

JavaScript	Unlocked

Table	of	Contents

JavaScript	Unlocked

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Diving	into	the	JavaScript	Core

Make	your	code	readable	and	expressive

Function	argument	default	value

Conditional	invocation

Arrow	functions

Method	definitions

The	rest	operator

The	spread	operator

Mastering	multiline	strings	in	JavaScript

Concatenation	versus	array	join

Template	literal

Multi-line	strings	via	transpilers

Manipulating	arrays	in	the	ES5	way

Array	methods	in	ES5

Array	methods	in	ES6

Traversing	an	object	in	an	elegant,	reliable,	safe,	and	fast	way

Iterating	the	key-value	object	safely	and	fast

Enumerating	an	array-like	object

The	collections	of	ES6

The	most	effective	way	of	declaring	objects

Classical	approach

Approach	with	the	private	state

Inheritance	with	the	prototype	chain

Inheriting	from	prototype	with	Object.create

Inheriting	from	prototype	with	Object.assign

Approach	with	ExtendClass

Classes	in	ES6

How	to	–	magic	methods	in	JavaScript

Accessors	in	ES6	classes

Controlling	access	to	arbitrary	properties

Summary

2.	Modular	Programming	with	JavaScript

How	to	get	out	of	a	mess	using	modular	JavaScript

Modules

Cleaner	global	scope

Packaging	code	into	files

Reuse

Module	patterns

Augmentation

Module	standards

How	to	use	asynchronous	modules	in	the	browser

Pros	and	cons

How	to	–	use	synchronous	modules	on	the	server

Pros	and	cons

UMD

JavaScript’s	built-in	module	system

Named	exports

Default	export

The	module	loader	API

Conclusion

Transpiling	CommonJS	for	in-browser	use

Bundling	ES6	modules	for	synchronous	loading

Summary

3.	DOM	Scripting	and	AJAX

High-speed	DOM	operations

Traversing	the	DOM

Changing	the	DOM

Styling	the	DOM

Making	use	of	attributes	and	properties

Handling	DOM	events

Communicating	with	the	server

XHR

Fetch	API

Summary

4.	HTML5	APIs

Storing	data	in	web-browser

Web	Storage	API

IndexedDB

FileSystem	API

Boosting	performance	with	JavaScript	workers

Creating	the	first	web	component

Learning	to	use	server-to-browser	communication	channels

Server-Sent	Events

Web	Sockets

Summary

5.	Asynchronous	JavaScript

Nonblocking	JavaScript

Error-first	Callback

Continuation-passing	style

Handling	asynchronous	functions	in	the	ES7	way

Parallel	tasks	and	task	series	with	the	Async.js	library

Event	handling	optimization

Debouncing

Throttling

Writing	callbacks	that	don’t	impact	latency-critical	events

Summary

6.	A	Large-Scale	JavaScript	Application	Architecture

Design	patterns	in	JavaScript

Understanding	concern	separation	in	JavaScript

MVVM

Using	JavaScript	MV*	frameworks

Backbone

Angular

React

Summary

7.	JavaScript	Beyond	the	Browser

Levelling	up	the	coding	of	a	command-line	program	in	JavaScript

Building	a	web	server	with	JavaScript

Writing	a	desktop	HTML5	application

Setting	up	the	project

Adding	the	HTML5	application

Debugging

Packaging

Using	PhoneGap	to	make	a	mobile	native	app

Setting	up	the	project

Building	the	project

Adding	plugins

Debugging

Summary

8.	Debugging	and	Profiling

Hunting	bugs

Getting	the	best	from	a	console	API

Tuning	performance

Summary

Index

JavaScript	Unlocked

JavaScript	Unlocked
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1011215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-157-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Dmitry	Sheiko

Reviewer

Durgesh	Priyaranjan

Commissioning	Editor

Wilson	Dsouza

Acquisition	Editor

Meeta	Rajani

Content	Development	Editor

Priyanka	Mehta

Technical	Editor

Mohita	Vyas

Copy	Editor

Kausambhi	Majumdar

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Tejal	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Dmitry	Sheiko	is	a	passionate	blogger	and	the	author	of	Instant	Testing	with	QUnit.

Dmitry	got	hooked	to	computer	programming	in	the	late	’80s.	For	the	last	18	years,	he	has
been	in	web	development.	His	very	first	open	source	contribution	was	an	XSLT-based
CMS	in	2004.	Since	then,	he	has	been	contributing	quite	a	lot	to	FOSS.	You	can	find
Dmitry’s	latest	works	at	https://github.com/dsheiko.	Currently,	he	is	working	as	a	web
developer	in	the	lovely	city	of	Frankfurt	am	Main	at	Crytek	GmbH.

First,	I	would	like	to	thank	my	family	for	the	continuous	support	and	letting	me	to	realize
my	potential.	A	special	thank	you	to	my	father,	who	took	me	to	an	industrial	computer
center	when	I	was	3	years	old.	In	I	decade	after	this,	with	the	advance	in	PCs,	I	realized
that	computers	mean	games,	and	after	a	while,	I	became	curious	enough	to	understand
how	the	games	are	built.	This	is	how	I	started	learning	programming.

Thank	you	to	my	team	at	Crytek,	who	compliantly	follow	all	the	practices	described	in	the
book	and	adapt	to	the	constantly	evolving	technologies	to	keep	up	with	the	pace	I	set.

https://github.com/dsheiko

About	the	Reviewer
Durgesh	Priyaranjan	is	a	senior	software	developer	who	has	been	working	on	various
technologies.	However,	he	loves	JavaScript	programming	and	interaction	design	the	most.
He	is	currently	based	in	Bengaluru	(India)	and	is	working	as	a	UI	engineer	for	one	of	the
Indian	e-commerce	giants,	Flipkart.

He	loves	trying	out	different	technologies	without	any	bias.	Of	late,	he	can	be	found
tinkering	around	with	Raspberry	Pi.

I’d	like	to	thank	my	loving	wife	for	her	continuous	support	of	my	work	and	work-related
hobbies.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
JavaScript	was	born	as	a	scripting	language	at	the	most	inappropriate	time—the	time	of
browser	wars.	It	was	neglected	and	misunderstood	for	a	decade	and	endured	six	editions.
And	look	at	it	now!	JavaScript	has	become	a	mainstream	programming	language.	It	has
advanced	literally	everywhere:	in	large-scale	client-side	development,	server	scripting,
desktop	applications,	native	mobile	programming,	game	development,	DB	querying,
hardware	control,	and	OS	automating.	JavaScript	acquired	a	number	of	subsets	such	as
Objective-J,	CoffeeScript,	TypeScript,	and	others.	JavaScript	is	marvelously	concise	and
an	expressive	language.	It	features	prototype-based	OOP,	object	composition	and
inheritance,	variadic	functions,	event-driven	programming,	and	non-blocking	I/O.
However,	to	exploit	the	true	power	of	JavaScript,	we	need	to	have	a	deep	understanding	of
language	quirks.	Moreover,	while	developing	in	JavaScript,	we	will	become	aware	of	its
numerous	pitfalls,	and	we	will	need	a	few	tricks	to	avoid	them.	The	project	formerly
known	as	EcmaScript	Harmony,	was	just	recently	finalized	in	the	specification	named
EcmaScript	2015,	which	is	more	often	referred	to	as	ES6.	This	not	only	brought	the
language	to	the	next	level,	but	also	introduced	a	number	of	new	technologies	that	require
attention.

This	book	aims	to	guide	the	reader	in	understanding	the	upcoming	and	existing	features	of
JavaScript.	It	is	fully	packed	with	code	recipes	that	address	common	programming	tasks.
The	tasks	are	supplied	with	solutions	for	classical	JavaScript	(ES5)	as	well	as	for	the	next
generation	language	(ES6-7).	The	book	doesn’t	focus	only	on	in-browser	language,	but
also	provides	the	essentials	on	writing	efficient	JavaScript	for	desktop	applications,	server-
side	software,	and	native	module	apps.	The	ultimate	goal	of	the	author	is	not	just	to
describe	the	language,	but	also	to	help	the	reader	to	improve	their	code	for	better
maintainability,	readability,	and	performance.

What	this	book	covers
Chapter	1,	Diving	into	the	JavaScript	Core,	discusses	the	techniques	to	improve	the
expressiveness	of	the	code,	to	master	multi-line	strings	and	templating,	and	to	manipulate
arrays	and	array-like	objects.	The	chapter	explains	how	to	take	advantage	of	JavaScript
prototype	without	harming	the	readability	your	code.	Further,	the	chapter	introduces	the
“magic	methods”	of	JavaScript	and	gives	a	practical	example	of	their	use.

Chapter	2,	Modular	Programming	with	JavaScript,	describes	the	modularity	in	JavaScript:
what	modules	are,	why	they	are	important,	the	standard	approaches	for	asynchronously
and	synchronously	loaded	modules,	and	what	ES6	modules	are.	The	chapter	shows	how
CommonJS	modules	are	used	in	server-side	JavaScript	and	how	to	pre-compile	them	for
in-browser	use.	It	elaborates	how	asynchronous	and	synchronous	approaches	can	be
combined	to	achieve	a	better	application	performance.	It	also	explains	how	one	can
polyfill	ES6	modules	for	production	by	the	means	of	Babel.js.

Chapter	3,	DOM	Scripting	and	AJAX,	introduces	Document	Object	Model	(DOM),	shows
the	best	practices	to	minimize	browser	reflow,	and	enhance	application	performance	while
operating	with	the	DOM.	The	chapter	also	compares	two	client-server	communication
models:	XHR	and	Fetch	API.

Chapter	4,	HTML5	APIs,	considers	the	persistence	APIs	of	the	browser	such	as	Web
Storage,	IndexDB,	and	FileSystem.	It	introduces	Web	Components	and	gives	a	walk-
through	of	the	creation	of	a	custom	component.	The	chapter	describes	server-to-browser
communication	APIs	such	as	SSE	and	WebSockets.

Chapter	5,	Asynchronous	JavaScript,	explains	the	nonblocking	nature	of	JavaScript,
elaborates	the	event	loop	and	the	call	stack.	The	chapter	considers	the	popular	styles	of
chaining	asynchronous	calls	and	handling	errors.	It	presents	the	async/await	technique	of
ES7	and	also	gives	examples	of	running	tasks	in	parallel	and	in	sequence	using	the
Promise	API	and	the	Async.js	library.	It	describes	throttling	and	debouncing	concepts.

Chapter	6,	A	Large-Scale	JavaScript	Application	Architecture,	focuses	on	code
maintainability	and	architecture.	The	chapter	introduces	the	MVC	paradigm	and	its
derivatives,	MVP	and	MVVM.	It	also	shows,	with	examples,	how	concern	separation	is
implemented	in	popular	frameworks	such	as	Backbone.js,	AngularJS,	and	ReactJS.

Chapter	7,	JavaScript	Beyond	the	Browser,	explains	how	to	write	command-line	programs
in	JavaScript	and	how	to	build	a	web	server	with	Node.js.	It	also	covers	the	creation	of
desktop	HTML5	applications	with	NW.js	and	guides	the	development	of	native	mobile
applications	with	Phongap.

Chapter	8,	Debugging	and	Profiling,	dives	into	bug	detection	and	isolation.	It	examines
the	capacities	of	DevTools	and	the	lesser-known	features	of	the	JavaScript	console	API.

What	you	need	for	this	book
It’s	enough	if	you	have	a	modern	browser	and	a	text	editor	to	run	the	examples	from	the
book.	It	maybe	helpful,	however,	to	use	a	browser	tool	similar	to	Firefox	Scratchpad
(https://developer.mozilla.org/en-US/docs/Tools/Scratchpad)	to	edit	the	sample	code
directly	in	the	browser.	The	books	also	contains	ES6/ES7	code	examples	that	rely	on
features	not	yet	available	in	browsers.	You	can	run	these	examples	in	Babel.js’s	online
sandbox	available	at	https://babeljs.io/repl/.

You	will	find	detailed	instructions	of	how	to	set	up	your	development	environment	and
install	the	required	tools	and	dependencies	in	the	chapters	where	we	refer	to	Node.js,
NW.js,	PhoneGap,	JavaScript	frameworks,	and	NPM	packages.

https://developer.mozilla.org/en-US/docs/Tools/Scratchpad
https://babeljs.io/repl/

Who	this	book	is	for
This	book	is	for	the	developers	who	are	already	familiar	with	JavaScript	and	want	to	level
up	their	skills	to	get	the	most	out	of	the	language.	The	book	is	practice-oriented	and	would
be	helpful	for	those	who	are	used	to	the	“learn	by	doing”	approach,	as	the	topics	are
thoroughly	covered	with	real-life	examples	and	tutorials.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

var	res	=	[1,	2,	3,	4].filter(function(v){

	return	v	>	2;

})

console.log(res);	//	[3,4]

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

/**

*	@param	{Function}	[cb]	-	callback

*/

function	fn(cb)	{

	cb	&&	cb();

};

Any	command-line	input	or	output	is	written	as	follows:

npm	install	fs-walk	cli-color

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“As	soon	as	Enter	is
pressed,	the	console	outputs	I’m	running.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Diving	into	the	JavaScript
Core
You	may	have	owned	an	iPhone	for	years	and	regard	yourself	as	an	experienced	user.	At
the	same	time,	you	keep	removing	unwanted	characters	one	at	a	time	while	typing	by
pressing	delete.	However,	one	day	you	find	out	that	a	quick	shake	allows	you	to	delete	the
whole	message	in	one	tap.	Then	you	wonder	why	on	earth	you	didn’t	know	this	earlier.
The	same	thing	happens	with	programming.	We	can	be	quite	satisfied	with	our	coding
until,	all	of	sudden,	we	run	into	a	trick	or	a	lesser-known	language	feature	that	makes	us
reconsider	the	entire	work	done	over	the	years.	It	turns	out	that	we	could	do	this	in	a
cleaner,	more	readable,	more	testable,	and	more	maintainable	way.	So	it’s	presumed	that
you	already	have	experience	with	JavaScript;	however,	this	chapter	equips	you	with	the
best	practices	to	improve	your	code.	We	will	cover	the	following	topics:

Making	your	code	readable	and	expressive
Mastering	multiline	strings	in	JavaScript
Manipulating	arrays	in	the	ES5	way
Traversing	an	object	in	an	elegant,	reliable,	safe,	and	fast	way
The	most	effective	way	of	declaring	objects
How	to	magic	methods	in	JavaScript

Make	your	code	readable	and	expressive
There	are	numerous	practices	and	heuristics	to	make	a	code	more	readable,	expressive,
and	clean.	We	will	cover	this	topic	later	on,	but	here	we	will	talk	about	syntactic	sugar.
The	term	means	an	alternative	syntax	that	makes	the	code	more	expressive	and	readable.
In	fact,	we	already	had	some	of	this	in	JavaScript	from	the	very	beginning.	For	instance,
the	increment/decrement	and	addition/subtraction	assignment	operators	inherited	from	C.
foo++	is	syntactic	sugar	for	foo	=	foo	+	1,	and	foo	+=	bar	is	a	shorter	form	for	foo	=	foo
+	bar.	Besides,	we	have	a	few	tricks	that	serve	the	same	purpose.

JavaScript	applies	logical	expressions	to	so-called	short-circuit	evaluation.	This	means
that	an	expression	is	read	left	to	right,	but	as	soon	as	the	condition	result	is	determined	at
an	early	stage,	the	expression	tail	is	not	evaluated.	If	we	have	true	||	false	||	false,	the
interpreter	will	know	from	the	first	test	that	the	result	is	true	regardless	of	other	tests.	So
the	false	||	false	part	is	not	evaluated,	and	this	opens	a	way	for	creativity.

Function	argument	default	value
When	we	need	to	specify	default	values	for	parameters	we	can	do	like	that:

function	stub(foo)	{

	return	foo	||	"Default	value";

}

console.log(stub("My	value"));	//	My	value

console.log(stub());	//	Default	value

What	is	going	on	here?	When	foo	is	true	(not	undefined,	NaN,	null,	false,	0,	or	""),	the
result	of	the	logical	expression	is	foo	otherwise	the	expression	is	evaluated	until	Default
value	and	this	is	the	final	result.

Starting	with	6th	edition	of	EcmaScript	(specification	of	JavaScript	language)	we	can	use
nicer	syntax:

function	stub(foo	=	"Default	value")	{

	return	foo;

}

Conditional	invocation
While	composing	our	code	we	shorten	it	on	conditions:”

var	age	=	20;

age	>=	18	&&	console.log("You	are	allowed	to	play	this	game");

age	>=	18	||	console.log("The	game	is	restricted	to	18	and	over");

In	the	preceding	example,	we	used	the	AND	(&&)	operator	to	invoke	console.log	if	the
left-hand	condition	is	Truthy.	The	OR	(||)	operator	does	the	opposite,	it	calls
console.log	if	the	condition	is	Falsy.

I	think	the	most	common	case	in	practice	is	the	shorthand	condition	where	the	function	is
called	only	when	it	is	provided:

/**

*	@param	{Function}	[cb]	-	callback

*/

function	fn(cb)	{

	cb	&&	cb();

};

The	following	is	one	more	example	on	this:

/**

*	@class	AbstractFoo

*/

AbstractFoo	=	function(){

	//	call	this.init	if	the	subclass	has	init	method

	this.init	&&	this.init();

};

Syntactic	sugar	was	introduced	to	its	full	extent	to	the	JavaScript	world	only	with	the
advance	in	CoffeeScript,	a	subset	of	the	language	that	trans-compiles	(compiles	source-to-
source)	into	JavaScript.	Actually	CoffeeScript,	inspired	by	Ruby,	Python,	and	Haskell,	has
unlocked	arrow-functions,	spreads,	and	other	syntax	to	JavaScript	developers.	In	2011,
Brendan	Eich	(the	author	of	JavaScript)	admitted	that	CoffeeScript	influenced	him	in	his
work	on	EcmaScript	Harmony,	which	was	finalized	this	summer	in	ECMA-262	6th
edition	specification.	From	a	marketing	perspective,	the	specification	writers	agreed	on
using	a	new	name	convention	that	calls	the	6th	edition	as	EcmaScript	2015	and	the	7th
edition	as	EcmaScript	2016.	Yet	the	community	is	used	to	abbreviations	such	as	ES6	and
ES7.	To	avoid	confusion	further	in	the	book,	we	will	refer	to	the	specifications	by	these
names.	Now	we	can	look	at	how	this	affects	the	new	JavaScript.

Arrow	functions
Traditional	function	expression	may	look	like	this:

function(param1,	param2){	/*	function	body	*/	}

When	declaring	an	expression	using	the	arrow	function	(aka	fat	arrow	function)	syntax,
we	will	have	this	in	a	less	verbose	form,	as	shown	in	the	following:

(param1,	param2)	=>	{	/*	function	body	*/	}

In	my	opinion,	we	don’t	gain	much	with	this.	But	if	we	need,	let’s	say,	an	array	method
callback,	the	traditional	form	would	be	as	follows:

function(param1,	param2){	return	expression;	}

Now	the	equivalent	arrow	function	becomes	shorter,	as	shown	here:

(param1,	param2)	=>	expression

We	may	do	filtering	in	an	array	this	way:

//	filter	all	the	array	elements	greater	than	2

var	res	=	[1,	2,	3,	4].filter(function(v){

	return	v	>	2;

})

console.log(res);	//	[3,4]

Using	an	array	function,	we	can	do	filtering	in	a	cleaner	form:

var	res		=	[1,	2,	3,	4].filter(v	=>	v	>	2);

console.log(res);	//	[3,4]

Besides	shorter	function	declaration	syntax,	the	arrow	functions	bring	the	so	called	lexical
this.	Instead	of	creating	its	own	context,	it	uses	the	context	of	the	surrounding	object	as
shown	here:

"use	strict";

/**

*	@class	View

*/			

let	View	=	function(){

	let	button	=	document.querySelector("[data-bind=\"btn\"]");

	/**

		*	Handle	button	clicked	event

		*	@private	

		*/

	this.onClick	=	function(){

			console.log("Button	clicked");

	};

	button.addEventListener("click",	()	=>	{

			//	we	can	safely	refer	surrounding	object	members

			this.onClick();	

	},	false);

}

In	the	preceding	example,	we	subscribed	a	handler	function	to	a	DOM	event	(click).

Within	the	scope	of	the	handler,	we	still	have	access	to	the	view	context	(this),	so	we
don’t	need	to	bind	the	handler	to	the	outer	scope	or	pass	it	as	a	variable	through	the
closure:

var	that	=	this;

button.addEventListener("click",	function(){

		//	cross-cutting	concerns

		that.onClick();	

},	false);

Method	definitions
As	mentioned	in	the	preceding	section,	arrow	functions	can	be	quite	handy	when	declaring
small	inline	callbacks,	but	always	applying	it	for	a	shorter	syntax	is	controversial.
However,	ES6	provides	new	alternative	method	definition	syntax	besides	the	arrow
functions.	The	old-school	method	declaration	may	look	as	follows:

var	foo	=	{

	bar:	function(param1,	param2)	{

	}

}

In	ES6	we	can	get	rid	of	the	function	keyword	and	the	colon.	So	the	preceding	code	can	be
put	this	way:

let	foo	=	{

	bar	(param1,	param2)	{

	}

}

The	rest	operator
Another	syntax	structure	that	was	borrowed	from	CoffeeScript	came	to	JavaScript	as	the
rest	operator	(albeit,	the	approach	is	called	splats	in	CoffeeScript).

When	we	had	a	few	mandatory	function	parameters	and	an	unknown	number	of	rest
parameters,	we	used	to	do	something	like	this:

"use	strict";

var	cb	=	function()	{

	//	all	available	parameters	into	an	array

	var	args	=	[].slice.call(arguments),

					//	the	first	array	element	to	foo	and	shift

					foo	=	args.shift(),

					//	the	new	first	array	element	to	bar	and	shift

					bar	=	args.shift();

	console.log(foo,	bar,	args);

};

cb("foo",	"bar",	1,	2,	3);	//	foo	bar	[1,	2,	3]

Now	check	out	how	expressive	this	code	becomes	in	ES6:

let	cb	=	function(foo,	bar,	...args)	{

	console.log(foo,	bar,	args);

}

cb("foo",	"bar",	1,	2,	3);	//	foo	bar	[1,	2,	3]

Function	parameters	aren’t	the	only	application	of	the	rest	operator.	For	example,	we	can
use	it	in	destructions	as	well,	as	follows:

let	[bar,	...others]	=	["bar",	"foo",	"baz",	"qux"];

console.log([bar,	others]);	//	["bar",["foo","baz","qux"]]

The	spread	operator
Similarly,	we	can	spread	array	elements	into	arguments:

let	args	=	[2015,	6,	17],

			relDate	=	new	Date(...args);

console.log(relDate.toString());		//	Fri	Jul	17	2015	00:00:00	GMT+0200	

(CEST)

ES6	also	provides	expressive	syntactic	sugar	for	object	creation	and	inheritance,	but	we
will	examine	this	later	in	The	most	effective	way	of	declaring	objects	section.

Mastering	multiline	strings	in	JavaScript
Multi-line	strings	aren’t	a	good	part	of	JavaScript.	While	they	are	easy	to	declare	in	other
languages	(for	instance,	NOWDOC),	you	cannot	just	keep	single-quoted	or	double-quoted
strings	in	multiple	lines.	This	will	lead	to	syntax	error	as	every	line	in	JavaScript	is
considered	as	a	possible	command.	You	can	set	backslashes	to	show	your	intention:

var	str	=	"Lorem	ipsum	dolor	sit	amet,	\n\

consectetur	adipiscing	elit.	Nunc	ornare,	\n\

diam	ultricies	vehicula	aliquam,	mauris	\n\

ipsum	dapibus	dolor,	quis	fringilla	leo	ligula	non	neque";

This	kind	of	works.	However,	as	soon	as	you	miss	a	trailing	space,	you	get	a	syntax	error,
which	is	not	easy	to	spot.	While	most	script	agents	support	this	syntax,	it’s,	however,	not	a
part	of	the	EcmaScript	specification.

In	the	times	of	EcmaScript	for	XML	(E4X),	we	could	assign	a	pure	XML	to	a	string,
which	opened	a	way	for	declarations	such	as	these:

var	str	=	<>Lorem	ipsum	dolor	sit	amet,	

consectetur	adipiscing	

elit.	Nunc	ornare	</>.toString();

Nowadays	E4X	is	deprecated,	it’s	not	supported	anymore.

Concatenation	versus	array	join
We	can	also	use	string	concatenation.	It	may	feel	clumsy,	but	it’s	safe:

var	str	=	"Lorem	ipsum	dolor	sit	amet,	\n"	+

	"consectetur	adipiscing	elit.	Nunc	ornare,\n"	+

	"diam	ultricies	vehicula	aliquam,	mauris	\n"	+

	"ipsum	dapibus	dolor,	quis	fringilla	leo	ligula	non	neque";

You	may	be	surprised,	but	concatenation	is	slower	than	array	joining.	So	the	following
technique	will	work	faster:

var	str	=	["Lorem	ipsum	dolor	sit	amet,	\n",

	"consectetur	adipiscing	elit.	Nunc	ornare,\n",

	"diam	ultricies	vehicula	aliquam,	mauris	\n",

	"ipsum	dapibus	dolor,	quis	fringilla	leo	ligula	non	neque"].join("");

Template	literal
What	about	ES6?	The	latest	EcmaScript	specification	introduces	a	new	sort	of	string
literal,	template	literal:

var	str	=	`Lorem	ipsum	dolor	sit	amet,	\n

consectetur	adipiscing	elit.	Nunc	ornare,	\n

diam	ultricies	vehicula	aliquam,	mauris	\n

ipsum	dapibus	dolor,	quis	fringilla	leo	ligula	non	neque`;

Now	the	syntax	looks	elegant.	But	there	is	more.	Template	literals	really	remind	us	of
NOWDOC.	You	can	refer	any	variable	declared	in	the	scope	within	the	string:

"use	strict";

var	title	=	"Some	title",

			text	=	"Some	text",

			str	=	`<div	class="message">

<h2>${title}</h2>

<article>${text}</article>

</div>`;

console.log(str);

The	output	is	as	follows:

<div	class="message">

<h2>Some	title</h2>

<article>Some	text</article>

</div>

If	you	wonder	when	can	you	safely	use	this	syntax,	I	have	a	good	news	for	you—this
feature	is	already	supported	by	(almost)	all	the	major	script	agents
(http://kangax.github.io/compat-table/es6/).

http://kangax.github.io/compat-table/es6/

Multi-line	strings	via	transpilers
With	the	advance	of	ReactJS,	Facebook’s	EcmaScript	language	extension	named	JSX
(https://facebook.github.io/jsx/)	is	now	really	gaining	momentum.	Apparently	influenced
by	previously	mentioned	E4X,	they	proposed	a	kind	of	string	literal	for	XML-like	content
without	any	screening	at	all.	This	type	supports	template	interpolation	similar	to	ES6
templates:

"use	strict";

var	Hello	=	React.createClass({

	render:	function()	{

			return	<div	class="message">

<h2>{this.props.title}</h2>

<article>{this.props.text}</article>

</div>;

	}

});

React.render(<Hello	title="Some	title"	text="Some	text"	/>,	node);

Another	way	to	declare	multiline	strings	is	by	using	CommonJS	Compiler
(http://dsheiko.github.io/cjsc/).	While	resolving	the	‘require’	dependencies,	the	compiler
transforms	any	content	that	is	not	.js/.json	content	into	a	single-line	string:

foo.txt

Lorem	ipsum	dolor	sit	amet,

consectetur	adipiscing	elit.	Nunc	ornare,

diam	ultricies	vehicula	aliquam,	mauris

ipsum	dapibus	dolor,	quis	fringilla	leo	ligula	non	neque

consumer.js

var	str	=	require("./foo.txt");

console.log(str);

You	can	find	an	example	of	JSX	use	in	Chapter	6,	A	Large-Scale	JavaScript	Application
Architecture.

https://facebook.github.io/jsx/
http://dsheiko.github.io/cjsc/

Manipulating	arrays	in	the	ES5	way
Some	years	ago	when	the	support	of	ES5	features	was	poor	(EcmaScript	5th	edition	was
finalized	in	2009),	libraries	such	as	Underscore	and	Lo-Dash	got	highly	popular	as	they
provided	a	comprehensive	set	of	utilities	to	deal	with	arrays/collections.	Today,	many
developers	still	use	third-party	libraries	(including	jQuery/Zepro)	for	methods	such	as	map,
filter,	every,	some,	reduce,	and	indexOf,	while	these	are	available	in	the	native	form	of
JavaScript.	It	still	depends	on	how	you	use	such	libraries,	but	it	may	likely	happen	that
you	don’t	need	them	anymore.	Let’s	see	what	we	have	now	in	JavaScript.

Array	methods	in	ES5
Array.prototype.forEach	is	probably	the	most	used	method	of	the	arrays.	That	is,	it	is
the	native	implementation	of	_.each,	or	for	example,	of	the	$.each	utilities.	As
parameters,	forEach	expects	an	iteratee	callback	function	and	optionally	a	context	in
which	you	want	to	execute	the	callback.	It	passes	to	the	callback	function	an	element
value,	an	index,	and	the	entire	array.	The	same	parameter	syntax	is	used	for	most	array
manipulation	methods.	Note	that	jQuery’s	$.each	has	the	inverted	callback	parameters
order:

"use	strict";

var	data	=	["bar",	"foo",	"baz",	"qux"];

data.forEach(function(val,	inx){

		console.log(val,	inx);	

});

Array.prototype.map	produces	a	new	array	by	transforming	the	elements	of	a	given
array:

"use	strict";

var	data	=	{	bar:	"bar	bar",	foo:	"foo	foo"	},

			//	convert	key-value	array	into	url-encoded	string

			urlEncStr	=	Object.keys(data).map(function(key){

					return	key	+	"="	+	window.encodeURIComponent(data[key]);

			}).join("&");

console.log(urlEncStr);	//	bar=bar%20bar&foo=foo%20foo

Array.prototype.filter	returns	an	array,	which	consists	of	given	array	values	that	meet
the	callback’s	condition:

"use	strict";

var	data	=	["bar",	"foo",	"",	0],

			//	remove	all	falsy	elements

			filtered	=	data.filter(function(item){

					return	!!item;

			});

console.log(filtered);	//	["bar",	"foo"]

Array.prototype.reduce/Array.prototype.reduceRight	retrieves	the	product	of	values
in	an	array.	The	method	expects	a	callback	function	and	optionally	the	initial	value	as
arguments.	The	callback	function	receive	four	parameters:	the	accumulative	value,	current
one,	index	and	original	array.	So	we	can,	for	an	instance,	increment	the	accumulative
value	by	the	current	one	(return	acc	+=	cur;)	and,	thus,	we	will	get	the	sum	of	array
values.

Besides	calculating	with	these	methods,	we	can	concatenate	string	values	or	arrays:

"use	strict";

var	data	=	[[0,	1],	[2,	3],	[4,	5]],

			arr	=	data.reduce(function(prev,	cur)	{

					return	prev.concat(cur);

			}),

			arrReverse	=	data.reduceRight(function(prev,	cur)	{

					return	prev.concat(cur);

			});

console.log(arr);	//		[0,	1,	2,	3,	4,	5]

console.log(arrReverse);	//	[4,	5,	2,	3,	0,	1]

Array.prototype.some	tests	whether	any	(or	some)	values	of	a	given	array	meet	the
callback	condition:

"use	strict";

var	bar	=	["bar",	"baz",	"qux"],

			foo	=	["foo",	"baz",	"qux"],

			/**

				*	Check	if	a	given	context	(this)	contains	the	value

				*	@param	{*}	val

				*	@return	{Boolean}

				*/

			compare	=	function(val){

					return	this.indexOf(val)	!==	-1;	

			};

console.log(bar.some(compare,	foo));	//	true

In	this	example,	we	checked	whether	any	of	the	bar	array	values	are	available	in	the	foo
array.	For	testability,	we	need	to	pass	a	reference	of	the	foo	array	into	the	callback.	Here
we	inject	it	as	context.	If	we	need	to	pass	more	references,	we	would	push	them	in	a	key-
value	object.

As	you	probably	noticed,	we	used	in	this	example	Array.prototype.indexOf.	The
method	works	the	same	as	String.prototype.indexOf.	This	returns	an	index	of	the
match	found	or	-1.

Array.prototype.every	tests	whether	every	value	of	a	given	array	meets	the	callback
condition:

"use	strict";

var	bar	=	["bar",	"baz"],

			foo	=	["bar",	"baz",	"qux"],

			/**

				*	Check	if	a	given	context	(this)	contains	the	value

				*	@param	{*}	val

				*	@return	{Boolean}

				*/

			compare	=	function(val){

					return	this.indexOf(val)	!==	-1;	

			};

console.log(bar.every(compare,	foo));	//	true

If	you	are	still	concerned	about	support	for	these	methods	in	a	legacy	browser	as	old	as
IE6-7,	you	can	simply	shim	them	with	https://github.com/es-shims/es5-shim.

https://github.com/es-shims/es5-shim

Array	methods	in	ES6
In	ES6,	we	get	just	a	few	new	methods	that	look	rather	like	shortcuts	over	the	existing
functionality.

