge with
scaling up our application is that DOM manipulations become more frequent, out of
necessity. There's more state to monitor, and more things that we need to notify the
user about. Even so, in addition to the techniques employed by our frameworks of
choice, there're things we can do with our code to lighten the load on DOM updates.

So, why exactly are DOM updates so expensive, relative to plain JavaScript that's
running in the page? The computations that take place to figure out what the display
should look like, eat a lot of CPU cycles. We can take steps to ease the load on the
browser render engine, and improve the responsiveness of our UI, using techniques
in our view components that require less work from the rendering engine.

For example, reflows are rendering events that result in a whole class of
computations that need to be made. Essentially, reflows happen when something
about our element changes, which could result in changes to the layout of other
nearby elements. The whole process cascades throughout the DOM, so a seemingly
inexpensive DOM operation could result in quite a lot of overhead. Rendering
engines in modern browsers are fast. We can get away with a little sloppiness in our
DOM code, and the UI will perform perfectly. But as new moving parts are added,
the scalability of our DOM rendering techniques comes into play.

So the first strategy to consider is, which view updates can result in reflows? For
example, changing the content of elements is not a big deal and will likely never
cause performance problems. Inserting new elements into the page, or altering the
style of existing elements in response to user interactions—these have potential for
responsiveness issues.

Load Time and Responsiveness

[158]

One DOM rendering technique that's trendy today is using a virtual
DOM. ReactJS and similar libraries leverage this concept. The idea
is that our code can just render content into the DOM, as though it's
rendering the whole component for the first time. The virtual DOM
intercepts these rendering calls and figures out the difference between
what's already rendered, and what's changed. The name virtual
DOM comes from the fact that a representation of the DOM is stored
in JavaScript memory, and this is used to make comparisons. This
way, the real DOM is only touched when absolutely necessary. This
abstraction allows for some interesting optimizations, while keeping
the view code minimalistic.

Sending one update after another to DOM isn't ideal either. Because the DOM will
receive the list of changes to make and apply them sequentially. For complex DOM
updates that have the potential to trigger reflow after reflow, it's better to detach
the DOM element, make the updates, and then reattach it. When the element is
reattached, the expensive reflow calculations are done at once, rather than several
times in succession.

However, sometimes the DOM itself isn't the problem—it's the single-threaded
nature of JavaScript. While our component JavaScript is running, there's no chance
for the DOM to render any pending updates. If our UI is unresponsive in certain
scenarios, it's best to set a timeout to let the DOM update. This also gives any
pending DOM events a chance to be processed, which is important if the user is
trying to do something while there's JavaScript code running.

Next is an example that shows how to defer running JavaScript code during
CPU-intensive computations, giving the DOM a chance to update:

// This calls the passed-in "func" after setting a
// timeout. This "defers" the call till the next
// available opportunity.
function defer(func, ...args) {
 setTimeout(function() {
 func(...args[0]);
 }, 1);
}

// Perform some expensive work...
function work() {
 var i = 100000;

Chapter 7

[159]

 while (--i) {
 for (let c = 0; c < 100; c++) {
 i * c;
 }
 }
}

function iterate(coll=[], pos=0) {
 // Eat some CPU cycles...
 work();

 // Update the progress in the DOM...
 document.getElementById('progress').textContent =
 Math.round(pos / coll.length * 100) + '%';

 // Defer the next call to "iterate()", giving the
 // DOM a chance to display the updated percentage.
 if (++pos < coll.length) {
 defer(iterate, [coll, pos]);
 }
}

iterate(new Array(1000).fill(true));

Web Workers are another possibility for long-running JavaScript code. Because they
can't touch the DOM, they don't interfere with the responsiveness of it. However,
this technology is beyond the scope of this book.

API data
The last major obstacle that will hit us with performance issues as we continue to
scale, is the application data itself. This is an area we have to be especially mindful
of, because there are so many scaling influencers at play. More features doesn't
necessarily translate to more data, but it often does. That's more types of data, and
more data volume. The latter is mostly influenced by the growing user base of
our software. Our job as JavaScript architects is to figure out how we can scale our
application to deal with both the increased load time, and the increased size of our
data once it arrives at the browser.

Load Time and Responsiveness

[160]

Load latency
Perhaps the biggest risk to scaling our application's performance is the data itself.
The way our application data changes and evolves over time is somewhat of a
phenomenon. The features we add in the frontend certainly influence the shape of
our data, but our JavaScript code doesn't control the number of users or the way they
interact with our software. These latter two points can lead to an explosion in data,
and if our frontend isn't prepared, it will grind to a halt.

The challenge we face as frontend engineers is that there's nothing to display for
the user when we're waiting for data. All we can do is take the necessary steps for
providing an acceptable loading user experience. Which begs the question—while
we're waiting for data to load, do we block the whole screen with a loading message,
or do we show loading messages piecemeal for the elements that are waiting on
data? With the first approach, there's little risk of the user doing something that's
not allowed, because we prevent them from interacting with the UI. With the second
approach, we have to worry about the user interacting with the UI while there are
outstanding network requests.

Neither approach is ideal, because at any point while data is loading, the
responsiveness of our application is fundamentally constrained. We don't want
to completely block the user from interacting with the UI. So, maybe we need to
enforce a strict timeout for data loading. On the plus side, we're guaranteeing
responsiveness, even if the response is to inform the user that the backend is taking
too long. The down side is that sometimes waiting is necessary, as far as the user is
concerned, if something needs to get done. Sometimes, the bad user experience is
preferable—instead of unintentionally creating an even worse experience.

There are two things that the frontend needs to do to help scale our backend data.
First, we need to cache responses where possible. This reduces the load on the
backend, and also improves the responsiveness for the client with the cached data,
since it doesn't have to make another request. Obviously, we need some kind of
invalidation mechanism in place, because we don't want to cache stale data. Web
sockets are a good candidate solution here—even if they only notify the frontend
sessions that a particular entity type has changed, so that the cache can be cleared.
The second technique to help with growing datasets is to reduce the amount of data
that's loaded with any given request. For example, most API calls have options that
let us constrain the number of results. This needs to be kept to a reasonable number.
It helps to think about what the user needs to look at first, and design around that.

Chapter 7

[161]

Working with large data sets
In the preceding section, we went over some of the scaling issues we face in frontend
development concerning application data. As our application grows, so does the
data, presenting a loading challenge. Once we've managed to get the data into the
browser, we still have lots of data to work with, which can lead to unresponsive user
interactions. For example, if we have a 1000 item collection, and an event passes this
structure around to several components for processing, the user experience is affected.
What we need are tools that help us transform data that's big and difficult to scale
across several components, into something that's filtered down to just the essentials.

This is where low-level utility libraries come in handy—complex transformations on
large data sets. Larger frameworks might expose similar tools—they're likely using
low-level utilities under the hood. The transformations we'll want to perform on our
data are of the map-reduce variety. That's the abstract pattern anyway, functional
programming libraries such as Underscore/lodash, provide many variations
on this pattern. How does this help us scale with large data sets? We can write
clean reusable mapping and reducing functionality, while deferring much of the
optimizations to these libraries.

Ideally, our application would only load the data it needs for rendering
the current page. A lot of the time this simply isn't possible—the API
can't account for every possible query scenario required by our features.
So we use the API to filter broadly, then when the data arrives, our
components filter the data using more specific criteria.
The scaling problem here is the confusion between what's being filtered
by the backend, and what's filtered in the browser. If one component
relies more on the API, while other components do most of their filtering
locally, it leads to confusion amongst developers, and non-intuitive
code. It can even lead to unpredictable bugs if the API changes, even
subtly, since our components are using it differently.

The less time that's spent mapping or reducing, the more responsive the UI feels
to the user. This is why it's important that we get only the data that the user sees,
as early on as possible. For example, we don't want to pass around API data in an
event as soon as it arrives. We need to structure our component communication in
such a way that the computationally expensive filtering on large collections happens
as soon as possible. This lightens the load for all the components, since they're now
working with a smaller collection. So scaling to more components isn't a big deal
because they'll have less data to process.

Load Time and Responsiveness

[162]

Optimizing components at runtime
Our code should be optimized for the common case. This is a good scaling tactic
because as more features and users are added to the mix, it's the common cases that
grow, not the edge cases. However, there's always the possibility that we'll have two
equally common cases to deal with. Think about deploying our software to a number
of customer environments. Over time, as features evolve to meet customer requests,
there could be two or three common cases for any given piece of functionality.

If we have two functions that deal with the common case, then we have to figure out
which function to use at runtime. These common cases are extremely course-grained.
For example, a common case might be "collection is large" or "collection is small".
Checking for these conditions isn't expensive. So if we're adaptable to the common
case as it changes, our software will be more responsive than if we weren't adaptable
to changing conditions. For example, if the collection is large, the function could take
a different approach to filtering it.

Collection

Component

Small Approach
size < 10000

Large Approach
size >= 10000

A component can alter it's behavior at runtime, based on broad
classifications such as small or large collections

Summary
Responsiveness, from the user's perspective, is a strong indicator of quality.
Unresponsive user interfaces are frustrating to work with, and are unlikely to
require any further scaling efforts on our part. The initial load of the application is
the first impression the user has of our application, and it's also the most difficult to
make fast. We looked at the challenges of loading all our resources into the browser.
This is a combination of modules, dependencies, and build tools.

Chapter 7

[163]

The next major hurdle to responsiveness in JavaScript applications are the
inter-component communication bottlenecks. These usually result from too much
indirection, and the design of the events required to fulfill a given feature. The
components themselves can also serve as bottlenecks to responsiveness, because
JavaScript is single-threaded. We went over several potential issues in this space,
including the cost of maintaining state, and the cost of dealing with side effects.

The API data is what the user cares about, and the user experience degrades until
we have it. We looked at some of the scaling issues posed by an expanding API and
the data within. Once we have the data, our components need to be able to quickly
map and reduce it, all while the data set continues to grow as we scale. Now that we
have a better idea of how to make our architecture perform well, it's time to look into
making it testable and functional in a variety of contexts.

Chapter 8

[165]

Portability and Testing
Web applications have come a long way from only a few years ago. Gone are the
days when JavaScript code was embedded, sort of as an afterthought, inside a
webpage. In today's web, we build JavaScript applications, and if you're reading this
book, applications that scale. This means our architecture needs to be designed with
portability in mind; the idea that the backend that serves our application and feeds it
data, is replaceable.

Along with portability comes the idea of testability. We can't make assumptions
about the backend when we're developing large scale JavaScript code, and that
means having the ability to run with no backend at all. This chapter looks at these
two closely related topics and what they mean for us in the face of changing
scaling influences.

Decoupling the backend
If we need any further motivation that JavaScript is no longer just for scriptable web
pages, look no further than NodeJS. It doesn't require the full browser environment,
just the V8 JavaScript engine. Node was created primarily as a backend server
environment, but it still serves as a great showcase for how far JavaScript as a
language has come. In the same vein, we want our code to be portable, running with
any backend infrastructure we can throw at it.

In this section, we'll look at the reasons why we want to loosen the coupling between
our frontend JavaScript code, and the APIs it talks to in the backend. We'll then
introduce the first steps to mocking APIs, negating the need for a backend entirely.

Portability and Testing

[166]

Mocking the backend API
If we're developing a large scale JavaScript application, we'll have the beginnings
of a backend infrastructure. So why then, would we consider detaching our code
from that backend so that it no longer depends on it? It's always a good idea to
support loosely coupled components when striving for something that scales, and
that's true of the coupling between the frontend and backend environments in a
web application. Even if the backend API never changes, we can never assume that
the technologies and the frameworks used to build the API never will. There are
other benefits to loosening this dependency too—like the ability to update the UI
independently of the rest of the system. But the main scaling benefit to mocking our
backend APIs comes from the development and testing perspectives. There's simply
no substitute for being able throw together new API endpoints and hammer them
with requests. Mock APIs are the crash test dummies for our JavaScript code.

Like it or not, it sometimes feels like we're creating demo-ware—in the middle of a
development sprint, we have to show off what we have to an interested stakeholder.
Rather than letting this lead to despair, we'll gain confidence from our mock data.
Demoing is no longer a big deal, and with the confidence of our mocked data, we'll
start to view these events as little challenges for ourselves. Of course, we always
have to maintain the outward appearance of a heroic programmer—for
management's sake!

Given how awesome mock data is, what are the downsides? Like anything else in our
product, it's a piece of software that has to be maintained—and that always carries
risk. For example, the mock API loses some of its value if it falls out of sync with the
actual API, or if it creates confusion between what's functional in the UI versus what's
mocked. To deal with these risks, we have to put processes in place around how we
design and implement our features, which we'll go over here shortly.

Browser
Actual API

Mock APIComponent

The mock API sites outside of any component that communicates with the actual API; when the mock is
removed, the component doesn't know any better

Chapter 8

[167]

Frontend entry points
Where does the seam of our frontend meet with the backend? This is where we'd
like to make the switch, between mock data and what's normally returned by the
API. The seam might actually be located behind the web server—in which case we're
still making real HTTP requests, just not interacting with the real application. In the
other case, we're mocking entirely within the web browser, where HTTP requests are
intercepted by the mocking library handlers before they ever leave the browser.

In both kinds of mocking, there's a conceptual seam between our frontend
application—which is what we're trying to establish. This is key, once we find
it, because it represents our independence from the backend. It's not that there's
anything wrong with being tightly coupled to the backend in production—that's
what it's there for. In other circumstances, such as during development, being able
to orchestrate what happens when our components send API requests is a crucial
scaling tactic.

There's the possibility of creating mock data modules using models and collections
directly. For example, if we're running in mock mode, we would import this module
and we'd have mock data to work with. The problem with this approach is that our
application knows it's not really working with the backend. We don't want that.
Because we want our code to run as though it's running in a production environment.
Otherwise we're going to experience some side effects of manually instantiating the
mocks—it needs to be as far-removed from our actual code as possible.

Whichever mocking mechanism we decide to go with, it needs to be modular. In
other words, we need the ability to turn it off and take it out of the build entirely.
In production environments, there should be no mocks. In fact, our mocking code
shouldn't even be present in production builds. This is a little easier to achieve if our
mocks are served up by a web server. If our mock handlers reside in the browser,
we need to take them out somehow, which requires a build option of some sort.
There'll be more on build tools later on in the chapter.

Actual APIMock API

Component

XHR

Mock Native

Mocking API requests in the browser, intercept calls at the XHR level. If there's
mocking code there, it will look for mock APIs. When the mock is taken out, the
native HTTP requests function as usual.

Portability and Testing

[168]

Mocking tools
As mentioned in the preceding section, there're two main approaches to mocking
the backend API. The first approach involves bringing in a library such as Mockjax
into our application to intercept XHR requests. The second approach is having a real
HTTP server in place, but one that isn't actually touching the real application—it
serves up mock data the same way as the Mockjax approach.

The way Mockjax works is simple yet clever. It works under the assumption that the
application is using jQuery ajax() calls to make HTTP requests, which is a fairly
safe assumption since most frameworks use this under the hood. When Mockjax
is called, it overrides some core jQuery XHR functionality with its own. This is run
whenever an XHR request is made. It checks if there's a route spec that matches the
requested URI, and will run the handler if one is found. Otherwise, it'll just pass
through and attempt making a request to the backend—which is kind of useful if
we wanted to combine real API requests with mocked requests. We'll dig into that
combination later.

Any given handler can return JSON data, or any other format for that matter, just
as our real API would. The key is that our core code—our models and collections
that initiate the requests—know nothing about Mockjax because it's all happening
at a lower layer. The same model and collection code runs unmodified against the
production backend. All we have to do is unplug the module where Mockjax is called
when deploying against the real API.

