
www.allitebooks.com

http://www.allitebooks.org

JavaScript Testing
Beginner's Guide

Test and debug JavaScript the easy way

Liang Yuxian Eugene

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript Testing

Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmited in any form or by any means, without the prior writen permission of the
publisher, except in the case of brief quotaions embedded in criical aricles or reviews.

Every efort has been made in the preparaion of this book to ensure the accuracy of the
informaion presented. However, the informaion contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark informaion about all of the
companies and products menioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this informaion.

First published: August 2010

Producion Reference: 1130810

Published by Packt Publishing Ltd.

32 Lincoln Road
Olton

Birmingham, B27 6PA, UK.

ISBN: 978-1-849510-00-4

www.packtpub.com

Cover Image by Vinayak Chitar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Liang Yuxian Eugene

Reviewers

Chetan Akarte

Kenneth Geisshirt

Stefano Provenzano

Aaron Saray

Mihai Vilcu

Acquisiion Editor

Steven Wilding

Development Editor

Tarun Singh

Technical Editors

Paramanand N. Bhat

Pooja Pande

Copy Editors

Lakshmi Menon

Janki Mathuria

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Vincila Colaco

Indexer

Hemangini Bari

Proofreader

Dirk Manuel

Producion Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Liang Yuxian Eugene enjoys solving diicult problems creaively in the form of building
web applicaions by using Python/Django and JavaScript/JQuery. He also enjoys doing
research related to the areas of recommendaion algorithms, link analysis, data visualizaion,
data mining, informaion retrieval, business intelligence, and intelligent user interfaces. He is
currently pursuing two degrees, Business Administraion and Computer Science at Naional
Cheng Chi University (NCCU) at Taipei, Taiwan. Eugene has recently started a personal blog at
http://www.liangeugene.com.

I want to thank all of the great folks at Packt Publishing for giving me the

opportunity to write this book. This book would not be possible without

the help, advice and imely correspondence of Steven Wilding, Tarun Singh,
Vincila Colaco and Priya Mukherji of Packt Publishing.

I want to thank Professor Johannes K. Chiang (Department of Management
of Informaion Systems, NCCU) and Professor Li Tsai Yen (Department of
Computer Science, NCCU) for their unwavering generosity in providing

both personal and professional advice to me whenever I needed it.

I want to thank my family and friends for their coninued support.

Last but not the least, I want to thank Charlene Hsiao for her kind
understanding and ireless support for me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Chetankumar D. Akarte has been working in PHP, JavaScript and .Net for the last
ive years. He has worked extensively on both small scale and large scale PHP and .Net
ecommerce, social networking, Wordpress and Joomla based web projects. Over the years,

Chetan has been acively involved in the "Xfunda Developers Community". He has regularly
blogged on Microsot .NET technology at http://www.tipsntracks.com.

Chetan completed a Bachelor of Engineering degree in Electronics from the Nagpur University,

India in 2006. He likes contribuing to newsgroups, and forums. He has also writen some
aricles for Electronics For You, DeveloperIQ, and Flash & Flex Developer's magazines.

Chetan lives in Navi Mumbai, India. You can visit his websites at http://www.xfunda.

com and http://www.tipsntracks.com, or get in touch with him at chetan.akarte@

gmail.com.

I would like to thank my sister Poonam and brother-in-law Vinay for their
consistent support and encouragement. I would also like to thank Packt

Publishing for providing me with the opportunity to do something

useful, and especially my Project Coordinator Vincila Colaco for all

of the valuable support.

Kenneth Geisshirt is a chemist by educaion and a geek by nature. He has been
programing for more than 25 years–the last six years as a subcontractor. In 1990 Kenneth
irst used free sotware, and in 1992 turned to Linux as a primary operaing system (oicially
Linux user no. 573 at the Linux Counter). He has writen books about Linux, PAM, and
Javascript–and many aricles on open source sotware for computer magazines. Moreover,
Kenneth has been a technical reviewer of books on Linux network administraion and the
Vim editor.

www.allitebooks.com

http://www.allitebooks.org

Stefano Provenzano is an Italian senior consultant and professional sotware engineer.
Stefano has worked on several projects in diferent ields of computer science—3D realime
engines for PC and Playstaion games, visual simulaion and virtual prototyping, web
applicaions, and system integraion. In 2006, Stefano started his own sotware development
and consuling company, Shin Sotware. Currently, Stefano is developing CRM and INTRANET
applicaions by using PHP and Javascript.

I want to thank my wife Irene and my litle son Davide.

Aaron Saray found love when he was eight. It was in the shapely form of a Commodore

64. From then on, he coninued to devote his ime to various programing languages from
BASIC to Pascal, PHP to Javascript, HTML to CSS. Aaron is both an author of a PHP Design
Paterns book and a technical editor of other PHP and Javascript books. He has also worked
as a professional in the Web Development ield for almost a decade, and comes with a solid
history to provide his vast experience to the review of this book. You can ind more about his
work at his technical blog by visiing http://aaronsaray.com/blog.

As each book project becomes complete, I learn more about my industry

and myself. I want to speciically thank my best friend for consistently
reminding me that life is always beter with balance.

Mihai Vilcu has had exposure to top technologies in tesing for both automated and
manual tesing. "Sotware tesing excellence" is the moto that drives Mihai's career". This
includes funcional and non-funcional tesing. Mihai was also involved over several years in
large scale tesing projects.

Some of the applicaions covered by Mihai in his career include CRMs, ERPs, billing
plaforms, raing, collecion and business process management applicaions.

As sotware plaforms are used intensely in many industries, Mihai has performed tesing in
ields like telecom, banking, healthcare, sotware development, and others.

Feel free to contact Mihai for quesions regarding tesing on his email: mvilcu@mvfirst.ro,

or directly on his website at www.mvfirst.ro.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: What is JavaScript Tesing? 7
Where does JavaScript it into the web page? 8

HTML Content 8
Time for acion – building a HTML document 9

Styling HTML elements using its atributes 11

Specifying id and class name for an HTML element 12

Cascading Style Sheets 12

Time for acion – styling your HTML document using CSS 14
Referring to an HTML element by its id or class name and styling it 18
Diferences between a class selector and an id selector 19

Other uses for class selectors and id selectors 20

Complete list of CSS atributes 20

JavaScript providing behavior to a web page 20

Time for acion – giving behavior to your HTML document 20
JavaScript Syntax 24
JavaScript events 26

Finding elements in a document 26

Puing it all together 28

The diference between JavaScript and server-side languages 29

Why pages need to work without JavaScript 30

What is tesing? 31

Why do you need to test? 31

Types of errors 32
Loading errors 33

Time for acion – loading errors in acion 33
Parially correct JavaScript 34

Time for acion – loading errors in acion 35
Runime errors 36

Time for acion – runime errors in acion 36
Logic errors 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for acion – logic errors in acion 38

Some advice for wriing error-free JavaScript 40

Always check for proper names of objects, variables, and funcions 40

Check for proper syntax 40

Plan before you code 40

Check for correctness as you code 40

Prevening errors by choosing a suitable text editor 41

Summary 41

Chapter 2: Ad Hoc Tesing and Debugging in JavaScript 43
The purpose of ad hoc tesing–geing the script to run 44

What happens when the browser encounters an error in JavaScript 44

Browser diferences and the need to test in muliple browsers 45

Time for acion – checking for features and sniing browsers 46

Tesing browser diferences via capability tesing 47

Time for acion – capability tesing for diferent browsers 48

Are you geing the correct output and puing values in the correct places? 50

Accessing the values on a form 50

Time for acion – accessing values from a form 51
Another technique for accessing form values 54

Accessing other parts of the web page 55
Time for acion – geing the correct values in the correct places 55

Does the script give the expected result 65

What to do if the script doesn't run? 65

Visually inspecing the code 66

Using alert() to see what code is running 66

Using alert() to see what values are being used 67

Time for acion – using alert to inspect your code 67

A less obtrusive way to check what code is running and the values used 71

Time for acion – unobtrusively checking what values are used 72
Commening out parts of the script to simplify tesing 75

Time for acion – simplifying the checking process 76

Timing diferences–making sure that the HTML is there before interacing with it 77

Why ad hoc tesing is never enough 78

Summary 79

Chapter 3: Syntax Validaion 81
The diference between validaing and tesing 82

Code that is valid but wrong–validaion doesn't ind all the errors 83
Code that is invalid but right 83
Code that is invalid and wrong–validaion inds some errors that might
be diicult to spot any other way 83

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Code quality 83
HTML and CSS needs to be valid before you start on JavaScript 84

What happens if you don't validate your code 85

Color-coding editors–how your editor can help you to spot validaion errors 87

Common errors in JavaScript that will be picked up by validaion 89

JSLint–an online validator 90

Time for acion – using JSLint to spot validaion errors 91

Valid code constructs that produce validaion warnings 92
Should you ix valid code constructs that produce validaion warnings? 92

What happens if you don't ix them 93
How to ix validaion errors 93

Error—missing "use strict" statement 94
Time for acion – ixing "use strict" errors 94

Error—unexpected use of ++ 94
Time for acion – ixing the error of "Unexpected use of ++" 95

Error—funcions not deined 96

Time for acion – ixing the error of "Funcions not deined" 96

Too many var statements 97

Time for acion – fixing the error of using too many var statements 98

Expecing <\/ instead of <\ 100

Time for acion – fixing the expectaion of '<\/' instead of '</' 101

Expected '===' but found '==' 102

Time for acion – changing == to === 102
Alert is not deined 102

Time for acion – ixing "Alert is not deined" 103
Avoiding HTML event handlers 103

Time for acion – avoiding HTML event handlers 104

Summary of the correcions we have done 106

JavaScript Lint–a tool you can download 112
Challenge yourself–ix the remaining errors spoted by JSLint 113

Summary 113

Chapter 4: Planning to Test 115
A very brief introducion to the sotware lifecycle 116

The agile method 116
The agile method and the sotware cycle in acion 117

Analysis and design 117

Implementaion and tesing 117

Deployment 117

Maintenance 117

Do you need a test plan to be able to test? 117

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

When to develop the test plan 118

How much tesing is required? 118

What is the code intended to do? 119

Tesing whether the code saisies our needs 119

Tesing for invalid acions by users 119

A short summary of the above issues 120

Major tesing concepts and strategies 120

Funcional requirement tesing 120

Non-funcional requirement tesing 121

Acceptance tesing 121

Black box tesing 122
Usability tests 123
Boundary tesing 123
Equivalence pariioning 123
Beta tesing 124

White box tesing 124
Branch tesing 124
Pareto tesing 125

Unit tests 125
Web page tests 126

Performance tests 127

Integraion tesing 127

Regression tesing–repeaing prior tesing ater making changes 128
Tesing order 128

Documening your test plan 129

The test plan 129
Versioning 130

Test strategy 130

Bug form 137

Summary of our test plan 137

Summary 137

Chapter 5: Puing the Test Plan Into Acion 139
Applying the test plan: running your tests in order 140

Test Case 1: Tesing expected and acceptable values 140

Time for acion – Test Case 1a: tesing expected and acceptable values by
using white box tesing 141

Test Case 1b: Tesing expected but unacceptable values using black box tesing 142

Time for acion – Test case 1bi: tesing expected but unacceptable values
using boundary value tesing 142
Time for acion – Test case 1bii: tesing expected but unacceptable values

using illegal values 144

Table of Contents

[v]

Test Case 2: Tesing the program logic 146

Time for acion – tesing the program logic 146

Test Case 3: Integraion tesing and tesing unexpected values 147

Time for acion –Test Case 3a: tesing the enire program with expected values 147

Time for acion – Test Case 3b: tesing robustness of the second form 150

What to do when a test returns an unexpected result 151

Regression tesing in acion 151

Time for acion – ixing the bugs and performing regression tesing 151

Performance issues—compressing your code to make it load faster 160

Does using Ajax make a diference? 161

Diference from server-side tesing 162

What happens if you visitor turns of JavaScript 162

Summary 164

Chapter 6: Tesing More Complex Code 165
Issues with combining scripts 166

Combining event handlers 166

Naming clashes 168
Using JavaScript libraries 169

Do you need to test a library that someone else has writen? 170

What sort of tests to run against library code 170
Performance tesing 170

Proiling tesing 171

GUI and widget add-ons to libraries and consideraions on how to test them 171

Deliberately throwing your own JavaScript errors 172
The throw statement 172

The try, catch, and inally statements 172

Trapping errors by using built-in objects 176

The Error object 176

The RangeError object 178
The ReferenceError object 178
The TypeError object 180

The SyntaxError object 181

The URIError object 181

The EvalError object 181

Using the error console log 181

Error messages 181

Wriing your own messages 182

Modifying scripts and tesing 184

Time for acion – coding, modifying, throwing, and catching errors 184

Summary 200

Table of Contents

[vi]

Chapter 7: Debugging Tools 201
IE 8 Developer Tools (and the developer toolbar plugin for IE6 and 7) 202
Using IE developer tools 202

Open 202

A brief introducion to the user interface 203
Debugging basics of the IE debugging tool 203

Time for acion – debugging HTML by using the IE8 developer tool 204

Time for acion – debugging CSS by using the IE8 developer tool 205

Debugging JavaScript 206

Time for acion – more Debugging JavaScript by using the IE8 developer tool 206

Safari or Google Chrome Web Inspector and JavaScript Debugger 211

Diferences between Safari and Google Chrome 211

Debugging using Chrome 212

A brief introducion to the user interface 213
Time for acion – debugging with Chrome 213
Opera JavaScript Debugger (Dragonly) 218

Using Dragonly 218
Staring Dragonly 218

Time for acion – debugging with Opera Dragonly 219

Inspecion and Call Stack 220

Thread Log 220

Coninue, Step Into, Step Over, Step Out, and Stop at Error 220

Seings 222

Firefox and the Venkman extension 222
Using Firefox's Venkman extension 222

Obtaining the Venkman JavaScript Debugger extension 222

Opening Venkman 222

A brief introducion to the user interface 223

Time for acion – debugging using Firefox's Venkman extension 224

Breakpoints or Call Stack 225
Local Variables and Watches 226

Time for acion – more debugging with the Venkman extension 227

Firefox and the Firebug extension 229

Summary 230

Table of Contents

[vii]

Chapter 8: Tesing Tools 231
Sahi 232
Time for acion – user Interface tesing using Sahi 232

More complex tesing with Sahi 235
QUnit 236

Time for acion – tesing JavaScript with QUnit 236

Applying QUnit in real-life situaions 240

More asserion tests for various situaions 240

JSLitmus 241

Time for acion – creaing ad hoc JavaScript benchmark tests 241

More complex tesing with JSLitmus 244
More tesing tools that you should check out 244

Summary 246

Index 247

Preface
JavaScript is an important part of web development in today's Web 2.0 world. Although
there are many JavaScript frameworks in the market, learning to write, test, and debug

JavaScript without the help of any framework will make you a beter JavaScript developer.
However, tesing and debugging can be ime-consuming, tedious and painful. This book will
ease your woes by providing various tesing strategies, advice, and tool guides that will make
tesing smooth and easy.

This book is organized in an easy-to-follow, step-by-step tutorial style, in order to maximize
your learning. You will irst learn about the diferent types of errors that you will most
oten encounter as a JavaScript developer. You will also learn the most essenial features
of JavaScript through our easy-to-follow examples.

As you go along, you will learn how to write beter JavaScript code through validaion;
learning how to write validated code alone will help you improve tremendously as a

JavaScript developer and, most importantly, help you to write JavaScript code that runs

beter, faster, and with less bugs.

As our JavaScript program gets larger, we need beter ways of tesing our JavaScript code.
You will learn about various tesing concepts and how to use them in your test plan. Ater
which, you will learn how to implement the test plan for your code. To accommodate more

complex JavaScript code, you will learn more about the built-in features of JavaScript, in
order to idenify and catch diferent types of JavaScript error; such informaion helps to
spot the root of the problem so that you can act on it.

Finally, you will learn how to make use of the built-in browser tools and other external tools
to automate your tesing process.

Preface

[�]

What this book covers
Chapter 1, What is JavaScript Tesing?, covers JavaScript's role and the basic building blocks
in web development, such as HTML and CSS. It also covers the types of errors that you will
most commonly face.

Chapter 2, Ad Hoc Tesing and Debugging in JavaScript, covers why we perform ad hoc tesing
for our JavaScript programs, and JavaScript's most commonly-used features, by wriing a
simple program, This program will be used as an example to perform ad hoc tesing.

Chapter 3, Syntax Validaion, covers how to write validated JavaScript. Ater compleing this
chapter, you will have improved your skills as a JavaScript developer and, at the same ime,
understood more about the role of validaion in tesing JavaScript code.

Chapter 4, Planning to Test, covers the importance of having a plan to test, and the strategies

and concepts we can use when we are performing tesing. This chapter also covers the
various strategies and concepts for tesing, and we will perform a simple test plan to see
what it means to plan to test.

Chapter 5, Puing the Test Plan Into Acion, follows Chapter 4, as we apply the simple test
plan that we have developed. Most importantly, we will get our hands dirty by uncovering

bugs, taking note of them and ixing the bugs by applying the theories that we learnt
in Chapter 4.

Chapter 6, Tesing More Complex Code, covers sophisicated ways to test our code. One way
of tesing the code is to use the built-in error objects provided by JavaScript. This chapter
also covers how to use the console log, how to write your own messages, and how to trap

your errors.

Chapter 7, Debugging Tools, addresses the point where our code gets too large and complex

to be tested by using manual methods. We now engage the help of debugging tools provided

by popular browsers in the market, including Internet Explorer 8, FireFox 3.6, Chrome 5.0,
Safari 4.0 and Opera 10.

Chapter 8, Tesing Tools, moves into how you can automate your tesing by using tesing tools
that are free, cross-browser and cross-plaform. It also covers how to test your interface,
automate tests, and perform asserion and benchmarking tests.

Preface

[�]

What you need for this book
A basic text editor such as Notepad++.

Browsers like Internet Explorer 8, Google Chrome 4.0, Safari 4.0 and newer, FireFox 3.6.

JavaScript version 1.7 or later.

Other sotware covered includes Sahi, JSLitmus, QUnit.

Who this book is for
This book is for beginner JavaScript programmers or beginner programmers who may have

litle experience in using JavaScript, with HTML and CSS.

Conventions
In this book, you will ind several headings appearing frequently.

To give clear instrucions of how to complete a procedure or task, we use:

Time for action – heading

1.	 Acion 1

2.	 Acion 2

3.	 Acion 3

Instrucions oten need some extra explanaion so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instrucions that you have just completed.

You will also ind some other learning aids in the book, including:

Pop quiz – heading

These are short muliple choice quesions intended to help you test your own understanding.

Preface

[�]

Have a go hero – heading

These secions set pracical challenges and give you ideas for experimening with what you
have learned.

You will also ind a number of styles of text that disinguish between diferent kinds of
informaion. Here are some examples of these styles, and an explanaion of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include direcive."

A block of code is set as follows:

<input type="submit" value="Submit"

 onclick="amountOfMoneySaved(moneyForm.money.value)" />

</form>

</body>

</html>

When we wish to draw your atenion to a paricular part of a code block, the relevant lines
or items are set in bold:

function changeElementUsingName(a){

 var n = document.getElementsByName(a);

 for(var i = 0; i< n.length; i++){

 n[i].setAttribute("style","color:#ffffff");

 }

}

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Clicking the Next buton
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this

book—what you liked or may have disliked. Reader feedback is important for us to
develop itles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

menion the book itle in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a

note via the SUGGEST A TITLE form on www.packtpub.com, or send an e-mail to
suggest@packtpub.com.

If there is a topic that you have experise in and you are interested in either wriing or
contribuing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you

to get the most from your purchase.

Downloading the example code for this book

You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this

book elsewhere, you can visit http://www.PacktPub.com/support and

register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustraion and help us improve subsequent versions of this book. If you
ind any errata, please report them by visiing http://www.packtpub.com/support,

selecing your book, clicking on the let us know link, and entering the details of your

errata. Once your errata are veriied, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of exising errata, under the
Errata secion of that itle. Any exising errata can be viewed by selecing your itle
from http://www.packtpub.com/support.

www.allitebooks.com

http://www.allitebooks.org

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protecion of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the locaion
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected

pirated material.

We appreciate your help in protecing our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

1
What is JavaScript Testing?

First of all, let me welcome you to this book. If you've picked up this book, I
would assume that you are interested in JavaScript tesing. You most probably
have experienced JavaScript, and want to enhance your skills by learning how
to test your JavaScript programs.

JavaScript is most oten associated with the web browser and is one of the
key tools for creaing interacive elements on web pages. However, unlike
server-side languages like PHP, Python and so on, JavaScript fails silently in
general (although browsers like IE provides warning messages at imes); there
are no error messages to inform you that an error has occurred. This makes
debugging diicult.

In general, we will be learning about the basic building blocks for JavaScript
tesing. This will include the basics of HTML (Hyper-text Markup Language), CSS

(Cascading Style Sheets) and JavaScript. Ater this, you will learn about various
techniques to make HTML, CSS, and JavaScript work together; these techniques
are the building blocks of what you are going to learn in other chapters.

To be more speciic, this is what we will learn about in this chapter:

The basics of HTML, CSS, and JavaScript

The syntax of HTML, CSS, and JavaScript

How to select HTML elements by using CSS and JavaScript

Why do web pages need to work without JavaScript?

What is tesing and why do you need to test?

What is an error?

Types of JavaScript errors









What is JavaScript Tesing?

[�]

Examples shown in this chapter are simplisic—they are designed to allow you to see the
major syntax and built-in methods or funcions that are being used. In this chapter, there will
be minimal coding; you will be asked to enter the code. Ater that, we'll briely run through
the code examples and see what is happening.

With that in mind, we'll get started right now.

Where does JavaScript it into the web page?
Every web page consists of the following properies—content, appearance, and behavior.
Each of these properies is controlled by Hyper Text Markup Language (HTML), Cascading
Style Sheets (CSS), and JavaScript, respecively.

HTML Content
HTML stands for Hyper Text Markup Language. It is the dominant markup language for web
pages. In general, it controls the content of a web page. HTML deines web pages (or HTML
documents) through semanic markups such as <head>, <body>, <form>, and <p> toto

control headings, the body of a document, forms, paragraphs, and so on. You can see

HTML as a way to describe how a webpage should look like.

HTML makes use of markup tags, and these tags usually come in pairs. The syntax of HTML is
as follows:

<name-of-html-tag>some of your content enclosed here</name-of-html-tag>

Noice that the HTML tags are enclosed by angular brackets; the HTML tag pair starts of with
<name-of-html-tag> and ends withand ends with </name-of-html-tag>. This second HTML tags are

known as the closing tags and they have a forward slash before the HTML tag.

Some of the common HTML elements include the following:

<head> </head>

<body> </body>

<title> </title>

<p> </p>

<h1> </h1>

<a>

For a complete list of html elements, please visit http://www.w3schools.com/tags/

default.asp.








Chapter 1

[�]

Time for action – building a HTML document

We are going to create an HTML document by making use of some of the HTML tags and
syntax that we have seen above. (The example you see here can be found in the source code
folder of Chapter 1, with the document itled chapter1-common-html.html)

1.	 Let's start by opening your favorite text editor or tool such as Microsot Notepad,
and creaing a new document.

2. Enter the following code into your new document and save it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>This is a sample title</title>
</head>
<body>
<h1>This is header 1</h1>
<h2>This is header 2</h2>
<h3>This is header 3</h3>
<p>This is a paragraph. It can be styled by CSS</p>
<hr>
<div style="position:absolute; background-color:black;
color:#ffffff;top:10px;right:10px;border:solid 3px yellow;
height:200px; width:200px;">Your content here</div>
<div>
 <div>I am enclosed within a <i>div</i> tag. And it can be
styled on a document level.

 This is an ordered list and it is centered
 apple
 orange
 banana

 This is an unordered list. And it can be styled by
CSS.
 apple
 orange
 banana

 </div>
 <div>I am enclosed within a <i>div</i> tag. And it can be
styled by CSS.

 This is an ordered list and it is centered
 apple

What is JavaScript Tesing?

[10]

 orange
 banana

 This is an unordered list. And it can be styled by
CSS
 apple
 orange
 banana

 This is a link. And it can be styled by CSS

 </div>
</div>
</body>
</html>

3. Finally, open the document in your browser and you will see an example similar to

the following screenshot:

Chapter 1

[11]

Take note of the black box on the upper-right corner. It is a simple example
of CSS at work. This will be explained shortly.

What just happened?
You have just created an HTML document by using the more common HTML elements and

HTML syntax.

Each HTML tag has a speciic purpose, as you can see from the result in the browser. For
example, you must have noiced that <h1>This is header 1</h1> produced the largest

text in terms of font-size, <h2>This is header 2</h2> produced the second largest text

in terms of font size, and so forth.

 represents an ordered list, while stands for an unordered list

(list with bullet points).

You should have noiced the use of <div> </div>. This is used to deine a secion within
an HTML document. However, the efects and power of the <div> </div> can only be

seen in the next part of this chapter.

But wait, it seems that I have not done a complete introducion of HTML. That's right. I have
not introduced the various atributes of HTML elements. So let's have a quick overview.

Styling HTML elements using its attributes

In general, the core atributes of HTML elements are the class, id, style, and and title

atribute. You can use these atributes in the following manner:

<div id="menu" class="shaded" style="…" title="Nice menu"> Your

content here </div>

Noice that all four atributes could be used at the same ime. Also, the sequence of the
atributes does not mater.

But we have not done any styling yet. The styling only takes place in the style atribute.
To see an example, enter the following code between the <body> and </body> tag in the

previous code.

<div style= "position:absolute; background-color:black;color:#ffffff;

 top:10px;right:10px;border:solid 3px yellow; height:200px;

width:200px;">Your content here

</div>

What is JavaScript Tesing?

[12]

You should be able to see a 200px by 200px black box with yellow border in the upper-right
corner of your browser window (as shown in the previous screenshot). Here's a screenshot
that shows only the black box:

In general, the inline style that you have speciied manipulates the stylisic properies of thethe

style atribute, to make it look the way you want it to.

Only the the style atribute allows you to style the HTML element. But this method is only
used for specifying inline style for an element.

In case you are wondering what the <title> tag does, it is essenially an atribute that
speciies extra informaion about an element. This is most oten used within the <head> tag.

If you open up any HTML document that contains a <title> tag, you will ind the contents
of this tag in the tab of your browser or itle of your browser window.

What about id atribute and class atribute? We'll cover these briely in the next secion.

Specifying id and class name for an HTML element

In general, the id atribute and class atribute allows the HTML element to be styled by
giving the CSS (Cascading Style Sheets, which we will be covering later in this chapter) a way
to refer to these elements. You can think of the id atribute and class atribute as a 'name',
or a way to idenify the corresponding HTML element such that if this 'name' is referred by
the CSS, the element will be styled according to the CSS deined for this paricular element.
Also, the id atribute and class atribute are oten referred to by JavaScript in order to
manipulate some of the DOM (Document Object Model) atributes, and so on.

There is one important idea that you must understand at this point of the chapter: the id

atribute of each HTML element has to be unique within an HTML ile, whereas the class
atribute doesn't.

Cascading Style Sheets
CSS stands for Cascading Style Sheet. A CSS is used to control the layout, appearance, and

formaing of the web page. CSS is a way for you to specify the stylisic appearance of the
HTML elements. Via CSS, you can deine the fonts, colors, size, and even layout of the
HTML elements.

Chapter 1

[13]

If you noiced, we have not added any form of CSS styles to our HTML document yet; in the
previous screenshots, what you see is the default CSS of our browser (apart from the black
box on the upper-right), and most browsers have the same default CSS if no speciic CSS
is deined.

CSS can be internal or external; an internal CSS is embedded in a HTML document using the
<style> tag, whereas an external CSS is linked to by using the <link> tag, for example:tag, for example:

<link rel="stylesheet" type="text/css" href="style.css">.

In general, using internal CSS is considered to be a bad pracice and should be avoided.
External CSS is widely favored over internal CSS because it allows us to save more ime and
efort as we can change the design of the website by just making changes to a .css ile
instead of making individual changes to each HTML document. It also helps in improving
performance, as the browser will only need to download one CSS and cache it in memory.

The most important point for this secion is the use of CSS selectors and the syntax of
the CSS.

The CSS selectors work as follows: for selecing IDs, the name of the ID is preceded by a
hash character. For a class selector, it is preceded by a dot. In the code that you will be seeing

later, you will see that both ID and class selectors are used (they are also commented in the
source code). Here's a quick preview of the selectors:

/* this is a id selector */

#nameOfID {

 /* properties here*/

}

/* this is a class selector */

.nameOfClass {

 /* properties here*/

}

The syntax of the CSS is as follows: selector { declaraion } . The declaraion consists of a
semicolon-separated list of name or value atribute pairs, in which colons separate the
name from the value.

Remember that we've menioned the id atribute and class atribute in the preceding
secion? Now you will see how id atributes and class atribute are being used by CSS.

What is JavaScript Tesing?

[14]

Time for action – styling your HTML document using CSS

Now we are going to style the HTML document that we created in the preceding secion, by
using CSS. For simplicity, we'll use an internal CSS. What will happen in this secion is thatFor simplicity, we'll use an internal CSS. What will happen in this secion is that
you will see the CSS syntax in acion, and how it styles each HTML element by making use
of the id atribute and class atribute of the respecive HTML element. Note that both
id and class selectors are used in this example.

The completed version of this example can be found in the source code folder

of Chapter 1, with the ile name: chapter1-css-appearance.html

1.	 Coninuing from the previous example, open up your text editor and insert the
following code ater the </title> tag:

<style type="text/css">

body{

 background-color:#cccccc;

}

/* Here we create a CSS selector for IDs by a name preceded by a
hash character */

#container{

 width:750px; /* this makes the width of the div element with
the id 'container' to have a width of 750px */

 height:430px;

 border:1px solid black;solid 1px black;

}

/* #[nameOfElement] */

#boxed1{

 background-color:#ff6600;

 border:2px solid black;

 height:360px;

 width:300px;

 padding:20px;

 float:left;

 margin:10px;

}

#boxed2{

 background-color:#ff6600;

 border:2px solid black;

 height:360px;

 width:300px;

Chapter 1

[15]

 padding:20px;

 float:left;

 margin:10px;

}

#ordered1{

 font-size:20px;

 color:#ce0000;

 text-align:center;

}

#unordered1{

 font-size:12px;

 color:#000f00;

}

#ordered2{

 font-size:20px;

 color:#ce0000;

 text-align:center;

}

#unordered2{

 font-size:12px;

 color:#000f00;

}

#unordered2.nice{

 font-size:16px;

}

.intro{

 color:black;

 font-weight:bold;

}

a:link {color:#FF0000;} /* unvisited link */

a:visited {color:#00FF00;} /* visited link */

a:hover {color:#FF00FF;} /* mouse over link */

a:active {color:#0000FF;} /* selected link */

</style>

2.	 Ater adding the CSS code above, you will need to add class and id atributes to
your HTML elements. Here's the stuf you'll need to add:

<!—- Some code omitted above -- >

<body>

 <!—- Some code omitted -- >

<p class="intro">This is a paragraph. I am styled by a class
called "intro"</p>

<hr>

www.allitebooks.com

http://www.allitebooks.org

What is JavaScript Tesing?

[16]

<div id="container">

 <div id="boxed1">I am enclosed within a <i>div</i> tag. And I
can be styled on a document level.

 <ol id="ordered1">

 This is an ordered list and it is centered

 apple

 orange

 banana

 <ul id="unordered1">

 This is an unordered list.

 apple

 orange

 banana

 I am a link that is styled by a
class

 </div>

 <div id="boxed2">I am enclosed within a <i>div</i> tag. And I
am styled on a local level.

 <ol id="ordered2">

 This is an ordered list and it is centered

 apple

 orange

 banana

 <ul class="nice" id="unordered2">

 This is an unordered list and I have a class
defined

 apple

 orange

 banana

 I am a link that is styled by a
class

 </div>

</div>

</body>

</html>

Chapter 1

[17]

The class and id atributes that need to be added are highlighted in the
code snippet above. If you are not sure if you have done it correctly, open

up chapter1-css-appearance.html and have a look.

3.	 Now save the ile and open it in your browser. You should see that your HTML save the ile and open it in your browser. You should see that your HTML
document now looks diferent to how it was before it was styled by CSS. Your
output should be similar to the example shown in following screenshot:

What just happened?
You have just applied CSS to the HTML document that you created in the previous secion.
Noice that you have used both the id selector and class selector syntax. Within each

selector, you should also see some stylisic atributes.

The HTML elements in this example are similar to the previous example, except that the
HTML elements now have id and class names.

In the following sub-secions, I'll coninue to explain the techniques used for referring to the
various HTML elements, and how we styled the elements by using their stylisic atributes.

What is JavaScript Tesing?

[1�]

Referring to an HTML element by its id or class name and styling it

We referenced various HTML elements by its id or class name. Consider the following

code snippet in the above example:

<!—some code omitted above-->

<p class="intro">This is a paragraph. I am styled by a class called
"intro"</p>

<!—some code omitted -->

<div id="boxed">This is enclosed within a <i>div</i> tag. And it is
styled on a local level.

 <ol id="ordered1">

 This is an ordered list and it is centered

 apple

 orange

 banana

 <ul class="nice" id="unordered1">

 This is an unordered list and has a class defined</
li>

 apple

 orange

 banana

 This is a link that is styled by a
class

 </div>

The highlighted code refers to the HTML elements where ids and class name atributes
are being used. Noice that some of the HTML elements have both ids and class name

atributes while some do not.

Now consider the CSS snippet which is found in the example:

#boxed1{

 background-color:#ff6600;

 border:2px solid black;

 height:360px;

 width:300px;

 padding:20px;

 float:left;

 margin:10px;

}

Chapter 1

[1�]

The #boxed1 selector refers to the <div> with the id #boxed1 in the HTML document.
Noice that the <div> with the id #boxed1 is styled according to the name and value

atribute pairs within the declaraion. If you make some changes to the value atribute
and refresh your browser, you will noice changes to the #boxed1 element as well.

Now, consider the following CSS snippets:

.intro{

 color:black;

 font-weight:bold;

}

And:

a:link {color:#FF0000;} /* unvisited link */

a:visited {color:#00FF00;} /* visited link */

a:hover {color:#FF00FF;} /* mouse over link */

a:active {color:#0000FF;} /* selected link */

The previous two code snippets are what we call class selectors, which have a slightly

diferent syntax than the id selectors. For instance the .intro class selector selects the

<p> with class name "intro" while the a:link , a:visited, a:hover, and a:active

selectors refer to the four states of an anchor pseudo class.

Unil now, we have covered how CSS selectors work to select HTML elements in an HTML
document. But we have not covered the situaion where an HTML element has both id and

class atributes; we'll explain it now.

Differences between a class selector and an id selector

Although id selectors and class selectors appear to be the same, there are subtle

diferences. For instance, the id selector is used to specify a single HTML element,
whereas the class selector is used to specify several HTML elements.

For example, you may try changing the anchor element

to and you would noice that the link is now bold.and you would noice that the link is now bold.

If an HTML element has a style atribute that is controlled by both the stylisic
atributes of an id and class selector, then the style atributes in the class

selector will take precedence over those in the id selector.

What is JavaScript Tesing?

[20]

Other uses for class selectors and id selectors

In the following secion, you will learn that the id and class name of an HTML element
play an important role in providing interacivity on a web page. This is done by using
JavaScript, where JavaScript makes a reference to an HTML element either by its id or

class name, ater which various acions such as DOM manipulaion are performed on
the HTML element that is referenced.

Complete list of CSS attributes

The examples given here are not complete. For a complete reference to CSS, you may visit

http://www.w3schools.com/css/css_reference.asp.

JavaScript providing behavior to a web page
In this secion we'll cover some of the key aspects of JavaScript. In general, if HTML provides
content for an HTML document and CSS styles the HTML document, then JavaScript breathes
life into an HTML document by providing behavior to the webpage.

The behavior can include changing the background colour of an HTML document
dynamically, or changing the font size of the text, and so on. JavaScript can even be

used to create efects such as animaing slideshows, and fade-in and fade-out efects.

In general, the behaviors are event-based, and are achieved by manipulaing the DOM in
real-ime (at least from the users' point of view).

In case you are fairly new to JavaScript, JavaScript is an interpreted programing language

with object-oriented capabiliies. It is loosely-typed, which means that you do not need to
deine a data type when declaring variables or funcions.

In my opinion, the best way to understand the language features of JavaScript is through an

example. Now, it's ime for acion.

Time for action – giving behavior to your HTML document

We are going to apply JavaScript to an HTML document (styled with CSS). In general, the
HTML elements and CSS are not changing as compared to the previous example, except that
you will see HTML butons added to the HTML document.

The JavaScript applied to the HTML document in this example is known as inline JavaScript
because it exists within the HTML document.

Chapter 1

[21]

What we are trying to accomplish here is to show you the language features such as how to

declare variables, funcions, manipulaing DOM of the HTML elements, and various methods
of referencing HTML elements by their id or class. You will also learn about some of the

commonly-used built-in methods of arrays, and elements that are referenced, and how to
use them to make your tasks easier.

This example is nothing fancy, but you will learn some of the most important and

commonly-used techniques for referencing HTML elements and then manipulaing the DOM.

(The completed code for this example can be found in the source code
folder, Chapter 1, with the ile name of: chapter1-javascript-
behavior.html):

1.	 Coninuing on from the previous example, enter the following JavaScript code ater
the </style> tag:

<script type="text/javascript">

function changeProperties(d){

 var e = document.getElementById(d);

 e.style.position = "absolute";

 e.style.fontFamily = "sans-serif";

 e.style.backgroundColor = "#000000";

 e.style.border = "solid 2px black";

 e.style.left = "200px";

 e.style.color = "#ffffff";

}

function arrangeList(f) {

 // This is the element whose children we are going to sort

 if (typeof f == "string"){ // check to see if the element is
"string"

 f = document.getElementById(f);

 }

 // Transfer the element (but not text node) children of e to
a real array

 var listElements = [];

 for(var x = f.firstChild; x != null; x = x.nextSibling)

 if (x.nodeType == 1){

 listElements.push(x);

 }

 listElements.sort(function(n, m) { // .sort is a built in
method of arrays

 var s = n.firstChild.data;

 var t = m.firstChild.data;

 if (s < t){

What is JavaScript Tesing?

[22]

 return -1;

 }

 else if (s > t){

 return 1;

 }

 else{

 return 0;

 }

 });

 for(var i = 0; i < listElements.length; i++){

 f.appendChild(listElements[i]);

 }

}

function insertContent(a){

 var elementToBeInserted = document.getElementById(a);

 elementToBeInserted.innerHTML = "<h1>This is a dynamic
content</h1>
<p>great to be here</p>";

}

function changeElementUsingName(a){

 var n = document.getElementsByName(a);

 for(var i = 0; i< n.length; i++){

 n[i].setAttribute("style","color:#ffffff");

 }

}

function hideElement(a){

 var header = document.getElementById(a);

 header.style.visibility = "hidden";

}

function hideElementUsingTagName(a){

 var n = document.getElementsByTagName(a);

 for(var i = 0; i< n.length; i++){

 n[i].setAttribute("style","visibility:hidden");

 }

}

</script>

Chapter 1

[23]

Now save your document and load it in your browser, and you will see an

example similar to the one shown in the next screenshot:

What just happened?
You have just created an HTML document styled with CSS, and applied JavaScript to it.
There are generally no changes to the HTML elements and CSS as compared to the
previous example, but you will see the <button> elements.

Now you can see the power of JavaScript in acion by clicking on the HTML butons. You
should see that if you click on the change properies buton, you will see the HTML box on
the right shits to the let by 200pixels, and its background change color. You can also click on
other butons to test their efect on the HTML document.

What is JavaScript Tesing?

[24]

What happens when you click on each HTML buton is that you are invoking a JavaScript
funcion that manipulates the relevant HTML element in the document, via the DOM. You
should see efects like hiding content, creaing dynamic content, rearranging the list of items,
and so on.

In the following secions, I'll irst start by briely introducing the JavaScript syntax, followedI'll irst start by briely introducing the JavaScript syntax, followed
by ataching events to HTML elements, and inally using JavaScript's built-in methods to ind
HTML elements and manipulaing them.

JavaScript Syntax

We'll start with learning the basic syntax of JavaScript. Consider the opening <script> tag:

<script type="text/javascript">

// code omitted

</script>

What the above <script> tag does is idenify where JavaScript starts and ends. Within the
type atribute, we write text/javascript to denote that this is a JavaScript code.

Now, let us consider the following code snippet:

function arrangeList(f) {
 if (typeof f == "string"){ // check to see if the element is
"string"
 f = document.getElementById(f);
 }
 var listElements = [];//declaring a variable
 for(var x = f.firstChild; x != null; x = x.nextSibling)for(var x = f.firstChild; x != null; x = x.nextSibling)
 if (x.nodeType == 1){
 listElements.push(x);
 }
 listElements.sort(function(n, m) { // .sort is a built in method
of arrays
 var s = n.firstChild.data;
 var t = m.firstChild.data;
 if (s < t){
 return -1;
 }

 else if (s > t){
 return 1;
 }
 else{
 return 0;
 }
 });

Chapter 1

[25]

 for(var i = 0; i < listElements.length; i++){
 f.appendChild(listElements[i]);
 }
}

The above code snippet shows the funcion called arrangeList. We deine a funcion by
using the reserved keyword function, followed by the name of the funcion. Parameters
are passed into the funcion within the () and in this code snippet, f is the parameter

passed into the funcion. The funcion starts with a {and ends with a}.

In short, the funcion syntax can be deined as follows:

function functionname(parameter1, parameter2, … parameterX){

 Body of the function

}

The second highlighted line shows decision making in JavaScript through the use of the if

statement. The syntax is similar to the C programing if statement. The syntax of JavaScript's
if statement is as follows:

if (condition){

 code to be executed if condition is true.

}

A variaion of the if statement is the if-else

if (condition){

 code to be executed if condition is true.

}

else{

 code to be executed if condition is not true.

}

We use the keyword var followed by a variable name. In the above example,

var listElements = []; means that a variable listElements is deined, and it
is given the value of an empty list denoted by []. In general, variables can be assigned

arbitrary values since JavaScript is loosely-typed.

Coninuing from above, you should see the for loop in acion. Its syntax is also similar to the
C language's for loop.

www.allitebooks.com

http://www.allitebooks.org

What is JavaScript Tesing?

[26]

If you are new to JavaScript, you may be confused by document.getElementById() and

statements like listElements.push(x). What happens in these two lines is that we are

using some of the built-in methods of JavaScript to reference the HTML element with the
corresponding IDs. For now, document.getElementById() will be more important

to you; this will be covered in the secion where you learn how to ind elements in your
HTML document.

JavaScript events

Let's start of by looking at the following code snippet that is found in your JavaScript:

<button onclick="changeProperties('boxed1')">change properties</
button>

<button onclick="insertContent('empty')">Create dynamic content</
button>

<button onclick="arrangeList('ordered1')">Rearrange list</button>

<button onclick="arrangeList('unordered1')">Rearrange unordered list</
button>

<button onclick="hideElement('header1')">hide header 1</button>

<button onclick="changeElementUsingName('lost')">Change

hyperlink colors</button>

<button onclick="hideElementUsingTagName('h2')">Hide header 2 (using
tag name)

</button>

The above code snippets show HTML butons with an event atached to them via onclick.

When the buton is clicked, the corresponding JavaScript funcion is invoked.

For example, <button onclick="changeProperties('boxed1')">ch

ange properties</button> means that when this buton is clicked, the
changeProperties() funcion is invoked with the parameter boxed1, which

happens to be a div element with the ID boxed1.

Finding elements in a document

Remember that we've seen a few built-in methods of JavaScript. JavaScript can be used
to ind elements in an HTML document by using some of JavaScript's built-in methods or
properies. Ater inding the HTML element, you can manipulate its properies. JavaScript
features three properies of the Document object (which is the root of every DOM tree) that
allows you to ind the HTML elements that you need. The techniques menioned here form
the backbone of JavaScript tesing. Understanding this secion is vital to understanding the
rest of the book. So make sure that you understand this secion of the chapter.

Chapter 1

[27]

Firstly, the document.getElementById(). This property allows you to select an HTML
element with a speciic ID. document.getElementById()returns only a single element

because the value of every id atribute is (supposed to be) unique. Here's a code snippet
from the example:

function changeProperties(d){

 var e = document.getElementById(d);

 e.style.position = "absolute";e.style.position = "absolute";

 e.style.fontFamily = "sans-serif";

 e.style.backgroundColor = "#000000";

 e.style.border = "2px solid black";

 e.style.left = "200px";

 e.style.color = "#ffffff";

}

Consider the highlighted line in the above code snippet,

var e = document.getElementById(d). What happens here is that the HTML element
'd', which happens to be a parameter of the funcion changeProperties(), is being

referred. If you look at the source code for this example, you will see an HTML buton
with the following: <button onclick="changeProperties('boxed1')">

change properties</button>. Noice that 'boxed1' is being referenced,

and this means that the parameter 'f' takes the value of the HTML element id of
'boxed1'. Therefore, var e = document.getElementById(d) means that

the HTML div with the ID of 'boxed1' is being assigned to variable e via the

document.getElementById() method.

Secondly, note the document.getElementsByName() statement. This is similar to

document.getElementById(), but it looks at the name atribute instead of the id

atribute. It returns an array of elements rather than a single element. Consider the
following code snippet:

function changeElementUsingName(a){

 var n = document.getElementsByName(a);

 for(var i = 0; i< n.length; i++){

 n[i].setAttribute("style","color:#ffffff");

 }

}

What happens here is that the HTML element with the name 'a' (which happens to be a
parameter of the funcion) is referenced, and because it returns an array of elements, we use
a for loop to loop through the elements, and use the method .setAttribute to change

the color of the text to white. The name atribute applies to <form> and <a> tags only.

What is JavaScript Tesing?

[2�]

Finally, look at document.getElementsByTagName(). This method looks for HTML
elements by the HTML tag name. For instance, the following code:

function hideElementUsingTagName(a){

 var n = document.getElementsByTagName(a);

 for(var i = 0; i< n.length; i++){

 n[i].setAttribute("style","visibility:hidden");

 }

}

inds the HTML element by the tag name, and makes it hidden. In our example, a h2 is used

as a parameter and hence when you click on the relevant buton, all text that is enclosed
within the <h2> tags will disappear.

Now, if you change the parameter to div, then you will noice that all of the boxes
will disappear.

Putting it all together

Now I'll briely describe how JavaScript works to interact with HTML elements. Here's what
you will learn in this subsecion: ater an HTML buton is clicked (an event), it invokes a
JavaScript funcion. Then, the JavaScript funcion receives a parameter and executes the
funcion. Consider the following code snippets.

The following code is for an HTML buton with an event atached to it:

<button onclick="insertContent('empty')">Create dynamic content</
button>code

Next, the following code is for an HTML div element:

<div id="empty"></div>

Lastly, the following is code which shows the JavaScript funcion that is to be invoked:

function insertContent(a){

 var elementToBeInserted = document.getElementById(a);

 elementToBeInserted.innerHTML = "<h1>This is a dynamic content</
h1>
<p>great to be here</p>";

}

Now, let me explain what we are trying to do here; ater clicking the HTML buton, the
JavaScript funcion insertContent() is invoked. The parameter ''empty' is passed into is passed into

insertContent(). ''empty'refers to therefers to the div element with ID ''empty'.

Chapter 1

[2�]

Ater insertContent() is invoked, the parameter ''empty' is passed to a variable is passed to a variable var

elementToBeInserted, by using document.getElementById(). Then, using the

built-in method innerHTML() for HTML element nodes (because an HTML element node is
passed to the elementToBeInserted variable), we dynamically insert the text "<h1>This
is a dynamic content</h1>
<p>great to be here</p>".

Go ahead and open the ile in your web browser, and click on the HTML buton. You will
noice a new piece of text being inserted into the HTML document, dynamically.

The built-in method innerHTML() for HTML element nodes allows us
to manipulate (or in this case, dynamically insert) HTML contents into) the
HTML node that is using the innerHTML() method. For example, in our

example, we will insert "<h1>This is a dynamic content</
h1>
<p>great to be here</p>" into <div id="empty"></
div>. Technically speaking, ater the inserion, the end result will be:
: <div id="empty"><h1>This is a dynamic content</
h1>
<p>great to be here</p></div>.

The difference between JavaScript and server-side

languages

Generally speaking, the main diference between JavaScript and server-side languages lies in
their usage and where they are executed. In modern usage, JavaScript runs on the client side

(the users' web browser), and server-side languages runs on servers, and is therefore oten
used to read, create, delete, and update databases such as MySQL.

This means that the JavaScript is processed on the web-browser, whereas server-side
languages are executed on web servers.

Server-side languages include ASP.NET, PHP, Python, Perl, and so on.

In the context of modern web development techniques, you have probably heard of Web 2.0

applicaions. An important technique is that JavaScript is oten used extensively to provide
interacivity and to perform asynchronous data retrieval (and in some cases manipulaion),
which is also known as AJAX (which is a short-hand for Asynchronous JavaScript and XML).

JavaScript cannot be used to interact with databases, whereas server-side languages such as
PHP, Python, and JSP can.

JavaScript is also known as front-end, whereas server-side is back-end technology.

What is JavaScript Tesing?

[30]

JavaScript can be used on the server side as well, although it is most

frequently associated with client-side technologies. Although JavaScript is
typically not associated with interacing with databases, this might change
in the future. Consider new browsers such as Google Chrome, which

provides a database API for JavaScript to interact with built-in databases
in the browser itself.

Why pages need to work without JavaScript

Although there are many arguments as to whether we should make web pages work with or

without JavaScript, I personally believe that it depends on how the website or applicaion is
used. But anyway, I'll start of with some of the common reasons for why pages need to work
without JavaScript.

Firstly, not all users have JavaScript enabled in web browsers. This means that users

whose JavaScript is not enabled will not be able to use your applicaion (or features)
if it requires JavaScript.

Secondly, if you intend to support your user on their mobile device, then you need to

make sure that your website or applicaion works without JavaScript. The main reason is
because support for JavaScript on mobile devices is oten less than saisfactory; if you use
JavaScript, your website or applicaion may not work as well as expected (or worse, fail to
work altogether).

Another way to look at this is based on your understanding of your user base. For instance,

probably the only ime when you can aford to ignore users who have JavaScript disabled is
when you can guarantee or know before-hand that your user base has JavaScript enabled.
Such situaions can occur when you are developing an applicaion for internal use, and you
know before-hand that all of your users have JavaScript enabled.

In case you are wondering what you can do to create pages that work without JavaScript,

you can check out the idea of graceful degradaion. Imagine that you have an applicaion
and the core features of this applicaion are AJAX-based. This means that in order to use
your applicaion, your user will need to have JavaScript enabled. In this case, you would most
probably have to consider making your pages to work without JavaScript in order to ensure

that all of your users can use your applicaion.

Chapter 1

[31]

What is testing?

Generally speaking, programmers write a program with a few objecives in mind. Besides
creaing a program to solve a certain problem or to fulil a certain demand, other common
objecives would include ensuring that the program is at least correct, eicient, and can be
easily extended.

Of the above-menioned objecives, correctness is the most important objecive—at least in
this book. By correct, we mean that for any given input, we need to make sure that the input

is what we want or need, and that the corresponding output is correct. The implicit meaning

of this is that the program logic is correct: it works the way we intended it to work, there are

no syntax errors, and the variables, objects, and parameters referenced are correct and what

we need.

Take, for instance, a reirement plan calculator writen in JavaScript. We could expect the
user to enter values such as their current age, reirement age, and savings per month.
Imagine if a user were to enter incorrect data, such as a string or character. The JavaScript

reirement plan calculator would not work, because the input data is incorrect. Or worse, if
the user entered the correct data and our algorithm for calculaing the amount of money to
be set aside for reirement is incorrect, this results in the output being incorrect.

The above errors could be avoided by tesing, which is the main topic of this book. In the
remaining porions of this chapter, we will talk about some of the types of errors that you
may face as a JavaScript programmer. But before we move into that, I'll briely discuss why
we need to test.

Why do you need to test?

First and the foremost, human beings are prone to mistakes. As a programmer, you have

probably made coding mistakes during your programing career. Even the best programmers

on Earth have made mistakes. What makes it worse is that we may not have realized the

mistake unil we tested the program.

Secondly, and perhaps more importantly, JavaScript generally fails silently; there are no error
messages to tell you what errors have occurred or where that error has occurred, assuming

you are not using any tesing unit or tools to test your JavaScript. Therefore, there is litle or
no way to know what has happened to your JavaScript program, if there is an error.

What is JavaScript Tesing?

[32]

In Microsot's Internet Explorer, you can actually see if you have any JavaScript
errors. You will need to turn on Script Debugging which is found in Tools |

Internet Opions | Advanced| Script Debugging. With Script Debugging turned

on, you will see a yellow 'yield' icon on the botom let hand corner for IE7 or
IE8 if you have any JavaScript errors. Clicking on that icon will give you a window
where you can click on Show Details to get more informaion about the error.

Thirdly, even if there are ways to inform you of JavaScript errors, such as enabling Script

Debugging, as menioned above, there are certain errors that cannot be detected by such
means. For instance, your program syntax may be 100 percent correct, but your algorithm or

program logic might be incorrect. This means that even if your JavaScript can be executed,

your output could be incorrect.

Lastly, tesing JavaScript will help you to idenify cross-browser compaibility issues. Because
there are approximately ive major types of browsers (not accouning for diferent versions)
to support—namely Microsot's Internet Explorer, Mozilla's Firefox, Google's Chrome,
Apple's Safari and the Opera Web Browser—you will certainly need to test to ensure that
your website or applicaion works across all browsers, because diferent browsers have
diferent DOM compaibiliies.

Ensuring that the program is correct means conirming and checking that the input is correct,
and then that the output is what we intended it to be.

Types of errors

Before I start introducing the types of JavaScript errors, we need to understand the inner

workings of JavaScript and the web browser. In general, a user requests a web document

from the server, and this document is loaded into the user's web browser. Assuming that
the web document has JavaScript embedded (either via an external JavaScript ile or via
inline JavaScript), the JavaScript will be loaded together with the web document (from top
to botom). As the web document is loaded by the web browser, the JavaScript engine of
the web browser will begin to interpret the JavaScript embedded in the web document. This

process will coninue unil the JavaScript (and the web document) is completely loaded into
the user's web browser, ready for interacion. Then the user may start to interact with the
web document by clicking on links or butons that may have JavaScript events atached
to them.

Now, with the above process in mind, we'll start introducing the diferent types of JavaScript
errors, by using simple examples.

Chapter 1

[33]

Loading errors
The irst types of error that we'll discuss are loading errors. Loading errors are errors
that are caught by the JavaScript engine of the web browser as the document is loading.

In other words, loading errors occur before the JavaScript has the opportunity to funcion.
These errors are typically spoted by JavaScript engines before the code has the chance
to execute.

With the previously-menioned things in mind, let us now experience how such loading
errors occur.

Time for action – loading errors in action

Now we'll see loading errors in acion. We do not actually see it, but you will learn about
some of the most common causes for loading errors.

The complete code for this example can be found in the source code folder

Chapter 1, with a ile name of chapter1-loading-errors.html

1. Open up your text editor and create a new document.

2.	 Enter the following code into your document:

<html>

<head><title>JavaScript Errors - Loading Errors</title></head>

<body>

<script type="text/javascript">/*

1. Loading Errors

*/

/*

// Example 1 - syntax errors

var tests = "This is a test"; // note two s

document.write(test); // note one s

*/

/*

// Example 2 - syntax errors as the keyword "var" is not used

Var Messsage = "This is a test"; // note three s's

document.write(Message); // note two s's

*/

/*

What is JavaScript Tesing?

[34]

// Example 3 - error caused by using a key word

var for = "this is a test";

document.write(in);

*/

</script>

</body>

</html>

3.	 Now, uncomment the /* and */ wrapped around example 1, save the document

and load it into your browser. You should see a blank page on your web browser.

4. Repeat the above step for example 2 and example 3. You should see a blank page for
both examples 2 and 3.

What just happened?
You have just created an HTML document with erroneous JavaScript code. From the
comments in the code, you should realize that the errors are caused largely due to syntax

errors. And when such errors occur, there is simply no response from the JavaScript in the

web browser.

Some examples of common syntax errors would include missing brackets, missing

semi-colons, and incorrect variable names.

In general, as long as your code is correct in terms of syntax, then you should be able to

avoid loading errors.

Now, you might ask, what happens if only certain parts of the JavaScript code are incorrect?

This would depend on where the error has occurred.

Partially correct JavaScript

In general-JavaScript is executed or loaded from top to botom. This means that the irst line
of code is loaded irst, followed by the next, and so on unil inally the last line of the code is
loaded. This has important implicaions for parially-correct JavaScript.

Chapter 1

[35]

Time for action – loading errors in action

Now we'll see parially-correct JavaScript code in acion and its implicaions.

The completed source code for this example can be found in the source

code folder, with the ile name Chapter1-loading-errors-
modified.html.

1.	 Open your text editor, create a new document, and enter the following code into

your document:

<html>

<head><title>JavaScript Errors - Loading Errors</title></head>

<body>

<script type="text/javascript">/*

1. Loading Errors - modified

*/

// this is correct code

var tests = "This is a CORRECT test";

document.write(tests);

// this is incorrect code. The variable name referred is incorrect

var Messsage = "This is a FIRSTtest";

document.write(Message);

// this is correct code

var testing = "this is a SECOND test";

document.write(testing);

</script>

</body>

</html>

2. Now save your document and load your document in your web browser. You should

see the text This is a test in your browser.