Array.prototype.fill	populates	an	array	with	a	given	value,	as	follows:

"use	strict";

var	data	=	Array(5);

console.log(data.fill("bar"));	//	["bar",	"bar",	"bar",	"bar",	"bar"]

Array.prototype.includes	explicitly	checks	whether	a	given	value	exists	in	the	array.
Well,	it	is	the	same	as	arr.indexOf(val)	!==	-1,	as	shown	here:

"use	strict";

var	data	=	["bar",	"foo",	"baz",	"qux"];

console.log(data.includes("foo"));

Array.prototype.find	filters	out	a	single	value	matching	the	callback	condition.	Again,
it’s	what	we	can	get	with	Array.prototype.filter.	The	only	difference	is	that	the	filter
method	returns	either	an	array	or	a	null	value.	In	this	case,	this	returns	a	single	element
array,	as	follows:

"use	strict";

var	data	=	["bar",	"fo",	"baz",	"qux"],

			match	=	function(val){

					return	val.length	<	3;

			};

console.log(data.find(match));	//	fo

Traversing	an	object	in	an	elegant,
reliable,	safe,	and	fast	way
It	is	a	common	case	when	we	have	a	key-value	object	(let’s	say	options)	and	need	to
iterate	it.	There	is	an	academic	way	to	do	this,	as	shown	in	the	following	code:

"use	strict";

var	options	=	{

				bar:	"bar",

				foo:	"foo"

			},

			key;

for(key	in	options)	{

	console.log(key,	options[key]);

}

The	preceding	code	outputs	the	following:

bar	bar

foo	foo

Now	let’s	imagine	that	any	of	the	third-party	libraries	that	you	load	in	the	document
augments	the	built-in	Object:

Object.prototype.baz	=	"baz";

Now	when	we	run	our	example	code,	we	will	get	an	extra	undesired	entry:

bar	bar

foo	foo

baz	baz

The	solution	to	this	problem	is	well	known,	we	have	to	test	the	keys	with	the
Object.prototype.hasOwnProperty	method:

//…

for(key	in	options)	{

	if	(options.hasOwnProperty(key))	{

			console.log(key,	options[key]);

	}

}

Iterating	the	key-value	object	safely	and	fast
Let’s	face	the	truth—the	structure	is	clumsy	and	requires	optimization	(we	have	to
perform	the	hasOwnProperty	test	on	every	given	key).	Luckily,	JavaScript	has	the
Object.keys	method	that	retrieves	all	string-valued	keys	of	all	enumerable	own	(non-
inherited)	properties.	This	gives	us	the	desired	keys	as	an	array	that	we	can	iterate,	for
instance,	with	Array.prototype.forEach:

"use	strict";

var	options	=	{

				bar:	"bar",

				foo:	"foo"

			};

Object.keys(options).forEach(function(key){

	console.log(key,	options[key]);

});

Besides	the	elegance,	we	get	a	better	performance	this	way.	In	order	to	see	how	much	we
gain,	you	can	run	this	online	test	in	distinct	browsers	such	as:
http://codepen.io/dsheiko/pen/JdrqXa.

http://codepen.io/dsheiko/pen/JdrqXa

Enumerating	an	array-like	object
Objects	such	as	arguments	and	nodeList	(node.querySelectorAll,	document.forms)
look	like	arrays,	in	fact	they	are	not.	Similar	to	arrays,	they	have	the	length	property	and
can	be	iterated	in	the	for	loop.	In	the	form	of	objects,	they	can	be	traversed	in	the	same
way	that	we	previously	examined.	But	they	do	not	have	any	of	the	array	manipulation
methods	(forEach,	map,	filter,	some	and	so	on).	The	thing	is	we	can	easily	convert	them
into	arrays	as	shown	here:

"use	strict";

var	nodes	=	document.querySelectorAll("div"),

			arr	=	Array.prototype.slice.call(nodes);

arr.forEach(function(i){

	console.log(i);

});

The	preceding	code	can	be	even	shorter:

arr	=	[].slice.call(nodes)

It’s	a	pretty	convenient	solution,	but	looks	like	a	trick.	In	ES6,	we	can	do	the	same
conversion	with	a	dedicated	method:

arr	=	Array.from(nodes);

The	collections	of	ES6
ES6	introduces	a	new	type	of	objects—iterable	objects.	These	are	the	objects	whose
elements	can	be	retrieved	one	at	a	time.	They	are	quite	the	same	as	iterators	in	other
languages.	Beside	arrays,	JavaScript	received	two	new	iterable	data	structures,	Set	and
Map.	Set	which	are	a	collection	of	unique	values:

"use	strict";

let	foo	=	new	Set();

foo.add(1);

foo.add(1);

foo.add(2);

console.log(Array.from(foo));	//	[1,	2]

let	foo	=	new	Set(),	

			bar	=	function(){	return	"bar";	};

foo.add(bar);

console.log(foo.has(bar));	//	true

The	map	is	similar	to	a	key-value	object,	but	may	have	arbitrary	values	for	the	keys.	And
this	makes	a	difference.	Imagine	that	we	need	to	write	an	element	wrapper	that	provides
jQuery-like	events	API.	By	using	the	on	method,	we	can	pass	not	only	a	handler	callback
function	but	also	a	context	(this).	We	bind	the	given	callback	to	the	cb.bind(context)
context.	This	means	addEventListener	receives	a	function	reference	different	from	the
callback.	How	do	we	unsubscribe	the	handler	then?	We	can	store	the	new	reference	in	Map
by	a	key	composed	from	an	event	name	and	a	callback	function	reference:

"use	strict";

/**

*	@class

*	@param	{Node}	el

*/

let	El	=	function(el){

	this.el	=	el;

	this.map	=	new	Map();

};

/**

*	Subscribe	a	handler	on	event

*	@param	{String}	event

*	@param	{Function}	cb

*	@param	{Object}	context

*/

El.prototype.on	=	function(event,	cb,	context){

	let	handler	=	cb.bind(context	||	this);

	this.map.set([event,	cb],	handler);

	this.el.addEventListener(event,	handler,	false);

};

/**

*	Unsubscribe	a	handler	on	event

*	@param	{String}	event

*	@param	{Function}	cb

*/

El.prototype.off	=	function(event,	cb){

	let	handler	=	cb.bind(context),

					key	=	[event,	handler];

	if	(this.map.has(key))	{

			this.el.removeEventListener(event,	this.map.get(key));

			this.map.delete(key);

	}

};

Any	iterable	object	has	methods,	keys,	values,	and	entries,	where	the	keys	work	the
same	as	Object.keys	and	the	others	return	array	values	and	an	array	of	key-value	pairs
respectively.	Now	let’s	see	how	we	can	traverse	the	iterable	objects:

"use	strict";

let	map	=	new	Map()

	.set("bar",	"bar")

	.set("foo",	"foo"),

			pair;

for	(pair	of	map)	{

	console.log(pair);

}

//	OR	

let	map	=	new	Map([

			["bar",	"bar"],

			["foo",	"foo"],

]);

map.forEach(function(value,	key){

	console.log(key,	value);

});

Iterable	objects	have	manipulation	methods	such	as	arrays.	So	we	can	use	forEach.
Besides,	they	can	be	iterated	by	for…in	and	for…of	loops.	The	first	one	retrieves	indexes
and	the	second,	the	values.

The	most	effective	way	of	declaring
objects
How	do	we	declare	an	object	in	JavaScript?	If	we	need	a	namespace,	we	can	simply	use
an	object	literal.	But	when	we	need	an	object	type,	we	need	to	think	twice	about	what
approach	to	take,	as	it	affects	the	maintainability	of	our	object-oriented	code.

Classical	approach
We	can	create	a	constructor	function	and	chain	the	members	to	its	context:

"use	strict";	

/**

	*	@class

	*/

var	Constructor	=	function(){

			/**

			*	@type	{String}

			*	@public

			*/

			this.bar	=	"bar";

			/**

			*	@public

			*	@returns	{String}

			*/

			this.foo	=	function()	{

				return	this.bar;

			};

	},

	/**	@type	Constructor	*/

	instance	=	new	Constructor();

console.log(instance.foo());	//	bar

console.log(instance	instanceof	Constructor);	//	true

We	can	also	assign	the	members	to	the	constructor	prototype.	The	result	will	be	the	same
as	follows:

"use	strict";

/**

*	@class

*/

var	Constructor	=	function(){},

			instance;

/**

*	@type	{String}

*	@public

*/

Constructor.prototype.bar	=	"bar";

/**

*	@public

*	@returns	{String}

*/

Constructor.prototype.foo	=	function()	{

	return	this.bar;

};

/**	@type	Constructor	*/

instance	=	new	Constructor();

console.log(instance.foo());	//	bar

console.log(instance	instanceof	Constructor);	//	true

In	the	first	case,	we	have	the	object	structure	within	the	constructor	function	body	mixed

with	the	construction	logic.	In	the	second	case	by	repeating	Constructor.prototype,	we
violate	the	Do	Not	Repeat	Yourself	(DRY)	principle.

Approach	with	the	private	state
So	how	can	we	do	it	otherwise?	We	can	return	an	object	literal	by	the	constructor	function:

"use	strict";

/**

	*	@class

	*/

var	Constructor	=	function(){

					/**

					*	@type	{String}

					*	@private

					*/

					var	baz	=	"baz";

					return	{

							/**

							*	@type	{String}

							*	@public

							*/

							bar:	"bar",

							/**

							*	@public

							*	@returns	{String}

							*/

							foo:	function()	{

								return	this.bar	+	"	"	+	baz;

							}

					};

			},

			/**	@type	Constructor	*/

			instance	=	new	Constructor();

console.log(instance.foo());	//	bar	baz

console.log(instance.hasOwnProperty("baz"));	//	false

console.log(Constructor.prototype.hasOwnProperty("baz"));	//	false

console.log(instance	instanceof	Constructor);	//	false

The	advantage	of	this	approach	is	that	any	variables	declared	in	the	scope	of	the
constructor	are	in	the	same	closure	as	the	returned	object,	and	therefore,	available	through
the	object.	We	can	consider	such	variables	as	private	members.	The	bad	news	is	that	we
will	lose	the	constructor	prototype.	When	a	constructor	returns	an	object	during
instantiation,	this	object	becomes	the	result	of	a	whole	new	expression.

Inheritance	with	the	prototype	chain
What	about	inheritance?	The	classical	approach	would	be	to	make	the	subtype	prototype
an	instance	of	supertype:

"use	strict";

	/**

	*	@class

	*/

var	SuperType	=	function(){

							/**

							*	@type	{String}

							*	@public

							*/

							this.foo	=	"foo";

					},

					/**

						*	@class

						*/

					Constructor	=	function(){

							/**

							*	@type	{String}

							*	@public

							*/

							this.bar	=	"bar";

					},

					/**	@type	Constructor	*/

					instance;

	Constructor.prototype	=	new	SuperType();

	Constructor.prototype.constructor	=	Constructor;

	instance	=	new	Constructor();

	console.log(instance.bar);	//	bar

	console.log(instance.foo);	//	foo

	console.log(instance	instanceof	Constructor);	//	true

	console.log(instance	instanceof	SuperType);	//	true		

You	may	run	into	some	code,	where	for	instantiation	Object.create	is	used	instead	of	the
new	operator.	Here	you	have	to	know	the	difference	between	the	two.	Object.create
takes	an	object	as	an	argument	and	creates	a	new	one	with	the	passed	object	as	a
prototype.	In	some	ways,	this	reminds	us	of	cloning.	Examine	this,	you	declare	an	object
literal	(proto)	and	create	a	new	object	(instance)	with	Object.create	based	on	the	first
one.	Whatever	changes	you	do	now	on	the	newly	created	object,	they	won’t	be	reflected
on	the	original	(proto).	But	if	you	change	a	property	of	the	original,	you	will	find	the
property	changed	in	its	derivative	(instance):

"use	strict";

var	proto	=	{

	bar:	"bar",

	foo:	"foo"

},	

instance	=	Object.create(proto);

proto.bar	=	"qux",

instance.foo	=	"baz";

console.log(instance);	//	{	foo="baz",		bar="qux"}

console.log(proto);	//	{	bar="qux",		foo="foo"}

Inheriting	from	prototype	with	Object.create
In	contrast	to	the	new	operator,	Object.create	does	not	invoke	the	constructor.	So	when
we	use	it	to	populate	a	subtype	prototype,	we	are	losing	all	the	logic	located	in	a
supertype	constructor.	This	way,	the	supertype	constructor	is	never	called:

//	...

SuperType.prototype.baz	=	"baz";

Constructor.prototype	=	Object.create(SuperType.prototype);

Constructor.prototype.constructor	=	Constructor;

instance	=	new	Constructor();

console.log(instance.bar);	//	bar

console.log(instance.baz);	//	baz

console.log(instance.hasOwnProperty("foo"));	//	false

console.log(instance	instanceof	Constructor);	//	true

console.log(instance	instanceof	SuperType);	//	true

Inheriting	from	prototype	with	Object.assign
When	looking	for	an	optimal	structure,	I	would	like	to	declare	members	via	an	object
literal,	but	still	have	the	link	to	the	prototype.	Many	third-party	projects	leverage	a	custom
function	(extend)	that	merge	the	structure	object	literal	into	the	constructor	prototype.
Actually,	ES6	provides	an	Object.assign	native	method.	We	can	use	it	as	follows:

"use	strict";

			/**

				*	@class

				*/

var	SuperType	=	function(){

					/**

					*	@type	{String}

					*	@public

					*/

					this.foo	=	"foo";

			},

			/**

				*	@class

				*/

			Constructor	=	function(){

					/**

					*	@type	{String}

					*	@public

					*/

					this.bar	=	"bar";

			},

			/**	@type	Constructor	*/

			instance;

Object.assign(Constructor.prototype	=	new	SuperType(),	{

	baz:	"baz"

});

instance	=	new	Constructor();

console.log(instance.bar);	//	bar

console.log(instance.foo);	//	foo

console.log(instance.baz);	//	baz

console.log(instance	instanceof	Constructor);	//	true

console.log(instance	instanceof	SuperType);	//	true

This	looks	almost	as	required,	except	there	is	one	inconvenience.	Object.assign	simply
assigns	the	values	of	source	objects	to	the	target	ones	regardless	of	their	type.	So	if	you
have	a	source	property	with	an	object	(for	instance,	an	Object	or	Array	instance),	the
target	object	receives	a	reference	instead	of	a	value.	So	you	have	to	reset	manually	any
object	properties	during	initialization.

Approach	with	ExtendClass
ExtendClass,	proposed	by	Simon	Boudrias,	is	a	solution	that	seems	flawless
(https://github.com/SBoudrias/class-extend).	His	little	library	exposes	the	Base	constructor
with	the	extend	static	method.	We	use	this	method	to	extend	this	pseudo-class	and	any	of
its	derivatives:

"use	strict";

			/**

				*	@class

				*/

var	SuperType	=	Base.extend({

					/**

						*	@pulic

						*	@returns	{String}

						*/

					foo:	function(){	return	"foo	public";	},

					/**

						*	@constructs	SuperType

						*/

					constructor:	function	()	{}

			}),

			/**

				*	@class

				*/

			Constructor	=	SuperType.extend({

					/**

						*	@pulic

						*	@returns	{String}

						*/						

					bar:	function(){	return	"bar	public";	}

			},	{

					/**

						*	@static

						*	@returns	{String}

						*/						

					bar:	function(){	return	"bar	static";	}

			}),

			/**	@type	Constructor	*/

			instance	=	new	Constructor();

			

console.log(instance.foo());	//	foo	public

console.log(instance.bar());	//	bar	public

console.log(Constructor.bar());	//	bar	static

console.log(instance	instanceof	Constructor);	//	true

console.log(instance	instanceof	SuperType);	//	true

https://github.com/SBoudrias/class-extend

Classes	in	ES6
TC39	(the	EcmaScript	working	group)	is	pretty	aware	of	the	problem,	so	the	new
language	specification	provides	extra	syntax	to	structure	object	types:

"use	strict";

class	AbstractClass	{

	constructor()	{

			this.foo	=	"foo";

	}

}

class	ConcreteClass	extends	AbstractClass	{

	constructor()	{

			super();

			this.bar	=	"bar";

	}

	baz()	{

			return	"baz";

	}

}

let	instance	=	new	ConcreteClass();

console.log(instance.bar);	//	bar

console.log(instance.foo);	//	foo

console.log(instance.baz());	//	baz

console.log(instance	instanceof	ConcreteClass);	//	true

console.log(instance	instanceof	AbstractClass);	//	true

The	syntax	looks	class-based,	but	in	fact	this	a	syntactic	sugar	over	existing	prototypes.
You	can	check	with	the	type	of	ConcreteClass,	and	it	will	give	you	function	because
ConcreteClass	is	a	canonical	constructor.	So	we	don’t	need	any	trick	to	extend
supertypes,	no	trick	to	refer	the	supertype	constructor	from	subtype,	and	we	have	a
clean	readable	structure.	However,	we	cannot	assign	properties	the	same	C-like	way	as	we
do	now	with	methods.	This	is	still	in	discussion	for	ES7	(https://esdiscuss.org/topic/es7-
property-initializers).	Besides	this,	we	can	declare	a	class’s	static	methods	straight	in	its
body:

class	Bar	{

	static	foo()	{

			return	"static	method";

	}

	baz()	{

			return	"prototype	method";

	}

}

let	instance	=	new	Bar();

console.log(instance.baz());	//	prototype	method

console.log(Bar.foo()));	//	static	method

Actually,	there	are	many	in	the	JavaScript	community	who	consider	the	new	syntax	as	a
deviation	from	the	prototypical	OOP	approach.	On	the	other	hand,	the	ES6	classes	are
backwards	compatible	with	most	of	the	existing	code.	Subclasses	are	now	supported	by
the	language	and	no	extra	libraries	are	required	for	inheritance.	And	what	I	personally	like

https://esdiscuss.org/topic/es7-property-initializers

the	most	is	that	this	syntax	allows	us	to	make	the	code	cleaner	and	more	maintainable.

How	to	–	magic	methods	in	JavaScript
In	the	PHP	world,	there	are	things	such	as	overloading	methods,	which	are	also	known	as
magic	methods	(http://www.php.net/manual/en/language.oop5.overloading.php).	These
methods	allow	us	to	set	a	logic	that	triggers	when	a	nonexisting	property	of	a	method	is
being	accessed	or	modified.	In	JavaScript,	we	control	access	to	properties	(value
members).	Imagine	we	have	a	custom	collection	object.	In	order	to	be	consistent	in	the
API,	we	want	to	have	the	length	property	that	contains	the	size	of	the	collection.	So	we
declare	a	getter	(get	length),	which	does	the	required	computation	whenever	the	property
is	accessed.	On	attempting	to	modify	the	property	value,	the	setter	will	throw	an
exception:

"use	strict";

var	bar	=	{

	/**	@type	{[Number]}	*/

	arr:	[1,	2],

	/**

		*	Getter

		*	@returns	{Number}

		*/

	get	length	()	{

			return	this.arr.length;

	},

	/**

		*	Setter

		*	@param	{*}	val

		*/

	set	length	(val)	{

			throw	new	SyntaxError("Cannot	assign	to	read	only	property	'length'");

	}

};

console.log	(bar.length);	//	2

bar.arr.push(3);

console.log	(bar.length);	//	3

bar.length	=	10;	//	SyntaxError:	Cannot	assign	to	read	only	property	

'length'

If	we	want	to	declare	getters/setters	on	an	existing	object,	we	can	use	the	following:

Object.defineProperty:

"use	strict";

var	bar	=	{

	/**	@type	{[Number]}	*/

	arr:	[1,	2]

};

Object.defineProperty(bar,	"length",	{

	/**

		*	Getter

		*	@returns	{Number}

		*/

	get:	function()	{

			return	this.arr.length;

http://www.php.net/manual/en/language.oop5.overloading.php

	},

	/**

		*	Setter

		*/

	set:	function()	{

			throw	new	SyntaxError("Cannot	assign	to	read	only	property	'length'");

	}

});

console.log	(bar.length);	//	2

bar.arr.push(3);

console.log	(bar.length);	//	3

bar.length	=	10;	//	SyntaxError:	Cannot	assign	to	read	only	property	

'length'

Object.defineProperty	as	well	as	the	second	parameter	of	Object.create	specifies	a
property	configuration	(whether	it	is	enumerable,	configurable,	immutable,	and	how	it	can
be	accessed	or	modified).	So,	we	can	achieve	a	similar	effect	by	configuring	the	property
as	read-only:

"use	strict";

var	bar	=	{};

Object.defineProperty(bar,	"length",	{

	/**

		*	Data	descriptor

		*	@type	{*}

		*/

	value:	0,

	/**

		*	Data	descriptor

		*	@type	{Boolean}

		*/

	writable:	false

});

bar.length	=	10;	//	TypeError:	"length"	is	read-only

By	the	way,	if	you	want	to	get	rid	of	the	property	accessor	in	the	object,	you	can	simply
remove	the	property:

delete	bar.length;

Accessors	in	ES6	classes
Another	way	by	which	we	can	declare	accessors	is	using	the	ES6	classes:

"use	strict";

/**	@class	*/

class	Bar	{

	/**	@constructs	Bar	*/

	constructor()	{

			/**	@type	{[Number]}	*/

			this.arr	=	[1,	2];

	}

	/**

		*	Getter

		*	@returns	{Number}

		*/

	get	length()	{

			return	this.arr.length;

	}

	/**

		*	Setter

		*	@param	{Number}	val

		*/

	set	length(val)	{

				throw	new	SyntaxError("Cannot	assign	to	read	only	property	'length'"	

);

	}

}

let	bar	=	new	Bar();

console.log	(bar.length);	//	2

bar.arr.push(3);

console.log	(bar.length);	//	3

bar.length	=	10;	//	SyntaxError:	Cannot	assign	to	read	only	property	

'length'

Besides	public	properties,	we	can	control	access	to	static	ones	as	well:

"use	strict";

class	Bar	{

			/**

				*	@static

				*	@returns	{String}

				*/

			static	get	baz()	{

							return	"baz";

			}

}

console.log(Bar.baz);	//	baz

Controlling	access	to	arbitrary	properties
All	these	examples	show	access	control	to	known	properties.	However,	there	might	be	a
case	when	I	want	a	custom	storage	with	a	variadic	interface	similar	to	localStorage.	This
must	be	a	storage	that	has	the	getItem	method	to	retrieve	stored	values	and	the	setItem
method	to	set	them.	Besides,	this	must	work	the	same	way	as	when	you	directly	access	or
set	a	pseudo-property	(val	=	storage.aKey	and	storage.aKey	=	"value").	These	can
be	achieved	by	using	the	ES6	Proxy:

"use	strict";

/**

*	Custom	storage

*/

var	myStorage	=	{

					/**	@type	{Object}	key-value	object	*/

					data:	{},

					/**

						*	Getter

						*	@param	{String}	key

						*	@returns	{*}

						*/

					getItem:	function(key){

							return	this.data[key];

					},

					/**

						*	Setter

						*	@param	{String}	key

						*	@param	{*}	val

						*/

					setItem:	function(key,	val){

							this.data[key]	=	val;

					}

			},

			/**

				*	Storage	proxy

				*	@type	{Proxy}

				*/

			storage	=	new	Proxy(myStorage,	{

					/**

						*	Proxy	getter

						*	@param	{myStorage}	storage

						*	@param	{String}	key

						*	@returns	{*}

						*/

					get:	function	(storage,	key)	{

							return	storage.getItem(key);

					},

					/**

						*	Proxy	setter

						*	@param	{myStorage}	storage

						*	@param	{String}	key

						*	@param	{*}	val

						*	@returns	{void}

						*/

					set:	function	(storage,	key,	val)	{

							return	storage.setItem(key,	val);

			}});

storage.bar	=	"bar";

console.log(myStorage.getItem("bar"));	//	bar

myStorage.setItem("bar",	"baz");

console.log(storage.bar);	//	baz

Summary
This	chapter	gives	practices	and	tricks	on	how	to	use	the	JavaScript	core	features	for	the
maximum	effect.	In	the	next	chapter,	we	will	talk	about	module	concepts	and	we	will	do	a
walkthrough	on	scopes	and	closures.	The	next	chapter	will	explain	the	scope	context	and
the	ways	to	manipulate	it.

Chapter	2.	Modular	Programming	with
JavaScript
Engineering	in	general	is	all	about	splitting	large	tasks	into	small	ones	and	composing	the
solutions	of	these	tasks	in	a	system.	In	software	engineering,	we	break	the	code-base	into
modules	by	following	the	principles	of	low	coupling	and	high	cohesion.	In	this	chapter,
we	will	talk	about	the	approaches	to	create	modules	in	JavaScript	by	covering	the
following	topics:

How	to	get	out	of	a	mess	using	modular	JavaScript
How	to	use	asynchronous	modules	in	the	browser
How	to	use	synchronous	modules	on	the	server
JavaScript	built-in	module	system
Transpiling	CommonJS	for	in-browser	use

How	to	get	out	of	a	mess	using	modular
JavaScript
How	many	digital	photos	do	you	have,	probably	thousands,	or	more?	Just	imagine	if	your
image	viewer	had	no	capacity	to	categorize.	No	albums,	no	books,	no	categories,	nothing.
It	would	not	be	of	much	use,	does	it?	Now	let’s	assume	that	you	have	a	JavaScript
application	in	a	single	file	and	it	grows.	When	it	approaches	thousand	or	more	than	a
thousand	lines	of	code,	however	good	your	code	design	is,	from	a	maintainability
perspective,	it	still	turns	into	a	useless	pile	like	that	enormous	list	of	uncategorized	photos.
Instead	of	building	a	monolithic	application,	we	have	to	write	several	independent
modules	that	combine	together	to	form	an	application.	Thus,	we	break	a	complex	problem
into	simpler	tasks.

Modules
So,	what	is	a	module?	A	module	encapsulates	code	intended	for	a	particular	functionality.
A	module	also	provides	an	interface	declaring	what	elements	the	module	exposes	and
requires.	A	module	is	often	packaged	in	a	single	file,	which	makes	it	easy	to	locate	and
deploy.	A	well-designed	module	implies	low	coupling	(the	degree	of	interdependence
between	modules)	and	high	cohesion	(the	degree	to	which	the	elements	of	a	module
belong	together).

What	are	the	advantages	that	modules	give	us	in	JavaScript?

Cleaner	global	scope
You	know	in	JavaScript	any	assignation	that	we	do	out	of	any	function	scope	makes	a	new
member	of	the	global	scope	(a	built-in	object	window	in	a	browser	or	global	in
Node.js/Io.js).	Therefore,	we	are	always	at	a	risk	of	overriding	accidentally	an	already
defined	property.	On	the	contrary,	whatever	is	declared	in	a	module	stays	here	unless	we
explicitly	export	it.

Packaging	code	into	files
In	server-side	languages,	applications	consist	of	numerous	files.	One	of	the	best	practices
here	is	that	a	file	may	contain	only	one	class	and	have	only	one	responsibility.	Besides,	a
fully-qualified	class	name	must	reflect	its	file	location.	So	when	we	run	into	a	problem	on
an	object,	we	can	easily	deduct	where	to	find	its	source	code.	We	can	divide	JavaScript
application	code	into	separate	scripts,	but	these	will	share	the	same	scope	and	won’t	give
us	any	encapsulation.	Moreover,	when	the	scripts	load	asynchronously,	the	internal
dependencies	must	be	solved,	which	is	not	easy	to	do.	But	if	we	use	modules,	each	is
given	a	dedicated	file	and	has	its	own	scope.	A	module	loader	takes	care	of	asynchronous
dependencies.

Reuse
Imagine,	while	working	on	a	project,	you	wrote	a	code	that	solves	one	task—let’s	say	it
provides	a	convenient	API	to	manage	cookies.	When	switching	to	another	project,	you
realize	that	your	cookie	manager	would	quite	be	in	place	there.	In	case	of	spaghetti	code,
you	would	have	to	extract	the	component	code,	decouple	it,	and	bind	it	to	the	new	place.	If
you	wrote	the	component	as	a	decently-designed	module,	you	simply	take	it	and	plug	it	in.

Module	patterns
Well,	we	know	that	modules	help	and	we	want	to	use	them.	How	do	we	implement	a
module	in	JavaScript?	First	of	all,	we	need	to	detach	the	module	code	from	the	global
scope.	We	can	only	do	this	by	a	wrapping	module	code	with	a	function.	A	common
practice	here	is	to	go	with	Immediately	Invoked	Function	Expression	(IIFE):

IIFE

(function	()	{

		"use	strict";

			//	variable	defined	inside	this	scope	cannot	be	accessed	from	outside

}());

A	module	must	also	have	access	points	with	the	surrounding	environment.	In	the	same
way	as	we	usually	deal	with	functions,	we	can	pass	object	references	to	IIFE	as
arguments.

Import

(function	($,	Backbone)	{

			"use	strict";

		//	module	body

}(jQuery,	Backbone));

You	may	have	also	seen	a	pattern	where	a	global	object	(window)	is	passed	with
arguments.	This	way	we	do	not	access	the	global	object	directly,	but	by	a	reference.	There
is	an	opinion	that	the	access	by	a	local	reference	is	faster.	That’s	not	completely	true.	I’ve
prepared	a	Codepen	with	some	tests	at	http://codepen.io/dsheiko/pen/yNjEar.	It	shows	me
that	in	Chrome	(v45),	a	local	reference	is	really	~20	percent	faster;	however,	in	Firefox
(v39),	this	doesn’t	make	any	considerable	difference.

You	can	also	run	a	pattern	variation	with	undefined	in	the	parameter	list.	A	parameter	that
was	not	supplied	with	the	arguments	has	an	undefined	value.	So,	we	do	this	trick	to
ensure	that	we	get	the	authentic	undefined	object	in	the	scope	even	if	the	global
undefined	object	is	overridden.

Local	References

(function	(window,	undefined)	{

			"use	strict";

		//	module	body

}(window));

In	order	to	expose	a	module	element	outside	its	scope,	we	can	simply	return	an	object.	The
result	of	the	function	call	can	be	assigned	to	an	external	variable,	as	shown	here:

Export

/**	@module	foo	*/

var	foo	=	(function	()	{

		"use	strict";

							/**

								*	@private

								*	@type	String

								*/

			var	bar	=	"bar",

http://codepen.io/dsheiko/pen/yNjEar

							/**

								*	@type	{Object}

								*/

							foo	=	{

									/**

										*	@public

										*	@type	{String}

										*/

									baz:	"baz",

									/**

										*	@public

										*	@returns	{String}

										*/

									qux:	function()	{

											return	"qux";

									}

							};

			return	foo;

}());

console.log(foo.baz);	//	baz

console.log(foo.qux());	//	qux

Augmentation
Sometimes	we	need	to	mix	things	up	in	a	module.	For	example,	we	have	a	module	that
provides	core	functionality,	and	we	want	to	plug-in	extensions	depending	on	the	context	of
use.	Let’s	say,	I	have	a	module	to	create	objects	based	on	pseudo-class	declarations.

Basically,	during	instantiation	it	automatically	inherits	from	a	specified	object	and	calls
the	constructor	method.	In	a	particular	application,	I	want	this	to	also	validate	the	object
interface	against	a	given	specification.	So,	I	plug	this	extension	to	the	base	module.	How
is	it	done?	We	pass	the	reference	of	the	base	module	to	the	plugin.	The	link	to	the	original
will	be	maintained,	so	we	can	modify	it	in	the	scope	of	the	plugin:

/**	@module	foo	*/

var	foo	=	(function	()	{

						"use	strict";

											/**

												*	@type	{Object}

												*/

									var	foo	=	{

													/**

														*	@public

														*	@type	{String}

														*/

													baz:	"baz"

											};

							return	foo;

				}()),

				/**	@module	bar	*/

				bar	=	(function(foo){

						"use	strict";

						foo.qux	=	"qux";

				}(foo	||	{}));

console.log(foo.baz);	//	baz

console.log(foo.qux);	//	qux

Module	standards
We’ve	just	reviewed	a	few	ways	to	implement	modules.	However,	in	practice,	we	rather
follow	a	standardized	API.	These	have	been	proved	by	a	huge	community,	adopted	by
real-world	projects,	and	recognizable	by	other	developers.	The	two	most	important
standards	that	we	need	to	keep	in	mind	are	AMD	and	CommonJS	1.1,	and	now	we	would
rather	look	at	at	ES6	Module	API,	which	is	going	to	be	the	next	big	thing.

CommonJS	1.1	loads	modules	synchronously.	The	module	body	is	executed	once	during
the	first	load	and	the	exported	object	is	cached.	It	is	designed	for	server-side	JavaScript
and	mostly	used	in	Node.js/Io.js.

AMD	loads	modules	asynchronously.	The	module	body	is	executed	once	after	the	first
load	and	the	exported	object	is	also	cached.	This	is	designed	for	in-browser	use.	AMD
requires	a	script	loader.	The	most	popular	are	RequireJS,	curl,	lsjs,	and	Dojo.

Soon,	we	can	expect	the	script	engines	to	gain	native	support	for	JavaScript	built-in
modules.	The	ES6	modules	take	the	best	of	the	two	worlds.	Similar	to	CommonJS,	they
have	a	compact	syntax	and	support	for	cyclic	dependencies,	and	similar	to	AMD,	the
modules	load	asynchronously	and	the	loading	is	configurable.

How	to	use	asynchronous	modules	in	the
browser
To	get	a	grasp	on	AMD,	we	will	do	a	few	examples.	We	will	need	script	loader	RequireJS
(http://requirejs.org/docs/download.html).	So	you	can	download	it	and	then	address	the
local	version	in	your	HTML	or	give	it	an	external	link	to	CDN.

First	of	all,	let’s	see	how	we	can	create	a	module	and	request	it.	We	place	the	module	in
the	foo.js	file.	We	use	the	define()	call	to	declare	the	module	scope.	If	we	pass	an
object	to	this,	the	object	simply	gets	exported:

foo.js

define({

		bar:	"bar",

		baz:	"baz"

});

When	we	pass	a	function,	it	is	called	and	its	return	value	is	exported:

foo.js

define(function	()	{

		"use	strict";

		//	Construction

		return	{

				bar:	"bar",

				baz:	"baz"

		};

});

Next	to	foo.js,	we	place	main.js.	This	code	can	be	described	as	follows:	call	the	given
callback	when	all	the	modules	supplied	to	the	first	argument	(here	only	foo,	which	means
./foo.js)	are	loaded	and	available.

main.js

require(["foo"],	function(foo)	{

		"use	strict";

		document.writeln(foo.bar);

		document.writeln(foo.baz);

});

From	the	HTML	(index.html),	first	we	load	RequireJS	and	then	main.js:

index.html

<script	

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.18/require.min.j

s"></script>

<script	src="main.js"	></script>

Loading	scripts	synchronously	when	we	have	a	loader	doesn’t	feel	right.	However,	we	can
do	this	with	the	only	script	element	that,	in	addition,	can	be	forced	to	load	asynchronously:

http://requirejs.org/docs/download.html

index.html

<script	data-main="./main"	async	

		

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.18/require.min.j

s"></script>

With	the	data-main	attribute,	we	tell	the	loader	what	module	to	load	first,	whenever	the
module	is	ready.	As	we	fire	up	index.html,	we	will	see	the	values	of	the	foo	module
properties	that	we	imported	in	main.js.

index.html	outputs	the	exports	of	the	asynchronously	loaded	modules:

Now	we	fiddle	with	more	dependencies.	So	we	create	the	bar.js	and	baz.js	modules:

bar.js

define({

		value:	"bar"

});

baz.js

define({

		value:	"baz"

});

We	have	to	modify	foo.js	to	access	these	modules:

foo.js

define(["./bar",	"./baz"],	function	(bar,	baz)	{

		"use	strict";

		//	Construction

		return	{

				bar:	bar.value,

				baz:	baz.value

		};

});

As	you	may	have	noticed,	the	require/define	dependency	lists	consists	of	module
identifiers.	In	our	case,	all	the	modules	and	the	HTML	located	in	the	same	directory.
Otherwise,	we	need	to	build	the	identifiers	based	on	relative	paths	(the	.js	file	extension
can	be	omitted).	If	you	mess	up	with	a	path	and	RequireJS	cannot	resolve	the	dependency,
it	fires	Error:	Script	error	for:<module-id>.	Not	of	much	help,	is	it?	You	can
improve	error	handling	on	your	own.	A	function	expression	passed	next	to	the	module
scope	callback	receives	an	exception	object	as	an	argument.	This	object	has	special
properties	such	as	requireType	(a	string	containing	error	types	such	timeout,	nodefine,
scripterror)	and	requireModules	(an	array	of	module	IDs	affected	by	the	error).

require(["unexisting-path/foo"],	function	(foo)	{

		"use	strict";

		console.log(foo.bar);

		console.log(foo.baz);

},	function	(err)	{

		console.log(err.requireType);

		console.log(err.requireModules);

});

In	a	well-grained	design,	modules	are	numerous	and	are	allocated	to	a	directory	tree.	In
order	to	avoid	relative	path	computation	every	time,	you	can	configure	the	script	loader
once.	So	the	loader	will	know	where	to	find	the	dependency	file	by	a	specified	alias:

main.js

require.config({

				paths:	{

								foo:	"../../module/foo"

				}

});

require(["foo"],	function(foo)	{

		"use	strict";

		console.log(foo.bar);

		console.log(foo.baz);

});

This	gives	a	bonus.	Now	if	we	decided	to	change	a	module	file	name,	we	do	not	need	to
modify	every	other	module	that	requires	it.	We	just	need	to	change	the	configuration:

main.js

require.config({

		paths:	{

				foo:	"../../module/foo-v0_1_1"

		}

});

require(["foo"],	function(foo)	{

		"use	strict";

		console.log(foo.bar);

		console.log(foo.baz);

});

By	configuring,	we	can	also	address	remote	modules.	For	example,	here	we	refer	to
jQuery,	but	RequireJS	knows	the	module	endpoint	from	the	configuration	and,	therefore,

loads	the	module	from	CDN:

require.config({

		paths:	{

				jquery:	"https://code.jquery.com/jquery-2.1.4.min.js"

		}

});

require(["jquery"],	function	($)	{

		//	use	jQuery

});

Pros	and	cons
The	main	advantage	of	the	AMD	approach	is	that	modules	load	asynchronously.	It	also
means	that	while	deploying,	we	don’t	have	to	upload	the	entire	code-base,	but	just	a
module	is	changed.	And	since	a	browser	can	handle	multiple	HTTP	requests
simultaneously,	this	way	we	improve	performance.	However,	here	comes	a	huge	trap.	It’s
really	quick	to	load	a	code	in	a	few	separate	pieces	in	parallel.	But	real-world	projects
have	many	more	modules.	With	the	HTTP/1.1	protocol,	which	is	still	dominant	at	the
moment,	loading	all	of	them	would	take	unacceptably	long	time.	Unlike	the	new	standard
SPDY	and	HTTP/2,	HTTP/1.1	doesn’t	cope	really	well	with	concurrency	during	the
downloading	of	a	page,	and	in	case	of	a	substantially	long	queue,	this	results	in	head-of-
line	blocking	(https://http2.github.io/faq/).	RequreJS	provides	a	tool
(http://requirejs.org/docs/optimization.html)	to	combine	a	bunch	of	modules.	This	way	we
don’t	need	to	load	every	single	module,	but	only	a	few	packages.	The	dependencies
packaged	together	are	resolved	synchronously.	So,	one	may	say	that	partly	we	abandon	the
main	benefit	of	AMD—asynchronous	loading.	Meanwhile,	we	must	still	load	a,	usually
quite	heavy,	script	loader	and	wrap	every	single	module	with	the	define()	callback.