We can achieve the same property—running unmodified code—using the mock
web server technique as well. It's actually the exact same idea as hijacking the XHR
requests, only done at another level. The main advantage being that we don't have
any special steps to take during deployment. It's either a mock server or a real one,
and in production environments, it's unlikely there's a mock server running. The
disadvantage is that we do need a server running, which isn't a lot to ask—it is an
added step though. And we do lose a little bit of portability. For example, we can
package up a mock build and send it to someone. If it doesn't require a web server,
the entire application can be demonstrated in the browser.

Browser Server

Component

Mock API

Mock API

Mocking APIs from the browser, or behind a web server; both approaches achieve the same result–our code
doesn't know it's talking to a mock.

Chapter 8

[169]

Generating mock data sets
Now that we know what the options are for declaring the mocked API endpoints,
we need data. Assuming our API is returning JSON data, we could store our mock
data in JSON files. For example, the mock module can pull in these JSON modules
as dependencies, and the mock handlers can use them as a data source. But where
does this data come from?

As we start building mocks, there's most likely an API in existence, running
somewhere. Using our browser, we can look at the data returned by various API
endpoints and manually curate our mocked data. This process is a lot simpler if
the API is documented, because then we'll have a clue as to the allowable values
for any given field in any given entity. Sometimes we don't actually have a starting
point for the creation of our mock data—we'll go over that in the feature design
process section.

The advantage of manually creating our mock data sets like this is that we can ensure
that it is accurate. That is, we don't want to create something that's not reflective
of the data we're mocking, because that would defeat the whole purpose. Not to
mention the scaling bottleneck of keeping up with changes in the API. What would
be nice, is using a tool to automate the task of generating mock data sets. It would
just need to know the schema for a given entity and it could take care of the rest,
accepting a few arguments and throwing in some randomness for good measure.

Another useful mock data generation tool would be something that extracts the real
API data from a given deployment, and stores them as JSON files. For instance, say
there's a staging environment where our code is showing signs of issues. We could
run our data extraction tool against that environment to get the mock data we need.
Since we want to leave the staging environment more or less intact, this approach is
safe since any damage we do to the mock data while diagnosing, is in memory and
easily wiped clean.

Performing actions
One challenging aspect of implementing mock APIs is performing actions. These
are requests other than GET, and usually need to change the state of some resource.
For example, changing the value of a resource property, or removing a resource
entirely. We need some common code that our handlers can leverage to perform
these actions, since our API endpoints should follow the same patterns when it
comes to performing actions on them.

Portability and Testing

[170]

How manageable this is to actually implement depends on the complexity of our
API action workflow. An easy to implement action would be modifying the property
value of a resource then returning 200 successful. However, our application most
likely has more complex workflows, such as long-running actions. For example,
these types of actions might return the ID of a newly created action resource, and
from there, we'll need to monitor the state of that action. Our frontend code already
does this, since that's what it needs to do with the real API—it's the mock where we
need to implement these subtleties of our application.

The actions can get quite messy, fast. Especially if the application is a large one,
with lots of entity types, and lots of actions. The idea is to strive for the minimum
viable success path for mocking these actions. Don't go into great detail in trying
to simulate, step by step, everything the application does—it doesn't scale.

Feature design process
We're not creating mock APIs for the fun of it, we're creating them to aid in the
development of features. Given that we could have a rather large API, and thus lots
to mock, we need a process in place that somewhat governs the order in which we do
things. For example, do we need to wait for an API to be in place before we go ahead
and start implementing a feature? If we can mock the API, then we shouldn't have to,
but the API itself still needs to be designed, and there are lots of API stakeholders.

In this section we'll go over some of the necessary steps to ensure that we're using
mocks correctly, and in a way that scales alongside our feature development.

Designing the API
Some API endpoints are generic enough to support multiple features. These are the
entities that are central to our application. Typically, there're a handful of entities
that play a vital role, and most features use them. On the other hand, most new
features we develop will require an expansion of our API. This could mean one new
API endpoint, or several. It's a question of how our backend resources are composed,
and this involves some level of design work.

The problem with trying to scale our feature development is that implementing
a new API could take a really long time. So if we need the API in place before we
start working on the frontend feature, we end up delaying the feature, which isn't
ideal. We want to start working on something while it's fresh. If something sits in
a backlog as a to-do, it often stays there forever. Having a mock API in place for
the proposed feature lets us get the ball rolling without delay, which is crucial for
scaling development.

Chapter 8

[171]

When we implement the mock of a new API endpoint, we enter greenfield design
territory. This means that we have to take into account the considerations of those
who may not necessarily do frontend development. And we may or may not touch
the actual implementation of the real API—it all depends on our team structure. That
said, whoever the subject matter experts are, they'll need transparent access into
the design of our proposed API. They can provide suggestions, changes, and so on.
There's no point in continuing down the path of the impossible. Another approach
might be to get a backend programmer to sketch out a possible API spec. This is
strictly big picture stuff; only the essential endpoints with minimal properties and
actions. The rest are details that can easily be changed in our mocks and in our actual
code after the fact.

Implementing features using mock APIs before the backend code is touched, can
help prevent costly mistakes. For example, let's say we implement some feature in
the frontend, using mock APIs, to the point where it's demonstrable. This gives other
engineers with specific backend domain knowledge an opportunity to call out the
infeasibility of the feature, and we get to avoid avoid making a costly mistake in
the future.

Design Mock Implement Feedback

The cycle of designing a mock API, and implementing features against it

Implementing the mock
Now that we've been tasked with implementing a feature, the first step is
implementing a mock API to support the development of our frontend code. As we
saw in the preceding section, we should be interacting closely with whoever will
ultimately implement the real API. The first step is to figure out what the API will
look like at a high level. The rest we can fine-tune as we move closer to having to
implement the real API.

However, we don't always have to depend on the API team members for hand-
holding during the development of our mocks. We probably have some API
endpoints, and they're probably already used by some of our frontend components.
That said, there's probably a discernible pattern that we can follow, especially if the
mock is just another mundane entity type that we just happen to be missing. If we
follow a good pattern, then that's a good starting point because there's less chance
of radical changes later on.

Portability and Testing

[172]

When we know what our mock API looks like, and what we can do with it, we
need to populate it with mock data. If we have tools in place that generate data for
other mocks, we need to figure out how to extend that. Or, we need to just manually
create some test entities to get started. We don't want to spend a lot of time up-front
entering data. We only need the minimum viable number of entities to prove our
approach is feasible.

We might not always want to start off with the actual mock endpoint
before creating the data. Instead, we may want to work from the data
upward—designing the right entity rather than worrying about the
mechanics of the API itself. This is because, the data ultimately needs
to be stored somewhere, which is an important activity. Working on
the data lets us work in a different mindset. Choose the approach that
best fits the task at hand.

The mocks we create aren't always creating something brand new. That is, the API
we're mocking may already exist, or the implementation of it is underway. This
actually makes the mock much easier to implement, because we can ask the API author
for sample data, or help in general, in order to build our mocks. Remember, if we want
to be portable, we have to be able to remove the frontend from the backend, which
means we'll need to mock the API in its entirety.

Implementing the feature
Now that we have our mock API in place, it's time to profit. It's not all said and
done—the mock APIs are tweaked all the time. But it's enough for us to get going
with the real frontend code. And right away, we'll find problems. These could be
problems with the proposed API, or problems with the component that talks to the
API. We can't let these discourage us, because that's exactly what we're looking for—
early problem detection. You just don't get this without mock APIs.

If the API is generally acceptable, and our component code works, we could discover
performance bottlenecks in our design. This is especially easy to find if we have tools
that generate mock data for us, because it's nothing to generate 100,000 entities, and
see what happens with our frontend code. Sometimes this is a quick refactoring,
other times it's a complete change in approach. The point is that we need to find
these issues earlier rather than later.

Chapter 8

[173]

Something else we can do with mocks that's otherwise difficult is to demo often.
That's not easy to do when we're heavily dependent on a large backend environment
with lots of overhead. If it takes less than a couple minutes to get a feature up and
running for demonstration, we can confidently show off what we're doing. Maybe
it's wrong, maybe the stakeholders think of something they missed, having seen their
idea come to life. This is how mocks help us scale the feature development life cycle
through early and continuous feedback.

Component Mock API

Resource

Resource

Model

Model

The internals of a component under development, communicating with mock API endpoints

Reconciling mock data with API data
At this point, the feature is implemented, and how we reconcile the mock we've
created for our feature depends on the state of the real API. For example, if we're
just mocking something in the API that's been around for a while, then it's safe to
assume nothing needs to happen as long as there's high fidelity between our mock
and the real thing. However, if we're mocking a greenfield API, there's a good chance
that something will have changed, even subtly. It's important that we capture these
changes to make sure our existing mocks stay relevant in subsequent releases.

This is the part of the mocking process that's tough to scale, and generally
unpleasant. There're so many different ways that our mocks can get out of sync
with what's in the real API, it's daunting to even try to keep up. If we have tools
for generating mocks, it's a lot easier. We might even be able to generate the entire
API based on specs the API team creates. But this is problematic too, because while
the mock generation can be automated, the specs themselves need to be created,
somewhere, somehow. So it might be best to implement a tool that can generate
mock data, but have our own code process requests. As long as we don't repeat
ourselves too much, and the API has a decent pattern, we should be able to keep
up with our mocks.

Portability and Testing

[174]

Another possibility is turning off certain mock API endpoints while leaving others
on. Think of it as a sort of pass through—where the granularity of mock endpoints
can be specified, instead of only being able to toggle the entire mock API. For
example, this capability could come in handy if we're trying to troubleshoot a
specific problem in our application, and we'll need to coax certain API endpoints to
return specific responses in order to replicate the problem. We can do this in libraries
such as Mockjax, because requests that don't match a request path spec are just
forwarded on to the native XHR mechanism.

Mock API

Actual API

Component

Component

Browser

One component uses a mock API, while another uses the actual API

Unit testing tools
It's time to turn our attention to testing, having covered the basics of mocking API
endpoints at scale. Our ability to mock APIs is highly relevant to testing our code,
because we can test against those same mocks, or at least the same data. This means
that if our tests fail, we can start interacting with the UI if we need to, using the same
data that failed the test, trying to figure out what's happening.

We'll look into using the unit testing tools that ship with JavaScript frameworks,
and figure out where their value lies. We'll also look at using more generic
standalone testing frameworks that run with any code. We'll close out the section
with a look at how our tests can be automated, and how this automation fits into
our development workflow.

Chapter 8

[175]

Tools built into frameworks
If we're using one of the larger, all-encompassing JavaScript application frameworks,
there's a good chance that it will ship with some unit testing tools. These aren't
meant to replace the existing unit testing tools that are framework-agnostic. Rather,
they're meant to augment them—providing specific support for writing tests in the
flavor of the framework.

What that ultimately means for us is writing less unit test code. If we're following
the patterns of the framework, then there're lots of unit testing tools that already
know about our code. For example, if it already knows the types of components we'll
be using to implement our features, then it can stub out tests for us. This is a huge
help, not having to repeat ourselves, and it leads to us ultimately getting more test
coverage on our code.

In addition to generating the skeleton of our tests for us, framework testing facilities
can provide utility functions for us to use within our tests. This means less unit test
code for us to maintain, and this is only possible because the framework knows what
kinds of things we'll want to do within our tests, and can abstract them out for us in
the form of utility functions.

The challenge with relying on framework-specific testing tools is that we'll be
coupling our product with a specific framework. This is unlikely to be a problem for
us, because once a framework is chosen, we're going to stick with it, right? Well, not
necessarily. Not in today's tumultuous JavaScript ecosystem. Part of being portable
requires a level of agility in our architecture, meaning we have to be adaptable to
change. This is perhaps why more of today's projects rely less on mega frameworks
and more on a composition of libraries.

Test Tools

Components

Framework

Unit Test

Unit test is tightly coupled to components and unit testing tools from the framework

Portability and Testing

[176]

There's a lot of asynchronous code in large-scale JavaScript applications,
and this async code shouldn't be ignored by our unit tests. For example,
we need to make sure that our model units are able to fetch data and
perform actions. These types of functions return promises, and we want
to ensure that they resolve or fail as expected.
This is much easier to achieve with a mock API in place. Using either
the in-browser approach or the web server approach is fine, because our
code still treats them as real asynchronous operations. Something else
we might consider mocking is a web socket connection. This is a little
trickier to do in the browser because we have to override the built-in
web socket class. We can use a real web socket connection to test with if
our mock sits behind a web server.
Either way, mocking web sockets is difficult, because we have to mock
the logic that triggers web socket messages in response to something
else happening, such as an API action. However, we still might want to
consider mocking web sockets after we have more basic test coverage,
because if our application depends on them, it's important to automate
tests for them.

Standalone unit testing tools
Another approach to unit testing tools is to use a stand-alone framework. That is, a
unit testing tool that doesn't care which JavaScript application framework or libraries
we're using. Jasmine is the standard for this purpose, as it provides a clean and
concise way for us to declare test specifications. Out-of-the-box, it has a test runner
that works in the browser, which gives us nicely formatted output for tests that pass,
and tests that fail.

Most other stand-alone unit testing facilities use Jasmine as their base, and extend
it to provide additional capabilities. For example, there's the Jest project, which is
essentially Jasmine with additional capabilities such as module loading and mocks
built-in. Again, something like this is framework-agnostic; it's focused purely on
the tests. Using these types of stand-alone tools for unit testing is a good portability
tactic, because it means that should we decide to move to different technologies
in our code, our tests will still be valid and can actually help make the transition
run smoothly.

Chapter 8

[177]

Jasmine isn't the only game in town, it's simply the most generic and gives us a lot
of freedom in how we structure our tests. Qunit, for instance, has been around for a
long time. It's applicable to any framework, but was originally conceived as a testing
tool for jQuery projects. We might even want to roll our own testing tools, should
we feel that the available testing tools are too heavy, and don't give us the kind of
flexibility or the kind of output our project needs. Something we probably don't want
to write ourselves is a test runner. Our unit tests aren't run haphazardly, whenever
we feel like it. They're often part of a large chain of tasks we want to automate.

Some code is more testable than other code. This simply means that
depending on how our components are structured, it may be easy
to break them down into testable units, or it could be difficult. For
example, code with a lot of moving parts, and a lot of side effects means
that we have to write a relatively large suite of tests for this component
if we want decent test coverage on it. If our code is loosely coupled, with
relatively few side effects, it will be much easier to write tests for.
While we want to strive for testable code, to make the process of writing
unit tests easier, it isn't always possible. So if it means sacrificing coverage,
sometimes that's the better option. We want to avoid re-writing code, or
worse, changing around the architecture we're happy with, for the sake of
writing more tests. We should only do this if we feel that our component
is sufficiently large that it deserves more test coverage. If it gets to this
point, we should probably re-think our design anyway. Good code is
naturally easy to test.

Toolchains and automation
As our application grows more large and complex, a lot needs to happen "offline",
as part of the ongoing development process. Running unit tests is just one task we
want to automate. For example, before we even run our tests, we'll probably want
to use a tool that lints our code to ensure we're not committing anything too sloppy.
After the tests pass, we might need to build our component artifacts, so they can be
used by a running instance of our application. If we're generating mock data, this
might also be part of the same process.

Collectively, we have a toolchain that can automate all of these tasks for us.
These tasks are often smaller steps in a larger, more coarse-grained task, like build
production or build develop. Larger tasks are just a composition of smaller tasks,
as defined by us. This is a flexible approach because the toolchain can handle
the sequence of tasks, in the order they need to happen, or, we can just run tasks
piecemeal. For instance, we might only want to run tests.