What just happened?
If you trace the code, you should see that the JavaScript executes from top to botom. It
stops execuing when it encounters an error where an incorrect variable name is referenced
by document.write(). Because it stops execuing when it encounters an error, the
remaining JavaScript code will not be executed.

www.allitebooks.com

http://www.allitebooks.org

What is JavaScript Tesing?

[36]

Things are slightly diferent if your JavaScript code is organized in terms of funcions.
In this situaion, funcions that have incorrect syntax will fail to execute, whereas
syntacically-correct funcions will coninue to work, regardless of its order in the code.

By now, you should have a brief understanding of loading errors and how to prevent them by

making sure that your code is syntacically correct.

Now let us move on to the next form of error—runime errors.

Runtime errors

Do you remember how JavaScript is loaded together with the web document into the

browser? Ater the web document is loaded completely into the web browser, it is ready for
various events, which leads to execuion of JavaScript code.

Runime errors occur during execuion; for instance, consider an HTML buton that has a
JavaScript event atached to it. Assuming that a JavaScript funcion is assigned to an event,
then if the JavaScript funcion has an error, that funcion will not be executed when the user
clicks on the HTML buton.

Other forms of runime error occur when you misapply an object, variable, or method, or
when you reference objects or variables that do not exist yet.

Time for action – runtime errors in action

Now we shall see all three common causes of runime errors in acion.

The code sample is saved in the source code folder of Chapter 1, enitled:
chapter1-runtime-errors.html.

1. Open up your text editor, enter the following code into a new document:

<html>

<head><title>JavaScript Errors</title></head>

<script type="text/javascript">/*

2. Runtime Errors

*/

alert (window.innerHTML);

var Test = "a variable that is defined";

alert(Test); // if variables is wrongly typed, than nothing wil
happen

Chapter 1

[37]

// nothing happens when the user clicks on the HTML button, which
invokes the following function

function incorrectFunction(){

 alert(noSuchVariable);

}

</script>

<body>

<input type="button" value="click me" onclick="incorrectFunction()
" />

</body>

</html>

2.	 Save the document and load it into your web browser.

3.	 Ater loading the document into your browser, you will see two alert boxes: the irst
box says undeined and the second alert box says a variable that is deined. Then

you will see an HTML buton that says click me.

4.	 Click on the buton, and you will see that nothing happens.

What just happened?
The irst alert that you have seen shows you an error that is caused by misapplying a
method. window.innerHTML does not exist, as .innerHTML is applied to HTML elements
and not to window. The second alert window says that a variable that is deined as the
variable is deined before the alert() references it. Lastly, nothing happens when you click

on the HTML buton because the funcion that is to be invoked has the error of referencing
to a variable that is not deined. Hence it is not executed during the event onclick().

In this example, you should realize that the logic of your code is of great importance—you
will need to deine your variables or objects before using them in your code. Also, make
sure that the method or properies applied are correct. Otherwise, you will end up with a
runime error.

Now, we'll move on to the last form of JavaScript error—logic errors.

Logic errors

Logic errors are diicult to explain. But in general, you can see logic errors as errors that
occur when the code does not work the way that you intend it to. It is much easier to

understand what logic errors are by experiencing them. So, let us take some acion.

What is JavaScript Tesing?

[3�]

Time for action – logic errors in action

In this inal example, you will see logic errors.

1.	 Open your text editor, enter the following code into a new document:

<html>

<head><title>JavaScript Errors</title>

<script type="text/javascript">

/* Logic Errors */

//saving some input in wrong variables

function amountOfMoneySaved(amount){

 var amountSpent, amountSaved;

 amountSpent = amount; // where you really meant amountSaved

 var currentAmount = 100;

 var totalAmountSaved = currentAmount - amountSpent;

 alert("The total amount of money you have now is " +

 totalAmountSaved);

}

function checkInput(amount){

 if(amount>0 && amount<99)

 alert("is number");

 else

 alert("NOT number");

}

</script>

</head>

<body>

<!-- this shows an infinite loop, an obvious logic error-->

<script>

// an infinite loop

for(var i = 0; i<10; i--){

 document.write(i + "
");

}

</script>

<form id="moneyForm">

 You currently have 100 dollars.

 The amount of money you have saved is: <input type="text"
id="money" name="money" />

Chapter 1

[3�]

 <input type="submit" value="Submit"

 onclick="amountOfMoneySaved(moneyForm.money.value)" />

</form>

</body>

</html>

2.	 Now, save the code and open the document in your browser.

3.	 You will see two simple forms. The irst form which has the text: You currently

have 100 dollars. The amount of money you have saved is" " followed by an input
box. And the second form contains the text: Checking if you have entered a digit

followed by an input box.

4.	 Now try to enter a number that is larger than 99 (say, 999).

You may have noiced that ater entering your input, the total amount of
money appears to have decreased. This is an example of a logic error, where

you are supposed to add the input, but instead the funcion subtracts the
input. Why did the program not work the way it was intended to?

What just happened?
You have just witnessed a simple example of logic error in acion. Logic errors can take many
forms. You may have noiced a code snippet in the above example that is commented out.

<script type="text/javascript">// example 1: infinite loop// example 1: infinite loop

for(var i = 0; i<10; i--){

 document.write(i + "
");

}

</script>

This is an example of an ininite for loop. In this loop, you may have noiced that the
statement document.write(i+
"); should be executed 10 imes (from var i = 0

to when i = 9). However, the third expression in the iniializer within the for statement is

decreasing (i--).

As a result, the variable i will never be able to reach the condiion where i>10. If you

uncomment the code, you will noice that the statement document.write(i"
");

will coninue to execute unil the web browser hangs; if you are using Firefox on a Windows
machine, the web browser will hang and you will have to quit the browser by using the

Task Manager.

What is JavaScript Tesing?

[40]

Some advice for writing error-free JavaScript

By now, you should have a brief understanding of the types of JavaScript errors. While we

typically cannot avoid errors, we should try to minimize errors as we write code. In this

secion, I'll briely discuss some of the strategies that you can take, as a beginner JavaScript
programmer, to minimize the amount of errors that can occur.

Always check for proper names of objects, variables, and

functions
As seen in the above forms of errors, you should always make sure that you are using the

correct names for your objects, variables, and funcions. Because such errors will not be
shown in your web browser, as you write your code, it is always a good idea to check forr code, it is always a good idea to check for code, it is always a good idea to check for

the correct use of names.

This also includes using unique names for diferent variables, objects, and funcions.
Remember that JavaScript is case-sensiive; therefore do remember to check that you
are using the correct case for your variables, objects, and funcions as well.

Check for proper syntax
Because you are using JavaScript, at least for this book you should check that you are

using the correct syntax before you run your program. Previously, we went through some

of the key features of the language syntax, for instance, ending each statement with a

semi-colon, using proper and matching brackets, using correct or unique funcion names,
and so on.

Plan before you code
Planning before the actual coding process helps to reduce the possibility of logic errors. This

helps you to think through your program and spot obvious logic errors in your code. Planning

can also help you to check for blind spots, such as missing features or funcions.

Check for correctness as you code
As you write your program, it is always a good idea to check for errors as you complete

certain porions of the code. For example, if your program consists of six funcions, it is
always wise (and less error prone) to check the correctness of each funcion. Making sure
that each funcion that you have writen is correct before moving to the next funcion is a
good pracice, and can save you a lot of trouble as you write large programs.

Chapter 1

[41]

Preventing errors by choosing a suitable text editor
I personally believe that a suitable text editor (or IDE) is a crucial step in minimizing coding
errors. Noice that I did not say that you need a "good" text editor, but rather a "suitable"
text editor. This is because diferent programing languages have diferent features and
diferent capabiliies.

For instance, if you have programmed in Python, you will noice that you do not need to
have the ability to check for matching brackets, because Python is based on code blocks

(tabbing or spacing to denote blocks of code). However, in the case of JavaScript, you
would certainly need your text editor to help you check for matching (or missing) brackets.
Some code editors that can accomplish the above includes Dreamweaver (commercial) and
Eclipse (free).

In addiion to matching brackets checking, here are some other features that will be useful
for you when you are coding in JavaScript:

1. Auto-tabbing or spacing ater keywords or matching brackets: This will help you in
visually inspecing the code structure, and will minimize code errors.

2. Auto-complete or auto-suggest feature: This means that as you type your code, the
editor is smart enough to suggest to some of the words (or code) that you have used
in your program so that you can quickly refer to them as you code. This is especially

useful for checking user-deined variables, objects, and funcions.

3. Syntax coloring: This will help you idenify if you are misusing any keywords.
Remember runime errors? Runime errors can be caused by the misuse of
keywords. If you are using any of the keywords for user-deined variables,
objects, or funcions, syntax coloring will help you to idenify this.

Summary

Whew, we've covered a lot in this chapter. The bulk of the content covered in this chapter
forms the building blocks of what we need to use in the later chapters. Speciically, we
covered the following topics:

We learnt about HTML, CSS, and JavaScript in web pages. In general, HTML provides
the content, CSS styles the web document, and JavaScript provides the behaviour

and interacivity for the webpage.

We've also learnt about the syntax of HTML, CSS, and JavaScript.

We've also learnt about the key techniques of using ID and Class selectors in order
for CSS to refer to various HTML elements and perform stylisic operaions on the
referenced HTML element.






What is JavaScript Tesing?

[42]

For JavaScript, we learnt about three important techniques for JavaScript to

reference to HTML elements. These three techniques (or rather built-in methods)
are: document.getElementById(), document.getElementsByName(), and

document.ElementsByTagName().

Next we learnt about tesing and why we need to test. In general, tesing is to
ensure that the program works correctly—that is, for the given input, we have the
correct output. Also, tesing helps to uncover syntax errors and conirm that the
program works in the way that we intend it to work.

We covered the types of JavaScript errors—namely loading errors, runime errors,
and logic errors. We've also covered some simple examples of each type of errors
and the common causes of them.

We covered some important ips and advice on how to write error-free code.

Now that we have covered the basic building blocks of JavaScript tesing, you will see how
we can make use of them to perform ad hoc tesing, which we will cover in the next chapter.
You will noice some of the funcions and built-in methods used in this chapter will be used
in the next chapter.









2
Ad Hoc Testing and Debugging

in JavaScript

In this chapter, we'll formally move into tesing the JavaScript programs that we
actually create. But before I start, I'd like to brief you on what you can expect
in this chapter. In this chapter, you will learn about two major ideas—the irst
idea being how diferent browsers can afect JavaScript tesing, and the second
major idea being how you can test your JavaScript program by using the alert().
You will also learn how to access the values on a form, manipulate the values
and inally output the values in a meaningful manner.

You will also see many of the techniques introduced in the previous chapter being

used extensively.

To be more speciic, we shall learn about the following topics:

The purpose of ad hoc tesing

What happens when your browser encounters an error in JavaScript

Browser diferences and the need to test in muliple browsers

Common browser messages and what they mean

How to ind out if you are geing the right output and puing the right values in the
correct places in your code

How to access values on a form and how to access other parts of the web page

Tips on what to do when your JavaScript program does not give you the

expected result










Ad Hoc Tesing and Debugging in JavaScript

[44]

What to do if the script does not run

How to perform a visual inspecion

How to use the alert() to test your JavaScript program

Commening out parts of your code in order to simplify tesing

Why ad hoc tesing isn't always enough

So before I move on to the main topics of this chapter, I'll briely menion the two basic ideas
that you should understand before moving on to the rest of the chapter.

The purpose of ad hoc testing–getting the script to run

The irst basic idea concerns the purpose of ad hoc tesing. The main purpose of ad hoc
tesing is to quickly get your code up and running and then see if there are any errors with
your code. As menioned previously, the three diferent types of JavaScript errors entail
loading, runime, and logic errors.

The main advantage of ad hoc tesing is that it allows you to test your JavaScript program
without bogging you down. It is meant for those who want to save ime, especially when
tesing small pieces of code.

What happens when the browser encounters an error in

JavaScript

Now it's time for the second basic idea. In the previous chapter, I have briely described hows time for the second basic idea. In the previous chapter, I have briely described howime for the second basic idea. In the previous chapter, I have briely described how
a web page is loaded in to the browser and then rendered in the web browser, waiing for
interacion with the user. I have also menioned that, in general, JavaScript fails silently; it
does not explicitly tell or show you what errors (if any) have occurred. This happens when
your browser does not have any form of debugging turned on.

However, modern web browsers feature built-in ways for the browser to tell the user that
some form of errors have occurred on the web page. This happens when you explicitly turn

on or install the debugging tools for the web browser. For some of the browsers, you will also

need to explicitly turn on the error console in order to ind out what error has occurred.







Chapter 2

[45]

In case you are wondering what you need to do in order to make use of these built-in
features, here are some simple instrucions to help you to get started:

1. For Firefox—turn on your web browser and go to Tools. Click on Error Console.

2. For Internet Explorer—you need to go toyou need to go to Tools | Internet Opions | Advanced.

Scroll down to Browsing and check Display a noiicaion about every script error.

You now understand the basic ideas about why we perform ad hoc tesing. We will
now move on to a more complex topic—how browser diferences can afect your
JavaScript program.

Browser differences and the need to test in multiple

browsers

In general, browsers have diferent features. The one diference that maters the most to us,
at least in this book, is the JavaScript engine used by diferent browsers. Diferent JavaScript
engines process JavaScript in diferent manners. This has important implicaions for us.
Certain JavaScript funcions or methods that are supported by one web browser may
not be supported by another.

The main essence of JavaScript is that it provides behavior to the web page through DOM

manipulaion; diferent browsers have diferent levels of support for DOM.

We will not atempt to go into a deep discussion about what is supported and what is not
by various browsers. Instead, we'll point you to this website: http://www.quirksmode.
org/compatibility.html.

This link provides a summary of the various incompaibiliies of various web browsers
according to diferent selectors. For our purpose here we should be more focused on the
DOM selectors since we are concerned about JavaScript. Feel free to browse through

the website for the details. But for now, the main idea that you need to understand is

that browser diferences result in incompaibiliies and hence we need to test for
browser compaibility.

Most beginner JavaScript programers would oten want to know how they can ind out the
browser that their visitors are using. Ater all, if you can ind out what browser your visitors
are using, you'll be able to create compaible JavaScript code. That's true to a large extent;
so now we'll start by learning how we can check the visitor's browser.

www.allitebooks.com

http://www.allitebooks.org

Ad Hoc Tesing and Debugging in JavaScript

[46]

Time for action – checking for features and snifing browsers
In this secion, we would like to introduce you to the navigatornavigator object. The navigator object is

a built-in object that provides you with informaion regarding the visitor's browser. What we
are trying to do here is to show you how the navigator object works, and how you can make

programing decisions based on the browser informaion.

The source code for this example can be found in the source code folder,

Chapter 2, with a ile name of browser-testing-sample-1.html

and browser-testing-sample-2.html.

1. Start your text editor if you have not already done so, and then enter the following

code in your text editor:

<html>

<head><title>Testing for Browser - Example 1</title></head>

<body>

<script type="text/javascript">// Sample 1

var browserType ="Your Browser Information Is As Follows:\n";

for(var propertyName in navigator){

 browserType += propertyName + ": " + navigator[propertyName] +
"\n";

}

alert(browserType);

</script>

</body>

</html>

Here's what's happening in the previous code: we deined a variable
browserType. Ater which we used a for loop and deined another
variable, propertyName.

2.	 The line that says:for(var propertyName in navigator) means that we

are trying to get all of the properies in the navigator object.

3.	 Ater doing this, we append the propertyName and the informaion into the
browserType variable. And inally, we output the informaion in an alert box.

4. Now, load the ile in to your web browser and you should see a pop-up window
containing informaion about your web browser.

Noice that the alert box contains various types of informaion about your
web browser. You can also access speciic property of the browser for your
own use. This is what we are going to do next.

Chapter 2

[47]

Now that you have learned how to use the navigator object, it's ime
to see how we can make use of this informaion in order to perform
programing decisions:

5. Create another new document, and enter the following code into it:

<html>

<head><title>Testing for Browser - Example 2</title></head>

<body>

<script type="text/javascript">// Sample 2

var typeOfBrowser = navigator.appName;

document.write(typeOfBrowser);

if(typeOfBrowser == "Netscape"){

 alert("do code for Netscape browsers");

}

else{

 alert("do something else");

}

</script>

</body>

</html>

In the previous sample code, we have deined the variable typeOfBrowser, which is used

to decide which to execute. An easy way would be to use the if else statement to choose

the of code to execute, based on the browser name.

What just happened?
In the preceding examples, you have seen how to use the navigator object to perform

"browser sniing", and based on the given informaion, perform appropriate acions.

Apart from using the navigator object, you can also test browser diferences based on the
browser's capabiliies. This means that you can test whether the user's browser has a certain
feature or not. This technique is also known as feature tesing. Now, we'll briely see how
you can perform capability tesing.

Testing browser differences via capability testing
Capability tesing is an important and powerful way to cope with browser incompaibiliies.
For instance, you might want to use a certain funcion that might not be supported on
diferent browsers. You can include a test to see if this funcion is supported or not.
Then, based on this informaion, you can execute the appropriate code for your visitor.

Ad Hoc Tesing and Debugging in JavaScript

[4�]

Time for action – capability testing for different browsers

In this secion, we'll briely introduce a simple-to-use method that can help you to quickly

test for a certain feature. The method that we are going to use is the .hasFeature()

method. Now, we'll dive right in and see it in acion..

The source code for this example can be found in the source code folder,

Chapter 2, with a ile name of browser-testing-by-feature-
2.html and browser-testing-by-feature.html.

1. Start your text editor and then enter the following code in your text editor:

<html>

<head><title>Testing browser capabilities using .hasFeature()</
title></head>

<body>

<script type="javascript/text">

var hasCore = document.implementation.hasFeature("Core","2.0");

document.write("Availability of Core is "+ hasCore + "
");

var hasHTML = document.implementation.hasFeature("HTML","2.0");

document.write("Availability of HTML is "+ hasHTML + "
");

var hasXML = document.implementation.hasFeature("XML","2.0");

document.write("Availability of XML is "+ hasXML + "
");

var hasStyleSheets = document.implementation.hasFeature("StyleShee
ts","2.0");

document.write("Availability of StyleSheets is "+ hasStyleSheets
+ "
");

var hasCSS = document.implementation.hasFeature("CSS","2.0");

document.write("Availability of CSS is "+ hasCSS + "
");

var hasCSS2 = document.implementation.hasFeature("CSS2","2.0");

document.write("Availability of CSS2 is "+ hasCSS2 + "
");

</script>

</body>

</html>

Chapter 2

[4�]

To make things clearer, I've deined variables for each of the features and
the version number. In general, the usage of hasFeature is as follows:is as follows:

.hasFeature(feature, version);

// feature refers to the name of the feature to test in string

// version refers to the DOM version to test

2. Now load the ile in to your web browser and you should see various types of text
being created dynamically on the screen.

Similarly, you can use the informaion that you have derived from the user's
browser to perform various decisions in a similar manner as to what you

have seen in the previous example.

So, for simplicity and explanaion sake, here's how you can perform
programing decisions using the .hasFeature().

3. Create another new document, and enter the following code into it:

<html>

<head><title>Testing browser capabilities using .hasFeature() -
Example 2</title></head>

<body>

<script type="text/javascript">

var hasCore = document.implementation.hasFeature("Core","2.0");

if(hasCore){

 document.write("Core is supported, perform code based on the
feature
");

}

else{

 document.write("Feature is not supported, do alternative code
to enable your program
");

}

</script>

</body>

</html>

The sample code above is self-explanatory as it is similar to the example seen in
browser-testing-sample-2.html.

What just happened?
The previous example is a simple extension of what you can do to test for browser

diferences. It is similar to the irst example, which "snifs" for the browser informaion
explicitly, while the method using .hasFeature() is based on capabiliies.

Ad Hoc Tesing and Debugging in JavaScript

[50]

There is no right or wrong way to test for browser diferences. However, a general pracice
is to use .hasFeature() to test for program funcionality. That is to say that we oteno test for program funcionality. That is to say that we oten
use .hasFeature() in order to ensure that our JavaScript funcionality will be availablein order to ensure that our JavaScript funcionality will be available
in diferent browsers.

The previous example shows some of the features that you can test for by using

.hasFeature(). Following is a list of the remaining features that you can test

for by using .hasFeature():

Events

UI Events

Mouse Events

HTML Events

Mutaion Events

Range

Traversal

Views

Now that you have some understanding of how you can test for browser diferences, it isow that you have some understanding of how you can test for browser diferences, it isw that you have some understanding of how you can test for browser diferences, it is is

ime for the next topic—geing the output and puing values in the right places.—geing the output and puing values in the right places.geing the output and puing values in the right places. the output and puing values in the right places. and puing values in the right places.the right places. right places.

Are you getting the correct output and putting values in

the correct places?

In this secion, we'll learn how to make sure that we are geing the output and puing the
correct values in the correct places. This means that we need to understand how to use

JavaScript with a HTML form.

Accessing the values on a form
In general, "geing" values would generally mean that a user would input some values into a
form (in a HTML document of course), and then our program "gets" the input from the web
form. Also, these values may or may not be manipulated by other funcions; the iniial user
input may be passed as arguments to other funcions and then manipulated.

This can be achieved by using JavaScript's built-in uiliies; JavaScript provides a few waysis can be achieved by using JavaScript's built-in uiliies; JavaScript provides a few ways can be achieved by using JavaScript's built-in uiliies; JavaScript provides a few ways's built-in uiliies; JavaScript provides a few wayss built-in uiliies; JavaScript provides a few ways
for you to access the form values so that you can use these values later on. In general,

JavaScript will "get" the value from a form"get" the value from a formget" the value from a form" the value from a form the value from a form onsubmit event.event.










Chapter 2

[51]

Time for action – accessing values from a form

In the following example, we'll start of with a simple HTML form. You will learn about
various techniques for accessing diferent form elements. What happens here is that you'll
see how we irst submit a form by using the onsubmit event. The onsubmit event allows

us to send the form to a JavaScript funcion, which then helps us to extract the values from
various form element types. So for this example, I need you to relax and understand the

techniques menioned earlier.

The source code for this example is found in Chapter 2 of the source
code folder, with a name of accessing-values-from-form.html.

1. Once again, enter the following code into your newly-created document in your
favorite editor:

<html>

<head><title>Getting Values from a HTML form</title>

<script type="text/javascript">/*

In this example, we'll access form values using

the following syntax:

document.NameOfForm.NameOfElement

where:

NameOfForm is the name of corresponding form

NameOfElement is the name of the element (within the
corresponding form)

*/

function checkValues(){

 var userInput = document.testingForm.enterText.value;

 alert(userInput);

 var userInputTextArea = document.testingForm.enterTextArea.
value;

 alert(userInputTextArea);

 var userCheckBox = document.testingForm.clickCheckBox.value;

 // this is for checkbox

 if(document.testingForm.clickCheckBox.checked){

 userCheckBox = true;

 }

 else{

Ad Hoc Tesing and Debugging in JavaScript

[52]

 userCheckBox = false;

 }

 alert(userCheckBox);

 var userSelectBox = document.testingForm.userSelectBox.value;

 alert(userSelectBox);

 // here's another way you can "loop" through your form
elements

 alert(document.testingForm.radioType.length);

 for(var counter = 0; counter<document.testingForm.radioType.
length;counter++){

 if(document.testingForm.radioType[counter].checked){

 var userRadioButton = document.testingForm.
radioType[counter].value;

 alert(userRadioButton);

 }

 }

}

</script>

</head>

<body>

<h1>A simple form showing how values are accessed by JavaScript</
h1>

<form name="testingForm" onsubmit="return checkValues()">

<p>Enter something in text field:<input type="text"
name="enterText" /></p>

<p>Enter something in textarea:<textarea rows="2" cols="20"
name="enterTextArea"></textarea></p>

<p>Check on the checkbox:<input type="checkbox"
name="clickCheckBox" /></p>

<p>Select an option:

<select name="userSelectBox">

 <option value="EMPTY">--NIL--</option>

 <option value="option1">option1</option>

 <option value="option2">option2</option>

 <option value="option3">option3</option>

 <option value="option4">option4</option>

</select>

</p>

<p>Select a radio buttons:

 <input type="radio" name="radioType" value="python" /> Python

 <input type="radio" name="radioType" value="javascript" />
JavaScript

Chapter 2

[53]

 <input type="radio" name="radioType" value="java" /> Java

 <input type="radio" name="radioType" value="php" /> PHP

 <input type="radio" name="radioType" value="actionscript" />
ActionScript 3.0

</p>

<input type="submit" value="Submit form" />

</form>

</body>

</html>

You should noice that there are various input types, such as text,

textarea, checkbox, select, andand radio.

2. Save the form and then load it in to your web browser. You should see a simple

HTML form on your screen.

3. Go on and enter values for the ields, and then click on Submit form. You should see

a series of alert windows, which repeat the values that you have entered., which repeat the values that you have entered. which repeat the values that you have entered.that you have entered. you have entered.you have entered.u have entered.

What just happened?
In the simple form example described earlier, you submited a form via a JavaScript eventdescribed earlier, you submited a form via a JavaScript event, you submited a form via a JavaScript event
onsubmit. The onsubmit event calls a JavaScript funcion checkValues() which then

helps us to access the values from diferent form elements.

In general, the syntax for accessing form elements is as follows:

document.formName.elementName.value

where formName is the name of the form, and elementName refers to the name of

the element. element.

As in the previous example, the form name is in the previous example, the form name isprevious example, the form name is example, the form name is testingForm, as can be seen in <form

name="testingForm" onsubmit="return checkValues()">, and the input text element

has the name enterText, as can be seen in <input type="text" name="enterText" />.

Therefore, based on this code snippet, we'll access the form values by doing the following:

document.testingForm.enterText.value

We can then assign this to a variable that can be saved for later use, as shown in the

code example.

Ad Hoc Tesing and Debugging in JavaScript

[54]

The previous example should be simple to grasp. But in this short example, I've alsoprevious example should be simple to grasp. But in this short example, I've also should be simple to grasp. But in this short example, I've alsout in this short example, I've alsot in this short example, I've also've alsove also

introduced a few more useful methods. Consider the following code snippet which isthe following code snippet which is following code snippet which iswhich is is

found in the example:the example: example:

for(var counter = 0; counter<document.testingForm.radioType.
length;counter++){
 if(document.testingForm.radioType[counter].checked){
 var userRadioButton = document.testingForm.
radioType[counter].value;
 alert(userRadioButton);
 }

}

Noice that in the highlighted line I've made use of thehighlighted line I've made use of the line I've made use of theI've made use of theve made use of thethe length property; document.
testingForm.radioType.length means that I am calculaing how many elements bymeans that I am calculaing how many elements by
the name of radioType do I have in the form nameddo I have in the form named testingForm. This property returnsThis property returns

an integer that can then be used in loops such as the for loop, as seen in the previous codeloop, as seen in the previous code

snippet. You can then loop through form elements and check for their values by using the

method menioned earlier.

Another important technique that you can use can be found in the following code snippet:important technique that you can use can be found in the following code snippet: technique that you can use can be found in the following code snippet:

if(document.testingForm.clickCheckBox.checked){
 userCheckBox = true;
}

What happens in the highlighted line is thatthe highlighted line is that highlighted line is thathighlighted line is that line is that document.testingForm.clickCheckBox.clickCheckBox..

checked returns a true oror false. You can use this technique to check if the formYou can use this technique to check if the form

element you are referring to has input or not. You can than make use of this informaion
to perform decisions.

Another technique for accessing form values

As you may have noiced, we are accessing the form elements by making use of the name

atribute. We would most probably (and most likely) make use of the name atribute to

access the form elements, as it is easier to refer to those elements. But nonetheless, here's
an alternate method that you can quickly look though:

Instead of wriing

document.formName.elementName.valueformName.elementName.value.valuevalue

You can write this:

document.forms[integer].elementName.value

where you are making use of the forms object, and elementName refers to the name of

the input.

Chapter 2

[55]

An example for the preceding code sample would be:preceding code sample would be: code sample would be:

document.forms[0].enterText.valueocument.forms[0].enterText.value

Noice that the forms object is appended with [0]. This means that theThis means that the forms object are

treated similarly to an array; forms[0] refers to the irst form in the web page, and so on.

Now that you have understood the basics of accessing the values for a form, you will learn how

to make sure that you are geing the correct values in the correct places in the next secion.

Accessing other parts of the web page other parts of the web page
In this secion, you will learn how to access other parts of the web page. In general, you have
already learned the building block for accessing diferent parts of the webpage by making
use of getElementById, getElementsByTag, and getElementsByTagName. Now you

will make further use of these, along with the newly-learned techniques of accessing values
from a form.

Time for action – getting the correct values in the correct places

In this example, you will see a general integraion of the techniques that you have learned so
far. You will learn how to access form values, manipulate them, perform operaions on them,
and inally, put the new output on other parts of the webpage. To help you beter visualize
what I am about to describe, following is a screenshot of the completed example:

www.allitebooks.com

http://www.allitebooks.org

Ad Hoc Tesing and Debugging in JavaScript

[56]

The example that you are about to use is a simple JavaScript program that checks to see ifthat you are about to use is a simple JavaScript program that checks to see if you are about to use is a simple JavaScript program that checks to see ifuse is a simple JavaScript program that checks to see if is a simple JavaScript program that checks to see if

you can reire at the age that you want to. It will request some basic informaion from you.at the age that you want to. It will request some basic informaion from you. the age that you want to. It will request some basic informaion from you.basic informaion from you. informaion from you.from you. you.

Based on the informaion provided, it will determine if you can reire at that ime, based onat that ime, based on ime, based on, based on based on

the amount of money you would want to have at the ime of reirement. the ime of reirement. ime of reirement.ime of reirement.

You will be building a form (2 forms in fact, loosely speaking), where the user will bespeaking), where the user will be, where the user will be

required to enter basic informaion into the irst form (on the let), and ater entering theinformaion into the irst form (on the let), and ater entering the into the irst form (on the let), and ater entering the(on the let), and ater entering the the let), and ater entering thelet), and ater entering the, and ater entering the
required informaion in each ield, there will be another input ield appearing dynamically
on the right of the ield (in the middle of the web page), if the input is correct.the middle of the web page), if the input is correct. middle of the web page), if the input is correct.middle of the web page), if the input is correct. of the web page), if the input is correct., if the input is correct. if the input is correct.

As you enter the informaion, a JavaScript event will ire of a JavaScript funcion that
checks for the correctness of the input. If it is correct, there will be a new ield created on
the right-hand side of the ield that has just accepted the input, and the ield on the let will
be disabled.

Ater the ields on the let are illed correctly, you will noice a complete form is being the ields on the let are illed correctly, you will noice a complete form is being ields on the let are illed correctly, you will noice a complete form is beingields on the let are illed correctly, you will noice a complete form is being illed correctly, you will noice a complete form is being
illed out in the middle of the page. Ater you click on on Submit, the code will perform thethe

calculaions and determine whether you can reire at the age you have speciied, based, based based

on the amount of money that you require.

The basic requirements for this example are as follows:basic requirements for this example are as follows: requirements for this example are as follows:for this example are as follows: this example are as follows:

Correct values must be entered. For instance, if the ield requires you to enter your
age, the ield must only accept integers and no characters should be allowed.

If the ields require a text input, such as your name, no integers will be allowed.

The completed source code for this example can be found in the source

code folder for Chapter 2, with a ile name ofa ile name of ile name of getting-values-in-
right-places.html.

So now, let us get started with this example::

1. Let us start by building the basic interface for this example. So, enter the following

code (the HTML and style) in to your text editor.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>Getting the right values</title>

<style>

input{

 padding:5px;

 margin:5px;

 font-size:10px;

}





Chapter 2

[57]

.shown{

 display:none;

}

.response{

 padding:5px;

 margin:5px;

 width:inherit;

 color:red;

 font-size:16px;

 float:left;

}

#container{

 position:absolute;

 width:800px;

 padding:5px;

 border: 2px solid black;

 height:430px;

}

#left{

 height:inherit;

 width:370px;

 border-right:2px solid black;

 float:left;

 padding:5px;

}

#right{

 height:inherit;

 width:300px;

 float:left;

 padding:5px;

}

#bottom{

 float:left;

 bottom:5px;

 padding:5px;

}

#finalResponse{

 float:left;

 width:780px;

 height:250px;

 border:3px solid blue;

 padding:5px;

Ad Hoc Tesing and Debugging in JavaScript

[5�]

}

/* this is for debugging messages */

#debugging{

 float:left;

 margin-left:820px;

 height:95%;

 width:350px;

 border:solid 3px red;

 padding:5px;

 color:red;

 font-size:10px;

}

</style>

<script type=”javascript/text”>

// some Javascript stuff in here

var globalCounter = 0;

</script>

<body>

<div id="container">

 <div id="left">

 <h3>Enter your information here</h3>

 <form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson"
onblur="submitValues(this)" size="50" value="Enter your name"/
>

 <input type="text" name="enterText" id="birth" onblur=
"submitValues(this)" size="50" value="Enter your place of birth"/
>

 <input type="text" name="enterNumber" id="age" onblu
r="submitValues(this)" size="50" maxlength="2" value="Enter your
age"/>

 <input type="text" name="enterNumber" id="spending"
onblur="submitValues(this)" size="50" value="Enter your spending
per month"/>

 <input type="text" name="enterNumber" id="salary" on
blur="submitValues(this)" size="50" value="Enter your salary per
month"/>

 <input type="text" name="enterNumber" id="retire" onbl
ur="submitValues(this)" size="50" maxlength="3" value="Enter your
age you wish to retire at" />

 <input type="text" name="enterNumber"
id="retirementMoney" onblur="submitValues(this)" size="50"

Chapter 2

[5�]

value="Enter the amount of money you wish to have for retirement"/
>

 </form>

 </div>

 <div id="right">

 <h3>Response</h3>

 <form name="testFormResponse" id="formSubmit" onsubmit="ch
eckForm(this);return false">

 </form>

 </div>

 <div id="finalResponse"><h3>Final response: </h3></div>

</div>

</body>

</html>

2. You might want to save this ile and load it in your browser to see if you are geing
the same output as the previous screenshot that you have seen.

Noice that in the HTML form above, there is JavaScript event onblur.

onblur is a JavaScript event that occurs whenever an element loses focus.

So you should see that all input elements have an onblur, which ires of
the submitValues() funcion.

You should also see that there is a this as an argument for

submitValues().this is one of the most powerful JavaScript keywords,

and refers to the corresponding element it is being referred to. An

example would be <input type="text" name="enterText"
id="nameOfPerson" onblur="submitValues(this)"

size="50" value="Enter your name"/>. In this code snippet,

submitValues(this) will submit the HTML form element object by the
name of enterText.

Now, it's ime for the JavaScript programing. What happened, as explained
previously, is that on the JavaScript event onblur, it will submit the HTML
form element object to the funcion submitValues(). So, we'll start with
this funcion irst.

Ad Hoc Tesing and Debugging in JavaScript

[60]

3. Now, enter the following code between the <script type="javascript/text">

tags::

function submitValues(elementObj){

 // using regular expressions here to check for digits

 var digits = /^\d+$/.test(elementObj.value);

 // using regular expressions

 // here to check for characters which

 // includes spaces as well

 var letters = /^[a-zA-Z\s]*$/.test(elementObj.value);

 // check to see if the input is empty

 if(elementObj.value==""){

 alert("input is empty");

 return false;

 }

 // input is not relevant; we need a digit for input elements
with name "enterNumber"

 else if(elementObj.name == "enterNumber" && digits == false){

 alert("the input must be a digit!");

 return false;

 }

 // input is not relevant; we need a digit for input elements
with name "enterNumber"

 else if(elementObj.name == "enterText" && letters == false){

 alert("the input must be characters only!");

 return false;

 }

 // theinput seems to have no problem, so we'll process the
input

 else{

 elementObj.disabled = true;

 addResponseElement(elementObj.value,elementObj.id);

 return true;

 }

}

I've commented on what the code is doing, but I'll focus on some of theve commented on what the code is doing, but I'll focus on some of theon what the code is doing, but I'll focus on some of the what the code is doing, but I'll focus on some of thethe code is doing, but I'll focus on some of the code is doing, but I'll focus on some of theI'll focus on some of thell focus on some of the

techniques used in the previous funcion.previous funcion. funcion.

What we are trying to do here is to check the correctness of the input.the correctness of the input. correctness of the input.the input. input.

For this example, we only accept either pure numbers or pure characters

(including spaces). This is what the following code snippet is doing:

var digits = /^\d+$/.test(elementObj.value);

var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);

Chapter 2

[61]

Here we are making use of regular expressions to check for the correctness
of the input. /^\d+$/ and /^[a-zA-Z\s]*$/ are regular expressions,

where both are appended with the test method. The test method tests

for the value of the HTML form object's value. For instance, var digits

= /^\d+$/.test(elementObj.value) will return true if the value

is indeed digits, and false if it is not. Similarly, var characters =

/^[a-zA-Z\s]*$/.test(elementObj.value) will return true if

it is characters (which includes spaces) and false if it is otherwise.

In case you wish to learn more about using regular expressions, you can

refer to http://www.w3schools.com/jsref/jsref_obj_regexp.

asp and see how it works.

The previous informaion will be used during the decision-making process
in if-else statements. The if-else statements check for the name

of the HTML object; enterNumber expects an integer input. If it is not

enterNumber, it is expecing a character input.

You should noice that if there are no problems with the input, we
will disable the input element and pass the value and id of the HTML
form object to a funcion addResponseElement(), ater which we will
return true, which signiies the successful execuion of the code and
the submission of the form values.

So now, we'll move on to the addResponseElement()funcion:

4. Coninuing with the current document, append the following code belowcurrent document, append the following code below document, append the following code belowthe following code below following code below

submitValues() funcion:funcion::

function addResponseElement(messageValue, idName){

 globalCounter++;

 var totalInputElements = document.testForm.length;

 var container = document.getElementById('formSubmit');

 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";

 if(globalCounter == totalInputElements){

 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";

 }}

}

Ad Hoc Tesing and Debugging in JavaScript

[62]

What addResponseElement() does is that it atempts to dynamically add
the input element on the form to the right of original input form. Here, you
should ind var container = document.getElementById('formSu
bmit') familiar. It looks for an HTML element with ID of formSubmit. Ater
this, we will append HTML into this form, through the innerHTML method.

container.innerHTML += "<input type=\"text\" value=\""

+messageValue+ "\"name=\""+idName+"\" />
"; atempts to
append the input that is wrapped between the outermost inverted commas

into <form> tags.

You should also noice var totalInputElements = document.

testForm.length;. What this line of code does is determine the total

number of input elements that testForm has, by using the length

property. We are making use of this informaion to determine if we are on
the last input ield of the form, so that we can append a Submit buton on
the other form.

Next, we will create the funcion, which is called ater the second form,
which has a name of testFormResponse, is submited.

5. Coninuing with the current document, append the following code belowcurrent document, append the following code below document, append the following code belowthe following code below following code below

addResponseElement()() funcion:funcion::

function checkForm(formObj){

 var totalInputElements = document.testFormResponse.length;

 var nameOfPerson = document.testFormResponse.nameOfPerson.
value;

 var birth = document.testFormResponse.birth.value;

 var age = document.testFormResponse.age.value;

 var spending = document.testFormResponse.spending.value;

 var salary = document.testFormResponse.salary.value;

 var retire = document.testFormResponse.retire.value;

 var retirementMoney = document.testFormResponse.
retirementMoney.value;

 var confirmedSavingsByRetirement;

 var ageDifference = retire - age; // how much more time can
the user have to prepare for retirement

 var salaryPerYear = salary * 12; // salary per year

 var spendingPerYear = spending * 12; // salary per year

 // income per year, can be negative

 // if negative means cannot retire

 // need to either increase spending

 // or decrease spending

 var incomeDifference = salaryPerYear - spendingPerYear;

Chapter 2

[63]

 if(incomeDifference <= 0){

 buildFinalResponse(nameOfPerson,-1,-1,-
1,incomeDifference);

 return true;

 }

 else{

 // income is positive, and there is chance of retirement

 confirmedSavingsByRetirement = incomeDifference *
ageDifference;

 if(confirmedSavingsByRetirement <= retirementMoney){

 var shortChange = retirementMoney -
confirmedSavingsByRetirement;

 var yearsNeeded = shortChange/12;

buildFinalResponse(nameOfPerson,false,yearsNeeded,retire,
shortChange);

 return true;

 }

 else{

 var excessMoney = confirmedSavingsByRetirement -
retirementMoney;

 buildFinalResponse(name,true,-1,retire,excessMoney);

 return true;

 }

 }

}

What happens in this funcion is prety straighforward. The various form
values are assigned to the various variables. Then we begin some simple

calculaions to see if the user will have enough money for reirement.
You may refer to the comments in the funcion to understand the logic
of the calculaions.

In general, we'll call the funcion buildFinalResponse(), irrespecive
of whether the user can reire on ime, and with the required amount of
money. So here's the buildFinalResponse().

Coninuing with the current document, append the following code below
checkForm () funcion:

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){

 var element = document.getElementById("finalResponse");

 if(retiring == false){

 element.innerHTML += "<p>Hi " + name + ",<p>";

 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<p>";

Ad Hoc Tesing and Debugging in JavaScript

[64]

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive
our goal</p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";

 }

 /*

 else if(retiring == -1){

 element.innerHTML += "<p>Hi " + name + ",<p>";

 element.innerHTML += "<p>We've processed your information
and we have noticed HUGE problem.<p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";

 element.innerHTML += "<p>This is because you spend more
money than you make. You spend " + shortChange + " in
excess of what you make</p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";

 }

 */

 else{

 // able to retire but....

 element.innerHTML += "<p>Hi " + name + ",<p>";

 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + " years
old.</p>";

 element.innerHTML += "<p>Also, you'll have ' " +
shortChange + " amount of excess cash when you retire.</p>";

 element.innerHTML += "<p>Congrats!<p>";

 }

}

The funcion buildFinalResponse()() is similar to the addResponseElement()

funcion. It simply looks for the required HTML element, and appends the requiredIt simply looks for the required HTML element, and appends the required the required HTML element, and appends the required required HTML element, and appends the requireds the required the required

HTML to the element.

Here, you can clearly see the JavaScript funcions, methods, and techniques that you have, you can clearly see the JavaScript funcions, methods, and techniques that you have you can clearly see the JavaScript funcions, methods, and techniques that you have, and techniques that you have and techniques that you have

learnt so far in this book.nt so far in this book. so far in this book.

Save the ile. You can try playing with the example and see how it works for you.the ile. You can try playing with the example and see how it works for you. ile. You can try playing with the example and see how it works for you.the example and see how it works for you. example and see how it works for you.example and see how it works for you. see how it works for you.

Chapter 2

[65]

What just happened?
In the previous example, you saw how to access the values of the form, perform operaions
on the input, and then place the output on various parts of the web page. You may have

noiced that we made extensive use of getElementById. We have also made use of the

form object and the value method in order to access the value of various elements in the

form. Then, by making use of getElementById, we looked for the required HTML element
and appended the output into the HTML element.

But, at this point of ime, you may be wondering what you should do if you happen to make
mistakes in the program. This is what we'll be focusing on in the next secion.

Does the script give the expected result?

My opinion is that before we can begin any meaningful discussion, we must understandmeaningful discussion, we must understand discussion, we must understand

what is meant by "expected result".is meant by "expected result". by "expected result"."expected result".expected result"."..

"Expected result(s)" can have several meanings, at least for the purpose of this book. For" can have several meanings, at least for the purpose of this book. For have several meanings, at least for the purpose of this book. For, at least for the purpose of this book. For at least for the purpose of this book. For

instance, as menioned in the previous chapter, the output should be correct for each input;the previous chapter, the output should be correct for each input; previous chapter, the output should be correct for each input;previous chapter, the output should be correct for each input;chapter, the output should be correct for each input;
as this refers to the eventual output. There is another output, which takes the form ofthis refers to the eventual output. There is another output, which takes the form of

"visual output". For instance, for every user interacion or event, our web applicaions wouldvisual output". For instance, for every user interacion or event, our web applicaions would". For instance, for every user interacion or event, our web applicaions would. For instance, for every user interacion or event, our web applicaions would
oten provide a form of visual cue to allow the user to know that something is happening.to know that something is happening.know that something is happening.

In this case, our visual clues helping in the way that we intended would be deemed as anlues helping in the way that we intended would be deemed as anues helping in the way that we intended would be deemed as anhelping in the way that we intended would be deemed as anthe way that we intended would be deemed as an

"expected result".expected result".result"..

A simple ip, to check if the script gives you the expected results, is to use simple input and, to check if the script gives you the expected results, is to use simple input and to check if the script gives you the expected results, is to use simple input andthe expected results, is to use simple input and expected results, is to use simple input andresults, is to use simple input and to use simple input and

perform the calculaions yourself. Make sure that your calculaions are correct and test
your program.

In the later part of this chapter, we'll discuss two relevant techniques in detail. But irst, let
us see what acions we can take if our script does not run.

What to do if the script doesn't run

If the script doesn't run, it is very likely that loading or runime errors have occurred,doesn't run, it is very likely that loading or runime errors have occurred, run, it is very likely that loading or runime errors have occurred,loading or runime errors have occurred, or runime errors have occurred,runime errors have occurred, errors have occurred,occurred,,

depending on the way that your program is coded. For example, in the previous program, in the previous program in the previous programthe previous program previous programprevious program program

that you have just created, you know that the program is not running if there is no response

ater you have entered the irst input ield and the focus is no longer on the irst input ield.

Ad Hoc Tesing and Debugging in JavaScript

[66]

In this case, there are a few possibiliies (all of which fall under the three basic forms ofn this case, there are a few possibiliies (all of which fall under the three basic forms ofare a few possibiliies (all of which fall under the three basic forms of a few possibiliies (all of which fall under the three basic forms of
JavaScript errors as menioned in the previous chapter). Firstly, there might be an error inthe previous chapter). Firstly, there might be an error in). Firstly, there might be an error in. Firstly, there might be an error in Firstly, there might be an error in

the syntax of your input ield for the JavaScript event, or, there could be a serious error in syntax of your input ield for the JavaScript event, or, there could be a serious error in, or, there could be a serious error in or, there could be a serious error inor, there could be a serious error inr, there could be a serious error in

the funcion that is called by the JavaScript event. If not, it could be a logic error.the JavaScript event. If not, it could be a logic error. JavaScript event. If not, it could be a logic error.event. If not, it could be a logic error.

Whatever the errors may be, it is oten diicult to guess what and where the errors are.
Therefore, I'll introduce three important techniques for tesing out your code, if your code
does not run.

Visually inspecting the code
Visually inspecing the code means that you will be a human compiler, and visually check
for errors in your code. My opinion is that there are certain pre-condiions and ips forcondiions and ips for ips for
visual inspecion:

There must be a good code block structure. This means that code should be properly

spaced and indented for visual clarity. At one glance, you should be able to see which

code is nested under which if-else statements, or which funcions it belongs to.

The code editor that you use makes a huge diference. A common error is the
mismatching of brackets or inverted commas. Therefore, a code editor that

allows for the highlighing of matching brackets will help you to spot such errors.

Check for semicolons ater each statement(s).

Check to see if variables are iniialized. If variables are used in later parts of the
program but are not iniialized, it will create serious errors.

The previous acions are some of the things I will do if my script doesn't run or if it doesn'tprevious acions are some of the things I will do if my script doesn't run or if it doesn't acions are some of the things I will do if my script doesn't run or if it doesn'tscript doesn't run or if it doesn't doesn't run or if it doesn'tdoesn't run or if it doesn't run or if it doesn'tdoesn't
run in the way that I intend it to. However, despite our best intenions, visual inspecion ofthe way that I intend it to. However, despite our best intenions, visual inspecion of way that I intend it to. However, despite our best intenions, visual inspecion ofI intend it to. However, despite our best intenions, visual inspecion of intend it to. However, despite our best intenions, visual inspecion ofit to. However, despite our best intenions, visual inspecion ofto. However, despite our best intenions, visual inspecion of
code can only be useful for small programs, such as programs that have less than 30 to 50
lines of code. If the programs get any larger, or if they contain various funcions that are
invoked during events, it might be beter (and more eicient) to check our code by usingt might be beter (and more eicient) to check our code by using might be beter (and more eicient) to check our code by using(and more eicient) to check our code by using more eicient) to check our code by usingeicient) to check our code by using to check our code by using

the alert funcion.funcion.

Using alert() to see what code is running
The alert method can be used to check that what code is running is being used

appropriately. We have not formally introduced the alert method yet. But just in case, you

can use the alert funcion to create pop-up windows just about anywhere in a JavaScripta JavaScript

program. The syntax is as follows: The syntax is as follows:

alert(message)

where message can take almost any number of values (or variables if it has been deinednumber of values (or variables if it has been deinedvalues (or variables if it has been deined
or iniialized). Due to this lexible nature of theiniialized). Due to this lexible nature of the). Due to this lexible nature of thelexible nature of the nature of the alert method, it can also be used to show

values, strings, and object types as well. and object types as well. object types as well.








Chapter 2

[67]

The issue in using alert stems from the locaion where the alert should be placed in the

code. This will be demonstrated in the next hands-on example.

Using alert() to see what values are being used
As menioned earlier, the alert method can be used to show almost any type of value.

Therefore, a common usage would be to pass a variable into the alert method and see if

the value is what we need or intended.

Similarly, we need to know where we should be applying the alert method to in order to

ensure that our code inspecion is correct.

At this point of ime, an example would be the most appropriate way to see how we can
make use of the alert method to inspect the code for errors. So, let us see how this works.

Time for action – using alert to inspect your code

This example is similar to what you have done in the previous example. In this example, you

will be required to insert alert in the appropriate places in order to check which part of the

code is running. In some cases, you will need to pass values to the alert method and see if

the value is the one that you want.

To be honest, it would be tedious to tell you step-by-step where you should place the alert

method, especially as the bulk of the code in this example is similar to the previous one.

However, to make things easier for you to follow, we'll start immediately with the enire
program, ater which we'll explain to you the raionale behind the locaion of the alert

methods and the values that are passed into the alert method.

The source code of the following example can be found in Chapter 2 of

the source code folder, named getting-values-in-right-places-
using-alert.html.

1. This example is similar to the previous one, except that the JavaScript has been

changed slightly. Replace the JavaScript code from the previous example with the
following code:

var globalCounter = 0;

function submitValues(elementObj){

 alert("submitValues");

 alert(elementObj.name);

 var totalInputElements = document.testForm.length;

 alert("total elements: " + totalInputElements);

 var digits = /^\d+$/.test(elementObj.value);

 var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);

Ad Hoc Tesing and Debugging in JavaScript

[6�]

 alert(characters);

 if(elementObj.value==""){

 alert("input is empty");

 return false;

 }

 else if(elementObj.name == "enterNumber" && digits == false){

 alert("the input must be a digit!");

 return false;

 }

 else if(elementObj.name == "enterText" && characters ==
false){

 alert("the input must be characters only!");

 return false;

 }

 else{

 alert("you've entered : " + elementObj.value);

 elementObj.disabled = true;

 alert(elementObj.value);

 addResponseElement(elementObj.value,elementObj.id);

 return true;

 }

}

function addResponseElement(messageValue, idName){

 alert("addResponseElement");

 globalCounter++;

 var totalInputElements = document.testForm.length;

 alert("totalInputElements");

 var container = document.getElementById('formSubmit');

 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";

 if(globalCounter == totalInputElements){

 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";

 }

}

function checkForm(formObj){

 alert("checkForm");

 var totalInputElements = document.testFormResponse.length;

 alert(totalInputElements);

Chapter 2

[6�]

 var nameOfPerson = document.testFormResponse.nameOfPerson.
value;

 alert(nameOfPerson);

 var birth = document.testFormResponse.birth.value;

 alert(birth);

 var age = document.testFormResponse.age.value;

 alert(age);

 var spending = document.testFormResponse.spending.value;

 alert(spending);

 var salary = document.testFormResponse.salary.value;

 alert(salary);

 var retire = document.testFormResponse.retire.value;

 alert(retire);

 var retirementMoney = document.testFormResponse.
retirementMoney.value;

 alert(retirementMoney);

 var confirmedSavingsByRetirement;

 var ageDifference = retire - age; // how much more time can
the user have to prepare for retirement

 alert(ageDifference);

 var salaryPerYear = salary * 12; // salary per year

 alert(salaryPerYear);

 var spendingPerYear = spending * 12; // salary per year

 alert(spendingPerYear);

 var incomeDifference = salaryPerYear - spendingPerYear;

 alert(incomeDifference);

 if(incomeDifference <= 0){

 buildFinalResponse(nameOfPerson,-1,-1,-
1,incomeDifference);

 return true;

 }

 else{

 confirmedSavingsByRetirement = incomeDifference *
ageDifference;

 if(confirmedSavingsByRetirement <= retirementMoney){

Ad Hoc Tesing and Debugging in JavaScript

[70]

 var shortChange = retirementMoney -
confirmedSavingsByRetirement;

 alert(shortChange);

 var yearsNeeded = shortChange/12;

buildFinalResponse(nameOfPerson,false,yearsNeeded,retire,
shortChange);

 return true;

 }

 else{

 var excessMoney = confirmedSavingsByRetirement -
retirementMoney;

 alert(excessMoney);

 buildFinalResponse(name,true,-1,retire,excessMoney);

 return true;

 }

 }

}

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){

 alert("buildFinalResponse");

 var element = document.getElementById("finalResponse");

 if(retiring == false){

 alert("if retiring == false");

 element.innerHTML += "<p>Hi " + name + ",<p>";

 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive
our goal</p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";

 }

 else{

 // able to retire but....

 alert("retiring == true");

 element.innerHTML += "<p>Hi " + name + ",<p>";

Chapter 2

[71]

 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + " years
old.</p>";

 element.innerHTML += "<p>Also, you'll have " +
shortChange + " amount of excess cash when you retire.</p>";

 element.innerHTML += "<p>Congrats!<p>";

 }}

}

2. Save the document and load it in to your web browser. Play around with the

example and see how the alert boxes noify you of which part of the code is
being executed, and also the values being entered.

What just happened?
If you go through the previous example, you will noice that the alert() is most oten
placed at the beginning of funcions, and when variables are being iniialized. To check the
funcions, we oten manually type in the name of the funcion and pass it as arguments
to the alert method, to inform us of what is happening as we interact with the program.

Similarly, we pass the variables that are deined (the values from the form elements) as
arguments to the alert method to inform us of what values are being entered by the user.

Therefore, by using a single alert() method, we are able to ind out what code is running
and what values are being used. However, this method may be slightly too tedious or
frustraing, because the alert boxes keep on popping up on your window. Here's a simple
alternaive for checking what code is running, and also to inspect the input elements.

A less obtrusive way to check what code is running and the

values used
To test our code in a less obtrusive manner we would write a simple debugging funcion. This

debugging funcion should print out the names of the funcions, and some other variables.
For simplicity's sake, we'll demonstrate a simple debugging funcion that prints the name of
the funcion, and the HTML element being used. So, let us get started.

Ad Hoc Tesing and Debugging in JavaScript

[72]

Time for action – unobtrusively checking what values are used

As menioned above, we'll be demonstraing a very simple debugging funcion that helps
you to idenify which code is running and also which HTML element is in use. Here, you'll
get a basic idea of some of the acions that you can perform in order to have a less obtrusive
way of tesing your code.

Again, this example is similar to the previous one, but there are some important elements

that which we will be adding to the previous example. In essence, we will be adding a

funcion, some HTML, and CSS to it.

However, you might ind it tedious to refer back to the previous example and add the new
elements to the previous example. Therefore, it is recommended that you stay with me on

this example.

Alternaively, you can view the source code in the source code folder,
Chapter 2, with a ile name of getting-value-in-right-
places-complete.html.

So, without further ado, let us start right now:

1. Insert the following CSS code in between the <style> tags:

/* this is for debugging messages */

#debugging{

 float:left;

 margin-left:820px;

 height:95%;

 width:350px;

 border:solid 3px red;

 padding:5px;

 color:red;

 font-size:10px;

}

2. Now, for the HTML container which will contain the debugging messages, enter the enter theenter the the

following code snippet before </body> tag:

 <div id="debugging"><h3>Debugging messages: </h3></div>

What happens here is that the preceding HTML element will be used tothe preceding HTML element will be used to
provide a visual separaion between the debugging messages and thebetween the debugging messages and thethe

simple applicaion itself. Save the ile now , load it to your web browser andapplicaion itself. Save the ile now , load it to your web browser and itself. Save the ile now , load it to your web browser andave the ile now , load it to your web browser andve the ile now , load it to your web browser and
you will see an example similar to the one shown in the next screenshot:will see an example similar to the one shown in the next screenshot: see an example similar to the one shown in the next screenshot:next screenshot::

Chapter 2

[73]

3. Next, you will need to append the following code to your JavaScript code:

function debuggingMessages(functionName, objectCalled, message){

 var elementName;

 if(objectCalled.name){

 elementName = objectCalled.name;

 }

 else if(objectCalled.id){

 elementName = objectCalled.id;

 }

 else{

 elementName = message;

 }

 var element = document.getElementById("debugging");

 element.innerHTML += "Function name :" +functionName+
"
element :" +elementName+"
";

}

The previously-menioned funcion is used to capture the name of thepreviously-menioned funcion is used to capture the name of the funcion is used to capture the name of thethe name of the name of the

funcion used right now; this is equivalent to what code is in use right now,,
because our program is event driven and the funcions are, in general,, in general, in general,,

triggered by the user.