From	my	experience,	I	would	rather	advice	you	to	go	synchronous	with	the	Common	JS
modules	compiled	into	packages	capable	of	in-browser	use.

https://http2.github.io/faq/
http://requirejs.org/docs/optimization.html

How	to	–	use	synchronous	modules	on	the
server
The	following	examples	require	Node.js.	It	will	take	just	a	few	minutes	to	install	Node.js
using	the	pre-built	installer	available	at	https://nodejs.org/download/	or	even	faster	via	a
package	manager	at	https://github.com/joyent/node/wiki/Installing-Node.js-via-package-
manager.

We	will	start	by	putting	a	simple	logic	into	a	module:

foo.js

console.log("I'm	running");

Now	we	can	call	the	module:

main.js

require("./foo");

In	order	to	run	the	example,	we	will	open	the	console	(under	Windows,	you	can	simply
run	CMD.EXE,	but	I	would	recommend	an	enhanced	tool	like	CMDER	available	at
http://cmder.net/).	In	the	console,	we	type	the	following:

node	main.js

As	soon	as	Enter	is	pressed,	the	console	outputs	I’m	running.	So	when	a	module	is
requested,	its	body	code	is	invoked.	But	what	if	we	request	the	module	several	times?

main.js

require("./foo");

require("./foo");

require("./foo");

The	result	is	the	same.	It	outputs	I’m	running	only	once.	This	is	because	the	module	body
code	is	executed	only	once	when	the	module	is	initially	requested.	An	exported	object
(probably	produced	by	the	body	code)	is	cached	and	acts	similar	to	a	singleton:

https://nodejs.org/download/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://cmder.net/

foo.js

var	foo	=	new	Date();

main.js

var	first	=	require("./foo"),

				second	=	require("./foo");

console.log(first	===	second);	//	true

As	you	will	likely	notice,	unlike	AMD	we	don’t	need	any	wrappers	in	the	modules.	But	is
it	still	isolated	from	a	global	scope?

foo.js

var	foo	=	"foo";

main.js

require("./foo");

console.log(typeof	foo);	//	undefined

Any	variables	defined	in	a	module	scope	are	not	available	outside	the	scope.	However,	if
you	really	want	anything	to	be	shared	between	the	module	variables	behind	the	exposed
interface,	you	can	do	it	via	a	global	object	(Node.js	is	analogous	to	an	in-browser
Windows	object).

So	what	about	exports?	CommonJS	has	a	preference	for	single	export.	We	assign	to
module.exports	a	reference	to	a	type	or	a	value,	and	this	will	be	the	cached	return	of	the
required	function.	If	we	want	multiple	exports,	we	just	export	an	object:

foo.js

//	module	logic

module.exports	=	{

		bar:	"bar",

		baz:	"baz"

};

main.js

var	foo	=	require("./foo");

console.log(foo.bar);	//	bar

console.log(foo.baz);	//	baz

The	following	is	the	most	common	case	in	Node.js	where	an	object	constructor	is
exported:

foo.js

var	Foo	=	function(){

		this.bar	=	"bar";

}

module.exports	=	Foo;

So	through	a	required	call,	we	receive	the	constructor	function	with	the	prototype	and	can
create	instances:

main.js

var	Foo	=	require("./foo"),

				foo	=	new	Foo();

console.log(foo.bar);	//	bar

The	same	way	as	we	request	the	foo	module	from	main,	we	can	request	from	other
modules	as	well:

bar.js

//	module	logic

module.exports	=	"bar";

baz.js

//	module	logic

module.exports	=	"baz";

foo.js

//	module	logic

module.exports	=	{

		bar:	require("./bar"),

		baz:	require("./baz")

};

main.js

var	foo	=	require("./foo");

console.log(foo.bar);	//	bar

console.log(foo.baz);	//	baz

But	what	if	Node.js	runs	into	cyclic	dependencies?	What	if	we	request	back	the	caller
from	the	called	module?	Nothing	dramatic	happens.	As	you	may	remember,	a	module
code	is	executed	only	once.	So	if	we	request	main.js	from	foo.js	after	main.js	is
already	performed,	its	body	code	isn’t	invoked	anymore:

foo.js

console.log("Runnnig	foo.js");

require("./main");

main.js

console.log("Runnnig	main.js");

require("./foo");

When	we	run	main.js	with	Node.js,	we	get	the	following	output:

Runnnig	main.js

Runnnig	foo.js

Pros	and	cons
CommonJS	has	a	concise	and	expressive	syntax.	It’s	very	easy	to	use.	Unit	tests	are
usually	written	to	run	in	the	command	line	and	preferably	are	a	part	of	continuous
integration.	A	well-designed	CommonJS	module	makes	a	perfect	test	unit,	which	you	can
access	directly	from	a	Node.js-driven	test	framework	(for	example,	Mocha)	far	out	of	the
application	context.	However,	CommonJS	implies	synchronous	loading,	which	is	not
suitable	in	a	browser.	If	we	want	to	bypass	this	limitation,	we	have	to	transpile	module
sources	into	a	single	script	that	resolves	module	dependencies	internally	without	loading
(see	“Traspiling	CommonJS	for	in-browser	use”).

UMD
If	you	want	your	module	to	be	acceptable	both	in	a	browser	as	AMD	and	on	the	server	as
CommonJS,	there	is	a	trick	(https://github.com/umdjs/umd).	By	adding	a	wrapper
function,	you	can	dynamically	build	the	export	in	a	desired	format	depending	on	the
runtime	environment.

https://github.com/umdjs/umd

JavaScript’s	built-in	module	system
Well,	both	AMD	and	CommonJS	are	community	standards	and	not	a	part	of	the	language
specification.	However,	with	EcmaScript	6th	edition,	JavaScript	acquired	its	own	module
system.	At	the	moment,	no	browser	yet	supports	this	feature,	so	we	have	to	install	the
Babel.js	transpiler	to	fiddle	with	the	examples.

Since	we	already	have	Node.js	that	is	distributed	with	NPM	(the	Node.js	package
manager),	we	now	can	run	the	following	command:

npm	install	babel	-g

Named	exports
Now	we	can	write	a	module	as	follows:

foo.es6

export	let	bar	=	"bar";

export	let	baz	=	"baz";

In	ES6,	we	can	export	multiple	elements.	Any	declaration	prefixed	with	the	keyword
export	becomes	available	for	import:

main.es6

import	{	bar,	baz	}	from	"./foo";

console.log(bar);	//	bar

console.log(baz);	//	baz

Since	we	don’t	yet	have	any	support	for	ES6	modules	in	the	browser,	we	will	transpile
them	into	CommonJS	or	AMD.	Here	Babel.js	helps	us:

babel	--modules	common	*.es6	--out-dir	.

By	this	command,	we	made	Babel.js	translate	all	the	*.es6	files	of	the	current	directory
into	CommonJS	modules.	So,	we	can	run	the	derived	main.js	module	with	Node.js:

node	main.js

Similarly,	we	translate	ES6	modules	to	AMD:

babel	--modules	amd	*.es6	--out-dir	.

index.html

<script	data-main="./main"	

		

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.18/require.min.j

s"></script>

In	the	previous	example,	we	enlisted	our	named	exports	in	the	import	statement.	We	could
also	import	the	entire	module	and	refer	to	the	named	exports	as	properties:

main.es6

import	*	as	foo	from	"./foo";	

console.log(foo.bar);	//	bar

console.log(foo.baz);	//	baz

Default	export
Besides,	we	can	also	do	a	default	export.	This	is	how	usually	exports	are	done	in	Node.js:

foo.es6

export	default	function	foo(){	return	"foo";	}

main.es6

import	foo	from	"./foo";

console.log(foo());	//	foo

We	exported	a	function	and	came	with	the	import.	This	could	also	be	a	class	or	an	object.

In	AMD,	we	receive	exports	as	callback	arguments,	and	in	CommonJS,	as	local	variables.
Though	ES6	doesn’t	export	values,	but	it	exports	the	so	called	bindings	(references)	that
are	immutable.	You	can	read	their	values,	but	if	you	try	changing	them,	you	get	a	type
error.	Babel.js	triggers	this	error	during	compilation:

foo.es6

export	let	bar	=	"bar";

export	function	setBar(val)	{

			bar	=	val;

};

main.es6

import	{	bar,	setBar	}	from	"./foo";

console.log(bar);	//	bar

setBar("baz");

console.log(bar);	//	baz

bar	=	"qux";	//	TypeError

The	module	loader	API
In	addition	to	declarative	syntax	in	a	separate	specification
(https://github.com/whatwg/loader/),	ES6	offers	us	a	programmatic	API.	It	allows	us	to
programmatically	work	with	modules	and	configure	module	loading:

System.import("./foo").then(foo	=>	{

		console.log(foo);

})

.catch(err	=>	{

		console.error(err);

});

Unlike	Node.js,	the	ES6	modules,	due	to	their	declarative	nature,	require	imports	and
exports	at	the	top	level.	So,	this	cannot	be	conditional.	However,	with	the	pragmatic	loader
API,	we	can	do	otherwise:

Promise.all(["foo",	"bar",	"baz"]

				.map(mod	=>	System.import(mod))

)

		.then(([foo,	bar,	baz])	=>	{

					console.log(foo,	bar,	baz);

		});

Here	we	defined	a	callback	that	is	invoked	only	when	all	of	the	three	specified	modules
are	loaded.

https://github.com/whatwg/loader/

Conclusion
Both	AMD	and	CommonJS	are	interim	standards.	As	soon	as	the	JavaScript	built-in
module	system	gets	wider	support	in	script	engines,	we	don’t	really	need	them	anymore.
The	ES6	modules	load	asynchronously,	and	the	loading	can	be	configured	similar	to
AMD.	They	also	have	a	compact	and	expressive	syntax	and	support	for	cyclic
dependencies	similar	to	CommonJS.	In	addition,	ES	provides	declarative	syntax	for	static
module	structure.	Such	structure	can	be	statically	analyzed	(static	checking,	linting,
optimization,	and	so	on).	ES6	also	provides	a	programmatic	loader	API.	So	you	can
configure	how	modules	are	loaded	and	load	modules	conditionally.	Besides,	ES6	modules
can	be	extended	with	macros	and	static	types.

While	everything	looks	so	unclouded,	there	is	still	a	fly	in	the	ointment.	ES6	modules	can
be	pre-loaded	synchronously	(with	<script	type="module"></script>),	but	often	there
is	asynchronous	loading	and	this	brings	us	to	the	same	trap	as	in	the	case	of	AMD.
Numerous	requests	over	HTTP/1.1	cause	a	harmful	effect	on	user	response	time
(https://developer.yahoo.com/performance/rules.html).	On	the	other	hand,	SPDY	and
HTTP/2	that	allow	multiple	requests	per	TCP	connection	are	getting	wider	support	and
eventually	will	take	the	place	of	the	dubious	HTTP/1.x.	Furthermore,	W3C	works	on	a
standard	called	Packaging	on	the	Web	(https://w3ctag.github.io/packaging-on-the-web/)
that	describes	how	archived	files	(scripts)	can	be	accepted	from	a	URL	(hash).	So,	we	will
be	able	to	bundle	the	entire	directory	with	modules	into	an	archive,	deploy,	and	address
them	in	the	same	way	as	we	do	when	we	have	them	in	a	directory.

https://developer.yahoo.com/performance/rules.html
https://w3ctag.github.io/packaging-on-the-web/

Transpiling	CommonJS	for	in-browser
use
While	HTTP/2	and	Packaging	on	the	Web	are	still	on	their	way,	we	need	fast	modular
applications.	As	it	was	previously	mentioned,	we	can	divide	the	application	code	into
CommonJS	modules	and	transpile	them	for	in-browser	use.	The	most	popular	CommonJS
transpiler	is	surely	Browserify	(http://browserify.org).	The	initial	mission	of	this	tool	was
to	make	Node.js	modules	reusable.	They	quite	succeeded	in	this.	It	may	feel	like	magic,
but	you	can	really	use	EventEmitter	and	some	other	Node.js	core	modules	on	the	client.
However,	with	the	main	focus	on	Node.js	compatibility,	the	tool	provides	too	few	options
for	CommonJS	compilation.	For	example,	if	you	want	dependency	configuration,	you
have	to	use	a	plugin.	In	a	real-world	project,	you	will	likely	end	up	with	multiple	plugins,
where	each	has	a	specific	configuration	syntax.	So	the	setup	in	general	gets	over-
complicated.	Rather,	we’ll	examine	here	another	tool	called	CommonJS	Compiler
(https://github.com/dsheiko/cjsc).	This	is	a	considerably	small	utility	designed	to	bring
CommonJS	modules	into	the	browser.	The	tool	is	very	easy	to	configure	and	use,	which
makes	it	a	good	choice	to	illustrate	the	concept.

First	of	all,	we	install	cjsc:

npm	install	cjsc	-g

Now	we	can	take	an	example	from	the	How	to	synchronous	modules	on	the	server	section
and	transpile	it	for	in-browser	use:

bar.js

//	module	logic

module.exports	=	"bar";

foo.js

//	module	logic

module.exports	=	{

		bar:	require("./bar")};

main.js

var	foo	=	require("./foo");

document.writeln(foo.bar);	//	bar

The	starting	point	is	main.js.	So,	we	tell	cjsc	to	bundle	this	module	with	all	the	required
dependencies	recursively	into	bundle.js:

cjsc	main.js	-o	bundle.js

http://browserify.org
https://github.com/dsheiko/cjsc

Let’s	take	a	look	into	the	generated	file.	cjsc	replaced	all	the	require	calls	with	custom
_require	and	put	them	into	the	beginning	_require	function	definition.	This	little	trick
allows	you	to	run	the	compiled	code	in	a	Node.js/Io.js	friendly	environment	such	as
NW.js,	where	the	require	function	is	still	needed	for	local	packages.	Every	module	is
wrapped	in	a	function	scope	supplied	with	module	relevant	objects	(exports	and	modules)
plus	global,	which	is	a	reference	to	the	global	object	(window).

Compiled	Code

_require.def("main.js",	function(_require,	exports,	module,	global)

{

		var	foo	=	_require("foo.js");

		console.log(foo.bar);	//	bar

		console.log(foo.baz);	//	baz

				return	module;

		});

The	generated	code	is	a	generic	JavaScript	that	we	can	surely	address	from	the	HTML:

index.html

<script	src="bundle.js"></script>

Our	sources	are	still	in	a	CommonJS	module.	This	means	that	we	can	access	them	directly
from	a	Node.js-based	framework	for	unit-testing.	The	official	site	for	Mocha.js	Test	is
http://mochajs.org/:

var	expect	=	require("chai").expect;

describe("Foo	module",	function(){

		it("should	bypass	the	export	of	bar",	function(){

						var	foo	=	require("./foo");

						expect(foo).to.have.property("bar");

						expect(foo.bar).to.eql("bar");

		});

});

cjsc	has	a	number	of	options.	But	in	a	real	project,	typing	a	long	command-line	with
every	build	would	be	annoying	and	unproductive:

cjsc	main-module.js	-o	build.js		--source-map=build/*.map	\

	--source-map-root=../src	-M	--banner="/*!	pkg	v.0.0.1	*/"

http://mochajs.org/

That	is	why	we	use	task	runners	such	as	Grunt,	Gulp,	Cake,	and	Broccoli.	Grunt
(http://gruntjs.com)	is	the	most	popular	task	runner	at	the	moment	and	has	an
overwhelming	number	of	plugins	available	(see	the	Grunt	versus	Gulp	infographic	at
http://sixrevisions.com/web-development/grunt-vs-gulp/).	So,	we	install	the	grunt
command-line	interface	globally:

npm	install	-g	grunt-cli

In	order	to	setup	a	Grunt	project,	we	need	two	configuration	files,	package.json
(https://docs.npmjs.com/files/package.json)	and	the	Gruntfile.js	file.	The	first	one
contains	metadata	about	NPM	packages	required	to	run	Grunt	tasks.	The	second	is	needed
to	define	and	configure	the	tasks.

Here	we	can	start	with	a	very	minimalistic	package.json	that	has	only	an	arbitrary	project
name	and	its	version	in	a	semver	(http://semver.org/)	format:

package,json

{

		"name":	"project-name",

		"version":	"0.0.1"

}

Now	we	can	install	the	required	NPM	packages:

npm	install	--save-dev	grunt

npm	install	--save-dev	grunt-cjsc

Thus	we	get	a	local	Grunt	and	a	Grunt	plugin	for	CommonJs	compiler.	The	--save-dev
special	option	creates	devDependencies	(if	it	doesn’t	exist)	in	the	package.json	section
and	populates	it	with	the	installed	dependency.	So	for	instance,	when	we	pull	the	project
sources	from	a	version	control	system,	we	can	restore	all	the	dependencies	by	simply
running	npm	install.

In	Gruntfile.js,	we	have	to	load	the	already	installed	grunt-cjsc	plugin	and	configure	a
task	called	cjsc.	In	practice,	we	will	need	at	least	two	targets	that	provide	different
configurations	for	this	task.	The	first	one,	cjsc:debug,	runs	cjsc	to	produce
uncompressed	code,	provided	with	source	map.	The	second	one,	cjsc:build	is	used	to
prepare	assets	for	deployment.	So	we	get	minified	code	in	bundle.js:

Gruntfile.js

module.exports	=	function(grunt)	{

		//	Project	configuration.

		grunt.initConfig({

				pkg:	grunt.file.readJSON("package.json"),

				cjsc:	{

						//	A	target	to	generate	uncompressed	code	with	sources	maps

						debug:	{

								options:	{

										sourceMap:	"js/*.map",

										sourceMapRoot:	"src/",

										minify:	false

								},

http://gruntjs.com
http://sixrevisions.com/web-development/grunt-vs-gulp/
https://docs.npmjs.com/files/package.json
http://semver.org/

								files:	{	"js/bundle.js":	"js/src/main.js"	}

						},

						//	A	target	to	build	project	for	production

						build:	{

								options:	{

										minify:	true,

										banner:	"/*!	<%=	pkg.name	%>	-	v<%=	pkg.version	%>	-	"	+

										"<%=	grunt.template.today(\"yyyy-mm-dd\")	%>	*/"

								},

								files:	{	"js/bundle.js":	"js/src/main.js"	}

						}

				}

		});

		//	Load	the	plugin	that	provides	the	task.

		grunt.loadNpmTasks("grunt-cjsc");

		//	Make	it	default	task

		grunt.registerTask("default",	["cjsc:build"]);

};

As	you	can	see	from	the	configuration,	cjsc	is	intended	to	transpile	js/src/main.js
into	js/bundle.js.	So	we	can	take	the	module	of	the	previous	example	and	copy	them
into	./js/src.

Now,	when	we	have	everything	in	place,	we	will	run	a	task.	For	example,	see	the
following:

grunt	cjsc:debug

As	mentioned	earlier,	we	can	configure	dependency	mapping	with	cjsc.	We	just	need	to
describe	the	dependencies	in	an	object	literal	that	can	be	supplied	to	cjsc	as	a	JSON-file
in	the	command-line	interface	or	injected	into	a	Grunt	configuration:

{

		"jquery":	{

				"path":	"./vendors/jQuery/jquery.js"

		},

		"underscore":	{

				"globalProperty":	"_"

		},

		"foo":	{

				"path":	"./vendors/3rdpartyLib/not-a-module.js",

				"exports":	["notAModule"],

				"imports":	["jquery"]

		}

}

Here	we	declare	the	jquery	alias	(shortcut)	for	a	module	located	in
./vendors/jQuery/jqueiry.js.	We	also	state	that	a	globally	exposed	"_"	(Underscore.js)
library	has	to	be	treated	as	a	module.	At	the	end,	we	specify	the	path,	exports,	and	imports
for	a	third-party	component.	Thus,	we	get	this	in	the	app	(without	intervention	in	its	code)
as	a	module,	though	it’s	not	a	module:

cjsc	main.js	-o	bundle.js	--config=cjsc-conig.json

Alternatively	we	can	use	the	following	Grunt	configuration:

	grunt.initConfig({

cjsc	main.js	-o	bundle.js	--config=cjsc-conig.json

Grunt	configuration

	grunt.initConfig({

				cjsc:	{

						build:	{

								options:	{

										minify:	true,

										config:	require("fs").readFileSync("./cjsc-conig.json")

								}

						},

								files:	{	"js/bundle.js":	"js/src/main.js"	}

						}

		});

Bundling	ES6	modules	for	synchronous	loading
Well,	as	we	mentioned	in	the	JavaScript	built-in	module	system	section,	ES6	modules	are
going	to	be	replace	the	AMD	and	CommonJS	standards.	Moreover,	we	can	already	write
ES6	code	and	transpile	it	into	ES5	for	now.	As	soon	as	the	support	for	ES6	across	script
agents	is	good	enough,	we	theoretically	can	use	our	code	as	it	is.	However,	what	about
performance?	In	fact,	we	can	compile	ES6	modules	in	CommonJS	and	then	bundle	them
with	cjsc	for	in-browser	use:

foo.es6

export	let	bar	=	"bar";

export	let	baz	=	"baz";

main.es6

import	{	bar,	baz	}	from	"./foo";

document.writeln(bar);	//	bar

document.writeln(baz);	//	baz

First,	we	compile	ES6	into	CommonJS	modules:

babel	--modules	common	*.es6	--out-dir	.

Then,	we	bundle	CommonJS	modules	into	a	script	suitable	for	in-browser	use:

cjsc	main.js	-o	bundle.js	-M

Summary
Modular	programming	is	a	concept	closely	related	to	OOP	that	encourages	us	to	structure
code	for	better	maintainability.	In	particular,	JavaScript	modules	protect	global	scope	from
pollution,	divide	application	code	into	multiple	files,	and	allow	the	reuse	of	application
components.

The	two	module	API	standards	that	are	mostly	used	at	the	moment	are	AMD	and
CommonJS.	The	first	one	that	is	designed	for	in-browser	use	assumes	asynchronous
loading.	The	second	is	synchronous	and	intended	for	server-side	JavaScript.	However,	you
should	know	that	AMD	has	a	substantial	flaw.	A	well-grained	application	design	with	a
plenty	of	modules	over	HTTP/1.1	may	cause	a	disaster	in	terms	of	application
performance.	This	is	the	major	reason	why,	recently,	the	practice	of	transpiling
CommonJS	modules	for	in-browser	use	is	on	the	rise.

Both	these	APIs	shall	be	considered	as	interim	standards	because	the	upcoming	ES6
modules	standard	is	meant	to	replace	them.	At	the	moment,	there	are	no	script	engines
supporting	this	feature,	but	there	are	transpilers	(for	example,	Babel.js)	that	allows	the
translation	of	ES6	modules	into	CommonJs	or	AMD.

Chapter	3.	DOM	Scripting	and	AJAX
When	it	comes	to	Document	Object	Model	(DOM)	manipulation	and	AJAX,	the	first
instinct	could	be	to	use	jQuery	or	Zepta.	But	doesn’t	it	bother	you	that	you	load	a	weighty
third-party	library	for	common	tasks,	when	a	browser	provides	everything	that	you	need?
Some	people	pulled	in	jQuery	for	cross-browser	compatibility.	Well,	the	library	is	known
to	fix	the	broken	DOM	API.	This	was	really	helpful	when	we	supported	browsers	as	old	as
IE7.	However,	today	we	hardly	need	to	care	about	legacy	browsers	when	their	usage	share
is	less	than	0.1	percent	(http://www.w3schools.com/browsers/browsers_explorer.asp).
Modern	browsers	are	quite	consistent	in	the	support	of	Web	API.	By	and	large,	cross-
browser	compatibility	is	not	an	issue	anymore.

The	second	and	the	most	common	excuse	is	that	the	library	simplifies	the	amount	of	code
you	have	to	write	to	query	and	manipulate	the	DOM.	It	really	simplifies	the	code	to	some
degree,	but	the	drawback	is	that	nowadays	we	have	a	generation	of	developers	who	don’t
know	JavaScript	and	Web	API,	but	only	jQuery.	Many	of	them	cannot	solve	a	simple	task
without	the	library	and	have	no	idea	what	actually	happens	when	they	call	the	library
methods.	Good	code	means	portability	and	high	performance.	One	can	hardly	achieve	this
without	a	knowledge	of	native	API.

So	in	this	chapter,	we	will	examine	the	native	way	of	dealing	with	DOM	and	AJAX	with	a
focus	on	high-performance.

This	chapter	will	cover	the	following	topics:

High-speed	DOM	operations
Communication	with	the	server

http://www.w3schools.com/browsers/browsers_explorer.asp

High-speed	DOM	operations
In	order	to	deal	with	the	DOM	efficiently,	we	need	to	understand	its	nature.	The	DOM	is	a
tree	structure	that	represents	the	document	that	is	open	in	the	browser.	Every	element	of
the	DOM	is	an	object	that	is	called	node.

Every	node	being	an	object	has	properties	and	methods
(https://developer.mozilla.org/en/docs/Web/API/Node).	There	are	different	types	of	node.
In	the	preceding	image,	you	can	see	a	document	node,	element	nodes,	and	text	nodes.	In
reality,	the	tree	may	also	contain	specific	node	types	such	as	comment	nodes,	doctype
nodes,	and	others.	To	illustrate	the	relationships	within	the	tree,	we	can	say	that	HTML
has	two	child	nodes	HEAD	and	BODY,	which	relate	to	each	other	as	siblings.	Obviously,
HTML	is	the	parent	node	to	HEAD	and	BODY.	We	can	use	these	relations	that	are
accessible	via	node	properties	to	navigate	through	the	tree:

var	html	=	document.documentElement;

console.log(html.nodeName);	//	HTML

var	head	=	html.childNodes[0];

console.log(head.nodeName);		//	HEAD

console.log(head.parentNode	===	html);		//	true

This	part	is	clear,	but	if	we	request	the	next	sibling	to	be	HEAD	instead	of	BODY.	we	will
get	a	text	node	with	whitespaces	in	the	content	(nodeValue):

var	sibling	=	head.nextSibling;

//	the	same	as	html.childNodes[1]

console.log(sibling.nodeName);	//	#text

console.dir(sibling.nodeValue);	//	"\n		"

https://developer.mozilla.org/en/docs/Web/API/Node

In	HTML,	we	usually	separate	elements	with	spaces,	TABs,	and	LineFeeds	for	better
readability	and	these	also	form	a	part	of	DOM.	So	to	access	elements,	we	rather	use
document	and	element	methods.

Traversing	the	DOM
Surely	you	know	how	to	find	an	element	by	ID	(document.getElementById)	or	by	tag
name	(document.getElementsByTagName).	You	can	also	search	for	an	element	by	a	CSS
selector	(document.querySelector):

<article	id="bar">

		<h2>Lorem	ipsum</h2>

</article>

var	article	=	document.querySelector("#bar"),

						heading	=	article.querySelector("h2");

A	selector	builds	from	one	or	many	type	(tag)	selectors,	class	selectors,	ID	selectors,
attribute	selectors,	or	pseudo-class/element	selectors
(http://www.w3.org/TR/CSS21/selector.html%23id-selectors).	Considering	the
combinations	(to	match	a	group,	descendants,	or	siblings),	this	gives	quite	a	number	of
possible	options.	So	it	can	be	hard	to	pick	a	strategy	to	bind	HTML	elements	from
JavaScript.	My	advice	would	be	to	always	use	the	data-*	attribute	selectors:

<article	data-bind="bar">

		<h2	data-bind="heading">Lorem	ipsum</h2>

</article>

var	article	=	document.querySelector("[data-bind=\"bar\"]"),

						heading	=	article.querySelector("[data-bind=\"heading\"]");

This	way	we	are	independent	from	the	HTML	structure.	If	we	change	tags,	for	example
for	better	semantics,	nothing	breaks	on	the	JavaScript	side.	We	are	independent	from	CSS
classes	and	this	means	that	we	can	safely	refactor	CSS.	And	we	are	not	limited	by	ID,
which	is	supposed	to	be	unique	per	document.

While	querySelector	takes	the	first	element	in	the	DOM	to	match	the	selector,
querySelectorAll	retrieves	all	of	them:

<ul	data-bind="bar">

		<li	data-bind="item">Lorem	ipsum

		<li	data-bind="item">Lorem	ipsum

		<li	data-bind="item">Lorem	ipsum

var	ul	=	document.querySelector("[data-bind=\"bar\"]"),

						lis	=	ul.querySelectorAll("[data-bind=\"item\"]");

console.log(lis.length);

The	found	elements	are	represented	as	a	NodeList.	It	looks	like	an	array,	but	it’s	not.	It’s	a
live	collection	that	is	being	updated	with	every	DOM	reflow.	Consider	the	following
example:

var	divs	=	document.querySelectorAll("div"),	i;	

for	(i	=	0;	i	<	divs.length;	i++)	{	

		document.appendChild(document.createElement("div"));	

}

http://www.w3.org/TR/CSS21/selector.html%23id-selectors

The	preceding	code	causes	an	infinite	loop,	because	whenever	we	access	the	next	element
of	the	collection,	one	new	element	is	appended	to	the	collection,	divs.length
incremented,	and	we	never	meet	the	loop	condition.

It’s	important	to	know	that	an	iteration	through	a	live	collection	(NodeList,
HTMLCollection)	is	slow	and	considerably	resource-expensive.	If	you	don’t	need	it	to	be
live,	just	convert	the	collection	into	an	array	such	as	[].slice.call(nodeList),	as
covered	in	Chapter	1,	Diving	into	JavaScript	Core.	In	ES6,	this	can	be	done	with	the
[...nodeList]spread	operator:

var	ul	=	document.querySelector("[data-bind=\"bar\"]"),

						lis	=	ul.querySelectorAll("[data-bind=\"item\"]");

console.log([].slice.call(lis));	//	into	array	ES5	way

console.log([...lis]);	//	into	array	ES6	way

In	addition	to	querying,	we	can	test	whether	a	found	element	matches	a	given	selector:

console.log(el.matches(".foo	>	.bar"));

console.log(input.matches(":checked"));

Changing	the	DOM
Well,	now	we	know	how	to	find	elements	in	the	DOM.	Let’s	see	how	we	can	dynamically
insert	new	elements	into	the	DOM	tree.	There	are	different	ways.	We	can	simply	set	new
HTML	content	with	the	el.innerHTML	method:

var	target	=	document.getElementById("target");

target.innerHTML	=	"<div></div>";

Otherwise,	we	can	create	a	node	(document.createElement)	and	inject	it	into	the	DOM
(el.appendChild):

var	target	=	document.getElementById("target"),

						div	=	document.createElement("div"),

target.appendChild(div);

Here	you	should	remember	that	every	time	we	change	el.innerHTML	or	append	a	child	to
an	element,	we	cause	DOM	reflow.	When	this	happens	repeatedly	in	a	loop,	it	can	slow
down	the	application.

When	we	pass	HTML	via	el.innerHTML,	the	browser	first	has	to	parse	the	string.	It’s	a
resource-consuming	operation.	However,	this	will	go	much	faster	if	we	create	elements
explicitly.	If	we	are	producing	a	batch	of	similar	elements,	the	flow	can	be	optimized
further.	Instead	of	creating	every	element	in	a	loop,	we	can	clone	the	one	created
originally	(el.cloneNode),	which	is	way	faster:

var	target	=	document.getElementById("target"),

				/**

					*	Create	a	complex	element

					*	@returns	{Node}

					*/

				createNewElement	=	function(){

						var	div	=	document.createElement("div"),

										span	=	document.createElement("span");

						span.appendChild(document.createTextNode("Bar"));

						div.appendChild(span);

						return	div;

				},

				el;

el	=	createNewElement();

//	loop	begins

target.appendChild(el.cloneNode(true));

//	loop	ends

On	the	other	hand,	we	can	create	a	document	fragment
(document.createDocumentFragment)	and	during	the	loop	append	the	created	nodes	to
the	fragment.	Document	fragment	is	a	sort	of	a	virtual	DOM,	which	we	manipulate	instead
of	the	real	one.	Once	we’re	done,	we	can	inject	the	document	fragment	as	a	branch	to	the
real	DOM.	By	combining	this	technique	and	cloning,	we	are	supposed	to	gain	in	terms	of
performance.	In	effect,	this	is	not	certain	(http://codepen.io/dsheiko/pen/vObVOR).	For
example,	in	WebKit	browsers,	virtual	DOM	(document.createDocumentFragment)	runs

http://codepen.io/dsheiko/pen/vObVOR

slower	than	the	real	one.