Portability and Testing

[178]

The most popular toolchain is a task runner called Grunt. Other similar tools, such
as Gulp, are gaining traction too. What's nice about these tools is that they have
a thriving ecosystem of plugins that do much of what we need—we just need to
configure the individual tasks that use these plugins, and the larger tasks that we
want to compose. It takes very little effort on our part to setup a toolchain that can
automate much of our development process—pretty much everything aside from
writing the code itself. Without toolchains, it ranges from very difficult to impossible,
to scale our development efforts to more than just a few contributors.

Another bonus of using toolchains for automated tasks is that we can change the
type of artifacts we're building on-the-fly. For example, when we're right in the
middle of developing a feature, we won't necessarily want to build the production
artifacts with every change. Doing so can really slow us down, in fact. It's better if
our tools can just deploy the raw source modules, which can also make debugging
a lot easier too. Then when we're closer to being done, we start with the production
builds, and test against those. Our unit tests can run against both the raw source code
and the resulting artifact builds—because we never know what can be introduced
after compilation.

Testing mock scenarios
The more our application scales, the more scenarios it'll have to deal with. This is the
result of more users using more features, and all the ensuing complexity our code
has to handle. Having mock data and unit tests can really help put these scenarios
to the test. In this section, we'll go over some of the options available to us for
creating these mock scenarios and then testing them, both with our unit tests and by
interacting with the system as a user.

Mock APIs and test fixtures
Mock data is valuable to us for many reasons, one of which is unit tests. If we're
mocking the API, we can run our unit tests as though our code is hitting a real API.
We have fine-grained control over individual data points in our mock data, and
we're free to change it how we see fit—it's sandboxed data, it has no negative effect
on the outside world. Even if we're generating our mock data using a tool, we can
get in there and shuffle things about.

Chapter 8

[179]

Some unit testing tools accept fixtures, data used for the sole purpose of running the
tests. This isn't all that different from the data we would use with an API mocking
tool like Mockjax. The main difference is that fixtures aren't much use to us outside
of the unit testing framework that consumes them.

Well, what if we could use it for both testing and mocking? For instance, say that
we want to utilize the fixture data capabilities of our unit testing framework. It's got
some automated features that we couldn't use if we didn't feed it fixture data. On
the other hand, we also want to mock the API for development purposes, interacting
with the feature, detachment from the backend, and so on. There's nothing stopping
us from feeding the fixture data into both the unit tests, and into the API mocks. That
way, we could use any mock data generators we've created to generate scenarios that
are shared by our tests, and by the user interactions in the browser.

Unit Test

Mock API

Fixture Data

Unit tests can hit the mock API with requests, or use fixture data directly; if the mock API serves
the same data, then it's easier to figure out what's wrong with failed tests

Scenario generation tools
Over time we'll accumulate new features and more scenarios in which our customers
will use those features. Therefore, it would be immensely helpful to have, as part of
our toolchain, a utility for generating mock data. Taking things a step further, this
utility could accept arguments for generating mocks. These could be simply course-
grained arguments, but that's usually all we need to turn randomly generated mock
data into a curated scenario we need.

The individual mock scenarios we'll generate won't vary a great deal from one
another. That's kind of the point—we need something that serves as a baseline, so
that if we do make interesting discoveries about our scenarios, we can ask—what's
different about this data? If we do start generating lots of scenarios because we have a
tool that enables us to do so, we need to make sure we do in fact have a "gold" mock
data set—which is something that we know works as expected.

Portability and Testing

[180]

The types of changes we would need to make to the gold mock data are things like
changing the number of entities in a collection. For example, let's say we wanted to
see how something performs on a given page. So we create a million mock entities,
and see what happens. The page breaks entirely—further investigation reveals
a reduce() function that tries to sum a number greater than the maximum safe
integer. Scenarios can reveal interesting bugs like this. Even if the scenario we're
using is far fetched and unlikely to occur in production, we should still fix the bug
because other less extreme scenarios could certainly trigger it.

Test Suite

Mock Scenario
10000 Documents
Fail

Mock Scenario
Default
Pass

Changing the scenario can cause our tests to fail; usually we create scaling scenarios
to see where our code falls apart

There's a huge number of possibilities we could simulate. For example, we could
mangle some of the data by deleting properties from entities, ensuring that our
frontend components have sane defaults for things it expects, or that it fails
gracefully. This latter point is actually really important. As we scale our JavaScript
code, there're more and more scenarios that we cannot fix, and we just have to make
sure our failure mode is acceptable.

End-to-end tests and continuous
integration
The final piece of the puzzle is putting together end-to-end tests for our feature,
and hooking it into our continuous integration process. Unit tests are one thing,
they leave us confident that our components are solid—when they pass. Users
don't care about unit tests, end-to-end tests serve as a proxy for our users that
interact with our UI. For instance, there's probably a set of use cases embedded
within the requirements of any given feature we implement. The end-to-end tests
should be designed around these.

Chapter 8

[181]

Tools like Selenium make automating end-to-end tests possible. They record the test as
a set of steps we perform as a user. Those same steps can then be repeated whenever
we tell it to. For example, an end-to-end test might involve the creation, modification,
and deletion of a resource. The tool knows what to look for in the UI as a success path.
When this doesn't happen, we know the test has failed, and there's something we need
to go fix. Automating these types of tests is essential to scaling, as the number of ways
users can interact with our application grows as we add features.

We can look to our toolchain for help here once more, since it's already automating
all our other tasks, it should probably automate our end-to-end tests as well. The
toolchain is essential for our continuous integration process as well. We'll probably
share a CI server that builds other aspects of our system as well, only they're done
differently. The toolchain makes it easy for us to integrate with a CI process, because
we simply need to script the appropriate toolchain commands.

Having mock data in place can help us run end-to-end tests, because if the tool is
going to behave as a user would, it's going to have to make backend API requests.
This gets us consistency, and helps us rule out the tests themselves as being problem
sources. With mock APIs, we can develop unit tests, and end-to-end test against the
same source.

CI Toolchain

Deployment Environment

Code Generate Mocks

Run Tests

Build Artifacts

Result

The toolchain, the mock data, and our tests, all running in a CI environment; the code
we're developing is the input

Portability and Testing

[182]

Summary
This chapter introduced the concept of portability in frontend JavaScript applications.
Portability in this context means not being tightly coupled with the backend. The main
advantage of being portable means that we can treat our UI as its own application,
it doesn't require any specific backend technologies to be in place.

 To help our frontend achieve independence, we can mock the backend API it
depends on. Mocking also lets us focus strictly on UI development—eliminating
the possibility of backend issues from hindering our development.

Mocks can help us test our code as well. There're a number of unit testing libraries,
each with their own approach, that we can utilize. If we're using the same mock
data to run our tests, then we can rule out inconsistencies with what we see in the
browser. Our tests need to be automated, alongside several other tasks that take
place as part of our development process.

The toolchain we implement fits in nicely with a continuous integration server—an
essential scaling tool. This is also where end-to-end tests are automated, which gives
us a better idea of what the user will encounter when they use our software. Now it's
time to switch gears and take a hard look at the limits of scaling our application. We
can't scale up infinitely, and the next chapter will look at how to avoid hitting a wall,
as we scale beyond a certain size.

Chapter 9

[183]

Scaling Down
We tend to think of scaling as a unidirectional problem—we can only scale up from
where we are currently. Unfortunately, that doesn't quite work. We can only scale in
one direction for so long before the foundation crumbles under our feet. The key is in
identifying the scaling limitations, and designing around them.

In this chapter, we'll look at the fundamental scaling constraints faced by JavaScript
architects in nearly every browser environment. We'll also look at the customer as
a scaling influencer, and how new features conflict with existing features. Scaling
down from bloated design is an essential activity as well.

The composition of our application as a whole determines how easy or how difficult
it'll be to scale down by turning features off. It all has to do with coupling, and if we
look closely, we'll often discover that we need to refactor our components so they can
be easily removed later on.

Scaling constraints
Our applications are constrained by the environments in which they run. This
means the hardware on which the client is running, and the browser itself. What's
interesting about web applications is that there's also the transmission of the code
itself to consider. For example, if we're writing backend code, we can throw more
code at any problem we face, and that's not a problem because that code doesn't
move around—it runs in one place.

Scaling Down

[184]

With JavaScript, size matters. There's simply no way around this fact. As a corollary,
network bandwidth matters—both for the delivery of our JavaScript artifacts, and
our application data from the API.

In this section, we'll address the hard scaling constraints imposed on us in the
browser computing environment. As our application grows, we feel the pressure
of these constraints more and more. Each of these needs to be considered when
planning new features for our application.

JavaScript artifact size
The cumulative size of our JavaScript artifacts can only grow so much. Eventually,
the load time of our application will suffer to the point that nobody will want to use
our application. Huge JavaScript artifacts are typically indicative of bloat in other
areas. For example, if we're delivering huge files to the browser, we probably have
too much of something. Maybe we don't need the features nobody uses, or maybe
there's repetitious code spread throughout our components.

Whatever the cause, the effects aren't good. Smaller is always better. How do we
know when the file size of our JavaScript artifacts are small enough? That depends—
there's no universal ideal size. Where is our application deployed, on the public
internet? Behind a VPN for corporate users? There may be different acceptance
criteria for the users of these types of systems. Broadly speaking, the public internet
users are going to be less forgiving of poor load time performance and feature bloat.
The corporate users on the other hand, generally appreciate more features and are
more tolerant of lackluster load times.

The biggest contributor to growing JavaScript artifact sizes are the new features
we constantly add to our product. These result in new components which add
weight. Any given feature is going to have a minimum set of files, each for the
components that follow the pattern of our existing features. If our patterns are half
decent, then we should be able to keep the size of our components reasonable.
However, repetitive code always finds its way into the application when deadlines
are involved. Even if our code is as lean as it could possibly be, we still have to
implement features when they're asked for.

Compiled artifacts help us with the size problem. We can concatenate and uglify
files, saving on the number of network requests, and the overall bandwidth. But, any
given feature will keep these compiled artifacts growing. We can keep growing for
some time before encountering any problems. As stated, the problems are relative,
depending on the environment, and the users of our software. In all cases, the size
of our JavaScript artifacts cannot grow infinitely.

Chapter 9

[185]

Component
46KB

Collections
23KB

Models
11KB

Views
12KB

The size of JavaScript artifacts are the aggregate result of all modules that make up the component

Network bandwidth
The size of our JavaScript artifacts contributes to the overall network bandwidth
consumption of our application. Especially as there's more user uptake—users are
the multipliers for all our architectural woes. Coupled with our JavaScript code,
is our application data. These API calls also contribute to the overall network
bandwidth consumption, and user-perceived latency.

As our application scales geographical boundaries, we'll notice a diverse
range of connectivity issues. In many parts of the world, high-speed
networks simply aren't an option. If reaching these markets is important
to us, and it should be, then our architecture needs to cope with slow
internet connections. Using CDNs to deliver the libraries our application
use can help here because they take into consideration the geographical
location of the requests.

The challenge is that any new feature is going to add new network bandwidth
consumption. There's the size of the code, and the new API calls introduced by
the new component. Mind you, these effects aren't felt immediately. For example,
the new component doesn't make API calls on page load, only when the user
navigates to a specific URI.

Nonetheless, new API endpoints mean more aggregate network bandwidth usage
over time. Further, it's not just a matter of making one API call when a user navigates
to a feature page. It sometimes takes a tangle of three or more API calls, in order
to construct the data to be presented. We need to keep this in mind when we're
thinking that a new API call isn't a big deal, as it usually ends up being more than
one call, and that means more bandwidth consumption.

Scaling Down

[186]

Is there a fundamental network bandwidth limit? Not theoretically, but it's like
the size of our JavaScript artifacts—we can grow them to 10MB each if we please.
All we can say with confidence is that it's not going to improve the user experience,
and the side effects could cause a much worse experience. The same goes with
network bandwidth consumption.

Back-end

Component

API DataJS Module

Components consume network bandwidth by requesting JavaScript modules and API data

'Following is an example that shows how the aggregate latency of our application
suffers as more requests are made:

// model.js
// A model with a fake "fetch()" method that doesn't
// actually set any data.
export default class Model {

 fetch() {

 // Returns a promise so the caller can work
 // with this asynchronous method. It resolves
 // after 1 second, meant to simulate a real
 // network request.
 var promise = new Promise((resolve, reject) => {
 setTimeout(() => resolve(), 1000);
 });

 return promise;
 }

};

// main.js
import Model from 'model.js';

function onRequestsInput(e) {
 var size = +e.target.value,
 cnt = 0,

Chapter 9

[187]

 models = [];

 // Create some models, based on the "requests"
 // number.
 while (cnt++ < size) {
 models.push(new Model());
 }

 // Setup a timer, so we can see how long it
 // takes to fetch all these models.
 console.clear();
 console.time(`fetched ${models.length} models`);

 // Use "Promise.all()" to synchronize the fetches
 // of each model. When they're all done, we can stop
 // the timer.
 Promise.all(models.map(item => item.fetch())).then(() => {
 console.timeEnd(`fetched ${models.length} models`);
 });
}

// Setup our DOM listener, so we know how many
// models to create and fetch based on the "requests"
// input.
var requests = document.getElementById('requests');

requests.addEventListener('input', onRequestsInput);
requests.dispatchEvent(new Event('input'));

Memory consumption
With every feature we implement, the memory consumed by the browser grows.
This may seem like an obvious statement, but it's important. Memory issues not only
hurt application performance, they can crash the entire browser tab. Therefore, we
need to pay close attention to the memory allocation characteristics of our code. The
profiler built into the browser can record the allocations of objects in memory over
time. This is a useful tool for diagnosing issues, or for general observations about
how our code behaves.

Scaling Down

[188]

Frequently creating and destroying objects can cause performance lags.
This is because the objects that are no longer referenced, are garbage
collected. When the garbage collector is running, none of our JavaScript
code runs. So we have a conflicting requirement—we want our code to
run fast, and we don't want to waste memory.
The idea is to not cause the garbage collector to run unnecessarily. For
example, there are times where we can hoist the variable up to a higher
scope. This means that the reference isn't created and destroyed several
times throughout the lifetime of the application.
Another scenario is with frequent allocations in a short timeframe, such
as within a loop. While JavaScript engines are smart about dealing with
these types of scenarios, they're still worth keeping an eye out for. The
best resources are the source code of low-level libraries that take into
account the garbage collector, and avoid unnecessary allocations.

The responses returned from the API also consume memory, and depending on
the data returned, a substantial amount of memory. Something we'll want to do is
ensure that there's a cap on how much data a given API endpoint can respond with.
Many backend APIs do this automatically, not returning more than a 1000 entities at
a time. If we need to make our way through the collection, then we need to provide
an offset argument. However, we may want to further constrain the size of the API
response, because the size of individual entities in the collection could occupy a lot
of memory as a model in the browser.

While these collections are typically garbage collected as the user moves around
from page to page, each new feature we implement presents the opportunity for
subtle memory leak bugs. It's the subtle bugs that are difficult to deal with because
the leaks are slow and manifest themselves differently across environments. When
the memory leak is large and obvious, it's easier to reproduce, and thus, easier to
locate and fix.