Ad Hoc Tesing and Debugging in JavaScript

[74]

The three arguments are as follows:

functionName refers to the funcionName of the funcion used rightrefers to the funcionName of the funcion used rightthe funcion used right funcion used right
now. In the next step, you shall see the method used to derive this

value dynamically.

objectCalled refers to the HTML object being used.

Message refers to a string. This can be any message that you want; it is
meant to provide some form of lexibility to the kind of debugging messages
that you can write to the screen.

Also, we are making use of the .innerHTML methodethod to append the

messages into the HTML div element for thefor the the id "debugging"."debugging".debugging".

4. Now inally, it's ime to see how we can use this funcion. In general, we use the
funcion as follows:

 debuggingMessages("name of function", elementObj,"empty");name of function", elementObj,"empty");", elementObj,"empty");

If you refer to the source code, you will see that the previously-menionedwill see that the previously-menioned see that the previously-menioned that the previously-menioned the previously-menionedpreviously-menioned

funcion is being used sparingly in the program. Consider the following
code snippet:

function submitValues(elementObj){

 //alert("submitValues");

 debuggingMessages("submitValues", elementObj,"empty");submitValues", elementObj,"empty");", elementObj,"empty");

 //alert(elementObj.name);

 var totalInputElements = document.testForm.length;

 //alert("total elements: " + totalInputElements);

In the previous case, the value ofprevious case, the value of case, the value of "submitValues" willsubmitValues" will" will will be passede passed

because submitValues is the name of the funcion. Noice that we also
passed the funcion argument, elementObj intonto debuggingMessages()

in order to noify us what is being used in the current funcion.n order to noify us what is being used in the current funcion.the current funcion. current funcion.

5. Finally, you might want to add the debuggingMessages("name of function",name of function",",

elementObj,"empty") to each funcion in your JavaScript program. If you are noto each funcion in your JavaScript program. If you are not
sure where you should use this funcion, refer to the source code given.

If you are typing in the funcion yourself, then do take note that you mighten do take note that you mightn do take note that you might

have to change the argument names in order to accommodate each ofaccommodate each of each ofof

the funcions. In general,funcions. In general, debuggingMessages() can be used in place

of the alert()lert() method. So, if you are unsure of where you should usere of where you should use

debuggingMessages(), you can use debuggingMessages() for every

alert() used for inspecing the code in the previous example.sed for inspecing the code in the previous example.the previous example. previous example.






Chapter 2

[75]

6. If you have executed the enire program, you will see something similar to theexecuted the enire program, you will see something similar to the the enire program, you will see something similar to thewill see something similar to the see something similar to the

next screenshot: screenshot:shot:hot:

What just happened?
You have just created a funcion that allows you to inspect your code in a less obtrusive
manner, by making use of some built-in methods of JavaScript, which includes the
.innerHTML method. What happens here is another example of how you can access values,

manipulate them, and then output these values to the required HTML element, in order to
make inspecion less obtrusive.

If you look through the source code, you may have noiced that I used diferent messages
during diferent situaions; this will bring more lexibility to your debugging funcions, if you
use one.

Commenting out parts of the script to simplify testing

Commening out parts of the script is another important and simple-to-use ad hoc technique-to-use ad hoc techniqueto-use ad hoc technique-use ad hoc techniqueuse ad hoc technique

for tesing your JavaScript code. Essenially, you comment out the code that will not be your JavaScript code. Essenially, you comment out the code that will not be
used immediately.

Ad Hoc Tesing and Debugging in JavaScript

[76]

Because we have not introduced how to do muliple line commening, I'll take this chance toI'll take this chance toll take this chance to

show you how to use it. The syntax is as follows:it. The syntax is as follows: The syntax is as follows:

/*

This is a multiple line comment

*/

Here's how commening out parts of the script can be used to simplify tesing: we
would oten comment out all other code that we would not use at irst. For instance,
the irst funcion used in getting-values-right-places-complete.html is the

submitValues() funcion.

We would make sure that the submitValues() funcion is correct before uncommeningfuncion is correct before uncommening
the second funcion that is used, which is thesecond funcion that is used, which is the funcion that is used, which is the addResponseElement() funcion.funcion.

The process goes on unil all funcions are uncommented, which means that the code
is correct.

With all of these points in mind, we'll now move on to a simple workout based on the all of these points in mind, we'll now move on to a simple workout based on the of these points in mind, we'll now move on to a simple workout based on these points in mind, we'll now move on to a simple workout based on the points in mind, we'll now move on to a simple workout based on thepoints in mind, we'll now move on to a simple workout based on thein mind, we'll now move on to a simple workout based on the'll now move on to a simple workout based on thell now move on to a simple workout based on then the the

previous example. example.

Time for action – simplifying the checking process

In this example, there will not be any source code for you to copy. Instead, you can use the

previous example found in getting-values-right-places-complete.html and try

out the following steps:

1. Scroll to the JavaScript secion of the source code. Comment out all funcions except
for submitValues() and addResponseElement().

2. Save the ile and load it to your web browser. Now test out the program.

You should noice that your program can sill work, except that ater all
the input ields are illed correctly, you will not be able to submit the
form successfully.

This is because you have commented out the funcion checkForm(),

which is needed for the second form submission.

What does this mean? This means to say that the funcions
submitValues()and addResponseElement() work correctly,

and now it is safe to move on.

3. Now, uncomment the checkForm(), buildFinalResponse()(), and

debuggingMessages() funcion, save the ile and reload in your browser.
Coninue to test out your program unil you submit the form.oninue to test out your program unil you submit the form.ninue to test out your program unil you submit the form.

Chapter 2

[77]

You should have noiced that all things go well before the submission of
the second form. This is, because expected as you have tested it in thethe

previous step.

Now, ater you have completed all of the input ields, submit the
form. Because you have uncommented thethe checkForm() andnd

buildFinalResponse()() funcions, you should now expect a

response ater submiing the form.

4. Finally, uncomment the debuggingMessages()() funcion. Save the ile and load it
in to your browser

Now, similarly, use the program as usual, and you should see that all of the required

funcionaliies are working as before.

What just happened?
You have just executed a useful way of tesing your code by uncommening diferent parts
of the code. You may have noiced that we started from the irst funcion that will be used,
and then proceeded to the next one. This process will help us to spot the block of code that

contains the error.

This technique can also be applied to code statements. We commented out the code in

funcions, because it is easier to follow based on the example.

Timing differences–making sure that the HTML is there

before interacting with it

Remember that the essence of JavaScript is to provide behavior to web pages by
manipulaing DOM elements? Here's the catch—if the HTML is not available when, for
instance, a JavaScript funcion that changes the color of a form is executed, then the
JavaScript funcion will not work.

In this case, it is not due to JavaScript errors such as logic, runime, and loading errors, but
rather, due to iming problems.

As menioned in the previous chapter, the web browser (client) downloads a web page
from a server, and in general, reads the web page (document) from top to botom. So, for
instance, if you have a large HTML document (for instance an HTML document with large
images within the body), your JavaScript might not be able to interact with the HTML DOM
because there is no HTML to interact with.

Ad Hoc Tesing and Debugging in JavaScript

[7�]

There are two soluions that allow us to deal with this problem:are two soluions that allow us to deal with this problem: two soluions that allow us to deal with this problem:

1. Using the JavaScript event onload with the <body> tag. This can be done

as follows:

<html>

<head>

<script>

function aSimpleFunction()

{

 alert(window.status);

}

</script>

</head>

<body onload="aSimpleFunction()">

</body>

</html>

The highlighted line means that aSimpleFunction() is executed onlyexecuted only only

when the contents in thecontents in thethe <body> tag have inished loading. You can makeve inished loading. You can make inished loading. You can makeinished loading. You can make loading. You can make

use of this technique to ensure that your HTML contents have inishedve inished inished
loading before you execute your JavaScript funcions.

Here's another (and possibly preferred method):'s another (and possibly preferred method):s another (and possibly preferred method):

2. Placing your JavaScript funcion before the </body> tag.

This method is commonly used; you can see companies providing analyics service oten
requesing its users to place the tracking code (oten in JavaScript, such as Google Analyics)
just before the </body> tag. This means that the JavaScript snippet will be loaded ater all
contents in the <body> tag are loaded, ensuring that the HTML DOM will interact with the
JavaScript.

Why ad hoc testing is never enough

Up to this point, you may have noiced that the methods introduced for ad hoc tesing can
get repeiive when applied to your code. For instance, the alert method requires you

to manually type in the alert funcion in diferent parts of the code, containing diferent
values in order for you to inspect the code. This can get tedious and ineicient, especiallyineicient, especially, especially

when the program begins to get larger. Simply put, it will not be able to scale when thethe program begins to get larger. Simply put, it will not be able to scale when the program begins to get larger. Simply put, it will not be able to scale when the

program gets too large. At the same ime, the alert method can be quite obtrusive. For

this reason, we created a simple debugging funcion.

Chapter 2

[7�]

The simple debugging funcion that we have created is less obtrusive; you can interact with
the program and receive an almost instant feedback on your screen. Although it has the

advantage of being less obtrusive, it sufers from two major disadvantages. The irst is the
fact that it can be tedious and ineicient, which is similar to the alert method. The second

disadvantage is that how well the debugging funcion can work relies largely on the skills of
the JavaScript program. However, being beginners in JavaScript, we may or may not have the
skills to create a robust debugging funcion.

Therefore, there are other, more powerful, tools to help us get the job done when the need

arises, and we will be discussing these in the later chapters.

Summary

In this chapter, we built upon the basics learnt in the previous chapter, and expanded

our knowledge of how we can perform ad hoc tesing by using various techniques covered
in the chapter.

In general, we have combined the various methods and techniques from the previous

chapter and this chapter in order to help us perform ad hoc tesing. We oten look for
the required element through getElementById, and then by accessing form values

through the form object. We also used the alert() method to perform some form

of ad hoc tesing.

Speciically, we have covered the following topics:

We have learnt how to access values on forms by using thet how to access values on forms by using the how to access values on forms by using the form object and its

methods, manipulaing the values, and outpuing the values in to other partsthe values in to other parts values in to other parts

of the web page by using the techniques learnt in the previous chapter, such ast in the previous chapter, such as in the previous chapter, such as the previous chapter, such as such as

getElementById. We appended HTML content to speciic HTML elements by
using .innerHTML.

Acions that we can take if the script does not provide the expected output, namely
by tesing the script by using thescript by using the by using the alert() method and commening out the code.
This leads us to ad hoc tesing. leads us to ad hoc tesing.

Various techniques to perform ad hoc tesing, most notably, by using the, by using the by using thethe alert()

method. Due to its apparent obtrusiveness, we created a simple debugging funcionobtrusiveness, we created a simple debugging funcion, we created a simple debugging funcion
that provides a less obtrusive way of performing tesing.

Timing diferences: We must always make sure that the HTML DOM is availablediferences: We must always make sure that the HTML DOM is availablee must always make sure that the HTML DOM is available
before JavaScript can interact with it.

Ad hoc tesing is never enough due to scalability and eiciency problemsd hoc tesing is never enough due to scalability and eiciency problemseiciency problems problems











Ad Hoc Tesing and Debugging in JavaScript

[�0]

Now that we have understood and have tried ad hoc tesing, it is ime to learn some slightly
more advanced stuf about JavaScript tesing. As menioned earlier, although ad hoc tesingmenioned earlier, although ad hoc tesing earlier, although ad hoc tesingearlier, although ad hoc tesing, although ad hoc tesing
is quick and simple, it does not necessarily lead to beter JavaScript code (on top of its othernecessarily lead to beter JavaScript code (on top of its other lead to beter JavaScript code (on top of its other
weaknesses). In the next chapter, we'll learn about validaing JavaScript. Although it soundsnext chapter, we'll learn about validaing JavaScript. Although it sounds, we'll learn about validaing JavaScript. Although it sounds'll learn about validaing JavaScript. Although it soundsll learn about validaing JavaScript. Although it sounds
like a simple concept, you'll learn more JavaScript concepts in terms of the actual coding and'll learn more JavaScript concepts in terms of the actual coding andll learn more JavaScript concepts in terms of the actual coding andthe actual coding and actual coding and

design process, and other factors that can help you to validate your JavaScript program., and other factors that can help you to validate your JavaScript program. and other factors that can help you to validate your JavaScript program.

3
Syntax Validation

To build on what we have learned in the previous chapters, we will now movethe previous chapters, we will now move previous chapters, we will now move

on to a slightly tougher topic—validaing JavaScript. In this chapter you canto a slightly tougher topic—validaing JavaScript. In this chapter you can—validaing JavaScript. In this chapter you canvalidaing JavaScript. In this chapter you can
expect two broad topics—the issues surrounding validaion and tesing of—the issues surrounding validaion and tesing ofthe issues surrounding validaion and tesing of
JavaScript code, and how to use JSLint and JavaScript Lint (which is a free, and how to use JSLint and JavaScript Lint (which is a free how to use JSLint and JavaScript Lint (which is a free(which is a free is a freeis a free

JavaScript validator) to check your JavaScript code, and how to debug them. I'llvalidator) to check your JavaScript code, and how to debug them. I'll) to check your JavaScript code, and how to debug them. I'll, and how to debug them. I'll and how to debug them. I'll I'll
explicitly show you how to spot validaion errors using JSLint and then, how to
ix them.

We will brie�y menion the diference between validaing and tesing JavaScript brie�y menion the diference between validaing and tesing JavaScriptbrie�y menion the diference between validaing and tesing JavaScript menion the diference between validaing and tesing JavaScriptmenion the diference between validaing and tesing JavaScript the diference between validaing and tesing JavaScript
and some of the issues that you might have to consider when you are validaing
or tesing your code. You will also understand the relaionship between validr code. You will also understand the relaionship between valid code. You will also understand the relaionship between validship between valid between valid
HTML and CSS with JavaScript, and how a�emping to write quality code canand how a�emping to write quality code canhow a�emping to write quality code can
help you reduce errors in your JavaScript code. More importantly, we will learn
about two free tools that are oten used to validate JavaScript code, how tovalidate JavaScript code, how to JavaScript code, how to
make use of it to check your code, and most importantly, how to ix validaion, and most importantly, how to ix validaion and most importantly, how to ix validaion
errors that are detected.detected.

In this chapter we shall learn about the following topics: learn about the following topics: the following topics:

The diference between validaing and tesinghe diference between validaing and tesing

How a good code editor can help you spot validaion errorsow a good code editor can help you spot validaion errors

What makes a code quality codehat makes a code quality codea code quality codecode quality code

Why do we need HTML and CSS to be valid before we start working on JavaScripthy do we need HTML and CSS to be valid before we start working on JavaScript

Why JavaScript embedded in HTML may be reported as invalidbe reported as invalidreported as invalided as invalid as invalid

Common JavaScript errors that are detected by validaingdetected by validaingby validaing

JSLint and JavaScript Lint—how to use it to check your code—how to use it to check your codeow to use it to check your code

Valid code constructs that produce validaion warningsconstructs that produce validaion warnings that produce validaion warnings

How to ix validaion errors that are spoted by JSLintow to ix validaion errors that are spoted by JSLint











Syntax Validaion

[�2]

So without further ado, let us get started with a lighter topic—the diference betweenlighter topic—the diference between topic—the diference between—the diference betweenthe diference between
validaing and tesing. and tesing.

The difference between validating and testing

There's a thin line separaing validaing and tesing. If you have some idea about sets (as inseparaing validaing and tesing. If you have some idea about sets (as in validaing and tesing. If you have some idea about sets (as in
sets from mathemaics), I would say that validaion can lead to beter tesing results, while
tesing does not necessarily lead to a valid code.necessarily lead to a valid code. lead to a valid code.a valid code.valid code.

Let us consider the scenario—you wrote a JavaScript program and tested it on majorthe scenario—you wrote a JavaScript program and tested it on major scenario—you wrote a JavaScript program and tested it on major—you wrote a JavaScript program and tested it on majoryou wrote a JavaScript program and tested it on major

browsers such as the Internet Explorer and Firefox; and it worked. In this case, you have; and it worked. In this case, you have and it worked. In this case, you haveand it worked. In this case, you havend it worked. In this case, you have

tested the code to make sure that it is funcional.

However, the same code that you have created may or may not be valid; valid code is akin to
wriing a code that has the following characterisics:a code that has the following characterisics:code that has the following characterisics:the following characterisics: following characterisics::

Well formedell formed

Has good coding style (such as proper indentaion, well-commented code,indentaion, well-commented code,, well-commented code,-commented code,commented code,

properly spaced)

Meets the speciicaion of the language (in our case, JavaScript)

There may come a point in ime where you will noice that good coding style is
highly subjecive—there are various validators that may have diferent opinions
or standards as to what is known as "good coding style". Therefore, if you
do use diferent validators to validate your code, do not freak out if you see
diferent advice for your coding style.

This does not mean that valid code leads to code that is funcional (as you will see later) does not mean that valid code leads to code that is funcional (as you will see later)
and that code that is funcional leads to validated code as both have diferent standardsthat is funcional leads to validated code as both have diferent standards is funcional leads to validated code as both have diferent standardshave diferent standardsdiferent standards
for comparison.comparison..

However, valid code oten leads to less errors, and code that is both funcional and valid isthat is both funcional and valid isis both funcional and valid isis

oten quality code. This is due to the fact that wriing a piece of JavaScript code, that is both, that is both that is both

valid and correct, is much more diicult than just wriing a code that is correct., is much more diicult than just wriing a code that is correct. is much more diicult than just wriing a code that is correct.diicult than just wriing a code that is correct. than just wriing a code that is correct.

Tesing oten means that we are trying to get the code working correctly; while validaionthe code working correctly; while validaion code working correctly; while validaion; while validaion while validaion
is making sure that the code is syntacically correct, with good style and that it meets thesyntacically correct, with good style and that it meets the correct, with good style and that it meets thethe

speciicaion of the language. While good coding styles may be subjecive, there is oten. While good coding styles may be subjecive, there is otenWhile good coding styles may be subjecive, there is otenthere is oten is oten
a coding style that is accepted by most programmers, such as, making sure that the codeis accepted by most programmers, such as, making sure that the code accepted by most programmers, such as, making sure that the codeprogrammers, such as, making sure that the code, such as, making sure that the code, making sure that the code making sure that the code

is properly commented, indented, and there is no polluion of the global namespacethere is no polluion of the global namespaceno polluion of the global namespace
(especially in the case of JavaScript).especially in the case of JavaScript). in the case of JavaScript).the case of JavaScript). case of JavaScript).)..






Chapter 3

[�3]

To make the case clearer, following are three situaions that you can consider:the case clearer, following are three situaions that you can consider: case clearer, following are three situaions that you can consider:following are three situaions that you can consider: three situaions that you can consider:

Code that is valid but wrong–validation doesn't ind all the errors
This form of errors would most probably be caused by logic errors in JavaScript. Consider

what we have learned in the previous chapters; logic errors can be syntacically correct butthe previous chapters; logic errors can be syntacically correct butlogic errors can be syntacically correct but
they may be logically lawed.may be logically lawed.

A classic example would be an ininite for loop or ininite while loop.

Code that is invalid but right
This would most probably be the case for most funcional code; a piece of JavaScript may bethe case for most funcional code; a piece of JavaScript may be case for most funcional code; a piece of JavaScript may be
funcionally correct and working, but it may be invalid. This may be due to poor coding styleworking, but it may be invalid. This may be due to poor coding styleThis may be due to poor coding style

or any other characterisics in a valid code that are missing.characterisics in a valid code that are missing. in a valid code that are missing.in a valid code that are missing.valid code that are missing.

Later on in this chapter, you will see a full working example of a piece of JavaScript code that

is right but invalid.

Code that is invalid and wrong–validation inds some errors that
might be dificult to spot any other way
In this case, the code error can be caused by all three forms of JavaScript errors that are error can be caused by all three forms of JavaScript errors that are can be caused by all three forms of JavaScript errors that are

menioned in Chapter 1, What is JavaScript Tesing, loading errors, runime errors, and logic, and logic and logic

errors. While it is more likely that errors caused by syntax errors might be spoted by good
validators, it is also possible that some errors are buried deep inside the code, such that it is, such that it is such that it isit is isis

diicult to spot them using manual methods. them using manual methods. using manual methods.using manual methods. manual methods.

Now that we have some common understanding as to what validaion and tesing is about,
let us move on to the next secion which discusses the issues surrounding quality code.

Code quality

While there are many views as to what is quality code, I personally believe that there areI personally believe that there are personally believe that there arebelieve that there are that there are

a few agreed standards. Some of the most commonly menioned standards may includemenioned standards may include may include

code readability, ease of extension, eiciency, good coding style, and meeing languageeiciency, good coding style, and meeing language, good coding style, and meeing languageand meeing language language

speciicaions, and so on., and so on. and so on.

For our purpose here, we will focus on the factors that make a piece of code valid—codingfactors that make a piece of code valid—coding a piece of code valid—coding—codingcoding

style and meeing speciicaions. In general, good coding style almost guarantees that the
code is highly readable (even to third paries) and this will help us to spot errors manually.(even to third paries) and this will help us to spot errors manually. to third paries) and this will help us to spot errors manually.paries) and this will help us to spot errors manually. and this will help us to spot errors manually.

Syntax Validaion

[�4]

Most importantly, having a good coding style allows us to quickly understand the code,ing a good coding style allows us to quickly understand the code, good coding style allows us to quickly understand the code,,

specially if we need to work in teams or are required to debug the code on our own. if we need to work in teams or are required to debug the code on our own.

You will noice that we will focus on the importance of code validity for tesing purposes
in later parts of the chapter. But now, let us start with the irst building block of qualitythe irst building block of quality irst building block of qualityof qualityquality

code—valid HTML and CSS.—valid HTML and CSS.valid HTML and CSS.

HTML and CSS needs to be valid before you start on JavaScript
In chapter one, we have a common understanding that JavaScript breathes life into a weba web

page by manipulaing the Document Object Model by manipulaing the Document Object Modelthe Document Object Model Document Object ModelDocument Object Model (DOM) of the HTML documents. Thishisis

means that the DOM must be present in the code before JavaScript can operate on it.present in the code before JavaScript can operate on it. before JavaScript can operate on it.JavaScript can operate on it. can operate on it.it.

Heres an important fact that is directly related to HTML, CSS, and browsers—HTML, CSS, and browsers— CSS, and browsers—, and browsers— and browsers——
browsers are generally forgiving towards invalid HTML and CSS code as
compared to compilers for languages like C or Python. This is because, all, all all

browsers have to do is parse the HTML and CSS so as to render the web page
for its browsers. On the other hand, compilers are generally unforgiving towards

invalid code. Any missing tag, declaraions, and so on will lead to a compilaion, and so on will lead to a compilaion and so on will lead to a compilaionand so on will lead to a compilaion will lead to a compilaion
error. Therefore, it is ok to write invalid or even buggy HTML and CSS, yet get a
"usual" looking web page.looking web page.

Based on the previous explanaion, we should see that we would need to have valid HTMLthe previous explanaion, we should see that we would need to have valid HTML previous explanaion, we should see that we would need to have valid HTMLprevious explanaion, we should see that we would need to have valid HTML, we should see that we would need to have valid HTML
and CSS in order to create quality JavaScript code.

A short list of reasons, based on my personal experience, as to why valid HTML and CSS is an short list of reasons, based on my personal experience, as to why valid HTML and CSS is an, based on my personal experience, as to why valid HTML and CSS is an based on my personal experience, as to why valid HTML and CSS is anbased on my personal experience, as to why valid HTML and CSS is anwhy valid HTML and CSS is an
important prerequisite before you start working on JavaScript are as follows:before you start working on JavaScript are as follows: start working on JavaScript are as follows: are as follows::

Valid HTML and CSS helps ensure that JavaScript works as intended. For example,
consider a situaion where you might have two div elements that have the same id

(In the previous chapters, we have menioned that the, we have menioned that themenioned that the that the div id atribute is meant toatribute is meant to
give unique IDs for each HTML elements), and your JavaScript contains the piece of
code that is supposed to work on the above menioned HTML element with the id.
This will result in unintended consequences.

Valid HTML and CSS helps improve the predictability on how your web page willthe predictability on how your web page will predictability on how your web page will

work; there is no point trying to ix buggy HTML or CSS using JavaScript. You arethere is no point trying to ix buggy HTML or CSS using JavaScript. You are is no point trying to ix buggy HTML or CSS using JavaScript. You are
most probably beter of if you start with valid HTML and CSS, and then apply, and then apply and then applyen applyn apply

JavaScript.

Invalid HTML and CSS may result in diferent behaviour in diferent browsers.behaviour in diferent browsers. in diferent browsers.
For example, an HTML tag that is not enclosed may be rendered diferently inn HTML tag that is not enclosed may be rendered diferently in HTML tag that is not enclosed may be rendered diferently in
diferent browsers.

In short, one of the most important building blocks of creaing quality JavaScript code is toblocks of creaing quality JavaScript code is to of creaing quality JavaScript code is to
have valid HTML and CSS.







Chapter 3

[�5]

What happens if you don't validate your code

You may disagree with me on the previous secion as to why HTML and CSS should beou may disagree with me on the previous secion as to why HTML and CSS should beu may disagree with me on the previous secion as to why HTML and CSS should be
valid. In general, validaion helps you to prevent errors that are related to coding style and. In general, validaion helps you to prevent errors that are related to coding style andIn general, validaion helps you to prevent errors that are related to coding style andvalidaion helps you to prevent errors that are related to coding style and
speciicaions. However, do take note that using diferent validators may give you diferentHowever, do take note that using diferent validators may give you diferentvalidators may give you diferent may give you diferent
results since validators might have diferent standards in terms of code style.

In case you are wondering if invalid code can afect your JavaScript code, I would adviseI would advise would adviseadvise

you to make your code as valid as possible; invalid code may lead to sicky issues such as valid as possible; invalid code may lead to sicky issues such asvalid as possible; invalid code may lead to sicky issues such as
cross-browser incompaibility, diiculty in reading code, and so on., and so on.

Invalidated code means that your code may not be foolproof; in the early days of thecode means that your code may not be foolproof; in the early days of theoolproof; in the early days of theproof; in the early days of the
Internet, there were websites that were dependent on the quirks of the early Netscapewere websites that were dependent on the quirks of the early Netscapere websites that were dependent on the quirks of the early Netscapedependent on the quirks of the early Netscape on the quirks of the early Netscape

browser. Back track to the ime where the Internet Explorer 6 was widely used, therethe ime where the Internet Explorer 6 was widely used, there ime where the Internet Explorer 6 was widely used, therewidely used, there used, there

were also many websites that worked in quirks mode to support Internet Explorer 6.support Internet Explorer 6. Internet Explorer 6.

Now, most browsers are supporing or are moving towards supporing web standards
(though slightly diferent, they are supporing in subtle manners), wriing valid code is one
of the best ways to ensure that your website works and appears the way it is intended to.

How validation can simplify testing

While invalid code may not cause your code to be dysfuncional, valid code oten simpliies
tesing. This is due to the focus on coding style and speciicaions; codes that are valid andThis is due to the focus on coding style and speciicaions; codes that are valid and is due to the focus on coding style and speciicaions; codes that are valid andthe focus on coding style and speciicaions; codes that are valid and focus on coding style and speciicaions; codes that are valid andcodes that are valid and that are valid andthat are valid and

have met speciicaions are typically more likely to be correct and much easier to debug.
Consider the following code that is stylisically invalid:

function checkForm(formObj){

alert(formObj.id)

//alert(formObj.text.value);

var totalFormNumber = document.forms.length;

// check if form elements are empty and are digits

var maxCounter = formObj.length; // this is for checking for empty
values

alert(totalFormNumber);

// check if the form is properly filled in order to proceed

if(checkInput(formObj)== false){

alert("Fields cannot be empty and it must be digits!");

// stop executing the code since the input is invalid

return false;

}

else{

;

}

var i = 0;

var formID;

Syntax Validaion

[�6]

while(i < totalFormNumber){

if(formObj == document.forms[i]){

formID = i;alert(i);

}

i++;

}

if(formID<4){

formID++;

var formToBeChanged = document.forms[formID].id;

// alert(formToBeChanged);

showForm(formToBeChanged);

}

else{

// this else statement deals with the last form

// and we need to manipulate other HTML elements

document.getElementById("formResponse").style.visibility = "visible";

}

return false;

}

Find the preceding code familiar? Or did you fail to recognize that the previous code snippet

was taken from Chapter 2, Ad Hoc Tesing and Debugging in JavaScript.

The previous code is an extreme example of poor code style, especially in terms of

indentaion. Imagine if you have to manually debug the second code snippet that you saw Imagine if you have to manually debug the second code snippet that you sawImagine if you have to manually debug the second code snippet that you sawmagine if you have to manually debug the second code snippet that you saw

earlier! I am prety sure that you will ind it frustraing to check the code, because you willI am prety sure that you will ind it frustraing to check the code, because you will
have litle visual sense of what is going on.

More importantly, if you are working in a team, you will be required to write legible code;working in a team, you will be required to write legible code; in a team, you will be required to write legible code;required to write legible code; to write legible code;
in short, wriing valid code typically leads to code that is more legible, easier to follow, and code that is more legible, easier to follow, andcode that is more legible, easier to follow, and, and and

hence, less erroneous., less erroneous.less erroneous.erroneous..

Validation can help you debug your code

As menioned in the previous secion, browsers are in general forgiving towards invalid
HTML and CSS. While this is true, there may be errors that are not caught, or are notis true, there may be errors that are not caught, or are nottrue, there may be errors that are not caught, or are not, or are not or are not

rendered correctly or gracefully. This means that while the invalid HTML and CSS codehis means that while the invalid HTML and CSS codeis means that while the invalid HTML and CSS code
may appear ine on a certain plaform or browser, it may not be supported on others.on a certain plaform or browser, it may not be supported on others.n a certain plaform or browser, it may not be supported on others. be supported on others. on others.

This means that using valid code (valid code typically means standard code set by
internaional organizaions such as W3C) will give you a much greater probability ofW3C) will give you a much greater probability of will give you a much greater probability ofprobability of of

having your web page rendered correctly on diferent browsers and plaforms.on diferent browsers and plaforms.

With valid HTML and CSS, you can safely write your JavaScript code and expect it to work as
intended, assuming that your JavaScript code is equally valid and error free.

Chapter 3

[�7]

Validation helps you to code using good practicesceses

Valid code typically requires coding using good pracices. As menioned frequently in thisalid code typically requires coding using good pracices. As menioned frequently in thislid code typically requires coding using good pracices. As menioned frequently in this
chapter, good pracices include the proper enclosing of tags, suitable indentaion to enhanceenhance

code readability, and so on., and so on. and so on.

If you need more informaion about good pracices when using JavaScript, feel free to check
out the creator of JSLint, Douglas Crockford, at http://crockford.com. Or you can read

up John Resigs blog (the creator of JQuery) atthe creator of JQuery) at creator of JQuery) at http://ejohn.org/. Both are great guys Both are great guysgreat guys

who know what great JavaScript is about. what great JavaScript is about.

Validation

To summarize the above secions, the DOM is provided by HTML, and both CSS and, and both CSS and and both CSS and

JavaScript are applied to the DOM. This means that if there is an invalid DOM, there is aif there is an invalid DOM, there is aDOM, there is a

chance that the JavaScript that is operaing on the DOM (and someimes the CSS) mightthe JavaScript that is operaing on the DOM (and someimes the CSS) mightJavaScript that is operaing on the DOM (and someimes the CSS) might(and someimes the CSS) might someimes the CSS) mightCSS) might might

result in errors.

With this summary in mind, well focus on how you can spot validaion errors by using colorcolor

coding editors.

Color-coding editors–how your editor can help you to spot

validation errors
If you are an experienced coder, you may skip this secion; if not, you might want tomay skip this secion; if not, you might want to skip this secion; if not, you might want to; if not, you might want to if not, you might want tonot, you might want to you might want to

understand the value of a good coding editor.

In general, a good editor can help you to prevent validaion errors. Based on our
understanding of what validaion is, you should understand that your editor shouldr editor should editor should

do the following aciviies: aciviies::

Highlight matching bracketsighlight matching brackets

Muliple syntax highlighing

Auto indentaion ater keywords, brackets, and othersuto indentaion ater keywords, brackets, and othersindentaion ater keywords, brackets, and others ater keywords, brackets, and others, and others

Auto compleion of syntax of syntax

Auto compleion of words that you have already typed of words that you have already typed

You may have noiced that I have let out a few points, or added a few points, as to whatI have let out a few points, or added a few points, as to what have let out a few points, or added a few points, as to what points, or added a few points, as to what or added a few points, as to what

a good editor should do. But in general, the points listed previously are meant to help you. But in general, the points listed previously are meant to help you But in general, the points listed previously are meant to help youBut in general, the points listed previously are meant to help youut in general, the points listed previously are meant to help youthe points listed previously are meant to help youare meant to help you

prevent validaion errors.







Syntax Validaion

[��]

As a start, you can consider using Microsots SharePoint Designer 2007, a free,start, you can consider using Microsots SharePoint Designer 2007, a free,SharePoint Designer 2007, a free, Designer 2007, a free,,

feature-rich, HTML, CSS ,and JavaScript editor, which is available at-rich, HTML, CSS ,and JavaScript editor, which is available atrich, HTML, CSS ,and JavaScript editor, which is available at, HTML, CSS ,and JavaScript editor, which is available at HTML, CSS ,and JavaScript editor, which is available at,and JavaScript editor, which is available atJavaScript editor, which is available atavaScript editor, which is available atvaScript editor, which is available at http://
www.microsoft.com/downloads/details.aspx?displaylang=e
n&FamilyID=baa3ad86-bfc1-4bd4-9812-d9e710d44f42

For example, highlighing matching brackets is to ensure that your code is properly enclosedhighlighing matching brackets is to ensure that your code is properly enclosed matching brackets is to ensure that your code is properly enclosedr code is properly enclosed code is properly enclosed

with brackets, and auto indentaion is to ensure that you are using consistent spacing forbrackets, and auto indentaion is to ensure that you are using consistent spacing for
your code blocks.

Although JavaScripts code blocks are oten denoted by the use of curly brackets, it isblocks are oten denoted by the use of curly brackets, it is oten denoted by the use of curly brackets, it is
important that we use indentaion to visually display the structure of the code. Considerdisplay the structure of the code. Considerthe structure of the code. Consider

the following code snippets:following code snippets: code snippets:

function submitValues(elementObj){
 var digits = /^\d+$/.test(elementObj.value);
 var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);
 if(elementObj.value==""){
 alert("input is empty");
 return false;
 }
 else if(elementObj.name == "enterNumber" && digits == false){
 alert("the input must be a digit!");
 debuggingMessages(arguments.callee.name, elementObj, "INPUT
must be digit");

 return false;
 }
 else if(elementObj.name == "enterText" && characters == false){
 alert("the input must be characters only!");
 return false;
 }
 else{
 elementObj.disabled = true;
 return true;

 }
}

The next code snippet is as follows::

function submitValues(elementObj)
{
var digits = /^\d+$/.test(elementObj.value);
var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);
if(elementObj.value=="")
{alert("input is empty");
return false;

Chapter 3

[��]

}
else if(elementObj.name == "enterNumber" && digits == false)
{alert("the input must be a digit!");

return false;

}else if(elementObj.name == "enterText" && characters == false)

{alert("the input must be characters only!");

return false;

}

else

{

elementObj.disabled = true;

return true;

}

}

I am quite sure that you would ind the second code snippet to be messy, as it has
inconsistent indentaion, and you may have problems iguring out which statement, and you may have problems iguring out which statement and you may have problems iguring out which statement
belongs to which condiional block.s to which condiional block. to which condiional block.

Stylisically speaking, the second code sample is what we call "poor code style". You will be
surprised that this might lead to validaion errors.

In case you are wondering what /^[a-zA-Z\s]*$/ and /^\d+$/are, they

are actually regular expression objects. Regular expressions originated fromregular expression objects. Regular expressions originated from objects. Regular expressions originated from
Perl (a programing language) and, due to their usefulness, many programing
languages now have ther own form of regular expressions. Most of them

work in the same way. If you wish to ind out more about regular expressions
for JavaScript, feel free to visit http://www.w3schools.com/jsref/
jsref_obj_regexp.asp for a brief introducion to how regular
expressions work.

Common errors in JavaScript that will be picked up byJavaScript that will be picked up by that will be picked up by

validation

Ill briely menion some of the most common validaion errors that are picked up by
validators. Following is a short list of them:

Inconsistent spacing or indentaionnconsistent spacing or indentaion

Missing semi colonsissing semi colons

Missing closing bracketsissing closing brackets

Using a funcion or variable that is not declared at the point of being calledsing a funcion or variable that is not declared at the point of being calledis not declared at the point of being called not declared at the point of being called

or referenced






Syntax Validaion

[�0]

You may have noiced that some of the validaion errors are not exactly
"errors"—as in syntax errors—but rather stylisic ones. As menioned in
the previous secions, diferences in coding style do not necessarily lead to
funcional errors but rather stylisic errors. But the good thing about good
coding style is that it oten leads to less errors.

At this point, it might be diicult for you to visualize what these common errors actually look
like. But don't worry, you will get to see such validaion errors in acion when we introduce
the JavaScript validaion tools.

JSLint–an online validator

JSLint is the irst JavaScript validaion code that we will focus on. You can access JSLint by by

visiing this URL: this URL: http://www.jslint.com. The JSLint online validator is a tool created byThe JSLint online validator is a tool created byhe JSLint online validator is a tool created by

Douglas Crockford.

Douglas Crockford works at Yahoo! as a JavaScript architect. He is also a member Yahoo! as a JavaScript architect. He is also a member! as a JavaScript architect. He is also a member as a JavaScript architect. He is also a memberas a JavaScript architect. He is also a memberJavaScript architect. He is also a memberHe is also a member
of the commitee that designs future versions of JavaScript. His views on
JavaScript style and coding pracices are generally agreed upon . You can read
more about him and his ideas at his website: http://www.crockford.com.

In general, JSLint is an online JavaScript validator. It helps to validate your code. At the samethe same same

ime, JSLint is smart enough to detect some forms of code errors, such as ininite loops. The. The The

JSLint website is not a paricularly large website, but nonetheless, two important links thatparicularly large website, but nonetheless, two important links that large website, but nonetheless, two important links thatnonetheless, two important links that, two important links that thathat

you must read are as follows:must read are as follows: read are as follows: are as follows:

For basic instrucions, visit http://www.jslint.com/lint.html

For a list of messages, visit http://www.jslint.com/msgs.html

I will not atempt to describe to you what JSLint is about and how to use it; I personally to describe to you what JSLint is about and how to use it; I personally describe to you what JSLint is about and how to use it; I personallybe to you what JSLint is about and how to use it; I personally to you what JSLint is about and how to use it; I personallyI personally personally

believe in geing our hands dirty and giving it a test drive. Hence, for a start, we'll test theing it a test drive. Hence, for a start, we'll test the it a test drive. Hence, for a start, we'll test the
code that we wrote in Chapter 2 2, Ad Hoc Tesing and Debugging in JavaScript, and see what and see what

kind of validaion errors (if any) occur.(if any) occur. any) occur.any) occur..




Chapter 3

[�1]

Time for action – using JSLint to spot validation errors

As menioned earlier, well test the code that we wrote inearlier, well test the code that we wrote in, well test the code that we wrote in Chapter 22, Ad Hoc Tesing
and Debugging in JavaScript, and see what validaion errors we get. Take note that the and see what validaion errors we get. Take note that the
completed and validated code for this example can be found in Chapter 3 of the source

code folder, in the ile namedthe ile namedhe ile namede ile named ile named perfect-code-for-JSLint.html.

1. Open up your web browser and navigate tonavigate to to http://www.jslint.com. You should

see the home page with a huge text area. This is the area where you are going tothe home page with a huge text area. This is the area where you are going to page with a huge text area. This is the area where you are going topage with a huge text area. This is the area where you are going to

copy and paste your code.

2. Go to the source code folder of of Chapter 2 and open up the ile named:
getting-values-in-right-places-complete.html. Then, copy anden, copy andn, copy and, copy and copy and

paste the source code into the text area menioned in step 1.the text area menioned in step 1. text area menioned in step 1.

3. Now click on the buton with the namethe name name JSLint.

Your page should refresh almost immediately, and you will receive some

form of feedback. You may have noiced that you received many (yes, ad that you received many (yes, a that you received many (yes, a(yes, a, a

lot of) validaion errors. And, most probably, some of them do not make validaion errors. And, most probably, some of them do not make, some of them do not make some of them do not makedo not make not make

sense to you. However, you should be able to idenify that some of theidenify that some of the that some of the

validaion errors were introduced in the secion on common JavaScriptsecion on common JavaScript on common JavaScripton common JavaScript common JavaScript

validaion errors.

Now, scroll further down and you should see the following phrase in the, scroll further down and you should see the following phrase in the scroll further down and you should see the following phrase in thethe

feedback area:

xx % scanned
too many errors

This tells you that JSLint has only scanned a part of the code and stoppedis tells you that JSLint has only scanned a part of the code and stopped tells you that JSLint has only scanned a part of the code and stoppedthe code and stopped code and stopped

scanning the code because there were too many errors.

What can we do about this? What if there are too many validaion errorshat can we do about this? What if there are too many validaion errorsare too many validaion errors too many validaion errors
and you cannot spot all of them in one go?you cannot spot all of them in one go? cannot spot all of them in one go?spot all of them in one go? all of them in one go?

Do not worry, as JSLint is robust and has opion seings, which are found
at http://www.jslint.com/#JSLINT_OPTIONS (this is actually found
at the botom of the home page of JSLint). One of the opions that requires
your input is the maximum number of errors. For our purposes, you may

want to enter an insanely large number, such as 1,000,000.

4. Ater entering an insanely large number for the input box for maximum number

of errors, click on the buton The good parts. You will see a few checkboxes have

been selected.

Ater step 4, you have now oicially selected the opions known asthe opions known as opions known as The

Good Parts by the author of this tool. This is a seing that automaically
sets what the author feels are the most important validaion checks.

Syntax Validaion

[�2]

These opions include: include:: Strict white space, allow one var statement per

funcion, and so on. and so on.and so on.

5. Now click on the on the the JSLint buton. Your browser will show the new validated result.. Your browser will show the new validated result.will show the new validated result. show the new validated result.

Now you may take a look at the types of validaion errors that have been detectedvalidaion errors that have been detected errors that have been detected

by JSLint..

What just happened?
You have just used JSLint to spot for validaion errors. This is a simple process for JSLint: copy
and paste your code into the text area and click on JSLint. Do not be surprised that there

are so many validaion errors; we are just staring out and we will learn how to ix and avoid
such validaion errors.

You may have noiced that the JavaScript that is embedded in the HTML form
results in an error that says missing use strict statement. This error stems from

the fact that JSLint believes in the use of the use strict statement, which allows

the code to run under strict condiions. You will learn how to ix and avoid such
problems in later parts of this chapter.

You will coninue to see many errors. In my opinion, this is evidence that valid code is not
easy to achieve; but this is what we will achieve in the next secion.

As you have seen, there are various validaion opions, and at this stage, it is good enough
if we pass the set requirements for we pass the set requirements for The Good Parts. Therefore, well focus on how to ix
these validaion errors in the next secion. But before that, I'll quickly discuss the valid codethe next secion. But before that, I'll quickly discuss the valid code next secion. But before that, I'll quickly discuss the valid code But before that, I'll quickly discuss the valid code
constructs that produce validaion warnings.

Valid code constructs that produce validation warnings

You may have noiced that although our code construct is valid, it has produced validaion
warnings. You may be wondering if you should ix these or not. Here's some basic discussion
to help you to decide.

Should you ix valid code constructs that produce validation
warnings??
This depends on your objecive. As I menioned in Chapter 1, What is Javascript Tesing?,

a code should at least be correct and work the way that we intend it to. Therefore, if your

objecive is to just create funcionally-correct code, then you might not want to spend the
ime and efort to correct those validaion warnings.

Chapter 3

[�3]

However, because you are reading this book, it is very likely that you want to learn how to
test JavaScript, and validaion is an important part of tesing JavaScript as you will see later in
this chapter.

What happens if you don't ix them
The main issue with invalidated code is that it will be much more diicult to maintain the
code, in terms of readability and scalability. This problem becomes enhanced when you are

working in teams and others have to read or maintain your code.

Valid code promotes good coding pracices, which will help you to avoid problems down
the road..

How to ix validation errors
This secion will coninue with the errors menioned in the previous secion, and togetherhis secion will coninue with the errors menioned in the previous secion, and togetherthe errors menioned in the previous secion, and together errors menioned in the previous secion, and together menioned in the previous secion, and together in the previous secion, and togetherthe previous secion, and together previous secion, and togetherprevious secion, and together secion, and together
we'll atempt to ix them. Wherever possible, I'll provide some form of explanaion as toI'll provide some form of explanaion as toll provide some form of explanaion as toexplanaion as to as to

why a paricular piece of code is rendered as invalid. At the same ime, the whole processparicular piece of code is rendered as invalid. At the same ime, the whole process piece of code is rendered as invalid. At the same ime, the whole processAt the same ime, the whole process
of wriing valid and funcionally-code can be cumbersome. Therefore, I'll start of with
validaion errors that are much easier to ix, before I move on to tougher ones.

As we go along ixing the validaion errors that we saw in the previous
secion, you may realize that ixing validaion errors may require some form of
compromise as to how you write your code. For example, you will understand

that using alert() sparingly in your code is not considered a good coding style,

at least according to JSLint. In this case, you will have to consolidate all of your

alert() statements and group them into a funcion, while sill maintaining the
funcionality of your code. More importantly, you will also realize that (perhaps)
the best way to write valid code is to start wriing valid code right from the irst
line of the code; you will see that correcing invalid code is an extremely tedious
process, and there are imes when you can only minimize your validaion errors.

Along the way, you will get the chance to pracice important JavaScript funcions and, at the
same ime, learn how to code in a beter style. Thus, this is probably the most important
secion of this chapter and I urge you to get your hands dirty with me. Before I get started

on ixing the code, I'll irst summarize the types of errors that are spoted by JSLint.

Missing "use strict" statement

Unexpected use of ++

Missing space ater), value, ==, if, else, +





Syntax Validaion

[�4]

Funcion names (such as debuggingMessages) are not deined or a funcion was
used before it was deined

Too many var statements

=== used instead of ==

alert is not deined

<\/ used instead of </

HTML event handlers used

Without further ado, well get started with the irst validaion error:well get started with the irst validaion error:the irst validaion error: irst validaion error: use strict.

Error—missing "use strict" statement
The "use strict" statement is a relaively new feature in JavaScript that allows ourstatement is a relaively new feature in JavaScript that allows our
JavaScript to run in a strict environment. In general, it catches litle-known errors, and
"forces" you to write stricter and valid code. John Resig, an expert in JavaScript, has
writen a nice summary about this topic, and you can read about it by following this link:
http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/.

Time for action – ixing "use strict" errors
This error is extremely easy to ix. But be careful; enabling use strict may prevent your

code from working, if your code is not valid. Here's how we can ix this validaion error:

1. Open up your text editor, copy and paste the same code that we have been using,Open up your text editor, copy and paste the same code that we have been using,

and append the following code snippet on the irst line of your JavaScript code:

 "use strict";

2. Save your code and test it out on JSLint. You will see that the error is now gone.Save your code and test it out on JSLint. You will see that the error is now gone.

You may noice that there is another missing use strict error that is related to your HTML
form; do not worry, we will ix that in a later sub-secion of this chapter. Now let us move on
to the next error.

Error—unexpected use of ++
There is nothing programmaically wrong with this line of code. What we intend
to achieve by using ++ is to increment globalCounter whenever the funcion
addResponseElement() is called.









Chapter 3

[�5]

However, JSLInt believes that there is a problem with using ++. Take the following code

snippets as an example:

var testing = globalCounter++ + ++someValues;

var testing2 = ++globalCounter + someValues++;

The previous statements would look confusing to most programmers and hence it is

considered bad style. More importantly, both of these statements are programmaically
diferent and produce diferent results. For these reasons, we need to avoid statements like
++, --, and so on.

Time for action – ixing the error of "Unexpected use of ++"
This error is relaively easy to ix. All we need to do is avoid ++. So navigate to the So navigate to the

addResponseElement() funcion, and look for globalCounter++. Then change

globalCounter++ to globalCounter = globalCounter + 1. So, now your funcion
has changed from this:

function addResponseElement(messageValue, idName){

 globalCounter++;

 var totalInputElements = document.testForm.length;

 debuggingMessages(addResponseElement","empty", "object is a addResponseElement","empty", "object is a","empty", "object is a
value");

 var container = document.getElementById('formSubmit');

 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";

 if(globalCounter == totalInputElements){

 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";

 }

}

To this:

function addResponseElement(messageValue, idName) {

 globalCounter = globalCounter + 1;

 debuggingMessages("addResponseElement", "empty", "object is aaddResponseElement", "empty", "object is a", "empty", "object is a
value");

 document.getElementById('formSubmit').innerHTML += "<input
type=\"text\" value=\"" + messageValue + "\"name = \"" + idName + "\"
/>
";

 if (globalCounter === 7) {

 document.getElementById('formSubmit').innerHTML += "<input
type=\"submit\" value=\"Submit\" />";

 }

}

Syntax Validaion

[�6]

Compare the highlighted lines, and you will see the change in the code. Now let us move on

to the next error.

Error—functions not deined
This error is caused by the way that JavaScript engines and web pages are being rendered by

web browsers. In Chapter 1, What is Javascript Tesing, we menioned briely that web page
(and JavaScript) are being parsed from top to botom on the client side. This means that
anything that appears at the top will be read irst, followed by that at the botom.

Time for action – ixing the error of "Functions not deined"
1. Because this error is caused by the incorrect low of the JavaScript funcions,

 we will need to change the sequence of the funcions. What we have done in
Chapter 2, Ad Hoc Tesing and Degugging in Javascript, is that we wrote the

funcions that we will be using irst. This may be incorrect, as the funcions may
require data or funcions that are only deined in later parts of the JavaScript code.
Here's a very simpliied example:

<script>

function addTWoNumbers() {

 return numberOne() + numberTwo();

}

function numberOne(x, y) {

 return x + y;

}

function numberTwo(a, b){

 return a + b;

}

</script>

Based on the previous code snippet, you will realize that

addTwoNumbers() requires data returned from numberOne() and

numberTwo(). The issue here is that the JavaScript interpreter will read

addTwoNumbers() irst before reading numberOne() and numberTwo().

However, both numberOne() and numberTwo() are being called by

addTwoNumbers(), resuling in an incorrect low of code.

Chapter 3

[�7]

This means that in order for our code to work correctly, we will need to

rearrange the order of the funcions. Coninuing with the previous example,
this is what we should do:

<script>
function numberOne(x, y) {
 return x + y;
}
function numberTwo(a, b){
 return a + b;
}function addTWoNumbers() {
 return numberOne() + numberTwo();
}
</script>

In the previous code snippet, we have rearranged the sequence of the

funcions.

2. Now, we are going to rearrange the funcion's sequence. For our purposes, all thatNow, we are going to rearrange the funcion's sequence. For our purposes, all that
we need to do is to arrange our funcions such that the irst funcion that originally
appeared in our code will now be the last, and the last funcion will be the irst.
Similarly, the second funcion that originally appeared in the JavaScript code will
now be the second-to-last funcion. In other words, we will reverse the order of
the code.

3. Once you have reversed the order of the funcions, save the ile and test the codeOnce you have reversed the order of the funcions, save the ile and test the code
on JSLint. You should noice that the validaion errors relaing to funcions not being
deined are now gone.

Now, let us move on to the next validaion error.

Too many var statements
According to JSLint, we have used too many var statements. What does this mean? This

means that we have used more than one var statement in each funcion; in our case we
have obviously used more than one var statement in each and every funcion.

How did this happen? If you scroll down and check the seings of JSLint, you will see a
checkbox selected that says Allow one var statement per funcion. This means that the

maximum number of var we can use is one.

Why is this considered to be good style? Although many coders may think that this is

cumbersome, the author of JSLint would most probably believe that a good funcion
should do only one thing. This would typically mean operaing on only one variable.

There's certainly room for discussion, but as we are all here to learn, let us get our hands
dirty by ixing this validaion error.

Syntax Validaion

[��]

Time for action – fixing the error of using too many varixing the error of using too many varerror of using too many varrror of using too many varof using too many var

statements

In order to ix this error, we will need to do some form of code refactoring. Although code
refactoring typically means consolidaing your code for it to become more concise (that is,
shorter code), you may realize that refactoring your code to it validaion standards is a lot
of work.

1. What we will do in this secion is that we will change (almost) all single var

statements that save a value into a funcion.

The code that is mainly responsible for this paricular validaion error is
found checkForm funcion. The statements that we will need to refactor
are as follows:

 var totalInputElements = document.testFormResponse.length;

 var nameOfPerson = document.testFormResponse.nameOfPerson.value;

 var birth = document.testFormResponse.birth.value;

 var age = document.testFormResponse.age.value;

 var spending = document.testFormResponse.spending.value;

 var salary = document.testFormResponse.salary.value;

 var retire = document.testFormResponse.retire.value;

 var retirementMoney = document.testFormResponse.retirementMoney.
value;

 var confirmedSavingsByRetirement;

 var ageDifference = retire - age;

 var salaryPerYear = salary * 12;

 var spendingPerYear = spending * 12;

 var incomeDifference = salaryPerYear - spendingPerYear;

2. Now we'll start to refactor our code. For each of the variables deined, we need toNow we'll start to refactor our code. For each of the variables deined, we need to
deine a funcion with the following format:

function nameOfVariable(){

 return x + y; // x + y represents some form of calculation

}

I'll start of with an example. For instance, for totalInputElements thisthis

is what I will do:

function totalInputElements() {

 return document.testFormResponse.length;

}

Chapter 3

[��]

3. Based on the previous code, do something similar to what you are going to see here:Based on the previous code, do something similar to what you are going to see here:

/* here are the function for all the values */

function totalInputElements() {

 return document.testFormResponse.length;

}

function nameOfPerson() {

 return document.testFormResponse.nameOfPerson.value;

}

function birth() {

 return document.testFormResponse.birth.value;

}

function age() {

 return document.testFormResponse.age.value;

}

function spending() {

 return document.testFormResponse.spending.value;

}

function salary() {

 return document.testFormResponse.salary.value;

}

function retire() {

 return document.testFormResponse.retire.value;

}

function retirementMoney() {

 return document.testFormResponse.retirementMoney.value;

}

function salaryPerYear() {

 return salary() * 12;

}

function spendingPerYear() {

 return spending() * 12;

}

function ageDifference() {

Syntax Validaion

[100]

 return retire() - age();

}

function incomeDifference() {

 return salaryPerYear() - spendingPerYear();

}

function confirmedSavingsByRetirement() {

 return incomeDifference() * ageDifference();

}

function shortChange() {

 return retirementMoney() - confirmedSavingsByRetirement();

}

function yearsNeeded() {

 return shortChange() / 12;

}

function excessMoney() {

 return confirmedSavingsByRetirement() - retirementMoney();

}

Now, let us move on to the next error..

Expecting <\/ instead of <\
For most of us, this error is probably one of the most intriguing. We have this validaion error
because the HTML parser is slightly diferent to the JavaScript interpreter. In general, the
extra backslash is being ignored by the JavaScript compiler, but not by the HTML parser.

Such validaion errors may appear unnecessary, but Doug Crockford knows that this has
some form of impact on our web page. Therefore, let us move on to how to ix this error.

Chapter 3

[101]

Time for action – fixing the expectation of '<\/' instead of '</'ixing the expectation of '<\/' instead of '</'ing the expectation of '<\/' instead of '</' the expectation of '<\/' instead of '</' of '<\/' instead of '</'

Although this error is one of the most intriguing, it is one of the easiest to ix. All that we
need to do is to ind all of the JavaScript statements that contain </ and change them tond change them to

<\/. The funcion that is mainly responsible for this error is buildFinalResponse().

1. Scroll down to the funcion buildFinalResponse(), and change all statements

that have </ toto <\/. Ater you are done, you should have the following code:

function buildFinalResponse(name, retiring, yearsNeeded, retire,
shortChange) {

 debuggingMessages(buildFinalResponse", -1, "no messages"); buildFinalResponse", -1, "no messages");", -1, "no messages");

 var element = document.getElementById("finalResponse");

 if (retiring === false) {

 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";

 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<\/p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + " <\/b>
years old.<\/p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + "<\/b> dollars before you retire inorder to acheive
our goal<\/p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<\/p>";

 }

 else {

 // able to retire but....

 //alertMessage("retiring === true");

 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";

 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<\/p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + "<\/b>years
old.<\/p>";

 element.innerHTML += "<p>Also, you'll have' " +
shortChange + "<\/b> amount of excess cash when you retire.<\/p>";

 element.innerHTML += "<p>Congrats!<\/p>";

 }

}

Syntax Validaion

[102]

Noice that all </ have been changed to been changed to <\/. You may also want to search through the code

and see if any such errors are remaining.

Now, with this error ixed, we can move on to the next validaion error.

Expected '===' but found '=='
In JavaScript and in most programing languages, == and === are signiicantly diferent. In
general, === is stricter than ==.

The key diference between === and == in JavaScript is that === is a strict

equal operator and it will return a Boolean true if, and only if, both the operands

are equal and of the same type. On the other hand, theand of the same type. On the other hand, theof the same type. On the other hand, the == operator returns a

Boolean true if both the operands are equal, even if they are of diferent types.