As	we’ve	done	with	performance,	let’s	focus	on	accuracy.	If	we	need	to	inject	an	element
to	an	exact	position	(for	example,	between	the	foo	and	bar	nodes),	el.appendChild	isn’t
the	right	method.	We	have	to	go	with	el.insertBefore:

parent.insertBefore(el,	parent.firstChild);

To	remove	a	particular	element	from	the	DOM,	we	do	the	following	trick:

el.parentNode.removeChild(el);

In	addition,	we	can	reload	an	element,	for	example,	to	reset	all	the	subscribed	listeners:

function	reload(el)	{

				var	elClone	=	el.cloneNode(true);

				el.parentNode	&&	el.parentNode.replaceChild(elClone,	el);

	}

Styling	the	DOM
When	it	comes	to	styling,	we	have	to	go	with	CSS	classes	wherever	it	is	possible.	This
provides	better	maintainability—inheritance,	composition,	and	concern	separation.	You
surely	know	how	to	assign	intended	classes	to	an	element	via	the	el.className	property.
However,	in	the	real	world,	the	el.classList	object	is	much	more	useful:

el.classList.add("is-hidden");

el.classList.remove("is-hidden");

var	isAvailable	=	true;

el.classList.toggle("is-hidden",	!isAvailable);

if	(el.classList.contains("is-hidden")){}

Here,	in	addition	to	the	obvious	add/remove/contains	methods,	we	also	use	toggle.	This
method	either	adds	or	removes	the	specified	class	depending	on	the	Boolean	passed	as	the
second	argument.

Sometimes	we	need	to	manipulate	styles	explicitly.	A	part	of	DOM	that	is	called	CSS
Object	Model	(CSSOM)	provides	an	interface	to	manipulate	the	CSS.	Thus,	we	can	read
or	set	dynamic	styling	information	on	an	element	using	the	el.style	property:

el.style.color	=	"red";

el.style.fontFamily	=	"Arial";

el.style.fontSize	=	"1.2rem";

A	lesser	known	technique	is	to	change	the	actual	text	of	the	style	rule:

el.style.cssText	=	"color:red;font-family:	Arial;font-size:	1.2rem;";

As	you	can	see,	the	second	approach	is	not	that	flexible.	You	cannot	change	or	access	a
single	declaration,	but	only	the	entire	rule.	However,	styling	this	way	is	substantially	faster
(http://codepen.io/dsheiko/pen/qdvWZj).

While	el.style	comprises	explicit	styles	of	an	element,	window.getComputedStyle
returns	inherited	(computed)	styles:

var	el	=	document.querySelector("h1"),

				/**

					*	window.getComputedStyle

					*	@param	{HTMLElement}	el

					*	@param	{String}	pseudo	-	pseudo-element	selector	or	null	

					*	for	regular	elements

					*	@return	{CSSStyleDeclaration}

					*/

				css	=	window.getComputedStyle(el,	null);

console.log(css.getPropertyValue("font-family"));

The	cases	we’ve	just	examined	refer	to	inline	styles.	In	fact,	we	can	access	external	or
internal	stylesheets	as	well:

<style	type="text/css">

.foo	{

	color:	red;

}

http://codepen.io/dsheiko/pen/qdvWZj

</style>

<div	class="foo">foo</div>

<script	type="text/javascript">

var	stylesheet	=	document.styleSheets[0];

stylesheet.cssRules[0].style.color	=	"red";

//	or

//	stylesheet.cssRules[0].style.cssText	=	"color:	red;";

</script>

Why	would	we	do	so?	There	are	special	cases.	For	example,	if	we	want	to	modify,	let’s
say,	pseudo-element	style,	we	have	to	involve	stylesheets:

var	stylesheet	=	document.styleSheets[0];

stylesheet.addRule(".foo::before",	"color:	green");

//	or

stylesheet.insertRule(".foo::before	{	color:	green	}",	0);

Making	use	of	attributes	and	properties
HTML	elements	have	attributes	and	we	can	access	them	from	JavaScript:

el.setAttribute("tabindex",	"-1");

if	(el.hasAttribute("tabindex"))	{}

el.getAttribute("tabindex");

el.removeAttribute("tabindex");

While	element	attributes	are	defined	by	HTML,	the	properties	are	defined	by	DOM.	And
this	makes	a	difference.	For	example,	if	you	have	an	input,	initially	both	attribute	and
property	(el.value)	has	the	same	value.	However,	when	a	user	or	a	script	changes	the
value,	the	attribute	is	not	affected	but	the	property	is:

//	attribute

console.log(input.getAttribute("value"));

//	property

console.log(input.value);

As	you	may	likely	know,	in	addition	to	global	attributes,	there	is	a	special	type—custom
data	attributes.	These	attributes	are	meant	to	provide	an	exchange	of	proprietary
information	between	the	HTML	and	its	DOM	representation,	which	is	used	by	scripts.	The
general	idea	is	that	you	define	a	custom	attribute	such	as	data-foo	and	set	a	value	to	it.
Then	from	a	script,	we	access	and	change	the	attribute	using	the	el.dataset	object:

console.log(el.dataset.foo);	

el.dataset.foo	=	"foo";

If	you	define	a	multipart	attribute	such	as	data-foo-bar-baz,	the	corresponding	dataset
property	will	be	fooBarBaz:

console.log(el.dataset.fooBarBaz);	

el.dataset.fooBarBaz	=	"foo-bar-baz";

Handling	DOM	events
Plenty	of	events	happen	in	the	browser.	It	can	be	device	events	(for	example,	the	device
changes	position	or	orientation),	window	events	(for	example,	window	size),	a	process
(for	example,	page	loading),	media	events	(for	example,	video	paused),	network	events
(connection	status	changed),	and	of	course,	user	interaction	events	(click,	keyboard,
mouse,	and	touch).	We	can	make	our	code	listen	to	these	events	and	call	the	subscribed
handler	functions	when	the	events	occur.	To	subscribe	for	an	event	on	a	DOM	element,	we
use	the	addEventListener	method:

EventTarget.addEventListener(<event-name>,	<callback>,	<useCapture>);

In	the	preceding	code,	EventTarget	can	be	a	window,	document,	an	element,	or	other
objects	such	as	XMLHttpRequest.

useCapture	is	a	Boolean	by	which	you	can	specify	the	way	you	want	the	event	to
propagate.	For	example,	a	user	clicks	a	button,	which	is	in	a	form,	and	we	have	subscribed
handlers	to	both	elements	for	this	click	event.	When	useCapture	is	true,	the	handler	of
the	form	element	(ancestor)	will	be	called	first	(capturing	flow).	Otherwise,	forms
handler	will	be	called	after	the	button’s	handler	(bubbling	flow).

callback	is	a	function	that	is	called	when	an	event	fires.	It	receives	the	Event	object	as	an
argument,	which	has	the	following	properties:

Event.type:	This	is	the	name	of	the	event
Event.target:	This	is	the	event	target	on	which	the	event	occurred
Event.currentTarget:	This	is	the	event	target	to	which	the	listener	was	attached
(target	and	currentTarget	may	differ	when	we	attach	the	same	event	handler	to
multiple	elements	as	mentioned	at	https://developer.mozilla.org/en-
US/docs/Web/API/Event/currentTarget)
Event.eventPhase:	This	indicates	which	phase	of	the	event	flow	is	being	evaluated
(none,	capturing,	at	target,	or	bubbling)
Event.bubbles:	This	indicates	whether	or	not	the	event	is	a	bubbling	one
Event.cancelable:	This	indicates	whether	or	not	the	default	action	for	the	event	can
be	prevented
Event.timeStamp:	This	specifies	the	event	time

Event	also	has	the	following	methods:

Event.stopPropagation():	This	stops	further	propagation	of	the	event.
Event.stopImmediatePropagation():	If	we	have	multiple	listeners	subscribed	to	the
same	event	target,	after	calling	this	method	none	of	remaining	listeners	will	be	called.
Event.preventDefault():	This	prevents	the	default	action.	For	example,	if	it’s	a
click	event	on	a	button	of	the	submit	type,	by	calling	this	method	we	prevent	it	from
submitting	the	form	automatically.

Let’s	try	it	now	in	practice:

<form	action="/">

https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

<button	type="submit">Click	me</button>

</form>

<script>

var	btn	=	document.querySelector("button")

				onClick	=	function(e){

						e.preventDefault();	

						console.log(e.target);

				};

btn.addEventListener("click",	onClick,	false);

</script>

Here,	we	subscribed	an	onClick	listener	to	a	click	event	on	a	button	element.	When	the
button	is	clicked,	it	shows	in	the	JavaScript	console	the	button	element	that	the	form	isn’t
submitted.

If	we	want	to	subscribe	for	keyboard	events,	we	can	do	this	as	follows:

addEventListener("keydown",	function(e){

				var	key	=	parseInt(e.key	||	e.keyCode,	10);

					//	Ctrl-Shift-i

				if	(e.ctrlKey	&&	e.shiftKey	&&	key	===	73)	{

						e.preventDefault();

						alert("Ctrl-Shift-L	pressed");

				}

		},	false);

The	most	common	example	of	process	events	is	the	document	ready	status	change.	We
can	listen	to	the	DOMContentLoaded	or	load	events.	The	first	one	is	fired	when	the
document	has	been	completely	loaded	and	parsed.	The	second	one	also	waits	for
stylesheets,	images,	and	subframes	to	finish	loading.	Here,	there	is	a	quirk.	We	have	to
check	readyState,	because	if	we	register	a	listener	to	an	event	after	it	has	been	probably
fired,	the	callback	will	be	never	invoked:

function	ready(cb)	{

		if	(document.readyState	!==	"loading"){

				cb();

		}	else	{

				document.addEventListener("DOMContentLoaded",	cb);

		}

}

Well,	we	know	how	to	subscribe	to	DOM	events	with	the
EventTarget.addEventListener	method.	The	EventTarget	objects	also	have	a	method	to
unsubscribe	from	the	listeners.	For	example,	see	the	following:

btn.removeEventListener("click",	onClick);

If	we	want	to	trigger	a	DOM	event,	for	instance	to	emulate	a	button	click,	we	have	to
create	a	new	Event	object,	set	it	up,	and	dispatch	on	the	element	when	we	want	the	event
to	fire:

var	btn	=	document.querySelector("button"),

				//	Create	Event	object

				event	=	document.createEvent("HTMLEvents");

//	Initialize	a	custom	event	that	bubbles	up	and	cannot	be	canceled	

event.initEvent("click",	true,	false);

//	Dispatch	the	event

btn.dispatchEvent(event);

In	the	same	way,	we	can	create	our	custom	event:

var	btn	=	document.querySelector("button"),

				//	Create	Event	object

				event	=	document.createEvent("CustomEvent");

//	Subscribe	to	the	event	

btn.addEventListener("my-event",	function(e){

		console.dir(e);

});

//	Initialize	a	custom	event	that	bubbles	up	and	cannot	be	canceled	

event.initEvent("my-event",	true,	false);

//	Dispatch	the	event

btn.dispatchEvent(event);

Communicating	with	the	server
Many	people	use	third-party	libraries	to	make	any	request	to	a	server.	But	do	we	need
these	libraries?	Let’s	examine	in	the	following	how	AJAX	can	be	used	natively	and	what
will	be	the	next	communication	API.

XHR
XMLHttpRequest	(XHR)	is	the	main	API	in	JavaScript	to	exchange	data	between	client
and	server.	XHR	was	firstly	presented	by	Microsoft	in	IE5	via	ActiveX	(1999)	and	had	a
proprietary	syntax	in	IE	browser	until	version	7	(2006).	This	led	to	compatibility	issues
that	called	forth	the	rise	of	AJAX-libraries	such	as	Prototype	and	jQuery.	Today,	support
for	XHR	is	consistent	across	all	the	major	browsers.	In	general,	to	perform	an	HTML	or
HTTPS	request,	we	have	to	do	a	number	of	tasks.	We	create	an	instance	of	XHR,	initialize
a	request	via	open	method,	subscribe	listeners	to	request-dependent	events,	set	request
headers	(setRequestHeader),	and	eventually	call	the	send	method:

var	xhr	=	new	XMLHttpRequest();

xhr.open("GET",	"http://www.telize.com/jsonip?callback=0",	true);

xhr.onload	=	function()	{

						if	(this.status	===	200)	{

								return	console.log(this.response);

						}

				};

xhr.responseType	=	"json";

xhr.setRequestHeader("Content-Type",	"application/x-www-form-urlencoded"	

);

xhr.send(null);

More	options	are	available.	For	example,	we	can	leverage	the	progress	and	abort	events
to	control	file	uploading	(https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest).

It	occurs	to	me	that	for	a	simple	call,	this	interface	is	overcomplicated.	There	are	a	plenty
of	implementations	for	XHR	wrappers	on	the	Internet.	One	of	the	most	popular
implementations	can	be	found	at	https://github.com/Raynos/xhr.	It	makes	the	usage	of
XHR	this	simple:

xhr({

		uri:	"http://www.telize.com/jsonip",

		headers:	{

				"Content-Type":	"application/json"

		}

},	function	(err,	resp)	{

		console.log(resp);

})

Besides,	the	library	provides	a	mock	object	that	can	be	used	to	replace	real	XHR	in	unit
tests.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://github.com/Raynos/xhr

Fetch	API
We	just	examined	the	XHR	API.	This	looked	fine	15	years	ago,	but	now	looks	clumsy.	We
have	to	use	wrappers	to	make	it	more	friendly.	Luckily,	the	language	has	evolved	and
nowadays	we	have	a	new	built-in	method	called	Fetch	API.	Just	consider	how	easy	it	is	to
make	a	call	with	it:

fetch("/rest/foo").then(function(response)	{

		//	Convert	to	JSON

		return	response.json();

}).catch(function(err)	{

		console.error(err);

});

In	spite	of	the	apparent	simplicity,	the	API	is	pretty	powerful.	The	fetch	method	expects
in	the	first	mandatory	argument	either	a	string	with	a	remote	method	URL	or	a	Request
object.	Request	options	can	be	passed	in	the	second	optional	argument:

fetch("/rest/foo",	{

		headers:	{

				"Accept":	"application/json",

				"Content-Type":	"application/json"

		}

});

Similar	to	our	previous	snippet,	the	fetch	method	returns	Promise.	Promises	are	becoming
a	common	practice	for	asynchronous	or	deferred	operations.	The	function	called	on	the
Promise-fulfilled	event	(see	then)	receives	a	Response	object.	This	function	has	a	number
of	properties	and	methods	(https://developer.mozilla.org/en-US/docs/Web/API/Response).
So	we	can	convert	the	response	into	JSON,	text,	blob,	or	stream	with	corresponding
methods,	and	we	can	obtain	request-relative	information:

console.log(response.text());

console.log(response.status);

console.log(response.statusText);

console.log(response.headers.get("Content-Type"));

What	about	POST	requests?	Fetch	has	a	mixin	called	body	that	represents	the	body	of	the
Response/Request.	We	can	pass	the	POST	data	through	this:

var	form	=	document.querySelector("form[data-bind=foo]"),

				inputEmail	=	form.querySelector("[name=email]"),

				inputPassword	=	form.querySelector("[name=pwd]");

fetch("/feedback/submit",	{

		method:	"post",

		body:	JSON.stringify({

				email:	inputEmail.value,

				answer:	inputPassword.value

		})

});

It	accepts	not	only	key-value	pairs,	but	also,	for	example,	FormData,	so	you	can	submit	the

https://developer.mozilla.org/en-US/docs/Web/API/Response

whole	form	including	attached	files	as	it	is:

var	form	=	document.querySelector("form[data-bind=foo]");

fetch("/feedback/submit",	{

		method:	"post",

		body:	new	FormData(form)

});

At	the	moment,	some	of	the	major	browsers	(for	example,	IE/Edge,	Safari)	don’t	support
this	API.	However,	if	you	intend	to	use	Fetch	API,	you	can	go	with	the	Fetch	polyfill
(https://github.com/github/fetch).

https://github.com/github/fetch

Summary
In	the	past,	every	browser’s	vendors	had	custom	DOM	implementations	that	were	largely
incompatible.	However,	this	has	changed,	and	we	have	W3C	DOM	well	supported	among
browsers	at	least	for	a	decade.	Today,	we	can	safely	use	JavaScript	native	API	to	access,
manipulate,	and	style	the	DOM.

In	JavaScript,	XHR	is	still	the	main	API	to	communicate	between	a	client	and	a	server.	It’s
not	quite	developer	friendly	though.	So,	we	usually	write	custom	wrappers	for	it.

However,	a	new	API	called	Fetch	is	proposed	and	already	implemented	in	Chrome,
Firefox,	and	Opera.	This	new	API	is	much	easier	to	use,	and	compared	to	XHR,	it
provides	a	more	impressive	and	flexible	features.

Chapter	4.	HTML5	APIs
While	the	language	specification	(ECMA-262)	changes	once	in	a	few	years,	the	new
HTML5	APIs	sneak	in	to	the	language	almost	with	every	browser	update.	The	already
available	APIs	are	quite	numerous.	Yet	in	this	chapter,	we	will	focus	on	those	that	are	used
to	reconsider	the	entire	development	process.	We’ll	learn	how	we	can	benefit	from
multithreading	using	web	workers,	how	to	build	an	application	from	reusable	independent
web	components,	how	to	store	and	search	considerably	a	large	amount	of	data	in	the	client
side,	and	how	to	establish	bidirectional	communication	with	a	server.

In	this	chapter,	we	will	cover	the	following	topics:

Storing	data	in	a	web	browser
Boosting	performance	with	JavaScript	workers
Creating	our	first	web	component
Learning	to	use	server-to-browser	communication	channels

Storing	data	in	web-browser
Among	the	HTML5	features,	there	are	a	few	intended	to	store	data	on	the	client	side:	Web
Storage,	IndexedDB,	and	FileSystem	API.	We	benefit	from	these	technologies	when	the
following	happens:

We	want	to	cache	client-side	data	to	make	them	fetch-able	without	extra	HTTP
requests
We	have	a	significant	amount	of	local	data	in	the	web	application,	and	we	want	our
application	to	work	offline

Let’s	take	a	look	at	these	technologies.

Web	Storage	API
In	the	past,	we	only	had	the	mechanism	to	keep	the	application	state,	and	it	was	using
HTTP	cookies.	Besides	unfriendly	API,	cookies	have	a	few	flaws.	They	generally	have	a
maximum	size	of	about	4	KB.	So	we	simply	cannot	store	any	decent	amount	of	data.
Cookies	don’t	really	fit	when	the	application	state	is	being	changed	in	different	tabs.
Cookies	are	vulnerable	to	Cross-Site	Scripting	attacks.

Now	we	have	an	advanced	API	called	Web	Storage.	It	provides	greater	storage	capacity
(5-25	MB	depending	on	the	browser)	and	doesn’t	attach	any	data	to	the	HTTP	request
headers.	There	two	JavaScript	built-in	objects	implementing	this	interface:	localStorage
and	sessionStorage.	The	first	is	used	as	persistent	data	storage	and	the	second	to	keep	the
data	during	a	session.

Storage	API	is	very	simple	to	use,	as	shown	here:

var	storage	=	isPersistent	?	localStorage	:	sessionStorage;

storage.setItem("foo",	"Foo");

console.log(storage.getItem("foo"));

storage.removeItem("foo");

Alternatively,	we	can	use	getters/setters	for	convenience,	as	follows:

storage.foo	=	"Foo";

console.log(storage.foo);

delete	storage.foo;

If	we	want	to	iterate	through	the	storage,	we	can	use	storage.length	and	storage.key():

var	i	=	0,	len	=	storage.length,	key;

for(;	i	<	len;	i++)	{

		key	=	storage.key(i);

		storage.getItem(key);

}

As	you	can	see,	the	Web	Storage	API	is	much	more	developer-friendly	compared	to
cookies.	It’s	also	more	powerful.	One	of	the	most	common	real-life	examples	where	we
need	storage	is	the	shopping	cart.	While	designing	the	application,	we	have	to	keep	in
mind	that	a	user,	while	making	their	choices,	often	opens	pages	with	product	details	in
multiple	tabs	or	windows.	So	we	should	take	care	of	storage	synchronization	across	all	the
open	pages.

Fortunately,	whenever	we	update	the	localStorage,	the	storage	event	is	fired	on	the
window	object.	So	we	can	subscribe	a	handler	for	this	event	to	update	the	shopping	cart
with	the	actual	data.	A	simple	code	illustrating	this	example	may	look	like	this:

<html>

		<head>

				<title>Web	Storage</title>

		</head>

		<body>

				<div>

						<button	data-bind="btn">Add	to	cart</button>

						<button	data-bind="reset">Reset</button>

				</div>

				<output	data-bind="output">

				</output>

				<script>

				var	output	=	document.querySelector("[data-bind=\"output\"]"),

								btn	=	document.querySelector("[data-bind=\"btn\"]"),

								reset	=	document.querySelector("[data-bind=\"reset\"]"),

								storage	=	localStorage,

							/**

								*	Read	from	the	storage

								*	@return	{Arrays}

								*/

								get	=	function(){

											//	From	the	storage	we	receive	either	JSON	string	or	null

											return	JSON.parse(storage.getItem("cart"))	||	[];

								},

								/**

									*	Append	an	item	to	the	cart

									*	@param	{Object}	product

									*/

								append	=	function(product)	{

										var	data	=	get();

										data.push(product);

										//	WebStorage	accepts	simple	objects,	so	we	pack	the	object	into	

JSON	string									storage.setItem("cart",	JSON.stringify(data));

								},

								/**	Re-render	list	of	items	*/

								updateView	=	function(){

										var	data	=	get();

										output.innerHTML	=	"";

										data	&&	data.forEach(function(item){

												output.innerHTML	+=	["id:	",	item.id,	"
"].join("");

										});

								};

				this.btn.addEventListener("click",	function(){

						append({	id:	Math.floor((Math.random()	*	100)	+	1)	});

						updateView();

				},	false);

				this.reset.addEventListener("click",	function(){

						storage.clear();

						updateView();

				},	false);

				//	Update	item	list	when	a	new	item	is	added	in	another	window/tab

				window.addEventListener("storage",	updateView,	false);

				updateView();

				</script>

		</body>

</html>

To	see	this	in	action,	we	have	to	open	the	code	HTML	in	two	or	more	tabs.	Now	when	we
click	the	Add	to	cart	button,	we	have	a	list	of	the	ordered	items	updated	in	every	tab.	As
you	may	have	probably	noticed,	we	can	also	clean	up	the	cart	by	clicking	the	Reset
button.	This	calls	the	storage.clear	method	and	empties	the	list.	If	you	want	to	use
sessionStorage	here	instead	of	localStorage,	I	have	to	warn	you	that	this	won’t	work.	The
sessionStorage	is	isolated	for	every	tab	or	window,	so	we	cannot	communicate	across
them	this	way.

However,	we	could	have	ran	this	example	with	sessionStorage	if	we	had	the	page	loaded
in	a	different	frame,	but	on	the	same	window	though.	Following	screenshot	is	an	example
of	Shopping	cart	app	in	action:

IndexedDB
Web	Storage	serves	well	when	we	have	to	store	a	considerably	small	amount	of	data
(megabytes).	However,	if	we	need	structured	data	in	a	much	greater	quantity	and	we	want
do	performance	searches	through	this	data	using	indices,	we	will	use	IndexedDB	API.	The
idea	of	an	API	to	store	data	in	databases	in	a	browser	isn’t	new.	A	few	years	ago,	Google
and	their	partners	were	actively	advocating	a	standard	candidate	called	Web	SQL
Database.	This	specification	has	failed	to	make	it	through	W3C	recommendation	though.
Now,	we	have	IndexedDB	API	instead	that	is	widely-supported	already	and	provides	a
significant	performance	boost	(asynchronous	API	and	robust	search	due	to	indexed	keys).

However,	the	API	of	IndexedDB	is	pretty	complex.	It’s	also	quite	hard	to	read	because	of
a	large	amount	of	nested	callbacks:

/**

	*	@type	{IDBOpenDBRequest}

	*	Syntax:	indexedDB.open(DB	name,	DB	version);

	*/

var	request	=	indexedDB.open("Cem",	2);

/**	Report	error	*/

request.onerror	=	function()	{

		alert("Opps,	something	went	wrong");

};

/**

	*	Create	DB

	*	@param	{Event}	e

	*/

request.onupgradeneeded	=	function	(e)	{

		var	objectStore;

		if	(e.oldVersion)	{

				return;

		}

		//	define	schema

		objectStore	=	e.currentTarget.result.createObjectStore("employees",	{	

keyPath:	"email"	});

		objectStore.createIndex("name",	"name",	{	unique:	false	});

			//	Populate	objectStore	with	test	data

		objectStore.add({	name:	"John	Dow",	email:	"john@company.com"	});

		objectStore.add({	name:	"Don	Dow",	email:	"don@company.com"	});

};

/**

	*	Find	a	row	from	the	DB

	*	@param	{Event}	e

	*/

request.onsuccess	=	function(e)	{

		var	db	=	e.target.result,

						req	=	db.transaction(["employees"]).objectStore("employees").get(

"don@company.com");

		req.onsuccess	=	function()	{

				console.log("Employee	matching	`don@company.com`	is	`"	+	

req.result.name	+	"`");

		};

};

In	this	sample,	we	created	a	request	for	opening	DB.	If	the	DB	doesn’t	exist	or	its	version
is	changed,	the	upgradeneeded	event	is	fired.	In	the	function	subscribed	to	this	event,	we
can	define	the	schema	by	declaring	object	stores	and	their	indices.	So	if	we	need	to	update
the	schema	of	the	existing	DB,	we	can	increment	the	version	number,	upgradeneeded	will
fire	again	and	the	listener	will	be	called	to	update	the	schema.	As	soon	as	we	have	defined
the	schema,	we	can	populate	the	object	store	with	sample	data.	When	the	request	to	open
the	DB	is	complete,	we	request	the	record	that	matches	the	email	ID	don@company.com.
When	the	request	is	done,	we	go	inside	the	console:

Employee	matching	'don@company.com`	is	`Don	Dow'

Pretty	tangled,	isn’t	it?	This	API	makes	me	think	of	a	wrapper.	The	best	I	know	is	called
Dexie	(http://www.dexie.org).	Just	compare	how	easy	it	is	to	solve	the	same	task	with	the
interface	it	exposes:

<script	src="./Dexie.js"></script>

<script>

var	db	=	new	Dexie("Cem");

//	Define	DB

db.version(3)

		.stores({	employees:	"name,	email"	});

//	Open	the	database

db.open().catch(function(err){

		alert("Opps,	something	went	wrong:	"	+	err);

});

//	Populate	objectStore	with	test	data

db.employees.add({	name:	"John	Dow",	email:	"john@company.com"	});

db.employees.add({	name:	"Don	Dow",	email:	"don@company.com"	});

//	Find	an	employee	by	email

db.employees

		.where("email")

		.equals("don@company.com")

		.each(function(employee){

				console.log("Employee	matching	`don@company.com`	is	`"	+	employee.name	

+	"`");

		});

</script>

http://www.dexie.org

FileSystem	API
Well,	in	a	web	application,	we	can	store	key	value	pairs	with	Web	Storage	and	we	can
create	and	use	IndexedDB.	Something	is	still	missing.	Desktop	applications	can	read	and
write	files	and	directories.	That	is	what	we	often	need	in	a	web	application	that	is	capable
of	running	offline.	The	FileSystem	API	allows	us	to	create,	read,	and	write	to	a	user’s
local	file	system	in	application	scope.	Let’s	take	up	an	example:

window.requestFileSystem		=	window.requestFileSystem	||	

window.webkitRequestFileSystem;

				/**

					*	Read	file	from	a	given	FileSystem

					*	@param	{DOMFileSystem}	fs

					*	@param	{String}	file

					*/

var	readFile	=	function(fs,	file)	{

						console.log("Reading	file	"	+	file);

						//	Obtain	FileEntry	object

						fs.root.getFile(file,	{},	function(fileEntry)	{

								fileEntry.file(function(file){

											//	Create	FileReader

											var	reader	=	new	FileReader();

											reader.onloadend	=	function()	{

													console.log("Fetched	content:	",	this.result);

											};

											//	Read	file

											reader.readAsText(file);

								},	console.error);

						},	console.error);

				},

				/**

					*	Save	file	into	a	given	FileSystem	and	run	onDone	when	ready

					*	@param	{DOMFileSystem}	fs

					*	@param	{String}	file

					*	@param	{Function}	onDone

					*/

				saveFile	=	function(fs,	file,	onDone)	{

						console.log("Writing	file	"	+	file);

						//	Obtain	FileEntry	object

						fs.root.getFile(file,	{	create:	true	},	function(fileEntry)	{

								//	Create	a	FileWriter	object	for	the	FileEntry

								fileEntry.createWriter(function(fileWriter)	{

										var	blob;

										fileWriter.onwriteend	=	onDone;

										fileWriter.onerror	=	function(e)	{

												console.error("Writing	error:	"	+	e.toString());

										};

										//	Create	a	new	Blob	out	of	the	text	we	want	into	the	file.

										blob	=	new	Blob(["Lorem	Ipsum"],	{	type:	"text/plain"	});

										//	Write	into	the	file

										fileWriter.write(blob);

								},	console.error);

						},	console.error);

				},

				/**

					*	Run	when	FileSystem	initialized

					*	@param	{DOMFileSystem}	fs

					*/

				onInitFs	=	function	(fs)	{

						const	FILENAME	=	"log.txt";

						console.log("Opening	file	system:	"	+	fs.name);

						saveFile(fs,	FILENAME,	function(){

								readFile(fs,	FILENAME);

						});

				};

window.requestFileSystem(window.TEMPORARY,	5*1024*1024	/*5MB*/,	onInitFs,	

console.error);

First	of	all,	we	request	for	a	local	file	system	(requestFileSystem)	that’s	sandboxed	to
the	application.	With	the	first	argument,	we	state	whether	the	file	system	should	be
persistent.	By	passing	window.TEMPORARY	in	the	argument,	we	allow	the	browser	to
remove	the	data	automatically	(for	example,	when	more	space	is	needed).	If	we	go	with
window.PERSISTENT,	we	determine	that	the	data	cannot	be	cleaned	without	explicit	user
confirmation.	The	second	argument	specifies	how	much	space	we	can	allocate	for	the	file
system.	Then,	there	are	the	onSuccess	and	onError	callbacks.	When	the	file	system	is
created,	we	receive	a	reference	to	the	FileSystem	object.	This	object	has	the	fs.root
property,	where	the	object	keeps	DirectoryEntry	bound	to	the	root	file	system	directory.
The	DirectoryEntry	object	has	the	DirectoryEntry.getDirectory,
DirectoryEntry.getFile,	DirectoryEntry.removeRecursevly,	and
DirectoryEntry.createReader	methods.	In	the	preceding	example,	we	write	into	the
current	(root)	directory,	so	we	simply	use	DirectoryEntry.getFile	to	open	a	file	of	a
given	name.	On	successfully	opening	a	file,	we	receive	FileEntry	that	represents	the	open
file.	The	object	has	a	few	properties	such	as:	FileEntry.fullPath,
FileEntry.isDirectory,	FileEntry.isFile,	and	FileEntry.name	and	methods	such	as
FileEntry.file	and	FileEntry.createWriter.	The	first	method	returns	the	File	object,
which	can	be	used	to	read	file	content,	and	the	second	is	used	to	write	in	the	file.	By	the
time	the	operation	is	complete,	we	read	from	the	file.	For	this,	we	create	a	FileReader
object	and	make	it	read	our	File	object	as	text.

Boosting	performance	with	JavaScript
workers
JavaScript	is	a	single-threaded	environment.	So,	multiple	scripts	cannot	really	run
simultaneously.	Yes,	we	use	setTimeout(),	setInterval(),	XMLHttpRequest	and	event
handlers	to	run	tasks	asynchronously.	So	we	gain	non-blocking	execution,	but	this	doesn’t
mean	concurrency.	However,	using	web	workers,	we	can	run	one	or	more	scripts	in	the
background	independent	of	the	UI	scripts.	Web	workers	are	long	running	scripts	that	are
not	interrupted	by	blocking	UI	events.	Web	workers	utilize	multithreading,	so	we	can
benefit	from	multicore	CPUs.

Well,	where	can	we	use	web	workers?	Anywhere	where	we	do	processor-intensive
calculations	and	don’t	want	them	blocking	the	UI	thread.	It	can	be	graphics,	web	games,
crypto,	and	Web	I/O.	We	cannot	manipulate	the	DOM	from	a	web	worker	directly,	but	we
have	access	to	XMLHttpRequest,	Web	Storage,	IndexedDB,	FileSystem	API,	Web	Sockets
and	other	features.

So	let’s	see	what	these	web	workers	are	in	practice.	By	and	large,	we	register	an	existing
web	worker	in	the	main	script	and	communicate	to	the	web	worker	using	the	PostMessage
API	(https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage):

index.html

<html>

		<body>

<script>

"use	strict";

//	Register	worker

var	worker	=	new	Worker("./foo-worker.js");

//	Subscribe	for	worker	messages

worker.addEventListener("message",	function(e)	{

		console.log("Result:	",	e.data);

},	false);

console.log("Starting	the	task…");

//	Send	a	message	to	worker

worker.postMessage({

		command:	"loadCpu",

		value:	2000

});

</script>

		</body>

</html>

foo-worker.js

"use	strict";

var	commands	=	{

		/**

			*	Emulate	resource-consuming	operation

			*	@param	{Number}	delay	in	ms

			*/

		loadCpu:	function(delay)	{

				var	start	=	Date.now();

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

				while	((Date.now()	-	start)	<	delay);

				return	"done";

		}

};

//	Workers	don't	have	access	to	the	window	object.	//	To	access	global	

object	we	have	to	use	self	object	instead.

self.addEventListener("message",	function(e)	{

		var	command;

		if	(commands.hasOwnProperty(e.data.command))	{

				command	=	commands[e.data.command];

				return	self.postMessage(command(e.data.value));

		}

		self.postMessage("Error:	Command	not	found");

},	false);

Here	in	index.html,	we	requested	the	web	worker	(foo-worker.js)	to	subscribe	for
worker	messages	and	requested	it	to	load	the	CPU	for	2,000	ms,	which	represents	a
resource-consuming	process.	The	worker	receives	the	message	and	checks	for	a	function
specified	in	the	command	property.	If	this	exists,	the	workers	pass	the	message	value	to	the
function	and	replies	with	the	return	value.

Note	that	despite	of	launching	such	an	expensive	process	by	starting	up	index.html,	the
main	thread	stays	nonblocked.	Nonetheless,	it	reports	to	the	console	when	the	process	is
complete.	But	if	you	try	to	run	the	loadCpu	function	within	the	main	script,	the	UI	freezes
and	most	probably	results	in	a	script-timeout	error.	Now	consider	this:	if	you	call	loadCpu
asynchronously	(for	instance,	with	setTimeout),	the	UI	will	still	hang.	The	only	safe	way
to	deal	with	processor-sensitive	operations	is	to	hand	them	over	to	web	workers.