Next is an example that shows how quickly memory consumption can get out
of hand:

// model.js
var counter = 0;

// A model that consumes more and more memory,
// with each successive instance.
export default class Model {

 constructor() {
 this.data = new Array(++counter).fill(true);

Chapter 9

[189]

 }

};

// app.js
// A simple application component that
// pushes items onto an array.
export default class App {

 constructor() {
 this.listening = [];
 }

 listen(object) {
 this.listening.push(object);
 }

};

// main.js
import Model from 'model.js';

function onRequestsInput(e) {
 var size = +e.target.value,
 cnt = 0,
 models = [];

 // Create some models, based on the "requests"
 // number.
 while (cnt++ < size) {
 models.push(new Model());
 }

 // Setup a timer, so we can see how long it
 // takes to fetch all these models.
 console.clear();
 console.time(`fetched ${models.length} models`);

 // Use "Promise.all()" to synchronize the fetches
 // of each model. When they're all done, we can stop
 // the timer.
 Promise.all(models.map(item => item.fetch())).then(() => {
 console.timeEnd(`fetched ${models.length} models`);
 });

Scaling Down

[190]

}

// Setup our DOM listener, so we know how many
// models to create and fetch based on the "requests"
// input.
var requests = document.getElementById('requests');

requests.addEventListener('input', onRequestsInput);
requests.dispatchEvent(new Event('input'));

CPU consumption
One of the big factors in how responsive our user interface feels, is the CPU on the
client. If it's available to run our code whenever there's code to be run, in response
to a click for instance, then the UI will feel responsive. If the CPU is busy handling
other things, our code will have to sit there and wait. And so will the user. Obviously
there's a lot of software asking for the CPU's attention in a given operating
environment—much of which is completely out of our control. We can't scale down
the use of other applications outside of the browser, but we can scale down the use
of the CPU from within our JavaScript application. But first, we have to understand
where these JavaScript CPU cycles come from.

At the architectural level, we don't think about micro optimizations that make little
sections of a single component more efficient. We care about scaling down, which
translates to a noticeable effect on the CPU consumption while our application is
running. We saw, in Chapter 7, Load Time and Responsiveness, how to profile our code.
This tells us where the CPU is spending it's time in our code. With profiles as our
measuring stick, we can proceed to make changes.

The two factors that influence the use of the CPU at an architecturally significant
level are the number of active features, and the amount of data that's used by these
features. For example, as we add more components to our system, there's naturally
more CPU consumption, because when things happen in the UI, the component
code for that feature needs to respond in some way. But this isn't likely to have a big
impact on its own. It's the API data that comes with implementing a new feature that
makes that CPU cost dangerously expensive.

Data

Data

Data...

Data...

Component

Component

Component...

Component...

CPU

Combining forces that eat CPU cycles—more data, processed by more components

Chapter 9

[191]

For example, if we were to keep implementing new features and the data set
never changed, we would start to feel the CPU cost. This is because there's more
indirection, meaning more code to run for any given event that takes place. This
slow down would happen at glacial speeds however—we could just keep adding
hundreds and hundreds of features, without breaking a sweat, CPU-wise. It's the
changing data that makes this a scaling impossibility. Because if you multiply the
number of features by the growing data sets, the CPU cost grows exponentially.

Well, maybe not all our features are consuming all of our data. And maybe there's
very little indirection in our design. It's still the biggest factor to consider when it
comes to scaling down. So if we need to cut CPU costs, we need to remove features
and the data they process—it's the only way to get a measurable impact.

Following is an example that shows how the number of components, combined with
the number of data items, progressively consumes more CPU time:

// component.js
// A generic component used in an application...
export default class Component {

 // The constructor accepts a collection, and performs
 // a "reduce()" on it, for no other reason than to eat
 // some CPU cycles.
 constructor(collection) {
 collection.reduce((x, y) => x + y, 0);
 }

}
// main.js
import Component from 'component.js';

function onInput() {
 // Creates a new collection, the size
 // is based on the "data" input.
 var collection = new Array(+data.value).fill(1000),
 size = +components.value,
 cnt = 0;

 console.clear();

 // Sets up a timer so we can see how long it
 // takes for x components to process y collection items.
 console.time(`${size} components, ${collection.length} items`);

 // Create the number of components in the "components"

Scaling Down

[192]

 // input.
 while (cnt++ < size) {
 new Component(collection);
 }

 // We're done processing the components, so stop the timer.
 console.timeEnd(`${size} components, ${collection.length} items`);
}

// Setup out DOM event listeners...
var components = document.getElementById('components'),
 data = document.getElementById('data');

components.addEventListener('input', onInput);
data.addEventListener('input', onInput);

components.dispatchEvent(new Event('input'));

Backend capabilities
The final scaling constraint we'll address is the backend that serves our static
resources and our API data. This is a limiting factor because our code can't run until
it reaches the browser, and we can't display information for the user until the raw
data has arrived. These two things are up to the backend to deliver on, but there are
a few things to keep in mind about the backend when doing frontend development.

The first concern is the usage of our application. Just as the browser running our
JavaScript code can't scale infinitely up, neither can our backend APIs. While they
have some characteristics that enable them to scale up that browsers don't, they still
feel the impact of more request volume. The second concern is the way that our code
interacts with the API. We have to look at the how a single user uses our application,
and look at the API requests generated from those interactions. If we can optimize
the requests made for one user, adding more users will have less of an impact on
the backend.

For example, we don't want to make requests that we don't need to. This means, don't
load data until it's actually needed. And, don't load the same data over and then over again.
If a user doesn't start interacting with a feature till five minutes into their session, that
frees up the backend to service other requests during that interval. Sometimes our
components use the same API endpoints. What if they're both created at the same
time, and both send the same API request in succession? The backend has to service
both requests, unnecessarily, because they're going to have the same content.

Chapter 9

[193]

We need to structure component communication to account for scaling influencers
such as the load generated in the backend. In this particular instance, the second
component could look up in a pending requests map and return that promise instead
of generating a completely new request.

API

Requests
20

Requests
4

Component V1 Component V2

Newer components should aim to consume less bandwidth; one approach is to accomplish the same
functionality using fewer API requests

Conflicting features
The lines between our features become blurred as our software grows. There's bound
to be at least some overlap, and that can be a good thing. If there wasn't at least a
little overlap, users would have a tough time transitioning from one area of our UI to
another. This becomes a problem when we reach a feature threshold where there're
multiple overlapping layers that just keep overlapping. It's a self-propagating
problem that get's worse with every new feature added, till it is addressed.

Two potential causes of this problem include parts of our application that grow
irrelevant over time, and instead of being retired, they sit around and get in the way.
Customer demand plays a big part in this scaling influence because it determines the
future direction of the product. This should also give us an indication of what's in
place now, that either needs to change in order to meet demand, or needs to go away
in the near future.

Overlapping functionality
Over the course of our application's life, there's going to be new functionality that
overlaps with existing functionality. That's just the nature of software development—
building on what you already have, not starting something way out left-field that
has nothing to do with our existing features. What's nice is when that overlap is
unobtrusive, and serves as a bridge from existing features to new features and
enhancements.

Scaling Down

[194]

Where this overlap doesn't work so well is when it conflicts with existing features.
It's like trying to build a house in the woods, without removing any trees first. One of
two things needs to happen if the overlap is going to be seamless and scalable. Either
we need to adjust what's already in place in order to accommodate what's coming
down the line, or we need to rethink the new functionality so that it better fits in the
available space. It's interesting, because given what we have, we sometimes have to
scale down features before they're even implemented—this is often easier than after
they've been implemented.

The end result of nonsensical feature overlap is something that the user finds clunky
and difficult to use, so we can expect some complaints down the road. It is something
else that we'll likely have to fix or remove later on. We actually tell ourselves this
quite often—it's not a great addition, but it's good enough for the deadline. But at
what cost is it good enough? In addition to the forecasted user frustration, there's also
the code to worry about. Rarely do we say things like—well, the users may not like it,
but the code is fantastic. The poor user experience is often the result of poor feature
planning, followed by poor implementation.

The solution is quite simple, as we've already seen. It's a matter of making room for
the changes, or altering the new feature. Something we often neglect is documenting
the potential problems. For example, if we see a problem with a planned feature
fitting in with our current code, we need to speak up and generate an outline of what
doesn't fit where and why. It's always better to have this information archived and
searchable than to ignore it. This is how we scale our architectural ideas, by being
inclusive with the team.

Common Aspect

Common Aspect

Unique Aspect Unique Aspect

Unique Aspect Unique Aspect

Unique Aspect Unique Aspect

Old Feature New Feature

Overlap between old features and new features is a good starting point for scaling down unnecessary code

Chapter 9

[195]

Irrelevant features
Over time some features prove their worth. Our users love them, and use them often.
What's more—we hardly have to maintain them. They just work. On the other hand,
some of the other features we've implemented start to rust sooner than we would have
liked. There could be any number of signs that this is taking place. Maybe a handful of
users love the feature, but it's buggy and difficult to maintain. Maybe the majority of
our users love the feature but it's preventing a number of initiatives from taking place
in the project. But the most common case is that nobody is really using it.

Whatever the reason, features do become irrelevant. Our problem, as an industry,
is that we like to hoard code. Sometimes we keep around irrelevant functionality
out of necessity—we would simply break too many things, or introduce backward
incompatibility where we need it. Other times, and this really is a frontend problem
more than anywhere else, we keep the feature around because we don't have an
explicit mandate to rid ourselves of it. Well that needs to happen if we want to scale
our application I'm afraid.

It's a matter of being proactive rather than reactive. As we know, every component
contributes to our scaling constraints—be it network, memory, CPU, or otherwise.
Who knows, maybe we could get by just fine with the feature sitting around in our
product. It's better to get it out of the way, because there's less chance of it actually
constraining our ability to scale. We may think it's a harmless piece of code, but isn't
it better to rule it out completely? Further, it's simply a good attitude to instill in
everyone around us—scale down the things we don't need, then think about where to
go from there. If we set the precedent with all our stakeholders that we're ready and
willing to trim the fat, we're more likely to convince them to ship a leaner product.

Scaling Space Scaling Space

Feature Feature

Feature Feature

Irrelevant Feature

Irrelevant Feature New Feature

New Feature

There's only so much room for our application to scale; removing irrelevant features frees up scaling space

Scaling Down

[196]

Customer demand
Depending on the type of product we're building, and the type of users it's servicing,
customer demand will translate to either disciplined planning and implementation,
or to knee-jerk reactions. We all want to make our customers happy—that's why
we're building the software. But it's these quick decisions to implement stuff people
are screaming for that detracts from our architecture. It's like we're implementing the
features as though they were bugs. With bugs, we implement quick fixes as quickly
as possible because we need to get them out the door.

New features aren't bugs. Despite what users and management say—they'll live
another day without the functionality they're asking for. We need to find a way to
buy ourselves the time necessary to fit the new features customers want into our
architecture. That's not to say that we can keep putting it off—we have to do so in
a timely manor. Perhaps excising existing features that users care less about is the
fastest way forward.

Features we have... Features customers want...

Feature

Feature

Feature

Feature

Feature Feature

Next Version?

Figuring out which features make it into the next version; they're either features we already have, or new
features that customers want

Design failures
It's one thing to scale down by fixing our code as it stands today. For example, by
taking features out, or by modifying existing components to accommodate newly
planned features. But that'll only get us so far into the future. Design ideas that
seemed like a good idea two years ago were for the features we were thinking
about two years ago, some of which may no longer be around today.

To make a lasting impact on our architecture, we have to repair broken patterns.
They still work in our product because we make them work, even though they may
not be the best tools for the job. Figuring out the right design isn't a one time event,
it happens as our software changes, and as our scaling influences command.

Chapter 9

[197]

In this section we'll look at a few ways we might address some flaws in our design.
Perhaps there're a lot of moving parts we don't need. Perhaps we're processing our
API data inefficiently, due to the complexity of our component communication
model. Or maybe the structure of our DOM elements is leading to obtuse selector
strings and slowing down development. These are just a handful of possibilities—
defective patterns vary project by project.

Unnecessary components
When we'll first set out to design our architecture and build our software, we'll
leverage patterns that make sense at the time. We design our components to be
loosely coupled with one another. To get this loose coupling, we often make a
trade-off—more moving parts. For example, to keep the responsibilities of each
component focused, we have to split larger components into smaller ones. These
patterns determine the composition of our feature components. If we're following
this pattern, and it has unnecessary parts, anything new we develop will also contain
unnecessary parts.

It's difficult to get patterns right, because when we need to decide on which patterns
to use, we don't have enough information. Frameworks, for example, have very
generic patterns in place because they serve a much broader audience than our
application does. So while we want to utilize the same patterns exposed by the
framework, we need to adapt them to our specific features. These are the patterns
that change, gradually, as customer demand shifts the nature of our product. We
can embrace this natural phenomenon, and invest the time in fixing our patterns.
Or, we can go about fixing the issues as they arise, keeping our original patterns
intact. Being amenable to changing what we once assumed was foundational is
the best way to scale our architecture.

The most common pattern flaw is unnecessary indirection. That is, components that
are abstract, and don't really have any value. While they decouple a component
from something else, that's about all they do. We'll notice that over time, our code
accumulates these modules that are relatively small, and tend to all look the same.
They're small because they don't do much, and they look the same because they're
part of the pattern we promised to be consistent with throughout our code. At the
time that the pattern was conceived, this component made perfect sense. After
having implemented several components, it makes less sense. Losing the component
doesn't detract from the design, and in fact, the whole project feels a little lighter
now. It's funny, the disconnect between what patterns look like on paper, and what
they look like in a real application.

Scaling Down

[198]

Next is an example that shows a component that uses a controller, and another version
of the component that doesn't require a controller and has one less moving part:

// view.js
// An ultra-simplistic view that updates
// the text of an element that's already in
// the DOM.
export default class View {

 constructor(element, text) {
 element.textContent = text;
 }

};

// controller.js
import events from 'events.js';
import View from 'view.js';

// A controller component that accepts and configures
// a router instance.
export default class Controller {

 constructor(router) {
 // Adds the route, and creates a new "View" instance
 // when the route is activated, to update content.
 router.add('controller', 'controller');
 events.listen('route:controller', () => {
 new View(document.getElementById('content'),
'Controller');
 });
 }

};

// component-controller.js
import Controller from 'controller.js';

// An application that doesn't actually do
// anything accept create a controller. Is the
// controller really needed here?

Chapter 9

[199]

export default class ComponentController {

 constructor(router) {
 this.controller = new Controller(router);
 }

};

// component-nocontroller.js
import events from 'events.js';
import View from 'view.js';

// An application component that doesn't
// require a component. It performs the work
// a controller would have done.
export default class ComponentNoController {

 constructor(router) {
 // Configures the router, and creates a new
 // view instance to update the DOM content.
 router.add('nocontroller', 'nocontroller');
 events.listen('route:nocontroller', () => {
 new View(document.getElementById('content'), 'No
Controller');
 });
 }

};

// main.js
import Router from 'router.js';
import ComponentController from 'component-controller.js';
import ComponentNoController from 'component-nocontroller.js';

// The global router instance is shared by components...
var router = new Router();

// Create our two component type instances,
// and start the router.
new ComponentController(router);
new ComponentNoController(router);

router.start();

Scaling Down

[200]

Inefficient data processing
Micro-optimizations don't really buy us much in efficiency. Duplicate processing on
the other hand can lead to massive scaling problems. The challenge is that we might
not even notice that there's duplicate processing going on until we look for it. It often
happens when data is passed from one component to another. The first component
performs transformations on the API data. Then, the raw data is passed to the second
component, which then proceeds to perform the exact same transformations. As
more components are added, these inefficiencies start to add up.

The reason we seldom catch these types of problems is that we're blinded by our
beautiful design patterns. Sometimes the inefficiencies that hurt the user experience
are masked by our code because we're doing things consistently. That is, we're
keeping the relationships between our components loosely coupled, and because of
this, our architecture scales in a number of respects.