According to JSList, === should be used when comparing a variable to a truth value, because

it is stricter than ==. In terms of code strictness, JSLint is certainly correct in ensuring code

quality. Therefore, let us now correct this error.

Time for action – changing == to ===hanging == to ===

Due to the reasons menioned earlier, we will now change all == to ===, for statements thator statements that

require comparison. Although this error is relaively easy to ix, we need to understand the
importance of this error. === is much stricter than ==, and therefore it is more secure and

valid to use === instead ofinstead of ==.

Going back to your source code, search for all comparison statements that contain == andand

change them to ===. == is found largely at if, andand else-if statements, because it is used

for comparisons.

Once you are done, you may want to test out your updated code at JSLint and see if you have

cleared all such errors.

Now, let us move on to yet another cumbersome error: "Alert is not deined".

Alert is not deined
In general, using alert by itself leads to 'polluion' of the global namespace. Although it isby itself leads to 'polluion' of the global namespace. Although it is
convenient, this is bad code pracice according to JSLInt. Therefore, the strategy that we are
going to use to ix this validaion error is to use some form of code refactoring (again).

In our code, you should noice that we are largely using alert() to provide feedback in

terms of the funcion names, error messages, and so on. We will need to use our alert()

such that it can take in various forms of messages.

Chapter 3

[103]

Time for action – ixing "Alert is not deined"
What we will do is that we will consolidate all alert() statements into one funcion. We
can pass a parameter to that funcion so that we can change the messages in the alert box
depending on the situaion.

1. Go back to your code, and deine the following funcion at the top of your
<script> tag:

function alertMessage(messageObject) {

 alert(messageObject);

 return true;

}

messageObject is the parameter that we will use to hold our message..

2. Now, change allNow, change all alert() statements to alertMessage() such that the message

for alert() is the same as alertMessage(). Once you are done, save the ile and
run the code in JSLint again.

If you tried running your code in JSLint, you should see that the "damage" done by, you should see that the "damage" done by alert()

has been minimized to only one ime, instead of over ten to twenty imes.

In this situaion, what we can do is minimize the impact of the alert() because, for our

purposes, we do not have a ready alternaive to show messages in an alert box.

Now it is ime for the next error—avoiding HTML event handlers.

Avoiding HTML event handlers
Good coding pracices oten state the need to separate programing logic and design.
In our case, we have embedded event handlers (JavaScript events) within the HTML
code. According to JSLint, such coding could be improved by avoiding HTML event
handlers altogether.

Although the ideal case is to separate programing logic from design, there is

nothing funcionally wrong in using HTML intrinsic event handlers. You may
want to consider whether it is worth it (in terms of ime, maintainability, and
scalability) to adhere to (almost) perfect coding pracices. In the later part of this
sub-secion, you may ind that it can be cumbersome (or even irritaing) to try to
validate (and funcionally correct) code.

Syntax Validaion

[104]

In order to solve this validaion error, we will need to use event listeners. However, due
to the problems posed by the compaibility of event listeners, we will be using JavaScript
libraries to help us to deal with inconsistencies among the support for event listeners. We

will be using JQuery in this example.

JQuery is a JavaScript library created by John Resig. You can download JQuery by visiing
this link: http://jquery.com. As described on this website, "JQuery is a fast and conciseAs described on this website, "JQuery is a fast and concise
JavaScript Library that simpliies HTML document traversing, event handling, and animaing,
and Ajax interacions for rapid web development." In my personal experience, JQuery
certainly makes life easier by ixing many sicky issues such as DOM incompaibiliies,
providing built-in methods to create animaion, and many other things. I certainly urge
you to follow a starter tutorial by going to: http://docs.jquery.com/Tutorials:

Getting_Started_with_jQuery

Time for action – avoiding HTML event handlers

In this secion, you will learn how to avoid HTML event handlers by coding in a diferent
style. In this case, we will not only remove the JavaScript events embedded in each of the

HTML input elements, we will also need to write new funcions for our JavaScript applicaion
in order for it to work in the same manner. In addiion to that, we will be using a JavaScript
library that will help us to remove all of the diicult stuf relaing to event handling and using
event listeners.

1. Open up the same document and scroll to theOpen up the same document and scroll to the <body> tags. Remove all of the HTML
event handlers that are found in the form. This is what your form's source code
should look like ater you have removed all of the HTML event handlers:

<form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson"
size="50" value="Enter your name"/>

 <input type="text" name="enterText" id="birth" size="50"
value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="age" size="50"
maxlength="2" value="Enter your age"/>

 <input type="text" name="enterNumber" id="spending" size="50"
value="Enter your spending per month"/>

 <input type="text" name="enterNumber" id="salary" size="50"
value="Enter your salary per month"/>

Chapter 3

[105]

 <input type="text" name="enterNumber" id="retire" size="50"
maxlength="3" value="Enter your the age you wish to retire at"
/>

 <input type="text" name="enterNumber" id="retirementMoney"
size="50" value="Enter the amount of money you wish to have for
retirement"/>

</form>

2. Now scroll to theNow scroll to the </style> tag. Ater the </style> tag, enter the following

code snippet:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/
jquery.js">

</script>

What you are doing in the preceding line is enabling JQuery in your code.
This will allow you to make use of the JQuery library when ixing your code.
Now it's ime to write some JQuery code.

3. In order to maintain the funcionality of our code, we will need to use theIn order to maintain the funcionality of our code, we will need to use the .blur()

method provided by JQuery. Scrolling to the end of your JavaScript code, append the
following code snippet:

jQuery(document).ready(function () {

 jQuery('#nameOfPerson').blur(function () {

 submitValues(this);

 });

 jQuery('#birth').blur(function () {

 submitValues(this);

 });

 jQuery('#age').blur(function () {

 submitValues(this);

 });

 jQuery('#spending').blur(function () {

 submitValues(this);

 });

 jQuery('#salary').blur(function () {

 submitValues(this);

 });

 jQuery('#retire').blur(function () {

 submitValues(this);

 });

 jQuery('#retirementMoney').blur(function () {

 submitValues(this);

 });

Syntax Validaion

[106]

 jQuery('#formSubmit').submit(function () {

 checkForm(this);

 return false;
});
});

Here's a short explanaion of how JQuery works: jQuery(document).
ready(function ()is used to start our code; it allows us to use
the methods provided in JQuery. In order to select an element, we
use jQuery('#nameOfPerson'). As menioned earlier, we need to
maintain the funcionality of the code, so we will use the .blur()
method provided by JQuery. In order to do that, we append .blur() to

jQuery('#nameOfPerson'). We are required to call submitValues(),

and we will need to enclose submitValues() within .blur(). Because

submitValues() is a funcion, we will enclose it as such:

 jQuery('#nameOfPerson').blur(function () {
 submitValues(this);
 });

At this point of ime, we should have completed the necessary correcions
in order to achieve valid and funcional code. I'll briely summarize the
correcions in the next secion.

Summary of the corrections we have done
Now we will refresh our memory by quickly going through what we have done to ix the
validaion errors.

First, we pasted the original code into JSLint and noiced that we had a large number of
validaion errors. Fortunately, the validaion errors could be grouped such that similar
errors could be ixed by correcing a single code error.

Next, we started of with the correcion process. In general, we tried to ix the validaion
errors, staring from those which seemed to be the easiest. The irst validaion error that we
ixed was the missing use strict statement error. What we did was enter use strict on

the very irst line of our JavaScript code, and that error was ixed.

The second validaion error that we ixed was the "funcions not deined error". This was
caused by an incorrect low of the JavaScript funcions. Therefore, we switched the low of
funcions from this:

function submitValues(elementObj){

/* some code omitted */

}

Chapter 3

[107]

function addResponseElement(messageValue, idName){

/* some code omitted */

function checkForm(formObj){

/* some code omitted */

}

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){

/* some code omitted */

}

function debuggingMessages(functionName, objectCalled, message){

/* some code omitted */

}

To this:

function debuggingMessages(functionName, objectCalled, message) {

/* some code omitted */

}

function checkForm(formObj) {

/* some code omitted */

function addResponseElement(messageValue, idName) {

 /* some code omitted */

}

function submitValues(elementObj) {

/* some code omitted */

}

Noice that we simply reversed the sequence of the funcions to ix the error.

We then moved on to an error that is quite ime-consuming—using too many var

statements within a funcion. In general, our strategy was to refactor almost all of the var

statements into standalone funcions. These standalone funcions' main purpose was to
return a value, and that's all.

Next, we moved into yet another ime-consuming validaion error, and this was "expected
<\/ instead of </. In general, this error is referring to the closing HTML tags. So what we
did was to change /> to \/> for all closing HTML tags. For example, we changed the
following code:

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){

 debuggingMessages(buildFinalResponse", -1,"no messages"); buildFinalResponse", -1,"no messages");", -1,"no messages");

Syntax Validaion

[10�]

 var element = document.getElementById("finalResponse");

 if(retiring == false){

 //alert("if retiring == false");

 element.innerHTML += "<p>Hi " + name + ",<p>";

 element.innerHTML += "<p>We've processed your information and
we have noticed a problem.</p>";

 element.innerHTML += "<p>Base on your current spending habits,
you will not be able to retire by " + retire + " years old.</
p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive our
goal</p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.</p>";

 }

 else{

 // able to retire but....

 alert("retiring == true");

 element.innerHTML += "<p>Hi " + name + ",</p>";

 element.innerHTML += "<p>We've processed your information and
are pleased to announce that you will be able to retire on time.</p>";

 element.innerHTML += "<p>Base on your current spending habits,
you will be able to retire by " + retire + "years old.

</p>";

 element.innerHTML += "<p>Also, you'll have' " + shortChange
+ " amount of excess cash when you retire.</p>";

 element.innerHTML += "<p>Congrats!<p>";

 }

}

To this:

function buildFinalResponse(name, retiring, yearsNeeded, retire,
shortChange) {

 debuggingMessages(buildFinalResponse", -1, "no messages"); buildFinalResponse", -1, "no messages");", -1, "no messages");

 var element = document.getElementById("finalResponse");

 if (retiring === false) {

 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";

 element.innerHTML += "<p>We've processed your information and
we have noticed a problem.<\/p>";

 element.innerHTML += "<p>Base on your current spending habits,
you will not be able to retire by " + retire + " <\/b> years
old.<\/p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + "<\/b> dollars before you retire inorder to achieve our
goal<\/p>";

Chapter 3

[10�]

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<\/p>";

 }

 else {

 // able to retire but....

 //alertMessage("retiring === true");

 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";

 element.innerHTML += "<p>We've processed your information and
are pleased to announce that you will be able to retire on time.<\/
p>";

 element.innerHTML += "<p>Base on your current spending habits,
you will be able to retire by " + retire + "<\/b>years old.<\/p>";

 element.innerHTML += "<p>Also, you'll have' " + shortChange
+ "<\/b> amount of excess cash when you retire.<\/p>";

 element.innerHTML += "<p>Congrats!<\/p>";

 }

}

Note that the highlighted lines are where we have changed from /> to \/>.

Ater ixing the previous error, we moved on to an error that is conceptually more diicult to
understand, but easy to solve. That is, "expected === instead of saw ==". According to JSLint,
using === is stricter and more secure as compared to using ==. Therefore, we needed to

change all == to ===.

The next error, "Alert is not deined", is conceptually similar to the "Too many var

statement" error. What we need to do is to refactor allall alert() statements to call the

alertMessage() funcion that accepts a parameter messageObject. This allows us to use

only one alert() for almost the whole JavaScript program. Whenever we need to use an

alert box, all we need to do is to pass an argument into the alertMessage() funcion.

Finally, we moved on to ix one of the toughest validaion errors: "Avoiding HTML event
handlers". Due to the complexiies involved with event listeners, we engaged the help of
JQuery, a popular JavaScript library, and wrote some JQuery code. Firstly, we removed all of
the HTML event handlers from our HTML form. Our HTML form changed from this:

<form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson" onblur="submi
tValues(this)" size="50" value="Enter your name"/>

 <input type="text" name="enterNumber" id="age" onblur="submitValues
(this)" size="50" maxlength="2" value="Enter your age"/>

 <input type="text" name="enterText" id="birth" onblur="submitValues
(this)" size="50" value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="spending" onblur="submitV
alues(this)" size="50" value="Enter your spending per month"/>

Syntax Validaion

[110]

 <input type="text" name="enterNumber" id="salary" onblur="submitVal
ues(this)" size="50" value="Enter your salary per month"/>

 <input type="text" name="enterNumber" id="retire" onblur="submitVal
ues(this)" size="50" maxlength="3" value="Enter your the age you wish
to retire at" />

 <input type="text" name="enterNumber" id="retirementMoney" onblur
="submitValues(this)" size="50" value="Enter the amount of money you
wish to have for retirement"/>

</form>

To this:

<form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson" size="50"
value="Enter your name"/>

 <input type="text" name="enterText" id="birth" size="50"
value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="age" size="50"
maxlength="2" value="Enter your age"/>

 <input type="text" name="enterNumber" id="spending" size="50"
value="Enter your spending per month"/>

 <input type="text" name="enterNumber" id="salary" size="50"
value="Enter your salary per month"/>

 <input type="text" name="enterNumber" id="retire" size="50"
maxlength="3" value="Enter your the age you wish to retire at" />

 <input type="text" name="enterNumber" id="retirementMoney" size="50"
value="Enter the amount of money you wish to have for retirement"/
>

</form>

In order to support the new HTML form, we linked in the JQuery library, and added some
code to listen for the HTML form events, like this:

<script type="text/javascript"> src="http://ajax.googleapis.com/ajax/
libs/jquery/1.4.2/jquery.js"></script>

<script type="text/javascript">

/* some code omitted */

jQuery(document).ready(function () {

Chapter 3

[111]

 jQuery('#nameOfPerson').blur(function () {

 submitValues(this);

 });

 jQuery('#birth').blur(function () {

 submitValues(this);

 });

 jQuery('#age').blur(function () {

 submitValues(this);

 });

 jQuery('#spending').blur(function () {

 submitValues(this);

 });

 jQuery('#salary').blur(function () {

 submitValues(this);

 });

 jQuery('#retire').blur(function () {

 submitValues(this);

 });

 jQuery('#retirementMoney').blur(function () {

 submitValues(this);

 });

 jQuery('#formSubmit').submit(function () {

 checkForm(this);

 return false;

 });

});

</script>

The completed code can be found in the source code folder for Chapter 3, with a ile
name of perfect-code-for-JSLint.html. You can compare this with your edited code

to see if you have understood what we were trying to do. Now, you may want to copy and

paste the code into JSLint and see how it goes. You will only see errors pertaining to the use

of Jquery, one validaion error that complains about the use of alert(), and another error

about using too many var statements.

What just happened?
We have corrected the bulk of the validaion errors, from an insanely large number of
validaion errors to less than ten validaion errors, out of which only two or three of the
validaion errors are related to our code.

Syntax Validaion

[112]

You may have noiced the jQuery not defined error. Although JSLint has

captured the JQuery library that was externally linked, it does not explicitly read
the code, thus resuling in the jQuery not defined error.

Now that we have ixed the validaion errors, let us now move on to another free validaion
tool, the JavaScript Lint.

JavaScript Lint–a tool you can download

JavaScript Lint can be downloaded at http://www.javascriptlint.com, and it works in and it works innd it works in

a manner similar to JSLint. The key diference is that JavaScript Lint is a downloadable tool,
whereas JSLint works as a web-based tool.

Like JSLint, JavaScript Lint is capable of spoing the following common errors:

Missing semicolons at the end of a line

Curly braces without an if, for, and while

Statements that do not do anything

Case statements in a switch that turn decimal points into a number

You can read more about its funcionality by visiing its home page at
http://www.javascriptlint.com.

To learn about how to use JavaScript Lint, you may follow the tutorials found at the website.

If you are using Windows, you may need to read the set-up instrucions found
at http://www.javascriptlint.com/docs/running_from_windows_

explorer.htm

If you are using Linux based operaing systems, you can check out the instrucions
found at http://www.javascriptlint.com/docs/running_from_the_

command_line.htm

Finally, if you wish to integrate JavaScript Lint into your IDE such as Visual

Studio, you can read more about how to do this by visiing http://www.
javascriptlint.com/docs/running_from_your_ide.htm

We will not be discussing "how to ix validaion errors spoted by JavaScript Lint" because
the principles are similar to JSLint. However, we challenge you to ix the remaining errors
(apart from those caused by JQuery)












Chapter 3

[113]

Challenge yourself–ix the remaining errors spotted by JSLint
Ok, this is the irst challenge that I will I present to you. Fix the remaining errors spoted by
JSLint, which are as follows:

alert is not deined": This is found in the alertMessage() funcion

too many var statements": This error is found in the submitValues() funcion

Here are some ideas for you to get started:

In our JavaScript applicaion, is there any way that we can avoid the alert()? How
can we display messages that can capture the atenion of our audience but at the
same ime be valid?

For the error found at the submitValues() funcion, how can we refactor the
code such that there is only one var statement in the funcion? Can we refactorstatement in the funcion? Can we refactor
the var statement into a funcion and have it return a Boolean value?

OK, now you might want to give it a go, but be careful, because the soluions that you
propose or intend to use may cause other validaion errors. So you might want to think
about your soluions before implemening them.

Summary

We've inally reached the end of this chapter. I'll irst start of by summarizing some of the
strategies and ips we have used to write valid code, and follow this with a summary of the
rest of the chapter.

Some of the strategies that we have used to write valid code (according to JSLint) are
as follows:

Properly space your code, especially ater mathemaical signs, if, else, (),

and so on

Use only one var statement per funcion

Consider the low of your program; code in such a way that the required data or
funcions come at the top of the program

Use the alert() funcion sparingly. Instead, consolidate your alert() funcions
into one funcion

Use === instead of ==; this makes sure that your comparison statements are
more accurate

Avoid HTML event handlers by using listeners. Alternaively, you may engage the
help of JavaScript libraries such as JQuery in order to provide event listeners
to your code.



















Syntax Validaion

[114]

Finally, we covered the following topics:

The diference between tesing and validaing

How validaion helps us to write good code

What issues may occur if we do not validate our code—if we do not validate our
code, it might not be scalable, less readable, and result in unexpected errors

How we can use JSLint and JavaScript Lint to validate our code

Now that we have learned how we can test JavaScript by validaion tools, you might want
to think about the strategy that we can adopt when we intend to test our code. As shown

in the example in this chapter, wriing valid code (or correcing invalid code) is an extremely
tedious process. More importantly, there are some validaion warnings or errors that do not
afect our program in its enirety. In such a situaion, do you think that it is worth the efort
to validate our code? Or do you think we should be a perfecionist and write perfect code?
This will very much depend on our tesing plan, which will dictate the scope of tesing, the
things to test, and many other things. These topics will be covered in next chapter, Chapter 4,

Planning to Test. So I'll end of this chapter, and see you in the next chapter.







4
Planning to Test

Welcome to the fourth chapter. Before we move into a more formal tesing
process, we must irst understand what tesing is about. In this chapter, we
will learn how to make a plan for tesing your JavaScript program. We will
learn about the various tesing concepts that you should know, ater which
I will present to you a brief guideline which will be used as a basis for the
next chapter..

Before we move into the various tesing concepts, we will irst need to establish a brief
understanding of the following issues:

Do we really need a test plan in order to carry out tesing?

When should we develop the test plan for our code?

How much tesing do we need for our program?

Ater covering the above issues, we will learn about the following tesing concepts and ideas:

Black box tesing, white box tesing, and related concepts

Boundary condiions

Unit tesing

Web page funcional tesing funcional tesing tesing

Integraion tesing

Non-funcional tesing, such as performance tesingfuncional tesing, such as performance tesinguncional tesing, such as performance tesing tesing, such as performance tesing such as performance tesing

Usability tesing

Tesing order—which of the above tests do we perform irst?

Regression tesing—which is typically done when we make changes to the code















Planning to Test

[116]

In order to get a beter overview of when and where tesing plays its part, we will irst start
with a very brief introducion to the sotware lifecycle.

A very brief introduction to the software lifecycle

Understanding the sotware lifecycle will help you to develop a deeper insight into the
sotware development process and, more importantly, when and where tesing will play
its part.

In general, the sotware lifecycle has the following stages:

1. Analysis

2. Design

3. Implementaion

4. Tesing

5. Deployment

6. Maintenance

In the irst stage, we generally perform an analysis to understand what the needs of the
stakeholders are. For instance, if you are carrying out a customized project for a customer,

you will need to understand the user requirements, system requirements, and the business

goals. Once you have understood the needs, you will need to design the sotware. Things to
do in this stage include drawing data low diagrams, designing the database, and so on. The
next stage is the implementaion stage. We can see this as the actual coding process.

Next comes tesing, which is the main focus of this book. In this chapter, we will learn how
to plan our test based on various tesing concepts. Ater the tesing stage, we will deploy the
project, and inally we maintain the project. Because this is a cycle, we theoreically move
back to the analysis stage during or ater the maintenance stage. This is because a sotware
or program is evoluionary; as needs and requirements change, so does our sotware.

Although the terminologies and number of stages may be slightly diferent from what you
see in other related content, the process is generally the same. The main takeaway here is

that tesing typically comes ater implementaion.

The agile method
You may have heard about the agile methodology, which includes the agile sotwarethe agile sotware agile sotware
development methodologies, and of course, agile tesing methods.methodologies, and of course, agile tesing methods. and of course, agile tesing methods.

In general, agile sotware development and tesing methods typically happen with thethe

end users or customers in mind. There is oten litle documentaion, and a focus on short users or customers in mind. There is oten litle documentaion, and a focus on shortusers or customers in mind. There is oten litle documentaion, and a focus on shortThere is oten litle documentaion, and a focus on shorthere is oten litle documentaion, and a focus on short
sotware development cycles, which typically last for one to four weeks.development cycles, which typically last for one to four weeks. cycles, which typically last for one to four weeks.typically last for one to four weeks. last for one to four weeks.one to four weeks. to four weeks.four weeks. weeks.

Chapter 4

[117]

So how does this relate to the sotware development cycle that you have read about indevelopment cycle that you have read about in cycle that you have read about in

the previous secion? In general, tesing is not an individual phase by itself, but rather is
closely integrated with the development process, with code being tested from the customer

perspecive, as early as possible, when code becomes stable enough to perform tesing. when code becomes stable enough to perform tesing. code becomes stable enough to perform tesing.enough to perform tesing. to perform tesing.

The agile method and the software cycle in action agile method and the software cycle in action

It might be diicult for you to visualize how the previous theories come into place. Thet might be diicult for you to visualize how the previous theories come into place. Theprevious theories come into place. The theories come into place. TheThehe

process of creaing the sample code for this book closely mimics the sotware lifecycle and
agile methodology. So I thought I'll very briely share with you my experience when I wasmethodology. So I thought I'll very briely share with you my experience when I was I thought I'll very briely share with you my experience when I wasI thought I'll very briely share with you my experience when I was thought I'll very briely share with you my experience when I wasI'll very briely share with you my experience when I wasll very briely share with you my experience when I wasbriely share with you my experience when I was share with you my experience when I wasexperience when I was when I wasI was was

creaing the code samples for this book, based on the theories that we have learnt about.the theories that we have learnt about. theories that we have learnt about.

Analysis and designdesignesign

Technically speaking, the analysis and design stage took place when I was thinking aboutechnically speaking, the analysis and design stage took place when I was thinking about

what kind of code samples would meet the objecives of the book. I thought that thethe book. I thought that the book. I thought that theI thought that the thought that the

code should be simple enough to follow, and most importantly should demonstrate theenough to follow, and most importantly should demonstrate the to follow, and most importantly should demonstrate thethehe

various features of JavaScript. The code should set up the stage for code tesing in theThe code should set up the stage for code tesing in thehe code should set up the stage for code tesing in thethe stage for code tesing in the stage for code tesing in thethe

later chapters.

Implementation and testing

The implementaion stage occurred when I was wriing the code samples. As I createdoccurred when I was wriing the code samples. As I created when I was wriing the code samples. As I createdI was wriing the code samples. As I created was wriing the code samples. As I createdI created created

funcions for snippets of code, I tested whenever I could, and asked myself if the codefor snippets of code, I tested whenever I could, and asked myself if the codesnippets of code, I tested whenever I could, and asked myself if the codeI tested whenever I could, and asked myself if the code tested whenever I could, and asked myself if the codeI could, and asked myself if the code could, and asked myself if the code, and asked myself if the code and asked myself if the code

could demonstrate the use of JavaScript and facilitate tesing purposes later on.the use of JavaScript and facilitate tesing purposes later on. use of JavaScript and facilitate tesing purposes later on.

So, what happened here is that I used some form of agile tesing as I tested as oten as I could., what happened here is that I used some form of agile tesing as I tested as oten as I could. what happened here is that I used some form of agile tesing as I tested as oten as I could.I used some form of agile tesing as I tested as oten as I could. used some form of agile tesing as I tested as oten as I could.

Deployment

Deployment of the code in the business world typically occurs ater the code has beenthe business world typically occurs ater the code has been business world typically occurs ater the code has beenbusiness world typically occurs ater the code has been world typically occurs ater the code has been
transferred to the end user. However, in my case, deployment involved sending my code, in my case, deployment involved sending my code in my case, deployment involved sending my code case, deployment involved sending my codecase, deployment involved sending my code

samples to the editors.the editors. editors.

Maintenance

The maintenance stage occurred when I ixed bugs discovered by the editors ater the code stage occurred when I ixed bugs discovered by the editors ater the codeoccurred when I ixed bugs discovered by the editors ater the codewhen I ixed bugs discovered by the editors ater the codeixed bugs discovered by the editors ater the code bugs discovered by the editors ater the codethe editors ater the code editors ater the codethe code code

was submited. Despite the best of of intenions, code is not always error-free.is not always error-free.error-free.

Do you need a test plan to be able to test?

You will most likely require a test plan in order to carry out tesing. This is because a plan
helps you keep a clear objecive on what to test. It also helps you to igure out what kind of
tests you want to perform on your program.

Planning to Test

[11�]

Most importantly, as you will realize, in order to carry out a thorough test you will need to

implement various tests, including tesing concepts based on white box tesing and black box
tesing, web page tesing, unit tesing, integraion tesing, and so on. A test plan also serves
as a record of your test data, bugs, test results, and possible soluions for your bugs. This
means that in order to ensure that you do not miss anything, it is good to have a solid plan

as to what to test, when to test, and how to test your program.

When to develop the test plan

In theory, if you look at the sotware development cycle, you will see that tesing comes aterf you look at the sotware development cycle, you will see that tesing comes ater
implementaion. Development of the test plan should take place ater you have completed
implementaion (the actual coding process) of the program. This is because it is only at this
point that you have conirmed what features, methods, and modules you have; planning
what to test based on what you have already done makes good business sense, because

you know what to focus on.

However, in pracice, it is advisable to start planning before the implementaion process.owever, in pracice, it is advisable to start planning before the implementaion process., in pracice, it is advisable to start planning before the implementaion process. in pracice, it is advisable to start planning before the implementaion process.ce, it is advisable to start planning before the implementaion process.e, it is advisable to start planning before the implementaion process.
Depending on your situaion, it is certainly possible that you can develop a High Level Test
Plan (HLTP) or High Level Test Case (HLTC). An HLTP is required if you are developing a largen HLTP is required if you are developing a large HLTP is required if you are developing a large
and complex system, and is meant to address the overall requirements. Other supporing. Other supporing supporing
test plans are used to address the details of the system. An HLTC is somewhat similar to ann HLTC is somewhat similar to an HLTC is somewhat similar to ann

HLTP, except that it covers test cases of the main funcionaliies that are directly related toexcept that it covers test cases of the main funcionaliies that are directly related to that it covers test cases of the main funcionaliies that are directly related tof the main funcionaliies that are directly related to the main funcionaliies that are directly related to
the overall requirements of the system.requirements of the system. of the system.

Another point that you should take note of is that, in pracice, the test plan can be broadly
categorized into system test and user acceptance test. System test covers all forms of

funcional tesing and non-funcional tesing (which you learn about later), whereas user-funcional tesing (which you learn about later), whereas user tesing (which you learn about later), whereas user
acceptance tesing is a phase where tesing is carried out by end users prior to transferring prior to transferringprior to transferring to transferring transferring

ownership to them.

How much testing is required?

You might be anxious to determine what you need to test and what you do not. Although

there are many diferent arguments as to how much tesing is required, I personally believe
the aspects of your program listed in the following secions should deine the scope of your
test plan.

Chapter 4

[11�]

What is the code intended to do?
Firstly, you need to understand what the code is intended to do. For instance, the business For instance, the business

requirements for our code in the previous chapters is to calculate whether the user can

reire on ime, based on his inputs, such as his current age, the age at which he wants to age, the age at which he wants to the age at which he wants to

reire, his current spending, current salary, and so on. Therefore, we created code that, and so on. Therefore, we created code that and so on. Therefore, we created code that, we created code that we created code that

meets the business needs. Once we know what our code is intended to do, we can testOnce we know what our code is intended to do, we can test

whether the code saisies our business needs.saisies our business needs..

Testing whether the code satisies our needs
By tesing the code to see if it saisies our business needs, we mean that for each input, wesaisies our business needs, we mean that for each input, we, we mean that for each input, we

need to get the correct output. Going back to our example in Chapter 2, Ad hoc Tesing and
Debugging in JavaScript and Chapter 3, Syntax Validaion, I would need to ensure that if the

total let-over income is less than the amount of money that is needed for reirement, the
output would be "unable to reire", at least in a pseudo sense. What we need to do from
a tesing point of view is to make sure that whenever the menioned condiion is true, the
output would be "unable to reire".

This can be achieved through a concept called white box tesing, where tesing is carried
based on the assumpion that the tester knows what the code is about. I'll cover the speciic
details of white box tesing and other tesing concepts in the following chapters. To give youTo give you

a heads up, some of the tesing concepts that you will encounter will include unit tesing,,
where you test codes in small units, and boundary values tesing, where you test for theand boundary values tesing, where you test for theboundary values tesing, where you test for the, where you test for thewhere you test for the

maximum or minimum acceptable values of your code.minimum acceptable values of your code. acceptable values of your code.

The next thing that we will need to consider is how to test for or detect invalid acions
by users.

Testing for invalid actions by users
"Never trust users" is a phrase which we most commonly hear when developing for the
Web. This is because there may be malicious users who atempt to "break" your applicaions
by giving invalid input. Using the example from previous chapters, the input ields for the
name can only accept characters and spaces, and the input ields for the age and salary can
only accept numbers, and not characters. However, if someone were to atempt to enter
characters into the age or salary ield, this would be an invalid acion.

Our program will have to be robust enough to test or check for invalid acions; incorrect
input will result in incorrect output.

Planning to Test

[120]

A short summary of the above issues
By knowing what your code is intended for and what it is supposed to do, and understanding

the need to detect invalid acions by users, you have already deined the scope of your test
plan. Your tests should revolve around these criteria.

We can now move on to the various tesing concepts that you will be using for various
aspects of your test, and the building blocks of a test plan—major tesing concepts—major tesing conceptsmajor tesing concepts
and strategies.

Major testing concepts and strategies

In this secion, we will cover diferent types of tesing concepts and strategies. I will not
atempt to go into too much detail with regards to each concept, but rather I need you to get
the gist of it and see where each of these concepts is coming from. Ater you have gained
familiarity with these concepts, we will move on to creaing the actual test plan. As a start, IAs a start, I

will begin with the business strategies that developers follow (whether you are performingbegin with the business strategies that developers follow (whether you are performing with the business strategies that developers follow (whether you are performingfollow (whether you are performing(whether you are performing
a project for an external or an internal client), so that you can gain a high-level idea of how, so that you can gain a high-level idea of how so that you can gain a high-level idea of how-level idea of howlevel idea of how

tesing is conducted. In general, no mater what tesing concepts, methodology, or ideologytesing concepts, methodology, or ideologyg concepts, methodology, or ideologymethodology, or ideology or ideology

you subscribe to, you will face the following test cases:

Funcional requirement tesinguncional requirement tesingrequirement tesing tesing

Non-funcional requirement tesingon-funcional requirement tesing-funcional requirement tesingfuncional requirement tesing

Acceptance tesing

Functional requirement testing
Funcional requirement tesing is meant to test the code, a funcion, or a module of a, or a module of a or a module of a

sotware system. For instance, going back to the code that we wrote for the previoussystem. For instance, going back to the code that we wrote for the previous. For instance, going back to the code that we wrote for the previous

chapters, the funcional requirements consists of the following:funcional requirements consists of the following: requirements consists of the following:

1. Check user's input for validity.

2. If the input from step 1 is valid, a new input box will appear on the right-hand sideis valid, a new input box will appear on the right-hand sides valid, a new input box will appear on the right-hand side
of the current input box, ater the users mouse moves on to the next input box.s on to the next input box. on to the next input box..

3. Provide the correct calculaion output based on the users input. For example, if thecalculaion output based on the users input. For example, if the output based on the users input. For example, if the

user requires 1,000,000 dollars for reirement, and he only has 500,000 dollars by
the ime he reires, then he will not be able to reire.en he will not be able to reire.n he will not be able to reire.

Examples of funcional requirement tesing that are covered in this chapter are as follows:funcional requirement tesing that are covered in this chapter are as follows: requirement tesing that are covered in this chapter are as follows: as follows::

Web pageeb page tests

Boundary tesing

Equivalencequivalence pariioning









Chapter 4

[121]

Non-functional requirement testing
Non-funcional requirement tesing refers to tesing requirements that are not relatedrequirements that are not related that are not related

to the funcionality or speciic behaviour of the sotware. Rather, it is a requirement thatbehaviour of the sotware. Rather, it is a requirement that of the sotware. Rather, it is a requirement thatthe sotware. Rather, it is a requirement that sotware. Rather, it is a requirement that, it is a requirement that it is a requirement thatrequirement that that

speciies criteria that can be used to judge the operaion of a sotware.operaion of a sotware. of a sotware.

For example, a funcional requirement would be that our sotware should be able torequirement would be that our sotware should be able to would be that our sotware should be able to
store the values that our users have entered, and a non funcional requirement is thats have entered, and a non funcional requirement is that have entered, and a non funcional requirement is thatrequirement is that is that

the database should be updated in real-ime.real-ime..

Another example that is related to our sample code in previous chapters is that a funcionalfuncional
requirement would be a sotware, which is able to calculate whether our user is able to
reire on ime, and a non-funcional requirement would be one in which our user interfacerequirement would be one in which our user interface would be one in which our user interfacebe one in which our user interface one in which our user interface

should be intuiive. Do you see the diference between non funcional requirements and Do you see the diference between non funcional requirements and see the diference between non funcional requirements andsee the diference between non funcional requirements andee the diference between non funcional requirements and
funcional requirements, now?requirements, now? now?

Examples of non funcional requirement tesing that are covered in this chapter arefuncional requirement tesing that are covered in this chapter are requirement tesing that are covered in this chapter are

as follows::

Performance tesing

Usability tesing

Integraion tesing

Other non-funcional requirements that you are likely to encounter throughout your career
as a sotware developer are as follows: as follows::

Fast loading of pagesast loading of pages

Search engine opimized web pagesearch engine opimized web pages

Documentaion of the sotware that you have createdocumentaion of the sotware that you have createdhave created created

Eiciency of the system of the system

Reliability of the sotware of the sotware

Interoperability of the sotware code that you have produced. For instance, you can
code JavaScript across major browsers

Acceptance testing
Acceptance tesing is usually the inal phase of the enire tesing process. This is otenThis is oten is oten
done prior to the inal acceptance of the sotware by the customer. Acceptance tesingAcceptance tesingcceptance tesing
can be further divided into two parts. The sotware vendor performs the acceptance tesingtwo parts. The sotware vendor performs the acceptance tesing parts. The sotware vendor performs the acceptance tesing The sotware vendor performs the acceptance tesingsotware vendor performs the acceptance tesing
irst, and then acceptance tesing by the end users (known as user acceptance tesing)en acceptance tesing by the end users (known as user acceptance tesing)n acceptance tesing by the end users (known as user acceptance tesing)
is performed.












Planning to Test

[122]

Acceptance tesing is the ime where your customer (or the end-user) will perform actualcustomer (or the end-user) will perform actual (or the end-user) will perform actual
tesing (similar to actual usage of the system) on the sotware that you have created. Aactual usage of the system) on the sotware that you have created. A usage of the system) on the sotware that you have created. A
typical process will include the creaion of test cases by the end users that relect businessthe creaion of test cases by the end users that relect business creaion of test cases by the end users that relect business
use of the sotware.

If you are using agile tesing methods, such test cases are oten referred to as stories.
It depends on how the customer will use them in a business seing. And ater the user how the customer will use them in a business seing. And ater the user
acceptance tests, you will transfer ownership of the product to your customers.ownership of the product to your customers. of the product to your customers.customers..

With the most common tesing scenarios covered, we will move on to the speciics of thethe most common tesing scenarios covered, we will move on to the speciics of the most common tesing scenarios covered, we will move on to the speciics of the we will move on to the speciics of themove on to the speciics of the
tesing concepts. We will start with one of the most commonly-heard tesing concepts, thestart with one of the most commonly-heard tesing concepts, the
black box tesing concept.

Black box testing
Black box tesing belongs to the "box approach", where a piece of sotware is regarded as
a box and the box contains various funcions, methods, classes, and so on. Metaphorically,
a "black box" typically means that we cannot see what is inside the box. This means that
we implement the test without knowing the internal structure of our program; we take an
external perspecive of the program, using valid and invalid inputs in order to determine ifif
the output is correct. output is correct.is correct..

Because we have no knowledge about the internal structure and code of the program,

we can only test the program from a user's point of view. In this case, we might try to
determine what the major funcions are, and then atempt to implement our test
based on these funcions.

The main advantage of black box tesing is that the test results are oten unailiated,
because the tester has no knowledge of the code. However, the disadvantage is that because
the tester has no idea of what the code is about, the tester may create tests or perform tests

that may be repeiive, or tests that fail to test the most important aspects of the sotware.
Or worse, the tester may miss out an enire funcion or method.

That is why, in the real world, test cases are prepared in the early phases of the development, in the real world, test cases are prepared in the early phases of the development in the real world, test cases are prepared in the early phases of the developmentthe early phases of the development early phases of the development

cycle, so that we will not miss out on certain requirements. The advantage is that testers willThe advantage is that testers will advantage is that testers willadvantage is that testers will is that testers will

have access to the required test cases, but at the same ime, the testers need not have full
knowledge of the code.

Some examples of black box tesing include usability tesing, boundary tesing, and
beta tesing.

Chapter 4

[123]

Usability tests

In simple terms, usability tesing typically involves tesing from the user's point of view, to
see if the program we have created is easy to use. The key objecive here is to observe users
using our program, to discover errors or areas of improvement. Usability tesing generally
includes the following aspects:

Performance: especially in terms of the number of clicks (or acions) that a user hasespecially in terms of the number of clicks (or acions) that a user has that a user has a user hass

to take in orders to complete a paricular task, such as signing up as a member, ors to complete a paricular task, such as signing up as a member, or to complete a paricular task, such as signing up as a member, or
purchasing a product form a website, and so on., and so on. and so on.

Recall: can users remember how to use the program ater not using it for acan users remember how to use the program ater not using it for a not using it for a for afor a

certain period? period?

Accuracy: does our program design result in mistakes by the end users?does our program design result in mistakes by the end users?result in mistakes by the end users? in mistakes by the end users? users?users??

Feedback: feedback is certainly one of the most important AJAX-related applicaion is certainly one of the most important AJAX-related applicaioncertainly one of the most important AJAX-related applicaion one of the most important AJAX-related applicaion-related applicaionrelated applicaion
issues. For instance, ater submiing an AJAX form, a user will typically wait for
some form of feedback, (in the form of visual feedback, such as a success message). a success message).).

But imagine this—if there is no form of visual feedback or success message, how will—if there is no form of visual feedback or success message, how willif there is no form of visual feedback or success message, how will

the user know if he has submited the form successfully or unsuccessfully?

Boundary testing

Boundary tesing is a form of tesing method where the maximum and minimum values are
tested. Boundary tesing someimes includes the tesing of error values and typical values.

For instance, in the program in the previous chapters, the maximum number of characters

we allow for the entry of names are 20 characters.

Equivalence partitioning

Equivalence pariion tesing is a technique that divides a range of data into pariions from pariion tesing is a technique that divides a range of data into pariions fromdivides a range of data into pariions from a range of data into pariions from
which test cases can be derived. For instance, for input boxes acceping a users' age, itFor instance, for input boxes acceping a users' age, itor instance, for input boxes acceping a users' age, it
should exhibit the following pariion:pariion::

Note that only posiive values are accepted for our example to read in a users' age,to read in a users' age,
as a person's age should technically be posiive. Therefore, any negaive values are, any negaive values are any negaive values are
unacceptable values. values.

For the range that is less than -2231 and larger than 231-1, it is asssumed that the integers can

only hold values between -231 and 231-1 due to hardware and EMCA operator requirements.








Planning to Test

[124]

Beta testing

Beta tesing has been popularized by the current popular Web 2.0 companies, such as
Google, where web applicaions are oten released to a limited audience other than the core
programing team. Beta tesing occurs ater alpha tesing, where most of the bugs and faults
have been detected and ixed. Beta tesing is oten used as a way to gain feedback from
prospecive users.

Such a process is commonly seen in open source projects, such as Ubuntu (an open source(an open sourcean open source

operaing system based on Linux), jQuery (a JavaScript library), and Django (a Python-based system based on Linux), jQuery (a JavaScript library), and Django (a Python-based), jQuery (a JavaScript library), and Django (a Python-based, jQuery (a JavaScript library), and Django (a Python-basedjQuery (a JavaScript library), and Django (a Python-basedQuery (a JavaScript library), and Django (a Python-based(a JavaScript library), and Django (a Python-baseda JavaScript library), and Django (a Python-based), and Django (a Python-based and Django (a Python-based(a Python-baseda Python-based-basedbased

web framework). Such open source projects or sotware typically have a series of alpha and). Such open source projects or sotware typically have a series of alpha and. Such open source projects or sotware typically have a series of alpha andrce projects or sotware typically have a series of alpha andce projects or sotware typically have a series of alpha andve a series of alpha and a series of alpha andseries of alpha and

beta releases. They also typically have release candidates prior to releasing a major version

of the sotware or project.

White box testing
White box tesing is also known as clear box tesing, glass box tesing, or transparent tesing.
White box tesing can be seen as the opposite of black box tesing; we test the program with
knowledge of the internal structure of our program. We take an internal perspecive of the
program, and use this perspecive when we implement our test plan.

White box tesing typically occurs when the test has access to the internal code and data
structures of the program. Because we take an internal perspecive of our program and
with knowledge of our source code, we design the test plan based on our code.

We might ind ourselves tracing the path of how our code is executed and work out what are
the input and output values for various funcions or methods of our program.

Some examples of white box tesing include Branch tesing, and Pareto tesing.ranch tesing, and Pareto tesing.areto tesing.

Branch testingtestingesting

Branch tesing is a concept where each branch of the code should be tested at least once.
This means that all funcions or code that has been writen should be tested. In sotwarehis means that all funcions or code that has been writen should be tested. In sotware
tesing, there is a measure known as code coverage, which refers to how much source code, which refers to how much source code which refers to how much source codewhich refers to how much source code refers to how much source code

of a program has been tested. Some of the more important types of branch tesing coveragebranch tesing coverage tesing coverage
includes the following: the following::

Funcional coverage: where we make sure that each funcion of the code has beenuncional coverage: where we make sure that each funcion of the code has been: where we make sure that each funcion of the code has been where we make sure that each funcion of the code has been
called (tested)

Decision coverage: where each of the thethe if else statements has been tested. Therestatements has been tested. There has been tested. There. There There

might be cases where the if part of the code works but not the else part of the

code, and vice versa., and vice versa. and vice versa.





Chapter 4

[125]

Pareto testing

Pareto tesing is what I personally call "real world" tesing, and is conducted under strict
ime and money constraints. This is because Pareto tesing only focuses on the most used
funcions; the most frequently used funcions are what mater the most and hence we
should focus our ime and efort on tesing these funcions. Alternaively, we may see
Pareto tesing such that most bugs come from a small handful of funcions of our programs;
therefore, by spoing these funcions, we can test our program much more efecively.

Pareto tesing is derived from an idea called "Pareto Principle" or perhaps
beter known as the "80-20 principle". What the Pareto Principle suggests is

that roughly 80% of the efects come from 20% of the causes. For instance,
80% of the sales revenue may come from 20% of the sales team or customers.
Or another example would be 80% of the world wealth is control by 20% of the
world's populaion. Applied in our case here, we can say that 80% of the bugs
or program errors come from 20% of our code, and therefore we should focus
tesing on that paricular 20% of the code. Alternaively, we can say that 80%
of the program's usage acivity comes from 20% of our code. Similarly, we can
focus tesing on that paricular 20% of the code. Just for the record, pareto Just for the record, paretoJust for the record, paretost for the record, paretothe record, pareto record, pareto

tesing can be regarded as a general tesing principle, and not just a form ofgeneral tesing principle, and not just a form of tesing principle, and not just a form of and not just a form of not just a form of

white box tesing.

Unit tests
Unit tesing breaks up code into logical chunks for tesing, and generally focuses on
one method at a ime. A unit can be seen as the smallest possible chunk of code, such
as a funcion or method. This means that in the ideal situaion, each unit should be
independent from all other units.

When we are performing unit tesing, we atempt to test each funcion or method as we
complete it, thus making sure that whatever code we have works before we move on to, thus making sure that whatever code we have works before we move on to

the next funcion or method.

This helps to reduce errors, and you may have noiced that we have somehow applied the
idea of unit tesing when developing the JavaScript program in the previous chapters. As we
create each funcion, we try to test it whenever possible.

Some of the beneits of unit tesing includes minimizaion of errors, and allowing ease of
change, because each funcion or method is tested individually in isolaion and, to a good
extent, simpliies integraion.

The main beneit, in my opinion, is that unit tests are lexible and allow ease ofhe main beneit, in my opinion, is that unit tests are lexible and allow ease of in my opinion, is that unit tests are lexible and allow ease of, is that unit tests are lexible and allow ease of is that unit tests are lexible and allow ease of unit tests are lexible and allow ease ofunit tests are lexible and allow ease of lexible and allow ease ofle and allow ease of and allow ease ofallow ease ofease of

documentaion. This is because as we write and test new funcions, we can easily take note
of what the problems are, and whether the code can work correctly. In efect, we are doing
incremental documentaion—documening the results as we test.—documening the results as we test.documening the results as we test.

Planning to Test

[126]

Unit tesing is also an integral part of integrated tesing, especially in the botom-up
approach, as we test our program from the smallest possible unit before moving on to larger

units. For example, as I was creaing the code for For example, as I was creaing the code for Chapter 2hapter 22, Ad Hoc Tesing and Debugging
in Javascript, I essenially carried out unit tesing informally. I carried out unit tesing byI essenially carried out unit tesing informally. I carried out unit tesing by essenially carried out unit tesing informally. I carried out unit tesing bycarried out unit tesing by out unit tesing by
treaing each of the funcions as individual units, and tested each JavaScript funcion withed each JavaScript funcion with each JavaScript funcion with
the related HTML input ield, in order to make sure that the correct output was achieved. HTML input ield, in order to make sure that the correct output was achieved.
This technique can be seen as part of performing coninuous integraion
as new code is being writen.

Coninuous integraion is a process where developers integrate their code frequently, inoninuous integraion is a process where developers integrate their code frequently, indevelopers integrate their code frequently, in integrate their code frequently, in

order to prevent integraion errors. This is oten done with the help of automated buildsThis is oten done with the help of automated buildshis is oten done with the help of automated buildsthe help of automated builds help of automated builds

of the code (and includes tests) to detect integraion tesing. As we create new code, it isAs we create new code, it iss we create new code, it is, it is it is

important that we integrate with the exising code to make sure that no compaibility issues
or new bugs (or even old bugs) are introduced. Coninuous integraion is becoming popular
as it integrates unit tests, revision control, and build systems.t integrates unit tests, revision control, and build systems. integrates unit tests, revision control, and build systems., and build systems. and build systems.

Web page tests
As menioned previously, web page tesing is a form of funcional tesing, and typically refersfuncional tesing, and typically refers tesing, and typically referstypically refers

to the tesing of the user interface, from the user's point of view. For our purposes here, we
would test our JavaScript program in conjuncion with HTML and CSS.

Web page tesing also includes tesing for correctness in terms of diferent browsers and
plaforms. We should at least focus on the major web browsers such as Internet Explorer and
Firefox, and see if the presentaion and JavaScript program works under diferent browsers.

To have a brief idea regarding the usage of browsers, you might want to head down toregarding the usage of browsers, you might want to head down tothe usage of browsers, you might want to head down tobrowsers, you might want to head down to, you might want to head down to

http://www.w3schools.com/browsers/browsers_stats.asp to see which browsersich browsers browsers

are popular, in decline, or on the rise.decline, or on the rise. or on the rise.the rise. rise..

It appears that Google Chrome is gaining a lot of momentum, and it has a goodt appears that Google Chrome is gaining a lot of momentum, and it has a goodChrome is gaining a lot of momentum, and it has a good gaining a lot of momentum, and it has a good

chance of becoming a popular web browser; in less than two years, Google
Chrome has increased its market share from 3.15 percent to 14.5 percent, based percent to 14.5 percent, based to 14.5 percent, based percent, basedbased

on the staisics provided by w3schools. This increase in popularity is in part duethe staisics provided by w3schools. This increase in popularity is in part due staisics provided by w3schools. This increase in popularity is in part due
to its JavaScript engine performance.performance..

The other main focus of web page tests also includes checking for the most frequently-used
user behaviors, such as illegal and legal values, login, logout, erroneous behavior of the

users, SQL, HTML injecion, checking of HTML links, images, the possibility of robot atacks,, HTML injecion, checking of HTML links, images, the possibility of robot atacks,
and so on.

As SQL, HTML injecion, and robot atacks are out of the scope of this book, we will focus on
the other issues, such as making sure that the web page will work under diferent browsers,
tesing for illegal and legal values, erroneous behavior, and frequent behaviors.

Chapter 4

[127]

Performance tests
Performance tests have a wide range of genres such as load tesing, stress tesing,s such as load tesing, stress tesing, such as load tesing, stress tesing,
endurance tesing, isolaion tesing, spike tesing, and so on. I will not atempt to bog youtesing, spike tesing, and so on. I will not atempt to bog you tesing, and so on. I will not atempt to bog you, and so on. I will not atempt to bog you and so on. I will not atempt to bog youatempt to bog you to bog you

down with the details. Instead, I will focus on two of the more common issues that you willthe details. Instead, I will focus on two of the more common issues that you will details. Instead, I will focus on two of the more common issues that you will, I will focus on two of the more common issues that you will I will focus on two of the more common issues that you willI will focus on two of the more common issues that you will will focus on two of the more common issues that you willthat you will you will

face as a JavaScript programer.

Firstly, performance can refer to the amount of ime required for the client to download adownload a a

piece of JavaScript. You may argue that download ime depends on the Internet connecion..
But there is one simple thing that you can do to reduce the size of your JavaScript withoutut there is one simple thing that you can do to reduce the size of your JavaScript withoutthe size of your JavaScript without size of your JavaScript without

refactoring or rewriing it, and that is compressing your JavaScript code. A good example of, and that is compressing your JavaScript code. A good example of and that is compressing your JavaScript code. A good example ofand that is compressing your JavaScript code. A good example ofnd that is compressing your JavaScript code. A good example ofis compressing your JavaScript code. A good example ofcompressing your JavaScript code. A good example of

this would be the JQuery library, which we introduced in, which we introduced in which we introduced in Chapter 3hapter 33, Syntax Validaion. If you

visit the JQuery home page at page atpage at http://jquery.com, you may have noiced that JQuery
comes in two forms—a producion version and a development version. The producion—a producion version and a development version. The producionproducion version and a development version. The producionThe producionhe producion
version is miniied, and the ile size is 24KB, whereas the development version is 155KB. miniied, and the ile size is 24KB, whereas the development version is 155KB. and the ile size is 24KB, whereas the development version is 155KB.
Obviously, the producion version is smaller in ile size and hence improves performancebviously, the producion version is smaller in ile size and hence improves performancethe producion version is smaller in ile size and hence improves performance producion version is smaller in ile size and hence improves performance
in terms of downloading the JavaScript.downloading the JavaScript. the JavaScript.

Compressing your code—or minifying your code—refers to an act where your minifying your code—refers to an act where you minifying your code—refers to an act where youyour code—refers to an act where you code—refers to an act where you
remove all unnecessary white spaces and lines from your code in order tounnecessary white spaces and lines from your code in order to white spaces and lines from your code in order to

reduce ile size. Some code miniiers automaically remove comments, replaceminiiers automaically remove comments, replacers automaically remove comments, replaces automaically remove comments, replace automaically remove comments, replace
funcions, variables, and even encode in diferent codings., and even encode in diferent codings. and even encode in diferent codings.

Secondly, performance can also refer to the speed at which a paricular piece of codeperformance can also refer to the speed at which a paricular piece of code also refer to the speed at which a paricular piece of codeparicular piece of code piece of code

executes for any given amount of input. In general, we need to use external libraries or toolsIn general, we need to use external libraries or toolsn general, we need to use external libraries or tools

to help us ind out which parts of our code are performing relaively slower than the others,are performing relaively slower than the others, performing relaively slower than the others,
or where the botlenecks are. Related tools, and how we can apply performance tesing, willperformance tesing, will tesing, will
be covered in Chapter 6, Tesing more complex code.

Integration testing
Integrated tesing is among the last steps of the tesing process prior to acceptance tesing. among the last steps of the tesing process prior to acceptance tesing. of the tesing process prior to acceptance tesing. prior to acceptance tesing. to acceptance tesing. acceptance tesing..
Because we have made sure that the basic building blocks of the program work correctly as

an individual unit, we will now need to make sure if they can work together.

Integraion tesing refers to the tesing of all of the diferent components of our program.
The diferent components can refer to the various units that we have talked about so far.
The main objecive of integraion tesing is to ensure that the funcional, performance, and
reliability requirements are met. We also test the diferent units together and see if they can
work; we'll need to check for any irregulariies when combining the units together.

Integraion tesing can take diferent forms, such as top-down and botom-up approach.

Planning to Test

[12�]

In the top-down approach, we start with the highest-level integrated module, followed
by the sub-modules or funcions of each module. On the other hand, botom-up tesing
starts from the lowest level components before moving on to the upper-level components.

Based on the sample code that we have seen so far, it would be diicult to understand how
integrated tesing works. In general, if we view the HTML code as a unit, CSS as a unit, and
each individual JavaScript funcion as a unit, we can see that integrated tesing would include
tesing all three together and making sure that it is correct.

In the botom-up approach, we begin tesing from the basic units of code. As we test the basic
units of code, we move up to test larger units of code. This process is similar to unit tesing.

Regression testing–repeating prior testing after making changes
Regression tesing focuses on uncovering errors in a program when a program is
being modiied or upgraded. In real-life situaions, we tend to make changes to a
program— whether this is upgrading it, adding new features, and so on. The key point
is that as we make changes to a program, we need to test the new components to see

if they work in conjuncion with the old components.

We need to perform regression tesing because research and experience have shown
that as a program is being modiied, new or old errors may appear. For instance, an old,
previously-ixed bug may be re-introduced into the program when a new feature is being
added, or the new feature itself may contain a bug that afects the exising features. This
is where regression tesing comes in: we perform previous tests to make sure that the old
components are sill running and that no old faults have re-emerged. We test the new
features with the old components to ensure that the enire system is working. Someimes,
in order to save ime and resources, we may only perform tesing on the new features
in conjuncion with the old components. At this point, we can apply impact analysis toAt this point, we can apply impact analysis to

determine the impact area of the applicaion, by adding or modifying code.

Regression tesing is as real as it gets. This is because as a program grows, the chances
are that you will make changes to your code. As you make changes to your code there is a there is a

likelihood that bugs or incompaibiliies may be introduced to your program, and regression that bugs or incompaibiliies may be introduced to your program, and regression, and regression regression

tesing helps you to spot such mistakes.

Testing order

We have now covered the required background knowledge, so it is ime to understand
what kind of tests we should start with. The order in which we carry out the tests depends

on whether we want to implement botom-up tesing or top-down tesing. There is nothing
wrong with either order of tesing, but I personally prefer botom-up tesing: I'll typically
start with unit tesing irst, followed by other types of tests (depending on what the program
is like), and inish of with integraion tesing.

Chapter 4

[12�]

The main reason for taking this approach is that unit tesing allows us to ind errors in
the code much earlier; this prevents bugs or errors from piling up. In addiion, it provides
lexibility in how you choose to document the test results.

However, if you prefer the top-down approach, you can always start by tesing the program
as if you were an end user.

In the real world, especially in terms of tesing web applicaions, it can be diicult to
difereniate (at least conceptually) between botom-up tesing and top-down tesing. This is
because although the user-interface and programing logic are separated, we really need tod, we really need to, we really need to

test both at the same ime in order to understand if it works the way that we want it to.

Nonetheless, the tesing order should inish with user acceptance tesing, because the end
users are the ones who will be using our code eventually.