Web	workers	can	be	dedicated	and	shared.	A	dedicated	worker	is	accessible	only	through
a	script,	the	one	where	we	call	the	worker.	Shared	workers	can	be	accessed	from	multiple
scripts,	even	those	running	in	different	windows.	That	makes	this	API	a	bit	different:

index.html

<script>

"use	strict";

var	worker	=	new	SharedWorker("bar-worker.js");

worker.port.onmessage	=	function(e)	{

		console.log("Worker	echoes:	",	e.data);

};

worker.onerror	=	function(e){

		console.error("Error:",	e.message);

};

worker.port.postMessage("Hello	worker");

</script>

bar-worker.js

"use	strict";

onconnect	=	function(e)	{

		var	port	=	e.ports[0];

		port.onmessage	=	function(e)	{

				port.postMessage(e.data);

		};

		port.start();

};

The	preceding	example	worker	simply	echoes	the	received	message.	If	the	worker	does
some	effective	computation,	we	would	be	able	to	command	it	from	different	scripts	on
different	pages.

These	examples	show	the	use	of	web	workers	for	concurrent	computations.	What	about
unloading	the	main	thread	from	some	of	the	web	I/O	operations?	For	example,	we	are
requested	to	report	specified	UI	events	to	a	remote	Business	Intelligence	Server	(BI
Server	is	used	here	to	receive	statistical	data).	This	is	not	a	core	functionality,	so	it	would
be	great	to	keep	any	loads	that	these	requests	produce	out	of	the	main	thread.	So	we	can
use	a	web	worker.	However,	a	worker	is	available	only	after	it’s	loaded.	Normally,	this
happens	very	fast,	but	I	still	want	to	be	sure	that	no	BI	events	are	lost	because	the	worker
was	unavailable.	What	I	can	do	is	embed	the	web	worker	code	into	HTML	and	register	the
web	worker	by	data	URI:

<script	data-bind="biTracker"	type="text/js-worker">

		"use	strict";

		//	Here	shall	go	you	BI	endpoint

		const	REST_METHOD	=	"http://www.telize.com/jsonip";

		/**

			*	@param	{Map}	data	-	BI	request	params

			*	@param	{Function}	resolve

			*/

		var	call	=	function(data,	resolve)	{

				var	xhr	=	new	XMLHttpRequest(),

								params	=	data	?	Object.keys(data).map(function(key){

												return	key	+	"="	+	encodeURIComponent(data[key]);

										}).join("&")	:	"";

				xhr.open("POST",	REST_METHOD,	true);

				xhr.addEventListener("load",	function()	{

								if	(this.status	>=	200	&&	this.status	<	400)	{

										return	resolve(this.response);

								}

								console.error("BI	tracker	-	bad	request	"	+	this.status);

						},	false);

				xhr.addEventListener("error",	console.error,	false);

				xhr.responseType	=	"json";

				xhr.setRequestHeader("Content-Type",	"application/x-www-form-

urlencoded");

				xhr.send(params);

		};

		/**

			*	Subscribe	to	window.onmessage	event

			*/

		onmessage	=	function	(e)	{

				call(e.data,	function(data){

						//	respond	back

						postMessage(data);

				})

		};

</script>

<script	type="text/javascript">

		"use	strict";

		window.biTracker	=	(function(){

				var	blob	=	new	Blob([document.querySelector("[data-

bind=\"biTracker\"]").textContent],	{

										type:	"text/javascript"

								}),

								worker	=	new	Worker(window.URL.createObjectURL(blob));

				worker.onmessage	=	function	(oEvent)	{

						console.info("Bi-Tracker	responds:	",	oEvent.data);

				};

				return	worker;

		}());

		//	Let's	test	it

		window.biTracker.postMessage({	page:	"#main"	});

</script>

By	handing	over	the	web	I/O	to	a	worker,	we	can	also	get	additional	control	over	it.	For
example,	in	reaction	to	a	network	status	change	(the	ononline	and	onoffline	events,	and
the	navigator.online	property	being	available	to	workers),	we	can	respond	to	an
application	either	with	the	actual	call	results	or	cached	ones.	In	other	words,	we	can	make
our	application	work	offline.	In	fact,	there	are	special	types	of	JavaScript	workers	called
Service	Workers.	Service	Workers	inherit	from	Shared	Workers	and	act	as	a	proxy
between	the	web	application	and	the	network	(https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/Social_API/Service_worker_API_reference).

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Social_API/Service_worker_API_reference

Creating	the	first	web	component
You	might	be	familiar	with	HTML5	video	element
(http://www.w3.org/TR/html5/embedded-content-0.html#the-video-element).	By	placing	a
single	element	in	your	HTML,	you	will	get	a	widget	that	runs	a	video.	This	element
accepts	a	number	of	attributes	to	set	up	the	player.	If	you	want	to	enhance	this,	you	can
use	its	public	API	and	subscribe	listeners	on	its	events
(http://www.w3.org/2010/05/video/mediaevents.html).	So,	we	reuse	this	element
whenever	we	need	a	player	and	only	customize	it	for	project-relevant	look	and	feel.	If
only	we	had	enough	of	these	elements	to	pick	every	time	we	needed	a	widget	on	a	page.
However,	this	is	not	the	right	way	to	include	any	widget	that	we	may	need	in	an	HTML
specification.	However,	the	API	to	create	custom	elements,	such	as	video,	is	already	there.
We	can	really	define	an	element,	package	the	compounds	(JavaScript,	HTML,	CSS,
images,	and	so	on),	and	then	just	link	it	from	the	consuming	HTML.	In	other	words,	we
can	create	an	independent	and	reusable	web	component,	which	we	then	use	by	placing	the
corresponding	custom	element	(<my-widget	/>)	in	our	HTML.	We	can	restyle	the
element,	and	if	needed,	we	can	utilize	the	element	API	and	events.	For	example,	if	you
need	a	date	picker,	you	can	take	an	existing	web	component,	let’s	say	the	one	available	at
http://component.kitchen/components/x-tag/datepicker.	All	that	we	have	to	do	is
download	the	component	sources	(for	example,	using	the	browser	package	manager)	and
link	to	the	component	from	our	HTML	code:

<link	rel="import"	href="bower_components/x-tag-

datepicker/src/datepicker.js">	

Declare	the	component	in	the	HTML	code:

<x-datepicker	name="2012-02-02"></x-datepicker>

This	is	supposed	to	go	smoothly	in	the	latest	versions	of	Chrome,	but	this	won’t	probably
work	in	other	browsers.	Running	a	web	component	requires	a	number	of	new	technologies
to	be	unlocked	in	a	client	browser,	such	as	Custom	Elements,	HTML	Imports,	Shadow
DOM,	and	templates.	The	templates	include	the	JavaScript	templates	that	we	examined	in
Chapter	1,	Diving	into	JavaScript	core.	The	Custom	Element	API	allows	us	to	define	new
HTML	elements,	their	behavior,	and	properties.	The	Shadow	DOM	encapsulates	a	DOM
subtree	required	by	a	custom	element.	And	support	of	HTML	imports	assumes	that	by	a
given	link	the	user-agent	enables	a	web-component	by	including	its	HTML	on	a	page.	We
can	use	a	polyfill	(http://webcomponents.org/)	to	ensure	support	for	all	of	the	required
technologies	in	all	the	major	browsers:

<script	src="./bower_components/webcomponentsjs/webcomponents.min.js">

</script>

Do	you	fancy	writing	your	own	web	components?	Let’s	do	it.	Our	component	acts	similar
to	HTML’s	details/summary.	When	one	clicks	on	summary,	the	details	show	up.	So	we
create	x-details.html,	where	we	put	component	styles	and	JavaScript	with	the
component	API:

http://www.w3.org/TR/html5/embedded-content-0.html#the-video-element
http://www.w3.org/2010/05/video/mediaevents.html
http://component.kitchen/components/x-tag/datepicker
http://webcomponents.org/

x-details.html

<style>

		.x-details-summary	{

				font-weight:	bold;

				cursor:	pointer;

		}

		.x-details-details	{

				transition:	opacity	0.2s	ease-in-out,	transform	0.2s	ease-in-out;

				transform-origin:	top	left;

		}

		.x-details-hidden	{

				opacity:	0;

				transform:	scaleY(0);

		}

</style>

<script>

"use	strict";

				/**

					*	Object	constructor	representing	x-details	element

					*	@param	{Node}	el

					*/

var	DetailsView	=	function(el){

						this.el	=	el;

						this.initialize();

				},

				//	Creates	an	object	based	in	the	HTML	Element	prototype

				element	=	Object.create(HTMLElement.prototype);

/**	@lend	DetailsView.prototype	*/

Object.assign(DetailsView.prototype,	{

		/**

			*	@constracts	DetailsView

			*/

		initialize:	function(){

				this.summary	=	this.renderSummary();

				this.details	=	this.renderDetails();

				this.summary.addEventListener("click",	this.onClick.bind(this),	

false);

				this.el.textContent	=	"";

				this.el.appendChild(this.summary);

				this.el.appendChild(this.details);

		},

		/**

			*	Render	summary	element

			*/

		renderSummary:	function(){

				var	div	=	document.createElement("a");

				div.className	=	"x-details-summary";

				div.textContent	=	this.el.dataset.summary;

				return	div;

		},

		/**

			*	Render	details	element

			*/

		renderDetails:	function(){

				var	div	=	document.createElement("div");

				div.className	=	"x-details-details	x-details-hidden";

				div.textContent	=	this.el.textContent;

				return	div;

		},

		/**

			*	Handle	summary	on	click

			*	@param	{Event}	e

			*/

		onClick:	function(e){

				e.preventDefault();

				if	(this.details.classList.contains("x-details-hidden"))	{

						return	this.open();

				}

				this.close();

		},

		/**

			*	Open	details

			*/

		open:	function(){

				this.details.classList.toggle("x-details-hidden",	false);

		},

		/**

			*	Close	details

			*/

		close:	function(){

				this.details.classList.toggle("x-details-hidden",	true);

		}

});

//	Fires	when	an	instance	of	the	element	is	created

element.createdCallback	=	function()	{

		this.detailsView	=	new	DetailsView(this);

};

//	Expose	method	open

element.open	=	function(){

		this.detailsView.open();

};

//	Expose	method	close

element.close	=	function(){

		this.detailsView.close();

};

//	Register	the	custom	element

document.registerElement("x-details",	{

		prototype:	element

});

</script>

Further	in	the	JavaScript	code,	we	create	an	element	based	on	a	generic	HTML	element
(Object.create(HTMLElement.prototype)).	Here	we	could	inherit	from	a	complex
element	(for	example,	video)	if	needed.	We	register	a	x-details	custom	element	using	the
earlier	one	created	as	a	prototype.	With	element.createdCallback,	we	subscribe	a
handler	that	will	be	called	when	a	custom	element	is	created.	Here	we	attach	our	view	to
the	element	to	enhance	it	with	the	functionality	that	we	intend	for	it.	Now	we	can	use	the
component	in	HTML,	as	follows:

<!DOCTYPE	html>

<html>

		<head>

				<title>X-DETAILS</title>

				<!--	Importing	Web	Component's	Polyfill	-->

				<!--	uncomment	for	non-Chrome	browsers

				script	src="./bower_components/webcomponentsjs/webcomponents.min.js">

</script-->

				<!--	Importing	Custom	Elements	-->

	<link	rel="import"	href="./x-details.html">

		</head>

		<body>

				<x-details	data-summary="Click	me">

						Nunc	iaculis	ac	erat	eu	porttitor.	Curabitur	facilisis	ligula	et	urna	

egestas	mollis.	Aliquam	eget	consequat	tellus.	Sed	ullamcorper	ante	est.	In	

tortor	lectus,	ultrices	vel	ipsum	eget,	ultricies	facilisis	nisl.	

Suspendisse	porttitor	blandit	arcu	et	imperdiet.

				</x-details>

		</body>

</html>

X-details	web-component	in	action	is	shown	in	the	following	screenshot:

Learning	to	use	server-to-browser
communication	channels
Using	XHR	or	Fetch	API,	we	can	request	a	state	from	the	server.	This	is	a	one-way
communication.	If	we	want	real-time	communication,	we	need	this	in	the	opposite
direction	as	well.	For	example,	we	may	want	user	notifications	(your	post	has	been	liked,
new	comment,	or	new	private	message)	to	pop	up	as	soon	as	the	corresponding	records
change	in	the	DB.	The	server	side	has	connection	to	the	DB,	so	we	expect	the	server	to
notify	the	client.	In	the	past,	to	receive	these	events	on	the	client,	we	were	using	tricks	that
were	known	under	the	umbrella	term	COMET	(hidden	iframe,	long	polling,	tag	long
polling,	and	others).	Now	we	can	go	with	native	JavaScript	APIs.

Server-Sent	Events
The	technology	that	provides	a	way	to	subscribe	to	server-side	events	is	the	Server-Sent
Events	(SSE)	API.	On	the	client,	we	register	a	server	stream	(EventSource)	and	subscribe
to	the	event	coming	from	it:

var	src	=	new	EventSource("./sse-server.php");

src.addEventListener("open",	function()	{

			console.log("Connection	opened");

},	false);

src.addEventListener("error",	function(e)	{

		if	(e.readyState	===	EventSource.CLOSED)	{

				console.error("Connection	closed");

		}

},	false);

src.addEventListener("foo",	function(e)	{

		var	data	=	JSON.parse(e.data);

		console.log("Received	from	the	server:",	data);

},	false);

Here,	we	subscribed	a	listener	to	a	specific	event	called	"foo".	If	you	want	your	callback
to	be	invoked	on	every	server	event,	just	use	src.onmessage.	As	for	the	server	side,	we
just	need	to	set	the	MIME	type	text/event-stream	and	send	event	payload	blocks
separated	with	pairs	of	new	lines:

event:	foo\n

data:	{	time:	"date"	}\n\n

SSE	works	via	an	HTTP	connection,	so	we	need	a	web	server	to	create	a	stream.	PHP	is
considerably	simpler	and	a	widely	used	server-side	language.	Chances	are	that	you	are
already	familiar	with	its	syntax.	On	the	other	hand,	PHP	isn’t	designed	for	a	persistent
connection	of	long	duration.	Yet,	we	can	trick	it	by	declaring	a	loop	that	makes	our	PHP
script	never	ending:

<?PHP

set_time_limit(0);

header("Content-Type:	text/event-stream");

header("Cache-Control:	no-cache");

date_default_timezone_set("Europe/Berlin");

function	postMessage($event,	$data){

		echo	"event:	{$event}",	PHP_EOL;

		echo	"data:	",	json_encode($data,	true),	PHP_EOL,	PHP_EOL;

		ob_end_flush();

		flush();

}

while	(true)	{

		postMessage("foo",	array("time"	=>	date("r")));

		sleep(1);

}

You	may	have	seen	SSE	examples	where	the	server	script	outputs	the	data	once	and
terminates	the	process	(for	example,
http://www.html5rocks.com/en/tutorials/eventsource/basics/).	That	is	also	a	working
example,	because	every	time	the	connection	is	terminated	by	the	server,	the	browser
renews	the	connection.	However,	this	way	we	do	not	have	any	benefit	of	SSE	that	works
the	same	as	polling.

Now	everything	looks	ready,	so	we	can	run	the	HTML	code.	As	we	do	this,	we	get	the
following	output	in	the	console:

Connection	opened

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:54	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:55	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:56	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:57	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:58	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:31:59	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:32:00	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:32:01	+0200"}

Received	from	the	server:	Object	{	time="Tue,	25	Aug	2015	10:32:02	+0200"}

...

http://www.html5rocks.com/en/tutorials/eventsource/basics/

Web	Sockets
Well,	with	XHR/Fetch	we	communicate	from	client	to	server.	With	SSE,	we	do	this	in	the
opposite	direction.	But	can	we	have	communication	both	ways	at	once?	Another	HTML5
goody	called	Web	Sockets	provides	bidirectional,	full-duplex	client-server
communications.

The	client	side	looks	similar	to	SEE.	We	just	register	the	Web	Socket	server,	subscribe	to
its	events,	and	send	to	it	our	events:

var	rtm	=	new	WebSocket("ws://echo.websocket.org");

rtm.onopen	=	function(){

		console.log("Connection	established");

		rtm.send("hello");

};

rtm.onclose	=	function(){

		console.log("Connection	closed");

};

rtm.onmessage	=	function(e){

		console.log("Received:",	e.data);

};

rtm.onerror	=	function(e){

		console.error("Error:	"	+	e.message);

};

This	demo	source	at	ws://echo.websocket.org	simply	echoes	any	messages	sent	to	it:

Connection	established

Received:	hello

Need	something	more	practical?	I	believe	the	most	illustrative	case	would	be	a	chat:

demo.html

<style>

		input	{

				border-radius:	5px;

				display:	block;

				font-size:	14px;

				border:	1px	solid	grey;

				margin:	3px	0;

		}

		button	{

				border-radius:	5px;

				font-size:	14px;

				background:	#189ac4;

				color:	white;

				border:	none;

				padding:	3px	14px;

		}

</style>

<form	data-bind="chat">

		<input	data-bind="whoami"	placeholder="Enter	your	name">

		<input	data-bind="text"	placeholder="Enter	your	msg"	/>

		<button	type="submit">Send</button>

</form>

<h3>Chat:</h3>

<output	data-bind="output">

</output>

<script>

var	whoami	=	document.querySelector("[data-bind=\"whoami\"]"),

				text	=	document.querySelector("[data-bind=\"text\"]"),

				chat	=	document.querySelector("[data-bind=\"chat\"]"),

				output	=	document.querySelector("[data-bind=\"output\"]"),

				//	create	ws	connection

				rtm	=	new	WebSocket("ws://localhost:8001");

rtm.onmessage	=	function(e){

		var	data	=	JSON.parse(e.data);

		output.innerHTML	+=	data.whoami	+	"	says:	"	+	data.text	+	"
";

};

rtm.onerror	=	function(e){

		console.error("Error:	"	+	e.message);

};

chat.addEventListener("submit",	function(e){

		e.preventDefault();

		if	(!whoami.value)	{

				return	alert("You	have	enter	your	name");

		}

		if	(!text.value)	{

				return	alert("You	have	enter	some	text");

		}

		rtm.send(JSON.stringify({

				whoami:	whoami.value,

				text:	text.value

		}));

});

</script>

Here	we	have	a	form	with	two	input	fields.	The	first	expects	a	person’s	name	and	the
second,	the	chat	message.	When	the	form	is	submitted,	the	values	of	both	inputs	are	sent
to	the	Web	Socket	server.	Server	response	is	displayed	in	the	output	element.	Unlike	SSE,
Web	Sockets	require	a	special	protocol	and	server	implementation	to	get	working.	To	run
the	example,	we	will	take	a	simple	nodejs-based	server	implementation,	nodejs-
websocket	(https://github.com/sitegui/nodejs-websocket):

ws.js

				/**	@type	{module:nodejs-websocket}	*/

var	ws	=	require("nodejs-websocket"),

				/**	@type	{Server}	*/

				server	=	ws.createServer(function(conn)	{

								conn.on("text",	function	(str)	{

										console.log("Received	"	+	str);

										broadcast(str);

								});

https://github.com/sitegui/nodejs-websocket

				}).listen(8001),

				/**

					*	Broadcast	message

					*	@param	{String}	msg

					*/

				broadcast	=	function	(msg)	{

						server.connections.forEach(function	(conn)	{

								conn.sendText(msg);

						});

				};

The	script	creates	a	server	available	on	the	port	8001	that	listens	to	the	Web	Socket
messages,	and	when	any	message	is	received,	the	port	broadcasts	it	to	all	the	available
connections.	We	can	fire	up	the	server	like	this:

node	ws.js

Now	we	open	our	demo	chat	in	two	different	browsers.	When	we	send	a	message	from
one	of	them,	the	message	shows	up	in	both	browsers.	Following	screenshot	shows	the
WebSocket-driven	chat	in	Firefox:

Following	screenshot	shows	the	WebSocket-driven	chat	in	Chrome:

Note	how	fast	the	clients	react	to	the	events.	Communication	through	sockets	gives
irrefutable	advantages.

There	are	a	number	of	Web	Socket	server	implementations	for	various	languages,	for
example,	Socket.IO	(http://socket.io)	for	Node.js,	Jetty	(http://www.eclipse.org/jetty)	for
Java,	Faye	(http://faye.jcoglan.com)	for	Ruby,	Tornado	(http://www.tornadoweb.org)	for
Python,	and	even	one	for	PHP	called	Ratchet	(http://socketo.me).	However,	I	would	like	to
draw	your	attention	to	a	language-agnostic	WebSocket	daemon—Websocketd
(http://websocketd.com/).	It’s	like	Common	Gateway	Interface	(CGI),	but	for	Web
Sockets.	so	you	can	write	the	server	login	in	your	favorite	language	and	then	attach	your
script	to	the	daemon:

websocketd	--port=8001	my-script

http://socket.io
http://www.eclipse.org/jetty
http://faye.jcoglan.com
http://www.tornadoweb.org
http://socketo.me
http://websocketd.com/

Summary
HTML5	provide	a	number	of	awesome	APIs,	and	we	just	examined	some	of	them.	Among
browser	storage	APIs,	there	are	localStorage	and	sessionStorage	that	extend	the	cookies
relict.	Both	are	capable	of	storing	megabytes	of	data	and	can	be	easily	synchronized	across
different	browser	windows/tabs.	IndexedDB	allows	us	to	store	even	greater	quantity	of
data	and	provides	an	interface	for	high-performance	searches	using	indices.	We	can	also
use	FileSystem	API	to	create	and	operate	a	local	file	system	bound	to	the	web	application.

While	JavaScript	is	a	single-threaded	environment,	we	can	still	run	scripts	in	multiple
threads.	We	can	register	dedicated	or	shared	Web	Workers	and	hand	over	any	processor-
intensive	operations,	leaving	the	main	thread	and	the	UI	unaffected.	We	also	can	leverage
a	special	kind	of	JavaScript	workers—Service	Workers–	as	a	proxy	between	the	web
application	and	the	network.	This	enables	control	to	network	I/O	when	the	browsers
switches	mode	online/offline.

Nowadays	we	can	create	own	custom	advanced	elements	that	can	be	easily	reused,
restyled,	and	enhanced.	The	assets	required	to	render	such	elements	are	HTML,	CSS,
JavaScript,	and	images	are	bundled	as	Web	Components.	So,	we	literally	can	build	the
Web	now	from	the	components	similar	to	how	buildings	are	made	from	bricks.

In	the	past,	we	used	tricks	known	as	COMET	to	exchange	events	between	server	and
client.	Now	we	can	use	SSE	API	to	subscribe	for	server	events	sent	over	HTTP.	We	can
also	use	Web	Sockets	for	bidirectional,	full-duplex	client-server	communications.

Chapter	5.	Asynchronous	JavaScript
Nowadays	Internet	users	are	impatient,	a	lag	of	2-3	seconds	during	page	loading	or
navigation	and	they	lose	their	interest	and	will	likely	leave	the	service	for	something	else.
Our	highest	priority	is	to	reduce	user	response	time.	The	main	approach	here	is	known	as
Cutting	the	mustard	(http://www.creativebloq.com/web-design/responsive-web-design-
tips-bbc-news-9134667).	We	extract	the	components	of	an	application	required	for	core
experience	and	load	them	first.	Then,	progressively	we	add	an	enhanced	experience.	As
for	JavaScript,	what	we	have	to	care	the	most	about	are	nonblocking	flows.	Thus,	we	have
to	avoid	loading	scripts	synchronously	prior	to	HTML	rendering,	and	we	have	to	wrap	all
long-running	tasks	into	asynchronous	callbacks.	This	is	something	that	you	most	probably
already	know.	But	do	you	do	it	efficiently?

In	this	chapter,	we	will	cover	the	following	topics:

Nonblocking	JavaScript
Error-first	callback
The	continuation-passing	style
Handling	asynchronous	functions	in	the	ES7	way
Parallel	tasks	and	task	series	with	the	Async.js	library
Event	handling	optimization

http://www.creativebloq.com/web-design/responsive-web-design-tips-bbc-news-9134667

Nonblocking	JavaScript
First	of	all,	let’s	look	at	what	really	happens	when	we	do	things	asynchronously.
Whenever	we	invoke	a	function	in	JavaScript,	it	creates	a	new	stack	frame	(execution
object).	Every	inner	call	gets	into	this	frame.	Here	the	frames	are	pushed	and	popped	from
the	top	of	the	call	stack	in	the	LIFO	(last	in,	first	out)	manner.	In	other	words,	in	the
code,	we	call	the	foo	function	and	then	the	bar	function;	however,	during	execution,	foo
calls	the	baz	function.	In	this	case,	in	the	call	stack,	we	have	the	following	sequence:	foo,
baz,	and	only	then	bar.	So	bar	is	called	after	the	stack	frame	of	foo	is	empty.	If	any	of	the
functions	perform	a	CPU-intensive	task,	all	the	successive	calls	wait	for	it	to	finish.
However,	JavaScript	engines	have	Event	Queues	(or	task	queues).

If	we	subscribe	a	function	to	a	DOM	event	or	pass	a	callback	to	a	timer	(setTimeout	or
setInterval)	or	through	any	Web	I/O	APIs	(XHR,	IndexedDB,	and	FileSystem),	it	ends
up	in	a	corresponding	queue.	Then,	the	browser’s	event	loop	decides	when	and	which
callback	to	push	in	the	callback	stack.	Here	is	an	example:

function	foo(){

		console.log("Calling	Foo");

}

function	bar(){

		console.log("Calling	Bar");

}

setTimeout(foo,	0);

bar();

Using	setTimeout(foo,	0),	we	state	that	foo	shall	be	called	immediately,	and	then	we
call	bar.	However,	foo	lands	in	a	queue	and	the	event	loop	puts	it	deeper	in	the	call	stack:

Calling	Bar

Calling	Foo

This	also	means	that	if	the	foo	callback	performs	a	CPU-intensive	task,	it	doesn’t	block
the	main	execution	flow.	Similarly,	an	asynchronously-made	XHR/Fetch	request	doesn’t

lock	up	the	interaction	while	waiting	for	the	server’s	response:

function	bar(){

		console.log("Bar	complete");

}

fetch("http://www.telize.com/jsonip").then(function(response)	{

		console.log("Fetch	complete");

});

bar();

//	Console:

//	Bar	complete

//	Fetch	complete

How	does	this	apply	to	real-world	applications?	Here	is	a	common	flow:

"use	strict";

//	This	statement	loads	imaginary	AMD	modules

//	You	can	find	details	about	AMD	standard	in	

//	"Chapter	2:	Modular	programming	with	JavaScript"	

require(["news",	"Session",	"User",	"Ui"],	function	(News,	Session,	

User,	Ui)	{

		var	session	=	new	Session(),

						news	=	new	News(),

						ui	=	new	Ui({	el:	document.querySelector("[data-bind=ui]")	});

		//	load	news

	news.load(ui.update);

	//		authorize	user	

	session.authorize(function(token){

			var	user	=	new	User(token);

			//	load	user	data

			user.load(function(){

					ui.update();

					//	load	user	profile	picture

					user.loadProfilePicture(ui.update);

					//	load	user	notifications		

					user.loadNotifications(ui.update);

			});

	});

});

The	loading	of	JavaScript	dependencies	is	queued,	so	the	browser	can	render	and	deliver
the	UI	to	the	user	without	waiting	for	that.	As	soon	as	the	scripts	are	fully	loaded,	the
application	pushes	two	new	tasks	to	the	queue:	load	news	and	authorize	user.	Again,	none
of	them	blocks	the	main	thread.	Only	when	any	of	these	requests	complete	and	the	main
thread	gets	involved,	it	enhances	the	UI	according	to	the	newly	received	data.	As	soon	as	a
user	is	authorized	and	the	session	token	is	retrieved,	we	can	load	user	data.	After	the	task
is	completed,	we	queue	new	ones.

As	you	can	see,	asynchronous	code	is	harder	to	read	compared	to	synchronous	one.	The
execution	sequences	can	be	quite	complex.	Besides,	we	have	to	take	extra	care	for	error
control.	When	going	for	synchronous	code,	we	can	wrap	a	block	of	the	program	with
try/catch	and	intercept	any	errors	thrown	during	execution:

function	foo(){

		throw	new	Error("Foo	throws	an	error");

}

try	{

		foo();

}	catch(err)	{

		console.log("The	error	is	caught");

}

However,	if	the	call	is	queued,	it	slips	out	of	the	try/catch	scope:

function	foo(){

		throw	new	Error("Foo	throws	an	error");

}

try	{

		setTimeout(foo,	0);

}	catch(err)	{

		console.log("The	error	is	caught");

}

Yeah,	asynchronous	programming	has	its	quirks.	To	get	a	grip	on	this,	we	will	examine	the
existing	practices	of	writing	asynchronous	code.

So	to	make	the	code	asynchronous,	we	queue	a	task	and	subscribe	for	an	event	that	is	fired
when	the	task	is	complete.	Actually,	we	go	for	Event-Driven	Programming,	and	in
particular,	we	apply	a	PubSub	pattern.	For	example,	the	EventTarget	interface,	which	we
touched	upon	in	Chapter	3,	DOM	Scripting	and	AJAX,	in	a	nutshell,	is	about	subscribing
listeners	to	events	on	DOM	elements	and	firing	these	events	either	from	UI	or
programmatically:

var	el	=	document.createElement("div");

				event	=	new	CustomEvent("foo",	{	detail:	"foo	data"	});

el.addEventListener("foo",	function(e){

		console.log("Foo	event	captured:	",	e.detail);

},	false);

el.dispatchEvent(event);

//	Foo	event	captured:	foo	data

Behind	the	DOM,	we	use	a	similar	principle,	but	implementations	may	differ.	Probably	the
most	popular	interface	is	based	on	two	main	methods,	obj.on	(to	subscribe	a	handler)	and
obj.trigger	(to	fire	an	event):

obj.on("foo",	function(data){

		console.log("Foo	event	captured:	",	data);

});

obj.trigger("foo",	"foo	data");

This	is	how	PubSub	is	implemented	in	abstraction	frameworks,	for	example,	Backbone.
jQuery	uses	this	interface	on	DOM	events	also.	The	interface	gained	its	momentum
through	simplicity,	but	it	doesn’t	really	help	with	spaghetti	code	and	doesn’t	cover	error
handling.

Error-first	Callback
The	pattern	used	across	all	the	asynchronous	methods	in	Node.js	is	called	Error-first
Callback.	Here	is	an	example:

fs.readFile("foo.txt",	function	(err,	data)	{

		if	(err)	{

				console.error(err);

		}

		console.log(data);

});

Any	asynchronous	method	expects	one	of	the	arguments	to	be	a	callback.	The	full
callback	argument	list	depends	on	the	caller	method,	but	the	first	argument	is	always	an
error	object	or	null.	When	we	go	for	the	asynchronous	method,	an	exception	thrown
during	function	execution	cannot	be	detected	in	a	try/catch	statement.	The	event	happens
after	the	JavaScript	engine	leaves	the	try	block.	In	the	preceding	example,	if	any
exception	is	thrown	during	the	reading	of	the	file,	it	lands	on	the	callback	function	as	the
first	and	mandatory	parameter.	Regardless	of	its	widespread	use,	this	approach	has	its
flaws.	While	writing	real	code	with	deep	callback	sequences,	it	is	easy	to	run	into	a	so-
called	Callback	Hell	(http://callbackhell.com/).	The	code	becomes	pretty	hard	to	follow.

http://callbackhell.com/

Continuation-passing	style
We	often	need	a	chain	of	asynchronous	calls,	that	is,	a	sequence	of	tasks	where	one	task	is
started	after	another	is	completed.	We	are	interested	in	an	eventual	result	of	asynchronous
calls	chain.	In	this	case,	we	can	benefit	from	Continuation-passing	style	(CPS).
JavaScript	has	already	a	built-in	Promise	object.	We	use	it	to	create	a	new	Promise	object.
We	put	our	asynchronous	task	in	the	Promise	callback	and	invoke	the	resolve	function	of
the	argument	list	to	notify	the	Promise	callback	that	the	task	is	resolved:

"use	strict";

				/**

					*	Increment	a	given	value

					*	@param	{Number}	val

					*	@returns	{Promise}

					*/

var	foo	=	function(val)	{

						/**

							*	Return	a	promise.

							*	@param	{Function}	resolve

							*/

						return	new	Promise(function(resolve)	{

								setTimeout(function(){

										resolve(val	+	1);

								},	0);

						});

				};

foo(1).then(function(val){

		console.log("Result:	",	val);

});

//	Result:	5

In	the	preceding	example,	we	called	foo,	that	returns	Promise.	Using	this	method,	we	set	a
handler	that	invokes	when	Promise	is	fulfilled.

What	about	error	control?	When	creating	Promise,	we	can	use	the	function	given	in	the
second	argument	(reject)	to	report	a	failure:

"use	strict";

/**

	*	Make	GET	request

	*	@param	{String}	url

	*	@returns	{Promise}

	*/

function	ajaxGet(url)	{

		return	new	Promise(function(resolve,	reject)	{

				var	req	=	new	XMLHttpRequest();

				req.open("GET",	url);

				req.onload	=	function()	{

						//	If	response	status	isn't	200	something	went	wrong

						if	(req.status	!==	200)	{

								//	Early	exit

								return	reject(new	Error(req.statusText));

						}

						//	Everything	is	ok,	we	can	resolve	the	promise

						return	resolve(JSON.parse(req.responseText));

				};

				//	On	network	errors

				req.onerror	=	function()	{

						reject(new	Error("Network	Error"));

				};

				//	Make	the	request

				req.send();

		});

};

ajaxGet("http://www.telize.com/jsonip").then(function(data){

		console.log("Your	IP	is	",	data.ip);

}).catch(function(err){

		console.error(err);

});

//	Your	IP	is	127.0.0.1

The	most	exciting	part	about	Promises	is	that	they	can	be	chained.	We	can	pipe	the
callbacks	to	queue	asynchronous	tasks	or	transform	values:

"use	strict";

				/**

					*	Increment	a	given	value

					*	@param	{Number}	val

					*	@returns	{Promise}

					*/

var	foo	=	function(val)	{

						/**

							*	Return	a	promise.

							*	@param	{Function}	resolve

							*	@param	{Function}	reject

							*/

						return	new	Promise(function(resolve,	reject)	{

								if	(!val)	{

										return	reject(new	RangeError("Value	must	be	greater	than	zero"	

));

								}

								setTimeout(function(){

										resolve(val	+	1);

								},	0);

						});

				};

foo(1).then(function(val){

		//	chaining	async	call

		return	foo(val);

}).then(function(val){

		//	transforming	output

		return	val	+	2;

}).then(function(val){

		console.log("Result:	",	val);

}).catch(function(err){

		console.error("Error	caught:	",	err.message);

});

//	Result:	5

Note	that	if	we	pass	0	to	the	foo	function,	the	entry	condition	throws	an	exception	and	we
will	end	up	in	a	callback	of	the	catch	method.	If	an	exception	is	thrown	in	one	of	the
callbacks,	it	appears	in	the	catch	callback	as	well.