The majority of the time, a little bit of repetitive data processing is a perfectly
acceptable trade-off. It depends on what it gains us in terms of flexibility for dealing
with other scaling influences. For example, if we're able to easily handle a number of
different configurations, and enable/disable features where we need to, because of
the number of disparate deployments we have, then this trade off might make sense.
However, scaling in one regard often means not scaling in another. For example,
the amount of data is likely to increase, meaning the data that's passed around from
component to component will increase. So the duplicitous data transformations that
weren't a problem, are now a big problem. When this happens, we have to scale
down our data processing.

Again, this doesn't mean we need to start introducing micro-optimizations—it means
we have to start hunting for the big efficiency wins. The starting point should always
be with the network calls themselves, because not getting the data in the first place
is the biggest efficiency win for the frontend. The second place to look at is the data
that's getting passed around from component to component. This is where we need
to make sure that a component isn't doing the exact same thing as the previous
component in the chain.

Following is an example that shows a component that will fetch model data each
time fetch() is called. It also shows an alternative implementation that doesn't fetch
the model when there's already a pending request:

// model.js
// A dummy model with a dummy "fetch()" method.
export default class Model {

 fetch() {
 return new Promise((resolve) => {

Chapter 9

[201]

 setTimeout(() => {

 // We want to log from within the model
 // so that we know a fetch has actually
 // been performed.
 console.log('processing model');

 // Sets some dummy data and resolves the
 // promise with the model instance.
 this.first = 'First';
 this.last = 'Last';

 resolve(this);
 }, 1000);
 });
 }

};

// component-duplicates.js
import Model from 'model.js';

// Your standard application component
// with a model.
export default class ComponentDuplicates {

 constructor() {
 this.model = new Model();
 }

 // A naive proxy to "model.fetch()". It's
 // naive because it shouldn't fetch the model
 // while there's outstanding fetch requests.
 fetch() {
 return this.model.fetch();
 }

};

// component-noduplicates.js
import Model from 'model.js';

// Your standard application component with a

Scaling Down

[202]

// model instance.
export default class ComponentNoDuplicates {

 constructor() {
 this.promise = null;
 this.model = new Model();
 }

 // "Smartly" proxies to "model.fetch()". It avoids
 // duplicate API fetches by storing promises until
 // they resolve.
 fetch() {

 // There's a promise, so there's nothing to do -
 // we can exit early by returning the promise.
 if (this.promise) {
 return this.promise;
 }

 // Stores the promise by calling "model.fetch()".
 this.promise = this.model.fetch();

 // Remove the promise once it's resolved.
 this.promise.then(() => {
 this.promise = null;
 });

 return this.promise;
 }

};

// main.js
import ComponentDuplicates from 'component-duplicates.js';
import ComponentNoDuplicates from 'component-noduplicates.js';

// Create instances of the two component types.
var duplicates = new ComponentDuplicates(),
 noDuplicates = new ComponentNoDuplicates();

// Perform two "fetch()" calls. You can see that
// the fetches are both carried out by the model,
// even though there's no need to.
duplicates.fetch();
duplicates.fetch().then((model) => {
 console.log('duplicates', model);

Chapter 9

[203]

});

// Here we do the exact same double "fetch() call,
// only this component knows not to carry out
// the second call.
noDuplicates.fetch();
noDuplicates.fetch().then((model) => {
 console.log('no duplicates', model);
});

Making duplicate API calls is tough to avoid when our components
are decoupled from one another. For example, let's say that one feature
creates a new model, and fetches it. Another feature that's on the
same page needs the same model, but knows nothing about the first
component—it too creates it and fetches data.
These result in the exact same API call being made, which is obviously
unnecessary. Not only is it inefficient for the frontend because it has
two separate callbacks for the exact same data, it's also hurting the
system as a whole. When we make requests that aren't needed, we're
clogging up the request queue in the backend, affecting other users. We
have to keep an eye out for these types of duplicate calls and adjust our
architecture accordingly.

Excessively creative markup
The markup used to render our UI components can grow a little out of control.
Because we're aiming for a specific look and feel, we have to hack the markup a
little in order to do that. Then we hack it some more, because it doesn't look quite
right on this browser or that browser. The result is elements deeply nested in other
elements, to the point where they've lost any semantic meaning. We should strive
for semantic use of tags—a test goes in p elements, a clickable button is a button
element, the page sections are split by section elements and so on.

The challenge here is that the design we're going for is usually expressed as a
wireframe, and we need to implement it in such a way that it can be sliced up into
pieces that our framework and components can use. So the simplicity gets lost as
trying to keep things semantic, and at the same time dividing into standalone views
isn't always feasible.

Scaling Down

[204]

We have to try to simplify the DOM structure where we can though, because it has
a direct impact on the simplicity and the performance of our JavaScript code. For
example, our components often need to find elements on the page, either to change
their state or to read values from them. We can write selector strings that query the
DOM and return the elements we need. The strings are found all throughout our
view code, and they reflect the complexity of our markup.

When we stumble across convoluted selector strings in our code, even the ones we
wrote ourselves, we have no idea what it's actually querying for—because the DOM
structure and the tags used are of no help. So it turns out that using semantic markup
can actually be of great help to our JavaScript code. There're also the performance
implications of complex DOM structures—if we're frequently traversing deep DOM
structures, we're pay a performance penalty.

<button>

<div>

<button>

<div>

<div>

<div>

Excessively deep element nesting can usually be scaled down, to not use so many elements

Application composition
We'll close out the chapter with a section on application composition. This is the
10,000 foot view of our application, where we can see how individual features fit.
In Chapter 3, Component Composition we looked at component composition, and
the same principles apply here. The idea being that we're operating at a slightly
higher level.

In Chapter 6, User Preferences and Defaults we looked at configurability, and this is also
relevant to the idea of application composition. For example, turning features off, or
turning on features that are disabled by default. The composition of our application
as a whole has a huge impact on our ability to scale down certain aspects.

Chapter 9

[205]

Feature enablement
The expedient approach to scaling down is turning features off. The difficult part is
getting stakeholders to agree that this is a good idea. Then we can just remove the
feature, and we're all set, right? Not necessarily. We may have to spend some time
taking the feature out. For example, what if it touches several entry points into the
system and there's no configuration that can switch these off? It's no big deal, it just
means we need more time spent on writing code that takes these out.

The only problem is with testing the effects of taking the feature out of the system.
For the scenario where there's no configuration that'll do the job, we have to spend
time writing code that will do it, before we even get to test it. For instance, we could
spend five minutes turning off configuration values, and then we'll get immediate
results. Maybe we learn early on that there's a lot of work that needs to be done
before we can safely remove the feature from the system.

In addition to testing the runtime behavior of our application once a feature
has been removed, we'll probably want some build-time options as well. If our
production code is compiled into a handful of JavaScript artifacts, then we need a
way to completely remove these features from the build. It's one thing to disable
components through configuration. That means when our code runs, certain things
won't load, and so on. If we take the feature out of our source code repository, then
'it's obviously less of a concern—our tools can't build what isn't there. However,
if we have hundreds of potential components that can be included in our build
artifacts, we need a way to exclude them.

New feature impact
The next major impact on our application is the addition of new features. Yes, this
discussion is about scaling down, but we can't ignore the addition of new features
into our application. This is, after all, why we're scaling down in the first place.
Not to build a smaller application that does less. It's to make room for features our
customers want, and to improve the overall quality of our product over time.

The processes of adding features and removing features often happen in parallel. For
example, during a development sprint, while one team implements a new feature,
another team is responsible for the removal of a feature that's causing problems.
Since both of these activities affect the application in major ways, we have to be
considerate, and minimize these effects.

Scaling Down

[206]

Essentially, that means making sure that the removal of the old feature isn't too
disruptive to the new feature that's being added. For example, what if the new feature
depended on something from the old feature. If our design is sound, then there won't
be any direct dependencies. However, complexity is not well understood by humans—
especially cause and effect through indirection. So scaling this operation might mean
that we don't perform the two activities in parallel after all.

New Component Event Broker

Component

Component

Component

Component

Depending on our inter-component communication model, the effects of adding new components
into the system should be fairly subdued

Essential libraries
The last pieces that impact the composition of our application are the frameworks
and libraries we're using. It goes without saying that we only want to use what we
need—use it or lose it, so to speak. This is mainly an issue when we're pulling in
smaller libraries as dependencies. Frameworks, by contrast, are all inclusive for the
most part. This means that everything you need is likely in the framework already.
While this isn't necessarily true, it still helps us reduce the number of dependencies
on third-party libraries.

Even frameworks are modular nowadays, meaning we can cherry-pick the goodness
we want and leave the rest alone. Even still, it's easy to bring in components, from
a framework or otherwise, that we won't really use. This happens quite a lot in web
site development. We need this one piece of functionality, and we don't want to
write it ourselves because that library over there already does it. Then it gets lost in
the mix of pages. We should learn the lesson that web sites didn't—our applications
need a focused set of dependencies, essential to getting the job done.

Chapter 9

[207]

Summary
This chapter introduced the notion that not everything in our application is infinitely
scalable. In fact, nothing about our application is infinitely scalable, as each aspect is
constrained by different factors. These factors all blend together in unique ways, and
it's up to us to make the necessary trade-offs. If we want to keep scaling up, we have
to scale down in other areas.

New features come from customer demand, and they often overlap with other
features we've already implemented. This could be because we haven't defined the
new feature very well, or because the existing entry points into the system aren't
very well defined. Either way, this can make for a challenging exercise; the removal
of existing features, in place of a new feature. We often need to remove the areas of
overlap, as they cause confusion both at the code level and the usability level.

Scaling down isn't just a piece by piece activity—there are the design patterns to
think about as well. After we've removed a feature, we need to look at the patterns
we're using and ask, do we want to keep having to do this in the future? The better, more
scalable path forward, is to fix the pattern. Even after we've scaled down, there's
always the potential for error. In the following chapter, we'll take a closer look at
failing components, and how to deal with them.

Chapter 10

[209]

Coping with Failure
At this point in the book, we would like to think that our architecture is sound.
We've thought about scale, and made all the appropriate trade-offs, sacrificing
performance for configurability, and so on. The one aspect of scalable JavaScript
architectures we have yet to go into any depth on is the human factor. As smart
as we are, we're the weakest link because we design the application and write the
code—and we're really good at making subtle mistakes.

Until we're taken out of the software development equation completely, we have to
design our components with failure in mind. This involves thinking about the failure
modes—do we fail fast, or do we try to recover from the error? It involves thinking
about the quality of our errors—some errors are easier to work with than others. But
it's also about understanding our limitations; we can't feasibly detect and recover
from every conceivable error.

As we scale our application, the approaches of how we deal with failures need to
scale too. This is yet another trade-off we need to make amongst the many other
scaling influences. Let's start by looking at the fail-fast failure mode.

Failing fast
Systems or components that fail-fast, stop running when they fail. This may not
sound like a desirable design trait, but consider the alternative: a system or a
component that fails, but then continues to run anyway. These components could
be running in an erroneous state, whereas, that's not possible if the system or
component halts.

There are times where we'll want to recover a failed component, and we'll get into
that topic later on in the chapter. In this section, we'll go over some of the criteria
used in determining whether a JavaScript component should fail fast, and what the
consequences are for the user. Sometimes, even our fail-fast mechanisms fail us,
which we also need to consider.

Coping with Failure

[210]

Using quality constraints
When our components fail-fast, it's usually due to a known error state. On the other
hand, something completely unexpected could happen. In either case, it's likely to
leave our component in a bad state, and we don't want the application to carry on
like everything is fine. Let's focus on failing-fast when quality constraints aren't met.
These are assertions about how our application behaves. For example, we shouldn't
try sending API requests more than three times; we wouldn't wait more than 30
seconds for a response—this property of a model should always have a non-empty
string, and so on.

When these assertions prove false, it's time to stop executing—either the one
component, or the whole system. It's not as though we're doing this to annoy the
user. Like any failure, we hope they happen as infrequently as possible. Think of
failing-fast as the airbags deploying in a car accident—when that happens, our car
is no longer drivable.

The decision to make a component or the system as a whole fail fast under certain
conditions shouldn't be taken lightly. For example, if we fail fast in one place because
a feature team implemented it thusly, for reasons unknown to other teams, the
whole application starts to fail. Meanwhile, it turns out that this is by design, and
is expected behavior. There needs to be strict rationale for this failure mode. What
really helps with discussion around fail-fast scenarios are the catastrophic results
that could potentially happen if the application were to continue on undeterred.

Component
�
�
�

API GET response < 2S
Max collection size < 100,000
API retries < 5

Constraints that when violated, cause the component to fail-fast, possibly causing
the whole application to fail fast

Providing meaningful feedback
We don't want to give users, or other members of our development team the wrong
idea about why our software isn't running under certain scenarios. This means that
we have to distinguish between failing-fast, and total uncontrolled failure. The latter
is something that breaks our application, and may cause the browser tab to crash.
Or worse, it's still alive, crawling around on the floor, giving the user the impression
that it still kind of works, doing harm all the while.

Chapter 10

[211]

This means that when we fail fast, we have to make it glaringly obvious to the user
that something has stopped working, and they shouldn't continue using it. Whether
it's a single component that failed or the entire application, we have to make the
messaging clear and concise. The user doesn't always need to know what went
wrong; they just need to know that the component or the application is currently
broken, and anything they do, will not work.

This is actually an important consequence of introducing fail-fast into our
architecture—we get responsiveness under certain conditions. We never leave the
user guessing. Sure, it's annoying to have broken software in front of us, but not
as annoying as waiting, trying, and waiting some more, to find out it's broken.
With a clear message stating that the application isn't working, or parts of it aren't,
we may want to physically prevent the user front interacting with it. For example,
by throwing a div overlay on top of the elements or by turning off the DOM
event handlers.

Next is an example that shows two error handlers. The first implicitly handles
the error by disabling the button. The other callback does the same thing, but also
explicitly displays an error message:

// The DOM elements...
var error = document.getElementById('error'),
 fail1 = document.getElementById('fail1'),
 fail2 = document.getElementById('fail2');

// The first event merely disables the button.
function onFail1(e) {
 e.target.disabled = true;
}

// The second event disables the button, but
// also explicitly informs the user about what
// went wrong.
function onFail2(e) {
 e.target.disabled = true;
 error.style.display = 'block';
}

// Setup event handlers...
fail1.addEventListener('click', onFail1);
fail2.addEventListener('click', onFail2);

Coping with Failure

[212]

When we can't fail fast...
We can design fail-fast mechanisms into our components. What we can't do is
guarantee that these mechanisms themselves won't fail. That is, the code we write
to protect us from ourselves is written by us. And so on, and so on. We could keep
writing layer after layer of error handling code that fails fast and gracefully when
there's a failure in the layer beneath it. But to what end?

Understanding that we can't always fail predictably is part of the scaling challenge
we face. Because, at some point, we have to focus on the features we're actually
trying to provide, and not the scaffolding that keeps it up. Extraneous failure
handling code doesn't make our product any better, it just adds bulk in the form
of code. If we try to stay focused on the features we're building, the obvious cases
where we want to fail fast will reveal themselves.

The problem with failure detection code is that it needs to scale with the rest of our
application, with the external scaling influencers guiding its evolution. For example,
more users mean more demand on the backend. This means there's a very real
possibility that our failure detection code will never arrive—how do we account for
this scenario? We don't. Because trying to solve problems like these, doesn't scale.
Trying to prevent them from happening in the first place is a more fruitful endeavor.

Fault tolerance
Systems that are fault-tolerant have the ability to survive a malfunctioning
component. This is done by either correcting the error in the component, or by
replacing the defective one with a new instance. Think of fault tolerance as an
airplane with the ability to land using only one engine—the passengers are
our users.