In the next secion, we will show you how to document your test plan. You will noice that
we will be performing tests from the users' point of view. Now, it is ime to document ourill be performing tests from the users' point of view. Now, it is ime to document ourperforming tests from the users' point of view. Now, it is ime to document ouring tests from the users' point of view. Now, it is ime to document our tests from the users' point of view. Now, it is ime to document our. Now, it is ime to document ourNow, it is ime to document our
test plan.

Documenting your test plan

Now that we have covered the required tesing concepts, it is ime to learn how we can
create the test plan. At the same ime, we will document our test plan; this will serve as a
basis for the next part of this chapter, where we will apply the test.

The test plan
Our test plan will consist of some of the concepts we have covered earlier, such as web page

tesing, boundary tesing, integration tesing, and others. Because we are applying the testion tesing, and others. Because we are applying the test tesing, and others. Because we are applying the test
on the code we have used in Chapter 2, Ad Hoc Tesing and Debugging in Javascript, we have

the advantage of knowing what the code is about. Therefore, we can design our test process

in such a way that it can incorporate ideas from both black box tesing and white box tesing.

You might want to go to the source code folder and open the sample_test_plan.doc

ile, which is our sample test plan. This is a very simple and informal test plan, which contains which is our sample test plan. This is a very simple and informal test plan, which contains

only the bare minimum of the required components. If you are wriing documentaion for
your own reference, you can save on ime and efort by using a simple document. However,
if you are preparing a test plan for a client, you will need a more elaborate document. For

simplicity sake, we'll use the sample document provided in the source code folder to help

you understand the planning process quickly. I will briely run through the components of
our test plan and at the same ime, I will introduce to you the main components of our

test plan.

Planning to Test

[130]

Versioning

In the irst component, you will noice that there is a version table, which documents the
changes in the test plan. In the real world, plans change and therefore, it is a good habit to

keep track of the things that have changed.

Another way to keep versioning easy and maintainable is to use version

control sotware such as Git or BitBucket. Such versioning tools keep a log of
the changes that you have made in your code; this will enable to trace what
changes you have made, and this makes creaing tests plans a lot easier.
You can visit http://git-scm.com/ to learn more about Git, andit, andand

http://bitbucket.org/ to learn more about BitBucket.

Test strategy

The next important component that you should noice is the test strategy. The test strategy
represents the main thoughts and ideas that we will be using for our test plan. You will see

that we are employing both white box and black box tesing, along with unit tesing and
integraion tesing. Because our JavaScript program is web-based, we are implicitly carrying
out a form of web page tesing, although this is not menioned in the subsequent parts of
the chapter. For each phase of the test, we will decide on the test values required. Also, if

you look at the sample_test_plan.doc, you will see that I have added, in the form of a

brief descripion of the expected values, the result or response for each part of the test.

Testing expected and acceptable values by using white box testing

The irst thing that we will be doing is white box tesing by using unit tesing. Because we
have a strong understanding of the code and user interface (the HTML and CSS code), weg understanding of the code and user interface (the HTML and CSS code), we understanding of the code and user interface (the HTML and CSS code), we
will apply the test at the user-interface level. This means that we will test the program by
entering the various test values that we have decided upon.

In this case, we will use the program as we have already used in Chapter 2, Ad Hoc Tesing and
Debugging in Javascript, and Chapter3, Syntax Validaion, and see if the program works the

way that we intended it to. We will be using values that are expected and acceptable here.

The input will be what the program requires us to enter—for input ields that require us to
enter down our name, place of birth, and so on, we will enter characters into it. Input ields
that require numbers as inputs, such as age, the age at which we would like to reire, salary,
expenses, and so on, we will enter numbers.

Chapter 4

[131]

The details of the input are as follows (the input values are for demonstraiondetails of the input are as follows (the input values are for demonstraion as follows (the input values are for demonstraion
purposes only):

Input ields Input value (case 1) Input Value (case 2)

Name Johnny Boy Billy Boy

Place of birth San Franciscoan Francisco San Franciscoan Francisco

Age 25 25

Spending per month 1000 1000

Salary per month 100000 2000

Age at which you wish to reire 55 55

Amount of money I want byI want by want by

reirement age
1000000 1000000

For each of the input values, we would expect a corresponding input ield to be created
dynamically in the middle of the screen, under the header Response, and at the same ime,
the original input ield would be disabled. This is known as the expected output, result,
or response for the test. This goes on for the rest of the input ields for the irst form. An
example of the dynamically-created ield is shown in the following screenshot:

Noice that in the middle of the screenshot, under the headerthe header header Response, there are two input there are two inputare two input two inputtwo input input

ields. These input ields are created dynamically.These input ields are created dynamically.hese input ields are created dynamically.

Planning to Test

[132]

Testing expected and unacceptable values by using black box testing

The second thing that we will be doing is to perform black box tesing by employing
boundary value tesing. There are two parts to this test: we will irst test the boundary values
of the program to see if the output is correct. The inputs are similar to what we have used

for white box tesing, except that we will use unusually large numbers, or unusually large
number of characters, for each input. We will also use single number and single characters as

part of our inputs. The output for each of the inputs should be similar to what we have seen

in white box tesing.

To be more speciic, we will be using the following test values (note that the test values areo be more speciic, we will be using the following test values (note that the test values are
purely for demonstraion purposes only; when you are creaing your program you have to
decide what suitable boundary values should be used):

Input ields Minimum Value Common Value Maximum value Comments

Name A single

character, such

as 'a'

Eugene An extremely

long string, nott

more than 255than 255255
characters..

Range of values (X):

Single character 1 <= X1 <= X<= X
<= 255 characters

Place of birth A single

character, such

as a

New York City An extremely

long string, nott

more than 255
characters..

Range of values (X):

Single character 1 <= X1 <= X<= X
<= 255 characters

Age 1 25 No more thano more than

200 years old

Range of values (X):

1 <= X <= 200

Spending per

month

1 2000 1000000000 Range of values (X):

1 <= X <= 10000000001000000000

Salary peralary per

month

2 5000 1000000000 Noice that that we are
assuming that our user that our user

earns more than he

spends.

Range of values (X):
1 <= X <= 1000000000

Age at which

you wish to

reire

This age should

be greater than

the present age

This age should

be greater than

the present age

This age should

be greater than

the present age

Range of values (X):
1 <= X <= 200

Amount of

money I wantI want want

by reirement
age

We will be using

1 here

A suitable

number, such

as 1000000

No more than ao more than a

trillion dollars

Range of values (X):
1 <= X <= 1000000000

Chapter 4

[133]

If you refer to the sample test document, you will realize that I have provided a sample

range of values for each of the input ields.

Remember that we've touched on equivalence pariioning in the earlier
secions? In pracice, given a boundary value, we would test three values
relaing to the given test value. For example, if we want to test a boundary
value of '50', then we will test on 49, 50, and 51. However for simplicity's
sake, we will be tesing on the intended value only. This is because in the
next chapter we will be carrying out the actual test for the given values; it
can get repeiive and tedious. I just want you to know what the real world
pracices are.

The second part of this test is that we will test for expected illegal values. In the irst values. In the irst. In the irst In the irst
scenario, we will be using values that are both accepted and unaccepted. The input wille will be using values that are both accepted and unaccepted. The input will

be similar to what we have used for the white box tesing phase, except that we will use will useuse

characters as inputs for input ields that require numbers, and vice versa. The expected
output each ime that we enter an unaccepted value is that there will be an alert box telling
us that we have entered a wrong value.

For details, check the following table:

Input ields Input Value Input Value

Case 1ase 1

Input Value

Case 2
Input Value

Case 3

Name Digits or empty values 1 ~!@#$%^&*()" Tesingesing

Place of birth Digits or empty values 1 ~!@#$%^&*()" tesing

Age Characters and emptyharacters and empty

values

a ~!@#$%^&*()" -1

Spending per month Characters and emptyharacters and empty

values

a ~!@#$%^&*()" -1

Salary per monthalary per month Characters and emptyharacters and empty

values

a ~!@#$%^&*()" -1

Age at which you wish

to reire at
Characters and emptyharacters and empty

values

a ~!@#$%^&*()" -1

Amount of money II

want by reirement age
Characters and emptyharacters and empty

values

a ~!@#$%^&*()" -1

In general, for each of the expected illegal values, we should expect our program to alert us

with an alert box, telling us that we have entered the wrong type of values.

Planning to Test

[134]

In the second test scenario, we will atempt to enter non-alphanumeric values, such asnon-alphanumeric values, such as, such as

exclamaion marks, asterisk signs, and so on..

In the third test scenario, we will test for negaive values for input ields that requirerequire

numbers. The input values for the third test scenario are as follows:We are using -1 to The input values for the third test scenario are as follows:We are using -1 tohe input values for the third test scenario are as follows:We are using -1 tothird test scenario are as follows:We are using -1 to test scenario are as follows:We are using -1 toscenario are as follows:We are using -1 to are as follows:We are using -1 toWe are using -1 to
save some typing; so negaive values such as -100000 don't make any diference.

Testing the program logic

For this part of the test plan, we will atempt to test the program logic. Part of ensuringor this part of the test plan, we will atempt to test the program logic. Part of ensuringPart of ensuringart of ensuring

program logic is to ensure that the inputs are what we need and want. However, certain
aspects of the program logic cannot be guaranteed simply by validaing the input values alone.y validaing the input values alone.validaing the input values alone.

For instance, an implicit assumpion that we have about the user is that we assume the
user will enter a reirement age that is bigger than his present age. While this assumpionreirement age that is bigger than his present age. While this assumpion age that is bigger than his present age. While this assumpion
is logically sound, users may or may not enter the value according to convenional
assumpions. Therefore, we need to guarantee the logic of the program is correct by, we need to guarantee the logic of the program is correct by we need to guarantee the logic of the program is correct byis correct byby

ensuring that the reirement age is greater than the present age.

The inputs for this test are as follows:he inputs for this test are as follows:inputs for this test are as follows: as follows:

Input ields Input value of irst form

Name Johnny Boy

Place of birth San Franciscoan Francisco

Age 30

Spending per month 1000

Salary per monthalary per month 2000

Age at which you wish to reire 25

Amount of money I want byI want by want by

reirement age
1000000

The key thing to note here is that the value for "age at which you wish to reire " is smaller
than "age".

We should expect our program to spot this logical error; if it does not, we will need to ix
our program.

Integrated testing and testing unexpected values

The inal phase is integrated tesing, where we test the enire program and see if it works
together, which includes the irst form, the second form which is derived from the irst form,
and so on.

Chapter 4

[135]

In the irst test scenario, we begin slow and steady by tesing expected and acceptable
values. The input values for the irst test scenario are as follows (the input values are for (the input values are for(the input values are for
demonstraion purposes only):

Input ields Input ValueValuealue

(case 1)
Input Value

(case 2)
Input Value

(case 3)
Input Value

(case 4)

Name Johnny Boy Johnny Boy Johnny Boy Johnny boy

Place of birth San Franciscoan Francisco San Franciscoan Francisco San Francisco San Francisco

Age 25 25 25 25

Spending per month 1000 1000 1000 1000

Salary per monthalary per month 100000 2000 2000 100000

Age at which you wish

to reire
55 55 28 28

Amount of money II

want by reirement age
2000000 2000000 1000000 100000

Take note of the input values that are underlined. These input values are designed to

determine if we will get the correct response based on the input. For example, ater entering
all of the values and submiing the dynamically-generated second form, the input values for
case 1 and case 3 will result in an output staing that the user will not be able to reire on
ime, whereas the input values for case 2 and 4 will result in an output staing that the user
will reire on ime.

Here's a screenshot that shows what the output looks like if the user can reire on ime:

Planning to Test

[136]

The next screenshot shows the output if the user cannot reire on ime:

Take note of the diferences in text for the two diferent cases.diferent cases. cases.

For the full details of the results of the test case, open thethe full details of the results of the test case, open the full details of the results of the test case, open the sample_test_plan.doc ile,
which can be found in the the source code folder of this chapter..

Now it's ime for the second test scenario. In the second test scenario, we irst inish illingIn the second test scenario, we irst inish illingscenario, we irst inish illing, we irst inish illing
up the values in the irst form. Before we submit the second form, which was created, which was created which was created

dynamically, we will atempt to change the values. The input values will include, we will atempt to change the values. The input values will include the values

that we have used for both white box tesing and black box tesing. The input values for thehave used for both white box tesing and black box tesing. The input values for the used for both white box tesing and black box tesing. The input values for the
irst test scenario are as follows:

Input ields Input value of irst form Input Value the second form
(random values)

Name Johnny Boy 25

Place of birth San Franciscoan Francisco 100

Age 25 Johnny Boy Boy

Spending per month 1000 Some characters

Salary per monthalary per month 100000 More charactersore characters

Age at which you wish to

reire at
20 Even more charactersven more characters

Amount of money I wantI want want

by reirement age
1000000 1000000

The main objecive of this phase of the test is to test the robustness of the second form,
which we have not veriied up to this point of ime. If the second form fails, we will need to
change our code to enhance the robustness of our program.

We'll now move on to the next component of our test plan—errors or bugs found.

Chapter 4

[137]

Bug form

The last component helps us to record the bugs that we have found. This area allows us tocomponent helps us to record the bugs that we have found. This area allows us tohelps us to record the bugs that we have found. This area allows us to. This area allows us to

take note of what the errors are, what caused them, and the funcion or feature in whichthem, and the funcion or feature in which, and the funcion or feature in whichthe funcion or feature in whichfuncion or feature in whichin whichwhich

these errors occurred. In general, whenever we spot an error, we need to take note of theese errors occurred. In general, whenever we spot an error, we need to take note of the errors occurred. In general, whenever we spot an error, we need to take note of thes occurred. In general, whenever we spot an error, we need to take note of the occurred. In general, whenever we spot an error, we need to take note of the In general, whenever we spot an error, we need to take note of the

exact funcion that resulted in the error, and comment on what the possible soluions may be.

Summary of our test plan
The components introduced above are some of the most important components of a test

plan. In general, for each phase of the test, we have stated our test data and our expected

output. Note that we are using this documentaion as an informal way of reminding
ourselves of what tests needs to be done, the required inputs, expected outputs, and

more importantly the bugs that we have found. One thing not menioned in this sample
documentaion is the acion to be performed for those bugs that are discovered; this will
be covered in the next chapter.

Summary

We efecively carried out the planning process for our test plan. Although our test plan isplanning process for our test plan. Although our test plan is process for our test plan. Although our test plan is

informal, we have seen how we can apply various tesing concepts, coupled with diferent
test data values to test our program that we have created in previous chapters. that we have created in previous chapters. we have created in previous chapters.

Speciically, we covered the following topics:

We irst started of with a brief introducion to the key aspects of sotware
engineering. We've learned that tesing takes place ater the implementaion
(coding) stage.

We've learned to deine the scope of our test by asking what our code is suppose to
do, making sure that it does what it is supposed to do, and inally tesing for invalidd to do, and inally tesing for invalid to do, and inally tesing for invalid, and inally tesing for invalid and inally tesing for invalid
acions by users.

Next we covered various tesing concepts such as white box tesing, black box
tesing, unit tesing, web page tesing, performance tesing, integrated tesing, page tesing, performance tesing, integrated tesing,page tesing, performance tesing, integrated tesing,, integrated tesing, tesing,,
and regression tesing.

We also learnt that we need to test our program from diferent aspects, thust that we need to test our program from diferent aspects, thus that we need to test our program from diferent aspects, thus
enhancing the robustness of the program.

Although the tesing concepts introduced in this chapter may be diferent in certaincertain

aspects, we can group them as: tesing expected but acceptable values, expected
but unacceptable values, and unexpected values in general. We've also learnt to, and unexpected values in general. We've also learnt to and unexpected values in general. We've also learnt tot to to

test for logical errors based on our understanding of the code that we have writen.errors based on our understanding of the code that we have writen. based on our understanding of the code that we have writen.











Planning to Test

[13�]

Finally we planned and documented our test plan, which includes the test process

descripion, test values, expected output and other important components, such as
versioning and a bug form.

Although tesing methodologies can be substanially diferent depending on organizaion tesing methodologies can be substanially diferent depending on organizaionmethodologies can be substanially diferent depending on organizaion can be substanially diferent depending on organizaion
types and types of applicaions, the methods that are listed here are generally more suitableapplicaions, the methods that are listed here are generally more suitable, the methods that are listed here are generally more suitablethe methods that are listed here are generally more suitable methods that are listed here are generally more suitable

for lightweight web applicaions. However, the concepts also form the building blocks of. However, the concepts also form the building blocks of However, the concepts also form the building blocks ofHowever, the concepts also form the building blocks of the concepts also form the building blocks ofthe building blocks of building blocks of

large-scale, complex web applicaions.-scale, complex web applicaions.scale, complex web applicaions.

This chapter marks the end of planning for your test. Now brace yourself as we move on tohis chapter marks the end of planning for your test. Now brace yourself as we move on to

the next chapter, where we will carry out the test plan., where we will carry out the test plan. where we will carry out the test plan.



5
Putting the Test Plan Into Action

Welcome to the ith chapter. This chapter is pre�y straightforward; weith chapter. This chapter is pre�y straightforward; we chapter. This chapter is pre�y straightforward; weis chapter is pre�y straightforward; weforward; we we
basically put the plan discussed in Chapter �, Planning to Test, into acion. put the plan discussed in Chapter �, Planning to Test, into acion.iscussed in Chapter �, Planning to Test, into acion. in Chapter �, Planning to Test, into acion.Chapter �, Planning to Test, into acion.hapter �, Planning to Test, into acion.�, Planning to Test, into acion. into acion.

Heres how we are going to implement our test plan. Well irst start by tesingeres how we are going to implement our test plan. Well irst start by tesing. Well irst start by tesingell irst start by tesingtesing

the expected and acceptable values, and follow this by tesing the expected
but unacceptable values. Next, well test the logic of our program. Lastly, we'llLastly, we'llastly, we'll
perform integrated tesing and tesing of unexpected values or acions.

Apart from performing the above tests, here's what we will also cover in this chapter:

Regression tesing in acion—youll learn how to perform regression tesing by ixing—youll learn how to perform regression tesing by ixingyoull learn how to perform regression tesing by ixing
bugs and then tesing your program againen tesing your program againn tesing your program again

The diferences between client-side tesing and server-side tesinghe diferences between client-side tesing and server-side tesing

How using Ajax may make a diference to tesing

What to do when a test returns a wrong result

What happens if your visitor turns of JavaScript

How to enhance performance by compressing your JavaScript codeow to enhance performance by compressing your JavaScript code

So let us get our hands dirty, and start tesing right away.









Puing the Test Plan Into Acion

[140]

Applying the test plan: running your tests in order

In this secion, we'll simply apply the test plan to our program. For simplicity's sake, we will sake, we will we will

record any bugs or errors in the Bug Report Form found in the sample test plan from the
previous secion. In addiion to that, at the end of each test, we will record a Pass or Fail textsecion. In addiion to that, at the end of each test, we will record a Pass or Fail text. In addiion to that, at the end of each test, we will record a Pass or Fail text
in the sample_text_plan.doc, which we created in the previous chapter. However, take which we created in the previous chapter. However, takethe previous chapter. However, take previous chapter. However, take
note that in the real world (especially if you are working on a custom project for your client),especially if you are working on a custom project for your client), if you are working on a custom project for your client),

it is extremely important that you document the results, even if your tests are correct. This isr tests are correct. This is tests are correct. This isThis ishis is

because, very oten, producing the correct test results is part and parcel of handing over the
code to your client.

Just a reminder—the test plan that we are going to use was created in the previous
chapter. You can ind the test plan in the source code folder of Chapter 4, enitled
sample_test_plan.doc. If you are in a hurry and would like to see the enire completed
test plan where all tests have been carried out already, head to the source code folder of

Chapter 5 and open up sample-testplan-bug-form-filled.doc.

In case you do not wish to lip the pages or open up your computer just to see the list of the
tests, the list of tests are as follows:

Test Case 1

Test Case 1a: White Box Tesing

Test Case 1b: Black Box Tesing

Test Case 1bi: Boundary Value Tesing

Test Case 1bii: Tesing for illegal values

Test Case 2: Tesing Program's logic

Test Case 3: Integraion Tesing

Test Case 3a: Tesing the enire program with expected values

Test Case 3b: Tesing the robustness of the second form.

With this in mind, let us proceed to the irst test.

Test Case 1: Testing expected and acceptable values
Tesing expected and acceptable values refers to the white box test phase. We will now
execute the test as per our plan (this is First test scenario).














Chapter 5

[141]

Time for action – Test Case 1a: testing expected and acceptable

values by using white box testing

In this secion, we will start our test by using values that we have predetermined during
the planning phase. The source code that you are using for this part of the chapter is

perfect-code-for-jslint.html, which can be found in the source code folder of

Chapter 3. What we will do here is enter the expected and acceptable values. We will start

tesing by using the input values for input value case 1 as per our sample test document.

1. Open the source code in your favorite web browser.

2. When you open your program in your web browser, the focus should be on the irst
input ield. Enter the name Johnny Boy as per our plan. Ater you have entered
Johnny Boy in the irst input ield, go on to the next ield.

As you change your focus to the next ield, you will see a new input ield appearing
on the right-hand side of the original input ield that contains the value you have
entered. If this happens, then you have received a correct and expected output

for the irst input. If you do not understand what this means, feel free to refer If you do not understand what this means, feel free to refer

back to Chapter 4hapter 44, Planning to Test, and look at the screenshot given for the and look at the screenshot given for thethe screenshot given for the screenshot given for theshot given for thehot given for the

expected output.

3. For the second input, we are required to enter a place of birth. Enter San Francisco,

as per the plan. Click on (or tab to) the next ield.

Similarly to the irst input ield, ater you move to the next ield you will see a new
input ield containing your input value. This means that you have the correct output
at this point.

4. This step is similar to the above step, except that the input value is now a number.

Enter your age as 25. Then move on to the next ield. You should also see a new
input ield on the right.

5. Now repeat the previous steps for the remaining ields for the form on the let.
Repeat this acion unil you see a Submit buton appearing in the middle ofbuton appearing in the middle of
the screen.

If a new input ield is dynamically created for each of your input, and each of the, and each of the and each of the

new input ields created dynamically contains the exact same input that you have
entered, then you have received the correct output. If not, the test has failed.en you have received the correct output. If not, the test has failed.n you have received the correct output. If not, the test has failed.

However, based on our tests, we have received the correct output.

Puing the Test Plan Into Acion

[142]

6. Now, refresh the page in your browser, and repeat the test for the input valuesthe page in your browser, and repeat the test for the input valuesin your browser, and repeat the test for the input values

found in input value Case 2. You should also receive the correct output.

Assuming that both test cases produce the correct output, then congratulaions, the correct output, then congratulaions,the correct output, then congratulaions,en congratulaions,n congratulaions,
there are no bugs or errors found in this phase of the test. There isn't anythingare no bugs or errors found in this phase of the test. There isn't anything no bugs or errors found in this phase of the test. There isn't anythingThere isn't anything
special or tedious in this part of the test because we already knew that we would

receive the expected output based on our input. Now, we will move to something

more exciing—tesing expected but unacceptable values.

Test Case 1b: Testing expected but unacceptable values using

black box testing
In this secion, you will coninue to execute our test plan. As you coninue with the tests, you
will see that our program is not robust enough and has some inherent errors in it. You will

learn that you will be required to take note of these; the informaion will be used later when
we debug the program (this is second test scenario). (this is second test scenario).(this is second test scenario).this is second test scenario).second test scenario). test scenario).).

Time for action – Test case 1bi: testing expected but

unacceptable values using boundary value testing

For this part of the test, we will coninue to use the same source code as we have used in the
previous secion. We'll start by performing boundary values tesing. Therefore, we will begin secion. We'll start by performing boundary values tesing. Therefore, we will beginWe'll start by performing boundary values tesing. Therefore, we will beginTherefore, we will beginherefore, we will begine will begin

the test by using the "minimum values", followed by "maximum values". We will skip thes", followed by "maximum values". We will skip the", followed by "maximum values". We will skip the. We will skip the

common values test case as that was similar to what we did in the previous test.

1. Once again, refresh the page in your web browser.the page in your web browser.

2. We'll irst enter a single character'll irst enter a single characterl irst enter a single character a for the input ield of name. Ater you have
entered the value, use your mouse to click on the next input ield. You should see an
input ield dynamically created on the right-hand side of the irst input ield, as for, as for as foras for

the previous test.

The output for this test is similar to what you have seen and experienced in thehe output for this test is similar to what you have seen and experienced in the

previous test. What we are trying to test for is whether the program accepts a

minimum value. For this phase of the test, we naïvely chose to accept a single

character as an acceptable input. Because this is acceptable, we should see an input

ield that contains the value of a dynamically generated on the right-hand side of
the original input ield. If you see that, you have the correct output., you have the correct output. you have the correct output.the correct output. correct output.

3. Similarly, we will enter a single character a for the input ield for place of birth.

Ater you have entered the value, use your mouse to click on the next input ield.
You will see an input ield dynamically created on the right-hand side of the irst
input ield, as seen in the previous test.

Chapter 5

[143]

You should also receive the correct output for this input value. Now let us move oncorrect output for this input value. Now let us move on output for this input value. Now let us move on for this input value. Now let us move on this input value. Now let us move on

to the next input value.

4. We'll now enter the number 1 as planned for the input ield age. Similarly, ater youenter the number 1 as planned for the input ield age. Similarly, ater you the number 1 as planned for the input ield age. Similarly, ater you Similarly, ater youimilarly, ater you
have entered the value, move the focus to the next input ield.

5. We'll repeat the test by entering the values as planned.

In general, we should not receive any errors at this point of the test. Similar to theshould not receive any errors at this point of the test. Similar to the not receive any errors at this point of the test. Similar to the

irst test which we have performed earlier, we should see familiar output for each
of the inputs. However, I would like to point out an important point for this phase ofthe inputs. However, I would like to point out an important point for this phase of inputs. However, I would like to point out an important point for this phase of
the test:

We have naïvely chosen a minimum value that might not be pracical. Consider
the various input ields that accept a single character value. To a large extent, our
original program logic doesn't seem to suit the real world cases. In general, we
should expect to have at least two or three characters for input ields that accept
character values. Therefore, we will take this as a bug in our program and we'll take
note of this on our "Bug Report Form". You may open the sample-testplan-bug-
form-filled.doc document and see how we can take note of this law.

Now that we have cleared the minimum values test case, it is ime to move to theminimum values test case, it is ime to move to the values test case, it is ime to move to the
next test case—maximum values.—maximum values.maximum values.

6. As usual, refresh your web browser to clear all of the values that were previously

entered. We'll now begin by entering an extremely long string, of more than

255 characters.

As explained earlier, we should also receive a similar output—as explained earlier, we should also receive a similar output—a explained earlier, we should also receive a similar output—a—aa

dynamically-generated input ield that contains our input value.

7. Similarly, enter the values for the remaining input ields using long strings or large
values. You should not face any errors.

While we do not have any obvious errors, you may have noiced that we have ad that we have a that we have a

similar problem to the one we experienced earlier on. Our program does not haveto the one we experienced earlier on. Our program does not have we experienced earlier on. Our program does not have

a boundary value for maximum values as well. It appears that if you try to enter if you try to enter

values that are larger than your maximum values, the program will sill accept
them, as long as the values are not illegal. Similarly, if you try to enter a string that is

more than 200 characters, the program will sill accept it because it is a legal value.
This means that our program does not limit the maximum number of characters

that a user can enter. This can be regarded as a bug. We'll also take note of this. This can be regarded as a bug. We'll also take note of this We'll also take note of this
programing error in our Bug Report Form. You might want to pop over to have a
look on how we recorded this error. Now that we have completed the irst phase of Now that we have completed the irst phase ofNow that we have completed the irst phase of
our test for expected and unacceptable values, it is ime to move on to the second
phase of this test—tesing for expected illegal values.

Puing the Test Plan Into Acion

[144]

Time for action – Test case 1bii: testing expected butTest case 1bii: testing expected but: testing expected but

unacceptable values using illegal values using illegal values

There are three input cases for this phase of the test. What we will do in the irst case of the What we will do in the irst case of the
test is enter numeric values for input ields that require character inputs and vice versa.

Input Case 1:

1. We'll once again refresh our browser to clear out the old values. Next we'll begin to
enter the expected illegal values. For the "name" input ield, we'll enter a digit. This
can be any number, such as "1". Go on and test it. Ater you have entered the digit,
try to move your mouse cursor to the next input ield.

As you atempt to shit the focus to the next input ield, you should see an alert box
telling you that you have entered an incorrect type of value. If you see the alert box

as per our test plan, then there is no error at this point.en there is no error at this point.n there is no error at this point.error at this point.

2. In order to test the next ield, we will need to enter a correct value for the irst ield
before we can move on to the next ield. Alternaively, we can refresh the browser
and go directly to the second ield. Assuming that you are using the irst method,the second ield. Assuming that you are using the irst method, second ield. Assuming that you are using the irst method,that you are using the irst method,you are using the irst method,
let us enter a hypotheical name, Steve Jobs, and move on to the next input ield.
Similarly, well try to enter a digit for the place of birth. Ater you have entered a
digit for the input ield, try to move to the next ield.

Once again, you will see an alert box telling you that you have entered an invalidwill see an alert box telling you that you have entered an invalid see an alert box telling you that you have entered an invalid

input and that you need to enter a text input. So far so good; there are no errors ortext input. So far so good; there are no errors orSo far so good; there are no errors orare no errors or or

bugs, and we can coninue to the next ield.

3. Well need to either refresh the browser and go directly to the third ield, or wethe third ield, or we third ield, or we
will need to enter valid values for the name and place of birth ields before we
can move on to the third ield. Regardless of the method used, we'll try to enterRegardless of the method used, we'll try to enter of the method used, we'll try to enter
a string for the age ield. Once you have done that, atempt to move on to thehave done that, atempt to move on to the done that, atempt to move on to the
next input ield.

You will get an alert box again, telling you that you have entered an input of

the wrong type. This is as per the plan, and is expected. Therefore, no errorsthe plan, and is expected. Therefore, no errorsplan, and is expected. Therefore, no errorsn, and is expected. Therefore, no errors and is expected. Therefore, no errors, no errors no errors

or bugs yet.

4. Repeat the previous steps for the remaining ields, and atempt to move on to the
next ield as you enter the expected but illegal values.

For all of the remaining ields, you should receive alert boxes telling you thatreceive alert boxes telling you that alert boxes telling you that

you have entered an input of the wrong type, which is what we expect and

have planned for.

Chapter 5

[145]

Input Case 2:Case 2:

Now that we have completed the irst test scenario, it is ime to move on to the second test
scenario, where we try to enter non-alphanumeric values., where we try to enter non-alphanumeric values. where we try to enter non-alphanumeric values.

1. The tesing process is fairly similar to the irst test. We will irst refresh theThe tesing process is fairly similar to the irst test. We will irst refresh thehe tesing process is fairly similar to the irst test. We will irst refresh the
browser, and then immediately enter the non-alphanumeric values for the irsten immediately enter the non-alphanumeric values for the irstn immediately enter the non-alphanumeric values for the irstalphanumeric values for the irst values for the irst
input ield—the—the name input ield. As per our plan, we will enterour plan, we will enterplan, we will enter ~!@#$%^&*() as

the input, and then atempt to move on to the next input ield. input, and then atempt to move on to the next input ield.

For the irst input ield, which requires a character input, you should see an alertor the irst input ield, which requires a character input, you should see an alert
box telling that only text input is allowed. If you see that, then our program worksonly text input is allowed. If you see that, then our program works text input is allowed. If you see that, then our program worksen our program worksn our program works

as planned. Now let us move to the next step.

2. For the next input ield, we'll repeat the previous step and we should expect theand we should expect thend we should expect the

same output as well.

3. Now for the third input ield, we proceed to enter the same non-alphanumeric inputthe same non-alphanumeric input same non-alphanumeric input
values. The only diference we should expect for this step is that the alert, which, which whichwhich

informs us that we have entered a wrong input, will tell us that we need to enter, will tell us that we need to enter will tell us that we need to enter

digits and not text.

4. We repeat the previous steps for the remaining ields, and in general we shouldprevious steps for the remaining ields, and in general we should steps for the remaining ields, and in general we should
expect to see an alert box informing us that we need to either enter text or enter

digits, depending on which input ield it is. If this is the case, then all is well; there, depending on which input ield it is. If this is the case, then all is well; there depending on which input ield it is. If this is the case, then all is well; thereen all is well; theren all is well; there
are no related errors or bugs for this test scenario. no related errors or bugs for this test scenario.

Input Case 3:

Now it is ime to perform the third test scenario, where we enter negaive values for inputthe third test scenario, where we enter negaive values for input third test scenario, where we enter negaive values for input, where we enter negaive values for input where we enter negaive values for input
ields that require numerical inputs.

1. Once again, we'll refresh the browser to clear the old values. We'll proceed to enter
the values as planned for the irst two input ields. We will enter Johnny Boy and

San Francisco for the input ields of name and place of birth, respecively.

2. Once you have performed the previous step, enterprevious step, enter step, enter -11 for the remaining input ields.
As you enter -1 for these ields, you should see that our program does not detect
negaive values. Instead, it gives an incorrect response telling us that we should
enter digits.

In reality, our program should be robust enough to spot negaive values. However,
as shown in the previous tests, our program appears to have the incorrect responseprevious tests, our program appears to have the incorrect response tests, our program appears to have the incorrect response

to an illegal value. Our program does spot the error, but it returns an incorrect. Our program does spot the error, but it returns an incorrect Our program does spot the error, but it returns an incorrectOur program does spot the error, but it returns an incorrectur program does spot the error, but it returns an incorrect

response. The response given is an alert box, telling you that the input must be a
digit. This is technically incorrect, because our input is a digit, albeit a negaive one.This is technically incorrect, because our input is a digit, albeit a negaive one.his is technically incorrect, because our input is a digit, albeit a negaive one.albeit a negaive one. a negaive one.

Puing the Test Plan Into Acion

[146]

This means that our program does spot negaive values, but it returns an incorrect
response. This means that we have a serious bug here. We need to take note of this

bug in our sample documentaion by documening this error on the "Bug Report
Form". You may make a look at how I have documented this in the sample test

plan document.

Whew! This subsecion is kind of long and tedious. That's right, tesing can be
tedious, and by now you should see that a good program design will incorporate the

issues that we tested in this secion. You will noice that, at least for our purposes
here, checking of the input values to make sure that the input is what we need is

fundamental to our program's success; if the input values are wrong, there is no
point in tesing the remaining program, as we are almost certain to receive a
wrong output for a wrong input.

Test Case 2: Testing the program logic
In this subsecion, we will atempt to test the robustness of the program in terms of the
program logic. Although we have somewhat tested the program logic by ensuring that theAlthough we have somewhat tested the program logic by ensuring that thelthough we have somewhat tested the program logic by ensuring that the

input is correct, there is one more aspect that we need to test according to our test plan, to test according to our test plan, test according to our test plan,

and that is the present age and the reirement age.

Time for action – testing the program logicthe program logic

In general, we will atempt to enter a reirement age that is less than the current age. Now
let us test the robustness of the program:

1. Let us refresh the browser, and then we'll enter the values as per our plan. Well irstLet us refresh the browser, and then we'll enter the values as per our plan. Well irstet us refresh the browser, and then we'll enter the values as per our plan. Well irsten we'll enter the values as per our plan. Well irstn we'll enter the values as per our plan. Well irst
enter Johnny Boy and thenenn San Francisco for the input ields of name andand place of

birth, respecively.

2. Now, take note of this step: we will now enter 30 for age and coninue with theand coninue with thend coninue with thethe

other ields.

3. When you reach the input ieldthe input ield input ield age at which you wish to reire, you will want to

enter a value that is less than the age ield. As per our test plan, we will enter 25.

Ater this, we will atempt to move on to the next ield.this, we will atempt to move on to the next ield., we will atempt to move on to the next ield.

Because we were able to successfully move on to the next ield, this means thatthis means thatmeans that

our program is not robust enough. Our program should not accept a reirement
age value that is less than the present age value. Therefore, even if our program

does produce a inal outcome, we can be sure that the output is not what we want,,
because the logic is already incorrect.

As such, we will need to take note of the logical error found in this phase of the test.

Well take note of this on the Bug Report Form once again. Now we will move on to
the inal stage of our test.

Chapter 5

[147]

Test Case 3: Integration testing and testing unexpected values
We have reached the inal phase of our test. In this subsecion, we will move on to In this subsecion, we will move on to, we will move on to we will move on to

integrated tesing by irst tesing the whole program by using expected and acceptable
values, followed by breaking the low of form submission by changing the values of the
second form.

Time for action –Test Case 3a: testing the entire program withTest Case 3a: testing the entire program with: testing the entire program with the entire program with

expected values

There are four sets of test values for the irst test. In general, we will enter all values, and
then submit the form to see if we are geing the response that we are expecing: the input
values for input Case 1 and input Case 3 will result in an output staing that the user is not
able to reire on ime, and the input values for input Case 2 and input Case 4 will result in an
output staing that the user will be able to reire on ime. With that in mind, let us start with
the irst set of input values:

1. Going back to your web browser, refresh your program, or re-open the source codeoing back to your web browser, refresh your program, or re-open the source code
if you have closed the program. We'll enter the values as planned:We'll enter the values as planned:e'll enter the values as planned: Johnny Boy andand

San Francisco forfor name and place of birth.

2. Next, we'll enter 25 for age and thenenn 1000 forfor spending per month. Well repeat

these steps for the remaining values, unil we see the, unil we see the unil we see the Submit buton that isbuton that is
dynamically generated on the second form.

3. Once you see the Submit buton, click on the buton to submit the values. You
should see some text being generated in the Final Response box. If you see that the

output contains the name, reirement age, the correct output value for the required
amount of money we need to reire, and more importantly the response you will be
able to reire by 55 years old, as shown in the following screenshot, then there areas shown in the following screenshot, then there areshown in the following screenshot, then there arein the following screenshot, then there areen there aren there areare

no bugs in the program.

Puing the Test Plan Into Acion

[14�]

4. Now let us move on to entering the values for Case 2. Similarly, well refresh the

browsers, and then begin to enter all of the values as planned.en begin to enter all of the values as planned.n begin to enter all of the values as planned.

5. When you see the Submit buton that is created dynamically, click on the buton tot is created dynamically, click on the buton to is created dynamically, click on the buton to
submit the form. In this test case, you will see that the user will not {kind of crucialthis test case, you will see that the user will not {kind of crucial test case, you will see that the user will not {kind of crucialwill see that the user will not {kind of crucial see that the user will not {kind of crucialsee that the user will not {kind of crucial the user will not {kind of crucial

diference!} be able to reire on ime, as shown in the following screenshot:shown in the following screenshot:in the following screenshot:

If you receive the output as shown in the previous screenshot, then there are noshown in the previous screenshot, then there are noin the previous screenshot, then there are noprevious screenshot, then there are no screenshot, then there are noen there are non there are noare no no

errors up to this point. So let's move on to the input values for the third case.third case. case.

6. Refresh your browser again, and then start entering the values as planned. The
values to take note of include the salary per month and age at which you wish to

reire. In general, we have set the values in order to test if we can create the output

to either be able to reire on ime or be unable to reire on ime.

7. Coninue entering values unil you see the Submit buton that is dynamically
generated. Click on the Submit buton to submit the form. You will see the
output as shown in the next screenshot:

Chapter 5

[14�]

If you received the previous output, then there are no errors or bugs.previous output, then there are no errors or bugs. output, then there are no errors or bugs.en there are no errors or bugs. there are no errors or bugs.are no errors or bugs. no errors or bugs.

8. Now, let us move on to the inal case—case 4. We'll basically repeat the steps
as done previously. I just need you to take note of the input values of salary per

month. Noice that the input value is 100000, and that the reirement age did not
change. We are trying to simulate a situaion where the user will be able to reire
on ime.

9. Coninue to enter the values unil you see thethe values unil you see the values unil you see the Submit buton that is dynamicallybuton that is dynamicallydynamically

generated. Click on thethe Submit buton to submit the form. You will see the outputbuton to submit the form. You will see the output to submit the form. You will see the output will see the output

as shown in the next screenshot::

Once again, if you received the output shown in the previous screenshot, then younce again, if you received the output shown in the previous screenshot, then you shown in the previous screenshot, then you, then you

have received the correct output. And with this, we have completed the irst part of
this test phase.

In general, we have tested the whole program to see if we are geing the expected
output. We used diferent values to generate the two possible outputs of being ablethe two possible outputs of being able two possible outputs of being ables of being able of being able

to reire on ime or being unable to reire on ime. Not only have we have received have we have received we have received

the correct output, we have also tested the robustness of our funcions in terms of
calculaing the outcome.

With the previous factors in mind, it is ime to move on to the second phase of thethe previous factors in mind, it is ime to move on to the second phase of the previous factors in mind, it is ime to move on to the second phase of theprevious factors in mind, it is ime to move on to the second phase of thein mind, it is ime to move on to the second phase of the
test—tesing the robustness of the second form.—tesing the robustness of the second form.tesing the robustness of the second form.

Puing the Test Plan Into Acion

[150]

Time for action – Test Case 3b: testing robustness of the

second form

If you have been following me right from the irst chapter, you may have noiced that wewe

have have only disabled the input ields for the form on the let, and not the input ields have only disabled the input ields for the form on the let, and not the input ields
on the right. Apart from doing it deliberately, to show you diferent aspects of JavaScriptApart from doing it deliberately, to show you diferent aspects of JavaScriptpart from doing it deliberately, to show you diferent aspects of JavaScript, to show you diferent aspects of JavaScript to show you diferent aspects of JavaScript
coding, we have set it up such that we can demonstrate to you other aspects of integratedwe have set it up such that we can demonstrate to you other aspects of integrated set it up such that we can demonstrate to you other aspects of integratedwe can demonstrate to you other aspects of integrated can demonstrate to you other aspects of integrated

tesing. So now, well atempt to change the values of the dynamically-generated form anddynamically-generated form and-generated form and
see what happens.

1. Well irst refresh the browser, and then begin entering the input values according tothe browser, and then begin entering the input values according to browser, and then begin entering the input values according toen begin entering the input values according ton begin entering the input values according to

the plan. Ater you have inished entering all of the values, change the values in theplan. Ater you have inished entering all of the values, change the values in thethe values in the values in the

second form as per the test plan. per the test plan. the test plan.

2. Now, submit the form, and you will see the output as displayed in thewill see the output as displayed in the see the output as displayed in thesee the output as displayed in the the output as displayed in the output as displayed in the

next screenshot::

Oops! Apparently, there is a fatal law in our program. There is no checking
mechanism or whatsoever for our second form. The second form is present in casepresent in case in case

our users may want to change the values. Right from the start, we naïvely chosethe values. Right from the start, we naïvely chose values. Right from the start, we naïvely chose. Right from the start, we naïvely chose Right from the start, we naïvely choseRight from the start, we naïvely choseight from the start, we naïvely chosethe start, we naïvely chose start, we naïvely chose

to believe that the user will enter legal and acceptable values on the second form,and acceptable values on the second form, acceptable values on the second form,

should they choose to change their input. Now that we know this might not be the

case, we'll make a note of this on our Bug Report Form".".

What just happened?
In general, we have executed the enire test plan. Along the way, we have uncovered bugs
and errors that we will be ixing later. You may ind the steps repeiive; that is true—tesing
can be repeiive someimes. But, luckily, our program is quite small and hence tesing

it is manageable.

Chapter 5

[151]

Now that we have completed the test, it is ime to think about what we can do about those
errors. We'll start talking about this in the next secion.ing about this in the next secion. about this in the next secion.this in the next secion. in the next secion.the next secion. next secion..

What to do when a test returns an unexpected result
In general, when a test returns an unexpected or incorrect result, it means that there is a bug

or error in our program. Based on our tests, you must certainly have noiced that there are
weak points in our program. The weak points or errors that resulted in a test returning an

unexpected result are as follows:

Our program does not support negaive values

The code that we have writen does not support boundary values (both maximum (both maximum
and minimum values)

The second form does not check for correctness in the input values; if we make any
changes to the values in the second form, the program fails

These points mean that our code is not robust enough and we need to ix it; we will do this
right away in the next secion.

Regression testing in action

In this secion, we will get our hands dirty by performing regression tesing. We will atempt
to simulate a situaion that warrants regression tesing by wriing code that ixes the errors
found when we iniially applied our test plan. Ater wriing the code, we will irst test the
code that we have writen, ater which we will test the enire applicaion to see if it works
in coherence.

Time for action – ixing the bugs and performing regressionixing the bugs and performing regressioning regression regression

testing

We'll ix each of the bugs that we've uncovered, one by one. We'll start by wriing a funcion
that allows our program to support boundary values. The completed source code, where all

of the errors have been corrected, is found in Chapter 5 of the source code folder, and is

enitled perfect-code-for-JSLInt-enhanced.html.

Before we move on to the actual coding process for the irst bug, let us think about what we
can do to support boundary values.

Firstly, if we go back to our sample test plan, you will noice that in our "Bug Report Form",
we have documented that we can try to change the funcion that checks for form input such
that it can check for minimum and maximum values. For simplicity's sake, we will enable
boundary values by checking the length of the input. For example "Neo" would mean that
there are three input characters and "1000" would have four input digits.






Puing the Test Plan Into Acion

[152]

Secondly, because the checking of the input of the irst form is done at submitValues(),

we'll atempt to add in the required checking mechanism of this funcion. With that in mind,
we can start the coding process:

1. Open the original source code that we wrote in Chapter 3, Syntax Validaion, in your

favorite source code editor, and look for the funcion submitValues(). Next, add

the following code ater the debuggingMessages() funcion:

 // this is the solution for checking the length of the input

 // this will allow us to enable boundary values

 // starting with minimum values: we will accept character

 // length of more than or equal than 3

 // and less than 100 characters

 if (elementObj.name === 'enterText') {

 if (elementObj.value.length <= 3) {

 alertMessage("Input must be more than 3 characters!");

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus(); jQuery(element).focus();jQuery(element).focus();

 return true;

 }

 if (elementObj.value.length >= 100) {

 alertMessage("Input must be less than 100 characters!");

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus();

 return true;;

 }

 }

 // now for checking the maximum value of digits

 // upper boundary is set at 10 digits

 if (elementObj.name === 'enterNumber') {

 if (elementObj.value.length >= 10) {

 alertMessage("Input must be less than 10 digits!");

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus();

 return true;

 }

 }

Chapter 5

[153]

What happened in the previous code is that we have added in a few if statements.

These statements check for the type of input via the .name property, and then

check to see if it is more than the minimum input or less than the maximum output.

We have set a minimum input length of three characters and a maximum input

characters of less than 100 length for text inputs. For input that requires numerical

inputs, we have set a maximum input length of 10 digits. We did not set a minimum

input length since it is possible that the user may not have any income.

2. Save your ile and test the program. Try entering less than three characters or more
than 100 characters. You should receive an alert box showing that you have too

large or too small inputs. Similarly, test the input ields that require numerical inputs
and see if the program detects an input length of more than 10 digits. If you have

received the correct alert boxes for each of the diferent cases, then you have ixed
the error.

Now that we have ixed the issue regarding boundary values, it is ime to move on
to the next error that we have documented on our "Bug Report Form", which is the
third error (bug number 3 in our sample-testplan-bug-form-filled.doc-testplan-bug-form-filled.doc)

that we uncovered, which relates to negaive values. we uncovered, which relates to negaive values.uncovered, which relates to negaive values., which relates to negaive values.

The error is that our program sees a negaive input as a non-digit value and
produces a wrong output message of input must be digit. Therefore, in this case

we would need to ix this error by tracing back to the source of the problem—the the source of the problem—the source of the problem—the—thethe

funcions that are responsible for checking the input.

Take note that the funcion that checks the input is submitValues().Now, let us

move to the actual coding process:

3. Go back to your source code and start with the submitValues() funcion. We'll
need to have a mechanism that checks for negaive input, and this will have tomechanism that checks for negaive input, and this will have to that checks for negaive input, and this will have to
return the correct output, which says that input must be posiive. So here's what
we can do:

 // this is the solution for checking negative values

 // this only applies to input fields that requires numeric
inputs

 if (elementObj.name === 'enterNumber') {

 if (elementObj.value < 0) {

 alertMessage("("Input must be positive!");

 var element = document.getElementById(elementObj.id); var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);;

 jQuery(element).focus(); jQuery(element).focus();

 return true;true;;

 }

 }

Puing the Test Plan Into Acion

[154]

By adding the above code, you will be able to check for negaive values. The above
code should be placed within the submitValues() funcion, and before the if

statement which checks for the length of the input.

4. Save your program and test it. Upon encountering ields that require numericSave your program and test it. Upon encountering ields that require numericave your program and test it. Upon encountering ields that require numericit. Upon encountering ields that require numeric Upon encountering ields that require numericields that require numericthat require numeric

inputs, try entering a negaive value, say -1. If you receive an alert box staing
that input must be posiive, then we have done it right.en we have done it right.n we have done it right.

The code for submitValues() should include the following lines shown below:

function submitValues(elementObj) {

// code above omitted

 // this is the solution for checking negative values

 // this only applies to input fields that requires numeric
inputs

 if (elementObj.name === 'enterNumber') {

 if (elementObj.value < 0) {

 alertMessage("Input must be positive!");

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus();

 return false;

 }

 }

 // code below is omitted

}

The lines in the previous snippet are those lines that we added in this subsecion.
Because we have made sure that we are on the same frequency, we can move on

to the fourth error (bug number 4 in our sample_test_plan.doc), which is

regarding the program logic.

At the start of this chapter, we found out that our program does not detect that

the reirement age can be smaller than the user's present age. This can be fatal for
our program. Therefore, we need to add a mechanism that makes sure that the

reirement age is greater than the user's present age.

Because the issue lies with the checking of inputs, we will need to turn our atenion
to submitValues().

Chapter 5

[155]

5. Let us go back to the source code, and add the following code to submitValues():

 // this is to make sure that the retirement age is larger than
present age

 if (elementObj.id === 'retire') {

 if (elementObj.value < document.getElementById('age').
value) {

 alertMessage('Retirement age must be higher thanhigher than than
age');

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus();

 return false;

 }

 }

You should enter this code prior to the code done up in the previous subsecion. code prior to the code done up in the previous subsecion.code prior to the code done up in the previous subsecion.

Now, go ahead and test your code. Try entering a reirement age that is less than
the current age. You should receive an alert message that says reirement age must

be larger than age.

If you received this alert, then congratulaions, you have got it right! Once again,
to quickly sum up this secion and to make sure that we are on the same page,
submitValues() should include the lines of code as shown next:

function submitValues(elementObj) {

// code above omitted

 // this is to make sure that the retirement age is larger than
present age

 if (elementObj.id === 'retire') {

 if (elementObj.value < document.getElementById('age').
value){

 alertMessage('retirement age must be larger than
age');

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);

 jQuery(element).focus(); jQuery(element).focus();

 return true;true;;

 }

 }

 // code below omitted

}

Puing the Test Plan Into Acion

[156]

Now let us move on to the last error (bug number 5 in our sample-testplan-
bug-form-filled.doc) that we have uncovered by checking the second form.

We have created our JavaScript program such that as we enter the values for each

input ield, a new input ield is created dynamically. This means that ater all of the
input ields have been completed, a new form will be created. In case you didn't
noice, the new input ields that are created allow users to change their values.

The issue here is that the user may change the input values in the new form, which

can result in fatal errors as we have no checking mechanisms in place to check the

values in the second form. So, we naïvely chose to believe that the user will act

accordingly, and only enter valid values. But obviously, we were wrong.

Therefore, in order to check the second form, we would most likely have to create a

new funcion that checks the second form.

Although the second form is generated dynamically, we can sill get the values
within those ields through the methods that we have learned so far. Remember
that because JavaScript has created the ields in the second form, these ields
technically exist in memory and are therefore sill accessible.

With that in mind, we'll need to create a funcion that works on these ields.

6. Open the source code, and scroll to the last funcion, which uses jQuery statements.Open the source code, and scroll to the last funcion, which uses jQuery statements.pen the source code, and scroll to the last funcion, which uses jQuery statements.jQuery statements.Query statements.
Before this funcion, create the following funcion:funcion, create the following funcion: create the following funcion:

function checkSecondForm(elementObj) {

 // some code going here// some code going here

}

7. Well irst start by checking for empty values. Therefore here's what we can do to
check for empty values:

if(document.testFormResponse.nameOfPerson.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.birth.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.age.value === "") {

Chapter 5

[157]

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.spending.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.salary.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.retire.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

 if(document.testFormResponse.retirementMoney.value === "") {

 alertMessage("fields must be filled!");

 return false;

 }

In general, we apply what we have learned in the third chapter by using === instead

of == when checking for empty values. We basically check the values that are found

in the dynamically-generated ields, and check to see if they are empty. ields, and check to see if they are empty.

Now that we have the code that checks to see if the ields are empty, it is ime to
write code that checks for the correct type of input.

8. We can apply the techniques learned in Chapter 3hapter 3 3, Syntax Validaion, to check for to check for

the correctness of the input. In general, we are using regular expression, as we did

in the previous chapters, to check for the input's type. Heres what we can do:previous chapters, to check for the input's type. Heres what we can do: chapters, to check for the input's type. Heres what we can do:

 var charactersForName = /^[a-zA-Z\s]*$/.test(document.
testFormResponse.nameOfPerson.value);

 var charactersForPlaceOfBirth = /^[a-zA-Z\s]*$/.
test(document.testFormResponse.birth.value);

 var digitsForAge = /^\d+$/.test(document.testFormResponse.age.
value);

 var digitsForSpending = /^\d+$/.test(document.
testFormResponse.spending.value);

 var digitsForSalary = /^\d+$/.test(document.testFormResponse.
salary.value);

 var digitsForRetire = /^\d+$/.test(document.testFormResponse.
retire.value);

 var digitsForRetirementMoney = /^\d+$/.test(document.
testFormResponse.retirementMoney.value);

Puing the Test Plan Into Acion

[15�]

 // input is not relevant; we need a digit for input elements
with name "enterNumber"
 if (charactersForName === false || charactersForPlaceOfBirth
=== false) {
 alertMessage("the input must be characters only!");
 debuggingMessages(checkSecondForm", elementObj, "wrong checkSecondForm", elementObj, "wrong", elementObj, "wrong
input");
 return false;
 }

 else if (digitsForAge === false || digitsForSpending === false
|| digitsForSalary === false || digitsForRetire === false ||
digitsForRetirementMoney === false){
 alertMessage("the input must be digits only!");
 debuggingMessages(checkSecondForm", elementObj, "wrong checkSecondForm", elementObj, "wrong", elementObj, "wrong
input");
 return false;
 }
 // theinput seems to have no problem, so we'll process the
input
 else {
 checkForm(elementObj);
 alert("all is fine");
 return false;
 }

For a complete version of the previous code, please check the source code folder

of Chapter 5, and refer to the ile perfect-code-for-JSLInt-enhanced.html.

However, remember that in the earlier debugging sessions we have created new
checking mechanisms in order to support boundary values, prevent negaive values,support boundary values, prevent negaive values, boundary values, prevent negaive values,,
and to make sure that the reirement age is greater than the user's current age..

Because the second form may be changed, the previous errors can occur in the

second form as well. Therefore, we'll need to add those checking mechanisms as
well. To see if you have done it correctly, check the checkSecondCode() funcion
in the source code folder for the ile enitled perfect-code-for-JSLInt-
enhanced.html. Here's a code snippet of checkSecondCode():

// above code omitted

 if (elementObj.id === 'retire') {

 if (elementObj.value < document.getElementById('age').
value) {

 alertMessage('retirement age must be larger than age');

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

Chapter 5

[15�]

 return true;true;;
 }
 }

 // this is the solution for checking negative values
 // this only applies to input fields that requires numeric
inputs
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value < 0) {
 alertMessage("Input must be positive!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;true;;
 }
 }

 if (elementObj.name === 'enterText') {
 if (elementObj.value.length <= 3) {
 alertMessage("Input must be more than 3 characters!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;
 }
 if (elementObj.value.length >= 100) {
 alertMessage("Input must be less than 100
characters!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;
 }
 }
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value.length >= 10) {
 alertMessage("Input must be less than 10 digits!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();
 return true;
 }
 }

 // remaining code omitted

}

Puing the Test Plan Into Acion

[160]

What just happened?
We have now inished execuing the enire test plan, including regression tesing.e have now inished execuing the enire test plan, including regression tesing.
Noice that at each phase of the coding process we carried out small tests to make sureurere

that our soluion works correctly; we have used unit tesing once again in our regression; we have used unit tesing once again in our regression
tesing process.

Also note that we tested the program incrementally; we tested each new funcion or codelso note that we tested the program incrementally; we tested each new funcion or codewe tested the program incrementally; we tested each new funcion or codely; we tested each new funcion or codey; we tested each new funcion or code
that we created and made sure that it worked correctly, before we moved on to ixing the before we moved on to ixing theing the the

next error.

By going through this process, we will have a much beter chance of creaing good programsy going through this process, we will have a much beter chance of creaing good programs going through this process, we will have a much beter chance of creaing good programsprocess, we will have a much beter chance of creaing good programs, we will have a much beter chance of creaing good programsgood programs programs

and will avoid introducing new errors into our code.ing new errors into our code. new errors into our code.

Apart from performing regression tesing as a part of an ongoing process as our programpart from performing regression tesing as a part of an ongoing process as our program
changes, there are other important issues regarding the tesing of our program. Let usprogram. Let us. Let us

move to the irst important issue—performance issues.—performance issues.performance issues..