A	Promise	chain	is	resolved	in	a	manner	similar	to	that	of	a	waterfall	model—the	tasks	are
invoked	one	after	another.	We	can	also	cause	Promise	to	resolve	after	several	parallel
processing	tasks	are	completed:

"use	strict";

				/**

					*	Increment	a	given	value

					*	@param	{Number}	val

					*	@returns	{Promise}

					*/

var	foo	=	function(val)	{

						return	new	Promise(function(resolve)	{

								setTimeout(function(){

										resolve(val	+	1);

								},	100);

						});

				},

				/**

					*	Increment	a	given	value

					*	@param	{Number}	val

					*	@returns	{Promise}

					*/

				bar	=	function(val)	{

						return	new	Promise(function(resolve)	{

								setTimeout(function(){

										resolve(val	+	2);

								},	200);

						});

				};

Promise.all([foo(1),	bar(2)]).then(function(arr){

		console.log(arr);

});

//		[2,	4]

The	Promise.all	static	method	is	not	yet	supported	in	all	the	latest	browsers,	but	you	can
get	this	via	a	polyfill	at	https://github.com/jakearchibald/es6-promise.

Another	probability	is	to	cause	Promise	to	resolve	or	reject	whenever	any	of	the
concurrently	running	tasks	are	completed:

Promise.race([foo(1),	bar(2)]).then(function(arr){

		console.log(arr);

});

//	2

https://github.com/jakearchibald/es6-promise

Handling	asynchronous	functions	in	the
ES7	way
We	already	have	the	Promise	API	in	JavaScript.	The	upcoming	technology	is	Async/Await
API	and	is	presented	in	a	proposal	(https://tc39.github.io/ecmascript-asyncawait/)	for
EcmaScript	7th	edition.	This	describes	how	we	can	declare	asynchronous	functions	that
can	halt	without	blocking	anything	and	wait	for	the	result	of	Promise:

"use	strict";

//	Fetch	a	random	joke

function	fetchQuote()	{

		return	fetch("http://api.icndb.com/jokes/random")

		.then(function(resp){

				return	resp.json();

		}).then(function(data){

				return	data.value.joke;

		});

}

//	Report	either	a	fetched	joke	or	error

async	function	sayJoke()

{

		try	{

				let	result	=	await	fetchQuote();

				console.log("Joke:",	result);

		}	catch(err)	{

				console.error(err);

		}

}

sayJoke();

At	the	moment,	the	API	isn’t	supported	in	any	browser;	however,	you	can	run	it	using	the
Babel.js	transpiler	on	runtime.	You	can	also	fiddle	with	this	example	online	at
http://codepen.io/dsheiko/pen/gaeqRO.

This	new	syntax	allows	us	to	write	a	code	that	runs	asynchronously	while	appearing	to	be
synchronous.	Thus,	we	can	use	common	constructions	such	as	try/catch	for
asynchronous	calls,	which	makes	the	code	much	more	readable	and	easier	to	maintain.

https://tc39.github.io/ecmascript-asyncawait/
http://codepen.io/dsheiko/pen/gaeqRO

Parallel	tasks	and	task	series	with	the
Async.js	library
Another	approach	to	deal	with	asynchronous	calls	is	a	library	called	Async.js
(https://github.com/caolan/async).	When	using	this	library,	we	can	explicitly	specify	how
we	want	the	batch	of	tasks	to	be	resolved—as	a	waterfall	(chain)	or	in	parallel.

In	the	first	case,	we	can	supply	an	array	of	callbacks	to	async.waterfall,	assuming	when
one	is	completed,	the	next	one	is	invoked.	We	can	also	pass	the	resolved	value	from	one
callback	to	another	and	receive	the	aggregate	value	or	the	thrown	exception	in	a	method’s
on-done	callback:

/**

	*	Concat	given	arguments

	*	@returns	{String}

	*/

function	concat(){

		var	args	=	[].slice.call(arguments);

		return	args.join(",");

}

async.waterfall([

				function(cb){

						setTimeout(function(){

								cb(null,	concat("foo"));

						},	10);

				},

				function(arg1,	cb){

						setTimeout(function(){

								cb(null,	concat(arg1,	"bar"));

						},	0);

				},

				function(arg1,	cb){

						setTimeout(function(){

								cb(null,	concat(arg1,	"baz"));

						},	20);

				}

],	function(err,	results){

			if	(err)	{

					return	console.error(err);

			}

			console.log("All	done:",	results);

});

//	All	done:	foo,bar,baz

Similarly,	we	pass	an	array	of	callbacks	to	async.parallel.	This	time,	all	of	them	run	in
parallel,	but	when	all	are	resolved,	we	receive	the	results	or	the	thrown	exception	in	the
method’s	on-done	callback:

async.parallel([

https://github.com/caolan/async

				function(cb){

						setTimeout(function(){

								console.log("foo	is	complete");

								cb(null,	"foo");

						},	10);

				},

				function(cb){

						setTimeout(function(){

								console.log("bar	is	complete");

								cb(null,	"bar");

						},	0);

				},

				function(cb){

						setTimeout(function(){

								console.log("baz	is	complete");

								cb(null,	"baz");

						},	20);

				}

],	function(err,	results){

			if	(err)	{

					return	console.error(err);

			}

			console.log("All	done:",	results);

});

//	bar	is	complete

//	foo	is	complete

//	baz	is	complete

//	All	done:	['foo',	'bar',	'baz']

Surely,	we	can	combine	the	flows.	Besides,	the	library	provides	iteration	methods,	such	as
map,	filter,	and	each,	that	applies	to	the	array	of	asynchronous	tasks.

Async.js	was	the	first	project	of	this	kind.	Today,	there	are	many	libraries	inspired	by	this.
If	you	want	a	lightweight	and	robust	solution	similar	to	Async.js,	I	would	recommend	that
you	check	Contra	(https://github.com/bevacqua/contra).

https://github.com/bevacqua/contra

Event	handling	optimization
It	must	have	happened	to	you	while	writing	a	form	inline	validator	that	you	run	into	a
problem.	As	you	type	it,	the	user-agent	keeps	sending	validation	requests	to	the	server.
This	way	you	might	quickly	pollute	the	network	with	spawning	XHRs.	Another	sort	of
problem	that	you	may	be	familiar	with,	is	that	some	UI	events	(touchmove,	mousemove,
scroll,	and	resize)	are	fired	intensively	and	subscribed	handlers	may	overload	the	main
thread.	These	problems	can	be	solved	using	one	of	two	approaches	known	as	debouncing
and	throttling.	Both	functions	are	available	in	third-party	libraries	such	as	Underscore	and
Lodash	(_.debounce	and	_.throttle).	However,	they	can	be	implemented	with	a	little	o
code	and	one	doesn’t	need	to	depend	on	extra	libraries	for	this	functionality.

Debouncing
By	debouncing,	we	ensure	that	a	handler	function	is	called	once	for	a	repeatedly	emitted
event:

		/**

			*	Invoke	a	given	callback	only	after	this	function	stops	being	called	

`wait`	milliseconds

			*	usage:

			*	debounce(cb,	500)(..arg);

			*

			*	@param	{Function}	cb

			*	@param	{Number}	wait

			*	@param	{Object}	thisArg

			*/

		function	debounce	(cb,	wait,	thisArg)	{

				/**

					*	@type	{number}

					*/

				var	timer	=	null;

				return	function()	{

						var	context	=	thisArg	||	this,

										args	=	arguments;

						window.clearTimeout(timer);

						timer	=	window.setTimeout(function(){

								timer	=	null;

								cb.apply(context,	args);

						},	wait);

				};

		}

Let’s	say	we	want	a	widget	to	lazy	load	only	when	it	comes	into	view,	which	in	our	case
requires	a	user	to	scroll	the	page	at	least	by	200	pixels	downwards:

var	TOP_OFFSET	=	200;

//	Lazy-loading

window.addEventListener("scroll",	debounce(function(){

		var	scroll	=	window.scrollY	||	window.pageYOffset	||	

document.documentElement.scrollTop;

		if	(scroll	>=	TOP_OFFSET){

					console.log("Load	the	deferred	widget	(if	not	yet	loaded)");

		}

},	20));

If	we	simply	subscribe	a	listener	to	the	scroll	event,	it	will	be	called	quite	a	number	of
times	between	the	time	interval	when	the	user	starts	and	stops	scrolling.	Thanks	to	the
debounce	proxy,	the	handler	that	checks	whether	it’s	the	time	to	load	the	widget	or	not	is
called	only	once,	when	the	user	stops	scrolling.

Throttling
By	throttling,	we	set	how	often	the	handler	is	allowed	to	be	called	while	the	event	is	fired:

		/**

			*	Invoke	a	given	callback	every	`wait`	ms	until	this	function	stops	

being	called

			*	usage:

			*	throttle(cb,	500)(..arg);

			*

			*	@param	{Function}	cb

			*	@param	{Number}	wait

			*	@param	{Object}	thisArg

			*/

	function	throttle(cb,	wait,	thisArg)	{

		var	prevTime,

						timer;

		return	function(){

				var	context	=	thisArg	||	this,

								now	=	+new	Date(),

								args	=	arguments;

				if	(!prevTime	||	now	>=	prevTime	+	wait)	{

						prevTime	=	now;

						return	cb.apply(context,	args);

				}

				//	hold	on	to	it

				clearTimeout(timer);

				timer	=	setTimeout(function(){

						prevTime	=	now;

						cb.apply(context,	args);

				},	wait);

		};

}

So	if	we	subscribe	a	handler	to	the	mousemove	event	on	a	container	via	throttle,	the
handler	function	once	a	time	(second	here)	until	the	mouse	cursors	leaves	the	container
boundaries:

document.body.addEventListener("mousemove",	throttle(function(e){

		console.log("The	cursor	is	within	the	element	at	",	e.pageX,	",",	

e.pageY);

},	1000),	false);

//	The	cursor	is	within	the	element	at	946	,	715

//	The	cursor	is	within	the	element	at	467	,	78

Writing	callbacks	that	don’t	impact	latency-critical
events
Some	of	the	tasks	that	we	have	do	not	belong	to	a	core	functionality	and	may	run	in	the
background.	For	example,	we	want	to	dispatch	analytics	data	while	scrolling.	We	do	this
without	debouncing	or	throttling	that	would	overload	the	UI	thread	and	would	likely	make
the	app	unresponsive.	Debouncing	isn’t	relevant	here	and	throttling	won’t	give	precise
data.	However,	we	can	use	the	requestIdleCallback	native	method
(https://w3c.github.io/requestidlecallback/)	to	schedule	the	task	at	the	time	when	user-
agent	is	idle.

https://w3c.github.io/requestidlecallback/

Summary
One	of	our	most	prioritized	goals	is	to	reduce	user-response	time,	that	is,	the	application
architecture	must	ensure	the	user	flow	is	never	blocked.	This	can	be	achieved	by	queuing
any	long-running	tasks	for	asynchronous	invocation.	However,	if	you	have	a	number	of
asynchronous	calls	among	which	some	are	intended	to	run	in	parallel	and	some
sequentially,	without	taking	special	care,	it’s	easy	to	run	into	a	so-called	Callback	Hell.	A
proper	use	of	such	approaches	as	Continuation-passing	style	(Promise	API),	the
Async/Await	API,	or	an	external	library	such	as	Async.js	may	significantly	improve	your
asynchronous	code.	We	also	have	to	remember	that	some	events	such	as
scroll/touch/mousemove,	while	being	intensively	fired,	may	cause	unnecessary	CPU	load
by	calling	subscribed	listeners	frequently.	We	can	avoid	these	problems	using	debouncing
and	throttling	techniques.

By	learning	the	basis	of	asynchronous	programming,	we	can	write	nonblocking
applications.	In	Chapter	6,	A	Large-Scale	JavaScript	Application	Architecture,	we	will	talk
about	how	to	make	our	applications	scalable	and	improve	the	maintainability	in	general.

Chapter	6.	A	Large-Scale	JavaScript
Application	Architecture
Any	experienced	programmer	works	hard	to	make	the	code	reusable	and	maintainable.
Here	we	are	guided	by	the	principles	of	object-oriented	programming,	such	as
encapsulation,	abstraction,	inheritance,	composition,	and	polymorphism.	In	addition	to
these	fundamentals,	we	follow	the	five	basic	principles	of	object-oriented	programming
and	design	defined	by	Robert	C.	Martin	and	known	under	the	acronym	SOLID
(https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)).	When	during	code
review	we	run	into	a	violation	of	any	of	these	principles,	it’s	considered	as	a	code	smell
and	results	in	refactoring.	At	the	core	of	the	tasks	that	we	solve	every	day	in	development,
often	lie	the	common	problems	that	we	meet	again	and	again.	In	this	chapter,	we	will
cover	the	most	common	universal	architectural	solutions	and	concepts	in	JavaScript
development:

Design	patterns	in	JavaScript
Understanding	concern	separation	in	JavaScript	using	JavaScript	MV*	Frameworks

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Design	patterns	in	JavaScript
Abstract	bulletproof	solutions	have	been	known	for	long	and	are	usually	referred	to	as
Design	Patterns.	The	original	23	Design	Patterns	in	programming	were	first	collected	in
Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	an	influential	book
published	in	1995	by	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides
(GoF).	These	patterns	are	language-agnostic.	Nonetheless,	Addy	Osmani	in	his	online
book	Learning	JavaScript	Design	Patterns
(http://addyosmani.com/resources/essentialjsdesignpatterns/book/)	shows	how	some	of	the
GoF’s	patterns	can	be	implemented	particularly	in	JavaScript.

Here	we	won’t	repeat	his	work;	instead	we’ll	examine	how	we	can	combine	the	patterns.
One	of	the	common	problems	in	JavaScript	development	is	communication	between
dynamically	created	objects.	For	instance,	we	have	an	object	and	need	to	call	a	method
(baz)	of	object	bar	from	foo.	However,	we	cannot	know	if	bar	is	already	available.	GoF’s
pattern	mediator	encourages	us	to	dedicate	an	object	that	is	used	to	proxy	communications
between	other	objects.	Thus,	we	promote	loose	coupling	by	keeping	objects	from	direct
interaction.	In	our	case,	despite	calling	bar.baz,	we	inform	the	mediator	about	our	intent.
The	mediator	will	do	the	call	when	bar	is	available:

"use	strict";

class	EventEmitter	{

		/**	Initialize	*/

		constructor()	{

				/**

				*	@access	private

				*	@type	{EventHandler[]}

				*/

			this.handlers	=	[];

		}

	/**

		*	Subscribe	a	cb	handler	for	a	given	event	in	the	object	scope

		*	@param	{String}	ev

		*	@param	{Function}	cb

		*	@param	{Object}	[context]

		*	@returns	{EventEmitter}

		*/

		on(ev,	cb,	context){

					this.handlers.push({

							event:	ev,

							callback:	cb,

							context:	context

					});

					return	this;

		}

/**

		*	Emit	a	given	event	in	the	object

		*	@param	{String}	ev

		*	@param	{...*}	[arg]

		*	@returns	{EventEmitter}

http://addyosmani.com/resources/essentialjsdesignpatterns/book/

		*/

		trigger(ev,	...args)	{

				this.handlers.forEach(function(evObj){

					if	(evObj.event	!==	ev	||	!evObj.callback.apply)	{

							return;

					}

					evObj.callback.apply(evObj.context	||	this,	args);

			},	this);

			return	this;

		}

}

window.mediator	=	new	EventEmitter();

Here,	we	used	the	ES6	syntax,	which	serves	just	perfectly	to	describe	a	code	design.	With
ES6,	the	intend	can	be	shown	to	be	concise	and	plain,	while	in	the	JavaScript	edition	ES5
and	older	we	need	additional	lines	of	code	to	achieve	the	same	result.

In	the	preceding	example,	we	created	a	mediator	object	by	instantiating	the	EventEmitter
class.	EventEmitter	implements	a	messaging	pattern	known	as	PubSub.	This	pattern
describes	a	message	exchange	where	one	object	sends	an	event	addressed	to	another
object	and	the	second	object	calls	the	handlers,	if	any,	which	subscribed	for	the	event.	In
other	words,	if	we	subscribe	a	handler	function	of	the	foo	object	for	the	myevent	mediator
event	(mediator.on),	we	can	then	invoke	the	handler	of	foo	from	any	other	object	by
publishing	the	myevent	event	on	the	mediator	(mediator.trigger).	Let’s	look	at	an
example.	Our	imaginary	application	is	localized.	It	starts	with	a	login	screen.	When	users
signs	in,	the	screen	jumps	to	the	dashboard	with	the	news.	User	may	change	the	language
on	any	of	the	screens.	However,	in	the	first	stage,	the	news	view	object	isn’t	yet	even
created,	while	in	the	second	stage,	the	login	view	object	is	already	destroyed.	However,	if
we	use	the	mediator,	we	can	trigger	the	translate	event	and	all	the	available	subscribers
will	receive	the	message:

class	News	{

		/**	Initialize	*/

		constructor(){

				mediator.on("translate",	this.update,	this);

		}

		/**	@param	{String}	lang	*/

		update(lang){

				//	fetch	news	from	remote	host	for	a	given	lang

				console.log("News	loaded	for",	lang);

		}

}

class	Language	{

		/**	@param	{String}	lang	*/

		change(lang)	{

				mediator.trigger("translate",	lang);

		}

}

let	language	=	new	Language();

new	News()

language.change("de");

Whenever	a	user	changes	the	language	(language.change),	the	corresponding	event	is
broadcasted	through	the	mediator.	When	the	news	instance	is	available,	it	calls	the	update
method	that	receives	an	event	payload.	In	a	real	application,	this	instance	would	load	news
for	the	given	language	and	update	the	view.

So	what	did	we	achieve?	When	using	a	mediator	and	an	event-driven	approach	(PubSub),
our	objects/modules	are	loosely	coupled	and	therefore,	the	overall	architecture	better
accepts	requirement	changes.	Besides,	we	gain	more	flexibility	in	unit	testing.

At	the	time	this	book	was	written,	no	browser	provided	native	support	for	the	ES6	class
statement.	However,	you	can	run	the	given	code	using	Babel.js	run-time
(https://babeljs.io/docs/usage/browser/)	or	transpiring.

When	the	application	grows	and	we	are	getting	too	many	events	that	are	circulating,	it
makes	sense	to	encapsulate	event	handling	into	a	separate	message	hub	object.	Here
comes	to	mind	the	Facade	pattern,	which	defines	a	unified	high-level	interface	for	other
interfaces:

class	Facade	{

		constructor(){

				mediator.on("show-dashboard",	function(){

						this.dashboard.show()

						this.userPanel.remove();

				},	this)

				.on("show-userpanel",	function(a){

						this.dashboard.hide()

						this.userPanel	=	new	UserPanel(this.user);

				},	this)

				.on("authorized",	function(user){

						this.user	=	user;

						this.topBar	=	new	TopBar(user.name);

						this.dashboard	=	new	Dashboard(user.lang);

						this.mainMenu	=	new	MainMenu(user.lang);

				},	this)

				.on("logout",	function(){

						this.userPanel.remove();

						this.topBar.remove();

						this.dashboard.remove();

						this.mainMenu.remove();

						this.login	=	new	Login();

				},	this);

		}

}

After	initializing	the	Facade	class,	we	can	trigger	a	complex	flow	where	multiple	modules
are	involved	by	simply	firing	an	event	on	the	mediator.	This	way	we	encapsulate
behavioral	logic	into	a	dedicated	object;	this	makes	the	code	more	readable	and	the	whole
system	easier	to	maintain.

https://babeljs.io/docs/usage/browser/

Understanding	concern	separation	in
JavaScript
While	writing	JavaScript	(especially	client-side),	one	of	the	major	challenges	is	to	avoid
spaghetti	code,	where	the	same	module	renders	the	user	view,	handles	user	interactions,
and	does	the	business	logic.	Such	a	module	may	quickly	grow	into	a	monster	of	a	source
file,	where	a	developer	rather	gets	lost	than	spots	and	resolves	a	problem.

The	MVC	Programming	paradigm	known	as	Model	View	Controller	(MVC)	splits	the
application	functionality	into	separate	layers	such	as	presentation,	data,	and	user	input.
MVC	in	a	nutshell	implies	that	a	user	interacts	with	the	view	land	in	a	controller	module
that	manipulates	a	model,	which	updates	the	view.	In	JavaScript,	the	controller	is	usually
an	observer	that	listens	to	UI	events.	A	user	clicks	a	button,	the	event	is	fired,	and	the
controller	addresses	the	corresponding	model.	For	example,	the	controller	requests	the
model	to	send	submitted	data	to	the	server.	The	view	is	notified	about	the	model	state
change	and	reacts	accordingly,	let’s	say	it	displays	a	message,	Data	saved.	Collaboration
of	components	in	MVC	pattern	is	shown	in	the	following	image:

As	you	see,	we	can	keep	all	the	user	input	handlers	encapsulated	in	a	single	module	(here
the	Controller),	we	can	abstract	the	data	layer	following	Domain-Driven	design	practices
into	a	model	module.	Eventually,	we	have	a	view	module	responsible	for	updating	the	UI.
So,	the	model	has	no	knowledge	about	the	component’s	presentation	(HTML,	CSS)	and
knows	nothing	about	DOM	events—that’s	just	pure	data	and	operations	on	it.	The
controller	knows	only	the	events	from	the	view	and	the	view	API.	And	finally,	the	view
knows	nothing	about	the	model	and	controller,	but	exposes	its	API	and	sends	events.
Thus,	we	have	an	efficient	architecture	that	is	easy	to	maintain	and	test.

However,	in	the	case	of	a	JavaScript-built	UI,	it’s	not	that	easy	to	draw	a	line	between	the

view	logic	and	the	controller	one.	Here	we	get	handy	MVC	derivatives:	MVP	and
MVVM.MVP.

The	P	in	MVP	stands	for	Presenter	that	serves	user	requests.	The	presenter	listens	to	the
view	events,	retrieves	data,	manipulates	it,	and	updates	the	presentation	using	the	view
API.	The	Presenter	can	interact	with	models	to	persist	data.	As	you	can	see	in	the
following	diagram,	the	Presenter	acts	like	a	manager	that	receives	a	request,	processes	it
using	available	resources,	and	directs	the	view	to	change.	Following	image	shows
collaboration	of	components	in	MVP	pattern:

MVP	provides	better	testability	and	concern	separation	compared	to	MVC.	You	can	find
an	example	of	a	TODO	application	implementing	MVP	at
http://codepen.io/dsheiko/pen/WQymbG.

http://codepen.io/dsheiko/pen/WQymbG

MVVM
A	passive	view	of	MVP	is	mostly	about	data	bindings	and	proxying	of	UI	events.	In	fact,
that’s	something	we	can	abstract.	The	view	in	Model	View	ViewModel	(MVVM)
approach	may	not	require	any	JavaScript	at	all.	Usually,	the	view	is	HTML-extended	with
directives	known	by	ViewModel.	The	model	represents	domain-specific	data	and	exposes
concomitant	methods	such	as	validation.	The	ViewModel	is	a	middleman	between	view
and	model.	It	converts	the	data	objects	from	the	model	for	the	view.	For	instance,	when	a
model	property	contains	a	raw	datetime,	the	ViewModel	converts	it	into	the	form	expected
in	the	view	like	1	January	2016,	00:01.	Following	image	shows	collaboration	of
components	in	MVVM	pattern:

The	MVVM	pattern	has	the	advantage	of	both	imperative	and	declarative	programming.	It
may	drastically	reduce	the	development	time	by	abstracting	most	of	the	generic	view	logic
in	a	common	binder	module.	The	pattern	gains	momentum	with	popular	JavaScript
frameworks	such	as	Knockout,	Angular,	and	Meteor.	You	can	find	an	example	of	an	RSS
reader	application	based	on	MVVM	pattern	at	https://msdn.microsoft.com/en-
us/magazine/hh297451.aspx.

https://msdn.microsoft.com/en-us/magazine/hh297451.aspx

Using	JavaScript	MV*	frameworks
When	starting	a	new	scalable	web	application,	you	have	to	decide	whether	to	go	with	a
framework	or	not.	It’s	hard	now	to	find	any	large	projects	that	are	not	built	on	the	top	of	a
framework.	Yet	there	are	drawbacks	in	using	frameworks;	just	take	a	look	at	Zero
Framework	Manifesto	(http://bitworking.org/news/2014/05/zero_framework_manifesto).
However,	if	you	decide	in	favor	of	frameworks,	then	you	are	in	a	quandary	about	which
one	to	pick.	This	is	indeed	not	an	easy	task.	JavaScript	frameworks	today	are	quite
numerous;	just	take	a	look	at	the	variety	available	at	TodoMVC	(http://todomvc.com).	It’s
hardly	feasible	to	review	all	of	them,	but	we	can	briefly	examine	a	few	of	the	most
popular	frameworks.	According	to	recent	surveys	(for	example,
http://ashleynolan.co.uk/blog/frontend-tooling-survey-2015-results),	among	the	most
trendy	are	Angular,	React,	and	Backbone.	All	three	give	quite	dissimilar	development
paradigms.	So	they	are	fitting	to	make	an	overall	picture	of	JavaScript	frameworks	in
general.

http://bitworking.org/news/2014/05/zero_framework_manifesto
http://todomvc.com
http://ashleynolan.co.uk/blog/frontend-tooling-survey-2015-results

Backbone
Backbone	(http://backbonejs.org)	is	very	lightweight	and	easy	to	start	with.	This	is	the
only	popular	framework	where	you	can	grasp	the	entire	codebase	in	a	considerably	short
time	(http://backbonejs.org/docs/backbone.html).	Inherently,	Backbone	gives	you	a
consistent	abstraction	and	nothing	besides	this.	By	and	large,	we	encapsulate	all	the	UI-
related	logic	into	a	subtype	of	Backbone.View.	Any	data	required	by	the	view,	we	put	this
into	a	derivative	of	Backbone.Model	or	Backbone.Collection	(when	it’s	a	list	of	entries).
Eventually,	we	route	hash-based	navigation	requests	by	means	of	Backbone.Route.

Let’s	consider	an	example.	Our	imaginary	application	allows	us	to	look	up	for	a	contact	by
a	given	email	address.	Since	we	want	this	to	be	user	friendly,	the	application	form	is
expected	to	validate	as	we	type	in	it.	For	this,	we	need	a	little	HTML:

<form	data-bind="fooForm">

						<label	for="email">Email:</label>

						<input	id="email"	name="email"	required	/>

						

						<button	data-bind="submitBtn"	type="submit">Submit</button>

		</form>

Here	we	have	an	input	control,	a	submit	button,	and	a	container	for	a	possible	error
message.	In	order	to	manage	this,	we	will	use	the	following	Backbone.View:

ContactSearchView.js

"use	strict";

/**	@class	{ContactSearchView}		*/

var	ContactSearchView	=	Backbone.View.extend(/**	@lends	

ContactSearchView.prototype	*/{

		events:	{

				"submit":	"onSubmit"

		},

		/**	@constructs	{ContactSearchView}	*/

		initialize:	function()	{

				this.$email	=	this.$el.find("[name=email]");

				this.$errorMsg	=	this.$el.find("[data-bind=errorMsg]");

				this.$submitBtn	=	this.$el.find("[data-bind=submitBtn]");

				this.bindUi();

		},

		/**	Bind	handlers	*/

		bindUi:	function(){

				this.$email.on("input",	this.onChange.bind(this));

				this.model.on("invalid",	this.onInvalid.bind(this));

				this.model.on("change",	this.onValid.bind(this));

		},

		/**	Handle	input	onchange	event	*/

		onChange:	function(){

				this.model.set({

						email:	this.$email.val(),

						//	Hack	to	force	model	running	validation	on	repeating	payloads

						"model:state":	(1	+	Math.random())	*	0x10000

				},	{	validate:	true	});

		},

http://backbonejs.org
http://backbonejs.org/docs/backbone.html

		/**	Handle	model	in	invalid	state	*/

		onInvalid:	function(){

				var	error	=	arguments[1];

				this.$errorMsg.text(error);

				this.$submitBtn.prop("disabled",	"disabled");

		},

		/**	Handle	model	in	valid	state	*/

		onValid:	function(){

				this.$errorMsg.empty();

				this.$submitBtn.removeProp("disabled");

		},

		/**	Handle	form	submit	*/

		onSubmit:	function(e){

				e.preventDefault();

				alert("Looking	up	for	"	+	this.model.get("email"));

		}

});

In	the	constructor	(the	initialize	method),	we	bind	the	acting	nodes	of	the	HTML	to	the
properties	of	the	view	and	subscribe	handlers	to	UI	and	the	model	events.	Then,	we
register	listener	methods	on	the	submit	form	and	the	input	form.	The	second	handler	is
invoked	as	we	type,	and	it	updates	the	model.	The	model	runs	a	validation,	and	according
to	the	results,	it	responds	with	a	invalid	or	change	model	event.	In	the	case	of	the
invalid	event,	the	view	shows	up	the	error	message,	otherwise	it’s	hidden.

Now	we	can	add	the	model,	as	shown	here:

ContactSearchModel.js

	"use	strict";

/**	@class	{ContactSearchModel}		*/

var	ContactSearchModel	=	Backbone.Model.extend(/**	@lends	

ContactSearchModel.prototype	*/{

		/**	@type	{Object}	*/

		defaults:	{

				email:	""

		},

		/**

			*	Validate	email

		*	@param	{String}	email

		*/

		isEmailValid:	function(email)	{

				var	pattern	=	/^[a-zA-Z0-9\!\#\$\%\&\'*\+\-\/\=\?\^_\`\

{\|\}\~\.]+@[a-zA-Z0-9.\-]+\.[a-zA-Z]{2,4}$/g;

				return	email.length	&&	pattern.test(email);

		},

		/**

			*	Validate	model

		*	@param	{Map}	attrs

		*/

		validate:	function(attrs)	{

				if	(!attrs.email)	{

						return	"Email	is	required.";

				}

				if	(!this.isEmailValid(attrs.email))	{

						return	"Invalid	email	address.";

				}

		}

});

This	model	defines	domain	data	in	the	defaults	property	and	provides	the	validate
method	that	is	called	automatically	when	we	set	or	save	the	model.

Now	we	can	combine	all	together	and	initialize	the	view:

<!DOCTYPE	html>

<html>

		<script	type="text/javascript"	

src="//ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>

		<script	type="text/javascript"	

src="//cdnjs.cloudflare.com/ajax/libs/underscore.js/1.5.2/underscore-

min.js"></script>

		<script	type="text/javascript"	

src="//cdnjs.cloudflare.com/ajax/libs/backbone.js/1.0.0/backbone-min.js">

</script>

		<script	type="text/javascript"	src="ContactSearchView.js"></script>

		<script	type="text/javascript"	src="ContactSearchModel.js"></script>

		<style>

				fieldset	{	border:	0;	}

				.error-msg{	color:	red;	}

		</style>

		<body>

			<form	data-bind="fooForm">

				<fieldset>

						<label	for="email">Email:</label>

						<input	id="email"	name="email"	required	/>

						

				</fieldset>

				<fieldset>

						<button	data-bind="submitBtn"	type="submit">Submit</button>

				</fieldset>

		</form>

<script>

//	Render	foo	view

	new	ContactSearchView({

			el:	$("[data-bind=fooForm]"),

			model:	new	ContactSearchModel

	});

</script>

		</body>

</html>	

Backbone	itself	is	surprisingly	small	in	size	(6.5	Kg	zipped),	but	with	the	jQuery	and
Underscore	dependencies,	this	makes	quite	a	bundle.	Both	dependencies	were	vital	in	the
past,	but	now	that’s	under	the	question—do	we	need	them	at	all?	So,	it	makes	sense	to
check	the	Exoskeleton	(http://exosjs.com/)	project,	which	is	an	optimized	version	of
Backbone	that	works	perfectly	without	the	dependencies.

http://exosjs.com/

Angular
Angular	(http://Angular.org)	now	seems	to	be	the	most	popular	JavaScript	framework	in
the	world.	It	is	supported	by	Google	and	is	considered	as	a	framework	that	solves	most
routine	tasks	for	you.	In	particular,	Angular	has	a	feature	called	two-way	binding,	meaning
that	UI	changes	propagate	to	the	bound	model	and,	vice	versa,	and	model	changes	(for
example,	by	XHR)	update	the	UI.

In	AngularJS,	we	define	behavior	straight	in	HTML	with	directives.	Directives	are	custom
elements	and	attributes	that	assume	UI	logic	similar	to	web	components.	Actually,	you	can
create	functional	widgets	in	AngularJS	without	writing	a	single	line	of	JavaScript	code.
Models	in	AngularJS	are	simple	data	containers	and	unlike	Backbone,	have	no	connection
to	external	sources.	When	we	need	to	read	or	write	data,	we	use	services.	When	any	data
is	sent	to	View,	we	can	use	filters	to	format	the	output.	The	framework	leverages
dependency	injection	(DI)	pattern	allowing	to	inject	core	components	into	each	other	as
dependencies.	That	makes	the	modules	easier	to	meet	requirement	changes	and	unit-test.
Let’s	see	this	in	practice:

<!DOCTYPE	html>

<html>

		<script	

src="http://ajax.googleapis.com/ajax/libs/Angular/1.3.14/angular.min.js">

</script>

		<style>

				fieldset	{	border:	0;	}

				.error-msg{	color:	red;	}

		</style>

		<body>

			<form	ng-app="contactSearch"	name="csForm"	ng-submit="submit()"	ng-

controller="csController">

				<fieldset>

						<label	for="email">Email:</label>

						<input	id="email"	name="email"	ng-model="email"	required

										ng-pattern="/^[a-zA-Z0-9\!\#\$\%\&\'*\+\-\/\=\?\^_\`\

{\|\}\~\.]+@[a-zA-Z0-9.\-]+\.[a-zA-Z]{2,4}$/"		/>

						<span	class="error-msg"	ng-show="csForm.email.$dirty	&&	

csForm.email.$invalid">

								Email	is	required.

								Invalid	email	address.

						

				</fieldset>

				<fieldset>

						<button	type="submit"	ng-disabled="csForm.email.$dirty	&&	

csForm.email.$invalid">Submit</button>

				</fieldset>

		</form>

<script>

		"use	strict";

		angular.module("contactSearch",	[]).controller("csController",	[

"$scope",	function	($scope){

http://Angular.org

				$scope.email	=	"";

				$scope.submit	=	function()	{

						alert("Looking	up	for	"	+	$scope.email);

				};

		}]);

</script>

		</body>

</html>

In	this	example,	we	declared	an	input	field	and	bound	it	to	a	model	email	(ng-model
directive).	Form	validation	works	in	the	same	way	as	in	HTML5	forms:	if	we	declare	an
input	type	email	and	it	gets	validated	accordingly.	Here	we	go	with	a	default	text	type	and
use	the	ng-pattern	(similar	to	HTML5’s	pattern)	attribute	to	set	the	same	validation	rules
for	email	as	in	the	Backbone	case.	Further,	we	rely	on	the	ng-show	directive	to	display
error	messages	block	when	the	input	state	is	empty	(csForm.email.$dirty)	or	invalid
(csForm.email.$invalid).	In	this	case,	the	submit	button,	on	the	contrary,	is	hidden.
Using	the	ng-controller	and	ng-submit	directives,	we	bind	the	csController	controller
and	the	on-submit	handler	to	the	form.	In	the	body	of	csController	(JavaScript),
$scope.submit	expects	a	handler	function	for	the	form	submit	event.