Typically, we hear about fault tolerance in the context of large scale server
environments. It's a viable concept in frontend development too, given sufficient
complexity. In this section, we'll start off by thinking about how to classify
components into critical versus noncritical components. Then we'll move on to
detecting errors, and how to go about handling the error so that the application
can continue to function.

Chapter 10

[213]

Classifying critical behavior
Just like there're critical sections of code that can't be interrupted, by another thread
for example, there're components that can't fail gracefully in our application. Some
components just have to work, no matter what, and if they don't, then they need
to fail-fast to avoid causing further damage. This is why we need to classify our
components as such. While it may seem obvious that a given component has to
be functioning as expected, it makes sense to consistently classify them somehow.
It's a good idea to socialize ideas like this throughout the organization.

When we know which components are critical, we know that they just have
to work, and there's no conceivable situation from which they'll need to recover.
If these components fail, there's a bug that needs to be fixed. We can also target
these critical components more heavily with unit tests.

It's not a good idea to have tiers of criticality for components. For example, a level
for components that are absolutely critical, and the next level of components that
are not critical but too important to be deemed regular, and so on—it defeats the
purpose. We can either survive without the component, or we can't. That kind of
simplicity lets us divide our components into two categories, and labeling them
is much more straightforward than tiring them. Anything that's not critical has
the potential to tolerate failures, and so we can start thinking about the failure
detection and recovery design of these components.

Critical

Component
Component

Component

Fault Tolerant

Component

Component

Fault Tolerant

Critical components, versus other components that are tolerant of errors

Detecting and containing errant behavior
Our components should be decoupled from one another, if we're designing an
architecture that scales well. Part of that decoupling is errors. Errors that cause one
component to fail, should never cause another component to fail. If we can adopt that
mantra, everything else becomes simpler. Because if one component fails, we can say
with confidence that the failure wasn't caused by another component. From there,
it's substantially more straightforward to figure out the cause and deliver a solution.

Coping with Failure

[214]

Decoupling errors in one component from other components is much simpler
to do if we have something like an event broker in place. If all inter-component
communication is brokered, then that's a good place to implement a mechanism to
detect errors and prevent them from propagating to other components. For example,
if one component receives an event and runs a callback function that fails, it could
have side effects across the entire application, possibly even causing it to fail entirely.

Instead the event broker would detect this error, an exception thrown for example,
or an error state code returned by the callback function. In the case of the exception,
it doesn't find its way up the call stack, because it's caught. The next handlers in
the event queue can then receive information about the failed handler—so they can
decide what to do, perhaps nothing. What's important is that the error is contained,
and its occurrence is communicated to other components.

Following is an example that shows an event broker that's capable of detecting errors
and forwarding them on to the next callback for the event:

// events.js
// The event broker...
class Events {

 // Trigger an event...
 trigger(name, data) {
 if (name in this.listeners) {
 // We need to know the outcome of the previous handler,
 // so each result is stored here.
 var previous = null;

 return this.listeners[name].map(function(callback) {
 var result;

 // Get the result of running the callback. Notice
 // that it's wrapped in an exception handler. Also
 // notice that callbacks are passed the result
 // of the "previous" callback.
 try {
 result = previous = callback(Object.assign({
 name: name
 }, data), previous);
 } catch(e) {
 // If the callback raises an exception, the
 // exception is returned, and also passed to
 // the next callback. This is how the callbacks

Chapter 10

[215]

 // know if their predecessor failed or not.
 result = previous = e;
 }

 return result;
 });
 }
 }

}

var events = new Events();

export default events;

// main.js
import events from 'events.js';

// Utility for getting the error message from
// the object. If it's an exception, we can return
// the "message" property. If it has an "error"
// property, we can return that value. Otherwise,
// it's not an error and we return "undefined".
function getError(obj) {
 if (obj instanceof Error) {
 return obj.message;
 } else if (obj && obj.hasOwnProperty('error')) {
 return obj.error;
 }
}

// This callback will be executed first, since it's
// the first to subscribe to the event. It'll randomly
// throw errors.
events.listen('action', (data, previous) => {
 if (Math.round(Math.random())) {
 throw new Error('First callback failed randomly');
 } else {
 console.log('First callback succeeded');
 }
});

// This callback is second in line. It checks if the

Coping with Failure

[216]

// "previous" result is an error. If so, it will exit
// early by returning the error. Otherwise, it'll randomly
// throw its own error or succeed.
events.listen('action', (data, previous) => {
 var error = getError(previous);
 if (error) {
 console.error(`Second callback failed: ${error}`);
 return previous;
 } else if (Math.round(Math.random())) {
 throw new Error('Second callback failed randomly');
 } else {
 console.log('Second callback succeeded');
 }
});

// The final callback function will check for errors in
// the "previous" result. What's key here is that only
// one of the preceding callbacks will have failed. Because
// the second callback doesn't do anything if the first
// callback fails.
events.listen('action', (data, previous) => {
 var error = getError(previous);
 if (error) {
 console.error(`Third callback failed: ${error}`);
 return previous;
 } else {
 console.log('Third callback succeeded');
 }
});

events.trigger('action');

Component Component

Error Boundary Error Boundary

Containing errors means that errors emitted by one component can't affect other components

Chapter 10

[217]

Disabling defective components
When we fail-fast for the entire application, it's because we're trying to avoid worse
problems from materializing. But, what if there's a problem with a component
that's completely decoupled from the rest of the components in the system? We can
try to recover from the failure, but that's not always possible—if there's a bug, the
only recovery option is to patch the code. In the meantime, we could disable the
component when recovery isn't an option.

Doing this serves two purposes. First, there's less chance of the errant component
spreading its problems around the system. Second, disabling the component, or
hiding it completely, prevents any user interaction. This means that there's less
chance of the user repeatedly retrying things that eventually lead to other bugs.
It shouldn't, because the component is isolated, but still—we don't always know
where our design is flawed.

With the problematic component out of the way, we can take some solace in that the
user isn't completely out of luck. It's just that there is one aspect of the system that
they can't interact with. This gives us a little bit of time to diagnose the issues and
patch the problematic component.

The design question is—who is responsible for disabling the component—is it the
component itself, or is it the responsibility of some core component that detects the
problem? On the one hand, the component turning itself off is a good idea because
there may be several steps involved in shutting down safely, so as to keep the rest
of the components running smoothly. On the other hand, having something like the
event broker shut down problematic components when it encounters them keeps the
error handling in one place. The approach we take really depends on the simplest
possible solution. If the event broker can safely do this, then that's probably the
best bet.

Component Component Component

Broker

Disabled components don't interact with the rest of the system, which decreases the likelihood of the
problematic component causing problems

Coping with Failure

[218]

Gracefully degrading functionality
Disabling components when an error is detected is one thing. It's another thing to
handle a failed component and gracefully remove it from the UI. As much as we
strive to keep our components loosely coupled with one another, it's a different
problem entirely when it comes to the DOM. For example, can we actually remove
the DOM elements of a failed component without disrupting the surrounding
elements? Or are we better off leaving the elements where they are, but disabling
them visually and turning off any JavaScript event handlers?

The approach we take depends on what we're building, that is, the nature of our
application. Some applications make it easy to add and remove features, due in part
to the composition of our components, but also the general layout of the UI. Avoid
thinking that the visual design is just a skin that's detachable from the rest of the
application without consequence. In theory, it should be decoupled from the rest of
the system, but in practice this notion doesn't scale. If we want to scale, the layout
of our elements on the page is relevant, for reasons like failed components, and our
ability to disable or remove them without side effects in other places.

We should think of dealing with failed components as shutting them down, because
there are usually actions that need to happen—so we can gracefully degrade the user
experience. Rarely does the whole feature fail—it's one component, like a router, that
causes a feature to be nonfunctional. So, if we turn off the router handlers for a given
component, we'll need to turn off other components in order to remove the feature
from the UI, and display error messages for the user, and so on. These shutdown
semantics need to be considered and tested for any given feature we build. It's not
the feature itself we're trying to protect; rather, we're protecting the rest of the system
from the feature should it go rogue.

Feature Feature

Router Router

Collection Collection

View View

A collection component failed, causing the feature as a whole to go out of service;
but the application as a whole is still functional

Chapter 10

[219]

Failure recovery
In the preceding section, we started to think about fault tolerance in our frontend
code. That is, our application needs to survive the loss of a failed component—at
least in the short term. But what if there are certain kinds of errors that we can
recover from? So instead of shutting down the component after detecting the error,
we would take some alternative course of action; one that would still satisfy the user.

In this section, we'll look at the various ways our components can recover from failed
operations. For example, we can retry an operation, or we could flush out the bad
state of a component by restarting it. Sometimes, it makes sense to get input from the
user on how they wish to proceed during a recovery effort.

Retrying failed operations
If our component executes an operation that fails, it can retry the operation. The
operation doesn't even have to be an integral part of the component. But since the
component depends on this operation, if it fails, then so does the component. For
example, a backend API call can fail, leaving our component that made the call in
an uncertain state. API calls are good candidates for retrying in the event of failure.

Whether it's an API call we're retrying, or an operation concerning another
component, we have to make sure that it's idempotent. This means that after the
initial operation call, subsequent calls have no side effects. Calling the operation
several times in succession will not have a negative impact elsewhere in the system,
in other words. Fetch requests—requests that ask the API for data without changing
the state of any backend resources—are good candidates for retries. For example,
if our fetch request fails because the backend is taking too long, possibly due to
competing requests from other users, we could try the request again and get an
immediate result. We may not want to continue waiting, but we're safe to retry
should we decide to. Next is an example that shows a model that will retry failed
fetch attempts:

// api.js
// Simulate an API call by returning a promise.
function fetch() {
 return new Promise((resolve, reject) => {

 // After one second, randomly resolve or
 // reject the promise.
 setTimeout(() => {
 if (Math.round(Math.random())) {
 resolve();

Coping with Failure

[220]

 } else {
 reject();
 }
 }, 1000);

 });
}

export default fetch;

// model.js
import fetch from 'api.js';

// An entity model that's fetched from the API.
export default class Model {

 // Initialized with a "retries" count and an
 // "attempts" counter, used when the requests fail.
 constructor(retries=3) {
 this.attempts = 0;
 this.retries = retries;
 }

 // Returns a new promise where "fetchExecutor()"
 // attempts, and possibly re-attempts to call the API.
 fetch() {
 return new Promise(this.fetchExecutor.bind(this));
 }

 fetchExecutor(resolve, reject) {
 // Call the API and resolve the promise. Also reset the
 // "attempts" counter.
 fetch().then(() => {
 this.attempts = 0;
 resolve();
 }).catch(() => {
 // Make another API request attempt, unless
 // we've already made too many, in which case
 // we can reject the promise.
 if (this.attempts++ < this.retries) {
 console.log('retrying', this.attempts);
 this.fetchExecutor(resolve, reject);
 } else {

Chapter 10

[221]

 this.attempts = 0;
 reject(`Max fetch attempts
 ${this.retries} exceeded`);
 }
 });
 }

};

// main.js
import Model from 'model.js';

var model = new Model();

// Fetch the model, and look at the logging
// output to see how many attempts were made.
model.fetch()
 .then(() => {
 console.log('succeeded');
 })
 .catch((e) => {
 console.error(e);
 });

We have to be aware of the types of operations we're performing, and
the types of failures we're receiving. For example, submitting a form
that creates a new resource can fail in a number of ways. If we were
to attempt this operation, and it returned a 503 error, we'd know that
it's safe to retry—because no resources in the back-end were actually
touched. On the other hand, we could get a 500—meaning that we have
no idea what took place in the backend.
With fetch requests, we don't necessarily need to worry about the type
of failure as much because we're not changing the state of anything. This
means that before retrying an operation, we need to consider the type of
operation, and if it modifies resources, the type of error response.

Coping with Failure

[222]

Restarting components
Components usually have a lifecycle—startup, shutdown, and several phases of
existence in between, depending on the type of component. Usually, this lifecycle
needs to be kicked-off by whatever creates the component. As the component moves
throughout its lifecycle, it changes its internal state. This state could potentially be
the source of failures seen later on with the component.

For example, if a component is in a busy state, and doesn't process any external
requests coming from outside components, then we're likely to see issues elsewhere
in the system. Maybe the component is legitimately busy, or maybe something else
happened to get it stuck in that state erroneously. If that's that case, then maybe
restarting the lifecycle over again would be enough to resolve any issues and get
the component in a running state, able to process external requests again.

Essentially, restarting a component is a last-ditch effort to recover from an error. It
means that we don't know what's wrong with the component, only that something's
not working, and it's wreaking havoc throughout the application. The main
complication with restarting components when there's a problem, is that once we've
flushed out the bad internal state, the component still needs to pick up where it left
off. For instance, if we have a component with a collection that's fetched from the
backend, and we restart it, due to problems with the state of the component, then it
needs to fetch that collection again.

So before we start designing restart functionality into our components, we need to
consider several things. First of all, how do we know when to restart a component?
That's generally an application-specific decision to make, but they're mostly centered
around edge cases where the component is failing. If there's a bug, then restarting it
isn't likely to help, but it also doesn't hurt to try. The other aspect is the restoration
of the data source—not the internal state, but the source of the data this application
uses. These are two separate things—the internal state is something that's computed
by the component, and the data is an external source that's supplied as input.

We don't want to implement the component restart capability as a mechanism
that masks other problems with our code. It's just a good way to think about
designing our components. It forces us to think about the various ways the
component might get tossed around in the environment. Even just asking the
question is worthwhile—what would happen if I restarted this component, or
replaced it with a new instance at runtime? We may never actually do these
things, and it may not be feasible even if we wanted to. However, going through
the exercise means that we'll start designing our components to be more resilient
in these scenarios.

Chapter 10

[223]

Component

Startup

Normal

Error

Shutdown

A very high-level view of a component's state cycle

Manual user intervention
If the component that's causing problems is capable of restarting itself, in an effort to
rid itself of error states, then we might want to give the user some control over when
this happens. For example, if a component generates an error, then we could disable
the feature, telling the user that something went wrong with the feature, and ask
them if they would like to reload the feature.

The same approach can be taken with retrying failed operations—ask the user if they
want to try again. Of course, we have to take the liberty of handling the more mundane
retry/restart attempts for the user. When it's obvious that the user wants this action
to succeed, and they haven't been waiting too long, then we shouldn't bother them
with questions about retrying an operation. That defeats the purpose—which is to be
responsive, by giving control back to the user, when our software has encountered a
scenario that doesn't allow it to do its job.

We would probably want to declare some sort of threshold that must be met by
our restart/retry attempts before seeking input from the user. For instance, the API
data we're trying to fetch has timed out twice, and the user is probably growing
impatient. So we stop there, and tell the user what's going on—that we're not getting
a response from the backend. Should we keep trying, or stop here? Because when
our components encounter non-deterministic situations like this, it's better to pass
control to a human, who may have a little more insight than our code does.

Coping with Failure

[224]

Our component will happily chug along restarting and retrying things, but only
if that's OK with the user. But what happens when the user gives up, they've been
through enough torture and want to take affirmative action, rather than letting the
wheels spin? Then we probably need to provide some guidance to the user. What
else can they do besides let their application try the same thing over and over? Is
there anything our component knows about the error, that can be translated for the
user? For example, what if the cause of a particular error is fixed by changing a user
preference? Then it would make sense to show a friendly, instructive message here,
telling them how to go about fixing the problem.

It's probably best to phrase troubleshooting suggestions
as possible solutions—not as sure bets. Just in the spirit of
avoiding nasty support requests.