Performance issues—compressing your code to make it load

faster
As I menioned inI menioned in menioned in Chapter 4hapter 44, Planning to Test, the performance of the code that we write is the performance of the code that we write is

dependent on various factors. Performance in general refers to the speed of the execuionthe speed of the execuion speed of the execuionthe execuionexecuion
of your code; this is dependent on the algorithms you use for your code. Because algorithm
issues are beyond the scope of this book, let us focus on something that is much easier to

achieve, like enhancing the programs performance by compressing your code., like enhancing the programs performance by compressing your code. like enhancing the programs performance by compressing your code.the programs performance by compressing your code. programs performance by compressing your code.performance by compressing your code.compressing your code.

In general, ater compressing your code, the ile size of your code will be smaller and hence
lowers disk usage in the cache that is required to store the code before execuion. It alsothe cache that is required to store the code before execuion. It also cache that is required to store the code before execuion. It alsocache that is required to store the code before execuion. It also that is required to store the code before execuion. It alsorequired to store the code before execuion. It also to store the code before execuion. It alsoexecuion. It alsoIt also

reduces the amount of bandwidth required to transfer your JavaScript ile from the webthe amount of bandwidth required to transfer your JavaScript ile from the web amount of bandwidth required to transfer your JavaScript ile from the web
server to the client. So now, let us see how we can compress our JavaScript code.

There are two ways in which we can go about doing this:

1. We can compress our entire program, which means that we will compress our CSS,ire program, which means that we will compress our CSS, program, which means that we will compress our CSS,,

HTML, and JavaScript together., and JavaScript together. and JavaScript together.together..

2. We can remove all of the local JavaScript and place it in an external ile, and then,,
compress only the external JavaScript. To keep things simple, I'll start by using theI'll start by using thell start by using theing the the

irst method.

Firstly, I want you to visitI want you to visit want you to visit http://jscompress.com/ and copy and paste our source codend copy and paste our source code

into the input box. Theres an opion called "Minify (JSMin)". This opion will compress HTML, "Minify (JSMin)". This opion will compress HTML,Minify (JSMin)". This opion will compress HTML,
CSS, and JavaScript all together. Once you have copied the code into the input box, click onhave copied the code into the input box, click on copied the code into the input box, click on

Compress JavaScript.

Chapter 5

[161]

You will then see the page refresh and the miniied code will be displayed within the input box.en see the page refresh and the miniied code will be displayed within the input box.n see the page refresh and the miniied code will be displayed within the input box.
Copy and paste that code into a new ile, and then save it asthat code into a new ile, and then save it as into a new ile, and then save it as testing-compressed.html.

If you go to thego to the the source code folder, you will noice that I have already done thefolder, you will noice that I have already done theI have already done the have already done the

compression process for you. Check the size of the ile for testing-compressed.html

and the code that we wrote earlier. Based on the source code that we have, the compressed that we have, the compressed we have, the compressed

version is 12KB, whereas the original version is 18KB., whereas the original version is 18KB. whereas the original version is 18KB.

Now let us try the second method—placing all of the JavaScript in an external JavaScript ile—placing all of the JavaScript in an external JavaScript ileplacing all of the JavaScript in an external JavaScript ile
and compressing that. Heres what we will do:ing that. Heres what we will do: that. Heres what we will do:

1. Cut all of the JavaScript found between the <head> and </head> tags, and paste it

into a new document called external.js.

2. Save external.js, and also save your changes to the HTML document.

3. Go back to your HTML document, go to thedocument, go to the, go to the <head> and </head> tags and insertags and insertgs and insert

the following: following: <script type="text/javascript" src="external.js">

between them. Then save the ile.. Then save the ile. save the ile.the ile. ile.

So there you have it! We have compressed your code so that your code gets loaded fasterWe have compressed your code so that your code gets loaded fastere have compressed your code so that your code gets loaded faster

from the web server to the client side.the web server to the client side. web server to the client side.

It seems that we have managed to reduce the ile size by compressing the code. Of course,reduce the ile size by compressing the code. Of course, the ile size by compressing the code. Of course,the code. Of course, code. Of course, Of course,Of course,

the diference is not that obvious because our code isn't much. However, in reality code canous because our code isn't much. However, in reality code canour code isn't much. However, in reality code cann't much. However, in reality code can much. However, in reality code can
go up to thousands or even tens of thousands of lines of code, we have seen with the jQuerys of thousands of lines of code, we have seen with the jQuery of thousands of lines of code, we have seen with the jQueryjQueryQuery
library. In such cases, code compression will help to enhance performance.to enhance performance. performance.performance.

If you are a developer who is working under the terms of an Non-Disclosure
Agreement (NDA), there is a likelihood that you are not allowed to use any
of the external services that I have previously menioned. If this is the case,
you might want to consider using Yahoo's YUI Compressor, which allows
you to work directly from the command line. For more informaion, visit
http://developer.yahoo.com/yui/compressor/#using.

Does using Ajax make a difference?
Let me start by briely explaining what happens when you are using Ajax. JavaScript is part of
the Ajax equaion; the execuion of JavaScript is responsible for sending informaion to and; the execuion of JavaScript is responsible for sending informaion to and the execuion of JavaScript is responsible for sending informaion to andhe execuion of JavaScript is responsible for sending informaion to andresponsible for sending informaion to and for sending informaion to and
loading informaion from the server. This is achieved by usingachieved by using by using using XMLHttpRequest object.

When the sending and loading of data to and from the server is done using Ajax, the tesing
responsibiliies are diferent; you will not only have to test for the various errors that we have
covered in the previous chapters, but you will also have to test if each error has resulted in

the successful sending and loading of informaion and the correct visual response to the user.

Puing the Test Plan Into Acion

[162]

However, because you are sending and receiving requests to and from the server, you might
have to perform some form of server-side tesing. This brings us to the next part of the
topic— the diference between JavaScript tesing and server-side tesing.

Difference from server-side testing
As menioned in the previous secion, when you are performing tests for Ajax, you might
have to perform server-side tesing. In general, the concepts that you have picked up to this
point in the book can also be applied to server-side tesing. Therefore, conceptually, there
should be litle diference between JavaScript tesing and server-side tesing.

However, do take note that server-side tesing typically includes serve-side code and most
probably includes databases such as MySQL, PostgreSQL, and others. This means that the
complexiies involving server-side tesing can take a diferent form when compared to
JavaScript tesing.

Nonetheless, you will be expected to have a good understanding of the server-side language
used, the database used, and so on. This is the bare minimum for you to get started with

planning your tests.

If you are performing server-side tesing as a part of Ajax tesing, you will-side tesing as a part of Ajax tesing, you willside tesing as a part of Ajax tesing, you will
most certainly want to know about Hypertext Transfer Protocol response
status codes. These status codes are a way to determine whether yourare a way to determine whether your a way to determine whether yourwhether youryour

request was successful or not. They even tell you what kind of errors

occurred, should any occur. For more informaion, visit:, should any occur. For more informaion, visit: should any occur. For more informaion, visit:occur. For more informaion, visit:. For more informaion, visit:: http://www.
w3.org/Protocols/rfc2616/rfc2616-sec10.html.

What happens if you visitor turns off JavaScript
We have briely covered the issues of whether we should write applicaions that supportbriely covered the issues of whether we should write applicaions that support covered the issues of whether we should write applicaions that supportcovered the issues of whether we should write applicaions that support the issues of whether we should write applicaions that supportthe issues of whether we should write applicaions that support issues of whether we should write applicaions that support
users who have had their JavaScript turned of. Although there are diferent points of view
on whether or not we should support such users, one of the best ways, in my humblesupport such users, one of the best ways, in my humble such users, one of the best ways, in my humble

opinion, is that we should at least inform our users that their browser does not support

JavaScript (or that JavaScript is turned of) and they might be missing out on something.
In order to achieve this, we can use the following code snippet:achieve this, we can use the following code snippet: this, we can use the following code snippet:

<html>

<body>

<script type="text/javascript">

document.write("Your browser supports JavaScript, continue asYour browser supports JavaScript, continue as
usual!");!");;

// do some other code as usual since JavaScript is supported

</script>

<noscript>

Chapter 5

[163]

Sorry, your browser does not support JavaScript! You will need to You will need to
enable JavaScript in order to enjoy the full functionality and JavaScript in order to enjoy the full functionality and
benefits of the application

</noscript>

</body>

</html>

Note that we used the <noscript> tag, which is a way to show user's alternaive
content when JavaScript is turned of or is not supported.

Now that we have almost reached the end of this chapter, you must be geingthis chapter, you must be geing you must be geing
the hang of it. Let us see if you can improve upon your skills by trying out the

following assignment.assignment..

Have a go hero – enhance the usability of our programenhance the usability of our program

Now that you have come this far, you might want to take a shot at this task—enhance the
usability of this program by doing the following: by doing the following:by doing the following:doing the following:

Make sure that the user enters the required informaion, staring from the irst ield
to the last ield.

The other issue that we might have with our program is that the user might click onhe other issue that we might have with our program is that the user might click onother issue that we might have with our program is that the user might click onissue that we might have with our program is that the user might click on

any input ield other than the irst one and begin entering the informaion. Although
this may not directly afect the correctness of our program, there might be a chancea chancechance

that the result is not what we expect.

With regards to the second form, is there any way that you can inform yourthe second form, is there any way that you can inform your second form, is there any way that you can inform your

user which input ields have the wrong input? Can your user change an inputve the wrong input? Can your user change an inputthe wrong input? Can your user change an inputhe wrong input? Can your user change an input wrong input? Can your user change an inputCan your user change an input your user change an input

that is incorrect?

When we are ixing the bug related to the second form, we only created to the second form, we only createdto the second form, we only created the second form, we only createdthe second form, we only created

mechanisms to detect the correctness of the input in the second form. However,the correctness of the input in the second form. However, correctness of the input in the second form. However,the input in the second form. However, input in the second form. However,
should the user enter an incorrect value in the second form, the user might notuser enter an incorrect value in the second form, the user might not enter an incorrect value in the second form, the user might notthe second form, the user might not second form, the user might notsecond form, the user might not form, the user might not

know immediately which ields were entered incorrectly.

Here are some ips to help you get started with this exercise:

Right from the start, you can disable all of the input ields apart from the irst one.
Then as the irst ield gets the correct input, you can enable the second input ield.en as the irst ield gets the correct input, you can enable the second input ield.n as the irst ield gets the correct input, you can enable the second input ield.
Similarly, when the second input ield is completed correctly, the third input ield
gets enabled, and so on and so forth.







Puing the Test Plan Into Acion

[164]

For the second issue, you might want to take a look at our code and see if

you can edit the condiions found in the if else statements for the funcionstatements for the funcion
checkSecondForm(). What I have done is to lump all of the possibiliies into aI have done is to lump all of the possibiliies into a have done is to lump all of the possibiliies into apossibiliies into a into a

single if oror else if statement, thus making it impossible to detect which ieldstatement, thus making it impossible to detect which ieldus making it impossible to detect which ields making it impossible to detect which ield
has gone wrong. You can try to split up the condiions such that each of theof the if

and else if statements contain only a single condiion. That way, well be able tostatements contain only a single condiion. That way, well be able tos contain only a single condiion. That way, well be able to
create a custom response for each individual input ield in the second form, shouldthe second form, should second form, should, should should

anything go wrong.

Summary

Wow, we have covered a lot in this chapter. We have executed the test plan and have

uncovered bugs. Next we successfully ixed the bugs that we uncovered. Ater ixing each
bug, we performed regression tesing in order to make sure that the original funcionality
was retained and that no new bugs were introduced into the program.

Speciically, we covered the following topics:

How to execute a test plan and how to document bugs that we uncoveredthat we uncoveredwe uncovered

How to perform regression tesing ater ixing each bugow to perform regression tesing ater ixing each bug

How to compress the code in order to enhance performance

Tesing diferences if we use Ajax

Diferences between client-side tesing and server-side tesing

The previous learning points may seem small, but now that you have gone through this

chapter, you should know that carrying out a test plan and subsequently ixing the
bugs can be tedious.

Now that we have covered the execuion of test plan, its ime to move on to somethingthat we have covered the execuion of test plan, its ime to move on to something
slightly more diicult—tesing more complex code. Noice that we have been dealing with—tesing more complex code. Noice that we have been dealing withtesing more complex code. Noice that we have been dealing with
JavaScript in a one-dimensional manner: we placed all of our JavaScript in our HTML ile, along-dimensional manner: we placed all of our JavaScript in our HTML ile, alongdimensional manner: we placed all of our JavaScript in our HTML ile, alongalong

with CSS. We have been developing JavaScript code as this was the only piece of JavaScript

code that we were using. But, in reality, it is usual to see web applicaions using more than oneing. But, in reality, it is usual to see web applicaions using more than one. But, in reality, it is usual to see web applicaions using more than oneusing more than onethan one

piece of JavaScript code; this addiional code is usually atached via an external JavaScript ile.

More importantly, this is not going to be the only issue that we will face in the real world.ore importantly, this is not going to be the only issue that we will face in the real world.the real world. real world.

As our code gets more complex, we will need to use more sophisicated tesing methods,s more complex, we will need to use more sophisicated tesing methods, more complex, we will need to use more sophisicated tesing methods,more complex, we will need to use more sophisicated tesing methods, complex, we will need to use more sophisicated tesing methods,sophisicated tesing methods, tesing methods,
or even use tools such as built-in consoles, to help us test more eiciently and efecively., to help us test more eiciently and efecively. to help us test more eiciently and efecively.

We will cover the previously-menioned issues in the next chapter,previously-menioned issues in the next chapter, issues in the next chapter, Chapter 6, Tesing more
complex code. See you there!









6
Testing More Complex Code

Welcome to the sixth chapter. In this chapter, we will learn more about
JavaScript tesing. More speciically, we'll learn how to test more complex code,
where there will be more interacions between eniies. Unil now, we have
been performing tests on relaively simple code, using fairly straighforward
techniques.

More speciically, we'll cover the following:

Types of errors that can occur when combining scripts

How we can deal with the errors that occur when combining the scripts together

Various JavaScript libraries available on the Internet right now, and the issues that

we need to consider when tesing them

How to test the GUI, widgets add-ons for libraries, and other consideraions

How to use the console log

Performing excepion handling by using JavaScript built-in objects

Tesing an applicaion by using JavaScript built-in objects

Let us get started with the basic concepts by covering the kinds of errors that can occur

when combining scripts.










Tesing More Complex Code

[166]

Issues with combining scripts

So far, we have been focused on wriing and tesing only one JavaScript code within our
HTML document. Consider the real-life situaion where we typically use external JavaScript;
what happens if we use more than one JavaScript ile? What kind of issues can we expect
if we use more than one external JavaScript ile? We'll cover all of this in the subsecions
below. We'll start with the irst issue—combining event handlers.

Combining event handlers
You may or may not have realized this, but we have been dealing with event handlers since

Chapter 3, Syntax Validaion. In fact, we actually menioned events in Chapter 1, What is

JavaScript Tesing. JavaScript helps to bring life to our web page by adding interacivity.
Event handlers are the heartbeat of interacivity. For example, we click on a buton and
a pop-up window appears, or we move our cursor over an HTML div element and the

element changes color to provide visual feedback.

To see how we can combine event handlers, consider the following example, which is

found in the source code folder in the iles combine-event-handlers.html and

combine-event-handlers.js as shown in the following code:

In combine-event-handlers.html, we have:

<html>

 <head>

 <title>Event handlers</title>

 <script type="text/javascript" src="combine-event-

 handlers.js"></script>

 </head>

 <body>

 <div id="one" onclick="changeOne(this);"><p>Testing One</p></div>

 <div id="two" onclick="changeTwo(this);"><p>Testing Two</p></div>

 <div id="three" onclick="changeThree(this);"><p>Testing
 Three</p></div>

 </body>

</html>

Noice that each of the div elements is handled by diferent funcions, namely,
changeOne(), changeTwo(), and changeThree() respecively. The event
handlers are found in combine-event-handlers.js:

function changeOne(element) {

 var id = element.id;

 var obj = document.getElementById(id);

 obj.innerHTML = "";

Chapter 6

[167]

 obj.innerHTML = "<h1>One is changed!</h1>";

 return true;

}

function changeTwo(element) {

 var id = element.id;

 var obj = document.getElementById(id);

 obj.innerHTML = "";

 obj.innerHTML = "<h1>Two is changed!</h1>";

 return true;

}

function changeThree(element) {

 var id = element.id;

 var obj = document.getElementById(id);

 obj.innerHTML = "";

 obj.innerHTML = "<h1>Three is changed!</h1>";

 return true;

}

You might want to go ahead and test the program. As you click on the text, the content

changes based on what is deined in the funcions.

However, we can rewrite the code such that all of the events are handled by one funcion.
We can rewrite combine-event-handlers.js as follows:

function combine(element) {

 var id = element.id;

 var obj = document.getElementById(id);

 if(id == "one"){

 obj.innerHTML = "";

 obj.innerHTML = "<h1>One is changed!</h1>";

 return true;

 }

 else if(id == "two"){

 obj.innerHTML = "";

 obj.innerHTML = "<h1>Two is changed!</h1>";

 return true;

 }

 else if(id == "three"){

 obj.innerHTML = "";

 obj.innerHTML = "<h1>Three is changed!</h1>";

 return true;

 }

 else{

 ; // do nothing

 }

}

Tesing More Complex Code

[16�]

When we use if else statements to check the id of the div elements that we are working

on, and change the HTML contents accordingly, we will save quite a few lines of code. Take
note that we have renamed the funcion to combine().

Because we have made some changes to the JavaScript code, we'll need to make the
corresponding changes to our HTML. So combine-event-handlers.html will be

rewriten as follows:

<html>

 <head>

 <title>Event handlers</title>

 <script type="text/javascript" src="combine-event-
 handlers.js"></script>

 </head>

 <body>

 <div id="one" onclick="combine(this);"><p>Testing One</p></div>

 <div id="two" onclick="combine(this);"><p>Testing Two</p></div>

 <div id="three" onclick="combine(this);"><p>Testing
 Three</p></div>

 </body>

</html>

Noice that the div elements are now handled by the same funcion, combine(). These

rewriten examples can be found in combine-event-handlers-combined.html and

combine-event-handlers-combined.js.

Naming clashes
Removing name clashes is the next issue that we need to deal with. Similar to the issue of
combining event handlers, naming clashes occur when two or more variables, funcions,
events, or other objects have the same name. Although these variables or objects can be

contained in diferent iles, these name clashes do not allow our JavaScript program to run
properly. Consider the following code snippets:

In nameclash.html, we have the following code:

<html>

 <head>

 <title>testing</title>

 <script type="text/javascript" src="nameclash1.js"></script>

 </head>

 <body>

 <div id="test" onclick="change(this);"><p>Testing</p></div>

 </body>

</html>

Chapter 6

[16�]

In nameclash1.js, we have the following code:

function change(element) {

 var id = element.id;

 var obj = document.getElementById(id);

 obj.innerHTML = "";

 obj.innerHTML = "<h1>This is changed!</h1>";

 return true;

}

If you run this code by opening the ile in your browser and clicking on the text Tesing, the

HTML contents will be changed as expected. However, if we add <script type="text/
javascript" src="nameclash2.js"></script> ater the <title></title> tag,

and if the content of nameclash2.js is as follows:

function change(element) {

 alert("so what?!");

}

Then we will not be able to execute the code properly. We will see the alert box instead of

the HTML contents being changed. If we switch the arrangement of the external JavaScript,
then the HTML contents of the div elements will be changed and we will not be able to see

the alert box.

With such naming clashes, our program becomes unpredictable; the soluion to this is to use
unique names in your funcions, classes, or events. If you have a relaively large program,
it would be advisable to use namespaces, which is a common strategy in several JavaScript

libraries such as YUI and jQuery.

Using JavaScript libraries

There are many JavaScript libraries available right now. Some of the most commonly-used
ones are as follows:

JQuery (http://jquery.com)

YUI (Yahoo! User Interface JavaScript library) (http://developer.yahoo.com/
yui/)

Dojo (http://dojotoolkit.org/)

Prototype (http://www.prototypejs.org/)

Mootools (http://mootools.net/)

Script.aculo.us (http://script.aculo.us/)









Tesing More Complex Code

[170]

There are many more JavaScript libraries out there. For a complete list, feel free to visit

http://en.wikipedia.org/wiki/List_of_JavaScript_libraries.

If you have considered using JavaScript libraries, you may be aware of the beneits of using
a JavaScript library. Issues such as event handling, and the much dreaded cross-browser
issues make it necessary to consider using a JavaScript library. But you might want to know

what you should look out for when selecing a JavaScript library as a beginner JavaScript
programmer. So here is a list of things to consider:

The level of available support, in terms of documentaion.

Whether tutorials are available, and whether they are free or paid for. This helps you

to speed up the programing process.

The availability of plugins and add-ons.

Does the library have a built-in tesing suite? This is very important, especially for
our purposes here.

Do you need to test a library that someone else has written?
Firstly, while we are learning about JavaScript tesing, I would say that for a beginner learning
JavaScript programing, it might not be advisable to test JavaScript libraries that someone

else wrote. This is because we need to understand the code in order to perform accurate

tests. People who are able to conduct objecive (and accurate) tests are JavaScript experts,
and although you are on your way to becoming one, you are probably not there yet.

Secondly, from a pracical standpoint, many such tests have already been done for us. All you
need to do is search for them on the Internet.

But for learning purposes, let us have a brief look at what tests are usually run against

library code.

What sort of tests to run against library code
In general, as a user of various JavaScript libraries, we would most commonly perform

performance tesing and proiling tesing.

Performance testing

Performance tesing, as the name suggests, is about tesing the performance of your code.
This includes tesing how fast your code runs (on various browsers) in a manual way, or by
using certain tools such as Firebug or others (more such tools are covered in Chapter 8).







Chapter 6

[171]

In general, in order to generate accurate results for performance tesing, it is important for
you to test your code (most preferably by using tools and test suites) against all popular
plaforms. For example, a common way to performance test JavaScript code id to install
Firebug in Firefox and test your code using that. But to think of it from a pracical standpoint,
Firefox users only make up approximately a quarter (or a third at the most) of the total
number of Internet users. You will have to test your code against other plaforms such as
Internet Explorer in order to make sure that your code is up to the mark. We'll cover more
of this in Chapter 8.

Proiling testing
Proiling tesing is similar to performance tesing, except that it focuses on botlenecks in
your code rather than the overall performance. Botlenecks are, in general, the main culprits
for ineicient code. Fixing botlenecks is (almost) a sure way to enhance the performance of
your code.

GUI and widget add-ons to libraries and considerations on how

to test them
If you have checked the list of various JavaScript libraries that I pointed you to, you may have

noiced that some of the JavaScript libraries provide user interface or widget add-ons as well.
These are meant to enhance your applicaion's user interface, and most importantly will help
you to save ime and efort by implemening commonly-used user interface components,
such as dialog boxes, color selectors, and so on.

But that's where the problem starts—how do we test such user interface and widget add-
ons? There are many ways in which we can go about doing that, but the simplest way (and
perhaps the most cumbersome) would be to test visually and manually. For example, if we

are expecing a dialog box to appear at the top let-hand side of the screen with a certain
color, width, and height, and it does not appear the way we want, then something is wrong.

Similarly, if we see something that we expect to see, then we can say that it is correct—at
least in a visual sense.

However, more vigorous tesing is required. Tesing user interfaces can be a dauning task,
and hence I would suggest that you use tesing tools such as Sahi, which allows us to write
automated web applicaion UI tests in any programing language. Tools such as Sahi are
out of scope for this chapter. We will cover Sahi in detail in Chapter 8. Meanwhile, if you

are eager to check out Sahi, feel free to visit their website at http://sahi.co.in.

Tesing More Complex Code

[172]

Deliberately throwing your own JavaScript errors

In this secion, we will learn how to throw our own JavaScript errors and excepions.
We will briely cover the syntax of the error funcions and commands. It may be a litle
incomprehensible at this stage to just give you the syntax, but this is necessary. Once you

understand how to make use of these commands and reserved words, you will see how you

can make use of them to give yourself more speciic informaion (and hence more control)
over the types of errors that you can catch and create in the next secion. So let us get
started with the irst reserved word—throw.

The throw statements
throw is a statement that allows you to create an excepion or error. It is a bit like the break

statement, but throw allows you to break out of any scope. In general, this is what we

usually use to literally throw an error. The syntax is as follows:

throw(exception);

We can use throw(exception) in the following ways:

throw "This is an error";

or:

throw new Error("this is an error");

Error is a built-in object that is commonly used in conjuncion with the throw statement;
we will cover Error later. The important thing to understand now is the syntax, and the fact

that throw is also oten used with try, catch, and finally, which will help you to control

the program low and create accurate error messages. Now let us move on to catch.

The try, catch, and inally statement
The try, catch, and finally statement are JavaScript's excepion handling mechanism,
which, as menioned previously, helps you control the program low, while catching your
errors. The syntax of the try, catch, and finally statements is as follows:

try {
 // exceptions are handled here
}
catch (e) {
 // code within the catch block is executed if any exceptions are
caught in the try block
}
finally {
 // code here is executed no matter what happens in the try block
}

Chapter 6

[173]

Noice that try is followed by catch, and then finally can be used opionally. In
general, the catch statement catches the excepions that occur in the try statement.

An excepion is an error. The finally statement is executed as long as the try or

catch statement terminates.

Now that we have covered the basic commands and reserved words for deliberately

throwing JavaScript errors, let us take a look at an example of how try, catch, and

finally can be used together. The following code can be found in the source code folder

of Chapter 6, in the HTML document named try-catch-finally-correct-version.
html. Check out the following code:

<html>

 <head>

 <script>

 function factorial(x) {

 if(x == 0) {

 return 1;

 }

 else {

 return x * factorial(x-1);

 }

}

try {

 var a = prompt("Enter a positive integer", "");

 var f = factorial(a);

 alert(a + "! = " + f);

}

catch (error) {

 // alert user of the error

 alert(error);

 alert(error.message);

}

finally {

 alert("ok, all is done!");

}

 </script>

 </head>

 <body>

 </body>

</html>

Tesing More Complex Code

[174]

You can copy and paste the code above into your favorite text editor, save it, and run it in your

browser. Or you can run the sample ile try-catch-finally-correct-version.html.

You will see a prompt window asking you to enter a posiive integer. Go ahead and enter a
posiive integer, say 3 for instance, and you will receive an alert window telling you 3! = 6.

Ater that, you should receive another alert window, which contains the message ok, all is
done!, as the finally block will be executed ater try or catch terminates.

Now, enter a negaive number, say -1. If you are using Firefox, you will receive an alert

window that says that you have too much recursion. If you are using Internet Explorer, you

will receive an [object Error] message.

Ater the irst pop-up window, you will receive a second pop-up window. If you are using
Firefox, you will see an InternalError: Too much recursion message. If you are using Internet

Explorer, you will receive an Out of stack space message.

Lastly, you should receive a inal alert window, which contains the message ok, all is done!,
as the finally block will be executed ater try or catch terminates. While it is true that

we have an error, the error message is not exactly what we need, as it does not tell us that

we have entered an illegal value.

This is where throw comes in. throw can be used to control the program low and give
us the correct response for each type of error. Check out the following code, which

can also be found in the source code folder, in the ile try-catch-finally-throw-
correct-version.html.

<html>

<head>

<script>

function factorial(x) {

 if(x == 0) {

 return 1;

 }

 else {

 return x * factorial(x-1);

 }

}

try {

 var a = prompt("Please enter a positive integer", "");

 if(a < 0){

 throw "negative-error";

 }

 else if(isNaN(a)){

Chapter 6

[175]

 throw "not-a-number";

 }

 var f = factorial(a);

 alert(a + "! = " + f);

}

catch (error) {

 if(error == "negative-error") {

 alert("value cannot be negative");

 }

 else if(error == "not-a-number") {

 alert("value must be a number");

 }

 else

 throw error;

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

Now go ahead and execute the program, and enter correct values, negaive values, and
non-alphanumeric values. You should receive the correct error messages depending on
your input.

Noice the previous lines of code where we used the throw statement to control the types

of error messages, which will be shown to the user in the catch block. This is one way in

which throw statements can be used. Note that the string that is deined ater throw is

used to create program logic to decide what error messages should be called.

In case you are wondering what other capabiliies this excepion handling mechanism has,
remove the factorial funcion from try-catch-finally-correct-version.html.

Alternaively, you can open the ile try-catch-finally-wrong-version.html and run

the program. Then try entering any value. You should receive an alert message telling you

that the factorial funcion is not deined, and ater that you will receive another alert box
saying ok, all is done!. Noice that, in this case, there is no need for us to write any form of
message; catch is powerful enough to tell us what went wrong.

Tesing More Complex Code

[176]

One thing to note, though, is that the JavaScript runime may catch an excepion if you do
not write an excepion handler.

Now that we have covered the basics of the excepion handling mechanism, let us move on
to the speciics—built-in objects for handling errors.

Trapping errors by using built-in objects

In this secion, we'll briely describe what each type of built-in object is, along with its syntax,
before we show some examples of how each of the built-in objects work. Do take note that
the alert messages, which we will be using sparingly in the examples, are based on the Firefox

browser. If you try the code on Internet Explorer, you might see diferent error messages.

The Error object
An Error is a generic excepion, and it accepts an opional message that provides details of
the excepion. We can use the Error object by using the following syntax:

new Error(message); // message can be a string or an integer

Here's an example that shows the Error object in acion. The source code for this example
can be found in the ile error-object.html.

<html>

<head>

<script type="text/javascript">

function factorial(x) {

 if(x == 0) {

 return 1;

 }

 else {

 return x * factorial(x-1);

 }

}

try {

 var a = prompt("Please enter a positive integer", "");

 if(a < 0){

 var error = new Error(1);

 alert(error.message);

 alert(error.name);

 throw error;

 }

 else if(isNaN(a)){

Chapter 6

[177]

 var error = new Error("it must be a number");

 alert(error.message);

 alert(error.name);

 throw error;

 }

 var f = factorial(a);

 alert(a + "! = " + f);

}

catch (error) {

 if(error.message == 1) {

 alert("value cannot be negative");

 }

 else if(error.message == "it must be a number") {

 alert("value must be a number");

 }

 else

 throw error;

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

You may have noiced that the structure of this code is similar to the previous examples, in
which we demonstrated try, catch, finally, and throw. In this example, we have made

use of what we have learned, and instead of throwing the error directly, we have used the

Error object.

I need you to focus on the code given above. Noice that we have used an integer and
a string as the message argument for var error, namely new Error(1) and new

Error("it must be a number"). Take note that we can make use of alert() to

create a pop-up window to inform the user of the error that has occurred and the name
of the error, which is Error, as it is an Error object. Similarly, we can make use of the

message property to create program logic for the appropriate error message.

It is important to see how the Error object works, as the following built-in objects, which
we are going to learn about, work similarly to how we have seen for the Error object.

(We might be able to show how we can use these errors in the console log.)

Tesing More Complex Code

[17�]

The RangeError object
A RangeError occurs when a number is out of its appropriate range. The syntax is similar to

what we have seen for the Error object. Here's the syntax for RangeError:

new RangeError(message);

message can either be a string or an integer.

We'll start with a simple example to show how this works. Check out the following code that
can be found in the source code folder, in the ile rangeerror.html:

<html>

<head>

<script type="text/javascript">

try {

 var anArray = new Array(-1);

 // an array length must be positive

}

catch (error) {

 alert(error.message);

 alert(error.name);

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

When you run this example, you should see an alert window informing you that the array is

of an invalid length. Ater this alert window, you should receive another alert window telling
you that The error is RangeError, as this is a RangeError object. If you look at the code

carefully, you will see that I have deliberately created this error by giving a negaive value
to the array's length (array's length must be posiive).

The ReferenceError object
A ReferenceError occurs when a variable, object, funcion, or array that you have
referenced does not exist. The syntax is similar to what you have seen so far and it

is as follows:

new ReferenceError(message);

message can either be a string or an integer.

Chapter 6

[17�]

As this is prety straighforward, I'll dive right into the next example. The code for the following
example can be found in the source code folder, in the ile referenceerror.html.

<html>

<head>

<script type="text/javascript">

try {

 x = y;

 // notice that y is not defined

 // an array length must be positive

}

catch (error) {

 alert(error);

 alert(error.message);

 alert(error.name);

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

Take note that y is not deined, and we are expecing to catch this error in the catch block.

Now try the previous example in your Firefox browser. You should receive four alert windows

regarding the errors, with each window giving you a diferent message. The messages are
as follows:

ReferenceError: y is not deined

y is not deined

ReferenceError

ok, all is done

If you are using Internet Explorer, you will receive slightly diferent messages. You will see the
following messages:

[object Error] message

y is undeined

TypeError

ok, all is done











Tesing More Complex Code

[1�0]

The TypeError object
A TypeError is thrown when we try to access a value that is of the wrong type. The syntax

is as follows:

new TypeError(message); // message can be a string or an integer and
it is optional

An example of TypeError is as follows:

<html>

<head>

<script type="text/javascript">

try {

 y = 1

 var test = function weird() {

 var foo = "weird string";

 }

 y = test.foo(); // foo is not a function

}

catch (error) {

 alert(error);

 alert(error.message);

 alert(error.name);

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

If you try running this code in Firefox, you should receive an alert box staing that it is a
TypeError. This is because test.foo() is not a funcion, and this results in a TypeError.

JavaScript is capable of inding out what kind of error has been caught. Similarly, you can use
the tradiional method of throwing your own TypeError(), by uncommening the code.

The following built-in objects are less used, so we'll just move through quickly with the
syntax of the built-in objects.

Chapter 6

[1�1]

The SyntaxError object
A SyntaxError occurs when there is an error in syntax. The syntax for SyntaxError is

as follows:

new SyntaxError([message,[,,[,filename[, lineNumber]]]); // message
can be a string or an integer and it is optional

Take note that the filename and lineNumber parameters are non-standard, and they
should be avoided if possible.

The URIError object
A URIError occurs when a malformed URI is encountered. The syntax is as follows:

new URIError([message,[,filename[, lineNumber]]]);

Similar to SyntaxError, take note that the filename and lineNumber parameters are

non-standard, and they should be avoided if possible.

The EvalError object
An EvalError occurs when an eval statement is used incorrectly or contains an error

other than a syntax error.

new EvalError([message,[,filename[, lineNumber]]]);// message can be a
string or an integer and it is optional

Similar to SyntaxError and URIError, take note that the filename and lineNumber

parameters are non-standard, and they should be avoided if possible.

Using the error console log

Firefox's console log is a tool that is powerful enough for you to log your JavaScript
messages. You can log error messages from the built-in objects, or you can write your
own messages.

Error messages
What we see in this secion are error messages generated that are logged in Firefox's error
console log. Before we do that, I need you to open up your Firefox browser, go to Tools on

the menu bar, and select Error Console. Make sure that you do not open any other tabs.

Tesing More Complex Code

[1�2]

Now, open your code editor, and enter the following code into a new document:

<html>

<head>

<script type="text/javascript">

try {

 var anArray = new Array(-1););

}

catch (error) {

 throw error;

}

finally {

 alert("ok, all is done!");

}

</script>

</head>

<body>

</body>

</html>

Save the document as a .html ile, and then run the ile on your Firefox browser.
Alternaively, you can use the source code found in the source code folder with the

HTML document enitled: error-message-console.html. If you now take a look at your

console, you should receive the following error message: invalid array length. This is because

we have deined an array that is of negaive length, which is shown in the code above.

The trick here is to use the throw statement to throw error messages. Take note that

Firefox's error console does not show the name of the error.

Now we will take a look at how to create custom error messages.

Writing your own messages
Let us move on to creaing our own error messages. The completed code is found in the
source code folder, in the ile test-custom.html.

Once again, open your code editor, create a new document, and enter the following code

into it:

<html>

<head>

<script type="text/javascript">

function factorial(x) {

 if(x == 0) {

 return 1;

Chapter 6

[1�3]

 }

 else {

 return x * factorial(x-1);

 }

}

try {

 var a = prompt("Please enter a positive integer", "");

 if(a < 0){

 throw new Error("Number must be bigger than zero");

 }

 else if(isNaN(a)){

 throw new Error("You must enter a number");

 }

 var f = factorial(a);

 alert(a + "! = " + f);

}

catch (error) {

 throw error;

}

</script>

</head>

<body>

</body>

</html>

What we have done here is that within the try block we have thrown two new Error

objects, each with a custom message, and then in the catch block, we throw the Error

object again. In the try block, we are creaing a custom Error object, and in the catch

block, we are throwing the message into the Error Console.

Take note of the highlighted lines. We have deined our own messages in the Error object.

Save the ile, and then open up your Firefox browser. Go to Tools | Error Console. In the

Error Console, make sure you are in either the All tab or the Errors tab. Now run your code

in your Firefox browser. You will receive the message You must enter a number in your error

console if you enter a non-numeric input. If you enter a number that is less than zero, you
will receive the message Number must be bigger than zero. The key here is to make use of

the provided methods and properies to throw your own error messages.

Tesing More Complex Code

[1�4]

Modifying scripts and testing

Now that we have covered the basic building blocks of throwing and catching errors using

built-in objects, and using the console to throw error messages, it is ime to learn how we
can apply what we have learnt to a simple applicaion.

Time for action – coding, modifying, throwing, and catching

errors

I need you to focus and pay atenion in this secion because we will be applying all that we
have learnt previously when we irst created an applicaion. Ater that, we will atempt to
generate our own errors and throw various error messages as a part of our tesing process.

What we will create is a mock movie booking system. I'm not sure about you, but I've
noiced that the folks at the service counter use some form of a movie booking system that
has a GUI to facilitate their booking process. Not only will we be creaing that, but we will
also add more features, such as purchasing food and drinks to go with the movie ickets.

Here are the details of the movie ickets booking system: as you click on each seat, you
are execuing a booking acion. If the seat is booked, a click on it will execute a remove
booking acion.

Other important design rules are as follows: you cannot buy more meals than the number

of ickets that you have booked. For example, if you have booked four ickets, you can only
purchase up to four meals, be it a hotdog meal or a popcorn meal. Similarly, for every meal

that you have purchased, you can purchase one Sky Walker. This means that if you have

purchased three meals, you can only purchase up to three Sky Walkers. Next, you can only

pay in hundred dollar notes. This means that you can only enter igures in hundreds for the
Please pay in $100 notes input ield.

In case you are wondering about the pricing of the various merchandise, the ickets are
priced at $10 each. The hotdog meal costs $6 while the popcorn meal costs $4. Sky Walker
costs $10 each.

Chapter 6

[1�5]

Clear about the rules? If you are clear about the rules, we'll irst start by creaing this
applicaion. Ater that, we will apply the excepion catching mechanism as the inal
step. By the way, the completed code for this example can be found in the folder

cinema-incomplete of Chapter 6.

1. Open up code editor and create a new ile. Enter the following code into your ile.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>JavaScript Cinema</title>

</head>

<body>

</body>

</html>

This will form the backbone of our program. Right now, it will not do anything, nor
will it show any design on your webpage. Therefore, we will start by creaing the
layout of our applicaion.

2. Enter the following code within the <body> tag of your HTML document.

<div id="container">

 <div id="side-a">

 <h1>Welcome to JavaScript Cinema </h1>

 <div class="screen">

 <p> Screen is located here. </p>

 </div>

 <div class="wrapper" id="tickets">

 <p>You have booked 0 tickets</p>

 </div>

 <div class="wrapper">

 <p>Click on the seats above to make your booking.</p>

 </div>

 </div>

 <div id="side-b">

 <div class="menuRight">

 <h4>Meal Pricing</h4>

 <p>Hotdog Meal : $6
Popcorn Meal : $4</</p>

 <form name="foodForm" onsubmit="return checkForm()">

 <!-- total number of meals cannot exceed total
number of tickets purchased -->

 # of Hotdog Meal ($6/meal): <input type="text"
name="hotdogQty" length="3" size="3px"/>

Tesing More Complex Code

[1�6]

 # of Popcorn Meal ($4/meal): <input type="text"
name="popcornQty" length="3" size="3px" />

 <p class="smalltext">Total # of meals cannot
exceed total number of tickets purchases</p>

 <!-- here's some specials to go with -->

 <p>Here's the special deal of the day:</p>

 Sky Walker($10):<input type="text" name="skywalker"
length="3" size="3px"/>

 <p class="smalltext">You can only buy 1 Sky Walker
for every meal you've purchased.</p>

 <!-- show total price here -->

 Please pay in $100 notes

 <input type="text" name="hundred" length="3"
size="3px" />

 <input type="submit" value="Order Now">

 </form>

 </div>

 <div id="orderResults"> </div>

 </div>

</div>

This code forms the basic control of our movie icket booking applicaion. You may
have noiced that there are various div elements with the class wrapper. These

elements will be used to create a grid-like user interface that represents the seats
in a cinema. So now we will start to create the grid that will be used to represent

the seats.

3. We will irst build the irst row of the grid. For a start, type the following code within
the irst div element with a wrapper class:

<div class="left1" id="a1" name="seats" onclick="checkBooking(this
);">

<p>Available</p>

</div>

<div class="left2" id="a2" name="seats" onclick="checkBooking(this
);">

<p>Available</p>

</div>

<div class="left8" id="a8" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

Chapter 6

[1�7]

</div>

<div class="left9" id="a9" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

</div>

Noice that each of the <div> elements that you have typed within the irst div

element with a wrapper class has a class and id property. In general, the irst div

will have a class of left1, and an ID of a1. The next div element will have a class of

left2 and an ID of a2, and so on. This is the way that we will be designing our grid.

Now, let us proceed to the next step.

4. Similar to step 3, we will build the next row of our grid. Enter the following code into
the second div element with a wrapper class:

<div class="left1" id="b1" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

</div>

<div class="left2" id="b2" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

</div>

<div class="left8" id="b8" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

</div>

<div class="left9" id="b9" name="seats" onclick="checkBooking(this
);">

 <p>Available</p>

</div>

Noice that the div elements that form the second row of the grid have an ID

staring with a "b" as opposed to an "a" as is the case in the irst row of the grid. This
will be the way that we will name and coninue to build the grid as we go along. This
means that the next row will have an ID beginning with "c", the fourth row will have
an ID beginning with "d", and so on.

In all, we will be creaing ive rows. This means that we have three more rows to go.

Tesing More Complex Code

[1��]

5. Now we will build the next three rows of the grid. Type the code given in the

previous step into the remaining div elements, but remember to change the id

of each element to suit the row number. At the same ime, remember to include
the onclick="checkBooking(this)", as this will be used for execuing our
JavaScript funcions.

Once you are done with the HTML, it's ime for us to add the CSS in order to create
the proper design and layout for our applicaion.

6. For this example, we will be using an external CSS. Therefore, insert the following

code ater the <title> </title> tags.

<link rel="stylesheet" type="text/css" href="cinema.css" />

7. Now we will create a CSS ile. Open up a new document and save it as cinema.css,

as this is what we referred to in step 6. Next, enter the following code into

cinema.css:

body{

 border-width: 0px;

 padding: 0px;

 padding-left: 20px;

 margin: 0px;

 font-size: 90%;

}

#container {

 text-align: left;

 margin: 0px auto;

 padding: 0px;

 border:0;

 width: 1040px;

}

#side-a {

 float: left;

 width: 840px;

}

#side-b {

 margin: 0;

 float: left;

 margin-top:100px;

 width: 200px;

 height: 600px;

 background-color: #cccc00;

}

Chapter 6

[1��]

This is the code for the CSS classes and ID selectors that are used to build the

scafold of our applicaion. You might want to refresh yourself by going back to
Chapter 1,What is JavaScript Tesing, if you have forgoten how CSS works.

Now, we will decide on the size of the seats on the grid, and other

important properies.

8. We will deine the width, height, background color, and text color of the seats.
Append the following code to cinema.css:

#a1,#a2,#a3,#a4,#a5,#a6,#a7,#a8,#a9,

#b1,#b2,#b3,#b4,#b5,#b6,#b7,#b8,#b9,

#c1,#c2,#c3,#c4,#c5,#c6,#c7,#c8,#c9,

#d1,#d2,#d3,#d4,#d5,#d6,#d7,#d8,#d9,

#e1,#e2,#e3,#e4,#e5,#e6,#e7,#e8,#e9

{

 background:#e5791e;

 color:#000000;

 width: 71px;

 height: 71px;

}

The previous code deines the size, color, and background for all of the "seats" in
our cinema. Now we are down to the inal step in creaing the layout and design of
our applicaion.

9. We will now deine the layout and colors of our grid, which contains our
seats. The completed CSS code can be found in the source code folder

cinema-incomplete, in the ile cinema.css. Append the following code

to cinema.css:

.wrapper{

 position: relative;

 float: left;

 left: 0px;

 width: 840px;

 margin-bottom: 20px;

 background-color: #cccccc

}

…

.left1{

 position: relative;

 float: left;

 left: 10px;

 z-index:0;

}

.left2{

Tesing More Complex Code

[1�0]

 position: relative;
 float: left;
 left: 30px;
 width: 71px;
 height: 71px;
}

… …

.left8{
 position: relative;
 float: left;
 left: 150px;

}
.left9{
 position: relative;
 float: left;
 left: 170px;
}

This CSS code basically deines each column of the grid. Once you are done with
this, save it as cinema.css and cinema.html. Make sure that these iles are in
the same folder. Open up cinema.html in your web browser, and you should see

something similar to the following screenshot:

Chapter 6

[1�1]

If you see something amiss, you might want to compare your code to the example

source code found in the folder cinema-incomplete.

Now that we are done with the design and layout of our applicaion, it is ime for
us to add in the behaviors of the applicaion. The completed code example for the
following secion can be found in the folder cinema-complete of Chapter 6.

10. We will be using an external JavaScript ile. So let us add the following code snippet
before the </head> tag:

<script type="text/javascript" src="cinema.js"></script>

11. Now let us create a new ile, and name it cinema.js. We will focus on creaing the
icket booking mechanism. Because we will be booking ickets by clicking on the
seats, we need some mechanism to handle the click event. Because we have already

included the onclick="checkBooking(this)" in the HTML code, what we need
to do now is create a funcion that handles the click event. Add the following code
into cinema.js:

function checkBooking(element) {

 var id = element.id;

 var status = document.getElementById(id).innerHTML;

 // "<P>Available</P>" is for an IE quirks

 if(status === "<p>Available</p>" || status === "<P>Available</
P>")

 addBooking(id);

 else

 removeBooking(id);

 //alert(id);

 return true;

}

Noice that the previous code checks for the innerHTML of the div element and

checks to see if it is <p>Available</p>. If it is, this means that the seat is available

and we can proceed with booking the seat. If not, the seat is booked and a click on

the div element will result in removing the booking of the seat.

With that in mind, we need two more funcions that will help us with the booking
and removal of the booking of the seats.

Tesing More Complex Code

[1�2]

12. We will now create two more funcions, to book or to remove booking of the seats.
Prepend the following code to cinema.js:

var counterNumReservations = 0;

function addBooking(id) {

 // add 1 to counterNumReservations when a user clicks on the
seating

 // alert("addBooking");

 document.getElementById(id).style.backgroundColor = "#000000";

 document.getElementById(id).style.color = "#ffffff";

 document.getElementById(id).innerHTML = "<p>Booked!</p>";

 counterNumReservations = counterNumReservations + 1;

 document.getElementById("tickets").innerHTML = "<p>You have
booked " + counterNumReservations + " tickets</p>">";

 return true;

}

function removeBooking(id) {

 // minus 1 from counterNumReservations when a user clicks on a
seating that is already booked

 // alert("removeBooking");

 document.getElementById(id).style.backgroundColor = "#e5791e";

 document.getElementById(id).style.color = "#000000";

 document.getElementById(id).innerHTML = "<p>Available</p>";

 counterNumReservations = counterNumReservations - 1;

 document.getElementById("tickets").innerHTML = "<p>You
have booked " + counterNumReservations + " tickets</p>">";

 return true;

}

We have used a global variable to keep track of the number of ickets or seats
booked. What the previous funcions are doing is that they will increase or decrease
(as appropriate) counterNumReservations and, at the same ime, change the
HTML contents of the div elements to relect the status of the booking process. In
this case, the seat that is booked will be black in color.

Now, save your ile and click on the seats. You should be able to receive visual
feedback on the booking process.

We will move on to the form handling mechanism.

Chapter 6

[1�3]

13. The form handling mechanism basically handles the following: calculaing total
spending, the total meal quanity, the amount of money that the user has paid,
the change (if any), and also other possible errors or condiions, such as whether
enough money is paid, if the money has been paid in hundreds, and so on. With

that in mind, we will create the following funcion:

function checkForm(){

 var mealPrice;

 var special;

 var hundred;

 var change;

 var ticketPrice

 if(calculateMealQty() == 1 && checkHundred() == 1 &&
checkSpecial() == 1 && checkMoney() == 1) {

 alert("passed! for checkForm");

 mealPrice = calculateMealPrice();

 special = specialOffer();

 ticketPrice = calculateTicketPrice();

 change = parseInt(amountReceived()) - parseInt((mealPrice
+ special + ticketPrice));

 alert(change);

 success(change);

 }

 else

 alert("there was something wrong with your order.");

 return false;

}

In order to create code that is modular, we have split the funcionality down into
separate funcions. For instance, success() and failure() are used to create

the HTML contents, which will show the status of the booking process.

Similarly, noice that we will need to create other funcions for calculaing meal
quanity, checking total money spent, and so on. These funcions are created based
on what we have learnt from Chapter 1 to Chapter 5, so I'll go on quickly. So now, let
us create these funcions.

Tesing More Complex Code

[1�4]

14. We will now create various funcions for calculaing the meal quanity, the total
meal price, the total icket price, and so on. We'll start with calculaing the
meal quanity:

function calculateMealQty() {

 var total = parseInt(document.foodForm.hotdogQty.value) +
parseInt(document.foodForm.popcornQty.value);

 alert("you have ordered " + total + " meals");

 if(total > counterNumReservations) {

 alert("you have ordered too many meals!");

 failure("you have ordered too many meals!");

 return 0;

 }

 else {

 alert("ok proceed!");

 return 1;

 }

}

Now, we'll write the funcion for calculaing the meal price:

function calculateMealPrice() {

 // add up total price

 var price = 6*parseInt(document.foodForm.hotdogQty.value) +
(4*parseInt(document.foodForm.popcornQty.value));

 alert("meal price is " + price);

 return price;

}

Next is the funcion for calculaing the icket price:

function calculateTicketPrice() {

 var price = counterNumReservations * 10;

 alert("ticket price is " + price);

 return price;

}

We'll now write the funcion for calculaing how much was spent on Sky Walker by
the user:

function specialOffer() {

 // for more ordering offers

 var skywalker = 10 * parseInt(document.foodForm.skywalker.
value);

 alert("skywalker price is " + skywalker);

 return skywalker;

}

Chapter 6

[1�5]

Once this has been done, we'll write a small funcion that checks how much money
has been received:

function amountReceived() {

 var amount = parseInt(document.foodForm.hundred.value);

 alert("I received "+ amount);

 return amount;

}

Now that we are done with the funcions that do the bulk of the calculaions, it's
ime to write funcions to check if the user has ordered too much Sky Walker:

function checkSpecial() {

 if(parseInt(document.foodForm.skywalker.value) >
(parseInt(document.foodForm.hotdogQty.value) + parseInt(document.
foodForm.popcornQty.value))){

 alert("you have ordered too many sky walker");

 failure("you have ordered too many sky walker");

 return 0;

 }

 else {

 return 1;

 }

}

Once we are done with the previous step, it's ime to check if the user paid too
litle money:

function checkMoney() {

 var mealPrice = calculateMealPrice();

 var special = specialOffer();

 var ticketPrice = calculateTicketPrice();

 var change = amountReceived() - (mealPrice + special +
ticketPrice);

 alert("checkMoney :" + change);

 if(change < 0) {

 alert("you have paid too little money!");

 failure("you have paid too little money!");

 return 0;

 }

 else

 return 1;

}

Tesing More Complex Code

[1�6]

As sipulated at the beginning, we will also need to check to see if the user paid in
hundred dollar notes. This is done as follows:

function checkHundred() {

 // see if notes are in hundreds

 var figure = parseInt(document.foodForm.hundred.value);

 if((figure%100) != 0) {

 alert("You did not pay in hundreds!");

 failure("You did not pay in hundreds!");

 return 0;

 }

 // can use error checking here as well

 else {

 alert("checkHundred proceed");

 return 1;

 }

}

Finally, the funcions for creaing the HTML content that relects the booking status
are as follows:

function failure(errorMessage) {

 document.getElementById("orderResults").innerHTML =
errorMessage;

}

function success(change) {

 document.getElementById("orderResults").innerHTML = "Your
order was successful.";

 document.getElementById("orderResults").innerHTML +=
"Your change is " + change + " and you have purchased " +
counterNumReservations + " tickets.";

}

Phew! That was quite a bit of coding! You might want to save your iles and test your
applicaion in your browser. You should have a full working applicaion, assuming
that you have entered the code correctly. The completed code up to this stage can

be found in the cinema-complete folder.

Although we have just been through a tedious process, it was a necessary process.

You might ask why you are coding irst instead of tesing immediately. My answer
is that irstly, in the real business world, it is very likely that we need to write code
and then test the code that we have writen. Secondly, if I were to create a tutorial
and ask you to test the code without knowing what the code is, it might leave you

hanging on the clif, as you might not know what to test for. Most importantly,
the approach that we have taken allows you to pracice your coding skills and
understand what the code is about.

Chapter 6

[1�7]

This will help you to understand how to apply the try, catch, and other built-in
excepions object in your code; we will be doing this right now.

15. We will now create a funcion that will be used to throw and catch our errors by
using built-in objects. Now, open cinema.js and prepend the following code

at the top of the document:

function catchError(elementObj) {

 try {

 // some code here

 }

 catch (error) {

 if(error instanceof TypeError){

 alert(error.name);

 alert(error.message);

 return 0;

 }

 else if(error instanceof ReferenceError){

 alert(error.name);

 alert(error.message);

 return 0;

 }

… …

 else if(error instanceof EvalError){

 alert(error.name);

 alert(error.message);

 return 0;

 }

 else {

 alert(error);

 return 0;

 }

 }

 finally {

 alert("ok, all is done!");

 }

}

The previous code will form the scafold of our catchError() funcion. Basically,
what this funcion does is to catch the error (or potenial error) and test to see
what type of error it is. We will be seeing two sample usages of this funcion in
this example.

Tesing More Complex Code

[1��]

The irst example is a simple example to show how we can use catchError()

in other funcions so that we can catch any real or potenial errors. In the second
example, we will throw and catch a TypeError by using catchError().

The completed code for this stage can be found in the folder cinema-error-

catching. Take note that the bulk of the code did not change, except for

the addiion of the catchError() and some minor addiions to the
addBooking() funcion.

16. We will now try to catch a ReferenceError (or TypeError, if you are using

Internet Explorer) by adding the following code snippet within the try block:

 x = elementObj;

Next, add the following code at the top of the funcion addBooking():

 var test = catchError((counterNumReservations);

 if(test == 0)

 return 0; // stop execution if an error is catched;

What we are trying to do here is to stop execuion of our JavaScript code if we ind any
errors. In the above code snippet, we pass a variable, counterNumReservations,

into catchError() as an example.

Now, save the ile and test the program. The program should be working normally.
However, if you now change the code in the try block to:

 var x = testing;

where tesing is not deined, you will receive a ReferenceError (if you are using
Firefox browser) or TypeError (if you are using Internet Explorer) when you
execute your applicaion.

The previous simple example shows that you can pass variables into the

catchError() funcion to check if it's what you want.

Now, let us move on to something more diicult.

17. We will now try to throw and catch a TypeError. Let us irst remove the changes
that we made in the previous example. Now what we are doing here is checking

to see if the object passed into the addBooking() funcion is the nodeType

that we want. We can achieve this by adding the following code at the top of the

addBooking() funcion:

 var test = document.getElementById(id);

 // alert(test.nodeName); // this returns a DIV -> we use
nodeName as it has more functionality as compared to tagName

 var test = catchError(test.nodeType);

// nodeType should return a 1

 if(test == 0)

 return 0; // stop execution if an error is catched;

Chapter 6

[1��]

Take note of the above lines in the code. What we have done is that we are geing the
nodeType of the id element. The result of this will be used as an argument for the

catchError() funcion. For some basic details about nodeType, please visit

http://www.w3schools.com/htmldom/dom_nodes_info.asp.

Now, remove whatever changes you have done to catchError(), and add the following

code to the try block:

 var y = elementObj;

 // var correct is the type of element we need.

 var correct = document.getElementById("a1").nodeType;

 alert("Correct nodeType is: " + correct);

 var wrong = 9; // 9 represents type Document

 if(y != correct){

 throw new TypeError("This is wrong!");

 }

Noice that we are tesing for the nodeType by checking the resuling integer. Anything
that is not correct (the correct variable is 1) will result in an error, as shown in the if

statement block.

Save the ile, and then run your example. You should irst receive an alert box telling you
that the Correct nodeType is 1, followed by the message TypeError. Next, you will see the

message This is wrong (which is a personalized message) and inally the message ok, all is
done indicaing the end of the catchError() funcion.

What we have done is that we have thrown our own errors in response to diferent error
types. In our case here, we wanted to make sure that we are passing the correct nodeType.

If not, it is an error and we can throw our own error.

With that, we'll end this example.

Have a go hero – using catchError function to check input

Now that you have covered quite a bit of code and gained new knowledge, you might want

to try this out: use the catchError() funcion to check the user's input for correctness.
How would you go about doing that? Here are some ideas to help you get going:

You might want to make sure that the input values go through catchError()

before passing them to some other funcion.