As	you	can	see	with	Angular,	it	takes	much	less	code	in	total	to	implement	the	same	task.
However,	one	should	accept	that	keeping	application	logic	in	HTML	makes	it	really	hard
to	read	the	code.

Furthermore,	Angular	subscribes	many	watchers	per	directive	(intended	handlers,
automatic	dirty	checking,	and	so	on)	and	makes	it	slow	and	resource-expensive	on	the
pages	with	numerous	interactive	elements.	If	you	want	to	tune	your	application
performance,	you	rather	learn	Angular	source	code	and	it’ll	be	a	challenging	task	with
~11.2K	lines	of	code	(version	1.4.6).

React
React	(https://facebook.github.io)	is	a	project	of	Facebook	that	isn’t	really	a	framework,
but	rather	a	library.	The	unique	approach	of	React	implies	a	component-based	application.
Inherently,	React	defines	the	Views	of	the	components	utilizing	the	so-called	Virtual
DOM,	which	makes	UI	rendering	and	updating	surprisingly	fast.	With	this	focus	on	View,
React	comprises	a	template	engine.	Optionally,	the	React	components	can	be	written	in	a
subset	of	JavaScript	called	JSX	where	you	can	put	HTML	templates	within	JavaScript.
JSX	can	be	parsed	dynamically	as	in	the	following	example,	or	it	can	be	precompiled.
Since	React	deals	with	Views	only	and	makes	no	assumptions	about	other	concerns,	it
makes	sense	to	use	this	in	conjunction	with	other	frameworks.	Thus,	React	can	be	plugged
into	a	framework	(for	example,	as	directives	in	Angular	or	Views	in	Backbone).

While	implementing	the	contact	search	application	this	time,	we	will	use	React	to	control
the	View	of	our	example	by	splitting	it	into	two	components	(FormView	and	EmailView).
The	first	one	defines	the	View	for	the	search	form:

			/**	@class	{FormView}		*/

var	FormView	=	React.createClass({

		/**	Create	an	initial	state	with	the	model		*/

		getInitialState:	function	()	{

				return	{

						email:	new	EmailModel()

				};

		},

		/**

			*	Update	state	on	input	change	event

			*	@param	{String}	value	-	changed	value	of	the	input

			*/

		onChange:	function(value){

				this.state.email.set("email",	value);

				this.forceUpdate();

		},

		/**	Handle	form	submit	*/

		onSubmit:	function(e){

				e.preventDefault();

				alert("Looking	up	for	"	+	this.state.email.get("email"));

		},

		/**	Render	form	*/

		render:	function	()	{

				return	<form	onSubmit={this.onSubmit}>

						<fieldset>

						<label	htmlFor="email">Email:</label>

						<EmailView	model={this.state.email}	onChange={this.onChange}	/>

						</fieldset>

						<fieldset>

								<button	data-bind="submitBtn"	type="submit">Submit</button>

						</fieldset>

				</form>;

		}

});

In	the	render	method,	we	declared	the	View	of	the	component	using	the	JSX	notation.

https://facebook.github.io

This	makes	it	much	easier	to	manipulate	the	Virtual	DOM.	Similar	to	Angular,	we	can
address	the	component	scope	directly	in	the	HTML.	Thus,	we	subscribe	to	the	form
submit	event	and	to	the	input	change	event	by	referring	to	the	corresponding	handlers	in
the	onSubmit	and	onChange	attributes.	Since	React	provides	no	built-in	model,	we	reused
ContactSearchModel,	the	model	we	created	while	exploring	Backbone.

You	might	notice	a	EmailView	custom	tag	in	JSX.	This	is	how	we	refer	to	our	second
component,	which	represents	an	email	input	control:

				/**	@class	{EmailView}		*/

var	EmailView	=	React.createClass({

		/**

			*	Delegate	input	on-changed	event	to	the	from	view

			*	@param	{Event}	e

			*/

		onChanged:	function(e){

				this.props.onChange(e.target.value);

		},

		/**	Render	input	*/

		render:	function	()	{

				var	model	=	this.props.model;

				return	

						<input	id="email"	type="text"	value={model.email}	onChange=

{this.onChanged}	/>						

							{model.isValid()	?	

""	:	model.validationError}

				;

		}

});

Here	we	bound	the	email	input	to	the	model	and	the	error	message	container	to	the	model
state.	We	also	passed	the	input	onChange	event	to	the	parent	component.

Well,	now	we	can	add	the	components	in	the	HTML	and	render	the	form:

<!DOCTYPE	html>

<html>

<head>

		<script	

src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react.js">

</script>

		<script	

src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/JSXTransformer.js"

></script>

		<script	type="text/javascript"	

src="//cdnjs.cloudflare.com/ajax/libs/underscore.js/1.5.2/underscore-

min.js"></script>

		<script	type="text/javascript"	

src="//cdnjs.cloudflare.com/ajax/libs/backbone.js/1.0.0/backbone-min.js">

</script>

		<script	type="text/javascript"	src="ContactSearchModel.js"></script>

		<style>

				fieldset	{	border:	0;	}

				.error-msg{	color:	red;	}

		</style>

</head>

<body>

		<div	data-bind="app"></div>

<script	type="text/jsx">

		/**	@jsx	React.DOM	*/

//	Please	insert	here	both	components

//	FormView	and	EmailView

//	render	app

React.render(

		<FormView	/>,

		document.querySelector("[data-bind=app]")

);

</script>

</body>

</html>

We	address	the	components	in	the	templates	such	as	web-components	by	the
corresponding	custom	elements.	Do	not	confuse	yourself	over	the	similarity,	React
components	are	abstracted	from	the	browser,	while	web-components	work	similar	to
browser-native	things.	The	core	concept	of	React	is	that	the	Virtual	DOM	allows	us	to
avoid	unnecessary	DOM	reflow	cycles	that	make	the	library	preferable	for	high-
performance	applications.	React	is	really	good	to	render	static	pages	on	the	server	using
Node.js.	Thus,	we	can	reuse	application	components	between	server	and	client	sides.

Summary
Writing	maintainable	code	is	an	art.	Probably	the	best	book	that	provides	guidance	on	this
is	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship	by	Robert	C.	Martin.	It’s
about	naming	functions,	methods,	classes,	commenting,	code	formatting,	and	of	course,
about	the	correct	use	of	OOP	and	SOLID.	However,	when	reusing	solutions	described	in
this	book,	or	in	any	of	the	Design	Patterns	series,	we	have	to	translate	them	into
JavaScript,	and	it	can	be	challenging	due	to	the	nature	of	the	language.	On	a	higher	level,
we	have	to	split	the	code	into	layers	such	as	presentation,	business	logic,	data	access,	and
persistence,	where	each	bundle	of	code	addresses	the	one	concern	and	is	loosely	coupled
with	others.	Here,	we	may	choose	an	approach	to	go	with.	In	the	JavaScript	world,	it’s
usually	a	derivative	of	MVC	(MVP	or	MVVM	or	other).	Considering	this,	a	decent
programming	design	requires	a	lot	of	abstraction.	Today,	we	can	use	numerous
frameworks.	They	provide	diverse	programming	paradigms.

Chapter	7.	JavaScript	Beyond	the
Browser
Originally,	JavaScript	was	designed	as	a	client-side	scripting	language,	but	today,	it	is	used
literally	everywhere:	in	server	scripting,	mobile	and	desktop	software	programming,	game
development,	DB	querying,	hardware	control,	and	OS	automation.	When	you	have
experience	in	client-side	JavaScript,	with	a	little	additional	knowledge,	you	can	apply	your
skills	in	other	programming	areas	as	well.	Here,	we	will	learn	how	to	write	a	command-
line	tool,	web-server,	desktop	application,	and	mobile	software	using	JavaScript.

In	this	chapter,	we	will	be	learning	about	the	following:

Leveling	up	the	coding	of	a	command-line	program	in	JavaScript
Building	a	web-server	with	JavaScript
Writing	a	desktop	HTML5	application
Using	PhoneGap	to	make	a	mobile	native	app

Levelling	up	the	coding	of	a	command-line
program	in	JavaScript
You	must	have	heard	about	Node.js.	This	is	an	open	source	cross-platform	development
environment	that	allows	the	creation	of	web-servers,	networking,	and	other	tools	using
JavaScript.	Node.js	extends	classical	JavaScript	with	a	collection	of	specialized	modules.
These	modules	handle	filesystem	I/O,	networking,	OS-level	operations,	binary	data,
cryptography	functions,	data	streams,	and	others	(https://nodejs.org/api/index.html).
Node.js	uses	an	event-driven	I/O	model.	Similar	to	JavaScript,	it	operates	on	single-thread
performing	non-blocking	calls.	So	time	consuming	functions	can	run	concurrently	by
invoking	a	callback	when	it	completes.

To	get	the	feel	of	Node.js,	we	start	with	an	example	that	simply	prints	Hello	world:

hello.js

console.log("Hello	world!");

Now	let’s	open	the	console	(command-line	interface:	CMD	in	Windows,	or	Terminal	in
Linux	and	Mac	OS),	navigate	to	the	example	script	location,	and	run	the	following:

node	hello.js

Here	we	go,	we	get	Hello	world!	in	the	output.

Following	screenshot	shows	the	Windows	CMD

The	Node.js	modules	follow	the	CommonJS	specification	in	the	same	way	that	we
examined	in	Chapter	2,	Modular	Programming	with	JavaScript:

foo.js

console.log("Running	foo.js");

module.exports	=	"foo";

main.js

var	foo	=	require("./foo");

console.log("Running	main.js");

console.log("Exported	value:",	foo);

As	we	run	main.js,	we	are	supposed	to	get	the	following	output:

Running	foo.js

https://nodejs.org/api/index.html

Running	main.js

Exported	value:	foo

The	Node.js	native	modules	such	as	fs	(https://nodejs.org/api/index.html)	don’t	require
downloading.	We	may	just	refer	to	them	in	require(),	and	at	the	runtime,	it	will	be
known	where	to	find	them:

"use	strict";

var	fs	=	require("fs");

fs.readFile(__filename,	"UTF-8",	function(err,	data){

		if	(err)	{

				throw	new	Error(err);

		}

		console.log("Source	of	",	__filename,	":\n",	data);

});

Here	we	use	the	filesystem	I/O	(fs)	module	to	read	a	file.	The	__filename	property	of	a
module	scope	contains	the	absolute	path	of	the	executing	source	file.	Remember	the	Error
First	Callback	approach	that	we	examined	in	Chapter	5,	Asynchronous	JavaScript	That	is
the	main	interface	for	asynchronous	functions	in	Node.js.

Let’s	now	try	something	more	practical.	We’ll	write	a	utility	that	recursively	scans	all	the
source	files	in	a	given	directory	to	make	sure	every	file	has	block	comments	with	up-to-
date	copyrights.	First	of	all,	we	need	a	module	that	can	test	whether	a	supplied	block
comment	text	contains	the	actual	copyright	line:

./Lib/BlockComment.js	

			/**

			*	Block	comment	entity

			*	@class

			*	@param	{String}	code

			*/

var	BlockComment	=	function(code){

		return	{

				/**

					*	Check	a	block	comment

					*	@returns	{Boolean}

					*/

				isValid:	function(){

						var	lines	=	code.split("\n");

						return	lines.some(function(line){

										var	date	=	new	Date();

										return	line.indexOf("@copyright	"	+	date.getFullYear())	!==	-1;

								});

				}

		};

};

module.exports	=	BlockComment;

Here,	we	have	a	constructor	that	creates	an	object	representing	BlockComment.	The	object
has	a	method	(isValid)	to	test	its	validity.	So	if	we	create	an	instance	of	BlockComment
with	a	block	comment	text,	we	can	validate	this	against	our	requirements:

var	comment	=	new	BlockComment("/**\n*	@copyright	2015	\n*/");

https://nodejs.org/api/index.html

comment.isValid()	//	true	

Now,	we	will	write	a	module	capable	of	testing	whether	all	the	copyright	lines	in	a	given
source	code	has	the	actual	year:

./Lib/SourceFile.js

				/**	@type	{module:esprima}	*/

var	esprima	=	require("esprima"),

/**

	*	Source	file	entity

	*	@class

	*	@param	{String}	fileSrc

	*	@param	{module:Lib/BlockComment}	BlockComment	-	dependency	injection

	*/

SourceFile	=	function(fileSrc,	BlockComment){

		return	{

				/**

					*	Test	if	source	file	has	valid	copyright

					*/

				isValid:	function()	{

						var	blockComments	=	this.parse(fileSrc);

						return	Boolean(blockComments.filter(function(comment){

								return	comment.isValid();

						}).length);

				},

				/**

					*	Extract	all	the	block	comments	as	array	of	BlockComment	instances

					*	@param	{String}	src

					*	@returns	{Array}	-	collection	of	BlockComment

					*/

				parse:	function(src){

						return	esprima.parse(src,	{

								comment:	true

						}).comments.filter(function(item){

								return	item.type	===	"Block";

						}).map(function(item){

								return	new	BlockComment(item.value);

						});

				}

		};

};

module.exports	=	SourceFile;

In	this	example	we	introduced	a	SourceFile	object	that	has	two	methods,	parse	and
isValid.	The	private	method,	parse,	extracts	all	the	block	comments	from	a	given
JavaScript	source	code	and	returns	an	array	of	the	BlockComment	objects.	The	isValid
method	checks	whether	all	the	received	BlockComment	objects	meet	our	requirements.	In
these	methods,	to	manipulate	arrays,	we	use	Array.prototype.filter	and
Array.prototype.map	that	we	examined	in	Chapter	1,	Diving	into	JavaScript	Core.

But	how	can	we	reliably	extract	blockComments	from	a	JavaScript	source?	The	best	way	is
to	go	with	a	bulletproof	solution	called	the	esprima	parser	(http://esprima.org/)	that

http://esprima.org/

performs	code	static	analysis	and	returns	a	full	syntax	tree	including	comments.	However,
esprima	is	a	third-party	package	that	is	supposed	to	be	downloaded	and	linked	from	the
application.	In	general,	a	package	may	depend	on	other	packages,	which	also	have
dependencies.	It	looks	like	that	bringing	the	required	dependencies	together	may	be	a	hell
of	a	work.	Fortunately,	Node.js	is	distributed	with	the	NPM	package	manager.	The	tool
can	be	used	to	install	and	manage	in	the	NPM	repository	(https://www.npmjs.com/)	third-
party	modules.	NPM	doesn’t	just	download	the	requested	modules,	but	also	resolves	the
module	dependencies,	allowing	a	well-grained	structure	of	reusable	components	in	the
scope	of	a	project	or	in	the	global	scope.

So,	to	make	esprima	available	in	our	application,	we	simply	request	it	from	NPM	using
this	command:	npm	install	esprima.

By	running	this	command	in	the	console,	we	automatically	get	a	new	node_modules
subdirectory	with	the	esprima	package	in	it.	If	the	package	requires	any	dependencies,
they	will	be	fetched	and	allocated	in	node_modules.	As	soon	as	the	package	is	installed	by
NPM,	Node.js	can	find	it	by	its	name.	For	example,	require("esprima").	Now	when
we	have	the	SourceFile	object,	we	just	need	the	main	script	that	will	read	the	files	from	a
given	directory	and	test	them	with	SourceFile:

copyright-checker.js

								/**	@type	{module:cli-color}	*/

var	clc	=	require("cli-color"),

				/**	@type	{module:fs-walk}	*/

				walk	=	require("fs-walk"),

				/**	@type	{module:path}	*/

				path	=	require("path"),

				/**	@type	{module:fs}	*/

				fs	=	require("fs"),

				/**

					*	Source	file	entity

					*	@type	{module:Lib/SourceFile}

					*/

				SourceFile	=	require("./Lib/SourceFile"),

				/**	@type	{module:Lib/BlockComment}	*/

				BlockComment	=	require("./Lib/BlockComment"),

				/**

					*	Command-line	first	argument	(if	none	given,	go	with	".")

					*	@type	{String}

					*/

				dir	=	process.argv[2]	||	".";

console.log("Checking	in	"	+	clc.yellow(dir));

//	Traverse	directory	tree	recursively	beginning	from	'dir'

walk.files(dir,	function(basedir,	filename)	{

						/**	@type	{Function}	*/

		var	next	=	arguments[3],

						/**	@type	{String}	*/

						fpath	=	path.join(basedir,	filename),

						/**	@type	{String}	*/

						fileSrc	=	fs.readFileSync(fpath,	"UTF-8"),

https://www.npmjs.com/

						/**

							*	Get	entity	associated	with	the	file	located	in	fpath

							*	@type	{SourceFile}

							*/

						file	=	new	SourceFile(fileSrc,	BlockComment);

		//	ignore	non-js	files

		if	(!filename.match(/\.js$/i))	{

				return	next();

		}

		if	(file.isValid())	{

				console.log(fpath	+	":	"	+	clc.green("valid"));

		}	else	{

				console.log(fpath	+	":	"	+	clc.red("invalid"));

		}

		next();

},	function(err)	{

		err	&&	console.log(err);

});

In	this	code,	we	relied	on	a	third-party	module,	cli-color,	to	colorize	the	command-line
output.	We	used	the	fs-walk	module	to	recursively	traverse	through	a	directory.	And	the
Node.js	native	module,	path,	allows	us	to	resolve	the	absolute	path	by	a	given	relative
directory	and	filename,	and	the	fs	built-in	module	is	used	to	read	a	file.

As	we	intend	to	run	our	application	from	the	console,	we	can	use	command-line	options	to
pass	on	a	directory	that	we	want	to	test:

node	copyright-checker.js	some-dir

We	can	extract	script	arguments	from	a	built-in	process	(process.argv)	object.	For	this
command,	process.argv	will	contain	an	array	like	this:

["node",	"/AbsolutePath/copyright-checker.js",	"some-dir"]

So	in	the	main	script,	now	we	can	pass	the	third	element	of	this	array	to	walk.files.	The
function	will	traverse	through	the	given	directory	and	run	the	callback	for	every	file	found.
In	the	callback	function,	if	a	filename	looks	like	JavaScript,	we	read	the	content	and	test	it
using	the	SourceFile	object.

Before	we	can	run	the	main	script,	we	need	to	ask	NPM	for	third-party	packages	that	we
are	going	to	use	in	the	script:

npm	install	fs-walk	cli-color

Now	we	are	good	to	go.	As	we	run	node	copyright-checker.js	fixtures,	we	get	a
report	on	the	validity	of	the	JavaScript	files	located	in	fixtures.

Following	screenshot	shows	the	Mac	OS	X	terminal:

Building	a	web	server	with	JavaScript
We’ve	just	learnt	how	to	write	command-line	scripts	with	Node.js.	However,	this	run-time
is	mostly	known	as	server-side	JavaScript,	meaning	this	is	the	software	to	run	an	HTTP-
server.	Actually,	Node.js	is	especially	great	for	this	kind	of	job.	If	we	launch	a	server
application	based	on	Node.js,	it	runs	permanently,	initialized	only	once.	For	instance,	we
may	create	a	single	DB	connection	object	and	reuse	it	whenever	someone	requests	the
application.	Besides,	it	grants	us	all	the	flexibility	and	power	of	JavaScript	including
event-driven,	non-blocking	I/O.

So	how	can	we	make	use	of	this?	Thanks	to	the	HTTP	native	module	of	Node.js,	a	simple
web-server	can	be	implemented	as	easy	as	this:

simple-server.js

"use	strict";

				/**	@type	{module:http}		*/

var	http	=	require("http"),

				/**	@type	{HttpServer}		*/

				server	=	http.createServer(function(request,	response)	{

						response.writeHead(200,	{"Content-Type":	"text/html"});

						response.write("<h1>Requested:	"	+	request.url	+	"</h1>");

						response.end();

				});

server.listen(80);

console.log("Server	is	listening…");

Here	we	created	a	server	with	a	dispatcher	callback	to	handle	HTTP	requests.	Then,	we
make	the	server	listen	on	port	80.	Now	run	node	simple-server.js	from	the	console,
and	then	hit	http://localhost	in	a	browser.	We	will	see	the	following:

Requested:	/

So	we	just	need	to	route	incoming	requests,	read	the	corresponding	HTML	files,	and	send
them	with	the	response	to	make	a	simple	static	web	server.	Or	we	can	install	the	existing
modules,	connect	and	serve-static:

npm	install	connect	serve-static

And	implement	the	server	using	this:

"use	strict";

				/**	@type	{module:connect}		*/

var	connect	=	require("connect"),

				/**	@type	{module:serve-static}		*/

				serveStatic	=	require("serve-static");

connect().use(serveStatic(__dirname)).listen(80);

In	practice,	routing	requests	can	be	a	challenging	task,	so	we	rather	go	with	a	framework.
For	example,	Express.js	(http://expressjs.com).	Then,	our	routing	may	look	like	this:

"use	strict";

http://expressjs.com

				/**	@type	{module:express}		*/

var	express	=	require("express"),

				/**	@type	{module:http}		*/

				http	=	require("http"),

				/**	@type	{Object}		*/

				app	=	express();

//	Send	common	HTTP	header	for	every	incoming	request

app.all("*",	function(request,	response,	next)	{

		response.writeHead(200,	{	"Content-Type":	"text/plain"	});

		next();

});

//	Say	hello	for	the	landing	page

app.get("/",	function(request,	response)	{

		response.end("Welcome	to	the	homepage!");

});

//	Show	use	if	for	requests	like	http://localhost/user/1

app.get("/user/:id",	function(request,	response)	{

		response.end("Requested	ID:	"		+	req.params.id);

});

//	Show	`Page	not	found`	for	any	other	requests

app.get("*",	function(request,	response)	{

		response.end("Opps…	Page	not	found!");

});

http.createServer(app).listen(80);

Writing	a	desktop	HTML5	application
Have	you	ever	wondered	about	writing	a	desktop	application	with	HTML5	and
JavaScript?	Nowadays,	we	can	do	this	quite	easily	with	NW.js.	This	project	is	a	cross-
platform	application	runtime	based	on	Chromium	and	Node.js.	So,	it	provides	a	frameless
browser	where	both	the	DOM	API	and	Node.js	API	are	available.	In	other	words,	we	can
run	NW.js	classical	web-applications,	access	low-level	APIs	(filesystem,	network,
processes,	and	so	on),	and	reuse	the	modules	of	the	NPM	repository.	Interesting?	We’ll
start	a	tutorial	where	we	will	create	a	simple	HTML5	application	and	run	it	with	NW.js.
It’ll	be	a	roster	application	with	a	form	to	enter	names	and	a	list	of	already	submitted	ones.
The	names	will	be	stored	in	localStorage.	Let’s	rock	it.

Setting	up	the	project
First	of	all,	we	have	to	download	the	NW.js	run-time	relevant	to	our	platform	(Mac	OS	X,
Windows,	or	Linux)	from	http://nwjs.io.	Next	to	the	NW.js	executable	(nw.exe,	new.app,
or	nw.	depending	on	the	platform),	we	place	the	package,json	file
(https://github.com/nwjs/nw.js/wiki/manifest-format)	where	we	describe	our	project:

{

		"name":	"roster",

		"main":	"wwwroot/index.html",

		"window":	{

				"title":	"The	Roster",

				"icon":	"wwwroot/roaster.png",

				"position":	"center",

				"resizable":	false,

				"toolbar":	false,

				"frame":	false,

				"focus":	true,

				"width":	800,

				"height":	600,

				"transparent":	true

		}

}

Our	package.json	file	has	three	main	fields.	name	contains	a	unique	name	associated	with
the	project.	Note	that	this	value	will	be	a	part	of	the	directory	path	where	application	data
(sessionStorage,	localStorage,	and	so	on)	is	stored.	main	accepts	a	relative	path	to	the	main
HTML	page	of	the	project.	Eventually,	window	describes	the	browser	window	where	the
HTML	will	be	displayed.

http://nwjs.io
https://github.com/nwjs/nw.js/wiki/manifest-format

Adding	the	HTML5	application
According	to	the	main	field	in	package.json,	we	will	place	our	index.html	in	to	the
wwwroot	subdirectory.	We	can	try	it	with	a	simple	HTML	like	this:

<html>

		<body>

				Hello	world!

		</body>

</html>

NW.js	treats	the	HTML	in	the	same	way	as	a	browser,	so	if	we	now	launch	the	NW.js
executable,	we	will	see	Hello	world!.	To	give	it	look	and	feel	we	can	add	CSS	and
JavaScript.	So	we	can	write	the	code	for	NW.js	in	the	same	way	as	we	do	it	for	a	browser.
Here,	we	have	a	good	opportunity	to	apply	the	principles	that	we	learned	in	Chapter	6,	A
Large-Scale	JavaScript	Application	Architecture.	In	order	to	make	the	example	concise
but	expressive,	we	will	take	the	AngularJS	approach.	First,	we	create	the	HTML.	The
markup	of	the	body	will	be	as	follows:

<main	class="container">

		<form	>

				<div	class="form-group">

						<label	for="name">Name</label>

						<input	class="form-control">

				</div>

				<button	class="btn	btn-danger">Empty	List</button>

				<button	type="submit"	class="btn	btn-primary">Submit</button>

		</form>

		<table	class="table	table-condensed">

				<tr>

						<td></td>

				</tr>

		</table>

</main>

We	defined	a	form	to	submit	new	names	and	a	table	to	display	the	already	stored	names.
To	make	it	prettier,	we	used	Bootstrap	(http://getbootstrap.com)	styles.	The	CSS	file	can
be	loaded	from	a	CDN	as	shown	here:

<link	rel="stylesheet"	

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css

">

Now	we	will	bring	it	to	life	by	adding	the	AngularJS	directives:

<html>

<body	ng-app="myApp"	>

						<main	ng-controller="RosterController"	class="container">

								<form	ng-submit="submit()">

										<div	class="form-group">

												<label	for="name">Name</label>

												<input	class="form-control"	id="name"	name="name"	ng-

model="name"	required	placeholder="Name">

										</div>

http://getbootstrap.com

										<button	ng-click="empty()"	class="btn	btn-danger">Empty	

List</button>

										<button	type="submit"	class="btn	btn-primary">Submit</button>

								</form>

								<table	class="table	table-condensed">

										<tr	ng-repeat="person	in	persons">

												<td>{{person.value}}</td>

										</tr>

								</table>

						</main>

		</body>

</html>

Here	we	declares	a	myApp	module	scope	(<body	ng-app="myApp"	>).	Within	this,	we
defined	a	RosterController	controller.	In	the	boundaries	of	the	controller,	we	bind	our
input	field	to	the	model	name	(<input	ng-model="name">)	and	set	handlers	for	the	form
submit	and	Empty	List	button	click	events	(<form	ng-submit="submit()">	and	<button
ng-click="empty()">).	Lastly,	we	make	a	template	bound	out	of	the	table	to	the
$scope.persons	collection.	So	whenever	the	collection	changes,	the	table	is	updated:

<table	class="table	table-condensed">

		<tr	ng-repeat="person	in	persons">

				<td>{{person.value}}</td>

		</tr>

</table>

Now	it	is	time	to	add	some	JavaScript	to	our	HTML:

<script>

		var	app	=	angular.module("myApp",	["ngStorage"]);

		app.controller("RosterController",	function($scope,	$localStorage)	{

				var	sync	=	function()	{

						$scope.persons	=	JSON.parse($localStorage.persons	||	"[]");

				};

				sync();

				$scope.name	=	"";

				$scope.submit	=	function()	{

						sync();

						$scope.persons.push({	value:	$scope.name	});

						$localStorage.persons	=	JSON.stringify($scope.persons);

				};

				$scope.empty	=	function()	{

						$localStorage.persons	=	"[]";

						sync();

				};

		});

</script>

As	we	intend	to	store	the	data	submitted	in	the	form,	we	can	use	localStorage	that	we
discussed	in	Chapter	4,	HTML5	APIs.	In	order	to	get	localStorage	in	the	AngularJS	way,
we	used	the	ngStorage	module	(https://github.com/gsklee/ngStorage).	So,	we	specify	the
plugin	during	module	initialization,	and	this	makes	the	plugin	available	in	the	controller	as
a	parameter	($localStorage).	In	the	controller	body,	we	have	a	function	sync	that	sets

https://github.com/gsklee/ngStorage

$scope.persons	with	the	person	array	from	localStorage.	We	call	the	sync	function	in	the
form	submit	handler	($scope.submit)	and	in	the	Empty	List	button	on-click	handler
($scope.empty).	It	causes	the	person	table	to	update	every	time.	During	the	handling	of
the	submit	event,	we	append	the	value	of	the	$scope.persons	input	and	save
$scope.persons	in	localStorage.

In	order	to	enable	this	functionality,	we	have	to	load	the	AngularJS	and	ngStorage	plugins:

<script	

src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">

</script>

<script	

src="https://cdnjs.cloudflare.com/ajax/libs/ngStorage/0.3.6/ngStorage.min.j

s"></script>

Now	we	launch	the	NW.js	executable	and	get	the	application	working.	Following
screenshot	shows	Roaster	example	app	in	NW.js	without	styles:

It’s	all	nice,	but	as	we	run	NW.js	frameless,	we	have	no	way	to	even	close	the	application.
Besides,	we	cannot	drag	the	application	window	within	the	desktop.	This	is	easy	to	fix.
We	can	add	an	HTML	fragment	to	the	HTML	body	with	two	buttons	to	close	and
minimize	the	application:

<header	ng-controller="ToolbarController">

		Minimize

		Close

</header>

Now	we	subscribe	listeners	to	these	buttons	that	call	the	close	and	minimize	NW.js
Window	API	(https://github.com/nwjs/nw.js/wiki/Window)	methods	respectively:

https://github.com/nwjs/nw.js/wiki/Window

var	win	=	require("nw.gui").Window.get();

app.controller("ToolbarController",	function($scope)	{

		$scope.close	=	function(){

				win.close();

		};

		$scope.minimize	=	function(){

				win.minimize();

		};

});

In	order	to	make	our	window	drag-able	(https://github.com/nwjs/nw.js/wiki/Frameless-
window),	we	can	use	the	-webkit-app-region	CSS	pseudo-class.	We	set	this	with	the
drag	value	on	the	handle	container	(header)	and	with	the	no-drag	value	on	any	clickable
elements	within	it:

header	{

		-webkit-app-region:	drag;

}

header	a	{

			-webkit-app-region:	no-drag;

}

In	addition,	we	prettify	the	look	and	feel	of	the	page.	Note	that	with	NW.js,	we	can	have	a
transparent	background.	So	we	set	the	border-radius	on	the	html	element	and	the
window	gets	rounded:

html	{

	height:	100%;

	border-radius:	20px;

	background-color:	rgba(0,0,0,0);

}

body	{

		min-height:	100%;

		background:	linear-gradient(to	bottom,		#deefff	0%,#98bede	100%);

		overflow:	auto;

}

header	{

		text-align:	right;

		width:	auto;

		padding:	12px;

		background:	rgba(255,255,255,	0.5);

		border-radius:	20px	20px	0	0;

		-webkit-app-region:	drag;

}

header	a	{

		margin:	12px;

		-webkit-app-region:	no-drag;

}

Now	we	can	launch	our	NW.js	executable	again.	Roaster	example	app	in	NW.js	with
styles	is	shown	in	the	following	screenshot:

https://github.com/nwjs/nw.js/wiki/Frameless-window

Note	that	on	Mac	OS	X/Linux,	we	have	to	launch	with	special	arguments
(https://github.com/nwjs/nw.js/wiki/Transparency)	to	get	the	transparency	effect.	For
example,	we	have	to	do	the	following	on	Mac	OS	X:

open	-n	./nwjs.app	--args	--enable-transparent-visuals	–disable-gpu

https://github.com/nwjs/nw.js/wiki/Transparency

Debugging
Still	something	is	missing.	If	anything	goes	wrong,	how	can	we	debug	and	trace	the
errors?	There	are	a	few	options	available:

Launch	the	NW.js	executable	with	the	--enable-logging	argument	and	get	the	logs
in	stdout.
Launch	the	NW.js	executable	with	--remote-debugging-port	and	access	the
DevTools	application	in	a	remotely	running	Chrome.	For	instance,	we	start	up	the
project	as	nw	--remote-debugging-port=9222	and	look	for	the
http://localhost:9222	page	in	Chrome.
Enable	toolbar	and	frame	for	the	window	in	package.json.

The	first	option	isn’t	quite	handy	in	debugging.	The	second	provides	you	with	a	limited
version	of	DevTools,	and	the	last	option	brings	the	frame	and	can	make	the	application
look	terrible.	Fortunately,	we	can	call	DevTools	programmatically	from	the	app.	So,	on	the
DEVELOPMENT/TEST	environment,	you	can	add	this	code	that	shows	up	DevTools	by
pressing	Ctrl	+	Shift	+	I:

console.info("Here	we	go!");

document.addEventListener("keydown",	function(e){

		var	key	=	parseInt(e.key	||	e.keyCode,	10);

		//	Ctrl-Shift-i

		if	(e.ctrlKey	&&	e.shiftKey	&&	key	===	73)	{

				e.preventDefault();

				win.showDevTools();

		}

},	false);

Programmatically	called	DevTools	in	NW.JS	are	shown	in	the	following	screenshot:

Packaging
To	have	a	real	desktop	application	experience,	we	can	bundle	the	projects	assets	and
NW.js	files	into	a	single	executable.	Firstly	using	ZIP,	we	compress	our	project	directory
(wwwroot)	and	the	accompanying	files	(the	node_modules	directory	and	the	NAPI	plugins)
into	app.nw.	Then,	we	combine	the	archive	with	the	NW.js	executable.	In	Windows,	this
can	be	done	as	follows:

run	copy	/b	nw.exe+app.nw	app.exe

If	the	distribution	of	NW.js	that	is	targeted	for	your	platform	contains	any	components	(for
example,	the	Windows	distribution	includes	DLLs),	inject	them	into	the	newly	created
application	executable	using	Enigma	Virtual	Box	(http://enigmaprotector.com).	Voilà,	now
we	can	distribute	the	project	in	a	single	file.

http://enigmaprotector.com

Using	PhoneGap	to	make	a	mobile	native
app
Well,	now	we	can	make	desktop	applications	with	JavaScript	but	what	about	native	mobile
applications?	There	are	a	number	of	web-based	frameworks	available	for	mobile
development	(https://en.wikipedia.org/wiki/Multiple_phone_web-
based_application_framework).	One	of	the	most	trending	solutions	is	called	Adobe
PhoneGap,	which	is	built	on	top	of	the	Apache	Cordova	project.	By	and	large,	the
PhoneGap	application	consists	of	a	web-stack	(HTML5,	CSS,	and	JavaScript).	Despite	the
fact	that	nowadays,	HTML5	provides	access	to	some	of	the	native	features	(accelerometer,
camera,	contacts,	vibration,	GPS,	and	others),	the	support	across	different	devices	is
inconsistent	and	quirky,	and	performance	is	relatively	poor.	So	PhoneGap	runs	HTML5
inside	a	native	WebView	on	a	device	and	provides	access	to	device	resources	and	APIs
(https://en.wikipedia.org/wiki/Foreign_function_interface).	As	a	result,	we	can	write	a
mobile	application	based	on	HTML5	and	build	it	with	PhoneGap	for	the	devices	and	OS
that	we	support	(iPhone,	Android,	Blackberry,	Windows,	Ubuntu,	Firefox	OS,	and	others).
A	good	point	here	is	that	we	can	reuse	the	components	created	for	the	Web	while
developing	for	mobile.	In	fact,	we	can	bundle	the	Roster	application	that	we	made	for
NW.js	as	a	mobile	app.	So	let’s	do	this.

https://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework
https://en.wikipedia.org/wiki/Foreign_function_interface

Setting	up	the	project
First	of	all	we	need	a	framework.	The	easiest	way	to	install	it	is	by	using	the	NPM	tool:

npm	install	-g	cordova

The	-g	option	means	that	we	install	this	globally	on	the	machine	and	don’t	need	to	do	it
when	setting	up	any	new	project.