When we can't recover from failures...
If we've reached this point in a failure, and the user still isn't getting what they
need from our software, there's nothing we can do. As the section title suggests,
not everything is recoverable. The backend API isn't always going to be reachable.
Our components will have bugs in production environments, sometimes for years
before they're even found.

Epic fails like these are akin to our application doing a face plant in front of a crowd
of people. Retrying actions just returns the same result. Restarting components
have no effect. Asking the user for input isn't going to help, because maybe it's not
possible to retry the particular action that's failing, or we just haven't implemented
any kind of user input here.

In either case, the solution is to revert to the fail-fast mode of failure—pull the plug on
the component, or on the entire application under exceptional circumstances. If we're
disabling just the failed component, we have to make sure that our application can
function without it. It's back to the plane landing with a single engine analogy—can it
be done? If not, then we have to stop the entire application.

All this may sound a little bit drastic at first glance. However, doing so eliminates
a whole class of other defects that our support team doesn't have to worry about.
There's less chance of new defects being introduced into a live system, due to the
side effects of buggy components.

Chapter 10

[225]

We're playing the odds with scalable error handling, and the odds are in our favor
when we don't try to be too clever with our recovery activities.

Fail-fast

Component

Error Recover

The two failure mode options of a failed component; the choice can be made at runtime,
and it isn't necessarily an up-front design decision

Performance and complexity
With robust failure detection and recovery in place, it's time to turn our attention
to the performance and complexity implications they introduce. With any large
scale JavaScript application, nothing is free—with every gain, there's a new scaling
challenge. Failure handling is just one of those gains.

The two closely related scaling factors related to failure handling are performance
and complexity. Our software fails in interesting ways, and there's no elegant way
to handle them, resulting in complex implementations. Complex code is generally
not very good for performance. So we'll start by looking at what makes our
exception-handling code slow.

Exception handling
When we handle exceptions in JavaScript, we generally catch all errors that get
thrown. Whether it's something we anticipate being thrown, or something that's
out of the blue, it's up to the exception handler to then figure out what to do with
the error. For example, does it shut the component down, or retry the operation?
What's nice about try/catch statements is that we can ensure that nothing slips
through a given section of code uncaught. Because that's when we start seeing side
effects across other components.

One way to implement this, as an overarching exception handling mechanism that
doesn't let errors through, is in the event broker. Here, we would wrap calls to any
event callbacks in a try/catch block. That way, no matter the outcome of calling an
event callback function, the exception handling code can examine the exception and
figure out what to do.

Coping with Failure

[226]

Here's the problem though—code that runs within an exception handler pays a
performance penalty. JavaScript engines are quite good at optimizing our code just
in time. Certain things prevent these optimizations from happening, and exception
handlers are one of those things. The problem is magnified when the there're several
levels of exception handlers, all the way down the call stack.

How noticeable is this impact, in terms of user-perceptible lag? That depends on the
scale of our application—more components means more code running that may not
be getting optimized. But in general, this isn't going to be the factor that determines
whether our application is slow or not. In conjunction with other determinants,
however, it could be important. Having lean exception handling in place at the event
broker level is a reasonable trade-off. All our code runs through the try block here,
but, we get a lot in return—we can only go fast if we handle failures appropriately.

The nested exception handling, that takes place inside each one of our components,
is likely to cause more performance and complexity issues. For example, if our event
callback function catches errors, and does a poor job of dealing with them, then
we're likely doing more harm than good. It's usually better to let the exceptions be
caught in the same place. There are also the performance implications as mentioned
previously. We can take a hit at a higher level, but we don't want to take further hits
on each one of our components, especially since these will grow in number.

State checking
In addition to exception handling, we have logic that checks the state of our
components before executing actions. If the current state is not suitable for the
action, then it isn't performed, because doing so could cause problems. This is a
kind of proactive exception-handling where we handle any potential error before
attempting to do anything, whereas exception handling is more optimistic.

Component states on their own can be simple, but when our code has to check
for edge cases, it usually involves checking the state of the component where it
lives, but also the state of other components. Not necessarily directly—because
our components are decoupled—but indirectly, such as by issuing a query to the
main application. This can get quite complicated. And as we add more components,
there'll be more state checking to be done there, along with a good chance that our
existing state checking code will grow more complex.

Chapter 10

[227]

Simple state checks are fine if they're coded as an if statement, or something along
those lines. But what tends to happen is that these edge cases grow as tests fail, and
more edge-case-handling gets added to the tangle. If we think about the state of the
application as a whole, we'll see that it's just an aggregate sum of all our component
states. Given that there are lots of components, each with its own unique states and
constraints on what actions can be performed under what circumstances, it's no
wonder that we cannot predict how our application will fail. When we start down
this path, it's easy to introduce more problems into the system. This is the cost of
complexity—where there wasn't a problem before, there is now, thanks to some
error handling we added somewhere else.

One approach to ease the complexities of state-checking our components
in order to facilitate error handling, is to declaratively bind our operations
to conditions that must be satisfied. For example, we could have some
kind of mapping with the name of the operation, and a collection of all
the conditions to check. Then a generalized mechanism could look at
this mapping and figure out whether or not we can execute the action.
Using something like this consistently across components will reduce the
number of problematic if statements.

Notifying other components
Another challenge we face as JavaScript architects is failure handling in a system
of decoupled components. We want our components decoupled from one another
because it means they're interchangeable, and the system is easier to build and
extend. In the context of error handling, this separation acts as a safety net between
a failed component and the rest of the system. This is all great news, but we also
need to communicate component failures, along with all the other events that take
place along the happy path. How do we do this while retaining the loose coupling
we have in place?

Let's start by thinking about the event broker—the arbiter of all inter-component
communication. If it can deliver all our component events, surely it can deliver error
notifications as well? Let's say the broker executes a function callback, and it raises
an exception. The exception is caught by the broker, and the details about the error
are included as an argument to the next callback function for the event.

Coping with Failure

[228]

Under normal circumstances, the callbacks would receive an error argument, so this
would need to be checked for—a minor obstacle with minor overhead. In the case
that the function doesn't care what happens before it, then this argument can be
safely ignored. Or, if an error is passed, the callback can look at the error and figure
out what to do next. If it's this type of error—check the state of this, otherwise, do
that, and so on—it may choose to do nothing. The important thing is that the error
is communicated, because if we don't want an error in one component to have side
effects, then sometimes corrective action needs to be taken in other components, but
it needs to know that the error happened.

Logging and debugging
Part of coping with failure in a large-scale JavaScript application is producing
the right information. The most obvious place to start is the error console, where
uncaught exceptions are logged, or just plain error messages generated using
console.error(). Some error messages lead to quick fixes, while others send
programmers on a wild goose chase.

Apart from logging errors as they happen, we might also want to log situations
where something erroneous is about to happen. These are warning messages and
they're not used as much as they should be in frontend applications. Warnings are
especially useful in diagnosing the more insidious problems with our code, as they
leave a trail of clues in the wake of a failure.

The user doesn't necessarily see these logs if they don't have their developer tools
window open, and the average user probably doesn't. Instead, we only show them
the errors that are relevant to what they're doing in the application. Therefore, we
can't just make statements, we have to follow them up with the next steps.

Meaningful error logs
Meaningful error messages go a long way. This is indeed a scaling issue, considering
that the effectiveness of the error message directly impacts the developers' ability
to resolve issues in a timely manor. Consider error messages that don't contain
useful information. When we investigate these failures, much more time is spent
piecing together what went wrong. We can use the developer tools in the browser to
trace the origin of the error, but that will only get us the location. We'll need better
guidance on what went wrong.

Chapter 10

[229]

Sometimes these ambiguous error messages aren't a big deal, because when we trace
their origin in the code, it's immediately obvious what's wrong. Often it's just an edge
case that we overlooked, and it's fixed with a few lines of code. Other times, the
problem is deeper than that. For example, what if it turns out that the error is actually
caused as a side effect of something another component is doing? Does that suggest
that we might want to fix the design problem, since we were under the assumption
that we didn't have any side effects?

Consider the following error message: Uncaught TypeError: component.action
is not a function. There's a lot of work in trying to decipher this—unless we're
intimately familiar with the code because we interact with it on a daily basis. The
problem is that we grow less familiar with our code as our application scales,
because there're more components added. This means we spend less time with
them, and when they break, it's tough to fix them with a quick turn-around. Unless
we have help from the errors themselves. What if the error above were changed to:
ActionError: The "query" component does not support the "save" action.

Admittedly, having this kind of specific detail in the error messages we generate
does add to the complexity of our code. However, the benefits will prove useful if
we can strike a balance between providing specific checks and letting our code fail
naturally. For example, it's completely pointless to spend time and effort coding an
error check and detailed message for something that never happens. Only focus on
the scenarios that have a large payoff. Meaning, that if there's a strong likelihood of
the error occurring, then that message can point to a quick solution.

When we fail fast, we should throw our own exceptions. This makes the error
explicit in the console, and we can provide meaningful information that helps
developers diagnose the issue. Throwing exceptions is an easy way to fail fast,
because once thrown, the current execution stack stops running.

Warning about potential failures
The difference between an error message and a warning message is that the latter
means that the system is still functioning as normal, albeit, not optimally. For
example, if we have some quantity constraints in place, like the number of items
in a given collection, we could issue a warning when we're nearing that limit. This
capability comes with the same concerns as enhanced error messaging—there's more
code and complexity involved.

Coping with Failure

[230]

So, what's the point then, if we have strong error handling in place? Warnings are
good because they have a visual distinction in the developer tools console where
they're displayed. Errors have a dysfunctional connotation, whereas, that's not the
point we're making with warnings. We're trying to state that something bad might
happen. For example, if we were to rev our car engine high, we'd notice that the
tachometer needle enters a red zone. This is a warning, meaning that if this behavior
continues, something "not good" might happen.

The ambiguity behind warnings is actually helpful, but with errors, we aim for
specificity. We want warnings to be generic so that they can be broad assertions
about the state of our applications. This means that our logs won't get filled up with
little warning messages that start to repeat themselves. At this point they lose all
meaning. If they're general, they can aid in the pathology of errors as we diagnose
them. They serve as a clue, most of the time, as to what cased the error that happened
a few seconds later. If we're troubleshooting with a more savvy user, who might have
developer tools open, they can pass these warnings our way. For the less involved
users, we need a more friendly approach to troubleshooting.

Informing and instructing users
The errors and warnings we've discussed so far in this section generally end up in
the developer tools console. This implies that we're not too concerned whether the
user sees it or not. For the messages we want the users to see, they need to be part
of the UI—we can't rely on developer tools being open or present at all. Some of the
same error message principles apply to the messages we explicitly display to the
user. For example, we want to inform the user that something has gone wrong. It's
up to us how specific we get with this message. We have to keep the audience in
mind here as well—telling them a component state must be such and such before a
method can be called, isn't helpful.

However, if we're able to translate the noun of the error into a feature that the user
sees and directly interacts with, then it's going to make immediate sense to them.
Now they own what's not working. They probably don't care why it's not—what are
they going to do with that information? It's better to follow up with instructions. This
is broken, so here's what you need to do. This is worth the effort to implement because
in terms of scale, the software is taking care of a lot of problems we otherwise need
human intervention for, which does not scale. It also keeps the users using our
software—which is a big scaling influence to begin with.

Chapter 10

[231]

Sometimes there aren't good instructions. That is, the feature the user needs just isn't
working, and there isn't anything they can do about it. However, we can still aim
for a message that tells them this feature has stopped working. The error message
in the developer tools console probably has a lot more relevant information as to
what went wrong. However, we want to avoid raising exceptions without also doing
something user-friendly in the UI as well. Then we'll be servicing both audiences—
developers and users.

Improving the architecture
We need robust approaches to handle failed components if our architecture is to
scale. But that'll only take us so far into the future—because handling the same
failures over and over again doesn't scale. Eliminating the possibility of failure,
where possible, does scale. Adding new components introduces new failure modes
that we need to account for, and we need to offset these by eliminating old failure
modes from the equation.

This is done through design; in particular, revised design. The change can be
something minor, or it could be a radical shift in direction. It really depends on the
frequency, the severity, and the rate of growth. Factor all these together, and we'
come up with design trade-offs that enable us to move forward.

There are a number of techniques that can help get us there. For example, when we
encounter new failure scenarios, we need a means to consistently document them,
we need to better classify our components into critical versus non-critical categories.
And as always, we need to keep things simple.

Documenting failure scenarios
End-to-end tests are a great way to document scenarios. In particular, scenarios that
cause our software to fail. We can think some of these up, on the fly, as we design
and implement our features. But where end-to-end tests shine is in reproducing
actual failures that have taken place in a production environment. Not only are
these tests essential for reproducing the error so that we know it's fixed, but also
for historical preservation.

Over time, we'll accumulate end-to-end tests that model real life scenarios;
something one of our customers actually did, resulting in failure. This makes our
software stronger, but only at the implementation level. To a degree, our software
is defective by design with each end-to-end test we need to account for. The idea is
to improve the architecture to a point where some failures simply aren't possible.

Coping with Failure

[232]

Let's say that we have a few end-to-end tests that fail during the fetch of a given
collection. It turns out that the way we're sending parameters, with every request,
isn't actually needed. Further, the way we're parsing the response can be fixed as
well—certain sections are static. These are architectural improvements because they
apply generically, across our data model, and they eliminate certain failures because
the code that generated the failure is no longer there.

Improving component classification
Critical components cannot fail, they're an integral part of our core application—if
they fail, then so does the application. This is why we have so few of them; perhaps a
handful of components that touch every component and absolutely need to function
as expected. Components that aren't critical, on the other hand, can fail without
bringing down the entire application with them. Or, they can attempt to recover
from failures, to keep everything running smoothly for the user.

While the classification of our critical components is a relatively static thing, this isn't
always the case. For example, we may have a feature component that we thought
wasn't critical, and that the application could survive without it. This may have
been true in the past, but now our application has grown, and it turns out that this
component touches every other component in non-obvious ways—so it's critical that
it doesn't fail.

Do critical components ever lose their criticality? It's more likely that they'll be
removed from the design entirely than them being downgraded to a non-critical
component. However, we need to make sure that we always have a solid
understanding of our critical components. This is an important property of our
architecture—having components that cannot fail. If they do, then it's considered
an entire application failure. We have to keep this architectural property intact as
we scale, which often means making sure we recognize new critical components
as they're introduced.

Complexity promotes failure
Complex components have lots of internal parts, and they're connected to their
environments in many ways. With complexity, we have implicit states, which often
aren't discovered till after a component fails. We just can't grasp, mentally, complex
design. And when the designers themselves can't grasp the design, they can't
possibly grasp all the failure modes.

Chapter 10

[233]

There're two ways complexity hurts us. The first ways is in triggering failures in
the first place. Because of all the moving parts, we miss edge cases that would be
obvious in a simpler component. We have to introduce a lot of error handling code
to account for the complexity, making the component more complex, and triggering
more failures. The cycle repeats itself.

The second way complexity hurts us is in dealing with failures when they do occur.
For example, simple components with few moving parts fail in obvious ways. Even the
ones we miss and have to go fix later, take no time to repair. This is due to the simple
fact that there's so little for us to traverse mentally. Simplicity promotes safety.

Summary
This chapter introduced us to the various failure modes of our large scale JavaScript
applications. The fail-fast mode means that once we detect a problem, we stop
everything right away, in an effort to prevent further damage. This is often desirable
when a critical component of our application fails.

Fault tolerance is an architectural property that means the system is capable of
detecting errors, and preventing them from disrupting regular operation. In a
JavaScript context, this usually means catching exceptions and preventing them
from disrupting other components. There're several ways that a component can
recover from an error, including retrying an operation, or restarting itself, to flush
out bad states.