Will you implement catchError() within other funcions? Or are the values passed
to catchError() immediately upon input and then passed to other funcions?





Tesing More Complex Code

[200]

Summary

We have covered quite a few concepts in this chapter. The most important is using

JavaScript's excepion handling mechanisms through the built-in objects, and using these
objects together with try, catch, and finally statements. We then tried to apply these

concepts into the cinema icket booking applicaion that we created.

We also learnt the following topics:

Issues that occur when using scripts together, such as name clashing and combining

event handlers to make the code more compact

Why we need to use JavaScript libraries, and the issues to consider, such as the

availability of documentaion, tutorials, plugins, and a tesing suite

How we can make use of tools such as Selenium to test GUI and widgets add-ons for
libraries (these will be covered in more detail in Chapter 8)

How we can write error messages, or our own messages, to the console log

How to perform excepion handling by using JavaScript built-in objects and using
these together with the try, catch, and finally statements

How to use JavaScript's excepion handling mechanisms in a sample applicaion

Up to this chapter, we have been using manual ways to test our code, albeit now using more

advanced tesing methods. In the next chapter, we will learn how to use diferent debugging
tools to make debugging, which is a part of tesing, easier. This will include using tools
such as the IE8 Developer Tools, the Firebug extension for Firefox, the Google Chrome Web
Browser Inspector, and the JavaScript debugger.

What makes such tools powerful is that they allow us to test in a less obtrusive manner; for
instance, there's no need for us to use alert(), as we can, in general, write error messages

to the built-in consoles of these tools. This is a real ime-saver and will make our tesing
process a lot smoother. We will learn about these diferent debugging tools in the next
chapter. See you there!












7
Debugging Tools

In this chapter, we shall learn about debugging tools that can make our lives, we shall learn about debugging tools that can make our lives we shall learn about debugging tools that can make our liveslives

easier. We will be using debugging tools provided by major browsers in the
market such as Internet Explorer, Firefox, Google Chrome, and Safari.

I understand that there is informaive documentaion on the Internet, thereforeis informaive documentaion on the Internet, therefore informaive documentaion on the Internet, therefore
what you can expect in this chapter is that I'll very brie�y talk about the'll very brie�y talk about thell very brie�y talk about the
features, and then walk through a simple example as to how you can makeen walk through a simple example as to how you can maken walk through a simple example as to how you can make
use of the debugging features to make your life easier.r life easier. life easier.

In general, you will learn about each of the following topics for the above-menioned, you will learn about each of the following topics for the above-menioned you will learn about each of the following topics for the above-menionedthe following topics for the above-menioned following topics for the above-menioned topics for the above-menioned for the above-menioned
debugging tools for each browser:

Where and how to get the debugging tools

How to use the tools to debug HTML, CSS, and JavaScript

Advanced debugging, such as seing breakpoints and watching variablesdvanced debugging, such as seing breakpoints and watching variablesbreakpoints and watching variables and watching variables

How to perform proiling by using the debugging toolsproiling by using the debugging tools by using the debugging tools

So let's get started.'s get started.s get started.






Debugging Tools

[202]

IE � Developer Tools (and the developer toolbar plugin

for IE6 and 7)

In this secion we will focus on Internet Explorer 8's developer toolbar.'s developer toolbar.s developer toolbar.

In case you are using Internet Explorer 6 or 7, here's how you can install the
developer toolbar for Internet Explorer 6 or 7.

You will need to visit http://www.microsoft.com/downloads/
details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db
91038&displaylang=en and download the developer toolbar. In case you

are reading a paper version of this book and cannot copy and paste the above

URL, Google "developer toolbar for IE6 or IE7", and you should land on the
download page you need.

Note that the toolbar from the above webpage is not compaible with Internet
Explorer 8.

If you do not wish to install the developer tool separately, I'd recommend that you installthe developer tool separately, I'd recommend that you install developer tool separately, I'd recommend that you installseparately, I'd recommend that you install, I'd recommend that you install'd recommend that you installd recommend that you install

Internet Explorer 8; IE8 comes pre-packaged with their developer tool and it is more handypre-packaged with their developer tool and it is more handy with their developer tool and it is more handy

when compared to installing developer tools for IE6 or IE7 separately.developer tools for IE6 or IE7 separately. tools for IE6 or IE7 separately.separately..

From this point onwards, I'll be covering the developer tool using the built-in tool in Internet'll be covering the developer tool using the built-in tool in Internetll be covering the developer tool using the built-in tool in Internet
Explorer 8.

Using IE developer tools

Now that we have obtained the plugin, it's ime to go through an example to get an idea's ime to go through an example to get an ideas ime to go through an example to get an idea
of how it works. I have prepared a sample code in the source code folder of this chapter;
go to the folder and open the document called IE-sample.html in you browser. Basically

what this example does is that it requires you to enter two numbers, and then it will performtwo numbers, and then it will perform numbers, and then it will perform

addiion, subtracion, muliplicaion, and division on the two numbers. The result will be, and division on the two numbers. The result will be and division on the two numbers. The result will be

shown on a box which is found on the right-hand side of the form.the right-hand side of the form. right-hand side of the form.-hand side of the form. side of the form.

Now give it a test, and once you are done with it, we will start to learn how we can debug

this web page using IE8's debugging tool.'s debugging tool.s debugging tool.

Open
I assume that the ile is sill open in your browser. If not, open IE-sample.html in your

browser (using Internet Explorer, of course). Once the example is opened, you will needOnce the example is opened, you will neednce the example is opened, you will need the example is opened, you will need, you will need

to open the debugging tool. You can navigate to. You can navigate toYou can navigate to Tools, and then click on Developer Tools.

Alternaively, you can access the debugging tool by pressing Shit + F12 on your keyboard.

Chapter 7

[203]

A brief introduction to the user interfaceintroduction to the user interfacentroduction to the user interfaceuser interfaceser interfaceinterfacenterface
Before we move into the actual debugging process, I'll briely focus on the key features of'll briely focus on the key features ofll briely focus on the key features ofbriely focus on the key features of focus on the key features offocus on the key features of on the key features of

the IE debugging tool.

1. HHTML: TheThehe HTML tab shows the source code for the script or web page that you arethe source code for the script or web page that you are source code for the script or web page that you are

currently viewing. When you click on this tab, you will get the related tabs on theviewing. When you click on this tab, you will get the related tabs on theWhen you click on this tab, you will get the related tabs on thethe related tabs on the related tabs on the

right-hand side, as shown in the previous screenshot.-hand side, as shown in the previous screenshot. previous screenshot.previous screenshot. screenshot.

2. CSS: TheCSS: TheThehe CSS tab shows you the CSS stylesheet used by the current webpage thatthe current webpage that current webpage that that

you are viewing.

3. Script: TheScript: TheThehe Script tab is where you will be performing your JavaScript debugging

tasks. When you click on this tab, you will get a list of features related to the

debugging tasks, such as Console, Breakpoints, Locals, and Watch.

4. Proiler: TheProiler: Ther: The: TheThehe Proiler tab shows the proiling data for the web page, should you youyou

choose to perform proiling.

Debugging basics of the IE debugging tool basics of the IE debugging toolbasics of the IE debugging toolasics of the IE debugging tooldebugging toolebugging tooltoolool
In general, we can use IE's debugging tool in two ways:'s debugging tool in two ways:s debugging tool in two ways:debugging tool in two ways: tool in two ways:

In a separate window

Docking it Docked within the browser




Debugging Tools

[204]

You can dock the debugging tool within the browser by going to the upper right-hand cornerupper right-hand corner right-hand corner-hand cornerhand corner cornercorner

of the debugging window and clicking on the pin icon. In my case, I prefer to dock it in myIn my case, I prefer to dock it in myn my case, I prefer to dock it in myI prefer to dock it in my prefer to dock it in my

browser so that I have more viewing space on my screen. Moreover, because the example

code is fairly small, docking it on your browser should suice.

In general, the let-hand side of the debugging panel is what the IE team calls thethe debugging panel is what the IE team calls the debugging panel is what the IE team calls the Primary

Content pane. This panel displays the web page's Document Object Model; this is the panelpane. This panel displays the web page's Document Object Model; this is the panelane. This panel displays the web page's Document Object Model; this is the panell displays the web page's Document Object Model; this is the panel displays the web page's Document Object Model; this is the panel's Document Object Model; this is the panels Document Object Model; this is the panel
that gives us a programmaic overview of the source code of the web page.

Here are some of the basics of debugging when using IE's debugging tool.'s debugging tool.s debugging tool.

Time for action – debugging HTML by using the IE� developer tool

1.	 To inspect HTML elements of the webpage, click on theelements of the webpage, click on the of the webpage, click on the HTML tab found in the

Primary Content Panel. We can click on the + icon located on the irst line of thethe irst line of the irst line of the
Primary Content Panel.

2.	 Once you have clicked on the + icon, you should see <head> and <body> appearing

as soon as the <html> tag is expanded; clicking on them again will show the other
elements contained within the <head> and <body> tags. For example, let us click

on the div element with the id wrap.

3.	 On clicking then clicking theclicking the div element, you can immediately see the various properies you can immediately see the various properies
associated with wrap, such as its parent element, its inherited HTML and CSS,
and the CSS properies that belong toproperies that belong to to wrap.

We can perform further inspecion by clicking on the various commands found
on the Properies pane:pane:ane:

Style: The: TheThe Style command improves CSS debugging by providing a list

of all of the rules that apply to the selected element. The rules are

displayed in precedence order; so those that apply last appear at the
botom, and any property overridden by another is struck through,
allowing you to quickly understand how CSS rules afect the current
element without manually matching selectors. You may quickly turn

a CSS rule on or of by toggling the checkbox next to the rule, and the
acion will take efect immediately on your page. In our case, you will In our case, you will

see two inheritances for ourtwo inheritances for our inheritances for ours for our for our #wrap element: body and HTML. You can
change the color property to, say, #eee, by clicking on the property

value and typingand typing typing #eee. Once you are done, press Enter and you canand you can

see changes immediately.



Chapter 7

[205]

Trace Styles: This command contains the same informaion as Styles: This command contains the same informaion asStyles: This command contains the same informaion as: This command contains the same informaion as Style

except it groups styles by property. If you are looking for informaion
about a speciic property, switch to the Trace Styles command. Simply

ind the property that interests you, click the plus (+) icon, and see a list

of all rules that set that property—again in precedence order.

Layout: The: TheThe Layout command provides box model informaion, such
as the element's ofset, height, and padding. Use this command when
debugging an element's posiioning.

Atributes: The: TheThe Atributes command allows you to inspect all of

the deined atributes of the selected element. This command
also allows you to edit, add, or remove the selected element's
atributes.

Time for action – debugging CSS by using the IE� developer toolime for action – debugging CSS by using the IE� developer toolaction – debugging CSS by using the IE� developer toolction – debugging CSS by using the IE� developer tool – debugging CSS by using the IE� developer tooldebugging CSS by using the IE� developer tool by using the IE� developer toolusing the IE� developer tooldeveloper tooleveloper tooltoolool

Now let use shit our atenion back to the Primary Content Panel.

1.	 Click on the CSS tab so that we have access to all of the CSS (external or internal)(external or internal) or internal)internal)

iles. Once you have done that, you will see an idenical CSS that is used byhave done that, you will see an idenical CSS that is used by done that, you will see an idenical CSS that is used by
our webpage.

2.	 Now I want you to click on a style property, say color, found in BODY, and change it

to #ccc. You will immediately see changes to the color of the text in our web page.

What just happened?
We have just performed the basics of debugging, which has provided us with the required

knowledge before we move into debugging JavaScript by using IE's debugging tool.'s debugging tool.s debugging tool.

The simple examples that we have carried out above are what we call ediing sourcescarried out above are what we call ediing sources above are what we call ediing sourcesdiing sourcessourcesources

on-the-fly; we can edit any HTML or CSS properies without going back to our sourcen-the-fly; we can edit any HTML or CSS properies without going back to our sourcethe-fly; we can edit any HTML or CSS properies without going back to our sourcehe-fly; we can edit any HTML or CSS properies without going back to our sourcefly; we can edit any HTML or CSS properies without going back to our sourcely; we can edit any HTML or CSS properies without going back to our source we can edit any HTML or CSS properies without going back to our source
code, changing it, saving it, and than reloading the ile in our browser. In my opinion,In my opinion,n my opinion,

such features are some of the key reasons why we should use debugging tools.

However, take note that the changes that you have made only exist in Internet Explorer'sexist in Internet Explorer's
internal representaion of the site. This means that refreshing the page or navigaing awayhis means that refreshing the page or navigaing away refreshing the page or navigaing away
brings back the original site.

However, there will be cases where you may want to save the changes, and in order to do to save the changes, and in order to do, and in order to do

that, you can click the click the Save buton to save the current HTML or CSS to a ile. This is done inThis is done in

order to prevent the accidental overwriing of your original source code.the accidental overwriing of your original source code. overwriing of your original source code. of your original source code. your original source code.original source code. source code. code..

Let us move on to JavaScript.et us move on to JavaScript.







Debugging Tools

[206]

Debugging JavaScript
Now its ime to learn how we can debug JavaScript by using IE's developer tool.w its ime to learn how we can debug JavaScript by using IE's developer tool.'s developer tool.s developer tool.

Time for action – more Debugging JavaScript by using the IE�

developer tool

Here are the steps to start debugging:

1.	 Click on the Script tab found in the Primary Content Panel.

2.	 Next, click on the buton that says, click on the buton that saysthe buton that says buton that says Start Debugging.

3.	 Ater clicking on Start Debugging, you will have all of the funcionality of a
proper debugger.

If you wish to stop debugging at any point in the debugging process, click on

Stop debugging.

Now let us see what we can do with the various funcionaliies of the debugging
tools. Let us start with the irst one: seing breakpoints.

We usually set breakpoints in order to control execuion. In the previous set breakpoints in order to control execuion. In the previousIn the previousn the previous

chapters, we have typically relied on alert() or other funcions in order to
control program execuion.program execuion.

However, by using IE's debugging tool, you can control program execuion by's debugging tool, you can control program execuion bys debugging tool, you can control program execuion bycontrol program execuion byby

simply seing breakpoints; you can save quite a lot of alert(), or other

self-deined funcions, along the way.

Now, let us control execuion by using breakpoints.

4.	 You can set a breakpoint by right-clicking on a line number and selecingselecing

Insert Breakpoint. In our case, let us go to the line that contains

buildContent(answerB, "minus"); right-click on it, and then-click on it, and thenclick on it, and then on it, and then and then

select Insert Breakpoint.

5.	 Now try running the example by entering some values into the input ields in
your browser. You will see that the dynamic content will not be created on the

black square on the right-hand side. This is because the code execuion stops at-hand side. This is because the code execuion stops at. This is because the code execuion stops at
buildContent(answerB, "minus");.

Chapter 7

[207]

We usually use breakpoints to inspect variables; we need to know if our code
is execuing the way in which we want it to, in order to make sure that it isthe way in which we want it to, in order to make sure that it is way in which we want it to, in order to make sure that it is

correct. So now, let us see how we can set breakpoints and inspect variables.

We inspect variables by using the watch funcionality. Coninuing from thewatch funcionality. Coninuing from the funcionality. Coninuing from thethe

previous example, we can use the watch funcionality by clicking on theexample, we can use the watch funcionality by clicking on thewatch funcionality by clicking on the funcionality by clicking on the
Watch pane. Alternaively, you can click on. Alternaively, you can click on Locals, which provides a similar

funcionality and allows us to see a set of variables. This can be done to monitor monitor

a custom list of variables, and also to inspect the current state of variables. and also to inspect the current state of variables.

To do what we have just described, we need to perform the following steps:o do what we have just described, we need to perform the following steps: to perform the following steps: perform the following steps:the following steps: following steps:

6.	 Click on Start Debugging and set breakpoints for the lines that contain var

answerA = add(numberA, number); and buildContent(answerA,

"add");

7.	 Now, run the example, and type inow, run the example, and type inw, run the example, and type inrun the example, and type inthe example, and type in 5 and 3 respecively for the input ields.
Then click on Submit.

8.	 Now go to your Debugger panel, and click on Locals. You will see the output aswill see the output as asas

shown in the following screenshot:the following screenshot: screenshot::

What this panel shows is a list of local variables that are local to the funcion
where breakpoints are set

Noice that answerA, answerB, answerC, and and answerD are currently undeined
as we have not performed any calculaion for them, because we have set the
breakpoint at var answerA = add(numberA, number);.

Debugging Tools

[20�]

9.	 Next, click on Watch. You can now add the variables that you want to inspect..

You can achieve this by typing in the name of the variables. Type inachieve this by typing in the name of the variables. Type in this by typing in the name of the variables. Type inthe name of the variables. Type in name of the variables. Type in answerA

and numberB, and then press Enter. You will see a screen similar to the examplewill see a screen similar to the example see a screen similar to the example

shown in the following screenshot: screenshot::

As explained previously, answerA is not deined yet as it has not beennot been been

calculated by our program. Also, because we enter the values forby our program. Also, because we enter the values for our program. Also, because we enter the values for numberA

and numberB, numberB is naturally deined.

Did you noice that we have the incorrect types for our input?
This is because we have used the .value method to access

the values of the input ields. As a good JavaScript programmer,
we should be convering the values to loaing-point numbers
by using parseFloat().

We can coninue to execute the code (in debugging mode) by performinge the code (in debugging mode) by performing the code (in debugging mode) by performing
Coninue, Step In, Step Over, and Step Out operaions in the debuggingoninue, Step In, Step Over, and Step Out operaions in the debuggingStep In, Step Over, and Step Out operaions in the debuggingtep In, Step Over, and Step Out operaions in the debuggingIn, Step Over, and Step Out operaions in the debuggingn, Step Over, and Step Out operaions in the debuggingStep Over, and Step Out operaions in the debuggingtep Over, and Step Out operaions in the debuggingOver, and Step Out operaions in the debuggingver, and Step Out operaions in the debugging and Step Out operaions in the debugging Step Out operaions in the debuggingStep Out operaions in the debuggingtep Out operaions in the debuggingOut operaions in the debuggingut operaions in the debuggingthe debugging debugging

window.

We will move quickly into the example to see how Coninue, Step In, Step OverConinue, Step In, Step Overoninue, Step In, Step OverStep In, Step Overtep In, Step OverIn, Step Overn, Step Over, Step Overver

and Step Out work. Coninuing from the above example:ut work. Coninuing from the above example:the above example: above example:

10.	Click on the Coninue buton, which is green and looks like a "play" buton.which is green and looks like a "play" buton. is green and looks like a "play" buton."play" buton.play" buton." buton. buton.
Immediately, you will see that the code will execute unil the next breakpoint.will see that the code will execute unil the next breakpoint. see that the code will execute unil the next breakpoint.
This means that the variables that were previously undeined will now bere previously undeined will now be previously undeined will now be
deined. If you click on Locals, you will see output similar to the examplewill see output similar to the examplesee output similar to the exampleoutput similar to the example

shown in the next screenshot::

Chapter 7

[20�]

11.	Click on Watch, and you will see a screen similar to the example displayed in the and you will see a screen similar to the example displayed in the you will see a screen similar to the example displayed in thewill see a screen similar to the example displayed in the see a screen similar to the example displayed in the a screen similar to the example displayed in the

next screenshot::

This means that the efect of Coninue is that it will execute the code from one
breakpoint to the next breakpoint. If there is no second breakpoint, the codethe next breakpoint. If there is no second breakpoint, the code next breakpoint. If there is no second breakpoint, the code If there is no second breakpoint, the codeIf there is no second breakpoint, the code

will execute up to the end.

You might want to experiment with Step In, Step Over, and Step Out.with Step In, Step Over, and Step Out. Step In, Step Over, and Step Out.Step Over, and Step Out.Over, and Step Out.Step Out.Out.

In general, this is what they do:

Step In: This traces the code as the code executes. For instance, you: This traces the code as the code executes. For instance, you This traces the code as the code executes. For instance, you traces the code as the code executes. For instance, you

can perform the steps shown in the above example except that youthe steps shown in the above example except that you steps shown in the above example except that youthe above example except that you above example except that youabove example except that you example except that you

click on Step In instead of Coninue. You will noice that you are You will noice that you areYou will noice that you areou will noice that you are
efecively tracing the code. Next, you can check on theNext, you can check on the, you can check on the Locals and

Watch window and you will noice that the previously-undeined and you will noice that the previously-undeined you will noice that the previously-undeined
variables will be deined as the code progresses.deined as the code progresses. as the code progresses.the code progresses. code progresses.progresses..

Step Over: This simply moves to the next line of code without jumping This simply moves to the next line of code without jumping simply moves to the next line of code without jumping

into other funcions as with what happened in Step In.

Step Out: This simply "steps out" of the current breakpoint unil the: This simply "steps out" of the current breakpoint unil the simply "steps out" of the current breakpoint unil the"steps out" of the current breakpoint unil thesteps out" of the current breakpoint unil thes out" of the current breakpoint unil the out" of the current breakpoint unil the" of the current breakpoint unil the of the current breakpoint unil the
next breakpoint. It is similar to Coninue. If you use Step Out ater Step
In, it will coninue to the next breakpoint (if any).

Now let us move on to the next useful feature, stopping your code when anfeature, stopping your code when an, stopping your code when an

error is encountered. is encountered.

To enable this feature, you will need to click on the Break on Error buton,
or you can simply press Cntrl + Shit + E. This feature should be automaicallyThis feature should be automaicallyhis feature should be automaically
enabled once you start debugging.

What this feature does is stop execuing the code should any
error be discovered. For example, uncomment the line that says:For example, uncomment the line that says:or example, uncomment the line that says:

buildContent(noSuchThing, "add"); and run the code inand run the code in

debugging mode. You will see the following screenshot in thewill see the following screenshot in the see the following screenshot in the screenshot in the in the Console,

in your debugging window:







Debugging Tools

[210]

This is one of the cool things about using a debugger; it helps you to spot errors
during run ime, so that you can quickly idenify the errors that you have made..

Now that we have a basic knowledge and understanding of some of the more

advanced features of IE's debugging tool, it's ime to be concerned about the features of IE's debugging tool, it's ime to be concerned about the's debugging tool, it's ime to be concerned about thes debugging tool, it's ime to be concerned about the's ime to be concerned about thes ime to be concerned about the
performance of our JavaScript program.program..

The Internet Explorer debugging tool comes with a built-in proiler called the
JavaScript Proiler, which helps to take your site to the next level by improvingtake your site to the next level by improving

its performance.

In general, the proiler gives you data on the amount of ime spent in each ofproiler gives you data on the amount of ime spent in each ofroiler gives you data on the amount of ime spent in each ofgives you data on the amount of ime spent in each of
your site's JavaScript methods and even built-in JavaScript funcions. Here's howavaScript methods and even built-in JavaScript funcions. Here's howript methods and even built-in JavaScript funcions. Here's how. Here's how's hows how

you can use this feature.

12.	Using the sample example source code in your browser, open the Develop tool and

click on the Proile tab. Then click on on Start Proiling, to begin a session.

13.	Go to your browser, and enter some sample values. For instance, I enteredI entered entered 5 and 3.

Once you have entered the sample values, go to your debugging window and click

on Stop Proiling. A screen similar to the one shown in the following screenshot will screenshot will willwill

be displayed:

Noice that the Jscript Proiler includes the ime spent on each of the funcionsthe Jscript Proiler includes the ime spent on each of the funcions Jscript Proiler includes the ime spent on each of the funcionsscript Proiler includes the ime spent on each of the funcionscript Proiler includes the ime spent on each of the funcions
(the name of each funcion is also given). The number of imes that eachis also given). The number of imes that each also given). The number of imes that eachThe number of imes that eachhe number of imes that each
funcion is being used is also given, as shown in theis also given, as shown in thegiven, as shown in the Count column. You maycolumn. You may. You mayou mayu may

have noiced that the ime taken for each of our funcions isime taken for each of our funcions is 0.00; this is this is

because our example program is relaively small, so the ime required isime required is
close to zero. zero.

Chapter 7

[211]

What just happened?
We have just covered Internet Explorer's developer tool, which helps us to performjust covered Internet Explorer's developer tool, which helps us to perform covered Internet Explorer's developer tool, which helps us to perform's developer tool, which helps us to performs developer tool, which helps us to perform

debugging tasks in a much streamlined manner.

In case want to know what the diference between debugging manually and using awant to know what the diference between debugging manually and using awhat the diference between debugging manually and using athe diference between debugging manually and using aand using a

debugging tool is, I can safely tell you from experience that the amount of ime saved by is, I can safely tell you from experience that the amount of ime saved by, I can safely tell you from experience that the amount of ime saved byI can safely tell you from experience that the amount of ime saved by can safely tell you from experience that the amount of ime saved by that the amount of ime saved bythat the amount of ime saved bysaved by by

using a debugging tool alone is a good enough reason for us to use debugging tools.enough reason for us to use debugging tools. reason for us to use debugging tools.

You may understand that there are various quirks involved when developing for Internet

Explorer; using its built-in debugging tools will help you to igure out these quirks in a more to igure out these quirks in a more igure out these quirks in a more
eicient manner. manner.

With that in mind, let us move on to the next tool.

Safari or Google Chrome Web Inspector and JavaScript

Debugger
In this secion, we will learn about the JavaScript debugger used in Safari and Google
Chrome. Both browsers have similar code base, but have subtle diferences, so let us
start by learning about the diferences between Safari and Google Chrome.

Differences between Safari and Google Chrome
If you are an Apple fan, you will no doubt feel that Safari is perhaps the best browser on

planet Earth. Nonetheless, both Google Chrome and Safari have their roots in an open

source project called WebKit.

Safari and Google Chrome use a diferent JavaScript Engine. Since Safari 4.0, Safari has used. Since Safari 4.0, Safari has used Since Safari 4.0, Safari has usedSince Safari 4.0, Safari has usedince Safari 4.0, Safari has usedSafari has usedhas used

a new JavaScript engine called SquirrelFish. Google Chrome uses the V8 JavaScript Engine.

However, in terms of JavaScript debugging, the two are almost idenical when we are using
the built-in debugger provided by Google Chrome and Safari; even the interface is similar. Chrome and Safari; even the interface is similar.

In the following secions, I'll be using Chrome to explain the examples.

Debugging Tools

[212]

Debugging using Chrome
For Google Chrome, there is no need to download any external tools in order for us to

perform debugging tasks. The debugging tools are delivered right out the box with theThe debugging tools are delivered right out the box with thehe debugging tools are delivered right out the box with thethe

browser itself. So now, we will see how we can start our debugging session, using

sample.html.

Opening and Enabling: We'll start by opening and enabling debugging in Chrome. There are
basically two tools in Google Chrome that you can use to help you to perform debugging

tasks for your web applicaions: the web inspector and the javascript debugger.

Web Inspector: Google Chrome's Web Inspector's predomGoogle Chrome's Web Inspector's predom's Web Inspector's predoms Web Inspector's predomWeb Inspector's predomeb Inspector's predomInspector's predomnspector's predominant use is for inspecing your
HTML and CSS elements. To use Web Inspector, right-click on any component on a web pageInspector, right-click on any component on a web page, right-click on any component on a web pageight-click on any component on a web page
to launch the Web Inspector. You'll be able to see the elements and resources associated
with the component on which you clicked, including a hierarchy view of the DOM and a

JavaScript console. To use the Web Inspector, open To use the Web Inspector, openWeb Inspector, openeb Inspector, openInspector, opennspector, open example.html in Google Chrome.

Move your mouse to the side bar column that says Column 2. Right-click on-click onclick on on Column 2 and

you will see a pop-up menu. Select Inspect Element. A new window is opened. This is theed. This is the. This is the

Web Inspector.nspector.spector.

Now we'll move on to the JavaScript debugger.'ll move on to the JavaScript debugger.ll move on to the JavaScript debugger.

JavaScript Debugger:: To use Chrome's JavaScript Debugger, select theo use Chrome's JavaScript Debugger, select the's JavaScript Debugger, select thes JavaScript Debugger, select theelect the Page menu icon,

which can be found on the right-hand side of thefound on the right-hand side of the on the right-hand side of theon the right-hand side of the the right-hand side of the-hand side of the of the URL input ield, and then go to, and then go to Developer

| Debug JavaScript Console. You can also press You can also press Ctrl + Shit + J to launch JavaScript Debugger.launch JavaScript Debugger. JavaScript Debugger.

If you are using Safari, you will have to irst enable the developer menu by clicking on theSafari, you will have to irst enable the developer menu by clicking on theafari, you will have to irst enable the developer menu by clicking on the
Display Seings icon that is found on the right-hand side of the Page icon, select Preference,

and then go to Advanced. On this screen, enable the opion Show Develop menu in menu

bar. Then you can access this menu bar by clicking on theen you can access this menu bar by clicking on then you can access this menu bar by clicking on the Page icon and going to Develop

and selecing Start Debugging JavaScript. The interface is almost idenical as to what we see
in Google Chrome.

Noice that by opening the JavaScript Debugger, you will be opening up the same window
that you saw in the Web Inspector. However, the default tab is nowWeb Inspector. However, the default tab is noweb Inspector. However, the default tab is nowInspector. However, the default tab is nownspector. However, the default tab is now Scripts. In this tab, you

can to view the source code of our example menioned in the previous subsecion.the previous subsecion. previous subsecion.previous subsecion. subsecion.

This is the main screen that we will be using to perform our debugging tasks. In the following

sessions, we will start to get our hands a litle dirty by doing some basic debugging.

Most of the tasks and acions that you are going in order to perform should be conceptually
similar if you have gone through our debugging session on using the Internet Explorergone through our debugging session on using the Internet Explorer through our debugging session on using the Internet Explorer

developer tools.

We have just explored the basic acions of opening and staring the Web Inspector and theWeb Inspector and theeb Inspector and theInspector and thenspector and the

JavaScript Debugger. Let us now go through a brief introducion to the user interface, inDebugger. Let us now go through a brief introducion to the user interface, inebugger. Let us now go through a brief introducion to the user interface, inthrough a brief introducion to the user interface, in a brief introducion to the user interface, in
order to get you up to speed..

Chapter 7

[213]

A brief introduction to the user interface
Here's a brief explanaion of where you can ind the key features in Google Chrome's
debugging tool as shown in the following screenshot:

1. Elements: TheThehe Elements tab shows you the source code for the script or web page the source code for the script or web page source code for the script or web page

that you are currently displaying. When you click on the Elements icon, you will get

the related tabs (as shown on the right-hand side of the previous screenshot), such related tabs (as shown on the right-hand side of the previous screenshot), such(as shown on the right-hand side of the previous screenshot), suchshown on the right-hand side of the previous screenshot), such-hand side of the previous screenshot), such of the previous screenshot), suchprevious screenshot), such screenshot), such), such such

as Computed Style.

2. SScripts: Thes: The: TheThehe Scripts tab is where you will perform your JavaScript debugging

tasks. When you click on the Scripts icon, you will get a list of related features for

debugging, such as Watch Expressions, Call Stack, Scope Variables and Break.

3. Proiles: The Proiles tab shows the proiling data of your web page, should you
choose to perform proiling.

Time for action – debugging with Chromeaction – debugging with Chromection – debugging with Chrome – debugging with Chromedebugging with Chrome

1. We'll now learn how to use the console and make use of breakpoints in order to'll now learn how to use the console and make use of breakpoints in order toll now learn how to use the console and make use of breakpoints in order to

simplify our debugging session. We'll start with the console.'ll start with the console.ll start with the console.

2.	 The console basically shows what you have done within a debugging session. Wehave done within a debugging session. We done within a debugging session. We

irst see how we can access the console.

3. Start of by opening the ile sample.html in your Google Chrome browser, if you

have not done so already. Once you have done that, perform the following steps inhave done that, perform the following steps in done that, perform the following steps in that, perform the following steps in, perform the following steps in

order to show the console:

Debugging Tools

[214]

4.	 Open your JavaScript debugger by selecting thepen your JavaScript debugger by selecting theen your JavaScript debugger by selecting theelecting theing the the Page menu icon which can

be found on the right-hand side of thefound on the right-hand side of the on the right-hand side of theon the right-hand side of the the right-hand side of the-hand side of the of the URL input ield, and then go to, and then go to Developer |

Debug JavaScript. You can also press You can also press Ctrl + Shit + J to launch JavaScript Debugger.launch JavaScript Debugger. JavaScript Debugger.

5.	 Once you have completed step 4, click on the console icon, which can be found atn, which can be found at, which can be found at which can be found atich can be found atbe found at found atat

the botom of the JavaScript debugger. Once you are done, you will see a screenOnce you are done, you will see a screennce you are done, you will see a screenwill see a screen see a screen

similar to the example shown in the following screenshot: screenshot::

Now that we have opened the console, we move on to the mostow that we have opened the console, we move on to the most

commonly-used features of the debugger. Along the way, you willthe debugger. Along the way, you will debugger. Along the way, you will

also see how the console logs our acions.

We'll now move on to breakpoints by learning how to set them.'ll now move on to breakpoints by learning how to set them.ll now move on to breakpoints by learning how to set them.

As noted earlier, seing breakpoints is an important part of the debuggingthe debugging debugging

process. So we will start of our actual debugging process by seing aSo we will start of our actual debugging process by seing ao we will start of our actual debugging process by seing a
breakpoint.

6.	 With sample.html opened in Google Chrome, start your debugger and makeopened in Google Chrome, start your debugger and make in Google Chrome, start your debugger and make

sure that you are in the Scripts tab. You can set a breakpoint by clicking on the line

number at which we want to set our breakpoint. Let use try going to the line that

contains buildContent(answerB, "minus"); and click on the line number.

You will see a screen similar to the example shown in the following screenshot:will see a screen similar to the example shown in the following screenshot: see a screen similar to the example shown in the following screenshot: screenshot::

Chapter 7

[215]

Noice that line 130 now has a blue arrow (highlighted line), and over to the(highlighted line), and over to the, and over to the

right of the source code panel, you will see the Breakpoint panel. This now This now

contains the breakpoint, which we have just set, within it..

7.	 Run the example and enter some values into the input ields in your browser.
I want you to enter want you to enter to enter 4 in the irst input ield and 3 in the second input ield.the second input ield. second input ield.
Then click on Submit. You will see that the dynamic content will not be created

in the black square on the right. This is because the code has stopped at

buildContent(answerB, "minus");.

8.	 Now go back to your debugger, and you will see the next screenshot on thewill see the next screenshot on thesee the next screenshot on thenext screenshot on theon the

right-hand side of your source code, similar to the example shown below:-hand side of your source code, similar to the example shown below: of your source code, similar to the example shown below:

You will see that Call Stack, and and Scope variables are now being populated

with values, while Watch Expressions is not. We will cover these in detail in

the next few paragraphs. But for now, we irst start of withof with Call Stack and

Scope Variables.

As shown in the previous screenshot,previous screenshot, screenshot, Call Stack and Scope Variables are

now populated with values when we execute the program. In general, Call

Stack contains the sequence of funcions that are being executed, and Scope

Variables shows the values of the variables that are available unil a breakpoint the values of the variables that are available unil a breakpointnil a breakpointil a breakpoint
or end of execuion.

Debugging Tools

[216]

Here's what happens when we click on the's what happens when we click on thes what happens when we click on theon thethe Submit buton: the irst funcion
that is executed is formSubmit(), and within this funcion, var answerA answerAanswerA,

var answerB, var answerC, and var answerD are calculated. This is how the

Scope Variables get populated with our values.

In general, that is how Call Stack and Scope Variables work in Google Chrome.

Now, let us focus on a feature that has been lingering in our minds,focus on a feature that has been lingering in our minds, on a feature that has been lingering in our minds, Watch

Expression.

Before we explain what Watch Expression is, it is best that we see it in acion,
irst. Going back to the previous screenshot, you will noice that Going back to the previous screenshot, you will noice thatGoing back to the previous screenshot, you will noice thatprevious screenshot, you will noice thatscreenshot, you will noice thatwill noice that noice that Watch

Expression is not populated at this point of ime. We'll now try to populate'll now try to populatell now try to populate

Watch Expression by performing the following steps:the following steps: following steps:

9.	 Refresh your browser and go back to your debugger.

10.	 In the Watch Expression panel, click on on Add, and enter the following: document.

sampleform.firstnumber.value andand document.getElementById("dynami

c").

11.	Go back to your browser and enter 4 and 3 for the input values. Click on on Submit.

Assuming that you have not removed the breakpoint that we set in the previous

subsecion, you will see the informaion shown in the next screenshot in thewill see the informaion shown in the next screenshot in the see the informaion shown in the next screenshot in thenext screenshot in the in the Watch

Expression panel:

Watch Expression is now populated. document.sampleform.firstnumber.

value andand document.getElementById("dynamic") are lines of code

copied from our JavaScript program. If you were to trace the code, you would

noice that document.sampleform.firstnumber.value is used to deriveis used to derive

the value of the irst input ield, and document.getElementById("dynamic
") is used to refer to thethe div element.

Up to this point, you will have understood thatwill have understood that understood thatood thatd that Watch Expression is useful for

checking out expressions. All you have to do is add the expression that you

want to see, and, ater execuing the program, you will see what that expressionexecuing the program, you will see what that expression the program, you will see what that expression

means, refers to, or what current values it has. This allows you to watch thes, refers to, or what current values it has. This allows you to watch the, refers to, or what current values it has. This allows you to watch thes to, or what current values it has. This allows you to watch the to, or what current values it has. This allows you to watch the. This allows you to watch theThis allows you to watch the

expressions update as the program executes. You do not have to complete the update as the program executes. You do not have to complete theexecutes. You do not have to complete the You do not have to complete theYou do not have to complete theou do not have to complete the

program to see the value of the variables.

Chapter 7

[217]

Now it's ime to move on to the Coninue, Step In, Step Over, and Step Out's ime to move on to the Coninue, Step In, Step Over, and Step Outs ime to move on to the Coninue, Step In, Step Over, and Step OutConinue, Step In, Step Over, and Step Outoninue, Step In, Step Over, and Step OutStep In, Step Over, and Step Outtep In, Step Over, and Step OutIn, Step Over, and Step Outn, Step Over, and Step OutStep Over, and Step Outtep Over, and Step OutOver, and Step Outver, and Step Out and Step Out Step OutStep Outtep OutOutut

operaions in the debugging window.the debugging window. debugging window.

The concepts here are prety similar to what we have seen in Internet Explorer
developer tools. In case you are wondering where the butons are for execuing
these operaions, you can ind them above theoperaions, you can ind them above the, you can ind them above thethe Watch Expression panel. HereHereere

are the related concepts for each of the operaion:the operaion: operaion:

Step In: This traces the code as the code executes. Assuming that This traces the code as the code executes. Assuming that traces the code as the code executes. Assuming that

you are sill at our example, you can click on the icon with an arrow
poining downwards. You will see that you are efecively tracing the
code. As you coninue to click on Step In, you will see the values in

Scope Variables and Call Stack change. This is because at diferentdiferent
points of the code there will be diferent values for various variables
or expressions..

Step Out: This simply moves to the next line of code without jumping This simply moves to the next line of code without jumping simply moves to the next line of code without jumping

into other funcions, similarly to how Step In works. to how Step In works.how Step In works.

Step Over: This simply moves to the next line of code. This simply moves to the next line of code. simply moves to the next line of code.

In this last subsecion, we will focus on how we can pause on excepions.focus on how we can pause on excepions. on how we can pause on excepions.on excepions.excepions.
In general what this means is that the program will halt at the line where aprogram will halt at the line where a will halt at the line where athe line where a line where a

problem is encountered. Here's what we will do to see it in acion:'s what we will do to see it in acion:s what we will do to see it in acion:

12.	Openpen sample.html in your editor. Search for the line that saysthat says says buildContent

(noSuchThing, "add"); and uncomment it. Save the ile and open it in
Google Chrome.

13.	Open the debugger. Click on the buton with a Pause signdebugger. Click on the buton with a Pause sign on the buton with a Pause sign , which can be found to

the right of the of theof the Show Console buton. This will cause the debugger to halt execuion
when errors are encountered..

14.	As usual, enter some values for the input ields. Click onusual, enter some values for the input ields. Click on, enter some values for the input ields. Click on Submit. Once you have

done so, go back to your debugger, and you will see the informaion shown in thewill see the informaion shown in the see the informaion shown in the
following screenshot: screenshot::

In general, this is the kind of visual message that you can get if you enable the

pause on excepion feature.







Debugging Tools

[21�]

What just happened?
We have covered the basics of using Google Chrome. If you have followed the previousprevious

tutorial, you will have learned how to use the Console, seing, stepping in, stepping outConsole, seing, stepping in, stepping outonsole, seing, stepping in, stepping out stepping out out

and over a breakpoint, pausing on excepions, and watching the variables.a breakpoint, pausing on excepions, and watching the variables. breakpoint, pausing on excepions, and watching the variables.

By using a mix of the above features, you will be able to quickly snif out and spot unintendedf the above features, you will be able to quickly snif out and spot unintended the above features, you will be able to quickly snif out and spot unintended
JavaScript errors. You can even trace how your JavaScript code is working as it executes.

Over the next few secions, you will begin to noice that most of the tools have very similar
features, although some may have diferent terms for the same feature.

Now it's ime to move on to the other tool, the Opera JavaScript Debugger.'s ime to move on to the other tool, the Opera JavaScript Debugger.s ime to move on to the other tool, the Opera JavaScript Debugger.

Opera JavaScript Debugger (Dragonly)
Opera's'ss JavaScript Debugger is called Dragonfly. In order to use it, all you need to do Debugger is called Dragonfly. In order to use it, all you need to dofly. In order to use it, all you need to doly. In order to use it, all you need to do

is download the latest version of Opera; Dragonfly is included in the latest version offly is included in the latest version ofly is included in the latest version of

Opera already.

Now that you have installed the necessary sotware, it is ime for us to performnecessary sotware, it is ime for us to perform sotware, it is ime for us to perform it is ime for us to perform is ime for us to perform
debugging tasks.

Using Dragonly
We'll i'll ill irst start with our example.html ile. Open this ile in Opera browser. Now we willbrowser. Now we willrowser. Now we willwill

see how we can start Dragonfly.fly.ly.

Starting Dragonly
To access Dragonly, go to menu opion menu opion Tools. SelectSelect Advanced, and then click onand then click on Developer

Tools. Once you have done that, Dragonfly will appear. As usual, we'll start with a brieffly will appear. As usual, we'll start with a briefly will appear. As usual, we'll start with a brief'll start with a briefll start with a briefbrief

introducion to the user interface of the tool..

Brief Introduction to the User Interface

Here's a's as a brief overview of the most important funcions that we will be using, as shown in as shown in

the next screenshot::

Chapter 7

[21�]

1. DOM: This tab is used for checking the HTML and CSS elements This tab is used for checking the HTML and CSS elements is used for checking the HTML and CSS elements

2. Scripts: This tab is used when we are debugging JavaScript is used when we are debugging JavaScript

3. Error Console: This tab shows the various error messages when we are debugging shows the various error messages when we are debugging

JavaScript.

We'll no'll noll now start with debugging example.html.

Time for action – debugging with Opera Dragonly
1. In this secion, we'll learn how to use the debugging faciliies of the Dragonfly. We'll'll learn how to use the debugging faciliies of the Dragonfly. We'llll learn how to use the debugging faciliies of the Dragonfly. We'llthe Dragonfly. We'll Dragonfly. We'llfly. We'llly. We'll'llll

start by seing breakpoints.

Here's h's hs how we can set a breakpoint in Dragonfly:fly:ly::

2.	 With sample.html opened in Opera, start Dragonfly and click on theopened in Opera, start Dragonfly and click on the in Opera, start Dragonfly and click on thefly and click on thely and click on the Scripts

tabbed page. You can set a breakpoint by clicking on the line number at

which we want to set our breakpoint. Let us try going to the line that contains

buildContent(answerB, "minus"); and then clicking on the line number.

3.	 Go to your browser and execute example.html. Enter 5 and 3 as the inputs. Clickickk

on Submit. As usual, you will not see any content being created dynamically. Thewill not see any content being created dynamically. The not see any content being created dynamically. Thee any content being created dynamically. The any content being created dynamically. Thedynamically. The TheThehe

program's breakpoint is at contains's breakpoint is at containss breakpoint is at contains buildContent(answerB, "minus");.

4.	 Now go back to Dragonly, and you will noice that the panels forwill noice that the panels for noice that the panels for Call Stack and

Inspecion are now populated. You should see similar values to those shown inshown in

the next screenshot if you enter the same values as I did:next screenshot if you enter the same values as I did: screenshot if you enter the same values as I did:

Debugging Tools

[220]

The values shown in Inspecion and Call Stack are the values and funcions that
have been calculated and executed up to the breakpoint.ve been calculated and executed up to the breakpoint. been calculated and executed up to the breakpoint.

What just happened?hat just happened?
We have just used Dragonly to set a breakpoint, and as we executed our JavaScriptexecuted our JavaScript our JavaScript

program, we have seen how Dragonly's various ields get populated. We'll now go's various ields get populated. We'll now gos various ields get populated. We'll now go'll now goll now go

into detail with regards to each ield.

Inspection and Call Stack
As shown in the previous screenshot,previous screenshot, screenshot, Call Stack and Inspecion are populated with values

when we execute the program. In general, Call Stack shows the nature of the runimeshows the nature of the runime
environment at the ime of a speciic funcion call–what has been called, and in what order. has been called, and in what order.has been called, and in what order.

The inspecion panel lists all of the property values and others for the current call. Stack inspecion panel lists all of the property values and others for the current call. Stack
frames are speciic parts of the Call Stack. Inspecion is conceptually similar to the the Scope

Variables seen in Google Chrome.

Thread Log
The Thread Log panel shows the details of the diferent threads running through the scriptshows the details of the diferent threads running through the script the details of the diferent threads running through the script
that you are currently debugging.debugging..

We'll now move on into greater details about the funcionaliies of Dragonly.'ll now move on into greater details about the funcionaliies of Dragonly.ll now move on into greater details about the funcionaliies of Dragonly.

Continue, Step Into, Step Over, Step Out, and Stop at Error
We can also perform the usual Coninue, Step Into, Step Over, and Step Out tasksConinue, Step Into, Step Over, and Step Out tasksoninue, Step Into, Step Over, and Step Out tasks, Step Into, Step Over, and Step Out taskstep Into, Step Over, and Step Out tasksInto, Step Over, and Step Out tasksnto, Step Over, and Step Out tasks, Step Over, and Step Out taskstep Over, and Step Out tasksOver, and Step Out tasksver, and Step Out tasks, and Step Out tasks Step Out tasksStep Out taskstep Out tasksOut tasksut tasks

while debugging our code. Here's a screenshot that shows us where to ind the's a screenshot that shows us where to ind thes a screenshot that shows us where to ind thethat shows us where to ind the
previously-menioned funcions:funcions:

Chapter 7

[221]

1. Coninue: This coninues the currently-selected script ater it has stopped at a
breakpoint. This will coninue to the next breakpoint, if any, or it will coninue
to the end of the script.

2. Step Into: This allows you to step into the next funcion in the stack, ater theInto: This allows you to step into the next funcion in the stack, ater thento: This allows you to step into the next funcion in the stack, ater the
current funcion within which the breakpoint is contained. It efecively traces the It efecively traces the
code as the code executes. Assuming that you are sill at our example, you can click
on the Step Into icon with an arrow poining downwards. You will see that you are
efecively tracing the code. As you coninue to click on Step In, you will see the

values in Inspecion and Call Stack change. This is because at diferent points ofdiferent points of points of

the code there will be diferent values for various variables or expressions..

3. Step over: This allows you to step to the next line ater the line on which the: This allows you to step to the next line ater the line on which theThis allows you to step to the next line ater the line on which the
breakpoint is set—you can use this muliple imes to follow the execuion path
of the script.

4. Step out: This causes you to step out of the funcion.

5. Stop at error: This allows you to stop execuing your script at the point wherer script at the point where script at the point where

an error is encountered. To see this in acion, open the ile example.html in

your editor, and search for the line that saysearch for the line that says buildContent(noSuchThing,

"add"); and uncomment it. Save the ile and then open it again, using Opera. Goopen it again, using Opera. Go

to Dragonly and click on the icon. Now execute your program in Opera and enter
some sample values. Once you are done, you will see the following screenshotwill see the following screenshot see the following screenshot screenshot

in Dragonly:

Noice that at line 46 there is a black arrow poining to the right. This means that there is an
error in this line of code.

Before we end of the secion on DragonFly, we'll take a look at one more important feature
the seings feature.

Debugging Tools

[222]

Settings
Opera's Dragonly has a nity feature that allows us to create diferent seings for our
debugging tasks. There is a whole list of these seings, so I will not go through all of them.
But I will focus on those that are useful for your debugging sessions.

Scripts: In this panel, enabling reload documents automaically when selecing: In this panel, enabling reload documents automaically when selecing In this panel, enabling reload documents automaically when selecingreload documents automaically when selecingeload documents automaically when selecingautomaically when selecing when selecing
window is a huge ime saver when you have muliple JavaScript iles to debug,
because it will help you to automaically reload the documents. you to automaically reload the documents.you to automaically reload the documents. to automaically reload the documents. automaically reload the documents.automaically reload the documents. reload the documents.

Console: This panel allows you to control what informaion you wish to see during: This panel allows you to control what informaion you wish to see during This panel allows you to control what informaion you wish to see duringThis panel allows you to control what informaion you wish to see duringhis panel allows you to control what informaion you wish to see during
your debugging session. From XML to HTML, you can enable or disable messages in, you can enable or disable messages in you can enable or disable messages inenable or disable messages in or disable messages inor disable messages in disable messages in

order to see the most important informaion.

With that, we'll end the secion on Dragonly and move on to Firefox and the
Venkman Extension.

Firefox and the Venkman extension

We know that Firefox has many plugins and tools, some of which are made for web

development purposes. In this secion, we will learn about the Venkman extension,
which is Mozilla's JavaScript Debugger.

Using Firefox's Venkman extension's Venkman extensions Venkman extensionextensionxtension
We'll start of by obtaining the extension; we will assume that you have Firefox installed. In
my case, I am using Firefox 3.6.3.

Obtaining the Venkman JavaScript Debugger extension

To obtain the Venkman JavaScript Debugger extension, go to https://addons.mozilla.

org/en-US/Firefox/addon/216/ and click onand click on on Add To Firefox. Once it is installed,

Firefox will prompt you to restart Firefox for the changes to take efect.the changes to take efect. changes to take efect.changes to take efect. to take efect.

Opening Venkman

To start debugging, let us open the ile example.html in Firefox. Here, we can now start
Venkman. Go to. Go to Go toGo too to Tools and select JavaScript Debugger. If you are using older versions of

Firefox, you can access it by going to Tools || Web Development | JavaScript Debugger menu.

Now we'll start with a brief introducion to Venkman's user interface. to Venkman's user interface. Venkman's user interface.'s user interface.s user interface..





Chapter 7

[223]

A brief introduction to the user interface

The next screenshot shows the user interface of the Venkman extension:

1. Loaded Scripts: TheThehe Loaded Scripts panel shows a list of scripts that you may

load for debugging. Ater you have loaded a script, you will see it in the
Source Code panel.

2. Local Variables and Watches: TheThehe Local Variables panel shows the local variables

that are available when you are performing debugging tasks. If you click on theperforming debugging tasks. If you click on the debugging tasks. If you click on theIf you click on thef you click on the

Watches tab, you will see the Watches panel. You will be using this to enter the

expressions that you want to watch.

3. Breakpoint and Call Stack: TheThehe Breakpoint panel allows you to add a list of

breakpoints, and the, and the and theand the the Call Stack panel shows a list of funcions or variables thatvariables that that

are executed, in order.executed, in order. in order.

4. Source Code: TheThehe Source Code panel shows the source code that you are

currently debugging.

5. Interacive Session: TheThehe Interacive Session panel is the console for this debugger.the console for this debugger. console for this debugger.

Debugging Tools

[224]

We'll now start debugging using the Venkman extension:'ll now start debugging using the Venkman extension:ll now start debugging using the Venkman extension:

Time for action – debugging using Firefox's Venkman extensionime for action – debugging using Firefox's Venkman extensionaction – debugging using Firefox's Venkman extensionction – debugging using Firefox's Venkman extension – debugging using Firefox's Venkman extensiondebugging using Firefox's Venkman extension's Venkman extensions Venkman extension extension

We'll start of by seing breakpoints, before we go into greater details:'ll start of by seing breakpoints, before we go into greater details:ll start of by seing breakpoints, before we go into greater details:

As with all debuggers, we can set a breakpoint by performing the following steps:s, we can set a breakpoint by performing the following steps:, we can set a breakpoint by performing the following steps:

1.	 Start by opening the ile example.html, in Firefox.

2.	 Open the JavaScript debugger, and the debugger window will be shown. and the debugger window will be shown. the debugger window will be shown.

3.	 When your see the debugger window, go to the Load Scripts panel and you will see

the ile example.html in it. Click on it and you will see the code being loaded in

the Source Code panel.

4.	 To set a breakpoint, click on the line at which you want the breakpoint

to be set. For instance, I have set it on lineinstance, I have set it on line, I have set it on lineI have set it on line have set it on line 130, which contains the code:

buildContent(answer, "minus");. You should see something like the

following screenshot:

Chapter 7

[225]

What just happened?
The irst thing to note is that there is a white B within a red rectangle, as shown in thered rectangle, as shown in the rectangle, as shown in therectangle, as shown in the as shown in the

previous screenshot. This indicates that a breakpoint has been set. screenshot. This indicates that a breakpoint has been set.indicates that a breakpoint has been set.that a breakpoint has been set.

In Venkman, there are imes where you will see a white F within a yellow box; this meansyellow box; this means box; this meansbox; this means; this meansthis means

that Venkman could only set a Future Breakpoint. This happens when the line you select has

no source code, or if the line of code has already been unloaded by the JavaScript engine

(top level code is someimes unloaded shortly ater it completes execuion).

A Future Breakpoint means that Venkman was unable to set a hard breakpoint now, but if

the ile is loaded later, and it has executable code at the selected line number, Venkman will
automaically set a hard breakpoint.

The second thing to note is the Breakpoints panel. This contains a list of all of thethe

breakpoints that we have set in this debugging session. debugging session.debugging session.

Now, before we move on to the following subsecions, I need you to enter some input forsubsecions, I need you to enter some input for, I need you to enter some input for

our example applicaion by going to your browser. In my case I have entered 5 and 3 for thethe

irst and second input ields respecively. Once you have done that, click on on Submit.

Again, you will noice that the panels that were originally empty are now populated with
values. We will cover this in the following subsecions.

Breakpoints or Call Stack
We have briely covered breakpoints in the previous subsecion. If you look at thebriely covered breakpoints in the previous subsecion. If you look at thecovered breakpoints in the previous subsecion. If you look at thebreakpoints in the previous subsecion. If you look at theIf you look at thethe

Breakpoints panel, you will noice that in that panel, there is another tab, to the
right-hand side of the-hand side of the of thethe Breakpoint panel, called called Call Stack.

Click on Call Stack and you should see some data in this new panel. Assuming that you

have entered the same input and the same breakpoint, you will see a screen similar to the will see a screen similar to the see a screen similar to the

example shown in the next screenshot:next screenshot::

Debugging Tools

[226]

In general, Call Stack shows the nature of the runime environment at the ime of a speciic
funcion call–what has been called, and in what order. In Venkman, it shows the name of the
funcion, ilename, line number and pc (program counter).

Local Variables and Watches
Let us now focus on Local Variables and Watches. The panels forpanels for for Local Variables and

Watches are located above the Breakpoints and Call Stack panels. And if you have been

following my instrucions up to this point with the exact same input, you should see the my instrucions up to this point with the exact same input, you should see the up to this point with the exact same input, you should see the

following in thethe Local Variables panel:

The Local Variables panel simply shows the values of the variables that have values (due topanel simply shows the values of the variables that have values (due to
code execuion) up to a breakpoint, or to the end of the program, according to the order in, or to the end of the program, according to the order in

which they are created or calculated.d or calculated. or calculated.

Thhe next panel that we want to talk about is the Watches panel. The Watches panel does the

same thing as watch expressions, as we have done previously for other browsers. However,
because we have not added anything for the Watches panel yet, let us take some acion to
see how thethe Watches panel works:

Chapter 7

[227]

Time for action – more debugging with the Venkman extension

In this secion, we'll cover more debugging features such as the Watch, Stop, Coninue,
Step Into, Step Over, Step Out, edge triggers and throw triggers. But irst, let us perform
the following steps, in order to see the Watch panel in acion:

1.	 Click on the Watches tab.

2.	 Right-click within the Watches panel, right-click and select-click and selectclick and select Add Watch.

3.	 Enter document.sampleform.firstnumber.value.

4.	 Repeat steps 2 and 3, and this ime enter
document.getElementById("dynamic").

Once you are done, you will see the output shown in the following screenshot:will see the output shown in the following screenshot: see the output shown in the following screenshot: screenshot::

What the Watches panel does is allow us to add a list of expressions that we us to add a list of expressions that we add a list of expressions that we

want to keep track of, and also shows us the value of the expression.also shows us the value of the expression. shows us the value of the expression.s us the value of the expression. us the value of the expression.

Now let's move on to the Stop and Coninue features.

Venkman provides some useful funcionality, which includes Stop and Coninue.
Stop basically stops at the next JavaScript statement, and Coninue coninues
the code execuion.

You can make Venkman stop at the next JavaScript statement.statement..

5.	 Click on the large redthe large red large red X on the toolbar, or you can go to the menu and select Debug

and then choosethen choosechoose Stop.