Now	we	can	create	a	new	project	with	the	following	command:

cordova	create	roster	org.tempuri.roster	Roster

In	the	roster	subdirectory,	the	tool	creates	a	boilerplate	file	structure	for	the	project
named	Roster	that	is	registered	within	the	org.tempuri.roster	namespace.

Now,	we	need	to	inform	PhoneGap	about	the	platforms	that	we	want	to	support.	So,	we
navigate	to	the	roster	subdirectory	and	type	the	following:

cordova	platform	add	ios

cordova	platform	add	android

Building	the	project
In	the	www	subdirectory,	we	can	find	a	placeholder	HTML5	application.	We	can	replace
this	with	the	roster	application	written	for	NW.js	(without	an	environment-specific	header
container	and	its	listeners	code,	of	course).	In	order	to	check	whether	the	project	was
properly	initialized,	we	run	the	following:

cordova	build	ios

cordova	emulate	ios

Alternatively,	we	can	use	this:

cordova	build	android

cordova	emulate	android

This	builds	the	project	and	displays	it	with	a	platform-specific	emulator.	On	a	Mac,	this	is
how	it	looks.	Roster	example	app	by	PhoneGap	is	shown	in	the	following	screenshot:

Adding	plugins
As	it	was	mentioned	already,	with	PhoneGap,	we	can	access	native	device	features
(http://phonegap.com/about/feature).	Moreover,	we	can	also	install	and	use	native	plugins
available	in	the	Cordova	repository	(http://cordova.apache.org/plugins/).	Let’s	take	one	of
these—cordova-plugin-vibration.	We	can	add	it	to	the	project	as	easy	as	this:

cordova	plugin	add	cordova-plugin-vibration

As	we	have	the	plugin,	we	can	use	its	API	in	our	JavaScript	code:

//	Vibrate	for	3	seconds

navigator.vibrate(3000);

http://phonegap.com/about/feature
http://cordova.apache.org/plugins/

Debugging
As	for	debugging	a	mobile	application,	there	are	a	number	of	options
(https://github.com/phonegap/phonegap/wiki/Debugging-in-PhoneGap).	The	main	idea	is
to	reach	the	application	with	a	desktop	inspector	tool.	In	the	case	of	iOS,	we	go	with	the
Safari	WebInspector	desktop.	Just	find	the	iPhone	Simulator	option	in	the	Develop	menu
and	press	WebView	corresponding	to	your	application	HTML.	Similarly,	we	can	access
Android	WebView	in	Chrome	DevTools
(https://developer.chrome.com/devtools/docs/remote-debugging#debugging-webviews).

https://github.com/phonegap/phonegap/wiki/Debugging-in-PhoneGap
https://developer.chrome.com/devtools/docs/remote-debugging#debugging-webviews

Summary
The	widely	spread	Node.js	run-time	extends	JavaScript	with	a	low-level	API,	which
unlocks	for	us	on	the	methods	of	creating	command-line	tools,	web-servers,	and
specialized	servers	(for	example	UDP-TCP/WebSocket/SSE	servers).	To	see	how	far	we
can	go	beyond	the	Web,	just	consider	a	standalone	OS	NodeOS	built	with	Node.js.	With
HTML5	and	JavaScript	we	can	write	a	desktop	software	and	easily	distribute	it	across
different	platforms.	Similarly,	we	can	compose	a	mobile	application	out	of
HTML5/JavaScript	and	native	APIs.	Using	tools	such	as	PhoneGap,	we	can	build	the
application	for	diverse	mobile	platforms.

In	this	chapter,	we	learned	how	to	access	DevTools	to	debug	NW.js	and	PhoneGap
applications.	In	the	next	chapter,	we	will	talk	about	how	to	use	DevTools	efficiently.

Chapter	8.	Debugging	and	Profiling
Debugging	is	a	tricky	part	of	programming.	Bugs	during	development	are	unavoidable.
Whatever	our	experience,	we	have	to	spend	quite	a	time	on	hunting	them.	It	happens.	By
the	looks	of	the	code	you	may	not	find	the	bug,	there	probably	must	be	no	problem	with
the	application,	yet	a	developer	fights	for	hours	until	they	run	into	a	silly	reason	such	as	a
misprinted	property	name.	Much	of	this	time	could	be	saved	by	making	a	better	use	of
browser	development	tools.	So	we	will	consider	in	this	chapter	the	following	topics:

How	to	discover	bugs
Getting	the	best	from	a	console	API
How	to	tune	performance

Hunting	bugs
Debugging	is	about	finding	and	resolving	defects	that	prevent	the	intended	application
behavior.	Here,	what	is	crucial	is	to	find	the	code	causing	the	problem.	What	do	we
usually	do	when	we	encounter	a	bug?	Let’s	say,	we	have	a	form	that	is	assumed	to	run	a
validation	on	a	submit	event,	but	it	doesn’t.	First	of	all,	we	have	a	number	of	assumptions
to	be	met.	For	example,	if	the	reference	to	the	form	element	is	valid,	if	the	event	and
method	name	were	spelled	correctly	during	registering	a	listener,	if	the	object	context	is
not	lost	in	the	body	of	the	listener,	and	so	on.

Some	bugs	can	be	discovered	automatically	such	as	by	validating	input	and	output	on	the
entry	and	exit	points	of	methods	(see	Design	by	contract	at:
https://en.wikipedia.org/wiki/Design_by_contract).	However,	we	have	to	spot	other	bugs
manually,	and	here	we	can	use	two	options.	Starting	from	the	point	where	the	code	is
surely	correct	step	by	step	to	the	problem	point	(bottom-up	debugging),	or	on	the	contrary,
stepping	back	from	the	break	point	to	find	the	source	of	the	break.	Here,	browser
development	tools	can	come	in	handy.

The	most	advanced	one	is	Chrome	DevTools.	We	can	open	the	Sources	panel	in	it	and	set
breakpoints	in	the	code.	The	browser	stops	execution	while	reaching	a	breakpoint	and
shows	a	pane	with	an	actual	variable	scope	and	call	stack.	It	also	provides	controls	that
one	can	use	to	step-through	the	code	back	and	forth	one	line	at	a	time.	Following
screenshot	shows	debugging	with	the	help	of	breakpoints:

However,	this	can	be	tricky	to	navigate	through	codebase	in	DevTools.	Fortunately,	you
can	set	a	break	point	out	of	the	browser	directly	in	the	IDE.	You	just	need	to	put	the
debugger	statement	on	the	line	where	you	want	the	browser	to	break.

Sometimes,	it	is	hard	to	figure	out	what’s	going	on	with	the	DOM.	We	can	make	DevTools
to	do	a	break	on	the	DOM	events	such	as	node	removal,	node	modification,	and	subtree

https://en.wikipedia.org/wiki/Design_by_contract

changes.	Just	navigate	to	the	HTML	element	in	the	Sources	panel,	right-click,	and	choose
the	Break	on…	option.

Besides,	in	the	Source	panel	there	is	a	tab	called	XHR	Breakpoints	where	we	can	set	a
list	of	URLs.	The	browser	will	then	break	when	any	of	the	URLs	are	requested.

You	can	also	find	an	icon	in	form	of	stop	sign	in	the	top	of	Source	panel	sidebar.	If	this
button	is	clicked,	DevTools	will	break	on	any	caught	exception	and	bring	to	you	the	throw
location	in	the	source	code.	Following	screenshot	shows	how	to	use	Pause	on	Caught
Exception	tool:

Note
For	more	information,	see	https://developer.chrome.com/devtools/docs/javascript-
debugging.

https://developer.chrome.com/devtools/docs/javascript-debugging

Getting	the	best	from	a	console	API
Despite	it	being	not	a	part	of	JavaScript,	we	all	use	console	API	extensively	to	find	out
what	is	really	happening	during	an	app	life	cycle.	The	API,	once	introduced	by	the
Firebug	tool,	is	now	available	in	every	major	JavaScript	agent.	Most	developers	just	do
simple	logging	using	methods	such	as	error,	trace,	log,	and	the	decorator	such	as	info	and
warn.	Well,	when	we	pass	any	values	to	console.log,	they	are	presented	to	the
JavaScript	Console	panel.	Usually,	we	pass	a	string	describing	a	case	and	a	list	of	various
objects	that	we	want	to	inspect.	However,	did	you	know	that	we	can	refer	to	these	objects
directly	from	the	string	in	the	manner	of	the	PHP	sprintf?	So	the	string	given	as	the	first
argument	can	be	a	template	that	contains	format	specifiers	for	the	rest	of	the	arguments:

var	node	=	document.body;

console.log("Element	%s	has	%d	child	nodes;	JavaScript	object	%O,	DOM	

element	%o",

		node.tagName,

		node.childNodes.length,

		node,

		node);

The	available	specifiers	are	%s	for	strings,	%d	for	numbers,	%o	for	DOM	elements,	and	%O
for	JavaScript	objects	(the	same	as	console.dir).	Besides,	there	is	a	particular	specifier
that	allows	us	to	style	the	console.log	report.	This	can	be	very	useful.	In	practice,	the
application	console	receives	too	many	log	records.	It	gets	hard	to	make	out	the	desired
messages	among	a	hundred	similar	messages.	What	we	can	do	is	categorize	the	messages
and	style	them	accordingly:

console.log.user	=	function(){

		var	args	=	[].slice.call(arguments);

		args.splice(0,	0,	"%c	USER	",

				"background-color:	#7DB4B5;	border-radius:	3px;	color:	#fff;	font-

weight:	bold;	");

		console.log.apply(console,	args);

};

console.log.event	=	function(){

		var	args	=	[].slice.call(arguments);

		args.splice(0,	0,	"%c	EVENT	",

				"background-color:	#f72;	border-radius:	3px;	color:	#fff;	font-weight:	

bold;	");

		console.log.apply(console,	args);

};

console.log("Generic	log	record");

console.log.user("User	click	button	Foo");

console.log.event("Bar	triggers	`Baz`	event	on	Qux");

In	this	example,	we	defined	two	methods	extending	console.log.	One	prefixes	console
messages	with	USER	on	cyan	and	is	intended	for	user	action	events.	The	second	prepends
reports	with	EVENT	and	is	meant	to	highlight	mediator	events.	Following	screenshot
explains	colorized	output	with	console.log:

Another	lesser	known	trick	is	the	use	of	console.assert	for	assertions	in	code	logic.	So,
we	assume	that	a	condition	is	true	and	until	it	is	everything	is	fine	and	we	get	no
messages.	But	as	soon	as	it	fails,	we	get	a	record	in	the	console:

console.assert(sessionId	>	0,	"Session	is	created");

Following	screenshot	shows	how	to	use	console	assertions:

Sometimes	we	need	to	know	how	often	an	event	happens.	Here	we	can	use	the
console.count	method:

function	factory(constr){

		console.count("Factory	is	called	for	"	+	constr);

		//	return	new	window[constr]();

}

factory("Foo");

factory("Bar");

factory("Foo");

This	displays	in	the	console	the	specified	message	and	an	auto-updating	counter	next	to	it.
Following	screenshot	shows	how	to	use	console.count:

Note
You	can	find	out	more	about	working	with	the	console	at
https://developer.chrome.com/devtools/docs/console.

https://developer.chrome.com/devtools/docs/console

Tuning	performance
Performance	makes	user	experience.	If	it	takes	too	long	to	load	a	page	or	a	UI	to	respond,
the	user	is	likely	to	leave	the	application	and	never	come	back.	It’s	especially	true	with
web	apps.	In	Chapter	3,	DOM	Scripting	and	AJAX,	we	compared	different	approaches	to
manipulate	the	DOM.	In	order	to	find	out	how	fast	an	approach	is,	we	use	a	performance
built-in	object:

"use	strict";

var	cpuExpensiveOperation	=	function(){

						var	i	=	100000;

						while(--i)	{

								document.body.appendChild(document.createElement("div"));

						}

				},

				//	Start	test	time

				s	=	performance.now();

cpuExpensiveOperation();

console.log("Process	took",	performance.now()	-	s,	"ms");

performance.now()	returns	a	high	resolution	timestamp	that	represents	time	in
milliseconds	accurate	to	microseconds.	This	is	designed	and	widely	used	for
benchmarking.	However,	a	time/timeEnd	console	object	also	provides	methods	to
measure	time:

console.time("cpuExpensiveOperation	took");

cpuExpensiveOperation();

console.timeEnd("cpuExpensiveOperation	took");

Following	screenshot	shows	measuring	time	with	console:

If	we	need	to	know	what	exactly	is	going	on	during	an	operation	execution,	we	can
request	a	profile	for	that	period:

console.profile("cpuExpensiveOperation");

cpuExpensiveOperation();

console.profileEnd("cpuExpensiveOperation");

Following	screenshot	shows	how	to	use	console	API	for	profiling:

Moreover,	we	can	mark	the	exact	time	of	the	event	in	the	Timeline	panel	of	DevTools:

cpuExpensiveOperation();	

console.timeStamp("cpuExpensiveOperation	finished");

Following	screenshot	shows	how	to	mark	events	on	Timeline	during	a	recording	session:

When	tuning	performance,	we	have	to	pay	particular	attention	to	the	response	time.	There
are	a	number	of	techniques	that	can	be	used	to	improve	user	experience	during	bootstrap
(non-blocking	JavaScript	and	CSS	loading,	critical	CSS,	moving	static	files	CDN,	and
others).	Well,	let’s	say	you	decide	to	load	CSS	asynchronously
(https://www.npmjs.com/package/asynccss)	and	cache	into	localStorage.	But	how	would
you	test	whether	you	gained	anything	from	this?	Fortunately,	DevTools	has	a	filmstrip
feature.	We	just	need	to	open	the	Network	panel,	enable	Screenshot	capturing	and	reload
the	page.

DevTools	shows	us	the	progress	of	the	page	load	frame	after	frame	as	the	user	sees	the
page	during	the	load	process.	Besides,	we	can	manually	set	a	connection	speed	(throttling)
for	a	test	and	find	out	how	it	affects	the	filmstrip.	Following	screenshot	shows	how	to
getting	filmstrip	of	page	loading:

https://www.npmjs.com/package/asynccss

Summary
Debugging	is	an	integral	part	of	web	development.	It	can	also	be	a	pretty	sluggish	and
tedious	task.	With	browser	development	tools,	we	can	reduce	the	time	spent	on	hunting
bugs.	We	can	set	breakpoints	in	a	code	and	move	step	by	step	to	the	source	of	the	problem
in	the	same	way	that	the	program	does.	When	using	Chrome	DevTools,	we	can	watch	for
DOM	modification	events	and	for	specific	URL	requests.	When	tuning	performance,	we
can	measure	time	with	time/timeEnd	and	request	a	process	profile	with
profile/profileEnd.	Using	features	such	as	filmstrip	and	throttling,	we	can	look	at	the
page	load	on	different	connections.

We	started	this	book	by	reviewing	JavaScript	core	features.	We’ve	learned	how	to	make	a
code	more	expressive	by	means	of	syntactic	sugar,	practiced	object	iteration	and	collection
normalization,	compared	various	approaches	to	declare	an	object	including	ES6	classes,
and	found	out	how	to	use	the	magic	methods	of	JavaScript.	Then,	we	dived	into	modular
programming.	We	talked	about	module	pattern	and	modules	in	general	and	reviewed	three
main	approaches	to	modularization	in	JavaScript	AMD,	CommonJS,	and	ES6	modules.
The	next	topic	was	about	keeping	high-performance	DOM	manipulations.	We	also
examined	Fetch	API.	We	also	considered	some	of	most	exciting	HTML5	APIs	such
Storage,	IndexedDB,	workers,	SSE,	and	WebSocket,	and	the	technologies	under	the	hood
of	Web	Component.	We	considered	techniques	to	leverage	a	JavaScript	event	loop	and	to
build	nonblocking	applications.	We	practiced	with	design	patterns	in	JavaScript	and
covered	concern	separations.	We	wrote	a	simple	application	in	three	frameworks,
Backbone,	Angular,	and	React.	We	tried	out	Node.js	by	creating	a	command-line	utility
and	exposing	a	web	server.	We	also	created	a	demo	desktop	application	with	NW.js	and	its
mobile	version	with	PhoneGap.	At	last,	we	talked	about	bug	hunting.

Index
A

access
controlling,	to	arbitrary	properties	/	Controlling	access	to	arbitrary	properties

accessors,	in	ES6	classes
about	/	Accessors	in	ES6	classes

advantages,	module
cleaner	global	scope	/	Cleaner	global	scope
code,	packaging	into	files	/	Packaging	code	into	files
reuse	/	Reuse

AMD
about	/	Module	standards

Android	WebView,	in	Chrome	DevTools
reference	link	/	Debugging

Angular
URL	/	Angular
about	/	Angular

arbitrary	properties
access,	controlling	to	/	Controlling	access	to	arbitrary	properties

array-like	object
enumerating	/	Enumerating	an	array-like	object

array	join
versus	concatenation	/	Concatenation	versus	array	join

array	methods,	in	ES5
about	/	Array	methods	in	ES5

array	methods,	in	ES6
about	/	Array	methods	in	ES6

arrays
manipulating,	in	ES5	/	Manipulating	arrays	in	the	ES5	way

arrow	functions	/	Arrow	functions
Async.js

URL	/	Parallel	tasks	and	task	series	with	the	Async.js	library
parallel	tasks	/	Parallel	tasks	and	task	series	with	the	Async.js	library
task	serious	/	Parallel	tasks	and	task	series	with	the	Async.js	library

Async/Await	API
reference	link	/	Handling	asynchronous	functions	in	the	ES7	way

asynccss
reference	link	/	Tuning	performance

asynchronous	functions
handling,	in	ES7	/	Handling	asynchronous	functions	in	the	ES7	way

asynchronous	modules,	using	in	browsers
about	/	How	to	use	asynchronous	modules	in	the	browser

pros	/	Pros	and	cons
cons	/	Pros	and	cons

augmentation
about	/	Augmentation

B
Babel.js

URL	/	Design	patterns	in	JavaScript
Backbone

about	/	Backbone
URL	/	Backbone

Bootstrap
URL	/	Adding	the	HTML5	application

Browserify
URL	/	Transpiling	CommonJS	for	in-browser	use

bugs
discovering	/	Hunting	bugs

built-in	module	system,	JavaScript
about	/	JavaScript’s	built-in	module	system
named	exports	/	Named	exports
default	export	/	Default	export
module	loader	API	/	The	module	loader	API
conclusion	/	Conclusion

Business	Intelligence	Server	(BI	Server)	/	Boosting	performance	with	JavaScript
workers

C
Callback	Hell

about	/	Error-first	Callback
URL	/	Error-first	Callback

callbacks
writing,	don’t	impact	latency-critical	events	/	Writing	callbacks	that	don’t
impact	latency-critical	events

classes,	in	ES6
about	/	Classes	in	ES6

CMDER
URL	/	How	to	–	use	synchronous	modules	on	the	server

code,	enhancing
about	/	Make	your	code	readable	and	expressive
function	argument	default	value	/	Function	argument	default	value
conditional	invocation	/	Conditional	invocation
arrow	functions	/	Arrow	functions
method	definitions	/	Method	definitions
rest	operator	/	The	rest	operator
spread	operator	/	The	spread	operator

coding	of	command-line	program
leveling	up,	in	JavaScript	/	Levelling	up	the	coding	of	a	command-line	program
in	JavaScript

collections,	of	ES6	/	The	collections	of	ES6
COMET

about	/	Learning	to	use	server-to-browser	communication	channels
Common	Gateway	Interface	(CGI)	/	Web	Sockets
CommonJS

traspiling,	for	in-browser	use	/	Transpiling	CommonJS	for	in-browser	use
CommonJS	1.1

about	/	Module	standards
CommonJS	Compiler

URL	/	Multi-line	strings	via	transpilers,	Transpiling	CommonJS	for	in-browser
use

communication,	with	server
about	/	Communicating	with	the	server

communication	API
about	/	Communicating	with	the	server
XHR	/	XHR
Fetch	API	/	Fetch	API

concatenation
versus	array	join	/	Concatenation	versus	array	join

concern	separation,	in	JavaScript
about	/	Understanding	concern	separation	in	JavaScript

Model	View	ViewModel	(MVVM)	/	MVVM
conditional	invocation	/	Conditional	invocation
console

reference	link	/	Getting	the	best	from	a	console	API
console	API

using	/	Getting	the	best	from	a	console	API
Continuation-passing	style	(CPS)

about	/	Continuation-passing	style
Contra

URL	/	Parallel	tasks	and	task	series	with	the	Async.js	library
Cross-Site	Scripting	attacks

about	/	Web	Storage	API
Custom	Elements	/	Creating	the	first	web	component

D
data

storing,	in	web-browser	/	Storing	data	in	web-browser
date	picker	component

reference	link	/	Creating	the	first	web	component
debouncing

about	/	Debouncing
debugging,	JavaScript

reference	link	/	Hunting	bugs
default	export

about	/	Default	export
Design	by	contract

reference	link	/	Hunting	bugs
design	patterns,	JavaScript

about	/	Design	patterns	in	JavaScript
desktop	HTML5	application

writing	/	Writing	a	desktop	HTML5	application
project,	setting	up	/	Setting	up	the	project
adding	/	Adding	the	HTML5	application
debugging	/	Debugging
packaging	/	Packaging

Dexie
URL	/	IndexedDB

DOM
traversing	/	Traversing	the	DOM
modifying	/	Changing	the	DOM
styling	/	Styling	the	DOM

DOM	events
handling	/	Handling	DOM	events

Do	Not	Repeat	Yourself	(DRY)	principle	/	Classical	approach

E
EcmaScript	for	XML	(E4X)	/	Mastering	multiline	strings	in	JavaScript
Enigma	Virtual	Box

URL	/	Packaging
Error-first	Callback

about	/	Error-first	Callback
ES5

arrays,	manipulating	in	/	Manipulating	arrays	in	the	ES5	way
array	methods	/	Array	methods	in	ES5

ES6
array	methods	/	Array	methods	in	ES6
collections	/	The	collections	of	ES6
classes	/	Classes	in	ES6

ES6	classes
accessors	/	Accessors	in	ES6	classes

ES6	modules
bundling,	for	synchronous	loading	/	Bundling	ES6	modules	for	synchronous
loading

ES7
asynchronous	functions,	handling	in	/	Handling	asynchronous	functions	in	the
ES7	way

esprima	parser
reference	link	/	Levelling	up	the	coding	of	a	command-line	program	in
JavaScript

Event.currentTarget
reference	link	/	Handling	DOM	events

event	handling	optimization
about	/	Event	handling	optimization
debouncing	/	Debouncing
throttling	/	Throttling

Event	Queues
about	/	Nonblocking	JavaScript

Exoskeleton
URL	/	Backbone

Express.js
URL	/	Building	a	web	server	with	JavaScript

ExtendClass
about	/	Approach	with	ExtendClass
URL	/	Approach	with	ExtendClass

F
Fetch	API

about	/	Fetch	API
URL	/	Fetch	API

FileSystem	API
about	/	FileSystem	API

foreign	function	interface
reference	link	/	Using	PhoneGap	to	make	a	mobile	native	app

fs	module
reference	link	/	Levelling	up	the	coding	of	a	command-line	program	in
JavaScript

function	argument	default	value	/	Function	argument	default	value

G
Grunt

URL	/	Transpiling	CommonJS	for	in-browser	use

H
high-speed	DOM	operations

about	/	High-speed	DOM	operations
DOM,	traversing	/	Traversing	the	DOM
DOM,	modifying	/	Changing	the	DOM
DOM,	styling	/	Styling	the	DOM
attributes,	using	/	Making	use	of	attributes	and	properties
properties,	using	/	Making	use	of	attributes	and	properties
DOM	events,	handling	/	Handling	DOM	events

HTML5	video	element
reference	link	/	Creating	the	first	web	component

HTML	Imports	/	Creating	the	first	web	component
HTTP	cookies

about	/	Web	Storage	API

I
Immediately	Invoked	Function	Expression	(IIFE)	/	Module	patterns
in-browser	use

CommonJS,	traspiling	for	/	Transpiling	CommonJS	for	in-browser	use
IndexedDB

about	/	IndexedDB
inheritance

with	prototype	chain	/	Inheritance	with	the	prototype	chain

J
JavaScript

multiline	strings,	mastering	in	/	Mastering	multiline	strings	in	JavaScript
magic	methods	/	How	to	–	magic	methods	in	JavaScript
built-in	module	system	/	JavaScript’s	built-in	module	system
design	patterns	/	Design	patterns	in	JavaScript
concern	separation	/	Understanding	concern	separation	in	JavaScript
coding	of	command-line	program,	leveling	up	in	/	Levelling	up	the	coding	of	a
command-line	program	in	JavaScript
web-server,	building	with	/	Building	a	web	server	with	JavaScript

JavaScript	MV*	frameworks
about	/	Using	JavaScript	MV*	frameworks
Backbone	/	Backbone
Angular	/	Angular
React	/	React

JavaScript	workers
performance,	boosting	with	/	Boosting	performance	with	JavaScript	workers
reference	link	/	Boosting	performance	with	JavaScript	workers

Jetty
URL	/	Web	Sockets

JSX
URL	/	Multi-line	strings	via	transpilers

K
key-value	object

iterating	/	Iterating	the	key-value	object	safely	and	fast

L
Learning	JavaScript	Design	Patterns

URL	/	Design	patterns	in	JavaScript
LIFO	(last	in,	first	out)	/	Nonblocking	JavaScript
localStorage	interface

about	/	Web	Storage	API

M
Mac	OS	X	Terminal	/	Levelling	up	the	coding	of	a	command-line	program	in
JavaScript
magic	methods,	JavaScript	/	How	to	–	magic	methods	in	JavaScript
mess	modular	JavaScript

getting	out	of	/	How	to	get	out	of	a	mess	using	modular	JavaScript
method	definitions	/	Method	definitions
Mocha.js

URL	/	Transpiling	CommonJS	for	in-browser	use
Model	View	Controller	(MVC)	/	Understanding	concern	separation	in	JavaScript
Model	View	ViewModel	(MVVM)

about	/	MVVM
reference	link	/	MVVM

module
about	/	Modules
advantages	/	Modules

module	loader	API
about	/	The	module	loader	API

module	patterns
about	/	Module	patterns

module	standards
about	/	Module	standards

multi-line	strings
via	traspilers	/	Multi-line	strings	via	transpilers

multiline	strings
mastering,	in	JavaScript	/	Mastering	multiline	strings	in	JavaScript

N
named	exports

about	/	Named	exports
ngStorage	module

URL	/	Adding	the	HTML5	application
Node

reference	link	/	High-speed	DOM	operations
Node.js

URL	/	How	to	–	use	synchronous	modules	on	the	server,	Levelling	up	the
coding	of	a	command-line	program	in	JavaScript

nodejs-websocket
reference	link	/	Web	Sockets

nonblocking	JavaScript
about	/	Nonblocking	JavaScript

NPM	repository
reference	link	/	Levelling	up	the	coding	of	a	command-line	program	in
JavaScript

NW.js
URL	/	Setting	up	the	project

NW.js	Window	API
URL	/	Adding	the	HTML5	application

O
object

traversing	/	Traversing	an	object	in	an	elegant,	reliable,	safe,	and	fast	way
Object.assign

used,	for	inheriting	from	prototype	/	Inheriting	from	prototype	with
Object.assign

Object.create
used,	for	inheriting	from	prototype	/	Inheriting	from	prototype	with
Object.create

objects,	declaring
about	/	The	most	effective	way	of	declaring	objects
classical	approach	/	Classical	approach
private	state	/	Approach	with	the	private	state

P
performance

boosting,	with	JavaScript	workers	/	Boosting	performance	with	JavaScript
workers
about	/	Tuning	performance
tuning	/	Tuning	performance

PhoneGap,	used	for	making	mobile	native	app
about	/	Using	PhoneGap	to	make	a	mobile	native	app
project,	setting	up	/	Setting	up	the	project
project,	building	/	Building	the	project
plugins,	adding	/	Adding	plugins
debugging	/	Debugging

PostMessage	API
URL	/	Boosting	performance	with	JavaScript	workers

Promise
about	/	Fetch	API

Promise.all	static	method
reference	link	/	Continuation-passing	style

R
Ratchet

URL	/	Web	Sockets
React

about	/	React
URL	/	React

requestIdleCallback	native	method
reference	link	/	Writing	callbacks	that	don’t	impact	latency-critical	events

RequireJS
URL	/	Pros	and	cons

Response	object
reference	link	/	Fetch	API

rest	operator
about	/	The	rest	operator

S
selectors

reference	link	/	Traversing	the	DOM
Server-Sent	Events	(SSE)

about	/	Server-Sent	Events
server-to-browser	communication	channels

about	/	Learning	to	use	server-to-browser	communication	channels
Server-Sent	Events	(SSE)	/	Server-Sent	Events
Web	Sockets	/	Web	Sockets

sessionStorage	interface
about	/	Web	Storage	API

Shadow	DOM	/	Creating	the	first	web	component
Socket.IO

URL	/	Web	Sockets
spread	operator

about	/	The	spread	operator
synchronous	loading

ES6	modules,	bundling	for	/	Bundling	ES6	modules	for	synchronous	loading
synchronous	modules,	on	server

about	/	How	to	–	use	synchronous	modules	on	the	server
pros	/	Pros	and	cons
cons	/	Pros	and	cons

T
template	literal

about	/	Template	literal
throttling

about	/	Throttling
TODO	application,	MVP	implementation

URL	/	Understanding	concern	separation	in	JavaScript
TodoMVC

URL	/	Using	JavaScript	MV*	frameworks
Tornado

URL	/	Web	Sockets

U
UMD

about	/	UMD
URL	/	UMD

W
web-based	frameworks,	for	mobile	development

reference	link	/	Using	PhoneGap	to	make	a	mobile	native	app
web-browser

data,	storing	in	/	Storing	data	in	web-browser
web-server

building,	with	JavaScript	/	Building	a	web	server	with	JavaScript
web	component

creating	/	Creating	the	first	web	component
Websocketd

URL	/	Web	Sockets
Web	Sockets

about	/	Web	Sockets
Web	SQL	Database

about	/	IndexedDB
Web	Storage

about	/	Web	Storage	API
Web	Storage	API

about	/	Web	Storage	API
Windows	CMD

about	/	Levelling	up	the	coding	of	a	command-line	program	in	JavaScript

X
XHR

about	/	XHR
references	/	XHR

Z
Zero	Framework	Manifesto

URL	/	Using	JavaScript	MV*	frameworks

	JavaScript Unlocked
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Diving into the JavaScript Core
	Make your code readable and expressive
	Function argument default value
	Conditional invocation
	Arrow functions
	Method definitions
	The rest operator
	The spread operator
	Mastering multiline strings in JavaScript
	Concatenation versus array join
	Template literal
	Multi-line strings via transpilers
	Manipulating arrays in the ES5 way
	Array methods in ES5
	Array methods in ES6
	Traversing an object in an elegant, reliable, safe, and fast way
	Iterating the key-value object safely and fast
	Enumerating an array-like object
	The collections of ES6
	The most effective way of declaring objects
	Classical approach
	Approach with the private state
	Inheritance with the prototype chain
	Inheriting from prototype with Object.create
	Inheriting from prototype with Object.assign
	Approach with ExtendClass
	Classes in ES6
	How to – magic methods in JavaScript
	Accessors in ES6 classes
	Controlling access to arbitrary properties
	Summary
	2. Modular Programming with JavaScript
	How to get out of a mess using modular JavaScript
	Modules
	Cleaner global scope
	Packaging code into files
	Reuse
	Module patterns
	Augmentation
	Module standards
	How to use asynchronous modules in the browser
	Pros and cons
	How to – use synchronous modules on the server
	Pros and cons
	UMD
	JavaScript's built-in module system
	Named exports
	Default export
	The module loader API
	Conclusion
	Transpiling CommonJS for in-browser use
	Bundling ES6 modules for synchronous loading
	Summary
	3. DOM Scripting and AJAX
	High-speed DOM operations
	Traversing the DOM
	Changing the DOM
	Styling the DOM
	Making use of attributes and properties
	Handling DOM events
	Communicating with the server
	XHR
	Fetch API
	Summary
	4. HTML5 APIs
	Storing data in web-browser
	Web Storage API
	IndexedDB
	FileSystem API
	Boosting performance with JavaScript workers
	Creating the first web component
	Learning to use server-to-browser communication channels
	Server-Sent Events
	Web Sockets
	Summary
	5. Asynchronous JavaScript
	Nonblocking JavaScript
	Error-first Callback
	Continuation-passing style
	Handling asynchronous functions in the ES7 way
	Parallel tasks and task series with the Async.js library
	Event handling optimization
	Debouncing
	Throttling
	Writing callbacks that don't impact latency-critical events
	Summary
	6. A Large-Scale JavaScript Application Architecture
	Design patterns in JavaScript
	Understanding concern separation in JavaScript
	MVVM
	Using JavaScript MV* frameworks
	Backbone
	Angular
	React
	Summary
	7. JavaScript Beyond the Browser
	Levelling up the coding of a command-line program in JavaScript
	Building a web server with JavaScript
	Writing a desktop HTML5 application
	Setting up the project
	Adding the HTML5 application
	Debugging
	Packaging
	Using PhoneGap to make a mobile native app
	Setting up the project
	Building the project
	Adding plugins
	Debugging
	Summary
	8. Debugging and Profiling
	Hunting bugs
	Getting the best from a console API
	Tuning performance
	Summary
	Index