Error handling adds to the complexity of our code, and has performance implications
if not handled with care. To avoid these, we have to aim for simple components that
don't manipulate state, and avoid excessive exception handling. Error messages can
help both programmers and users get the information they need to better cope with
failures. The ultimate goal is to turn failures into improved design, eliminating the
offending code entirely.

JavaScript at scale is indeed achievable, although at times it can seem like an
insurmountable obstacle. To get the right answers, we first need to ask the right
questions. I hope this book has equipped you with the requisite knowledge to
formulate questions around scaling your JavaScript application. Looking at the
right scaling influencer, in the right context, at the right time, will provide you
with answers.

[235]

Index
A
API Data

about 159
large data sets, working with 161
load latency 160

appearance 123
application composition

about 204
essential libraries 206
feature enablement approach 205
new feature impact 205

architectural perspectives, scaling
influencers 6

architectural trade-offs
constants, defining 13
creating 13
development for addressability 15
frameworks, leveraging 17
maintainability, features 16
maintainability for performance 15, 16
performance for configurability 14
performance for ease of development 13
performance for substitutability 14, 15

architecture
complex components 232, 233
component classification, improving 232
failure scenarios, documenting 231, 232
improving 231

B
backend

actions, performing 169
API, mocking 166
decoupling 165

frontend entry points 167
mock data sets, mocking 169
tools, mocking 168

behavior
about 122
components, disabling 131
components, enabling 131
configuring 131
inline options 136
notifications, configuring 135
order, modifying 133
performance implications 138-141
quantities, modifying 132

browser environment
addressability 11, 12
component communication 9
component design 8, 9
configurability 12
load time 10
responsiveness 10, 11
working in 6-8

Browserify 48

C
collections

about 55-57
extending 63, 64

command-response message 76
Common Locale Data

Repository (CLDR) 125
communication bottlenecks

about 150
code, profiling 152, 153
indirection, reducing 150, 151

[236]

communication data schema
about 78
common data 79, 80
data format 78
naming conventions 78

communication models
about 76
event models 77
message-passing models 76

communication overhead
about 84
callback complexity 88, 89
callback execution time 87
event frequency 85

communication responsibility, areas
about 90
backend API 90
DOM updates 93
web socket updates 91, 92

component artifacts
about 143
component dependencies 144
components, building 145

component layers
about 98
code, mentally-mapping 100
developer responsibilities, mapping to 99
event flow direction 98, 99

components
artifacts 143
building 145
component code, organizing 71, 72
complex components, re-factoring 70
debugging 68, 69
decomposing 67
DOM rendering techniques 157, 159
lazy module, loading 147
loading 146
maintaining 68, 69
module load latency 148, 149
modules, loading 146
optimizing 154
optimizing, at runtime 162
side-effects, dealing with 155
state, maintaining 154

conflicting features
about 193

customer demand 196
irrelevant features 195
overlapping functionality 193

console.error() function 228
continuous integration 180, 181
controllers

about 57-60
extending 65, 66

D
debounced function

about 58
URL 58

design failures, reasons
about 196, 197
creative markup 203
inefficient data processing 200-203
unnecessary components 197

E
end-to-end tests

using 180, 181

F
failure recovery

about 219
components, restarting 222
failed operations, retrying 219-221
manual user intervention 223
pitfalls 224

fault tolerance
about 212
critical behavior, classifying 213
defective components, disabling 217
degrading functionality 218
errant behavior, containing 213, 214
errant behavior, detecting 213, 214

feature design process
about 170
API, designing 170
feature, implementing 172
mock data, reconciling with API data 173
mock, implementing 171

[237]

features
generic features 66, 67
mapping, to components 66
specific features 67

frameworks, versus libraries
about 18
built-in performance 18
community wisdom 19
patterns, implementing 18
scales 19

G
generic component configuration

about 127
backend implications 129
configuration values,

determining 127, 128
configuration values, loading 130, 131
hard-coded default values,

using 128, 129
stored default values, using 128, 129

generic components
collections, extending 63, 64
common data, identifying 61, 62
controllers, extending 65, 66
extending 61
functionality, identifying 61, 62
models, extending 63
router components, extending 63
views, extending 65, 66

generic component, types
about 48
application-specific components 61
collections 55-57
controllers 57-60
models 55-57
modules 48-50
routers 50-54
templates 60
views 57-60

H
hash URIs 102

I
indirection 13
influencer checklist

about 41
developer checklist 45
scaling feature checklist 43
scaling user checklist 41

J
JavaScript

profiling, URL 152

L
locales

about 121, 122
deciding 124
in URIs 126, 127
maintaining 124
performance implications 138
preferences, storing 126
selecting 125
setting 125
supporting 123

logging and debugging
about 228
error logs 228
informing users 230, 231
instructing, users 230, 231
potential failure warnings 229

loosely-coupled communication
about 94
components, substituting 94
unexpected events, handling 95, 96

M
mock scenarios

generation tools 179, 180
mock APIs 178
testing 178

models
about 55-57
extending 63

[238]

P
performance and complexity implications

about 225
component state, checking 226
exception handling 225, 226
other components, notifying 227

performance implications
about 138
configurable behavior

performance 138, 141
configurable locale performance 138
configurable theme performance 141

pluggable business logic
about 70
extending, versus configuring 70, 71
stateless business logic 71

preference types
appearance 121-123
behavior 121, 122
locales 121, 122

publish-subscribe model 76

R
referential transparency 155
router configuration

about 113
registration events 114
routes, deactivating 115
static route declarations 114

routers
about 50-54
conflicting 117
events 104, 105
extending 63
initial configuration, logging 119
invalid resource states, handling 120
responsibilities 103, 104
route events, logging 119
troubleshooting 117
working 103

routes
about 51
triggering 112
user action 112
users, redirecting 113

routing approaches
about 101
hash URIs 102
traditional URIs 102, 103

S
scaling constraints

about 183
backend capabilities 192, 193
CPU consumption 190, 191
JavaScript artifact size 184
memory consumption 187
network bandwidth 185, 186

scaling development
about 38
example 41
multiple resources 40
resources hiring, avoiding 46
resources, searching 39-45
responsibilities 39
responsibilities, allocating 45

scaling features
about 30
application value 31
checklist 43
data-driven features 33
example 37
existing features, modifying 34, 35
killer features 32
new services 35
products, competing with 33, 34
real-time data, consuming 36, 37
supporting user groups and roles 35

scaling features checklist
competitor 44
core value proposition 43
coupling, to backend services 45
feasibility, determining 43
features, enhancing 44
frontend, synchronizing with

backend data 45
informed decisions, making 44
user management, integrating into

features 44
scaling influencers

about 2

[239]

architectural perspectives 6
developers, hiring 5
new features, building 4
user base, growing 3
uses 2, 3

scaling user checklist
about 41
application support 42
application, user roles 42
feedback, collecting from user 42
software business model 42
software, used for communication 42
user metrics, collecting 43
user notification, sending 43

scaling users
about 22
ad-supported option 24
consumption fees 23
example 30
feedback mechanisms 27, 28
license fees 22, 23
open source 24, 25
subscription fees 23
support mechanisms 26, 27
user communication channels 26
user metrics 29
users, notifying 28, 29

T
themes

modifying 136
performance implications 141
selecting 137
style preferences 137
theme tools, using 136

TODO application 19
toolchain 177
traceable component communication

about 80
event lifecycle 83, 84
events, subscribing to 81
globally-logging events 81

traditional URIs 102
trie structure 104

U
unit testing tools

about 174
automation 177, 178
built, into frameworks 175, 176
standalone unit testing tools 176, 177
toolchains 177, 178

uri() function 109
URI parts and patterns

about 105
designing 106, 107
information, encoding 105, 106

URIs
building manually 108
designing 106, 107
locales 126, 127
resource, mapping to 107
resource URIs, automating 108, 109

V
views

about 57-60
components 93
extending 65, 66

virtual DOM 158

Thank you for buying
JavaScript at Scale

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

JavaScript and JSON Essentials
ISBN: 978-1-78328-603-4 Paperback: 120 pages

Successfully build advanced JSON-fueled web
applications with this practical, hands-on guide

1. Deploy JSON across various domains.

2. Facilitate metadata storage with JSON.

3. Build a practical data-driven web application
with JSON.

Learning JavaScript Data
Structures and Algorithms
ISBN: 978-1-78355-487-4 Paperback: 218 pages

Understand and implement classic data structures
and algorithms using JavaScript

1. Learn how to use the most used data structures
such as array, stack, list, tree, and graphs with
real-world examples.

2. Get a grasp on which one is best between
searching and sorting algorithms and learn
how to implement them.

3. Follow through solutions for notable
programming problems with
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

Object-Oriented JavaScript
ISBN: 978-1-84719-414-5 Paperback: 356 pages

Create scalable, reusable high-quality JavaScript
applications, and libraries

1. Learn to think in JavaScript, the language of the
web browser.

2. Object-oriented programming made accessible
and understandable to web developers.

3. Do it yourself: experiment with examples
that can be used in your own scripts.

4. Write better, more maintainable
JavaScript code.

Functional Programming
in JavaScript
ISBN: 978-1-78439-822-4 Paperback: 172 pages

Unlock the powers of functional programming
hidden within JavaScript to build smarter, cleaner,
and more reliable web apps

1. Discover what functional programming is, why
it's effective, and how it's used in JavaScript.

2. Understand and optimize JavaScript's hidden
potential as a true functional language.

3. Explore the best coding practices for
real-world applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Scale from a JavaScript Perspective
	Scaling influencers
	The need for scale
	Growing user base
	Building new features
	Hiring more developers

	Architectural perspectives
	The browser is a unique environment
	Component design
	Component communication
	Load time
	Responsiveness
	Addressability
	Configurability

	Making architectural trade-offs
	Define your constants
	Performance for ease of development
	Configurability for performance
	Performance for substitutability
	Ease of development for addressability
	Maintainability for performance
	Less features for maintainability
	Leveraging frameworks

	Frameworks versus libraries
	Implement patterns consistently
	Performance is built in
	Leverage community wisdom
	Frameworks don't scale out-of-the-box

	Summary

	Chapter 2: Influencers of Scale
	Scaling users
	License fees
	Subscription fees
	Consumption fees
	Ad-supported
	Open source
	Communicating users
	Support mechanisms
	Feedback mechanisms
	Notifying users
	User metrics
	Scaling users example

	Scaling features
	Application value
	Killer features versus features that kill
	Data-driven features
	Competing with other products
	Modifying existing features
	Supporting user groups and roles
	Introducing new services
	Consuming real-time data
	Scaling features example

	Scaling development
	Finding development resources
	Development responsibilities
	Too many resources
	Scaling development example

	Influencer checklist
	User checklist
	What's the business model of our software?
	Does our application have different user roles?
	Do our users communicate with each other using our software?
	How do we support our application?
	How do we collect feedback from users?
	How do we notify users with relevant information?
	What type of user metrics should we collect?

	Feature checklist
	What's the core value proposition of our software?
	How do we determine the feasibility of a feature?
	Can we make informed decisions about our features?
	Who's our competition?
	How do we make what we have better?
	How do we integrate user management into our features?
	Are our features tightly coupled to backend services?
	How does the front-end stay synchronized with back-end data?

	Developer checklist
	How do we find the right development resources?
	How do we allocate development responsibilities?
	Can we avoid hiring too many resources?

	Summary

	Chapter 3: Component Composition
	Generic component types
	Modules
	Routers
	Models/Collections
	Controllers/Views
	Templates
	Application-specific components

	Extending generic components
	Identifying common data and functionality
	Extending router components
	Extending models/collections
	Extending controllers/views

	Mapping features to components
	Generic features
	Specific features

	Decomposing components
	Maintaining and debugging components
	Re-factoring complex components

	Pluggable business logic
	Extending versus configuring
	Stateless business logic

	Organizing component code
	Summary

	Chapter 4: Component Communication and Responsibilities
	Communication models
	Message-passing models
	Event models

	Communication data schema
	Naming conventions
	Data format
	Common data

	Traceable component communication
	Subscribing to events
	Globally-logging events
	Event lifecycle

	Communication overhead
	Event frequency
	Callback execution time
	Callback complexity

	Areas of communication responsibility
	Backend API
	Web socket updates
	DOM updates

	Loosely-coupled communication
	Substituting components
	Handling unexpected events

	Component layers
	Event flow direction
	Mapping to developer responsibilities
	Mentally mapping the code

	Summary

	Chapter 5: Addressability and Navigation
	Approaches to routing
	Hash URIs
	Traditional URIs

	How routers work
	Router responsibilities
	Router events

	URI parts and patterns
	Encoding information
	Designing URIs

	Mapping resources to URIs
	Building URIs manually
	Automating resource URIs

	Triggering routes
	User actions
	Redirecting users

	Router configuration
	Static route declarations
	Registration events
	Deactivating routes

	Troubleshooting routers
	Conflicting routes
	Logging initial configuration
	Logging route events
	Handling invalid resource states

	Summary

	Chapter 6: User Preferences and Defaults
	Preference types
	Locales
	Behavior
	Appearance

	Supporting locales
	Deciding on locales to support
	Maintaining locales

	Setting the locale
	Choosing locales
	Storing locale preferences
	Locales in URIs

	Generic component configuration
	Deciding on configuration values
	Stored and hard-coded default values
	Backend implications
	Loading configuration values

	Configuring behavior
	Enabling and disabling components
	Changing quantities
	Changing order
	Configuring notifications
	Inline options

	Changing the look and feel
	Theme tools
	Selecting a theme
	Individual style preferences

	Performance implications
	Configurable locale performance
	Configurable behavior performance
	Configurable theme performance

	Summary

	Chapter 7: Load Time and Responsiveness
	Component artifacts
	Component dependencies
	Building components

	Loading components
	Loading modules
	Lazy module loading
	Module load latency

	Communication bottlenecks
	Reducing indirection
	Profiling code

	Component optimization
	Components that maintain state
	Dealing with side-effects
	DOM rendering techniques

	API data
	Load latency
	Working with large data sets

	Optimizing components at runtime
	Summary

	Chapter 8: Portability and Testing
	Decoupling the backend
	Mocking the backend API
	Frontend entry points
	Mocking tools
	Generating mock data sets
	Performing actions

	Feature design process
	Designing the API
	Implementing the mock
	Implementing the feature
	Reconciling mock data with API data

	Unit testing tools
	Tools built into frameworks
	Standalone unit testing tools
	Toolchains and automation

	Testing mock scenarios
	Mock APIs and test fixtures
	Scenario generation tools

	End-to-end tests and continuous integration
	Summary

	Chapter 9: Scaling Down
	Scaling constraints
	JavaScript artifact size
	Network bandwidth
	Memory consumption
	CPU consumption
	Back-end capabilities

	Conflicting features
	Overlapping functionality
	Irrelevant features
	Customer demand

	Design failures
	Unnecessary components
	Inefficient data processing
	Excessively creative markup

	Application composition
	Feature enablement
	New feature impact
	Essential libraries

	Summary

	Chapter 10: Coping With Failure
	Failing fast
	Using quality constraints
	Providing meaningful feedback
	When we can't fail fast

	Fault tolerance
	Classifying critical behavior
	Detecting and containing errant behavior
	Disabling defective components
	Gracefully degrading functionality

	Failure recovery
	Retrying failed operations
	Restarting components
	Manual user intervention
	When we can't recover from failures

	Performance and complexity
	Exception handling
	State checking
	Notifying other components

	Logging and debugging
	Meaningful error logs
	Warning about potential failures
	Informing and instructing users

	Improving the architecture
	Documenting failure scenarios
	Improving component classification
	Complexity promotes failure

	Summary

	Index