There are imes when no JavaScript is being executed. If this is the case, youn no JavaScript is being executed. If this is the case, you. If this is the case, youyou

will see an ellipsis (...) appear over the X in the toolbar, and the menu item will

be checked. When the next line of JavaScript is encountered, the debugger will

stop. You can cancel this by clicking on X or selecing Stop again.

Debugging Tools

[22�]

In addiion to Stop and Coninue, Venkman also provides the standard Step In,
Step Over, and Step Out features.and Step Out features.Step Out features.

Step In: This e This executes a single line of JavaScript, and then stops. You. You

can try this by clicking on the icon that says Step Intoto. If you click on it

muliple imes, you will noice that the local variables change and you
will get to see that the code is being executed as if you are tracingthat the code is being executed as if you are tracingthe code is being executed as if you are tracing

the code.

Step Over: This i This is used to step over an impending funcion call, and used to step over an impending funcion call, andused to step over an impending funcion call, andn impending funcion call, and impending funcion call, and
return control to the debugger when the call returns. If you click on. If you click on on

Step Over, you will see that new content is being created in your

browser. For the ile example.html, assuming that you click onthat you click on you click on on Step

Over from the breakpoint, you will see content being created from

buildContent(answer, "minus");.

Step Out: This e: This e This e eexecutes unil the current funcion call exits.

We'll now see how we can make use of Error triggers and Throw triggers.'ll now see how we can make use of Error triggers and Throw triggers.ll now see how we can make use of Error triggers and Throw triggers.Error triggers and Throw triggers.rror triggers and Throw triggers.Throw triggers. triggers.

Error triggers is used to make Venkman stop at the next error, and Throws is used to make Venkman stop at the next error, and Throw is used to make Venkman stop at the next error, and Throwthe next error, and Throw next error, and Throw

Triggers is used to make Venkman stop when the next excepion is thrown.the next excepion is thrown. next excepion is thrown.excepion is thrown. is thrown.

To see it in acion, we'll perform the following acions:o see it in acion, we'll perform the following acions:'ll perform the following acions:ll perform the following acions:the following acions: following acions:

6.	 Open the ile example.html in your editor and, once again, search for the line thatearch for the line that

says buildContent(noSuchThing, "add"); and uncomment it. Save the ile
and open it again, using Firefox.open it again, using Firefox.fox.ox.

7.	 Ater you have opened the ile in Firefox, open Venkman.

8.	 Once you have opened up Venkman, go to Debug || Error Trigger and select

Stop for Errors. Then, once again, go back toen, once again, go back ton, once again, go back to Debug || Throw Trigger and select

Stop for Errors.

9.	 Go to your browser and enter any two numbers for the input ields—saytwo numbers for the input ields—say numbers for the input ields—say 5 and 3

respecively. Click on on Submit.

10.	Return to Venkman and you will see that the line with buildContent(noSuchTh
ing, "add"); is highlighted, and within the Interacive Session (or console) panel,is highlighted, and within the Interacive Session (or console) panel,highlighted, and within the Interacive Session (or console) panel, and within the Interacive Session (or console) panel,
you will see an error message that says X Error. noSuchThing not deined.

Now that we have seen how Venkman can be used to stop our program whenour program when program when

errors are encountered, let us move on to its proiling feature.

As we have menioned in the previous chapters, proiling is used to measurethe previous chapters, proiling is used to measure previous chapters, proiling is used to measuremeasure

execuion imes for your scripts. To enable proiling::

11.	Click on thelick on the Proile buton in the toolbar. When proiling is enabled, you will see aWhen proiling is enabled, you will see aproiling is enabled, you will see aroiling is enabled, you will see a
green check mark on the toolbar buton.







Chapter 7

[22�]

12.	Once you have Proiling enabled, go to your browser and enter some sample values.go to your browser and enter some sample values.

I'll sick to'll sick toll sick to 5 and 3 again. Then click on. Then click on Then click onen click onn click on on Submit.

13.	Go back to Venkman, go to File, and select Save Proile Data As. I have included an

example as to what we have just done, and saved it todone, and saved it to and saved it to data.txt ile. You can openou can openu can open

the ile and see the contents of the proiling session. You can ind the proiling datacontents of the proiling session. You can ind the proiling data of the proiling session. You can ind the proiling data
for the ile sample.html by searching for example.html in the ile data.txt.

14.	When you are done, click on Proile again to stop collecing the data.

While proiling is enabled, Venkman will collect call count, maximum, Venkman will collect call count, maximum

call duraion, minimum call duraion, and total call duraion, for every
funcion called.

You can also clear the proile data for the selected scripts by using the the Clear

Proile Data menu item.

What just happened?
We have gone through the various features of the Venkman extensions. Features like Stop,the various features of the Venkman extensions. Features like Stop, various features of the Venkman extensions. Features like Stop,Stop,top,

Coninue, Step In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisoninue, Step In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisStep In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thistep In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisIn, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisn, Step Out and Over of breakpoints shouldn't be unfamiliar to you by this Step Out and Over of breakpoints shouldn't be unfamiliar to you by this Out and Over of breakpoints shouldn't be unfamiliar to you by thisOut and Over of breakpoints shouldn't be unfamiliar to you by thisut and Over of breakpoints shouldn't be unfamiliar to you by thisOver of breakpoints shouldn't be unfamiliar to you by thisver of breakpoints shouldn't be unfamiliar to you by this't be unfamiliar to you by thist be unfamiliar to you by thisby this this

stage, as they are conceptually similar to the tools that we introduced earlier., as they are conceptually similar to the tools that we introduced earlier.

So let us now move to the last and inal tool, the Firebug extension.

Firefox and the Firebug extension

I personally think that the Firebug extension needs no further introducion. It is probablyextension needs no further introducion. It is probablyxtension needs no further introducion. It is probablyintroducion. It is probably. It is probably

one of the most (if not most) popular debugging tools for Firefox in the market right now.fox in the market right now.ox in the market right now.

Firebug is free and open source.bug is free and open source.ug is free and open source.

It has the following features:

Inspecion and ediing HTML by poining and clicking on your web page

Debugging and proiling JavaScriptebugging and proiling JavaScriptging and proiling JavaScript and proiling JavaScripting JavaScript JavaScript

Quickly spoting JavaScript errorsing JavaScript errors JavaScript errors

Logging JavaScript

Execuing JavaScript on the ly







Debugging Tools

[230]

Firebug is perhaps one of the best documented debugging tools on the Internet. So we'll'llll
have a look at the URLs that you can visit in order to take advantage of this free, openURLs that you can visit in order to take advantage of this free, opens that you can visit in order to take advantage of this free, open

source, and powerful debugging tool:, and powerful debugging tool: and powerful debugging tool:

To install Firebug, visit:: http://getFirebug.com

To see a complete list of FAQ, visit: http://getFirebug.com/wiki/index.
php/FAQ

To see a full list of tutorials, visit: http://getFirebug.com/wiki/index.php/

Main_Page. If you wish to learn more about each speciic feature, look for Panel on

the let-hand side of the web page.-hand side of the web page. of the web page.

Summary

We have inally reached the end of this chapter. We have covered speciic tools for variousinally reached the end of this chapter. We have covered speciic tools for various reached the end of this chapter. We have covered speciic tools for variousreached the end of this chapter. We have covered speciic tools for various the end of this chapter. We have covered speciic tools for various
browsers that can be used for our debugging tasks.

Speciically, we have covered the following topics:

The Developer tool for Internet Explorer

JavaScript Debugger and Web Inspector for Google Chrome and Safari

Dragonly for Opera

The Venkman extension for Firefoxextension for Firefoxxtension for Firefox

Resources for Firebug

In case you need more informaion about each speciic tool, you can Google it by appendingGoogle it by appending it by appending

the keyword "tutorial" to each of the tools and features' menioned in this chapter."tutorial" to each of the tools and features' menioned in this chapter.tutorial" to each of the tools and features' menioned in this chapter." to each of the tools and features' menioned in this chapter. to each of the tools and features' menioned in this chapter.the tools and features' menioned in this chapter. tools and features' menioned in this chapter.' menioned in this chapter. menioned in this chapter.

We have covered the most important features of the tools that can help you get started of the tools that can help you get started that can help you get started

with debugging your JavaScript applicaion. In our inal chapter, we will focus on the variousIn our inal chapter, we will focus on the variousn our inal chapter, we will focus on the variousfocus on the various on the various

tesing tools that you can use when your tesing requirements cannot be met manually.requirements cannot be met manually. cannot be met manually.cannot be met manually.met manually.












�
Testing Tools

In the inal chapter, we will cover some advanced tools that you can use for
tesing your JavaScript. We will be covering tools that can help you further to We will be covering tools that can help you further to to

automate your tesing and debugging tasks and, at the same ime, show youthe same ime, show you same ime, show you
how you can test your user interface.

I understand that you are spoilt for choice as there are many tools out theremany tools out theretools out there
for you to choose from when carrying out tesing tasks. But what I will focus
on are tools that are generally free, cross-browser and cross-plaform; whether
you are a fan of Safari, IE, Chrome or other browsers doesn't really ma�er..
Based onased on http://w3schools.com/browsers/browsers_stats.asp,
approximately 30% of web browsers use Internet Explorer, �6% use the Firefoxe Internet Explorer, �6% use the Firefox Internet Explorer, �6% use the Firefox, �6% use the Firefox�6% use the Firefoxe the Firefo� the Firefo�fo�o�

browser, and the remainder of them use Chrome, Safari, or �pera. This meansthe remainder of them use Chrome, Safari, or �pera. This means remainder of them use Chrome, Safari, or �pera. This means, or �pera. This means or �pera. This meansor �pera. This means �pera. This means
that the tools that you use will cater to these staisics. Although there areuse will cater to these staisics. Although there are will cater to these staisics. Although there arewill cater to these staisics. Although there are cater to these staisics. Although there are Although there areAlthough there are
applicaions that were developed speciically for only one browser, it is a good a good good
pracice and learning experience for us to learn how to write code for use ince and learning experience for us to learn how to write code for use ine and learning experience for us to learn how to write code for use in
diferent browsers.

More importantly, the tools that I am going to cover in great detail are thosere importantly, the tools that I am going to cover in great detail are those importantly, the tools that I am going to cover in great detail are thosethat I am going to cover in great detail are thoseI am going to cover in great detail are thoseam going to cover in great detail are those cover in great detail are those
that I personally feel are easier to get started with; and this will help you to getare easier to get started with; and this will help you to get easier to get started with; and this will help you to get and this will help you to get this will help you to get to get get
a feel of the tesing tools in general.the tesing tools in general.tesing tools in general.

The following tools will be covered in detail:he following tools will be covered in detail: following tools will be covered in detail: will be covered in detail: in detail::

Sahi, a cross-browser automated tesing tool. We'll use this to perform UI tesing.

QUnit, a JavaScript tesing suite, which can be used to test just about any JavaScript
code. We'll use this to perform automated tesing of JavaScript code.

JSLitmus, a lightweight tool for creaing ad hoc JavaScript benchmark tests. We'llSLitmus, a lightweight tool for creaing ad hoc JavaScript benchmark tests. We'llLitmus, a lightweight tool for creaing ad hoc JavaScript benchmark tests. We'll hoc JavaScript benchmark tests. We'llhoc JavaScript benchmark tests. We'll'llll
use this to perform some benchmarking tests.






Tesing Tools

[232]

Apart from the previously-menioned tools, I'll also cover a list of important tesing tools,the previously-menioned tools, I'll also cover a list of important tesing tools, previously-menioned tools, I'll also cover a list of important tesing tools,previously-menioned tools, I'll also cover a list of important tesing tools, I'll also cover a list of important tesing tools,I'll also cover a list of important tesing tools,ll also cover a list of important tesing tools,important tesing tools, tesing tools,,
that I believe are useful for your daily debugging and tesing tasks. So, be sure to check outbelieve are useful for your daily debugging and tesing tasks. So, be sure to check out are useful for your daily debugging and tesing tasks. So, be sure to check out, be sure to check out be sure to check out out

this secion. secion.

Sahi

We briely discussed about the issue of tesing user interface widgets provided bye briely discussed about the issue of tesing user interface widgets provided bybriely discussed about the issue of tesing user interface widgets provided byabout the issue of tesing user interface widgets provided byinterface widgets provided by widgets provided by

JavaScript libraries. In this secion, we'll get started with tesing a user interface that waslibraries. In this secion, we'll get started with tesing a user interface that was. In this secion, we'll get started with tesing a user interface that was, we'll get started with tesing a user interface that was we'll get started with tesing a user interface that was'll get started with tesing a user interface that wasll get started with tesing a user interface that was
built by using the JavaScript libraries widget. The same technique can be used for tesing the JavaScript libraries widget. The same technique can be used for tesingJavaScript libraries widget. The same technique can be used for tesing. The same technique can be used for tesing same technique can be used for tesingtechnique can be used for tesing can be used for tesing
custom user interfaces.interfaces..

Sahi is a browser-independent, automated tesing tool that uses Java and JavaScript. We will-independent, automated tesing tool that uses Java and JavaScript. We willindependent, automated tesing tool that uses Java and JavaScript. We will, automated tesing tool that uses Java and JavaScript. We will automated tesing tool that uses Java and JavaScript. We will
focus on this as it is browser-independent, and we cannot always ignore IE users.as it is browser-independent, and we cannot always ignore IE users.it is browser-independent, and we cannot always ignore IE users.-independent, and we cannot always ignore IE users.independent, and we cannot always ignore IE users. and we cannot always ignore IE users. we cannot always ignore IE users. always ignore IE users. ignore IE users.

Sahi can be used to perform various tesing tasks, but the one feature that I would like to the one feature that I would like to one feature that I would like to

emphasize is its ability to record the tesing process and play it back in the browser. is its ability to record the tesing process and play it back in the browser. the tesing process and play it back in the browser. tesing process and play it back in the browser.the browser.browser..

You will see how useful it is to use Sahi to perform user interface tesing in this secion.

Time for action – user Interface testing using Sahi

We will demonstrate to you the recording and play back feature of Sahi, and see how it can

be used to test user interface widgets provided by JavaScript libraries such as jQuery.d to test user interface widgets provided by JavaScript libraries such as jQuery. to test user interface widgets provided by JavaScript libraries such as jQuery.interface widgets provided by JavaScript libraries such as jQuery. widgets provided by JavaScript libraries such as jQuery.jQuery..

1. We'll start by installing Sahi. Go to to http://sahi.co.in and download the latest

version. The latest version at this point of wriing is V3 2010-04-30. Once you have
downloaded it, extract it to theit to theto the the C: drive.

2. Open Internet Explorer (I am using IE8 for this demonstraion) and go to (I am using IE8 for this demonstraion) and go toI am using IE8 for this demonstraion) and go toam using IE8 for this demonstraion) and go to
http://jqueryui.com/themeroller/. We will be using the user interface We will be using the user interface

for our demonstraion purposes.

3. In order to use Sahi, we need to irst navigate toIn order to use Sahi, we need to irst navigate to C:\sahi_20100430\sahi\bin

and look for sahi.bat. Click on it so that we can start Sahi.

4. Now, it's ime to set up your browser so that it can be used with Sahi. Open yourNow, it's ime to set up your browser so that it can be used with Sahi. Open your's ime to set up your browser so that it can be used with Sahi. Open yours ime to set up your browser so that it can be used with Sahi. Open youro that it can be used with Sahi. Open your that it can be used with Sahi. Open your Open your

browser, and go to, and go toand go to Tools || Internet Opions || Connecions and click on LAN

Seings. Click on Proxy Server and enter the informaion that you see in thethe

following screenshot:

Chapter 8

[233]

Once you are done, close this window and all other windows related to Tools.

5. AAter you have completed the previous step, let us return to our browser. In order
to use Sahi within the browser, you need to press Sahi within the browser, you need to press Ctrl ++ Alt and, at the samethe same same

ime, double-click on any element on the web page (double-click on any element on the web page (click on any element on the web page (http://jqueryui.com/
themeroller/). You should see a new window that appears as shown in theappears as shown in the

next screenshot::

Tesing Tools

[234]

6. If you see the window shown above, then you have set up and started Sahi

correctly. Now, let us check out its automated tesing feature, recording, and
playback capabiliies.

7. Enter jquery_tesing in the Script Name input ield, and the click on Record in the

window that is shown in the previous screenshot. This starts the recording process.

8. Now, let us click on a few of the user interface elements. In my case, I clicked on

Secion 2, Secion 3, Open Dialog, and Font Seings. This can be found at the menu

on the let-hand side.

9. Navigate to C:\sahi_20100430\sahi\userdata\scripts and you will see a

ile named jquery_testing.sah. Open this ile in WordPad and you will see the
list of acions that we have just created, recorded in this ile.

10. Go to the Sahi window and click on Stop. Now, we have stopped the

recording process.

11. Open jquery_testing.sah in WordPad and change the code so that it appears

like this:

function jquery_testing() {

_click(_link("Section 2"));

_click(_link("Section 2"));

_click(_link("Section 3"));

_click(_link("Section 3"));

_click(_link("Open Dialog"));

_click(_link("Font Settings"));

}

jquery_testing();

I have deined a funcion called jquery_testing() to contain the list

of acions that we have created. Then, I appendedhave created. Then, I appended. Then, I appended, I appended I appended jquery_testing()

to the end of the ile. This line is to call the funcion when we acivate thethe end of the ile. This line is to call the funcion when we acivate the end of the ile. This line is to call the funcion when we acivate theThis line is to call the funcion when we acivate thehis line is to call the funcion when we acivate the
playback feature.

Chapter 8

[235]

12. Now let us go to the Sahi window and click on Playback. Then, enter the informaion
as shown in the next screenshot:

Click onlick on Set and wait for the page to refresh.

13. OncOnce the page has been refreshed, click on Play. Within the browser, we willwe will willwill

see that the acions that we have performed are being repeated as per the steps that the acions that we have performed are being repeated as per the steps the acions that we have performed are being repeated as per the steps the steps

menioned previously. You will also receive a. You will also receive a SUCCESS message in the Statements

panel, which means that our tesing process was successful., which means that our tesing process was successful. which means that our tesing process was successful.which means that our tesing process was successful. means that our tesing process was successful.

What just happened?
We have just performed a simple user interface tesing process by using Sahi. Sahi's playbacke have just performed a simple user interface tesing process by using Sahi. Sahi's playbackSahi's playbackahi's playback's playbacks playback

process and recording features make it easy for us to perform tesing on user interfaces.recording features make it easy for us to perform tesing on user interfaces. features make it easy for us to perform tesing on user interfaces.

Noice that Sahi allows us to perform tesing in a visual manner. Apart from deining aoice that Sahi allows us to perform tesing in a visual manner. Apart from deining a. Apart from deining a Apart from deining aApart from deining apart from deining a
funcion for the playback feature, there isn't much coding involved as compared to the for the playback feature, there isn't much coding involved as compared to the't much coding involved as compared to thet much coding involved as compared to thethe

other manual tesing methods that we have seen in the previous chapters. manual tesing methods that we have seen in the previous chapters.that we have seen in the previous chapters. we have seen in the previous chapters.

Now, let us focus on other important and relevant topics related to Sahi.et us focus on other important and relevant topics related to Sahi.focus on other important and relevant topics related to Sahi. on other important and relevant topics related to Sahi.ed to Sahi. to Sahi..

More complex testing with Sahi
As menioned previously at the start of this secion, Sahi can be used with any browser to
perform a wide variety of tasks. It can even be used to perform asserion tests.

Check out http://sahi.co.in/static/sahi_tutorial.html to see how asserionto see how asserion see how asserion
can be used in your tesing processes.

Ater you are done with this secion, make sure that you go back to, make sure that you go back tomake sure that you go back to you go back toyou go back to go back to Tools ||

Internet Opions || Connecions, click on LAN seings and uncheck Proxy Server,

so that your browser can work as usual..

Tesing Tools

[236]

QUnit

Qunit is a jQuery tesing suite, but it can be used to test the JavaScript code that we have
writen. This means that the code does not have to depend on jQuery. In general, QUnit
can be used to perform asserion tests and asynchronous tesing. Also, asserion tesing
helps in predicing the returning result of your code. If the predicion is false, it is likely that
something in your code is wrong. Asynchronous tesing simply refers to tesing Ajax calls or
funcions that are happening at the same ime.

Let us act immediately to see how it works.

Time for action – testing JavaScript with QUnitesting JavaScript with QUnit

In this secion, we'll learn more about QUnit, by wriing a bit of code, and the also learn
about various tests that QUnit supports. We will write tests that are correct and tests that
are and wrong, in order to see how it works. The source code for this secion can be found in
the source code folder qunit.

1. Open your editor and save the ile as example.html. Enter the following code in it:

<!DOCTYPE html>

<html>

<head>

 <title>QUnit Example</title>

 <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/
master/qunit/qunit.css" type="text/css" media="screen">

 <script type="text/javascript" src="http://github.com/jquery/
qunit/raw/master/qunit/qunit.js"></script>

 <script type="text/javascript" src="codeToBeTested.js"></script>

 <script type="text/javascript" src="testCases.js"></script>

</head>

<body>

 <h1 id="qunit-header">QUnit Test Results</h1>

 <h2 id="qunit-banner"></h2>

 <div id="qunit-testrunner-toolbar"></div>

 <h2 id="qunit-userAgent"></h2>

 <ol id="qunit-tests">

</body>

</html>

What the previous code does is that it simply sets up the code for tesing.previous code does is that it simply sets up the code for tesing. code does is that it simply sets up the code for tesing.the code for tesing. code for tesing.
Take note of the highlighted lines. The irst two highlighted lines simply. The irst two highlighted lines simply The irst two highlighted lines simplyThe irst two highlighted lines simplyhe irst two highlighted lines simplyhighlighted lines simply lines simply

point to the hosted version of the QUnit tesing suite (both CSS and
JavaScript), and the last two lines are where your JavaScript code and

test cases reside.

Chapter 8

[237]

codeToBeTested.js simply refers to the JavaScript code that you havesimply refers to the JavaScript code that you have

writen, while, while testCases.js is the place where you write your test

cases. In the following steps, you will see how these two JavaScripttwo JavaScript JavaScript

iles work together.

2. We'll start by wriing code in codeToBeTested.js. Create a JavaScript ile and
name it as codeToBeTested.js. For a start, we'll write a simple funcion that tests'll write a simple funcion that testsll write a simple funcion that testsfuncion that tests that tests

whether a number entered is odd or not. With that in mind, enter the following a number entered is odd or not. With that in mind, enter the followingenter the followingthe following

code into:

 codeToBeTest.js:

function isOdd(value){

 return value % 2 != 0;

}

isOdd() takes in an argument value and checks if it is odd. If it is, thisn argument value and checks if it is odd. If it is, this argument value and checks if it is odd. If it is, thisf it is, this

funcion will return 1.

Let us now write a piece of code for out test case.et us now write a piece of code for out test case.

3. Create a new JavaScript ile and name itreate a new JavaScript ile and name it testCases.js. Now, enter the followingenter the followingthe following

code into it:

test('isOdd()', function() {

 ok(isOdd(1), 'One is an odd number');

 ok(isOdd(7), 'Seven is an odd number');

 ok(isOdd(-7), 'Negative seven is an odd number');

})

Take note of the way that we write the test case using QUnit's provided's provideds provided

methods. First, we deine a funcion call test(), which constructs the

test case. Because we are going to test the funcion isOdd(), the irst
parameter is a string that will be displayed in the result. The second

parameter is a call-back funcion that contains our asserions. is a call-back funcion that contains our asserions.call-back funcion that contains our asserions. funcion that contains our asserions.

We use the asserion statement by using thestatement by using thetement by using thement by using thet by using the ok() funcion. This is a
Boolean asserion, and it expects its irst parameter to be true. If it is asserion, and it expects its irst parameter to be true. If it is
true, the test passes, if not, it fails., it fails. it fails.

Tesing Tools

[23�]

4. Now save all of your iles and runNow save all of your iles and run example.html in any browser you like. You willwill

receive a screenshot similar to the following example, depending on your machine: a screenshot similar to the following example, depending on your machine:

You can see the details of the test by clicking on isOdd() and will also

see the results of it. The output is as shown in the previous screenshot.e previous screenshot.screenshot.

Now let us simulate some fail tests.

5. Go bGo back to testCases.js, and append the following code to the last line ofthe last line of last line of

test():

// tests that fail

 ok(isOdd(2), 'So is two');

 ok(isOdd(-4), 'So is negative four');

 ok(isOdd(0), 'Zero is an even number');

Chapter 8

[23�]

Save the ile and refresh your browser. You will now see a screenshotwill now see a screenshot now see a screenshot

similar to the following example in your browser:

Now you can see that tests 4, 5, and and 6 have failed and they are in red.they are in red.in red.

At this point you should see that the good thing about QUnit is that it largely automates the
tesing process for us without us having to perform tesing by clicking on butons, submiing
forms, or using alert(). It will certainly save us a tremendous amount of ime and efort
when using such automated tests.

Tesing Tools

[240]

What just happened?
We have just employed QUnit in performing automated tesing of self-deined JavaScript
funcions. It was a simple example, but enough to get you started.

Applying QUnit in real-life situations
You might wonder how you will make use of such tests on your code in real-life situaions.
I would say that it is very likely that you will use ok() to test your code. For instance, you

can test for the truth values, if the user input is alphanumeric, or if the user has entered

invalid values.

More assertion tests for various situations
Another thing that you can take note of is that ok() is not the only asserion test that you
can perform. You can also perform other tests, such as comparison asserion and idenical
asserion. Let us see another short example on comparison.

We'll learn to use another asserion statement, equals(), in this secion.

1. Open your editor and open testCases.js. Comment out the code that you havethat you have you have

writen previously, and enter the following code into the ile:enter the following code into the ile: following code into the ile:

test('assertions', function(){

 equals(5,5, 'five equals to five');

 equals(3,5, 'three is not equals to five');

})

This code takes the same structure as the code that you have commentedhis code takes the same structure as the code that you have commentedis code takes the same structure as the code that you have commentedcode takes the same structure as the code that you have commented that you have commented you have commented

out. But noice that we have used thethe equals() funcion instead of ok().

The parameters ofhe parameters of equals() are as follows:

The irst parameter is the actual value

The second parameter is the expected value

The third parameter is a self-deined message

We have used twotwo equals() funcions, of which the irst will pass the test,s, of which the irst will pass the test,, of which the irst will pass the test,
but the second will not as three and ive are not equal. the second will not as three and ive are not equal.as three and ive are not equal. three and ive are not equal.three and ive are not equal. and ive are not equal.ive are not equal. are not equal.are not equal. not equal.





Chapter 8

[241]

2. Save the ile and open example.html in your browser. You will see the

following screenshot:

JSLitmus

According to JSLitmus's homepage, JSLitmus is a lightweight tool for creaing ad hocSLitmus's homepage, JSLitmus is a lightweight tool for creaing ad hocLitmus's homepage, JSLitmus is a lightweight tool for creaing ad hoc's homepage, JSLitmus is a lightweight tool for creaing ad hocs homepage, JSLitmus is a lightweight tool for creaing ad hocSLitmus is a lightweight tool for creaing ad hocLitmus is a lightweight tool for creaing ad hoc hochoc

JavaScript benchmark tests. In my opinion, it is deinitely true. Using JSLitmus is quite aUsing JSLitmus is quite asing JSLitmus is quite aSLitmus is quite aLitmus is quite a

breeze, especially when it supports all popular browsers, such as Internet Explorer, Firefox,especially when it supports all popular browsers, such as Internet Explorer, Firefox, when it supports all popular browsers, such as Internet Explorer, Firefox,such as Internet Explorer, Firefox, Internet Explorer, Firefox,fox,ox,

Google Chrome, Safari, and others. At the same ime, it is enirely free with the products, and others. At the same ime, it is enirely free with the products and others. At the same ime, it is enirely free with the productsothers. At the same ime, it is enirely free with the products. At the same ime, it is enirely free with the productsAt the same ime, it is enirely free with the productst the same ime, it is enirely free with the products

that we menioned here. menioned here.menioned here..

In this secion, we will focus on a quick example of how we are going to create ad hoc
JavaScript benchmark tests.

Time for action – creating ad hoc JavaScript benchmark tests

Now we will see how easy it is to create ad hoc JavaScript benchmark tests by using hoc JavaScript benchmark tests by usinghoc JavaScript benchmark tests by using

JSLitmus. But irst, let us install JSLitmus. By the way, all of the source code for this secionthe source code for this secion source code for this secionsource code for this secion code for this secionsecion

can be found in thethe source code folder for this chapter, under thethis chapter, under the, under the jslitmus folder.

1. Visit http://www.broofa.com/Tools/JSLitmus/ and download

JSlitmus.js.

2. Open your editor, create a new HTML ile within the same directory as
JSLitmus.js and name it jslitmus_test.html.

Tesing Tools

[242]

3. Enter the following code into jslitmus_test.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">

 <head>

 <meta http-equiv="Content-Type"

 content="text/html;charset=utf-8" />

 <title>JsLitmus Testing Example</title>

 <script type="text/javascript" src="JSLitmus.js"></script>

 <script type="text/javascript">

 function testingLoop(){

 var i = 0;

 while(i<100)

 ++i;

 return 0;

 }

 JSLitmus.test('testing testingLoop()',testingLoop);

 </script>

 </head>

 <body>

 <p>Doing a simple test using JsLitmus.</p>

 <div id="test_element" style="overflow:hidden; width: 1px;

 height:1px;"></div>

 </body>

</html>

I've actually taken this code from the oicial example found on the JSLitmus've actually taken this code from the oicial example found on the JSLitmusve actually taken this code from the oicial example found on the JSLitmustaken this code from the oicial example found on the JSLitmus this code from the oicial example found on the JSLitmusis code from the oicial example found on the JSLitmus code from the oicial example found on the JSLitmusfrom the oicial example found on the JSLitmus the oicial example found on the JSLitmus
website. I will conduct the test in a slightly diferent manner to the oicial will conduct the test in a slightly diferent manner to the oicialconduct the test in a slightly diferent manner to the oicialdiferent manner to the oicial manner to the oicialthe oicial oicial
example, but nonetheless, it sill demonstrates the syntax of how we cannonetheless, it sill demonstrates the syntax of how we can it sill demonstrates the syntax of how we canthe syntax of how we can syntax of how we can

use JSLitmus.

The previous code snippet contains the user-deined funcionthe user-deined funcion user-deined funcion
testingLoop(), while the JSLItmus.test('testing

testingLoop()', testingLoop); is the line of JavaScript code

writen to test testingLoop() by using JSlitmus's syntax.'s syntax.s syntax.

Let me explain the syntax. Generally, this is how we use JSLitmus:explain the syntax. Generally, this is how we use JSLitmus: the syntax. Generally, this is how we use JSLitmus:. Generally, this is how we use JSLitmus:, this is how we use JSLitmus:

JSlitmus.test('some string in here', nameOfFunctionTested);

Chapter 8

[243]

The irst argument is some string that you can type in, and the second
argument is the name of the funcion that you intend to test. Just make
sure that this line of code is located in a place ater your funcion is deined.

4. Now thNow that we have set up our test, it's ime to run it and see how it goes. Save's ime to run it and see how it goes. Saves ime to run it and see how it goes. Save
jslitmus_test.html and open this ile in your browser. This is what you shouldThis is what you shouldhis is what you should

see in your browser:

Noice that under theoice that under the Test column, it shows the text that we have typed inolumn, it shows the text that we have typed in

as our irst argument for JSLItmus.test().

5. Click on the buton Run Tests. You should receive the following result infollowing result in result in

your browser:

Tesing Tools

[244]

It basically shows the amount of ime taken to execute the code, and other
relevant informaion. You can even check out the performance in chart form
by visiing the URL that is created dynamically. If you received something
similar to the previous screenshot, then you have just done an ad hoc

benchmarking test..

If you are running this test on Internet Explorer and you happen to receive the

following (or similar) message: Script is taking too long to execute, then you

will need to tweak your Windows registry, in order to allow the test to run. Visit

http://support.microsoft.com/default.aspx?scid=kb;en-
us;175500 for details on how to tweak your windows registry seings.

What just happened?
We just used JSLitmus to create an ad hoc benchmarking test. Noice how easy it is for you
to perform ad hoc benchmarking test using JSLitmus. The cool thing about JSLitmus is the

simplicity of it; no addiional tools, no windows to open, and so on. All you need to do is to
write JSLItmus.test() and type in the message and name of the funcion you want
to test.

More complex testing with JSLitmus
The previous example is a really simple example to help you to get started.he previous example is a really simple example to help you to get started.previous example is a really simple example to help you to get started. example is a really simple example to help you to get started.

If you are interested in performing more complex tests, feel free to check outinterested in performing more complex tests, feel free to check out in performing more complex tests, feel free to check out

http://www.broofa.com/Tools/JSLitmus/demo_test.html and view itsand view its

source code. You will see diferent style of wriing test by using JSLitmus in its
well-commented source code.

Now that we have covered the tools that are browser-independent, it is ime to quickly
cover other similar tesing tools that can help you to debug JavaScript. to debug JavaScript. debug JavaScript.

More testing tools that you should check out

Now that we are approaching the end of the chapter, I'll leave you with a simple list of
tesing tools that you can check out for tesing purposes:

Selenium: Selenium is an automated tesing tool that can record only on
Firefox and may ime out when trying to playback in other browsers. There
are also other versions of Selenium that can help you to conduct tests in

muliple browsers and plaforms. Selenium uses Java and Ruby. To get more
informaion, visit http://seleniumhq.org. To see a simple introducion,
visit http://seleniumhq.org/movies/intro.mov.



Chapter 8

[245]

Selenium Server: Also known as Selenium Remote Control, Selenium Server is a test

tool that allows you to write automated web-applicaion UI tests in any programing
language, against any HTTP website, using any mainstream JavaScript-enabled
browser. You can visit http://seleniumhq.org/projects/remote-control/.

Wair: Wair is an automated tesing tool available as a Ruby gem.
There is detailed documentaion on Wair, which can be found at
http://wiki.openqa.org/display/WTR/Project+Home.

Asserion Unit Framework: The Asserion Unit Framework is a unit

tesing framework based on asserions. At the point of wriing,
documentaion appears to be limited. But you can learn how to use it at
http://jsassertunit.sourceforge.net/docs/tutorial.html. You can

visit http://jsassertunit.sourceforge.net/docs/index.html for other

relevant informaion.

JsUnit: JsUnit is a unit tesing framework ported from the most popular Java unit
tesing framework known as JUnit. JsUnit includes a plaform for automaing the
execuion of tests on muliple browsers and muliple machines using diferent
operaing systems. You can get JsUnit at http://www.jsunit.net/.

FireUnit: FireUnit is a unit tesing framework designed to run in Firebug on Firefox.
It is also a popular debugging tool for Firefox and there are numerous tutorials

for it and documentaion on it, on the Internet. You can get FireUnit at
http://fireunit.org/.

JSpec: JSpec is a JavaScript tesing framework that uilizes its own custom grammar
and pre-processor. It can also be used in variety of ways, such as via a terminal,
via browsers using DOM or Console formaters, and so on. You can get JSpec at
http://visionmedia.github.com/jspec/.

TestSwarm: TestSwarm provides distributed, coninuous integraion tesing for
JavaScript. It was originally developed by John Resig to support the jQuery project and,
has now become an oicial Mozilla Labs project. Take note that it is sill under heavy
tesing. You can get more informaion at http://testswarm.com/.















Tesing Tools

[246]

Summary

We have inally reached the end of this chapter. We have covered speciic tools for various
browsers that can be used for our debugging tasks.

Speciically, we covered the following topics:

Sahi: A browser-independent automated tesing tool that uses Java and JavaScript: A browser-independent automated tesing tool that uses Java and JavaScript browser-independent automated tesing tool that uses Java and JavaScript-independent automated tesing tool that uses Java and JavaScriptindependent automated tesing tool that uses Java and JavaScript

QUnit: A jQuery tesing suite that can be used to test JavaScript codeUnit: A jQuery tesing suite that can be used to test JavaScript codenit: A jQuery tesing suite that can be used to test JavaScript code: A jQuery tesing suite that can be used to test JavaScript code jQuery tesing suite that can be used to test JavaScript codejQuery tesing suite that can be used to test JavaScript codeQuery tesing suite that can be used to test JavaScript code

JsLitmus: A lightweight tool for creaing ad hoc JavaScript benchmark tests: A lightweight tool for creaing ad hoc JavaScript benchmark tests lightweight tool for creaing ad hoc JavaScript benchmark tests hoc JavaScript benchmark testshoc JavaScript benchmark tests

A list of tools that you can check out list of tools that you can check out

Finally, we have reached the end of the book. I hope that you have learnt a lot from this

book about JavaScript tesing. I want to thank you for your ime and efort in reading this
book, and would also like to thank Packt Publishing for it's support.






Index
Symbols
.hasFeature() method

about 48
using 48

.innerHTML method 74

A

acceptance tesing 121
addResponseElement() funcion 61, 76, 94

ad hoc JavaScript benchmark tests
creaing, JSLitmus used 241-244

ad hoc tesing
advantge 44
limitaions 78
purpose 44

agile methodology
about 116, 117

analysis and design stage 117

deployment stage 117

implementaion stage 117

maintenance stage 117

tesing stage 117

alertMessage() funcion 113
alert method

used, for code tesing 66-71

alert not deined error
about 102

ixing 103
aSimpleFuncion() funcion 78

asserion tests
performing, Sahi used 235

Asserion Unit Framework 245

B

beta tesing 124
black box tesing

about 122

advantages 122

beta tesing 124
boundary tesing 123
equivalence pariion tesing 123
examples 122

usability tesing 123
black box test phase, test plan

boundary value tesing, using 142, 143
expected but unacceptable values, tesing

142, 143
illegal values, using 144

boundary tesing 123
branch tesing 124
browser diferences

about 45
tesing, via capability tesing 47-50

browsers
built-in features 45

browser sniing
performing, navigator object used 47

buildFinalResponse() funcion 63, 77, 101

built-in objects
about 176

Error object 176

EvalError object 181

RangeError object 178
ReferenceError object 178
SyntaxError object 181

TypeError object 180

URIError object 181

[��8]

C

capability tesing 47
Cascading Style Sheet. See CSS

catchError funcion
using 199

catch statement 172
changeOne() funcion 166

changeProperies() funcion 26

changeThree() funcion 166

changeTwo() funcion 166

checkForm () funcion 63
checking process

simplifying 76

checkSecondForm() funcion 164

checkValues() funcion 53
Chrome debugging tool

features 213
Chrome JavaScript Debugger 212
class atribute 12
class selectors 19

code quality
about 83
HTML and CSS, validaing 84

code tesing
alert method, used 66, 67

less obtrusive manner 71-74
visual inspecion 66

code validaion
about 87

code, debugging 86

importance 85
simpliied tesing 85, 86

using 87

color coding editors 87, 88
commening out parts, of script 75
common validaion errors, JavaScript 89
CSS

about 7, 12, 13
atributes 20

class selectors 19

debugging, IE8 developer tool used 205
HTML document, styling 14
id selectors 19

referenced HTML document, styling 18, 19

used, for styling HTML document 14-16

CSS atributes
reference link 20

D

debugging, with Chrome
about 213
accessing 212

console, accessing 213, 214
debugging process, simplifying 214-217

enabling 212

debugging basics, IE debugging tool 203-205
debugging funcion

wriing 71

debuggingMessages() funcion 74

diferent parts, of web page
accessing, getElementById used 55-64

document.getElementById() method 26

document.getElementById() property 27

document.getElementsByName() method 27

Dojo

URL 169

Dragonly
about 218
accessing 218
call stack 220

debugging with 219, 220

features 218, 219

inspecion 220

seings 222

thread log 220

using 218
Dragonly, funcions

coninue 220

step into 220

step out 221

step over 221

stop at error 221

Dreamweaver 41

E

Eclipse 41

equivalence pariion tesing 123
error console log

error messages 181, 182

[��9]

own error messages, wriing 182, 183
using 181

Error object
about 176

example 176

working 176, 177

errors, JavaScript. See JavaScript errors

errors, spoted by JSLint
about 93
alert is not deined 102

expected === instead of == 102

expecing <\/ instead of <\ 100, 102

funcions not deined 96

HTML event handlers, avoiding 103
list 93, 94
too many var statements 97

unexpected use of ++ 94
use strict error 94

EvalError object 181
examples, funcional requirement tesing

boundary tesing 120

equivalence pariioning 120

web page tests 120

examples, nonfuncional requirement tesing
integraion tesing 121

performance tesing 121

usability tesing 121

excepion handling mechanisms
applying, on sample applicaion 184-199

expectaion of <\/ instead of </ error
about 100

ixing 101

expectaion of === instead of == error
about 102

ixing 102

expected and acceptable values
tesing, white box tesing used 141

expected but unacceptable values
black box tesing used 142

boundary value tesing used 142, 143
illegal values used 144

expected result 65
expected result, of script

checking 65

F
inally statement 172
inal phase, test plan

enire program, tesing with expected values
147-149

execuing 147

robustness, tesing 150

Firebug extension
about 229

downloading 230

features 229, 230

installing 230

Firefox Venkman extension
about 222

accessing 222

breakpoints 225
call stack 225
debugging features 227-229

debugging with 224, 225
downloading 222

features 223
local variables 226

using 222

watches 226

Firefox Venkman extension, funcions
step in 228
step out 228
step over 228

FireUnit 245
form values

accessing, name atribute used 54, 55
accessing, onsubmit event used 51-54

funcional requirement tesing
about 120

examples 120

funcions not deined error
about 96

ixing 96, 97

G

Google Chrome

about 211

debugging 212

Google Chrome Web Inspector 212

[��0]

H
HTML

about 7, 8
debugging, IE8 developer tool used 204, 205
elements 8

HTML document
creaing 9-11

JavaScript, applying 20-23
styling, CSS used 14-16

styling, stylisic atributes used 18
HTML DOM availability

checking 77

HTML elements
<a> 8
<body> </body> 8
<h1> </h1> 8
<head> </head> 8
<p> </p> 8
<itle> </itle> 8
class name, specifying 12

id, specifying 12

styling, atributes used 11, 12

HTML event handlers
avoiding 103-106

Hyper Text Markup Language. See HTML

I

id atribute 12
id selectors 19

IE 8 developer tools 202
IE debugging tool

accessing 202

CSS, debugging 205
debugging basics 203, 204
features 203
HTML, debugging 204
JavaScript, debugging 206-210

IE developer toolbar
installing 202

IE developer tools
about 202

IE debugging tool, accessing 202

using 202

illegal values phase, test plan
test cases 144, 145

using 144
innerHTML() method 29

insertContent() funcion 28

integrated tesing 127, 128
invalidated code

consequences 85

J

JavaScript

about 7, 20

and server side languages, diferences 29

applying, to HTML document 20-23
debugging, IE8 developer tool used 206-210

elements, searching in document 26, 27

error, encountering by browser 44
excepion handling mechanisms, applying

184-199

features 41

interacing, with HTML elements 28
tesing, QUnit used 236-239

usability, enhancing 163
JavaScript code

tesing 82

validaing 82

JavaScript errors

about 32, 172

catch statement 172-175
inally statement 172-175
loading errors, types 33
logic errors, types 37

runime errors, types 36

throw statement 172

trapping, built-in objects used 176

try statement 172-175
types 32

JavaScript events 26
JavaScript libraries

about 169

consideraions 170

Dojo 169

GUI 171

JQuery 169

link 170

Mootools 169

performance tesing 170

proiling tesing 171

[��1]

Prototype 169

Script.aculo.us 169

tesing 170

widget add-ons 171

YUI 169

JavaScript syntax 24-26
JavaScript tesing

Ajax, using 161

diference from server-side tesing 162

JQuery

about 104
URL 169

JSLint

about 90

features 90

funcionality 112

URL 90, 112

using 112

using, for spoing validaion errors 91, 92

JSLitmus

about 241

ad hoc JavaScript benchmark tests, creaing
241-244

features 241

JSpec 245
JsUnit 245

L

less obtrusive manner, code tesing 71
loading errors

about 33
common causes 33
in parially correct JavaScript 35

logic errors

about 37

common causes 38

M

messageObject parameter 103
Mootools

URL 169

N

name atribute 54

navigator object

about 46

browser sniing, performing 47

nonfuncional requirement tesing
about 121

examples 121

non-funcional requirements 121

O

onblur event 59

onsubmit event 51
Opera JavaScript Debugger 218

P

Pareto Principle 125

pareto tesing 125
performance issues, regression tesing 160, 161
performance tesing 127, 170
proiling tesing 171
program logic, test plan

tesing 146

Prototype

URL 169

Q

Qunit

about 236

asserion tests 240

features 236

JavaScript, tesing 236-239

working 236

R

RangeError object
about 178
example 178
working 178

ReferenceError object
about 178
example 179

working 179

regression tesing
about 128
bug, ixing 151-159

implemening 151

[���]

performance issues 160, 161

performing 151-159

right values, web page
geing, at right places 55-64

runime errors
about 36

common causes 36

S

Safari 211
Sahi

about 232

asserion tests, performing 235
features 232

user interface widgets, tesing 232-235
sample applicaion

excepion handling mechanisms, applying
184-199

scope, for test plan
deining 118, 119

Script.aculo.us

URL 169

scripts combining, issues
about 166

event handlers, combining 166-168
name clashes, removing 168, 169

Selenium 244
Selenium Server 245
server side languages

and JavaScript, diferences 29

ASP.NET 29

Perl 29

PHP 29

Python 29

simple-to-use method 48
sotware lifecycle

about 116

analysis stage 116

deployment stage 116

design stage 116

implementaion stage 116

maintenance stage 116

stages 116

tesing stage 116

style atribute 12

submitValues() funcion 59, 113
SyntaxError object 181

T

techniques, for code tesing
about 66

alert method, using 66, 67

less obtrusive manner 71

visual inspecion 66

test cases

acceptance tesing 121

black box tesing 122

funcional requirement tesing 120

integrated tesing 127, 128
non funcional requirement tesing 121

performance tesing 127

regression tesing 128
unit tesing 125
web page tesing 126

white box tesing 124
testFormResponse funcion 62
tesing

about 31

need for 31

tesing and validaing
diferences 82

tesing order 128, 129
tesing tools

Asserion Unit Framework 245
FireUnit 245
JSLitmus 241

JSpec 245
JsUnit 245
QUnit 236

Sahi 232

Selenium 244
TestSwarm 245
Wair 245

test plan

about 129

applying 140

bug form 137

developing 118
documening 129

errors 151

[���]

implemening 139

need for 117

scope, deining 118, 120

summary 137

test strategy 130

versioning 130

test plan implementaion
black box test phase 142

integrated tesing 147

program logic, tesing 146

unexpected values, tesing 147

white box test phase 140

test strategy

about 130

black box tesing 132-134
integrated tesing 134-136

program logic, tesing 134
unexpected values, tesing 134-136

white box tesing 130, 131

TestSwarm 245
throw statement 172
ips, for error free JavaScript 40
too many var statements error

about 97

ixing 98-100

try statement 172
TypeError object

about 180

example 180

working 180

typeOfBrowser variable 47

U
unexpected use of ++ error

about 94
ixing 95

unit tesing 125
URIError object 181
usability tesing

about 123
aspects 123

user interface widgets
tesing, Sahi used 232-235

use strict error

about 94
ixing 94

use strict statement 94

V

validaion errors
ixing 93
spoing, JSLint used 91

valid code constructs, producing validaion
warnings

consequences 93
ixing 92

Venkman extension. See Firefox Venkman
extension

visual inspecion, code tesing
about 66

pre-condiions 66

ips 66

W

Wair 245
web page tesing 126
white box tesing

about 124
branch tesing 124
examples 124
pareto tesing 125

white box test phase, test plan
expected and acceptable values, tesing

140, 141

X

XMLHtpRequest object 161

Y

YUI
URL 169

Thank you for buying
JavaScript Testing Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efecive MySQL
Management" in April 2004 and subsequently coninued to specialize in publishing highly focused
books on speciic technologies and soluions.

Our books and publicaions share the experiences of your fellow IT professionals in adaping and
customizing today's systems, applicaions, and frameworks. Our soluion based books give you the
knowledge and power to customize the sotware and technologies you're using to get the job done.
Packt books are more speciic and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused informaion, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cuing-edge
books for communiies of developers, administrators, and newbies alike. For more informaion, please
visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent

to author@packtpub.com. If your book idea is sill at an early stage and you would like to discuss it
irst before wriing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no wriing
experience, our experienced editors can help you develop a wriing career, or simply get some
addiional reward for your experise.

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploraion of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each funcion, method, and selector
expression in the jQuery library with an easy-to-
follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery’s powerful
plug-in architecture

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applicaions

1. Learn to build consistent, atracive web interfaces
with the framework components

2. Integrate your exising data and web services with
Ext JS data support

3. Enhance your JavaScript skills by using Ext's DOM
and AJAX helpers

4. Extend Ext JS through custom components

Please check www.PacktPub.com for informaion on our itles

ICEfaces 1.�: Next Generation Enterprise

Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applicaions using AJAX Push, JSF, Facelets,
Spring and JPA

1. Develop a full-blown Web applicaion using ICEfaces

2. Design and use self-developed components using
Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

YUI 2.�: Learning the Library
ISBN: 978-1-849510-70-7 Paperback: 404 pages

Develop your next-generaion web applicaions with the
YUI JavaScript development library

1. Improve your coding and producivity with the
YUI Library

2. Gain a thorough understanding of the YUI tools

3. Learn from detailed examples for common tasks

Please check www.PacktPub.com for informaion on our itles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: What is JavaScript Testing?
	Where does JavaScript fit into the web page?
	HTML Content

	Time for action – building a HTML document
	Styling HTML elements using its attributes
	Specifying id and class name for an HTML element

	Cascading Style Sheet

	Time for action – styling your HTML document using CSS
	Referring to an HTML element by its id or class name and styling it
	Differences between a class selector and an id selector
	Other uses for class selectors and id selectors
	Complete list of CSS attributes

	JavaScript providing behavior to a web page

	Time for action – giving behaviour to your HTML document
	JavaScript Syntax
	JavaScript events
	Finding elements in a document
	Putting all together

	The difference between JavaScript and server-side languages
	Why pages need to work without JavaScript
	What is testing?
	Why do you need to test?
	Types of errors
	Loading errors

	Time for action – loading errors in action
	Partially correct JavaScript

	Time for action – loading errors in action
	Runtime errors

	Time for action – runtime errors in action
	Logic Errors

	Time for action – logic errors in action
	Some advice for writing error free-JavaScript
	Always check for proper names of objects, variables, and functions
	Check for proper syntax
	Plan before you code
	Check for correctness as you code
	Preventing errors by choosing a suitable text editor

	Summary

	Chapter 2: Ad Hoc Testing and Debugging in JavaScript
	Purpose of ad hoc testing–getting the script to run
	What happens when the browser encounters an error in JavaScript
	Browser differences and the need to test in multiple browsers
	Time for action – checking for features and sniffing browsers
	in browsers
	Testing browser differences via capability testing

	Time for action – capability testing for different browsers
	Are you getting the output and putting values in the correct places?
	Accessing the values on a form

	Time for action – accessing values from a form
	Another technique for accessing form values
	Accessing other parts of the web page

	Time for action – getting the correct values at the correct places
	Does the script give the expected result?
	What to do if the script doesn't run?
	Visually inspecting the code
	Using alert() to see what the code is running
	Using alert() to see what values are being used

	Time for action – using alert to inspect your code
	A less obtrusive way to check what code is running and the values used

	Time for action – checking what values are used unobtrusively
	Commenting out parts of the script to simplify testing
	Time for action – simplifying the checking process
	Timing differences–making sure HTML is there before interacting with it
	Why ad hoc testing is never enough
	Summary

	Chapter 3: Syntax Validation
	The difference between validating and testing
	Code that is valid but wrong–validation doesn't find all the errors
	Code that is invalid but right
	Code that is invalid and wrong–validation finds some errors that might be difficult to spot any other way

	Code quality
	HTML and CSS needs to be valid before you start on JavaScript
	What happens if you don't validate your code

	Color coding editors–how your editor can help you to spot validation errors

	Common errors in JavaScript that will be picked up by validation
	JSLint–an online validator
	Time for action – using JSLint to spot validation errors
	Valid code constructs that produce validation warnings
	Should you fix valid code constructs that produce validation warnings?
	What happens if you don't fix them

	How to fix validation errors
	Error—missing "use strict" statement

	Time for action – fixing "use strict" error
	Error—unexpected use of ++

	Time for action – fixing the error of "Unexpected use of ++"
	Error—functions not defined

	Time for action – fixing the error of "Functions not defined"
	Too many var statements

	Time for action – fixing the error of using too many var
	statements
	Expecting <\/ instead of <\

	Time for action – fixing the expectation of '<\/' instead of '</'
	Expected '===' but found '=='

	Time for action – changing == to ===
	Alert is not defined

	Time for action – fixing "Alert is not defined"
	Avoiding HTML event handlers

	Time for action – avoiding HTML event handlers
	Summary of the corrections we have done

	JavaScript Lint–one tool you can download
	Challenge yourself–fix the remaining errors spotted by JSLint

	Summary

	Chapter 4: Planning to Test
	A very brief introduction to the software lifecycle
	The agile method
	The agile method and software cycle in action
	Analysis and design
	Implementation and testing
	Deployment
	Maintenance

	Do you need a test plan to be able to test?
	When to develop the test plan
	How much testing is required?
	What is the code intended to do?
	Testing whether the code satisfies our needs
	Testing for invalid actions by users
	A short summary of the above issues

	Major testing concepts and strategies
	Functional requirement testing
	Non-functional requirement testing
	Acceptance testing
	Black box testing
	Usability tests
	Boundary testing
	Equivalence partitioning
	Beta testing

	White box testing
	Branch testing
	Pareto testing

	Unit tests
	Web page tests
	Performance tests
	Integration testing
	Regression testing–repeated prior testing after making changes

	Testing order
	Documenting your test plan
	The test plan
	Versioning
	Test strategy
	Bug form

	Summary of our test plan

	Summary

	Chapter 5: Putting the test plan into action
	Applying the test plan: running your tests in order
	Test Case 1: Testing expected and acceptable values

	Time for action – Test Case 1a: testing expected and acceptable
	values by using white box testing
	Test Case 1b: Testing expected but unacceptable values using black box testing

	Time for action – Test case 1bi: testing expected but
	unacceptable values using boundary value testing
	Time for action – Test case 1bii: testing expected but
	unacceptable values using illegal values
	Test Case 2: Testing the program logic

	Time for action – testing the program logic
	Test Case 3: Integrated testing and testing unexpected values

	Time for action –Test Case 3a: testing the entire program with
	expected values
	Time for action – Test Case 3b: testing robustness of the
	second form
	What to do when a test returns an unexpected result

	Regression testing in action
	Time for action – fixing the bugs and performing regression
	testing
	Performance issues—compressing your code to make it load faster
	Does using Ajax make a difference?
	Difference from server-side testing
	What happens if you visitor turns off JavaScript

	Summary

	Chapter 6: Testing More Complex Code
	Issues when combining scripts
	Combining event handlers
	Naming clashes

	Using JavaScript libraries
	Do you need to test a library that someone else wrote?
	What sort of tests to run against library code?
	Performance testing
	Profiling testing

	GUI and widget add-ons to libraries and considerations on how to test them

	Deliberately throwing your own JavaScript errors
	The throw statement
	The try, catch, and finally statement

	Trapping errors by using built-in objects
	The Error object
	The RangeError object
	The ReferenceError object
	The TypeError object
	The SyntaxError object
	The URIError object
	The EvalError object

	Using the error console log
	Error messages
	Writing your own messages

	Modifying scripts and testing
	Time for action – coding, modifying, throwing, and catching
	errors
	Summary

	Chapter 7: Debugging Tools
	IE 8 Developer Tools (and the developer toolbar plugin for IE6 and 7)
	Using IE developer tools
	Open
	Brief introduction to the user interface
	Debugging basics of the IE debugging tool

	Time for action – Debugging HTML by using the IE8 developer tool
	Time for action – Debugging CSS by using the IE8 developer tool
	Debugging JavaScript

	Time for action – More Debugging JavaScript by using the IE8
	developer tool
	Safari or Google Chrome Web Inspector and JavaScript Debugger
	Differences between Safari and Google Chrome
	Debugging using Chrome
	A brief introduction to the user interface

	Time for action – Debugging with Chrome
	Opera JavaScript Debugger (Dragonfly)
	Using Dragonfly
	Starting Dragonfly

	Time for action – Debugging with Opera Dragonfly
	Inspection and Call Stack
	Thread Log
	Continue, Step Into, Step Over, Step Out, and Stop at Error
	Settings

	Firefox and the Venkman extension
	Using Firefox's Venkman extension
	Obtaining the Venkman JavaScript Debugger extension
	Opening Venkman
	A brief introduction to the user interface

	Time for action – Debugging using Firefox's Venkman extension
	Breakpoints or Call Stack
	Local Variables and Watches

	Time for action – more debugging with the Venkman extension
	Firefox and the Firebug extension
	Summary

	Chapter 8: Testing Tools
	Sahi
	Time for action – user Interface testing using Sahi
	More complex testing with Sahi

	QUnit
	Time for action – testing JavaScript with QUnit
	Applying in real-life situations
	More assertion tests for various situations

	JSLitmus
	Time for action – creating ad hoc JavaScript benchmark tests
	More complex testing with JSLitmus

	More testing tools that you should check out
	Summary

	Index

